Pioneer in chromogenic media since 1979!

The first chromogenic culture medium (for detection of E. coli) was invented and patented by Dr. A. Rambach in 1972. The introduction of this medium triggered a revolution in microbial detections and is now used by the introduction of a whole range of media for the detection of key clinical & foodborne pathogens. The widespread use of chromogenic media for the detection of bacteria is increasing steadily despite the introduction of other (often molecular biology based) techniques.

5 Reasons to choose CHROMagar Chromogenic Media to bring efficiency to your Microbial Analysis

- **Fast Results in 18h-24h**
- **Worldwide Recognition**
- **30 years Experience, Specialization and Know-How**
- **Gas Flexibility Using dehydrated media**
- **Intense Chromogenic Colours**

Ask your local distributor for more information

CHROMagar, 4 place du 19 Juin 1940, 75006 Paris - France - Contact: CHROMagar@CHROMagar.com

Intense Colours

- Salmonella
- Gramnegative
- VRE
- Penicillin
- UV Phosphorescence
- Dehydrated Media

CHROMagar-General Brochure

Fast Results

E.coli

E. coli O157

KPC

ESBL

VRE

Intense Chromogenic Colours

5 Years Experience, Specialization and Know-How

- Dehydrated media
- Gas flexibility
- Intense chromogenic colours

Ask your local distributor for more information

CHROMagar, 4 place du 19 Juin 1940, 75006 Paris - France - Contact: CHROMagar@CHROMagar.com
Clinical Microbiology

CHROMagar™ Candida

- **Plate Reading**: Pink to mauve
- **Confirmation Plate Reading**: Rose to mauve

- **Candida**
- **Candida krusei**
- **Candida tropicalis**

- For isolation and detection of Candida species in clinical and food samples.

CHROMagar™ Staph aureus

- **Plate Reading**: Blue or inhibited
- **Confirmation Plate Reading**: Red

- **Staph aureus**
- **MRSA**
- **Methicillin Susceptible Staph aureus (MSSA)**

- For detection and isolation of Staph aureus species in clinical and food samples.

CHROMagar™ Orientation

- **Plate Reading**: Inhibited
- **Confirmation Plate Reading**: Metallic blue

- **Acinetobacter**
- **Vibrio**
- **Pseudomonas**

- For isolation and detection of urinary tract pathogens.

CHROMagar™ Pseudomonas

- **Plate Reading**: Blue or inhibited
- **Confirmation Plate Reading**: Metallic blue

- **Pseudomonas**
- **V. alginolyticus**

- For isolation and detection of Pseudomonas species in clinical and food samples.

CHROMagar™ Vibrio

- **Plate Reading**: Colourless
- **Confirmation Plate Reading**: Rose surrounded

- **Vibrio**
- **V. parahaemolyticus**

- For detection and isolation of Vibrio species in clinical and food samples.

Questions or comments? Please contact us at info@chromagar.com.

For more information about our products, please refer to our website / Technical Documents.
For isolation and differentiation of S. aureus

- **Plate Reading**
 - Blue colonies with white halo
 - Colorless colonies

- **Other Features**
 - Lactic acid production
 - Hydrogen sulfide

For isolation and differentiation of Pseudomonas aeruginosa

- **Plate Reading**
 - Red colonies

- **Other Features**
 - Viscous colonies
 - Positive for indole, H2S, VP, and O129

Other bacteria

- **Plate Reading**
 - Mauve colonies

- **Other Features**
 - Produces indole
 - Oxidase positive

Candida

- **Plate Reading**
 - Yeast-like colonies

- **Other Features**
 - Positive for germ tube
 - Positive for yeast agglutination

CHROMagar™ Orientation

- **Plate Reading**
 - Differentiation of bacteria
 - Blue, colorless, or reddish colonies

- **Other Features**
 - Coliforms: pink to mauve
 - E. coli: pink to mauve
 - E. gallinarum / E. casseliflavus: pink to mauve
 - E. faecalis: pink to mauve
 - E. faecium: pink to mauve
 - K. pneumoniae: pink to mauve
 - K. oxytoca: pink to mauve
 - L. monocytogenes: blue
 - Many Coliforms: pink to mauve
 - Proteus: dark pink to reddish
 - V. parahaemolyticus: rose surrounded by a regular and white halo diameter less than 3mm,
 - VRE: pink to mauve

CHROMagar™ Staph aureus

- **Plate Reading**
 - Metallic blue colonies

- **Other Features**
 - Useful for the detection of Staphylococcus aureus
 - False positives and false negatives

CHROMagar™ MRSA

- **Plate Reading**
 - Metallic blue colonies

- **Other Features**
 - Useful for the detection of Methicillin Resistant Staphylococcus aureus

CHROMagar™ VRE

- **Plate Reading**
 - Blue colonies

- **Other Features**
 - Useful for the detection of Vancomycin Resistant Enterococci

CHROMagar™ Colonization of Antibiotic Resistant Bacteria

- **Plate Reading**
 - Differentiation of antibiotic-resistant bacteria

CHROMagar™ Vibrio

- **Plate Reading**
 - Greenish-blue colonies

- **Other Features**
 - Useful for the detection of Vibrio cholerae

CHROMagar™ Vibrio cholerae

- **Plate Reading**
 - Greenish-blue colonies

- **Other Features**
 - Useful for the detection of Vibrio cholerae

CHROMagar™ Vibrio parahaemolyticus

- **Plate Reading**
 - Rose surrounded by a regular and white halo diameter less than 3mm

- **Other Features**
 - Useful for the detection of Vibrio parahaemolyticus

CHROMagar™ Vibrio vulnificus

- **Plate Reading**
 - Rose surrounded by a regular and white halo diameter less than 3mm

- **Other Features**
 - Useful for the detection of Vibrio vulnificus

CHROMagar™ Vibrio cholerae

- **Plate Reading**
 - Greenish-blue colonies

- **Other Features**
 - Useful for the detection of Vibrio cholerae

CHROMagar™ Vibrio parahaemolyticus

- **Plate Reading**
 - Rose surrounded by a regular and white halo diameter less than 3mm

- **Other Features**
 - Useful for the detection of Vibrio parahaemolyticus

CHROMagar™ Vibrio vulnificus

- **Plate Reading**
 - Rose surrounded by a regular and white halo diameter less than 3mm

- **Other Features**
 - Useful for the detection of Vibrio vulnificus

Failure to rapidly detect antibiotic-resistant gram negative bacteria has contributed to their uncontrolled spread, and sometimes led to major outbreaks. As a result, there is an increasing need for methods to test for antibiotic resistance in bacteria. CHROMagar™ Orientation has a broader range of applications than conventional methods, and can be used for the detection of multiple resistant microorganisms. It is therefore a valuable tool in clinical microbiology laboratories for the rapid and clear results it provides.

For more information about our products, please refer to our website or Technical Documents.
For isolation and differentiation of Staph aureus

- **Plate Reading**
 - Golden, opaque, small
 - Metallic blue
 - Brown halo

- **Application**
 - E. coli
 - Other microorganisms

- **Advantages**
 - For isolation and detection of all Staphylococci species
 - CHROMagar™ Staph aureus allows fast and easy detection of Staph aureus strains.

For isolation and differentiation of Streptococcus agalactiae (GBS)

- **Detection of Group B**
 - **Plate Reading**
 - Pink, fuzzy
 - **Confirmation**
 - E. gallinarum / E. casseliflavus

- **Advantages**
 - Detection of vaginal colonisation by GBS in pregnant women
 - CHROMagar™ STREP B allows detection of GBS (haemolytic as well as non-haemolytic) with a sensitivity and specificity unrivalled sensitivity and specificity.

For isolation and detection of Acinetobacter

- **Plate Reading**
 - Blue, blue-black, blue-white

- **Advantages**
 - Detection of Acinetobacter
 - Use of CHROMagar™ Acinetobacter has led to such significant reductions in both the response time and the number of useless catalase tests.

For detection and isolation of Salmonella species in clinical and food samples

- **Plate Reading**
 - **VRED**
 - Red
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection, differentiation and enumeration of coliforms in food specimens

- **Plate Reading**
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection and isolation of faecal streptococcus in clinical and food samples

- **Plate Reading**
 - **MSSA**
 - **Colony**
 - Red
 - **MRSA**
 - **Colony**
 - Red

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection, differentiation and enumeration of Staphylococci species

- **Plate Reading**
 - **MSSA**
 - **Colony**
 - Red
 - **MRSA**
 - **Colony**
 - Red

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection and isolation of Salmonella species in clinical and food samples

- **Plate Reading**
 - **VRED**
 - Red
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection and isolation of Salmonella species in clinical and food samples

- **Plate Reading**
 - **VRED**
 - Red
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection, differentiation and enumeration of coliforms in food specimens

- **Plate Reading**
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection, differentiation and enumeration of coliforms in food specimens

- **Plate Reading**
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.

For detection, differentiation and enumeration of coliforms in food specimens

- **Plate Reading**
 - **KPC**
 - **Colony**
 - Yellow-pink to reddish
 - **If confirmed**
 - **KPC**
 - Yellow-pink to reddish
 - **KPC**
 - Yellow-pink to reddish

- **Advantages**
 - Best tool for the detection and isolation of Salmonella species.
 - CHROMagar™ Salmonella Plus has a 98% Sensitivity for E.coli O157.
For detection and enumeration of E. coli in food and water samples:

CHROMagar

E. coli

- **Plain Reading:**
 - **Red**
 - **Blue**
 - **Purple**
- **Other Coliform bacteria**
 - **Blue**
 - **Purple**
- **Other gram negative bacteria**
 - **Violet**
- **Gram positive bacteria**
 - **Colorless or inhibited**

Intense Colours

For the simultaneous detection and enumeration of E. coli and other coliforms in food or water samples:

CHROMagar

- **EC166:** 5 L pack (upon request)
- **EC168-25:** 25 L pack

CHROM Liquid ECC

- **Blue**
- **Blue Green**
- **Yellow**

AquaCHROM

- **Blue**
- **Blue Green Liquid**
- **Yellow Liquid**

For the simultaneous detection and enumeration of E. coli and other coliforms in water samples:

CHROMcoli

- **Plate Reading:**
 - **Red**
 - **Pink**
 - **Blue**
 - **Purple**
- **Other Coliform bacteria**
 - **Pink**
 - **Blue**
 - **Purple**
- **Other gram negative bacteria**
 - **Blue**
- **Gram positive bacteria**
 - **Colorless or inhibited**

5 Reasons to choose CHROMagar Chromogenic Media to bring efficiency to your Microbial Analysis

1. **Fast Results**
 - **18h-24h**
2. **Worldwide Recognition**
3. **30 years Experience, Specialization and Know-How**
4. **Gas Flexibility Using dehydrated media**
5. **Intense Chromogenic Colours**

Ask your local distributor for more information

Pioneer in chromogenic media since 1979!

The first chromogenic culture medium (for detection of E. coli) was invented and patented by Dr. A. Rambach in 1979. The introduction of this medium triggered a revolution in microbial detection and analysis. Since then, CHROMagar has continuously increased steadily despite the introduction of other (often molecular biology based) techniques.

What is chromogenic technology applied to culture media?

It is the development of coloured colonies with distinctive colours to allow an easier differentiation of the growing microorganism. It is based on the use of enzyme chromogenic substrates that are composed of a substrate, an enzyme, and a chromogen. The enzyme, when present, cleaves the substrate and releases a chromogen. The chromogen is then cleaved by other enzymes, leading to the liberation of a specific chromophore.

Intense Colours

The novel formulation of AquaCHROM uses two different chromogens (instead of the traditional chromogen/fluorogen combination) which enables test results to be clearly distinguishable under different lighting conditions.

The Widest Range of Chromogenic Media

For Colourful Microbial Detection
CHROMagar™ Packaging Sizes

<table>
<thead>
<tr>
<th>Size</th>
<th>S. L.</th>
<th>25 L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACK</td>
<td>5 L</td>
<td>5 L</td>
</tr>
<tr>
<td>PACK</td>
<td>25 L</td>
<td>25 L</td>
</tr>
</tbody>
</table>

Pack sizes available in the UK only.

Pioneer in chromogenic media since 1979!

The first chromogenic culture medium (for detection of E. coli) was invented and patented by Ch- Rambach in 1979. The introduction of this medium triggered a revolution in microbial detection and driven by the introduction of a whole range of media for the detection of key clinical & food bacteria pathogens. The development of chromogenic culture media for the detection of bacteria is now an industry with an increasing steady despite the introduction of other (orthol molecular biology-based) techniques.

What is chromogenic technology applied to culture media?

It is the colouring the biochemical reactions with distinctive colour to allow a faster and easier differentiation of the growing microorganism. This technology is based on a soluble substrate (called chromogen) which, when converted by the target organism, generates a specific characteristic colour to the chromophore. When the absent enzyme chromogen is converted by the absence of the target organism, the chromogen is retained, and it is not utilised from the chromogenic plate, its distinctive colour will be due to undetermined substances present. The result is a very specific & distinctive, colour-based differentiation, which is clearly distinguishable in the naked eye under normal lighting conditions.

5 Reasons to choose CHROMagar™ Chromogenic Media

to bring efficiency to your Microbial Analysis

- **Fast Results in 18h-24h**
- **Worldwide Recognition**
- **Gain Flexibility Using dehydrated media**
- **Intense Chromogenic Colours**
- **30 years Experience, Specialisation and Know-How**

Ask your local distributor for more information

The Widest Range of Chromogenic Media

For Colourful Microbial Detection