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ABSTRACT 

Production of cloned-caprine embryos using the intraspecies somatic cell nuclear 

transfer is limited by low source of caprine oocytes as the recipient cytoplast in 

Malaysia. Therefore, using the bovine oocytes as recipient cytoplast in interspecies 

somatic cell nuclear transfer is an alternative approach to produce large number of 

cloned-caprine embryos and subsequently offspring at a rapid rate. This study was 

aimed to produce cloned-caprine embryos in vitro by specifically evaluating the 

interspecies nuclear transfer technique such as enucleation methods, nuclear transfer 

methods and in vitro culture systems. Briefly, the bovine ovaries were collected from 

local abattoir and transported to the laboratory within 2 to 3 hours in saline solution 

(0.9% NaCl). Bovine oocytes were recovered by checkerboard slicing the entire surface 

of the ovary inside the culture dish by using the razor blade. Oocytes with several 

compact layers of cumulus cells were selected and cultured in in vitro maturation (IVM) 

medium for 20 to 22 hours. After maturation, cumulus oocyte complexes (COC) were 

denuded in hyaluronidase (0.1%) to remove the cumulus cells. The matured oocytes 

with extrusion of first polar body were selected for enucleation to remove the spindle. 

Caprine-foetal fibroblast cells (donor karyoplasts) were harvested and transferred into 

enucleated bovine oocytes. The reconstructed oocytes were activated and the 

reconstructed couplets were cultured in KSOM medium for in vitro embryos 

development in CO2 (5%) incubator at 38.5oC in humidified atmosphere for 8 days. The 

medium was changed every 2 days of in vitro culture. Samples of embryos from each 

stage were stained with Hoechst 33342 to examine the number of nuclei of the embryos. 

The data were presented as mean±SEM and were analysed using one-way ANOVA. 

The significant differences among treatments were further analysed by DMRT and 

P<0.05 was considered significant.  
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In Experiment 1, two enucleation methods were compared, i.e. squeezing and 

aspiration. There was no significant difference in the percentages successfully 

enucleated oocytes (P>0.05) for both enucleation methods (squeezing vs. aspiration: 

88.01±3.00% vs. 91.68±1.92%, respectively). In terms of manipulation efficiency, the 

duration needed to complete the enucleation together with injection, the speed for 

aspiration with sub-zonal injection was significantly faster (P<0.05) than squeezing with 

sub-zonal injection (41.18±2.77 and 83.82±3.16 minutes, respectively). In in vitro 

embryo development, the percent of cloned-caprine embryos from 2 cell stage up to 

blastocyst stage using squeezing (2 cell: 60.18±2.43%, 4 cell: 53.80±2.84%, 8 cell: 

37.71±3.30%, morula: 24.45±2.71% and blastocyst: 12.08±2.95%) and aspiration (2 

cell: 61.55±4.20%, 4 cell: 49.86±3.87%, 8 cell: 39.22±4.26%, morula: 21.07±3.94% 

and blastocyst: 10.93±1.87%) methods did not differ significantly (P>0.05). 

In Experiment 2, two nuclear transfer methods were compared, i.e. sub-zonal 

injection with electro-fusion and intracytoplasm injection. There were no significant 

differences (P>0.05) in the injection and reconstruction rates for both nuclear transfer 

methods. The percent cloned-caprine embryos obtained from interspecies SCNT at 2- 

and 8 cell using SUZI and ICI methods did not differ significantly (P>0.05). However, 

the percentages of cloned-caprine embryos at 4 cell, morula and blastocyst derived from 

SUZI method were significantly higher (P<0.05) compared to the ICI method 

(53.80±2.84% vs. 38.60±2.25%, 24.45±2.71% vs. 16.05±1.43% and 12.08±2.95% vs. 

4.51±1.45%, respectively).  

In Experiment 3, three different in vitro culture system were compared, i.e. 

Group 1 (KSOM A throughout duration of the culture), observation of the embryos 

were recorded on days 3, 5, 7 and 8 without changing the medium; Group 2 (KSOM A 

on days 1-3, changed with KSOM A on days 3 and 5), the embryos were observed and 

recorded on days 3, 5, 7 and 8; and Group 3 (KSOM A on days 1-3, changed with 
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KSOM B on days 3 and 5), the embryos were observed and recorded on days 3, 5, 7 and 

8. Group 3 (2 cell: 60.18±2.43%, 4 cell: 53.80±2.84%, 8 cell: 37.71±3.30%, morula: 

24.45±2.71% and blastocyst: 12.07±2.95%) showed significantly higher (P<0.05) in the 

in vitro development competence from 2 cell up to blastocyst stages compared to 

Groups 1 (2 cell: 49.01±2.02%, 4 cell: 36.92±3.02%, 8 cell: 26.46±1.74%, morula: 

8.42±0.47% and blastocyst: 0.00±0.00%) and 2 (2 cell: 49.85±3.27%, 4 cell: 

39.68±2.72%, 8 cell: 29.34±1.87%, morula: 10.22±1.49% and blastocyst: 0.00±0.00%). 

In Experiment 4, an attempt to produce pregnancy after oviduct embryo transfer 

of interspecies SCNT embryos and using ultrasound scanning for pregnancy diagnosis 

were carried out. A total of 63 cloned-caprine embryos were obtained from interspecies 

SCNT experiment. However, only 55 embryos of Grades 1 and 2 (4- and 8 cell stages) 

were chosen and transferred into 9 recipients with at least 1 CL. Unfortunately, after 

ultrasound scanning on day 30 of gestation age after embryo transfer, there was no 

pregnancy observed in the recipient goats after embryo transfer experiment. 

It can concluded from the present study that caprine embryos could be 

successfully produced through interspecies SCNT using caprine foetal fibroblast cell as 

donor karyoplast and bovine oocyte as recipient cytoplast under local setting in 

Malaysia. It is believe this is the first report of producing cloned-caprine embryos with 

satisfactory blastocyst rate in interspecies SCNT using KSOM supplementation 

additional of glucose. With this encouraging findings and future refined research, using 

caprine-bovine in interspecies SCNT to produce caprine embryos and offspring may 

offer a new approach to increase genetically superior goat population in Malaysia at a 

rapid rate to meet the goat meat and milk demand for the industry.  
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ABSTRAK 

Penghasilan klon embrio kaprin dengan menggunakan pemindahan nukleus sel somatik  

intraspesies di Malaysia adalah terhad kerana sumber oosit kaprin yang rendah sebagai 

sitoplas penerima. Oleh yang demikian, menggunakan oosit bovin sebagai sitoplas 

penerima dalam pemindahan nukleus sel somatik interspesies adalah suatu pendekatan 

alternatif untuk menghasilkan klon embrio kaprin dalam bilangan yang banyak dan 

seterusnya menghasilkan zuriat pada kadar yang cepat. Kajian ini bertujuan untuk 

menghasilkan klon embrio kaprin secara in vitro dengan penilaian khusus terhadap 

teknik pemindahan nukleus interspesies seperti kaedah enukleasi, kaedah pemindahan 

nukleus dan sistem pengkulturan secara in vitro. Secara ringkasnya, ovari bovin 

dikumpul daripada rumah sembelihan tempatan dan diangkut ke makmal dalam tempoh 

2 ke 3 jam dalam larutan salin (0.9% NaCl). Oosit bovin diperolehi secara penghirisan 

ckeckerboard terhadap keseluruhan permukaan ovari di dalam piring kultur dengan 

mengguna bilahan pisau cukur. Oosit yang mempunyai beberapa lapisan manpat sel 

kumulus dipilih dan dikultur di dalam medium kematangan in vitro selama 20 hingga 22 

jam. Selepas menjadi matang, kumulus oosit kompleks (COC) telah ditanggalkan 

lapisan selnya dengan hialuronidase (0.1%) untuk membuangkan sel kumulus. Oosit 

matang yang jasad kutub pertamanya dinyah keluar telah dipilih untuk enukleasi bagi 

membuang spindelnya. Sel fibroblas fetus kaprin (karioplas penderma) dikutip dan 

dipindahkan ke dalam oosit bovin yang telah dienukleasi. Oosit yang telah 

direkonstruksi diaktifkan dan kuplet yang direkonstruksi telah dikultur di dalam 

medium KSOM untuk perkembangan embrio secara in vitro dalam inkubator CO2 (5%) 

pada suhu 38.5oC dalam suasana atmosfera lembap selama 8 hari. Medium dalam kultur 

in vitro telah ditukar setiap 2 hari. Sampel embrio daripada setiap peringkat telah 

diwarna dengan  pewarna Hoechst 33342 untuk mengenalpasti bilangan nukleus embrio. 
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Data dikemukakan sebagai min±SEM dan dianalisis dengan menggunkan ANOVA 

sehala. Perbezaan yang signifikan di antara perlakuan telah dianalisis selanjutnya 

dengan menggunakan DMRT dan P<0.05 dianggap sebagai signifikan. 

 Dalam Eksperimen 1, dua kaedah enukleasi telah dibandingkan, iaitu picitan dan 

aspirasi. Tiada perbezaan signifikan dalam peratusan oosit telah berjaya dienukleasi 

(P>0.05) bagi kedua-dua kaedah enukleasi (picitan vs. aspirasi: 88.01±3.00% vs. 

91.68±1.92%, masing-masing). Dari segi kecekapan manipulasi, tempoh yang 

diperlukan untuk menamatkan enukleasi bersama-sama dengan suntikan, kelajuan untuk 

aspirasi dengan suntikan sub-zona adalah lebih capat secara signifikan (P<0.05) 

berbanding picitan dengan suntikan sub-zona (41.18±2.77 dan 83.82±3.16 minit, 

masing-masing). Di dalam perkembangan embrio in vitro, peratusan klon embrio kaprin 

dari peringkat 2 sel sehingga peringkat blastosis menggunakan kaedah picitan (2 sel: 

60.18±2.43%, 4 sel: 53.80±2.84%, 8 sel: 37.71±3.30%, morula: 24.45±2.71% and 

blastosis: 12.08±2.95%) dan aspirasi (2 sel: 61.55±4.20%, 4 sel: 49.86±3.87%, 8 sel: 

39.22±4.26%, morula: 21.07±3.94% and blastosis: 10.93±1.87%) secara signifikannya 

tidak berbeza (P>0.05). 

 Dalam Eksperimen 2, dua kaedah pemindahan nukleus telah dibandingkan, iaitu 

suntikan sub-zona dengan elektro-fusi dan suntikan secara intrasitoplasmik. Tiada 

perbezaan signifikan (P>0.05) dalam kadar suntikan dan rekonstruksi bagi kedua-dua 

kaedah pemindahan nukleus. Peratusan klon embrio kaprin yang diperolehi daripada 

interspesies SCNT pada 2- dan 8 sel dengan menggunakan kaedah SUZI dan ICI tidak 

berbeza dengan signifikan (P>0.05). Walau bagaimanapun, peratusan klon embrio 

kaprin pada 4 sel, morula dan blastosis diperolehi daripada kaedah SUZI adalah lebih 

tinggi secara signifikan (P<0.05) berbanding dengan kaedah ICI (53.80±2.84% vs. 

38.60±2.25%, 24.45±2.71% vs. 16.05±1.43% dan 12.08±2.95% vs. 4.51±1.45%, 

masing-masing).  
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Dalam Eksperimen 3, tiga sistem kultur secara in vitro yang berbeza telah 

dibandingkan, iaitu Kumpulan 1 (KSOM A sepanjang tempoh kultur), pemerhatian ke 

atas embrio direkodkan pada hari 3, 5, 7 dan 8 tanpa menukar medium; Kumpulan 2 

(KSOM A pada hari 1-3, seterusnya ditukar dengan KSOM A yang baru pada hari 3 dan 

5), embrio telah diperhatikan dan direkodkan pada hari 3, 5, 7 dan 8; dan Kumpulan 3 

(KSOM A pada hari 1-3, seterusnya ditukar dengan KSOM B pada hari 3 dan 

5), embrio diperhatikan dan direkodkan pada hari 3, 5, 7 dan 8. Kumpulan 3 

menunjukkan lebih tinggi secara signifikan (P<0.05) di dalam in vitro kekompetenan 

perkembangan daripada peringkat 2 sel sehingga blastosis berbanding kepada 

Kumpulan 1 (2 sel: 49.01±2.02%, 4 sel: 36.92±3.02%, 8 sel: 26.46±1.74%, morula: 

8.42±0.47% and blastosis: 0.00±0.00%) dan 2 (2 sel: 49.85±3.27%, 4 sel: 39.68±2.72%, 

8 sel: 29.34±1.87%, morula: 10.22±1.49% and blastosis: 0.00±0.00%). 

Dalam Eksperimen 4, suatu usaha untuk menghasilkan kebuntingan selepas 

pemindahan embrio secara oviduktus embrio dengan menggunakan embrio interspesies 

SCNT dan dengan menggunakan ultrasound scanning untuk mendiagnosis kebuntingan 

telah dijalankan. Sejumlah 63 klon embrio kaprin telah diperolehi daripada eksperimen 

interspesies SCNT. Walau bagaimanapun, hanya 55 embrio terdiri daripada Gred 1 dan 

2 (peringkat 4-8 sel) telah dipilih dan dipindahkan ke dalam 9 penerima yang 

mempunyai sekurang-kurangnya 1 CL. Malangnya, selepas ultrasound scanning pada 

hari ke-30 usia kebuntingan selepas pemindahan embrio, tiada kebuntingan diperhatikan 

dalam kambing-kambing penerima setelah eksperimen pemidahan embrio.  

Boleh disimpulkan daripada kajian ini bahawa embrio kaprin boleh dihasilkan 

dengan jayanya melalui interspesies SCNT menggunakan sel fibroblas fetus kaprin 

sebagai karioplas penderma dan oosit bovin sebagai sitoplas penerima di bawah suasana 

tempatan di Malaysia. Adalah dipercayai bahawa ini adalah laporan pertama yang 

menunjukan penghasilkan klon embrio kaprin dengan kadar blastosis yang memuaskan 
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dalam interspesies SCNT dengan menggunakan tambahan suplementasi 

glukosa. Dengan penemuan yang memberangsang ini dan penyelidikan yang lebih 

terperinci pada masa hadapan, penggunaan kaprin-bovin dalam interspesies SCNT 

untuk menghasilkan embrio dan zuriat kambing boleh menawarkan satu pendekatan 

baru untuk meningkatkan populasi kambing yang baik dari segi genetiknya di Malaysia 

pada kadar yang cepat untuk memenuhi permintaan daging dan susu kambing bagi 

industri.  
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Chapter 1 

1.0"INTRODUCTION 

 

1.1"BACKGROUND 

Researchers and authorities have identified that improper breeding programme, poor 

management and nutrition, lack of advanced technologies, non-commercialisation and 

non-economical practices are predominant factors that interrupt the growth of goat (also 

known as caprine) industry in Malaysia. Due to the low productivity of goat production 

and increasing demand of goat meat each year in Malaysia, the economic value and 

market potential of goat meat are on the increase each year and consequently the 

Malaysian government gives a high priority to make agriculture as the third engine of 

economic growth besides manufacturing and services sectors. In Malaysia, 

approximately 95% of goats are imported from New Zealand, Australia, Brazil and 

some other countries to meet the local demand. This is because the present population 

of goat in Malaysia is less than 500,000 heads (Department of Veterinary Services, 

2010). However, there is approximately 10 million goats are required to be slaughtered 

per year for the local consumption of Malaysian populations (per capita consumption: 

0.5 kg per person per year). The high demand for goat meat and milk is also due to the 

country’s population growth and increase in the standard of living of the Malaysians. 

Furthermore, goat meat could be eaten by all the different ethnic groups of Malaysia as 

well as goat meat (3%) is lower in fat content  compared to other red meats such as beef 

(21%), pork (17%) and lamb (16%) (USDA Handbook, No. 8, 1989). 

The application of reproductive technologies in goat is still low compared to 

other species such as cattle, sheep and pig. However, the current trend of goat 

commercialisation, they are vigorous efforts worldwide to incorporate the developed, 

advanced reproductive technologies (ARTs) such as artificial insemination (AI), in vitro 
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fertilisation (IVF), intracytoplasmic sperm injection (ICSI), oocytes and embryo 

cryopreservation and embryo transfer into the modern farm management practices. 

Other newer techniques such as somatic cell nuclear transfer (SCNT) and stem cell 

research are currently being actively research in various laboratories across the globe. 

These techniques, once established in the near future, would be an important 

cornerstone of technological development for the goat industries as well as for the 

applications for the treatment of human degenerative diseases.  

In our laboratory at the University of Malaya, Malaysia, we have been actively 

conducting research in various goat reproductive technologies for the past 3 decades. 

One main issue of goat research in Malaysia is the lack of source of ovaries to obtain 

the oocytes for various reproductive techniques. This is due to the low goat population 

to be slaughtered in the country; and those slaughtered are mainly the male goats that 

are imported. Consequently, we have been constantly facing problems of obtaining 

sufficient number of oocytes for the various reproductive techniques such as in vitro 

fertilisation, intracytoplasmic sperm injection, oocytes and embryo cryopreservation 

and embryo transfer.  

Recently, our laboratory has developed somatic cell nuclear transfer in goat. 

Even though we obtained encouraging results of producing cloned-caprine embryos 

using intraspecies somatic cell nuclear transfer (intraspecies SCNT), similar problem as 

that of other techniques in which the insufficient source of caprine oocytes hampered 

the progress of cloning and other related research activities. One of the reproductive 

techniques that we attempt to carry out in our laboratory is interspecies somatic cell 

nuclear transfer (interspecies SCNT) in goat. Dominko et al. (1999) reported the first 

interspecies SCNT experiments on cow-cattle, sheep-cattle, pig-cattle, monkey-cattle 

and rat-cattle with the blastocyst percentages 17.3, 13.9, 14.3, 16.6 and 0%, respectively, 

shortly after the cloning of a lamb, Dolly, from somatic cell nuclear transfer (Wilmut et 
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al., 1997). They suggested that the cell division and formation of an embryonic 

blastocoele cavity occurred at the time characteristic of embryos from the species of the 

donor nuclei; however, from their study there was no pregnancies reported after 

transferred of interspecies SCNT cloned embryos into surrogate animals.  

Since then, interspecies SCNT becomes a new approach of several researchers to 

obtain embryos as well as offspring through interspecies SCNT by employing various 

model systems. However, most of the successful interspecies SCNT were done by 

combining closely related species (Beyhan et al., 2007). The first pregnancy obtained 

through interspecies SCNT was reported by White et al. (1999) using domestic sheep as 

recipient oocyte and argali sheep as donor cell (Ovis aries/Ovis musimon), however, the 

pregnancies had been lost by 59 days of gestation. Interspecies SCNT offspring such as 

gaur (Bos grunensis) (Lanza et al., 2000) and mouflon (Ovis orientalis musimon) (Loi et 

al., 2001) have been obtained. Sansinena et al. (2005) also reported with established 

two pregnancies of banteng-cattle cloned embryos, however, no live offspring was 

obtained. Besides that, some reported experiments on interspecies SCNT but no 

offspring obtained such as panda-rabbit (Chen et al., 2002), macaca-rabbit (Yang et al., 

2003), water buffalo-cattle (Kitiyanant et al., 2001), takin-cattle (Li et al., 2006), 

however, have achieved success in blastocyst development.  

 

1.2"STATEMENT OF PROBLEMS 

To date, a lot of research progress has been made in interspecies somatic cell nuclear 

transfer in livestock animals including goats. However, there are still many issues need 

to be solved before this technique could be used routinely in livestock production. 

Interspecies somatic cell nuclear transfer is a new approach to produce cloned embryos. 

However, many technical problems need to be overcome since it involves 2 different 

unrelated species. Even though the percentage in getting cleavage rate is high after 
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nuclear transfer and subsequent culture, it is very hard to obtain blastocyst (<10%) or 

even harder to obtain cloned offspring.  

Nuclear transfer is a complex protocol, which involved many steps and each step 

might affects the overall efficiency. The protocols involved are such as, the preparation 

of somatic cells, the preparation of enucleated oocytes, the injection or fusion of somatic 

cell nuclei into the enucleated oocyte, the reconstruction of the somatic chromosomes, 

oocyte activation and culture medium methods to produce a diploid cloned embryo. 

Over the years, researchers have shown their great effort to improve or solve the 

technical problem in getting cloned embryo as well as live and health offspring. 

However, there is still having unpredictability of the biological variation in recipient 

oocytes (cytoplasts) and donor cells (karyoplasts) which is difficult to control.   

One obvious problem can be seen throughout the years is the low efficiency, 

with low proportions of embryos developing to be implanted, survive pregnancy and 

birth live cloned offspring (Wilmut et al., 1997; Spikings et al., 2006). However, up to 

now, the causes of this extremely high failure rate reported is unclear. Song et al. (2008) 

suggested that the mtDNA (mitochondria DNA) distribution with the progression of 

interspecies SCNT embryo development might hold the promise for future 

improvement of nuclear transfer efficiency. 

Nevertheless, one of the most important criteria that accompany the success rate 

of interspecies SCNT outcome is the compatibility between recipient cytoplasm and 

donor nucleus. This is because a suitable recipient cytoplasm can support the donor 

nuclei to be reprogrammed. Dominko et al. (1999) reported that bovine cytoplasm has 

the ability to support the introduced differentiated nucleus regardless of chromosome 

number, species or age of the donor fibroblast cell. Due to the low population of goat in 

Malaysia, reproductive technologies experiments could not be carried out properly as 

expected; therefore correspondingly, one of the preferred solutions is by using 
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interspecies SCNT technique to use the bovine cytoplasm as recipient and caprine 

somatic cell as donor since bovine ovaries are relatively easily obtained from the 

abattoir compared to the caprine ovaries source.  

Below are some of the pertinent questions needed to be answered related to 

interspecies somatic cell nuclear transfer in goat:  

a) Is the caprine somatic nuclei can be reprogrammed in bovine cytoplasm in 

interspecies SCNT?  

b) Is the caprine foetal fibroblast cell more compatible with bovine cytoplasm if 

compared to other donor karyoplast sources such as ear fibroblast cell and 

cumulus cell? 

c) Is interspecies somatic cell nuclear transfer can develop into blastocyst in vitro 

and subsequently produce viable offspring after embryo transfer?  

d) What is the most suitable enucleation (aspiration or squeezing) and nuclear 

transfer techniques (ICI or SUZI) in interspecies SCNT in order to produce large 

number of cloned embryos and subsequently offspring.  

e) Are different culture systems (culture medium) will affect the development of 

cloned embryos in vitro? 

f) Why cloning attempts give low percentage of viable offspring?   
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1.3"JUSTIFICATION OF THE STUDY 

In Malaysia, we are facing the problems in getting caprine ovaries from abattoir in order 

to carry out reproductive experiments due to low number of goats slaughtered at the 

abattoir; however, one of the alternative ways to obtain the caprine oocyte source is via 

laparoscopic oocyte pick-up (LOPU) in the laboratory. But the cost of the LOPU is 

much higher than ovaries sample collection from abattoir. Therefore, to overcome this 

problem, we proposed to choose the bovine oocyte from abattoir as the recipient 

cytoplasm, at the same time, we established the caprine foetal fibroblast somatic cell 

line and use as the donor nucleus with the aim to produce interspecies cloned-caprine 

embryos as well as obtain pregnancy after embryo transfer of cloned-caprine embryo.  

Our laboratory has been successfully obtained the both intra- and interspecies 

cloned-caprine embryos using caprine ear fibroblast cell as the donor karyoplast by a 

senior researcher, Kwong Phek Jin since year 2008 (Abdullah et al., 2011). She is the 

one who started the cloning in our laboratory, even in Malaysia. However, the 

percentage of getting the interspecies cloned blastocyst is still low. Hence, the present 

study is to optimise the technique on interspecies SCNT by using caprine foetal 

fibroblast as donor karyoplast to improve the production of cloned-caprine blastocyst 

and subsequently to produce pregnancy through embryo transfer.  

This research is a new approach in the production of cloned-caprine embryos 

using bovine oocyte as recipient cytoplasm. Bovine oocyte has been proven to serve as 

a universal recipient cytoplasm to produce interspecies SCNT cloned embryos and 

offspring. From the studies, researchers have demonstrated that the bovine cytoplast is 

capable of reprogramming somatic cell nuclei from other species which include the 

horse (Hinrichs et al., 2000; Reggio et al., 2000; Li et al., 2002a), pig (Yoon et al., 

2001), tiger (Hwang et al., 2001), buffalo (Kitiyanant et al., 2001; Saikhun et al., 2002) 

and gaur (Lanza et al., 2000).  
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Besides that, comparison of different enucleation and nuclear transfer techniques 

were carried out to evaluate the success of cloned-caprine embryos development in 

interspecies SCNT. In previous studies, Chen et al. (2007) has reported that the 

procedures of enucleation and donor cell injection are two of the important key factors 

that affect somatic cell nuclear transfer. At present, there were a few enucleation 

techniques had been reported, which are piezo-drive (Wakayama et al., 1998), 

squeezing (Wilmut et al., 1997) and aspiration (Polejaeva et al., 2000). While, for 

nuclear transfer techniques are such as sub-zonal injection (SUZI; Wilmut et al., 1997), 

intracytoplasmic injection (ISI; Wakayama et al., 1998) and whole cell intracytoplasmic 

injection (WCICI; Lee et al., 2003). However, there is less report on the effect of 

techniques on the development of cloned embryos in interspecies SCNT. Therefore, in 

the present study, the combination of squeezing with sub-zonal injection (SUZI) (with 

fusion), squeezing with ICI (without fusion) and aspiration with sub-zonal injection 

(SUZI) (with fusion) were carried out to optimise both of the enucleation and nuclear 

transfer techniques in our laboratory.  

Embryo culture system also plays an important factor for all types of in vitro 

production (IVP) experiments. Campbell et al. (2007) suggested that the in vitro culture 

of SCNT embryos is one of the most important steps affecting the preimplantation 

development, pregnancy and the number of offspring generated. This is because in vitro 

produced mammalian embryos generally differ from their in vivo counterparts, due to 

the sub-optimal conditions of the in vitro culture systems. Therefore, in order to 

improve the efficiency of in vitro embryo production systems, the formulation of culture 

media have to be optimised to mimic the in vivo environment of the female reproductive 

tract (Summers and Biggers, 2003). In the present study, effects of different in vitro 

culture media with special focus to low and high glucose concentration KSOM medium 

on the interspecies cloned-caprine embryos were compared.          
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1.4"APPLICATION OF INTERSPECIES SCNT CLONING 

A key reason behind the usefulness of cloning is that by producing near-identical 

genetic copies of an organism, outcomes of producing genetically superior animal 

including goat are faster and more predictable than in previous reproductive techniques. 

This is essential to ensure profitability and sustainability of goat production and 

commercialisation in Malaysia.  

The first and main application of interspecies SCNT cloning is an exciting 

possibility for species with limited availability of oocytes and recipients for embryo 

transfer. In both intra- and interspecies nuclear transfer, it is necessary to prepare large 

quantities of high-quality of recipient oocytes (cytoplasts) to optimise the cloning 

techniques, in order to produce large number of cloned embryos as well as offspring. 

However, it is very difficult to obtain large quantities of caprine oocytes in Malaysia. 

Therefore, interspecies SCNT is a new approach to solve the oocytes limitation 

problems in Malaysia as well as other countries for different species.   

By using interspecies SCNT cloning technique, it can allow genetic conservation 

of local breeds, for example Katjang goat, with unique tolerance for regional diseases or 

local climates. It can in principle be used to create an infinite number of clones of the 

very best farm animals and enhance the genetic improvement in a short time that is by 

shortening the generation interval.  According to statistics (Department of Veterinary 

Services, 2010), Malaysian goat population is decreasing annually due to improper 

breeding, poor management and nutrition, non-commercialisation and non-economical 

practices. In order to decisively and effectively overcome this situation of low 

population and threatening from breed extinction to ensure preservation of genetic 

diversity, cloning would be the best alternative to be integrated systematically into goat 

breeding programmes and management practices.  



9 

 

Thirdly, interspecies SCNT may also play a very important role in country 

economic development such as Malaysia by rapidly increasing animal productivity 

through improvement in economic genetic traits such as meat and milk production. In 

other words, a rapid production of identical genetic modified elite individuals with 

desirable traits, such as in Katjang goat, for milk containing extra nutrients or meat 

more consistent in taste and quality could be achieved by using interspecies SCNT. 

Fourthly, extending interspecies SCNT techniques to other applications, 

conservation and propagation of rare livestock breeds as well as endangered species and 

poorly reproduced zoo wild animals could be implemented and achieved. Consequently, 

by using somatic cells in interspecies cloning may allow the sustenance of general 

genetic diversity of a species. Besides that, it would also remain to be shown that clones 

do consistently deliver the expected commercial performance and are healthy and that 

the technology can be applied without compromising animal welfare. Compared with 

other reproductive technologies, such as IVF and ICSI, interspecies SCNT, could give a 

faster rate to produce large number of high quality identical gene animals. 

Nevertheless, the most important prospective application of interspecies SCNT 

lies in its potential is to generate a preimplantation embryo to be used as a source of 

embryonic stem cells (ESC) in human therapeutic approach. We believe that 

interspecies SCNT may able to reprogramme the human somatic cells without many of 

the significant ethical challenges surrounding the use of human oocytes (Beyhan et al., 

2007). Chen et al. (2003) reported that the somatic nuclei from a human patient could 

be reprogrammed by nuclear transfer into a rabbit oocyte to generate nuclear transfer 

ESC. The cells and tissues derived from this pathway would have nuclear DNA 

identical to the patient’s and, therefore, would likely not be subject to immune rejection 

(Boiani et al., 2003; Colleoni et al., 2005; Beyhan et al., 2007). It is believe that the 

ability to produce ESC from interspecies SCNT embryos could facilitate the creation of 
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new cellular models of human diseases (for example, Parkinson’s disease, Alzheimer’s 

disease and other degenerative tissue diseases) and could significantly advance our 

understanding of basic nuclear-cytoplasmic interactions between a somatic cell and an 

oocyte from different species.  

 

1.5 OBJECTIVES OF THE STUDY 

This study was carried out with the aim to obtain cloned-caprine embryos in vitro from 

interspecies nuclear transfer with the following specific objectives: 

a) To produce cloned-caprine embryos in vitro through interspecies somatic cell 

nuclear transfer.  

b) To compare the effect of enucleation and nuclear transfer methods on interspecies 

SCNT cloned-caprine embryos developmental competency. 

c) To compare the effect of culture medium changing on interspecies SCNT cloned-

caprine embryos developmental competency.  

d) To obtain the pregnancy on interspecies cloned-caprine embryo after embryo 

transfer at early stage through oviduct embryo transfer technique. 
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Chapter 2 

2.0"REVIEW OF LITERATURE 

 
2.1 BACKGROUND 

The last century has seen a dramatic reduction of animal species, including large 

mammals, mainly caused by human-related activities (Loi et al., 2011). The obvious 

consequence of such a phenomenon is the progressive contraction in biodiversity world-

wide. Paradoxically, this problem does not involve wild species only, but also domestic 

ones, as often local or typical breeds are being replaced by fewer, more productive 

genotypes. According to the Food and Agriculture Organisation of the United Nations 

(FAO, 2007), a total of 1491 breeds world-wide (or 20%) are classified as being either 

critically endangered, critical-maintained, endangered or endangered-maintained 

(Figure 2.1). Although in mammalian livestock the proportion of breeds classified at 

risk is lower than average (16%) in absolute terms, their number is very high (881 

breeds) (FAO, 2007). 

 
 
Figure 2.1: Status of endangered domestic breeds according to a FAO survey 2007 

(adapted from Loi et al., 2011). 
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For that reason, reproductive biologist and zoologist have started to consider 

reproductive technologies as a tool to expand small animal populations which are 

already composed of a critical number of individuals (Holt et al., 2004; Andrabi and 

Maxwell, 2007). Essentially, the target of such reproductive technology should be the 

enhancement of the reproductive performance of a threatened population (Loi et al., 

2011). 

To keep up with this alarming situation, it has been suggested that genetic banks, 

preferably in the form of cell lines, should be established from animal species 

threatened with extinction (Ryder et al., 2000). The idea is to re-establish or expand the 

threatened population by using these cells for somatic cell nuclear transfer (SCNT) 

(Wilmut et al., 1997; Holt et al., 2004). However, even though the potential of SCNT 

tool for conservation has already been demonstrated (Lanza et al., 2000; Loi et al., 2001, 

2007), the efficiency of the nuclear transfer remains low in terms of offspring outcome. 

In addition, the high embryonic loss and perinatal mortality observed with the SCNT 

procedure requires that large number of oocytes must be available for the numerous 

attempts needed to establish pregnancies and produce live offspring (Colman, 2000; 

Hill et al., 1999). In exotic or endangered species, the lack of oocytes precludes the use 

of traditional SCNT procedure and an approach such as interspecies somatic cell nuclear 

transfer (interspecies SCNT) may be the only alternatively to produce embryos and 

offspring (Sansinena et al., 2005).  

In Malaysia, the yearly increasing demand of goat meat consumption and its 

dairy products worldwide, served as the moving gear in goat breeding industries to 

multiply the goat population via the application of assisted reproductive technologies 

(ARTs) besides sustaining the conventional breeding programme. Among the ARTs that 

are applied in goat farming industry, reproductive cloning technologies in production of 

cloned-caprine embryos are foreseen to facilitate the effort of mass goat production in 
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just a short time frame (Abdullah et al., 2011). However, production of cloned-caprine 

embryos using the traditional SCNT is limited by low source of caprine oocytes as the 

recipient cytoplasts in Malaysia. Therefore, by using the bovine oocytes as recipient 

cytoplasts in interspecies SCNT is the only alternative approach to produce large 

number of cloned-caprine embryos and subsequently offspring at a rapid rate. 

The first attempt of caprine interspecies SCNT was reported by Song et al. 

(2008) using the enucleated bovine oocyte as recipient cytoplast resulted in in vitro 

development of 7.9% blastocysts. Ma et al. (2008) obtained 7.4% of blastocysts using 

goat-sheep. Recently, our research group has successfully obtained 5 to 10% of the 

interspecies SCNT cloned-caprine blastocysts using bovine as recipient cytoplast 

(Kwong et al., 2011; Soh et al., 2011). However, there is still lack of information on the 

interspecies SCNT in goat; therefore, the optimal and practical interspecies SCNT 

procedures integrated with other technologies and appropriate management system are 

needed in the future, especially to increase goat population at a rapid rate for viable, 

profitable and sustainable industry.          

 
 

 Table 2.1: Timeline of significant findings of intra- and interspecies SCNT in caprine 
 
Year Author Intra-

/interspecies 
SCNT 

Significant event/ finding 

1999 Baguisi et al. Intraspecies 
SCNT 

First report on goat SCNT with obtaining 
of 3 healthy identical female offspring 
using foetal somatic cells as donor 
karyoplast. 
 

2001 Keefer et al. Intraspecies 
SCNT 

Both in vitro transfected and non-
transfected caprine foetal fibroblasts could 
direct full term development following 
nuclear transfer. 
 

   (continued)
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(continued)   
Year Author Intra-

/interspecies 
SCNT 

Significant event/ finding 

2001 
 

Reggio et al. Intraspecies 
SCNT 

First report of cloned goats produced from 
nuclear transfer using cytoplast derived 
from abattoir ovaries. 

2001 Zou et al. Intraspecies 
SCNT 

The survival rate of cloned-caprine 
embryos, obtained by injection, was higher 
than that derived from fusion (62.7 and 
45.9%, respectively). 
             

2002 Guo et al. Intraspecies 
SCNT 

The results of microsatellite DNA analyses 
indicated that the 2 kids were from the 
same donor fibroblast cell line derived 
from an adult caprine ear skin. 
 

2002 Keefer et al. Intraspecies 
SCNT 

No significant differences in the rates of 
pregnancy and nuclear transfer efficiency 
between ranulose cells and foetal 
fibroblast cells.  
 

2002 Zou et al. Intraspecies 
SCNT 

A foreign gene, such as the neo-resistant 
gene, could be introduced into caprine 
foetal fibroblast cells, and that the 
resulting transgenic cells were capable of 
being cloned to produce 100% transgenic 
animals. 
 

2003 Das et al. Intraspecies 
SCNT 

Reported that 300 V resulted in better 
electrofusion, and cytochalasin B blocked 
synchronised cells and fast growing skin 
fibroblast cells of caprine could be used 
for nuclear transfer. 
 

2003 Ohkoshi et al. Intraspecies 
SCNT 

Caprine nuclear transfer using anterior 
pituitary cells in an in vitro culture system 
had the developmental potential to 
produce offspring after embryo transfer.  
 

2004 Zhang et al. Intraspecies 
SCNT 

Donor cell cycle at stage G0/G1 might be 
efficient ways to improve the 
developmental competence of 
reconstituted caprine embryos than stage 
G2/M. 
 
 
 

   (continued)
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(continued)   
Year Author Intra-

/interspecies 
SCNT 

Significant event/ finding 

2005 Melican et al. Intraspecies 
SCNT 

More offspring were produced utilising 
karyoplast cultured in low serum versus 
cycling cells grown to confluence to 
synchronise G0/G1 stage cells. In addition, 
more live offspring were produced using 
donor cells harvested by partial compared 
with complete trypsinisation.   
 

2006 Lan et al. Intraspecies 
SCNT 

The fusibility and in vitro developmental 
potential of embryos reconstructed from 
foetal fibroblasts at passages 20 to 25 were 
significantly lower than those of embryos 
reconstructed from foetal fibroblasts at 
passages 3 to 5, and the cloning efficiency 
of the long term cultured cells was low 
(0.5%). 
 

2006 Shen et al. Intraspecies 
SCNT 

SCNT is a viable technique for goat 
cloning and that increase electrical field 
strength for both fusion and activation of 
reconstructed embryos appeared to be 
beneficial for the development of cloned 
embryos. 
 

2007 Chen et al. Intraspecies 
SCNT 

The method of telophase II enucleation 
combined with whole cell 
intracytoplasmic injection (WCICI) could 
properly reprogramme the somatic cells, 
and WCICI could provide an efficient and 
less labour-intensive protocol in Asian 
yellow goat cloning. 
 

2008 Daniel et al. Intraspecies 
SCNT 

The difference in membrane surface 
properties between cumulus and fibroblast 
cell may contribute to the higher fusion 
rate obtained in cumulus cells for cloned-
caprine embryo production. 
 

2008 
 

Ma et al.  Interspecies 
SCNT 

Authors suggested that caprine foetal 
fibroblast derived mitochondria were 
degraded for the depression of 
bioenergetic functions, and then 
selectively eliminated during the 
embryogenesis of sheep (cytoplast)-goat 
(karyoplast) cloned embryos. 

   (continued)
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(continued)   
Year Author Intra-

/interspecies 
SCNT 

Significant event/ finding 

2008 
 

Song et al. Interspecies 
SCNT 

Successfully obtained 7.9% cloned-
caprine blastocyst using bovine as 
recipient cytoplast. 
 

2008 Tao et al. Intraspecies and 
Interspecies 
SCNT 

Both interspecies and intraspecies 
reconstructed cloned-caprine embryos 
have similar development changes in the 
zona ellucid, rough endoplasmic 
reticulum, Golgi apparatus and nucleolus 
when compared with in vivo-produces 
embryos. 
 

2008 Wang et al. Intraspecies 
SCNT 

Successfully developed an effective 
method to screen transgenic donor cells 
and improve the production efficiency of 
transgenic embryos. 
 

2009b Tao et al. Intraspecies 
SCNT 

Optimised nuclear transfer protocol and 
proper hCG treatment led to the successful 
birth of a cloned goat. 
 

2009 Yuan et al. Intraspecies 
SCNT 

Live goats were generated by SCNT from 
caprine mammary gland epithelial cells 
using long term cultured cell lines (25 to 
27 passages).  
 

2010 Akshey et al. Intraspecies 
SCNT 

The foetal fibroblast cell was a suitable 
candidate as nuclear donor, and the flat 
surface culture system was suitable for 
zona-free blastocyst development by the 
hand-made cloning technique in the goat. 
 

2010 Dalman et al. Intraspecies 
SCNT 

The use of full confluency was suitable for 
cell cycle synchronisation because it 
arrested cells at the G0/G1 phase and also 
induced less apoptosis in comparison with 
the serum starvation group. 
 

2011 Abdullah et al. Intraspecies and 
Interspecies 
SCNT 

Cloned-caprine embryos could be 
produced in vitro via both intraspecies and 
interspecies SCNT approaches in which 
the efficacy of interspecies SCNT 
approach was comparable to that of 
intraspecies SCNT approach. 

   (continued)
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(continued)   
Year Author Intra-

/interspecies 
SCNT 

Significant event/ finding 

2011 Akshey et al. Intraspecies 
SCNT 

First report of effect of treatment of donor 
cells with rescovitine and different 
activation methods on handmade cloned 
embryo production in goat. 
 

2011 Tang et al. Intraspecies 
SCNT 

mSOF medium supplemented with 10% 
FBS could better support the development 
of cloned caprine embryos, and the 
blastocysts cultured in this medium could 
develop to term and gave birth to a healthy 
kid at term. 
 

 
 
 In interspecies SCNT, a donor cell (karyoplast) is transplanted into a recipient 

enucleated oocyte (cytoplast) of a different species/family/order/class. The resulting 

embryo is then transplanted into the uterus of a suitable foster mother for development 

to term (Loi et al., 2011). Up to now, there are more than 40 articles have been 

published in which oocytes and somatic cells from a number of species have been used 

to generate embryos via interspecies nuclear transfer (Table 2.2). Most of the 

successfully live offspring were obtained by combining closely related species, such as 

gaur-cattle (Lanza et al., 2000), argali sheep-domestic sheep (White et al., 1999), river 

buffalo-swamp buffalo (Yang et al., 2010) and wild cat-domestic cat (Gomez et al., 

2004).  

 In some of the reported research, however, genetic distance between donor and 

recipient species spanned taxonomic classes, such as chicken-rabbit (Liu et al., 2004) 

and panda-rabbit (Chen et al., 2002). The majority of these experiments have failed to 

produce viable embryos. A common limitation in making comparisons between these 

interspecies SCNT reports is that the definition of experimental endpoints and criteria 

for successful reprogramming was often ill-defined, except to those resulting in live 
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offspring (Beyhan et al., 2007). Nevertheless, the potential impact of a successful 

interspecies SCNT scheme is sufficiently attractive to maintain ample scientific interest 

in this subject (Beyhan et al., 2007). 
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Table 2.2: List of interspecies SCNT experiments in mammalian species reported to date (adapted and modified from Loi et al., 2011) 
 

Taxonomic 
relationship 

Year Author Cell donor species Types of donor cell Recipient cell species Significant results 

Intersubspecies 2004 Gomez et al. African wild cat 
(Felis sylvestris lybica) 

Skin fibroblast cells Domestic cat 
(Felis sylvestris catus) 
 

Offspring 

2010 Yang et al. River buffalo 
(Bubalus bubalis bubalis) 

Ear skin fibroblast 
cells 

Swamp buffalo 
(Bubalus bubalis 
carabensis) 
 

Offspring 

Interspecies 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1999 White et al. Argala 
(Ovis ammon) 
 

Skin fibroblast cells Sheep 
(Ovis aries) 

50 day foetuses 

2000 Lanza et al. Gaur 
(Bos gaurus) 
 

Skin fibroblast cells Cattle 
(Bos taurus) 

Offspring 

2001 Loi et al. European Mouflon 
(Ovis orientalis musimon) 
 

Granulosa cells Sheep 
(Ovis aries) 

Offspring 

2005 Murakami et al. Yak  
(Bos grunniens) 
 

Cumulus cells Cattle 
(Bos taurus) 

Blastocysts: 10.9% 

2005 Sansinena et al. Banteng 
(Bos javanicus) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 

Blastocysts: 15.0-28.0% 

2006 Li et al. Yak  
(Bos grunniens) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 

Blastocysts: 28.0% 

2008 Gomez et al. Sand cat 
(Felis margarita) 

NA (abstract) Domestic cat 
(Felis sylvestris catus) 

Offspring 

(continued) 
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Taxonomic 
relationship 

 
Year 

 
Author 

 
Cell donor species 

 
Types of donor cell 

 
Recipient cell species 

 
Significant results 

Interfamily 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1999 Dominko et al. Sheep 
(Ovis aries) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 

Blastocysts: 18.0% 
 

2001 Kitiyanant et al. Buffalo 
(Bubalus bubalus) 

Foetal fibroblast cells Cattle 
(Bos taurus) 
 

Blastocysts: 33.0% 

2004 Matshikiza et al. African buffalo  
(Syncerus caffer)  

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 

Blastocysts: 3.5% 

2004 Matshikiza et al. Eland  
(Taurotragus oryx) 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 

Blastocysts: 2.0% 

2005 Lu et al. Buffalo 
(Bubalus bubalus) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 

Blastocysts: 4.5% 

2005 Lu et al. Cattle 
(Bos taurus) 
 

Ear skin fibroblast 
cells 

Buffalo 
(Bubalus bubalus) 
 

Blastocysts: 3.0% 

2006 Li et al. Takin 
(Burdocas taxicolor) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 

Blastocysts: 5.0% 

2006 Yin et al. Leopard cat 
(Pronailurus bengalensis) 

Ear skin fibroblast 
cells 

Domestic cat 
(Felis sylvestris catus) 
 

Blastocysts: 7.8% 

 2008 Hua et al. Sheep 
(Ovis aries) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 
 
 

Blastocysts: 24.0% 

(continued) 

(continued) 
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Taxonomic 
relationship 

 
Year 

 
Author 

 
Cell donor species 

 
Types of donor cell 

 
Recipient cell species 

 
Significant results 

 
 

2008 Song et al. Goat 
(Capra hircus) 

Foetal fibroblast cells Cattle 
(Bos taurus) 

Blastocysts: 7.9% 

 2008 Ma et al. Goat 
(Capra hircus) 

Foetal fibroblast cells Sheep 
(Ovis aries) 

Blastocysts: 7.4% 

 2008 Tao et al. Goat 
(Capra hircus) 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 

16 cell: NA 

 2010 Thongphakdee et al. Marbled cat 
(Pardofelis marmorata) 
 

Oviduct fibroblast 
cells 

Domestic cat 
(Felis sylvestris catus) 
 

Blastocysts: 5.0% 

Interorder 1999 Dominko et al. Pig 
(Sus scrofa) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 

Blastocysts: 6.0% 

 1999 Dominko et al. Rhesus monkey 
(Macaca mulatta) 
 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 

Blastocysts: 16.6% 

 2002 Chen et al. Giant Panda 
(Ailuropoda melanoleuca) 
 

Abdominal muscle 
cells 

Rabbit 
(Oryctolagus 
cuninculus) 
 

Blastocysts: 18.5% 

 2003 Arat et al. Mouse 
(Mus musculus) 

Mouse embryonic 
fibroblast cells  

Cattle 
(Bos taurus) 
 
 
 
 

8 cell: 6.2% 

(continued) 

(continued) 
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Taxonomic 
relationship 

Year Author Cell donor species Types of donor cell Recipient cell species Significant results 

  2003 Chen et al. Human 
(Homo sapiens recens) 

NA (abstract) Rabbit 
(Oryctolagus 
cuninculus) 
 

Blastocysts: 10.4-13.5% 

 2003 Wen et al. Domestic cat 
(Felis sylvestris catus) 
 

NA (abstract) Rabbit 
(Oryctolagus 
cuninculus) 
 

Blastocysts: 6.9% 

 2004 Ikumi et al. Antarctic mink whale 
(Balaenoptera 
bonearensis) 
  

NA (abstract) Pig 
(Sus scrofa) 
 
Cattle 
(Bos taurus) 
 

2 to 4 cell: NA 
 
 
2 to 4 cell: NA 

 2005 Jiang et al. Ibex 
(Capra ibex) 
 

Ear skin fibroblast 
cells 

Rabbit 
(Oryctolagus 
cuninculus) 
 

Blastocysts: 19.5% 

 2006 Zhou and Guo Camel 
(Camelus bactrianus) 
 

Ear skin fibroblast 
cells 

Sheep 
(Ovis aries) 
 

Blastocysts: 0% 

 2006 Zhao et al. Tibetan antelope 
(Pantholops hodgsonii) 
 

Ear skin fibroblast 
cells 

Rabbit 
(Oryctolagus cuniculus)
 

Blastocysts: 1.4-8.7% 

 2006 Zhao et al. Camel 
(Camelus bactrianus) 

Ear skin fibroblast 
cells 

Rabbit  
(Oryctolagus cuniculus)
 
 

Blastocyst: 0-7.5% 

(continued) 

(continued) 
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 2007 Hashem et al. Siberian tiger 
(Panthera tigris altaica) 
 

Skin fibroblast cells  Pig 
(Sus scrofa) 
 

Blastocysts: 0.7% 

 2007 Uhm et al. Pig 
(Sus scrofa) 
 

Skin fibroblast cells Cattle 
(Bos taurus) 

Blastocysts: 3.9% 

 2007 Uhm et al. Cattle 
(Bos taurus) 

Skin fibroblast cells Pig 
(Sus scrofa) 
 

Blastocysts: 5.5% 

 2008 Lorthongpanich et al. Crab-eating monkey 
(Maccaca fascicularis) 
 

Skin fibroblast cells Cattle 
(Bos taurus) 

16 cell: NA 

 2009 Sha et al. Human 
(Homo sapiens recens) 

Human neural stem 
cells 

Goat 
(Capra hircus) 
 

Blastocyst: 10.7% 

 2009 Song et al. Rhesus monkey 
(Macaca mulatta) 

Ear skin fibroblast 
cells 

Cattle 
(Bos taurus) 

Blastocysts: 0% 

       
 2009 Sugimura et al. Dog  

(Canis domesticus) 
Tail tip fibroblast cells Pig 

(Sus scrofa) 
 

Blastocysts: 4.3-24.0% 

 2009a Tao et al. Red panda 
(Ailurus fulgens) 
 
 
 
 
 

Ear skin fibroblast 
cells 

Rabbit 
(Oryctolagus 
cuninculus) 
 
 

Blastocysts: 23.0% 

(continued) (continued) 

(continued) 
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 2010 Lagutina et al. Cattle 
(Bos taurus) 
 

NA (abstract) Pig 
(Sus scrofa) 
 

4 cell: NA 

 2010 Lagutina et al. Pig 
(Sus scrofa) 
 

NA (abstract) Cattle 
(Bos taurus) 
 

16-25 cell 

Interclass 2004 Kim et al. Fowl (chicken) 
(Gallus gallus domesticus) 
 

Chicken embryonic 
fibroblast cells 

Cattle 
(Bos taurus) 

Blastocysts: 3.0% 

 2004 Liu et al. Fowl (chicken) 
(Gallus gallus domesticus) 

Chicken blastodermal Rabbit  
(Oryctolagus cuniculus) 
 

Blastocyst: 9.7% 

NA: Not available (in the abstract) 

(continued) 
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2.2 FACTORS AFFECTING INTERSPECIES SOMATIC CELL NUCLEAR 

TRANSFER EFFICIENCY 

Basically, there are 2 important main factors to the success of the application of 

interspecies nuclear transfer technology in any given species: (1) compatibility of 

recipient cytoplast and donor karyoplast between 2 different species (such as 

mitochondrial/genomic DNA compatibility, embryonic genome activation of the donor 

nucleus by the recipient oocyte and availability of suitable foster mothers for 

interspecies SCNT embryos), and (2) technical problems that affect the overall 

efficiency of the nuclear transfer procedure (such as selection of recipient cytoplast, 

selection of donor cells, stages of donor cell cycle, donor cell line passages, enucleation, 

nuclear transfer, fusion, activation and in vitro culture system).   

 

2.2.1 Mitochondrial/Genomic DNA Compatibility 

To date, most of the successful interspecies SCNT experiment to produce live offspring 

occurred when the recipient oocyte (cytoplast) and donor cell (karyoplast) sources used 

were derived from closely related species. This low efficiency of interspecies SCNT 

may be due to the incompatibility in mitochondrial physiology between the donor 

karyoplast nucleus and recipient cytoplast mitochondrial (Beyhan et al., 2007).  

 Mitochondrial DNA (mtDNA) encodes some of the subunits of the electron 

transfer chain which is responsible for ATP production. Factors required for mtDNA 

replication, transcription and translation are encoded by nuclear DNA and, therefore, a 

coordinated mt/genomic DNA cross-talk is essential for normal development (Beyhan 

et al., 2007). During mammalian gametogenesis, fertilisation and embryogenesis, 

mitochondria have an unusual morphology and pattern of transmission from one 

generation to another (Beyhan et al., 2007). This genetic bottle-neck is thought to 
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ensure mitochondrial homoplasmy (defined as having mitochondria derived from a 

single source: in this case, the oocyte), which is important to the maintenance of proper 

mitochondrial function (Beyhan et al., 2007). 

 It has been suggested that the typical pattern of maternal inheritance observed in 

many mammalian species does not apply in intraspecies SCNT by using mouse 

blastomere for nuclear transfer, and its varying degrees of heteroplasmy were observed 

in most of the resulting embryos, foetuses and live offspring (Hiendleder et al., 2003). 

With few exceptions, neutral segregation of mtDNA in most bovine intraspecies SCNT, 

embryos and foetuses appear to be the dominant pattern of inheritance in which the 

amount of donor cell mtDNA is not more than the original amount contributed during 

reconstruction of the embryos (i.e. the donor cell mitochondria are not selectively 

replicated over the recipient mitochondria) (Hiendleder et al., 2003).  

 Co-evolution of nuclear and mitochondrial genomes and the transfer of genetic 

information from mitochondrial to the nucleus have resulted in a very specific and 

unique complementation of mitochondrial and nuclear function within an individual 

species (Beyhan et al., 2007). This specific interaction has also been proposed to 

contribute to the speciation process (Herrmann et al., 2003). Therefore, it is important to 

understand that the compatibility of nuclear and mitochondrial genomes may be of 

paramount importance to interspecies SCNT experiments.  

Nagao et al. (1998) reported that the type of mtDNA was also shown to affect 

the developmental ability of preimplantation congenic mouse embryos. In their study, 

the mtDNA-congenic strain was established from back-crossing Mus musculus female 

mice to B6 male mice for 20 generations, and it was shown that the percentage of 

embryos reaching the blastocyst stage was reduced from 94 to 35%, depending on their 

mtDNA composition. It was concluded that since in early embryonic development 
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mitochondria contribute to the energy production in preimplantation embryos, their 

developmental ability may be influenced by the type of maternally derived mtDNA and 

possible incompatibilities among nuclear and mitochondrial genomes could impair early 

embryonic development. 

During SCNT, a relatively small number of the donor cell mitochondria are 

inserted into the reconstructed embryo, thus, resulting in mtDNA heteroplasmy (Beyhan 

et al., 2007). SCNT studies on murine, ovine and bovine embryos indicate a high degree 

of variability in mitochondrial distribution, with some animals displaying complete 

homoplasmy (Evans et al., 1999; Meirelles et al., 2001; Hua et al., 2008) and others 

displaying heteroplasmy to varying degrees (Han et al., 2003; Hiendleder et al., 2003; 

Takeda et al., 2003; Inoue et al., 2004). In heteroplasmic animals, the level of 

contribution from donor cell mitochondria is highly variable between subjects and 

within tissues of the same subject. It has been reported that the level of heteroplasmy 

increases when interspecies SCNT is performed (St John et al., 2004). Although healthy, 

live offspring have been obtained by both intra- and interspecies SCNT, possible 

negative effects of heteroplasmy introduced in these animals may be responsible, in part, 

for many of the failures of interspecies SCNT. For example, incompatibility of 

mitochondrial and nuclear genomes could impair mitochondrial function, leading to 

suboptimal respiration (St John et al., 2004).  

 To date, nuclear transfer studies addressing mitochondrial transmission have 

limited their scope to the detection of mtDNA and have provided no information about 

indicators of mitochondrial function. Two recent studies have investigated the amount 

of mtDNA, ATP production and gene expression, that is in bovine intraspecies SCNT 

embryos with different haplotypes (Jiao et al., 2007) and mtRNA expression in sheep-

goat interspecies SCNT embryos (Ma et al., 2008). The results of these studies 



28 

 

suggested that the haplotype of recipient oocyte affects the ATP output and 

developmental competence of embryos and that of the donor cell’s mitochondria are 

selectively eliminated in interspecies SCNT embryos during preimplantation 

development. Although metabolic pathways are well conserved among mammals, the 

proper activity of respiratory chain complexes (i.e. involving nuclei-mitochondrial 

compatibility) has never been directly studied in interspecies SCNT embryos.  

 

2.2.2 Embryonic Genome Activation  

During oogenesis, the early development of an oocyte in mammals is controlled by 

protein and mRNAs stored in the oocyte. After fertilisation, these factors direct the early 

cleavage divisions of an embryo and are gradually depleted. Depletion of these 

molecules seems to coincide with the activation of the embryonic genome (Beyhan et 

al., 2007). The new genome established starts to become transcriptionally active at 

different stages in pre-implantation embryos, according to the species {e.g. mouse (2 

cell) (Schultz, 1986; Telford et al., 1990); pig (4 cell) (Prather et al., 1989); human and 

rabbit (8 cell) (Braude et al., 1979; Telford et al., 1990); sheep, cattle and goat (16 cell) 

(Camous et al., 1984; Bavister, 1988)}. The transcription is also often associated with a 

so-called critical or developmental block stage during in vitro culture of preimplantation 

embryos (Telford et al., 1990). The in vitro block has been shown to coincide with the 

time of transition from maternal to embryo genomic control. Embryos appear to be 

particularly sensitive to culture conditions during this critical phase of their 

development (Chatot et al., 1989; Telford et al., 1990). 

Transcription can start as early as the one cell stage and can gradually increase 

until the embryonic genome gains control. Latham (2005) reported that the expression 

of developmental genes is very critical for embryos to develop properly; the process of 
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embryonic genome activation plays a major role by providing control over spatial and 

temporal patterns of gene expression during preimplantation development. According to 

Hu et al. (2010), maternally expressed the transcription factors, whereby these factors 

accumulated and was stored in the oocyte cytoplasm, subsequently triggered the 

embryonic genome activation. However, in a preliminary study on interspecies 

experiments (cattle-pig and sheep-pig), it has been showed that in all cases the 

transplanted genome failed to be activated and transcribed in the host cytoplasm, 

leading to embryonic arrest (Fulka et al., 2008). This finding has recently been 

confirmed by Song et al. (2009) and Lagutina et al. (2010). For an interspecies SCNT 

embryo to develop successfully into a blastocyst and beyond, it needs to coordinate both 

the donor and recipient components of embryonic genome activation (Beyhan et al., 

2007).           

  Indeed, the success of hybrid nuclear transfer (interspecies SCNT) embryo 

development is a function of the genetic/evolutionary distance between donor cell and 

recipient cytoplasm. In the case of intra-order SCNT the differences in the gene(s) 

products that trigger the first burst of transcription contained in the oocyte probably fail 

to bind the corresponding sequences of the introduced nucleus, leading to early 

embryonic arrest (Loi et al., 2011). In the interspecies SCNT experiment, rabbit oocyte 

always served as the most “flexible” recipient oocyte, which is apparently able to 

promote embryonic genome activation across family/species/class boundaries. 

 Therefore, it is interesting to understand the embryonic genome activation 

occurs in the interspecies SCNT. Once the full sequences of the principal gene(s) 

triggering embryonic genome activation are identified, the gene(s)/gene protein(s) could 

be delivered by microinjection along with the foreign nuclei, or to promote the maternal 

to zygotic transition in interspecies SCNT embryos (Loi et al., 2011).  
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2.2.3 Availability of Suitable Foster Mothers for Interspecies SCNT Embryos 

Embryo transfer is the final step of embryos produced from all kinds of assisted 

reproductive technologies. This is because all the embryos need to undergo the embryo 

transfer procedure and subsequently produce an offspring. It is a very important and 

crucial step. In the threatened animals, the availability of females to be used as foster 

mothers within the endangered population is certainly limited. Loi et al. (2011) 

suggested that in intraspecies embryo transfer, the genetic background of the foster 

mother and the embryos may be a road-block, even more serious than the 

genomic/mitochondrial DNA compatibility or the embryonic genome activation 

described above. Therefore, the removal of species-specific boundaries for embryo 

transfer is a fundamental requirement for the successful multiplication of endangered 

genotypes through cloning, or even with other assisted reproductive technologies. Very 

little has been done with inter-intra specific embryo transfer in large animals, and much 

of this work has focused particularly on equine and bovine interspecies embryo transfer 

(Allen and Rowson, 1972; Dresser, 1986; Kraemer, 1982; Summers et al., 1987; 

Hammer et al., 2001). 

Preimplantation development is characterised by a series of cleavages taking 

place in the oviduct, followed by the first differentiation event leading to 2 defined cell 

lineages: the inner cell mass (ICM), giving rise to the foetus proper, and the trophoblast 

(trophectoderm), which forms the extraembryonic tissue that finally becomes the 

definitive placenta (Loi et al., 2011). The appearance of these 2 cell lineages breaks the 

symmetry typical of cleavage stage embryos and confers to the blastocyst an embryonic 

and ad-embryonic pole, probably established earlier in development (Plusa et al., 2006). 

In the case of endangered animals, the choice of trophoblast (placental) donor 

must be made according to the phylogenetic distance (the placental donor is also very 
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likely the donor of the host oocytes) and the pregnancy length, which must be close 

between the 2 species. A preliminary trial, where ICM was exchanged between sheep 

trophoblastic vesicles, has been successfully carried out (Loi et al., 2007). It has been 

reported that the early loss of pregnancy is frequently associated with functional 

deficiencies occurring at the onset of placentation as evidenced in sheep and cattle by 

the lack of placentome development and abnormal vascularisation of extraembryonic 

tissues. These placental abnormalities could lead to severe nutrient deficiencies and 

induce growth retardation, ultimately causing preimplantation loss (Sinclair et al., 1999; 

Wells et al., 1999; Yang et al., 2010). It is likely in the interspecies cloned embryos that 

incomplete reprogramming of the differentiated nucleus was a major constraint to the in 

vivo developmental potential of these embryos. Besides that, as the interspecies 

embryos were transferred to recipients, the immune system of surrogate mothers might 

exclude the embryos so that placenta could not form normally or formed incompletely 

after implantation (Jian-Quan et al., 2007).  

 

2.2.4 Selection of Recipient Oocyte (Cytoplast) 

Interspecies somatic cell nuclear transfer (interspecies SCNT) involving the transfer of 

nucleus/nuclei from one species into the oocytes of another species. This provides a 

useful tool for studying interactions between the recipient cytoplasm and donor nucleus 

karyoplast in terms of nuclear reprogramming (Li et al., 2007). Therefore, the recipient 

oocyte plays an important role in interspecies SCNT, since the dominant distribution of 

mtDNA is from recipient oocytes (Steinborn et al., 2002; Takeda et al., 2003). However, 

one of the problems of interspecies nuclear transfer is the unavailability of species-

specific competent recipient cytoplasm or oocyte (Zhao et al., 2006). 
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Oocytes used for interspecies nuclear transfer should be easy to obtain, able to 

dedifferentiate the somatic cell nuclei of other species, and support development of the 

reconstructed embryo. Therefore, the types (species) of recipient oocytes is very 

important in order for the donor nuclei from another species to be reprogrammed. To 

date, most of the interspecies SCNT experiments used are either cattle, rabbit or sheep 

as the recipient cytoplasts. One of the first attempts on interspecies nuclear transfer 

using enucleated bovine oocytes as the recipient cytoplast was reported by Dominko et 

al. (1999). They suggested that bovine oocyte has the potential to serve as a universal 

recipient in interspecies SCNT. Monkey, sheep, pig and rat somatic cells were used as 

donor karyoplasts, resulting in various degrees of early in vitro development; however 

no pregnancies were reported. Several studies have demonstrated that the bovine 

cytoplast is capable of reprogramming somatic cell nuclei (donor karyoplast) from other 

species including horse (Hinrichs et al., 2000; Reggio et al., 2000; Li et al., 2002a), pig 

(Yoon et al., 2001), tiger (Hwang et al., 2001), Korea cattle (Roh and Yoon, 2001), 

human (Cibelli et al., 2001), buffalo (Kitiyanant et al., 2001; Saikhun et al., 2002), 

soala (Bui et al., 2002), bongo (Lee et al., 2002a), mouse (Koo et al., 2003), black bear 

(Ty et al., 2003), eland (Damiani et al., 2003) and goat (Song et al., 2008; Abdullah et 

al., 2011; Kwong et al., 2011; Soh et al., 2011).  

Sheep oocytes have also been used as recipients for interspecies nuclear transfer. 

In previous research, 2 pregnancies were established after interspecies nuclear transfer 

using domestic sheep oocyte (Ovis aries) as the recipient cytoplast and an exotic argali 

(Ovis ammon) as the donor karyoplast, but both pregnancies were lost by day 59 of 

gestation (White et al., 1999). In addition, another study using domestic sheep (Ovis 

aries) oocytes as recipients and the mural granulose cells of a dead mouflon (Ovis 

orientalis musimon) as donor nuclei resulted in 1 live offspring (Loi et al., 2001).  
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However, as reviewed by Beyhan et al. (2007), some of the research groups 

proposed that using rabbit oocytes could result interspecies SCNT embryos developed 

to the blastocyst stage with remarkably high efficiency, but, depending on the donor 

species, such as cat (Wen et al., 2005; Thongphakdee et al., 2006), ibex (Jiang et al., 

2005), panda (Chen et al., 2002), camel (Zhao et al., 2006), antelope (Zhao et al., 2006), 

macaque (Yang et al., 2003) and human (Chen et al., 2003). Due to their small size, 

short reproductive life span, and easy manipulation and inducement of ovulation, rabbits 

have been one of them most popular animal models used for scientific research. Besides 

that, the rabbit oocyte has also been proven to be an ideal model for many types of 

studies due to its large size, elasticity and easy handling as well as the oocyte cytoplasm 

is capable of dedifferentiating somatic cell nuclei from other species (Zhao et al., 2006). 

Therefore, rabbit oocyte as cytoplast is one of the ideal models for interspecies nuclear 

transfer.      

 

2.2.5 Enucleation  

Enucleation is a critical step in nuclear transfer. This is because before oocytes could be 

used as cytoplast recipients for interspecies SCNT, the genetic material must be 

removed from the oocytes. Enucleation is a very important factor that might influence 

the developmental ability of interspecies SCNT embryos and it is the most time-

consuming procedure in interspecies SCNT (Peura et al., 1998; Kawakami et al., 2003; 

Savard et al., 2004; Lee et al., 2008).     

 

2.2.5.1 Enucleation at different stages of oocyte 

In most species (e.g. pig, cattle and goat), the metaphase plate of MII oocytes is not 

visible by light microscopy due to the presence of cytoplasmic lipid. To our knowledge, 
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a matured oocyte at MII, the MII plate in the cytoplasm of an oocyte is parallel beneath 

under the first polar body (PB-1). Therefore, enucleation has been achieved by so called 

“blind enucleation” using the first polar body as a marker for the location of the MII 

plate, and generally the first polar body together with a small volume of cytoplasm 

(10%) located below PB-1 are removed (Campbell et al., 2007). To this, some of the 

researchers prefer to determine the position of the chromosomes by observing under 

ultraviolet (UV) light after staining oocytes with a DNA-specific dye (e.g. Hoechst-

33342) during enucleation step. However, this method, although it increases enucleation 

accuracy, is harmful to embryo development (Liu et al., 2000). 

An alternative to the enucleation of MII oocytes is the enucleation of activated 

oocytes at telophase of the second meiotic division (TII). Because second polar body 

(PB-2) is expelled shortly after activation, second polar body remains closer to the 

nuclear materials as it has not had sufficient time to migrate. Therefore, mechanical 

aspiration or squeezing of the extruding second polar body and surrounding cytoplasm 

following activation is an effective and reliable enucleation method without the need for 

visualisation of the DNA by exposure to UV light. Bordignon and Smith (1998) and 

Mohamed Noor and Takahashi (1999) reported that enucleation rate in bovine oocytes 

was significantly higher at TII stage than that at MII stage (98.0% vs. 59.0%, 91.5% vs. 

59.9%, respectively). This statement was similar reported by Chen et al. (2007). Also, 

they suggested that less cytoplasm was removed in TII enucleation than in MII 

enucleation, and subsequently, there is less disturbance of the micro-environment of the 

recipient oocyte for coordination with the donor cells.  

Pre-treatment of mouse oocytes with sucrose (3%) was effective in aiding the 

visualisation of the metaphase spindle and chromosomes with standard light microscopy 

(Wang et al., 2001) and a sucrose (0.3 M) treatment was found to be effective in 
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facilitating the localisation of the bovine chromosomes (Liu et al., 2002). Furthermore, 

cloned piglets were born after chemically assisted enucleation of the oocytes (Yin et al., 

2002). In their study, a brief treatment of the MII porcine oocytes in demecolcine and 

sucrose resulted in a membrane protrusion that contained the condensed chromosomes, 

which were easily visualised and aspirated into a pipette without the need of staining. 

Although the mechanisms of action of demecolcine are not clear, the appearance of the 

protrusion might be related to the condensation of maternal chromosomes (Yin et al., 

2002). 

 

2.2.5.2 Type of enucleation methods 

There are various methods of enucleation that have been developed and reported from 

time to time, in order to increase and improve the efficiency of removing the polar body 

and MII chromosomes. These methods are such as squeezing, aspiration, piezo-drill 

electric pipette, and xyclone laser system. Squeezing is the most common enucleation 

methods, whereby a slit is made in the zona pellucida with a microneedle and then first 

polar body together with a small amount of cytoplasm containing MII chromosomes are 

removed by squeezing oocytes with pipette (Wilmut et al., 1997). Enucleation by the 

aspiration method is done using a micropipette that has been bevelled and spiked to aid 

in the penetration of the zona pellucida (Mohamed Nour and Takahashi, 1999). Lee et al. 

(2008) demonstrated that the squeezing method resulted in a higher proportion of 

degenerated oocytes than the aspiration method (14% vs. 5%), however, the blastocyts 

formation was improved in oocytes enucleated by the aspiration method (5% vs. 9%). 

An alternative method, which was first developed in mouse oocytes by 

Wakayama et al. (1998), the zona pellucida of an oocyte was ‘drilled’ by applying 

several piezo pulses to the tip of an enucleation pipette. The MII chromosome-spindle 
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complex, distinguished as a translucent spot in the ooplasm, was drawn into the pipette 

with a small amount of accompanying ooplasm and pulled gently away from the oocyte 

until a stretched cytoplasmic bridge was pinched off (Wakayama et al., 1998). This 

method has shown a very successful production of cloned live offspring in mouse. 

Recently, there was a new enucleation methods developed by Campbell et al. 

(2007), namely, xyclone laser system (Hamilton-Thorne, USA) to assist enucleation or 

to induce enucleation. By using the laser to breach the zona pellucida prior to aspiration 

of the oocyte spindle at AI/TI, MII or TII the enucleation process is simplified requiring 

less technical expertise and the production of more basic micromanipulation tools.  

 

2.2.6 Nuclear Transfer (Reconstruction)  

Several nuclear transfer procedures are currently used to produce cloned animals, 

including sub-zonal injection and subsequently electro-fusion (SUZI), assisted with 

piezo-actuated microinjection, intracytoplasmic injection (ICI) and whole cell 

intracytoplasmic injection (WCICI). 

For SUZI method, it involves placing a donor cell in the perivitelline space of an 

enucleated recipient oocyte and fusing the donor and recipient cells with electrical 

pulses. It has been successfully applied to generate cloned cattle (Wells et al., 1999) and 

goats (Baguisi et al., 1999) as well as pigs (Polejaeva et al., 2000).   

Piezo-driven enucleation and reconstruction has been successfully improved the 

nuclear transfer outcome in the species such as mouse, cow and horse (Wakayama et al., 

1998; Choi et al., 2002b; Galli et al., 2002). This is due to the piezo drill generating 

mechanical pulses that travel longitudinally along the microinjection pipette and vibrate 

the pipette tip, drilling through the zona pellucida and the oolemma are facilitated 

without producing any net forward movement of the pipette. This is especially useful in 
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species with fragile oocytes or hard zona pellucida, such as the mouse and the horse 

(Choi et al., 2002b). Because the pipette used for piezo-driven injection (7 to 10 μm) is 

smaller than those used in traditional nuclear transfer (20 to 25 μm), it also allows for 

the direct injection of donor cells or nucleus/nuclei into the cytoplasm without the need 

for electrofusion (Wakayama et al., 1998; Lee et al., 2003). 

In the intracytoplasmic injection, which donor cells were pipetted in and out few 

times using a narrow microinjection pipette (8 to 10 µm) to isolate the donor nuclei and 

injected into enucleated oocytes (Doa et al., 2002). This method was modified from 

piezo-driven enucleation method, while no electrical current was needed to remove the 

plasma membrane of a donor cell. This method is more practical and save money 

because no piezo-driven machine is needed. 

Recently, Lee et al. (2003) suggested that the whole cell (e.g. foetal fibroblast 

and cumulus cells) intracytoplasmic injection procedure is less labour intensive, 

requires no special micromanipulation equipment and is as efficient in the generation of 

cloned pigs producing a relatively high blastocyst rate (37%).  This is a new technique 

involving direct injection of a whole cell into an enucleated oocyte, bypassing both the 

fusion and nucleus isolation processes. 

 

2.2.7" Selection of Donor Cells 

The potential of various donor cell types to be used as the nucleus donor, such as 

embryonic cells (pre-blastocyst blastomere; Campbell et al., 1993), fibroblasts (skin 

fibroblast and foetal fibroblast; Kato et al., 1998), mammary gland cells (Wilmut et al., 

1997), cumulus granulosa cells (Wakayama et al., 1998), oviduct cells (Kato et al., 

2000), leukocytes (Galli et al., 1999), mural granulosa cells (Wells et al., 1999), 

embryonic stem cells (inner cell mass; Eggan et al., 2001) and liver cells (Brem and 



38 

 

Kuhholzer, 2002) have been reported for production of cloned animals. However, it is 

still unclear which type(s) of donor cell is(are) the most suitable for nuclear transfer into 

enucleated oocytes, especially in interspecies nuclear transfer which is currently lacking. 

However, closely related species always gives a better result in the production of 

interspecies cloned embryos as well as live offspring.  

When the efficiency of various cell types from adult, newborn and foetal male 

and female donor fibroblast cells was compared in SCNT experiment, the percentage of 

blastocysts produced from each cell type was found not to be significantly different 

(Kato et al., 2000). Similar results were obtained using various cell types derived from 

mice of different strains, sexes and ages (Wakayama and Yanagimachi, 2001).  

Initially, all cloned animals derived from adult somatic cells were produced 

using cells from the female reproductive system, such as mammary gland (Wilmut et al., 

1997), oviduct (Kato et al., 1998), cumulus and mural granulosa cells (Wakayama et al., 

1998; Wells et al., 1999; Kato et al., 2000) raised the question of whether male 

individuals could be cloned. Therefore, Wakayama and Yanagimachi (1999) reported 

the first male mice were cloned from male tail skin cells. Besides that, no significant 

differences were found in the developmental rates of embryos reconstituted with male 

or female nuclei in cattle (Kato et al., 2000) and mouse (Wakayama and Yanagimachi, 

2001).  

Foetal fibroblast cells are believed to have less genetic damage and more 

proliferative ability (as measured by cell doublings) compared to the adult somatic cells, 

therefore, they have been the cell type of choice as donor karyoplasts (Hill et al., 2000b). 

No significant differences were found in bovine embryo developmental rates to the 

blastocyst stage with adult, newborn or foetal cell nuclei; however, abortion in later 

stages of pregnancy was higher for cloned foetuses derived from adult cells (Kato et al., 
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2000). Similarly, no differences among embryos derived from foetal and adult bovine 

fibroblasts with regard to fusion, cleavage and blastocyst formation were detected 

(Niemann et al., 2002). However, more foetal losses after transfer into recipients were 

noted with embryos reconstructed with adult bovine donor cells (Hill et al., 2000b; 

Niemann et al., 2002).  

The efficacy of different types of adult somatic cells as donor karyoplast is still 

controversial. To date, adult cells such as cumulus cells and ear fibroblasts are the most 

commonly used for nuclear transfer, as they are easy to obtain and result in no injuries 

to animals (Yang et al., 2010). Yang et al. (2010) reported that in buffalo intraspecies 

SCNT, the fusion rate of couplets derived from ear fibroblasts was significantly lower 

than that from cumulus cells (76.8% vs. 82.5%), while there was no differences in 

cleavage rate and blastocyst rate between the two groups. Similar report on intraspecies 

SCNT in buffalo, Shah et al. (2009) suggested that cumulus cells were better than ear 

fibroblast, while Srirattana et al. (2010) reported that cumulus cells were similar to ear 

fibroblasts. In the intraspecies SCNT of sheep, with regard to the days 7 to 8 of 

blastocyst formation, the ratios of blastocyst formation were similar and not statistically 

different between the donor cell types derived from cumulus cells, male and female 

fibroblast cells (19.5, 17.4 and 15.2%, respectively) (Hosseini et al., 2008). However, in 

human-rabbit interspecies SCNT experiments, Ji et al. (2007) demonstrated that the 

cumulus cell embryos showed significantly higher development rates than the 

ossocartilaginous cell and skin fibroblast cell.  

Sugimura and Sato (2011) reported that the rate of blastocyst formation and the 

total number of cells at the blastocyst stage were significantly higher for embryos 

derived from dewclaw cells than for those derived from tail-tip cells in the production of 

interspecies cloned dog-pig embryos. Although this finding could not be definitively 
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explained, it indicates that the types of donor cells used influence the preimplantation 

competence of mouse SCNT embryos to develop to the blastocyst stage (Wakayama 

and Yanagimachi, 2001). Therefore, Sugimura and Sato (2011) suggested that the 

dewclaws of animals may contain relatively undifferentiated somatic cells, and that 

these cells may be able to develop into blastocysts and to improve cell proliferation at 

the blastocyst stage in each of the interspecies SCNT embryos derived from tail-tip cells. 
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2.2.8 Stages of Donor Cell Cycle 
 

 

Figure 2.2: Stages of cell cycle.  

 

Table 2.3: The description for each of the somatic cell stages  

Stages Phase Abbreviation Description 

Quiescent/senescent Gap 0 G0 A resting phase where the cell has 
left the cycle and has stopped 
dividing. 
 

Interphase     Gap 1 G1 Cells increase in size in Gap 1. 
The G1checkpoint control 
mechanism ensures that 
everything is ready for DNA 
synthesis. 
 

 Synthesis S DNA replication occurs during 
this phase. 

 Gap 2  During the gap between DNA 
synthesis and mitosis, the cell will 
continue to grow. The G2 check-
point control mechanism ensures 
that everything is ready to enter 
the M (mitosis) phase and divide. 
 

Cell division Mitosis M Cell growth stops at this stage and 
cellular energy is focused on the 
orderly division into 2 daughter 
cells. A check-point in the middle 
of mitosis (Metaphase check-
point) ensures that the cell is 
ready to complete cell division. 

(Adapted from: //en.wikipedia.org/wiki/Cell_cycle) 
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Donor cell cycle was a major contributing factor to the success of the somatic cell 

nuclear transfer (Campbell et al., 1996b). According to Wilmut et al. (1997), the use of 

G0 cells could be beneficial for the success of nuclear transfer procedures. In the 

scientific literature, G0 and G1 cells are often grouped together as G0/G1, although 

these phases are quite distinct. G0 cells exit the normal cell division cycle and enter a 

quiescent state, whereas, G1 is a transient stage between M-phase and S-phase in 

proliferating cells (Sansinena et al., 2005).  

There are different methods for synchronising cells in different cell cycle phase. 

Methods of arresting cells in the G0 phase of the cycle include: (1) serum deprivation 

(Kues et al., 2000; Gomez et al., 2003), (2) contact inhibition (Boquest et al., 1999; 

Kasinathan et al., 2001; Mitalipov et al., 1999; Gomez et al., 2003) and (3) reversible 

cycle inhibitors such as rescovitine (Gibbons et al., 2002; Gomez et al., 2003). 

Synchronising cells at the G1 phase include: (1) culturing cells to early confluence 

(Cibelli et al., 1998), (2) the “shake off” method, which is performed by physically 

shaking or vortexing a sub-confluent population cell culture to obtain newly divided 

couplets of cells which cytoplasmic bridges at the beginning of G1 phase (Kasinathan et 

al., 2001) and (3) by serum deprivation to force the cells to enter in G0 phase and then 

stimulating re-enter in G1 phase by culturing cells for 10 hours in medium containing 

serum (Memili et al., 2004).  

The terms ‘serum-starved’ and ‘quiescent’ interchangeably should be avoided 

when referring to in vitro cell cultures for nuclear transfer, as quiescence is a state that 

cells can enter spontaneously while serum-starvation can cause a state of stress with 

potentially more profound implications within the cells (Wells et al., 2003). Quiescent 

cells presumably arrested in G0 phase of the cell cycle have commonly been used to 

produce cloned animals (Campbell et al., 1996a; Wilmut et al., 1997; Baguisi et al., 
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1999; Kues et al., 2000; Reggio et al., 2001; Gibbons et al., 2002; Wells et al., 2003; 

Yu et al., 2003) and the specific method used to arrest donor cells can markedly affect 

foetal survival to term and neonatal survival (Gibbons et al., 2002). Studies reported 

that the proliferating cells have also been successfully used for nuclear transfer (Cibelli 

et al., 1998), although the exact stage of the donor cell cycle was not yet verified. 

Subsequently, several studies from bovine nuclear transfer laboratories have 

demonstrated that both quiescent and proliferating somatic donor cells can be fully 

reprogrammed after nuclear transfer and result in viable offspring (Cibelli et al., 1998; 

Kasinathan et al., 2001; Wells et al., 2003). 

When the oocyte becomes arrested at metaphase-II, MPF activity remains high; 

then following fertilisation or chemical activation, MPF activity rapidly declines. 

During the cell cycle, chromosomal DNA is replicated only once. The mechanisms by 

which a cell coordinates this event and prevents re-replication still remain unclear, 

although maintenance of an intact nuclear envelope appears to be of utmost importance 

(Blow and Laskey, 1988). The development of reconstructed embryos following nuclear 

transfer appears to be dependent upon a variety of factors and cell cycle synchrony 

appears to be a critical aspect. The donor nucleus must be in G1 or G0 when transferred 

to fresh oocytes with high levels of MPF to condense normally and maintain correct 

ploidy of subsequent embryos at the end of the first cell cycle (Campbell et al., 1996a). 

The high levels of MPF in the mature, metaphase-II oocyte cause nuclear envelope 

breakdown (NEBD) and chromosome condensation of the transferred nucleus, 

irrespective of the cell cycle stage of the donor cell.  

Subsequently, the exposure of the chromosomes to the licensing factors in the 

oocyte cytoplasm leads to the replication of DNA following the decay of MPF activity 

and the reformation of the nuclear membrane (Campbell et al., 1993, 1996a; Dinnyés et 
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al., 2002). In the metaphase-II cytoplast, donor chromatin immediately condenses, in 

conjunction with the breakdown of the nuclear envelope (Collas and Robl, 1991). 

Spindle microtubules then form in association with condensed chromatin (Pinto-Correia 

et al., 1993). When the embryo karyoplast is activated, causing a decrease in MPF, a 

nucleus forms and acquires the morphology of a large pronucleus (Collas and Robl, 

1991). If DNA synthesis has commenced prior to NEBD, then DNA replication will 

take place, resulting in abnormal ploidy and a defective embryo. Furthermore, the 

progression of DNA synthesis in the donor nucleus is not compatible with normal 

chromatin condensation, which also results in a defective embryo. Early studies in 

bovine nuclear transfer embryos reconstructed by transfer donor karyoplast into 

metaphase-II cytoplasts showed that all nuclei underwent NEBD and DNA synthesis 

after reformation of the nuclear envelope, regardless of their cell cycle stage (Campbell 

et al., 1993). Thus, it was hypothesised that only G1 nuclei (donor karyoplasts) should 

be used when transferring to metaphase-II cytoplasts.  

 

2.2.9 Number of Cell Passage  

Genetic damage may occur during the in vitro culture of donor cells prior to nuclear 

transfer. Cells cultured for prolonged periods of time are known to increase in their 

levels of aneuploidy over time (Freshney, 2000). Besides that, long-term cultured 

somatic cells undergo cellular senescence and have numerous mutations or allelic loss 

of gene accumulated through many rounds of cell divisions, which are known to cause 

improper genetic reprogramming after SCNT and subsequent abnormal development of 

the embryos (Walker et al., 1996; Aladjem et al., 1998; Cibelli et al., 1998; Schmidt-

Kastner et al., 1998; De Sousa et al., 1999; Kuhholzer et al., 2000). Therefore, it is 

suggested that the use of long-term cultured senescent cells may decrease cloning 



45 

 

efficiency, which may be a limiting factor in the application of SCNT in animals for 

gene targeting. For these reasons, fresh or short-term cultured (<10 sub-passages) donor 

cells have been the cell type of choice for the production of cloned embryos.  

Zakhartchenko et al. (1999) used late passage immortalised epithelial cells to 

clone cattle, but failed to obtain blastocyst. Roh et al. (2000) demonstrated that nuclei 

from both early (8-16) and late (17-32) passages were capable of supporting in vitro 

development of bovine cloned embryos, with reduced rates of blastocyst formation 

when late passage cells were used. In contract, one study reported higher developmental 

rates to the blastocyst stage for embryos reconstituted with adult somatic cells that had 

been sub-passaged 10 to 15 times compared with that of embryos reconstituted from 

cells with a lower number of sub-passages (Kubota et al., 2000). In addition, cloned 

calves were obtained from embryos reconstituted with high sub-passage cells, with all 

cloned foetuses derived from low sub-passage donor cells aborting during pregnancy 

(Kubota et al., 2000). Similar results were obtained using enhanced green fluorescent 

protein gene transfected and nontransfected bovine granulosa cell donor cells where in 

vitro developmental rates of cloned embryos derived from cells at passage 15 were 

higher than those for embryos derived from cells at lower sub-passages (Arat et al., 

2001). Results within and among various research laboratories are often conflicting due 

to procedural effect, oocyte variability, inherent differences among donor cell lines, age 

of donor animals or to effects of in vitro culture conditions.  

Furthermore, some reports have shown that donor cells with high cell passage 

numbers result in lower fusion rates and lower blastocyst development rates in the 

reconstructed embryos (Wilmut et al., 1997; Kato et al., 1998; Hill et al., 2000a; Roh et 

al., 2000; Bhuiyan et al., 2004). The possible explanation is that long-term in vitro 
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culture alters the donor cell metabolism and unbalanced regulation of imprinted genes 

may be induced, thus affecting nuclear transfer remodelling (Walker et al., 1996). 

 
 
2.2.10 Fusion 

Over the years, the use of electrical stimuli for membrane fusion of the enucleated 

oocytes and transferred somatic cells has been the method of choice (Betthauser et al., 

2000; Kubota et al., 2000; Du et al., 2002; Daniel et al., 2008). However, the overall 

cloning efficiency has remained low (Cibelli et al., 1998; Wells et al., 1998; Kuhholzer 

et al., 2000). This may due to the low fusion efficiencies currently being achieved 

between the somatic donor cells and the recipient oocyte, following somatic nuclear 

transfer (Cibelli et al., 1998; Kubota et al., 2000).  

Daniel et al. (2008) reported that the optimum fusion rate of 55.4% was 

achieved when 2.0-2.5 kV/cm DC current was applied compared to 24.0% when using 

1.0-1.5 kV/cm DC current in the cumulus donor cell group in goat intraspecies SCNT. 

Furthermore, in their study, the higher DC current (3 kV/cm and above) resulted in a 

very low fusion rate (16.7%). Dimitor (1993) suggested that the low fusion rate 

observed with low electric strength may be the low geometric probability of membrane 

fusion due to a low pore concentration in the membranes. In contrast, high electric 

strength may result in heat generation and turbulent flows, which would decrease the 

fusion efficiency (Dimitor, 1993).  

It is also interesting to understand that different types of donor cells may give 

different fusion rate. This statement was approved by Daniel et al. (2008), using the 

same electric strength, 2.0–2.5 kV/cm, the fusion rate in cumulus cells was significantly 

higher than the fibroblast cell line fused into the recipient oocytes in the goat 

intraspecies SCNT (55.4% vs. 31.9%). West and Baker (1987) demonstrated that the 
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nuclear transfer with cultured cumulus cells as nuclear donors recorded a high fusion 

rate (59%), when compared to that of skin fibroblasts (33%). It was concluded that the 

difference in membrane surface properties between the cumulus and skin fibroblast cells 

may contribute to the higher fusion rate of the cumulus cell, compared to the fibroblast 

cell. It is postulated that the cumulus cells and oocyte possess the similar membrane 

surface properties, in terms of the types of glycoproteins present (Reik et al., 2001). 

One of the early attempts of nuclear transfer in the horse reported fusion rates of 

81% for quiescent and 52% for proliferating adult equine fibroblasts (Reggio et al., 

2000). More recently, greater fusion rates were reported when combining electrofusion 

with Sendai virus (82%) compared with the electrofusion technique alone (57%) (Li et 

al., 2002b). Although the fusion efficiencies reported by different laboratories for the 

horse are comparable to those previously reported for the cattle (Cibelli et al., 1998; 

Campbell, 1999; Colman, 2000), this step is still a source of variability in the outcome 

of the nuclear transfer combination with activation using equine sperm cytosolic factor 

which is used for nuclear transfer, reporting a cleavage rate as high as 51% (Choi et al., 

2002b).  

    

2.2.11 Activation 

During normal fertilisation, the sperm entry triggers a series of intracellular short-lived 

calcium (Ca2+) oscillations which is critical to oocyte activation. Calcium is released in 

a pulsatile manner from internal stores, including the endoplasmic reticulum and 

mitochondria (Yanagimachi, 1994), and this elevation in intracellular calcium could 

persist for several hours (Carroll and Swann, 1992; Kline and Kline, 1992; Miyazaki et 

al., 1993). These calcium oscillations are responsible for the cascade of events that 

follow, including the cortical granule reaction (Miyazaki et al., 1990), zona pellucida 
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reaction (Yanagimachi, 1994) and the escape from the metaphase-II arrest (Whitaker 

and Irvine, 1984). However, it is different in nuclear transfer, where the lack of sperm-

induced fertilisation steps requires the use of artificial activation in order to trigger 

nuclear reprogramming and further embryonic development (Wells et al., 1999). 

Different artificial protocols have been developed to activate mammalian oocytes by 

simulating the biochemical and physiological events that normally occur during sperm-

oocyte interaction.  

Maturation promoting factor (MPF) and mitogen-activated protein (MAP) 

kinase are the most likely targets of calcium-stimulated events, because inactivation of 

these kinases is a prerequisite to the resumption and completion of meiosis, subsequent 

pronuclear formation and DNA synthesis (Collas et al., 1993; Verlhac et al., 1994; 

Moos et al., 1996). Maturation promoting factor was first described as a complex of two 

subunits: a catalytic subunit (p34cdc2) and a regulatory subunit (cyclin B). p34cdc2 is a 

protein kinase regulated by changes in its phosphorylation state and by its association 

with cyclin. Throughout the cell cycle, the level of p34cdc2 remains constant but the 

level of cyclin varies. Maturation promoting factor peaks at metaphase in association 

with nuclear envelope breakdown, chromatin condensation, reorganisation of the 

cytoskeleton and the formation of the mitotic spindle (Doree and Galas, 1994; Moos et 

al., 1996). Maturation promoting factor inactivation, which is necessary for the cell to 

exit the metaphase-II arrest, involves cyclin proteolysis by the proteosome system 

(Glotzer et al., 1991).  

In vertebrates, mature oocytes are arrested at metaphase-II of the meiotic 

division, with elevated MPF activity maintained by a cytostatic factor (CSF), which 

prevents the ubiquitin-dependent degradation of cyclin B and thus, inactivation of MPF. 

Intracellular calcium oscillations triggered by sperm down-regulate CSF activity and 
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allow for the degradation of cyclin. Proteolytic degradation of cyclin B and subsequent 

MPF inactivation releases oocytes from metaphase arrest and allows the beginning or 

resumption of mitotic cycles (Lorca et al., 1993).  

In nuclear transfer procedures, enucleated oocytes fused with a diploid donor 

cell must be artificially activated to continue development, since somatic cell nuclei 

could not initiate activation (Campbell, 1999). Different artificial activation treatments 

attempt to mimic sperm-triggered events and induce parthenogenetic development in 

metaphase-II oocytes. Successful activation has been achieved by a range of treatments 

including electrical stimulation, as well as chemicals such as strontium in mouse, 

ionomycin, calcium ionophore in cattle and sheep (Campbell et al., 2007). In addition, 

there are many factors that might influence the efficient of activation, such as the 

concentration of chemical agents, duration between fusion and activation, activation 

media, strength of electric stimulation, post-treatments such as cytochalasin B or D, 

cycloheximide (CHX) or 6-dimethylaminopurine (6-DMAP) (Campbell et al., 2007).  

One of the most widely used activation protocols for reconstructed oocyte is the 

combination of ionomycin or calcium ionophore with 6-DMAP or CHX (Loi et al., 

1998; Wells et al., 1999; Akagi et al., 2003). The role of ionomycin is to mobilise 

intracellular calcium stores to induce only a single calcium release rather than a 

repetitive series as occurs naturally (Hoth and Penner, 1992). Subsequently, the calcium 

oscillations suppressing activity of the maturation promoting factor, followed by 

administration of chemicals such as 6-DMAP (a serine protease inhibitor) or CHX (a 

protein synthesis inhibitor) to suppress or prevent reformation of MPF activity (Szollosi 

et al., 1993; Verlhac et al., 1993; Susko-Parrish et al., 1994; Yang et al., 1994). In one 

previous study on interspecies SCNT in buffalo-cattle, the results showed a significantly 

higher percentage of blastocyst development in the nuclear transfer activated by calcium 
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ionophore and 6-DMAP when compared with 6-DMAP alone (33% vs. 17%) 

(Kitiyanant et al., 2001). Bhak et al. (2006) reported that in bovine intraspecies SCNT, 

the cloned embryos obtained from 6-DMAP or CHX activation treatment were not 

significantly different in term of blastocyst development, total cell number and 

proportions of chromosome abnormalities, although CHX treatment is more desirable 

than 6-DMAP.  

In the mouse, strontium has been demonstrated to be used to induce calcium 

oscillation produces a pattern similar to the oscillation by sperm, and repeated 

oscillation seems to be beneficial for later embryo development (Bos-Mikich et al., 

1997; Vitullo and Ozil, 1992). Wakayama et al. (1998) reported that the additional of 

cytochalasin B (5 g/ml) to the activation medium may prevent polar body extrusion, 

however, the concentration of both chemicals and time exposure to strontium in 

addition to post-activation conditions are needed to optimise in order to produce 

efficient embryonic development. Besides that, Yamazaki et al. (2005) showed that 

ionomycin combined with strontium can be used in the activation of intraspecies SCNT 

bovine embryos as in mouse and increased both in vitro development to blastocyst and 

in vivo development to term.   

Electrical stimulation is a widely used method for activation during nuclear 

transfer procedures in sheep (Campbell et al., 1996b; Wilmut et al., 1997)) and pigs 

(Betthauser et al., 2000; Onishi et al., 2000; Polejaeva et al., 2000). Few studied 

reported that the application of multiple pulses of lower field strength is beneficial for 

embryo development to blastocyst in porcine SCNT (Park and Kuroda, 2001; De Sousa 

et al., 2002; Zhu et al., 2002). Additionally, an elevated calcium concentration in 

fusion/activation medium also enhanced embryo development to blastocyst (Cheong et 

al., 2002). 
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It is important also to know about the timing of activation of reconstructed 

oocytes in nuclear transfer. Generally, the timing of activation can be divided into 3 

types: (1) pre-activation (prior fusion), (2) immediate activation (at the time of or 

immediately following fusion), and (3) delayed activation (at a specified time after 

fusion). It was reported that the prolonged exposure of donor cell nuclei to recipient 

oocyte cytoplasm may be beneficial in intraspecies SCNT embryos (Betthauser et al., 

2000; Onishi et al., 2000; Im et al., 2006). Wrenzycki et al. (2001b) demonstrated that 

the pattern of transcription in bovine blastocyst produced by intraspecies SCNT was 

affected by exposure time (Wrenzycki et al., 2001a). In cattle, activation within 2.5 

hours after fusion has shown to be improved in the rate of blastocyst development and 

nuclear morphology (Akagi et al., 2003; Choi et al., 2004; Aston et al., 2006).  

  

2.3 IN VITRO EMBRYO CULTURE 

In vitro produced preimplantation embryos are sensitive to environmental conditions 

that could affect embryo morphology, gene expression, embryonic growth and 

developmental potential both pre- and post-natally (Summers and Biggers, 2003; 

Fleming et al., 2004). Therefore, it appears that in vitro culture of cloned embryos 

before embryo transfer is one of the important steps in achieving pregnancy and 

delivery (Choi et al., 2002a). Embryos are susceptible to a wide range of stressors in 

vitro (Lane, 2001; Lane and Gardner, 2005), including inappropriate medium 

formulation, medium supplementation, problem in the culture system, technical issues, 

or lack of appropriate quality control and quality assurance (Gardner, 2004). These 

stress factors could trigger the response mechanisms designed in the embryo that might 

affect the homeostatic balance. Short-term responses observed include changes in 

morphology (Pollard and Leibo, 1994; Abe et al., 1999; Boni et al., 1999; Crosier et al., 
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2000, 2001; Abe and Hoshi, 2003), cell proliferation and apoptosis (Knijin et al., 2002; 

Gjorret et  al., 2003), metabolism (Khurana and Niemann, 2000; Thompson, 2000; 

Leese, 2002; Houghton and Leese, 2004), transcriptome (Wrenzyeki et al., 1999, 2001a, 

2005; Fabian et al., 2005; Corcoran et al., 2006; Sagirkaya et al., 2006) and proteame 

(Katz-Jaffe et al., 2005). 

Although several culture systems have been developed for the in vitro fertilised 

embryos obtained from IVF and ICSI, it is still unclear whether those are suitable for 

supporting preimplantation development from SCNT embryos (Choi et al., 2002b). 

Thus, it was considered that optimisation of culture conditions would be needed for 

success of the interspecies SCNT technique (Dominko et al., 1999; Sugimura and Sato, 

2011). Therefore, the types of culture medium used and the culture conditions are 

essential to be optimised in order to improve the efficiency of development in in vitro 

culture for both intraspecies and interspecies SCNT embryos.  

An optimal in vitro culture medium is one of the most important key factors to 

the success of interspecies SCNT because supplementation of appropriate nutrients, 

energy sources and growth factors are critical for the development of interspecies SCNT 

embryos (Lorthongpanich et al., 2008). It has been suggested that the energy 

metabolism of interspecies nuclear transfer is differs from that allogeneic SCNT 

embryos because of disrupted cellular processes associated with mitochondrial function 

(Mastromonaco et al., 2007).  

The need for species-specific embryo culture medium is a widely accepted 

concept that has already been demonstrated in different species, such as North Carolina 

State University-23 (NCSU-23) medium for pig embryos (Lee et al., 2003), Chatot, 

Ziomek, Bavister medium (CZB) (Wakayama and Yanagimachi, 1999), potassium 

simplex optimized medium (KSOM) (Nagy et al., 2003; Wakayama et al., 2005) and 
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Whitten medium (WM) (Goh et al., 2010) for mouse, modified synthetic oviduct fluid 

with amino acids (mSOFaa) (Gardner, 1994; Melican et al., 2005) goat embryos, 

Charles Rosenkrans 1 (CR1) (Doa et al., 2002) for cattle embryos. The main chemicals 

that supplemented in these medum are such as essential and non-essential amino acids, 

growth factors, glucose, glutamine, gluthathione, taurine, cysteamine, β-

mercaptoethanol and EDTA.    

Amino acids, especially the non-essential amino acids, were suggested to be the 

most significant component affecting ruminant embryonic development in vitro 

(Thompson, 2000), which are important regulators of early embryonic development 

(Rosenkrans and First, 1994; Liu and Foote, 1995; Steeves and Gardner, 1999; Rezaei 

and Chian, 2005). Growth factors are importance to improve the development of an 

embryo to the blastocyst stage (Lonergan et al., 1996; Palma et al., 1997; Palasz et al., 

2000) and implantation rate (Block and Hansen, 1997). Gluthathione, taurine, 

cycteamine and β-mercaptoethanol are act as antioxidants. Glucose, especially during 

the late stage of embryos (morula and blastocyst), which meets the increased energy 

demand for blastulation, differentiation, and growth (Donnay et al., 1999; Thompson 

and Peterson, 2000; Houghton and Leese, 2004; Lopes et al., 2007; Harvey, 2007). 

EDTA is important in the intracellular chelation during early development of an embryo 

(Lane and Gardner, 1997). 

 It is not clear whether the culture medium is dependent on the donor karyoplast 

or the recipient cytoplast for interspecies nuclear transfer embryos (Zhao et al., 2006). 

In the studies reported by Zhao et al. (2006) on interspecies SCNT using rabbit oocytes 

as recipient cytoplast and camel and Tibetan antelope somatic cells as donor karyoplasts, 

they indicated that M199+10% FCS culture medium was suitable for interspecies 

nuclear transfer embryos. Similar reports have also been shown that M199+10% FCS 
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supported in vitro development of panda-rabbit, cat-rabbit and chicken-rabbit embryos 

to the blastocyst stage (Chen et al., 2002; Wen et al., 2003; Liu et al., 2004). Yang et al. 

(2010) demonstrated that using the similar culture medium, TCM-199+10% FBC, in the 

interspecies SCNT of buffalo-cattle was able to produce in vitro blastocyst (5.9%). 

Another interspecies SCNT study was reported by Dominko et al. (1999), using 

CR1aa medium as the in vitro culture medium for reconstructed oocytes in monkey-

cattle, pig-cattle and sheep-cattle. In their study, the culture medium successfully 

supported the interspecies nuclear transfer embryos up to blastocysts (16.6%, 14.3% 

and 13.9%, respectively). Similar medium was used and reported by Li et al. (2007) on 

yak-cattle with the blastocyst formation (30-34%). Hua et al. (2008) demonstrated that 

in their studies using mSOF medium in sheep-cattle interspecies SCNT was able to 

obtain the in vitro blastocyst (24.6%).   

Recently, studied have suggested that the use of chromatin remodeling agents 

(Tricostatin A, TSA) could improve the efficiency of SCNT experiment. TSA is a 

histone-deacetylase inhibitor (HDACi), which enhances the pool of acetylated histones 

(Yoshida et al., 1990) and DNA demethylation (Hattori et al., 2004). Kishigami et al. 

(2006) suggested that the regulation of histone deacetylases (HDAC) is a clue for 

efficient reprogramming. They indicated that TSA-treatment after SCNT in mice could 

dramatically improve the practical application of current cloning techniques. However, 

further study should be carried out and focus on how TSA enhances the reprogramming 

in terms of DNA methylation and histone modifications in order to elucidate the 

mechanism of reprogramming (Kishigami et al., 2006).    

Serum and BSA are complex undefined mixtures containing hormones, growth 

factors, vitamins and numerous other factors. Serum is known to be detrimental to 

embryonic and foetal development (Campbell et al., 2007). However, serum has been 
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used as a component of co-culture medium and addition of serum into the culture 

medium improves the kinetics of embryo development (Lazzari et al., 2002; Lequarre et 

al., 2003), cell number and the number of blastocysts reaching the blastocyst stage 

(Holm et al., 2002; Lazzari et al., 2002). A higher developmental rate to the blastocyst 

stage was generally obtained from medium supplemented with serum (Pinyopummintr 

and Bavister, 1994). However, it has been demonstrated that serum has a biphasic effect 

on embryonic development. The presence of serum in the medium may affect the speed 

of embryonic development, morphology, ultrastructure, metabolism and the gene 

expression profiles (Thompson et al., 2007). This is often associated with the large 

offspring syndrome (LOS) (Thompson et al., 1995; Sinclair et al., 1999). Therefore, 

almost all media used for embryo culture generally contain bovine serum albumin 

(BSA), instead of serum as a source of protein to improve embryonic development, 

blastocyst formation and the hatching rates (Thompson, 2000; George et al., 2008). 

During in vitro culture of embryos, ammonia is generated from the spontaneous 

degradation of amino acids during culture and amino acid metabolism (Gardner, 1994). 

Production of ammonia could affect the development of in vitro culture embryos, 

therefore, strategy of replacing medium with fresh every 2nd day might optimise 

development rate (Gardner, 1994). The importance of removing ammonia is significant, 

as it is a primary candidate for the induction of “foetal oversize syndrome” induced 

during embryos culture (McEvoy et al., 1997). 

During the 1980s, co-culture, especially with primary cultures of oviduct 

epithelial cells, emerged as the most effective method for overcoming the so-called 8- to 

16 cell development block in mammalian embryos (Gandolfi and Moor, 1987). Co-

culture system generally increases the developmental rates and produced good quality 

of blastocysts and high pregnancy initiation rates (Massip et al., 1996; Rizos et al., 
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2001). Izquierdo et al. (1999) suggested that development with oviduct cells was 

superior to that in cumulus cells or in medium alone. Bavister (1988) reported that the 

oviduct tissue supports early development in vitro are not well known but it seems 

likely that these cells produce material beneficial to the young embryos, remove 

substances with negative effects from the medium and/or reduce the oxygen 

concentration, or both.  

In addition, oxygen concentration in the embryo culture system has been 

considered to affect rates of development (Machaty et al., 1998; Olson and Seidel Jr, 

2000). Although most groups that successfully produce porcine nuclear transfer piglets 

used an atmosphere of 5% CO2 in air to culture embryos (Betthauser et al., 2000; Onishi 

et al., 2000; Lai et al., 2002), oxygen tension in the reproductive tract is lower than that 

in air (Fischer and Bavister, 1993). This study examined the hypothesis that reducing 

oxygen concentration would improve the development of preimplantation porcine 

nuclear transfer embryos in various culture media. Similar report has also demonstrated 

in the production of full-term goat following nuclear transfer (Keefer et al., 2001). In 

their studies, low oxygen (5%) is needed to culture the reconstructed oocytes up to 

embryo transfer. Besides that, cattle somatic cell nuclear transfer embryos cultured 

under low oxygen concentrations had a higher development to the blastocyst stage than 

those cultured in a high oxygen concentration (Im et al., 2000). In addition, a higher 

oxygen concentration in genital tract can produce the formation of reactive oxygen 

species (ROS) during embryo culture. ROS are known to have deleterious effects on 

cells, including DNA damage, lipid peroxidation and oxidative modification of proteins 

(Johnson and Masr-Esfahani, 1994). Therefore, embryos cultured under low oxygen 

concentration (5% O2) had higher total cell number and lower apoptotic cell number 

(Yuan et al., 2003). 
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2.4 OTHER FACTORS AFFECTING INTERSPECIES SOMATIC CELL 

NUCLEAR TRANSFER EFFICIENCY 

2.4.1 Nuclear Reprogramming  

Nuclear reprogramming, the conversion of the epigenome of a differentiated cell to one 

that is similar to the undifferentiated embryonic state, could be facilitated by several 

methods, such as nuclear transfer, cell fusion, use of embryonic stem cell extracts, and 

more recently, by the introduction of exogenous transcription factors. Amongst these 

various strategies, somatic cell nuclear transfer is, by far, the most effective method of 

nuclear reprogramming. Nuclear reprogramming is a general term which describes the 

resetting of the cell memory established during cell commitment and differentiation. At 

the moment, a complete reprogramming compatible with development to term is 

achieved in a minority of the cloned embryos, which a large proportion of them show 

epigenetic deregulation and abnormal gene expression at pre- and post-implantation 

stages, and even after birth (Ogura et al., 2002; Tsunoda and Kato, 2002; Tamashiro et 

al., 2003; Latham, 2005; Kremenskoy et al., 2006; Loi et al., 2006; Morgan et al., 2006; 

Chae et al., 2009; Sawai, 2009; Suzuki et al., 2009; Xing et al., 2009).  

 

2.4.2 Epigenetic Modification 

In nuclear transfer, the percentage to produce live births is always ranging between 1 to 

5%, and most of the results are found to be failure during gestational or neonatal death. 

Many of those that survive to term succumb to a variety of abnormalities that are likely 

due to inappropriate epigenetic reprogramming. Cloned embryos derived from donors, 

such as embryonic stem cells, that may require little or no reprogramming of early 

developmental genes developed substantially better beyond implantation than nuclear 

transfer clones derived from somatic cells. Survival of cloned animals to birth and 
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beyond, despite substantial transcriptional deregulations, is consistent with mammalian 

development being rather tolerant to epigenetic abnormalities, with lethality resulting 

only beyond a threshold of faulty gene reprogramming encompassing multiple loci. 

These epigenetic modifications include DNA methylation, genomic imprinting and X-

chromosome inactivation (Rideout et al., 2001). Epigenetic changes affect the local 

structure, composition and remodeling of chromatin, which in turn defines and 

maintains the accessibility and transcriptional competence of the nucleosomal DNA 

template (Wolffe and Matzke, 1999). 

 

2.4.3 DNA Methylation 

DNA methylation in mammals occurs predominantly at CpG dinucleotides and it 

involves in a number of key genome functions (Takahashi, 2004). These include roles in 

imprinted genes, X-linked genes in females, germline-specific and tissue-specific genes. 

Therefore, DNA methylation plays a critical role in the determination of cell fate and 

cell type specific gene expression (Shi et al., 2003).  

DNA methylation takes place in 2 steps: the first during germ line development, 

when DNA methylation imprints are erased (Hajkova et al., 2002; Lee et al., 2002a), 

and the second during fertilisation and preimplantation development (Rougier et al., 

1998; Oswald et al., 2000; Santos et al., 2002). During fertilisation, the paternal genome 

is formed and undergoes major transformations within the cytoplasm of the oocyte, 

including remodeling of sperm chromatin by replacement of protamines with histones 

followed by genome-wide demethylation (Perreault, 1992). Example in mouse, the 

active demethylation of the paternal genome was shown to occur a few hours after 

fertilisation and before the first cell division (Mayer et al., 2000; Santos et al., 2002), 

whereas, the genome-wide demethylation of maternal genome occurs gradually 
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(Rougier et al., 1998; Santos et al., 2002). Genome-wide de novo methylation 

(remethylation) occurs at the blastocyst stage in mouse (in cattle is at 8- to 16 cell stage), 

preferentially in the inner cell mass (Dean et al., 2001b). In contrast, the male 

pronuclear demethylation does not occur in sheep embryos (Beaujean et al., 2004).  

In somatic cell nuclear transfer, the donor cell genome is compelled to bypass 

gametogenesis (Takahashi, 2004). The successful cloning of mammals by the transfer of 

embryonic or somatic cell nucleus into an enucleated oocyte demonstrated that the 

genetic and epigenetic programs could be reversed in order to achieve totipotency 

(Gurdon and Colman, 1999; Shi et al., 2003). However, up to which extent of 

epigenetic reprogramming is conserved in cloned embryo development is still unknown 

(Young and Fairburn, 2000). Besides that, the inefficient reprogramming of DNA 

methylation patterns may be partly responsible for the low birth rates and 

developmental abnormalities that often result from nuclear transfer (Young and 

Fairburn, 2000). Dean et al. (2001a) reported that the initial demethylation appeared to 

be conserved in 1 cell cloned bovine embryos. However, further demethylation is 

observed at the 2 cell stage, and a precocious de novo methylation is found in many at 

the 4- to 8 cell stage. In contrast, Bourc'his et al. (2001) reported that in their studies, 

they failed to find any demethylation in cloned bovine embryos. The 

demethylation/remethylation waves generally appear to coincide with the activation and 

transcription of the embryonic genome (Sansinena, 2005). In mammals, it is well known 

that the onset of ge25 nomic activation differs between species, occurring at the 2 cell 

stage in mice, 4 cell stage in pigs, and the 8- to 16 cell stage in cows and goat (Bavister, 

1988; Campbell, 1999).  
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2.4.4 Genomic Imprinting 

Genomic imprinting is a mammalian specific epigenetic modification of the genome. 

Assessment of the integrity of the imprinting memory in somatic cell cloned animals is 

important not only for understanding of the “reprogramming” process during cloning by 

nuclear transfer, but also for the applications of this technique for therapeutic cloning in 

the future (Kohda et al., 2006).  

By the mechanisms of genomic imprinting, specific genes are allowed to express 

dependent on their parental origin (Surani et al., 1984). During early development of an 

embryo, the functional differences are present between maternal and paternal genome. 

In the paternal genome, it exerts its effects in the extraembryonic tissues, whereas the 

maternal genome will have influence in the development of the embryo (McGrath and 

Solter, 1983; Surani et al., 1984). In mammals, imprinting genes are particularly 

implicated in the regulation of foetal growth, development and function of placenta 

(Barlow, 1995). Both DNA methylation and chromatin packaging have been implicated 

as imprinting marks. However, little is known how they are established and maintained 

(Shi et al., 2003). It has been proposed that when a somatic nucleus is introduced into 

an enucleated oocyte, the methylation of imprinted genes needs to be protected from 

genome-wide demethylation so that imprints are maintained intact in the cloned 

organism. In this case, reprogramming could interfere with proper maintenance of 

imprints and this could explain, at least in part, the low efficiency of animal cloning 

(Shi et al., 2003). 

 

2.4.5 Inactive X Chromosome 

During late DNA replication and epigenetic chromatin modifications, it involves 

inactive X chromosome (Xi) in mammals. Shi et al. (2003) reported that the CpG 
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islands of many X-linked genes are methylated on Xi but not on the active chromosome 

(Xa). Dosage compensation for X-linked genes between males and females is achieved 

by transcriptional inactivation of one of the two X chromosomes (Lyon, 1961). An 

untranslated RNA, encoded by the Xist (inactive specific transcript X chromosome) 

gene that is expressed only from Xi, is necessary for the initiation of inactivation (Penny 

et al., 1996). Continuous presence of Xist RNA acts together with DNA methylation 

and histone hypoacetylation to accomplish high fidelity inheritance of the inactive form 

(Park and Kuroda, 2001).  

In the female nucleus, one X chromosome is inactivated because it expresses the 

Xist RNA. The other X chromosome escapes silencing and remains active. The Xi 

occurs by epigenetic lineage where the paternal chromosome is preferentially shut down. 

On the other hand, in somatic cell nuclear transfer the recipient oocyte receives one Xi 

and one Xa from the donor cell. One of the studies in bovine cloned embryos, 

observation of aberrant patterns of X-chromosome inactivation is reported (Xue et al., 

2002). When comparing between 2 types of donor cells, adult somatic cells and foetal 

cells, the former types of donor cells was significantly higher in the Xist transcripts than 

the latter types of donor cells (Wrenzycki et al., 2002). Another study showed aberrant 

patterns of X-linked genes, as well as, hypomethylation of Xist in the organs of 

deceased cloned calves (Xue et al., 2002). Therefore, due to the process of X 

inactivation is faithfully recapitulated in cloned female embryos, but the few surviving 

foetuses were studied (Eggan et al., 2000).   
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Chapter 3 

3.0 MATERIALS AND METHODS 

 

3.1 INTRODUCTION 

The main objectives of this study were to produce viable caprine embryos through 

interspecies somatic cell nuclear transfer (interspecies SCNT) technique (donor 

karyoplast: caprine; recipient oocyte: bovine) as well as an attempt to produce 

pregnancy on cloned-caprine embryos via early cell stage embryo transfer. Samples of 

bovine ovaries were collected once or twice weekly from local abattoirs, that is, a) 

Abattoir Complex, Department of Veterinary Services, Shah Alam, Selangor Darul 

Ehsan and b) Department of Veterinary Services, Senawang, Seremban, Negeri 

Sembilan Darul Khusus. The recipient does for embryo transfer were sourced from the 

ISB Mini Farm, University of Malaya. All the experiments in this study involving 

works on in vitro maturation (IVM), interspecies somatic cell nuclear transfer 

(interspecies SCNT), in vitro culture (IVC), staining of embryos and embryo transfer 

were carried out at the Nuclear Transfer and Reprogramming Laboratory (NaTuRe), 

Institute of Research Management and Monitoring (IPPP), University of Malaya. All 

the media and reagents were prepared in the Embryo Micromanipulation Laboratory 

(EMiL), Institute of Biological Sciences, Faculty of Science, University of Malaya. This 

study was conducted from May 2009 to June 2011.  

 

3.2 EXPERIMENTAL ANIMALS 

A total number of 2,805 oocytes from 269 abattoir ovaries were used throughout this 

study. Briefly, the ovaries were collected from local abattoir and transported to the 

laboratory within 1 to 2 hours (Shah Alam) or 3 to 4 hours (Senawang) by placing the 

ovaries in a thermos flask containing NaCl (0.9%) supplemented with penicillin-G and 
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streptomycin as the collecting medium and maintained the temperature between 30 to 

35oC. The breed, origin and health status of the bovine were unknown. Besides these, 

the ovaries were collected regardless of the phases of oestrous cycle, ages and 

pregnancy. 

 A total number of 12 does were used as recipient in embryo transfer throughout 

this study. The recipient does comprising of Boer crossbred and local mixed breed goats 

with the age ranging from 24 to 36 months old. All recipient does were fed with Napier 

grass and commercial pellets twice daily, with ad libitum access to water. The does 

were well managed in the ISB Mini Farm, University of Malaya. All recipient does used 

were maintained under good conditions and with animal welfare guidelines.   

          

3.3 MATERIALS 

Materials used in the present study which included various equipment; chemicals, 

reagents and media as well as lab-wares and disposables are briefly described in the 

following sections: 

 

3.3.1 Equipment 

The details of each equipment used in the present study with model number, 

manufacturer’s and supplier’s name are listed in Appendix Table 1.1. The commonly 

used equipment include autoclave, centrifuge, CO2 incubator, fluorescent microscope, 

inverted microscope with micromanipulation, electrofusion machine, laminar air flow 

work station, liquid nitrogen tank, microforge, micropipette grinder, micropipette puller, 

ultrapure water purification water system, osmometer, pH meter, oven, stage warmer, 

stereomicroscope, surgical set and water bath. 
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3.3.2 Chemicals, Reagents and Media 

Analytical grade laboratory chemicals and reagents were used in the preparation of all 

solutions and media in the present study. Unless otherwise stated, all chemicals were 

purchased from Sigma-Aldrich Co. from USA. A detailed list of the chemicals, reagents 

and media with catalogue number, manufacturer’s and supplier’s name is described in 

Appendix Table 1.2. 

 

3.3.3 Lab-wares and Disposables 

A list of lab-wares and disposables with manufacturer’s name used in the study is 

tabulated in Appendix Table 1.3. 

 

3.4 METHODS 

3.4.1 General Maintenance of Research Laboratory 

It is very important to ensure that all the equipment used were in good condition; lab-

wares and disposables used were properly cleaned and sterile in all types of experiments 

that carried out in the study. This is because both recipient oocyte and donor cell are 

very sensitive especially culture in in vitro, therefore, maintains the sterility 

environment is necessary in the laboratory in order to prevent any contamination from 

happening.  

This study involved the use of CO2 incubator for in vitro culture experiments 

with 5% of CO2 in humidified atmosphere to maintain the correct physiological pH (7.2 

to 7.4) and a temperature of 38.5oC. The CO2 incubator has to be cleaned once a month, 

which involves wiping the inside wall, doors and racks with ethanol (70%) soaked 

sterile gauze or towels. The tray and the RO water contained in it which to provide 

humidity should be sterile and changed with every cleaning regime. The CO2 incubator 

must be monitored regularly and the LED display of temperature checked with 
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independent thermometer readings. Repeated opening and closing of the CO2 incubator 

should be kept to the minimum because it might affect the stability of the oocyte or 

embryo culture environment. 

All used glassware and non-disposable items in the present study included glass 

bottles, beakers, volumetric flasks, measuring cylinders, conical flasks, magnetic stirrer 

and conical tubes. Cleaning solution (7x®-PF) was used as a detergent for glassware 

washing and was filled in a squirt bottle. The used glassware was rinsed in water to 

wash away traces of medium; the label was immediately removed and soaked in soap 

bath of 7x®-PF overnight. The glassware was washed with diluted cleaning solution 

(7x®-PF) using a brush or sponge and immediately rinsed 5 times with water followed 

by 5 times with RO water. After rinsing was completed, the cap of glassware was 

placed loosely and covered snugly with a layer of aluminium foil. A piece of autoclave 

tape was placed on the foil. Alternatively, non-disposable items were washed with 

diluted cleaning solution (7x®-PF) and rinsed 5 times with water followed by 5 times 

with RO water. After washing, all non-disposable items were placed in an autoclave bag 

and sealed; a piece of autoclave tape was placed on the seal bag. All items were allowed 

to be autoclaved for 20 to 25 minutes at 120oC. After autoclaving was done, the 

glassware cap was tightened a little bit prevent any contaminants from entering and 

together with non-disposable items were transferred into the oven to dry before being 

transferred in a clean and close glassware cabinet or appropriate storage cabinets. Also, 

the cap was not tightened completely until the glassware had cooled to prevent a 

vacuum forming in the glassware. 

Before starting any experiment, the inside surfaces of the laminar air flow work 

station, microscope stages and other equipment such as micropipettes were wiped with 

ethanol (70%). The residual traces of ethanol were allowed to evaporate for at least 20 

minutes before commencing work. Any spillage was wiped immediately with dry tissue 
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and if necessary, with ethanol (70%). When work finished, the inside surfaces of the 

laminar flow work station and all the equipment were wiped again with ethanol (70%). 

Also, the water bath was cleaned and water was changed frequently. 

 

3.4.2 Preparation of Stock Solutions and Media 

All stock solutions and media used throughout this study were prepared under laminar 

air flow work station to maintain the sterile environment. Purified Milli-Q water was the 

base water source for use to prepare most of the solutions and media. All powder forms 

of chemicals were weighed using a digital analytical balance while the chemicals in 

liquid form were measured using either sterile disposable plastic pipette or sterile 

disposable micropipette tips.  

Generally, the media for oocytes and embryos culture were prepared into two 

forms, which namely stock solution and working solution. Due to different culture 

media required accurate and involved different chemicals for it culture purpose, 

therefore, is it convenient to prepare in a series stock solutions for each medium and it 

can be kept for longer time, for example, 1 to 2 months. However, when needed for 

experiment, working solutions were prepared freshly from stock solutions and it can be 

kept for only 1 to 2 weeks. While, the media used for somatic cell line culture were 

prepared when needed and which would be able to be kept for up to 1 to 2 months. All 

solutions and media prepared were filter-sterilised using syringe filter (0.22 µm pore 

size), aliquot in microcentrifuge tubes or Scott bottles, finally, stored in the refrigerator 

(2 to 8oC) or freezer (-20oC) as appropriate.      

 

3.4.2.1 Preparation of ovary collection medium 

Ovary collection medium was used for washing and collecting ovaries from abattoir. 

The ovary collection medium consisted of NaCl (9 mg/ml) supplemented with 
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penicillin-G (0.06 mg/ml) and streptomycin (0.05 mg/ml). The chemicals were weighed 

and dissolved in Milli-Q water (1 litre) by stirring gently. After preparation, the medium 

was kept at room temperature (25oC) with a shelf life of 3 months and each time aliquot 

400 ml to a beaker (500 ml) to warm up in the water bath prior to use (Table 3.1). 

 

Table 3.1: Composition of ovary collection medium with a shelf life of 3 months (stored 
at room temperature, 25oC) 

 
Chemical component Catalogue number Concentration Quantity/litre 
NaCl  S5886 0.9 (w/v)                  9 g 
Penicillin-G P7794 0.06 mg/ml             0.06 g 
Streptomycin S1277 0.05 mg/ml             0.05 g 
Milli-Q water 
 

- -                  1 litre 

 
 

3.4.2.2 Preparation of in vitro maturation (IVM) medium 

In vitro maturation (IVM) medium was prepared freshly and equilibrated at least 3 

hours in the CO2 incubator (5%) prior to oocyte recovery (Table 3.2). The IVM medium 

was consisted of TCM-199 as a base medium supplemented with FSH, oestradiol-17β, 

sodium pyruvate, foetal bovine serum (FBS), cystein and gentamicin.   

 

Table 3.2: Preparation of stock solutions for IVM medium 
 
Stock solution Catalogue number Concentration Method of preparation (storage 

duration) 
FSH Folltropin-V® 5 mg/ml Folltropin-V® (5 mg) was weighed 

and dissolved in Milli-Q water (1 
ml) in a microcentrifuge tube, 
labelled on the cover, sealed with 
parafilm, wrapped in aluminium foil 
and stored (4oC). (6 months)  
 
 
 
 
 
 

(continued) 
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Gentamicin Sigma, G3632 50 mg/ml Gentamicin (1 g) was weighed and 

dissolved in DPBS (20 ml), aliquot 
(1 ml) in microcentrifuge tube, 
labelled on the cover, sealed with 
parafilm, wrapped in aluminium foil 
and stored (4oC). (6 months) 
 

Oestradiol-17β Sigma, E8875 1 mg/ml Oestradiol-17β (1 mg) was weighed 
and dissolved in ethanol (1 ml) in 
microcentrifuge tube, labelled on 
the cover, sealed with parafilm, 
wrapped in aluminium foil and 
stored (4oC). (6 months) 

    
 

To prepare the IVM medium, TCM-199 (8.9 ml) was measured using a sterile 

disposable micropipette tips (1 ml) and dispensed into a sterile conical tube (15 ml). 

Using a digital balance, cystein (0.9 mg) were weighed and dissolved in the TCM-199 

solution. Following, sodium pyruvate (2.2 mg) was weighed and dissolved in 1 ml of 

TCM-199 solution in a microcentrifuge tube. From the mixture, using a sterile 

disposable micropipette tips (100 µl), TCM-pyruvate (100 µl) was measured and 

dispensed into the TCM-199 solution containing cysteamine. Then, FSH (10 µl), 

gentamicin (5 µl) and FBS (1 ml) were added to the TCM-199 solution. The resulting 

IVM medium was mixed well and filter-sterilised by using syringe filter (0.22 µm pore 

size). Oestradiol-17β (9.5 µl) was added last after the medium was filtered. The final 

IVM medium was sealed with parafilm, wrapped in aluminium foil and stored in the 

refrigerator (4oC) with a shelf life of 1 to 2 weeks (Table 3.3).  

 

 

 

 

 

(continued) 
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Table 3.3: Composition of IVM medium with a shelf life of 1 to 2 weeks (stored at 4oC) 
 
Chemical component Catalogue 

number 
Concentration Quantity/10 ml 

TCM-199 M4530 -             8.9 ml 
cystein M9768          0.09 mg/ml             0.9 mg 
TCM-pyruvate P4562            2.2 mg/ml            100 µl 
FSH Folltropin-V               5 mg/ml              10 µl 
Gentamicin G3632             50 mg/ml                5 µl 
FBS 10270          10% (v/v)                1 ml 
Oestradiol-17β E8875               1 mg/ml             9.5 µl 
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3.4.2.3 Preparation of cloning manipulation solutions 

The media were used to manipulate the oocytes for interspecies SCNT. The media 

involved were TL-Hepes medium, hyaluronidase solution, oocytes waiting medium 

(TCM-199 with 10% FBS), cytochalasin B (CB) solution, polyvinylpyrrolidone (PVP) 

solution and fusion medium. 

 

3.4.2.3(a) Preparation of TL-Hepes medium 

TL-Hepes medium consisted of Hepes to maintain pH of the medium at 7.2 to 7.4, and 

it was used for oocytes collection, oocytes and embryos washing and manipulation work 

outside the CO2 incubator. 

 

(i) Preparation of TL-Hepes stock solution 

Typically, TL-Hepes stock solution (500 ml) was prepared each time (Table 3.4). All 

the chemicals, except for sodium lactate, bovine serum albumin-fraction V (BSA-FV), 

gentamicin stock solution and sodium pyruvate, were weighed as shown in Table 3.4, 

using a digital balance and dispensed into a sterile conical flask (500 ml). Milli-Q water 

was then added by using a measuring cylinder (100 ml) to make the final volume of 500 

ml solution. The chemicals were dissolved slowly by stirring gently using a magnetic 

stirrer on a stirrer machine and at the same time, sodium lactate was slowly added to the 

solution with the used of sterile disposable micropipette tips. The resulting TL-Hepes 

stock solution was filter-sterilised by using syringe filter (0.22 µm pore size) and stored 

in the refrigerator (4oC) with a shelf life of 3 months.  
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Table 3.4: Composition of TL-Hepes stock solution with a shelf life of 3 months (stored 
at 4oC) 

 
Chemical component Catalogue 

number 
Concentration  Quantity/500 ml 

NaCl S5886 114 mM 3.330 g 
KCl P5405 3.2 mM 0.120 g 
NaHCO3 S5761 2.0 mM 0.084 g 
NaH2PO4.H2O S9638 0.4 mM 0.028 g 
CaCl2.2H2O C3881 2.0 mM 0.150 g 
MgCl2.6H2O M2393 0.5 mM 0.050 g 
Hepes: C8H17N2O4SNa H3784            10 mM            0.600 g 
Hepes: C8H18N2O4S H6147            10 mM            0.600 g 
Penicillin G PEN-NA       100 IU/ml          0.0325 g 
Phenol red powder P3532                   -          0.0025 g 
Na Lactate (60% 
syrup) 

L7900            10 mM            0.93 ml 

Milli-Q water -                   -        499.07 ml 
 

 

(ii) Preparation of TL-Hepes working solution 

Typically, TL-Hepes working solution (50 ml) was prepared each time (Table 3.5). 

Using a sterile disposable plastic pipette (10 ml, Falcon), TL-Hepes stock solution (50 

ml) were measured and dispensed into a sterile conical tube (50 ml). Using a sterile 

disposable micropipette tips, gentamicin stock solution (25 µl) was measured and 

dispensed into the solution. Using a digital balance, BSA-FV and sodium pyruvate were 

weighed and dissolved in the solution. The resulting TL-Hepes working solution was 

filter-sterilised again by using syringe filter (0.22 µm pore size) prior to use. The 

working solution was kept in the refrigerator (4oC) with a shelf life of 1 to 2 weeks. 

 

Table 3.5: Composition of TL-Hepes working solution with a shelf life of 1 to 2 weeks 
(stored at 4oC) 

 
Chemical component Catalogue number Quantity/50 ml 
TL-Hepes stock solution -                     49.95 ml 
Gentamicin stock solution -                          25 µl 
Sodium pyruvate P4562                         1.1 mg 
BSA-FV A7030                          50 mg 
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3.4.2.3(b) Preparation of hyaluronidase solution 

Hyaluronidase solution was used for removing the cumulus cell from COC after 

maturation. As indicated by the manufacturer, a type IV-S hyaluronidase from bovine 

testes was used to prepare hyaluronidase solution. Hyaluronidase solution (750-1500 

IU/mg) was prepared by dissolving hyaluronidase powder (1 mg) in TL-Hepes working 

solution (1 ml). The prepared solution was mixed properly, filter-sterilised by using 

syringe filter (0.22 µm pore size), aliquot (100 µl each) in microcentrifuge tubes, 

labelled on the cover, sealed with parafilm, wrapped in aluminium foil and stored in the 

freezer (-20oC) with a shelf life of 6 months. On the day of experiment, 1 tube of 

hyluronidase solution was withdrawn from the refrigerator, warm up on a stage warmer 

and use to denude the COC (Table 3.6). 

 

 Table 3.6: Composition of hyaluronidase solution with a shelf life of 6 months (stored 
at -20oC) 

 
Chemical component Catalogue 

number 
Concentration Quantity/10 ml 

TL-Hepes working 
solution 

- -             10 ml 

Hyaluronidase H4272          0.01 g/ml            0.1 g 
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3.4.2.3(c) Preparation of oocytes waiting medium (TCM-199 with 10% FBS) 

Oocytes waiting medium consisted of TCM-199 supplemented with FBS (10%) and 

was used to incubate the oocytes in CO2 incubator (5%) while waiting for manipulation 

work. Typically, using a sterile disposable micropipette tips, TCM-199 medium (4.5 ml) 

and FBS (0.5 ml) were measured and dispensed into a sterile conical tube (15 ml). The 

prepared solution was mixed properly, filter-sterilised by using syringe filter (0.22 µm 

pore size), aliquot (500 µl each) in microcentrifuge tubes, labelled on the cover, sealed 

with parafilm, wrapped in aluminium foil and stored in the refrigerator (4oC) with a 

shelf life of 3 month. On the day of experiment, 1 tube of oocytes waiting medium was 

withdrawn from the refrigerator, prepared in droplet form and incubated for at least 3 

hours prior to use (Table 3.7).  

 

Table 3.7: Composition of oocytes waiting solution with a shelf life of 3 months (stored 
at 4oC)  

 
Chemical 
component 

Catalogue number Concentration Quantity/5 ml 

TCM-199 Medium 199 (1X) 
11150 

- 4.5 ml 

FBS Gibco 10270 10% (v/v) 0.5 ml  
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3.4.2.3(d) Preparation of cytochalasin B solution 

Cytochalasin B solution was used to depolymerise microfilaments of the matured 

oocytes (M II) and facilitated the enucleation process. Enucleation was accomplished by 

removing the first polar body (PB-1) and the metaphase II plate together with a small 

amount of surrounding cytoplasm.  

 

(i) Preparation of cytochalasin B stock solution 

Cytochalasin B stock solution was prepared by dissolving cytochalasin B powder (1 mg) 

in DMSO (1 ml). The prepared solution was then aliquot (10 µl each) in 

microcentrifuge tubes, labelled on the cover, sealed with parafilm, wrapped in 

aluminium foil and stored in the freezer (-20oC) with a shelf life of 6 months (Table 3.8).  

 

Table 3.8: Composition of cytochalasin B stock solution with a shelf life of 6 months 
(stored at -20oC) 

 
Chemical component Catalogue number Concentration Quantity/ml 
DMSO D5879 -                   1 ml 
Cytochalasin B C6762 1 mg/ml            0.001 g 

 
 

(ii) Preparation of cytochalasin B working solution 

On the day of experiment, 1 tube of cytochalasin B stock solution (10 µl) was 

withdrawn from the refrigerator and diluted with TL-Hepes working solution (990 µl) to 

make a final volume of 1 ml (Table 3.9).  

 

Table 3.9: Composition of cytochalasin B working solution with a shelf life of 1 week 
(stored at 4oC) 

 
Composition Quantity/ml 
Cytochalasin B stock solution                                        10 µl 
TL-Hepes working solution                                      990 µl 
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3.4.2.3(e) Preparation of PVP solution 

PVP solution was used for the donor cell (donor karyoplast) when doing nuclear 

transfer in intracytoplasmic injection (ICI). During nuclear transfer, a donor cell was 

drawn in and out by the injection pipette (8 to 9 µm) in PVP medium (100 mg/ml) until 

the plasma membrane of the donor cell was disrupted prior inject into enucleated oocyte. 

PVP solution was prepared by dissolving PVP powder (0.1 g) in TL-Hepes working 

solution (1 ml). The prepared solution was mixed properly (it take approximately 1 day 

for PVP powder to dissolve fully in TL-Hepes working solution) by placing in the 

refrigerator at 4oC overnight, filter-sterilised by using syringe filter (0.22 µm pore size), 

into a microcentrifuge tubes (1.5 ml), labelled on the cover, sealed with parafilm, 

wrapped in aluminium foil and stored in the refrigerator (4oC) with a shelf life of 6 

months. On the day of experiment, 10 µl of PVP solution was used to make a few 

microdroplets (2 to 3 µl for each microdroplet) on the manipulation dish (Table 3.10).  

 

Table 3.10: Composition of PVP solution with a shelf life of 6 months (stored at 4oC) 
 
Chemical component Catalogue number Concentration Quantity/ml 
PVP PVP360 100 mg/ml            0.1 g 
TL-Hepes working solution 
 

- -               1 ml 
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3.4.2.3(f) Preparation of fusion medium 

Fusion medium was used to facilitate the fusion between the donor cell and enucleated 

oocyte cytoplasm. 

 

(i) Preparation of fusion stock solution 

Typically, fusion stock solution (20 ml) was prepared each time. All the chemicals, 

except for BSA-FV were weighed as shown in Table 3.11, using a digital balance and 

dispensed in a sterile conical tube (50 ml). Milli-Q water was then added by using a 

sterile disposable plastic pipette (10 ml) to make the final volume of 20 ml solution. The 

chemicals were dissolved slowly by stirring gently using a magnetic stirrer on a stirrer 

machine. The resulting fusion stock solution was filter-sterilised by using syringe filter 

(0.22 µm pore size) and stored in the refrigerator (4oC) with a shelf life of 3 months.  

 

Table 3.11: Composition of fusion stock solution with a shelf life of 6 months (stored at 
4oC) 

 
Chemical component Catalogue 

number 
Concentration Quantity/20 ml 

Sorbitol S3889 10.0 mM          0.911 g 
Mg(CH3COO)2 M0631 0.02 mM        0.0021 g 
Hepes (free acid) H3375 0.02 mM        0.0024 g 
Milli-Q water - -               20 ml 

 
 

(ii) Preparation of fusion working solution 

Typically, 5 ml of fusion working solution was prepared each time. Using a sterile 

disposable micropipette tips (1 ml), fusion stock solution were measured and dispensed 

into a sterile conical tube (15 ml). Using a digital balance, BSA-FV was weighed and 

dissolved in the solution. The resulting fusion working solution was filter-sterilised 

again by using syringe filter (0.22 µm pore size) and aliquot (2.5 ml each) into sterile 
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conical tube (15 ml) prior to use. The working solution was kept in the refrigerator (4oC) 

with a shelf life of 1 to 2 weeks (Table 3.12). 

 

Table 3.12: Composition of fusion working solution with a shelf life of 1 to 2 weeks 
(stored at 4oC) 

 
Chemical component Catalogue number Quantity/5 ml 
Fusion stock solution -                         5 ml 
BSA-FV A7030                    0.01 g 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



78 

 

3.4.2.4 Preparation of activation medium 

In the present study, double activation was used to activate the reconstructed oocytes 

after nuclear transfer. The activation chemicals used were calcium ionophore (CaI) and 

6-dimethylaminopurine (6-DMAP). 

 

3.4.2.4(a) Preparation of calcium ionophore solution 

Calcium ionophore solution was used to activate the oocytes after nuclear transfer in 

interspecies SCNT. Calcium ionophore is important to increase the concentration of free 

calcium in the cytosol, thereby mimicking the physiological cell-signaling mechanism 

and form of calcium oscillations. This calcium oscillations pattern during oocyte 

activation may influence not only fertilisation but also embryo development and, 

therefore, the implantation (Rout et al., 1997; Ozil et al., 2006).    

 

(i) Preparation of calcium ionophore stock solution 

As shown in Table 3.13, calcium ionophore stock solution was prepared by dissolving 

calcium ionophore powder (0.001 g) in DMSO (3.82 ml). The prepared solution was 

then aliquot (10 µl each) in microcentrifuge tubes, labelled on the cover, sealed with 

parafilm, wrapped in aluminium foil and stored in the freezer (-20oC) with a shelf life of 

6 months.  

 

Table 3.13: Composition of calcium ionophore stock solution with a shelf life of 6 
months (stored at -20oC) 

 
Chemical component Catalogue number Quantity/ml 
DMSO D5879                   3.82 ml 
Calcium ionophore C7522                 0.001 g 
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(ii) Preparation of calcium ionophore working solution 

On the day of experiment, 1 tube of calcium ionophore stock solution (10 µl) was 

withdrawn from the freezer and diluted with KSOM A working solution (990 µl) to 

make a final volume of 1 ml. The final concentration of the working solution was 5 µM 

(Table 3.14). 

 

Table 3.14: Composition of calcium ionophore working solution with a shelf life of 6 
months (stored at -20oC) 

 
Composition Concentration Quantity/ml 
Calcium ionophore stock solution 5 µM                     10 µl 
KSOM A working solution -                   990 µl 
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3.4.2.4(b) Preparation of 6-dimethylaminopurine (6-DMAP) 

6-DMAP was used together with calcium ionophore to activate the oocytes following 

nuclear transfer in interspecies SCNT. 

 

(i) Preparation of 6-DMAP stock solution 

6-DMAP stock solution was prepared by dissolving 6-DMAP powder (0.1 g) in Milli-Q 

water (3.08 ml), as shown in Table 3.15. The prepared solution was then aliquot (10 µl 

each) in microcentrifuge tubes, labelled on the cover, sealed with parafilm, wrapped in 

aluminium foil and stored in the freezer (-20oC) with a shelf-life of 6 months.  

 

Table 3.15: Composition of 6-DMAP stock solution with a shelf life of 6 months (stored 
at -20oC) 

 
Chemical component Catalogue number Quantity/3.08 ml 
Milli-Q water - 3.08 ml 
6-DMAP D2629 0.1 g 

 
 

(ii) Preparation of 6-DMAP working solution 

On the day of experiment, 1 tube of 6-DMAP stock solution (10 µl) was withdrawn 

from the freezer and diluted with KSOM A working solution (990 µl) to make a final 

volume of 1 ml. The final concentration of the working solution was 2 mM (Table 3.16). 

 

Table 3.16: Composition of 6-DMAP working solution with a shelf life of 6 months 
(stored at -20oC) 

 
Composition  Concentration  Quantity/ml 
6-DMAP stock solution 2 mM                      10 µl 
KSOM A working solution -                    990 µl 
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3.4.2.5 Preparation of KSOM medium 

Simplex Optimisation Medium (SOM) was developed by Lawitts and Biggers (1991) 

and modified to formulate KSOM (K Simplex Optimisation Medium) (Lawitts and 

Biggers, 1993). KSOM medium was used as the base medium for activation and in vitro 

culture (IVC). In the present study, 2 types of KSOM medium were prepared and used 

for embryos culture, namely, (a) KSOM A – classical/standard KSOM, (b) KSOM B – 

KSOM supplemented with glucose (0.04%, 2.2 mM). 

 

(i) Preparation of KSOM stock solution 

Typically, KSOM stock solution (100 ml) was prepared each time. All the chemicals, 

except for sodium lactate (60% syrup), were weighed as shown in Table 3.17 using a 

digital balance and dispensed into a measuring cylinder (100 ml). Milli-Q water was 

then measured and added by using a sterile disposable plastic pipette (10 ml) to make 

the final volume of 100 ml solution. The chemicals were dissolved slowly by stirring 

gently using a magnetic stirrer on a stirrer machine and at the same time, sodium lactate 

(60% syrup) was slowly added to the solution with the use of sterile disposable 

micropipette tips (1 ml). The resulting KSOM stock solution was filter-sterilised by 

using syringe filter (0.22 µm pore size) and stored in the refrigerator (4oC) with a shelf 

life of 1 month.  

 

Table 3.17: Composition of KSOM stock solution with a shelf life of 1 month (stored at 
4oC) 

 
Chemical component Catalogue 

number 
Concentration  Quantity/100 ml 

NaCl S5886            95 mM             0.5553 g 
KCl P5405           2.5 mM             0.0186 g 
KH2PO4 P5655         0.35 mM             0.0048 g 
MgSO4 M7506           0.2 mM             0.0024 g 
Sodium pyruvate P4562           0.2 mM             0.0022 g 

(continued) 
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D-glucose G6152           0.2 mM             0.0036 g 
NaHCO3 S5761            25 mM             0.2101 g 
CaCl2 C5670         1.71 mM             0.0190 g 
L-glutamine G3126              1 mM             0.0146 g 
EDTA E9884         0.01 mM             0.0004 g 
Na Lactate (60% 
syrup) 

L7900         10.0 mM             0.1860 ml 

Milli-Q water -               -             99.814 ml 
 

 

(ii) Preparation of KSOM working solution 

Two types of KSOM working solutions were prepared for the present study to culture 

the reconstructed oocytes after cloning, which namely, KSOM A (early stage of 

embryos) and KSOM B (later stage of embryos). For KSOM A, KSOM A working 

solution (10 ml) was prepared each time. Using a sterile disposable micropipette tips (1 

ml), KSOM stock solution (9.85 ml) were measured and dispensed into a sterile conical 

tube (15 ml). Using a sterile disposable micropipette tips, BME (100 µl) and MEM (50 

µl) were measured and dispensed into the solution. Using a digital balance, BSA (0.04 g) 

was weighed and dissolved in the mixture. The resulting KSOM A working solution 

was filter-sterilised again by using syringe filter (0.22 µm pore size) prior to use (Table 

3.18).  

 

Table 3.18: Composition of KSOM A medium with a shelf life of 1 to 2 weeks (stored 
at 4oC) 

 
Chemical component Catalogue number Quantity/10 ml 
KSOM stock solution -             9.85 ml 
BME amino acids solution B6766              100 µl 
MEM non-essential amino acids solution M7145                50 µl 
BSA A6003             0.04 g 

 
 

 

(continued) 
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For KSOM B, KSOM B working solution (5 ml) was prepared each time. Using 

a sterile disposable micropipette tips (1 ml), KSOM stock solution (4.925 ml) were 

measured and dispensed into a sterile conical tube (15 ml). Using a sterile disposable 

micropipette tips, BME (50 µl) and MEM (25 µl) were measured and dispensed into the 

solution. Using a digital balance, BSA (0.02 g) and D-glucose (0.04%, 0.002 g, 2.2 mM) 

were weighed and dissolved in the mixture. The resulting KSOM B working solution 

was filter-sterilised again by using syringe filter (0.22 µm pore size) prior to use (Table 

3.19).  

 

Table 3.19: Composition of KSOM B medium with a shelf life of 1 to 2 weeks (stored 
at 4oC)  

 
Chemical component Catalogue number Quantity/5 ml 
KSOM stock solution -             4.925 ml 
BME amino acids solution B6766                  50 µl 
MEM non-essential amino acids solution M7145                  25 µl 
BSA A6003               0.02 g 
D-glucose (0.04%, 2.2 mM) G6152             0.002 g 

 
(P.J. Kwong, personal communication) 
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3.4.2.6 Preparation of somatic cell (donor karyoplast) culture medium 

In the present study, the media were used to establish somatic cell line, and somatic 

cell-bank which was stored in cryotube containing freezing medium under liquid 

nitrogen (-196oC) and would be thawed for further used.  The media involved were (a) 

Tissue culture medium, (b) PBS (-) solution, (c) Trypsin-EDTA solution, and (d) 

Freezing medium. 

 

3.4.2.6(a) Preparation of tissue culture medium 

In the present study, tissue culture medium was used as a nutrient medium which 

provided the necessary nutrients to the cell to grow in monolayers in vitro. This medium 

consisted of α-Minimum Essential Medium (α-MEM), FBS and Penicillin-Streptomycin 

(P-S) and is also known as the synthetic cell culture medium.  

 

(i) Preparation of tissue culture stock solution 

As shown in Table 3.20, tissue culture stock solution (1 litre) was prepared each time. 

One bottle of α-MEM contained 10.1 g of powder and which was ready to prepare 1 

litre of the stock solution. Using a sterile spatula, α-MEM powder (1 bottle) was 

transferred and dissolved in Milli-Q water (1 litre) in a sterile Schott bottle. Using a 

digital balance, NaHCO3 (2.2 g) was weighed and dissolved into the mixture. The 

chemicals were dissolved slowly by stirring gently using a magnetic stirrer on a stirrer 

machine. The resulting tissue culture stock solution was filter-sterilised by using syringe 

filter (0.22 µm pore size) and stored in the refrigerator (4oC) with a shelf life of 3 to 4 

months.  
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Table 3.20: Composition of tissue culture stock solution with a shelf life of 3 to 4 
months (stored at 4oC) 

 
Chemical component Catalogue number Concentration  Quantity/litre 
α-MEM powder M0644         10.1 g/litre              10.1 g 
NaHCO3 S5761           2.0 mM                2.2 g 
Milli-Q water -                 -                   1 litre 

 
 

(ii) Preparation of tissue culture working solution 

Typically, tissue culture working solution (100 ml) was prepared each time. Using a 

sterile disposable plastic pipettes (10 ml), tissue culture stock solution (90 ml) and FBS 

(10 ml) were measured and dispensed into a sterile Scott bottle (100 ml). Using a sterile 

disposable micropipette tips, P-S stock solution (100 µl) was measured and dispensed 

into the solution. The resulting tissue culture working solution was filter-sterilised again 

by using syringe filter (0.22 µm pore size) prior to use. The working solution was kept 

in the refrigerator (4oC) with a shelf life of 1 to 2 months (Table 3.21). 

 

Table 3.21: Composition of tissue culture stock solution with a shelf life of 1 to 2 weeks 
(stored at 4oC) 

 
Chemical component Catalogue number Quantity/100 ml 
Tissue culture stock solution -                        90 ml 
FBS Gibco 10270                        10 ml 
P-S stock solution -                      100 µl 
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3.4.2.6(b) Preparation of PBS (-) solution 

PBS (-) solution was used to wash the somatic cells prior to trypsinisation to reduce the 

concentration of divalent cations from the tissue culture medium and proteins from the 

FBS that inhibit trypsin action. Typically, PBS (-) solution (100 ml) was prepared each 

time. Using a digital balance, NaCl (1.0 g), KCl (0.025 g), KH2PO4 (0.144 g) and 

Na2HPO4 (0.025 g) were weighed and dissolved in Milli-Q water (100 ml) in a sterile 

Scott bottle. The chemicals were dissolved slowly by stirring gently using a magnetic 

stirrer on a stirrer machine. The resulting PBS (-) solution was filter-sterilised by using 

syringe filter (0.22 µm pore size) and stored at room temperature with a shelf life of 3 

months (Table 3.22). 

 

Table 3.22: Composition of PBS (-) solution with a shelf life of 3 months (stored at 
room temperature, 25oC) 

 
Chemical component Catalogue 

number 
Concentration Quantity/100 ml 

NaCl  S5886         171.1 mM               1.0 g 
KCl P5405           3.35 mM           0.025 g 
KH2PO4 P5655         10.58 mM           0.144 g 
Na2HPO4 S5136           1.76 mM           0.025 g 
Milli-Q water -                 -              100 ml 
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3.4.2.6(c) Preparation of trypsin-EDTA solution 

Trypsin-EDTA solution was used for the dissociation of adherent cell and cell 

aggregates into single cell suspensions that could be used as donor cell in nuclear 

transfer. Typically, trypsin-EDTA solution (100 ml) was prepared each time, as shown 

in Table 3.23. Using a digital balance, trypsin (0.25 g) and EDTA (0.04 g) were 

weighed and dissolved in PBS (-) solution (100 ml) in a sterile Scott bottle. The 

chemicals were dissolved slowly by stirring gently using a magnetic stirrer on a stirrer 

machine. The resulting trypsin-EDTA solution was filter-sterilised by using syringe 

filter (0.22 µm pore size) and stored in the refrigerator (4oC) with a shelf life of 3 

months.  

 

Table 3.23: Composition of trypsin-EDTA solution with a shelf life of 3 months (stored 
at 4oC) 

 
Chemical Catalogue number Concentration  Quantity/100 ml 
Trypsin T4799 2.5 mg/ml              0.25 g 
EDTA E4884 0.4 mg/ml              0.04 g 
PBS (-) solution - -               100 ml 
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3.4.2.6(d) Preparation of freezing medium 

Freezing medium was used to store the somatic cell in a very low temperature, for 

example, liquid nitrogen (-196oC). This medium consisted of DMSO (10%), which act 

as a cryoprotectant to prevent the formation of ice crystal in the cell when freezing. 

Typically, freezing medium (100 ml) was prepared each time. Using a sterile disposable 

plastic pipette (10 ml), tissue culture medium supplemented with FBS (10%) (90 ml) 

and DMSO (10 ml) were measured and dispensed into a sterile Scott bottle (100 ml). 

The resulting freezing medium was mixed well and filter-sterilised by using syringe 

filter (0.22 µm pore size) prior to use. The medium was kept in the refrigerator (4oC) 

with a shelf life of 1 to 2 months (Table 3.24). 

 

Table 3.24: Composition of freezing medium with a shelf life of 1 to 2 months (stored at 
4oC) 

 
Chemical  Catalogue number Quantity/100 ml 
DMSO D5879 10 ml 
Tissue culture medium 
supplemented with 10% FBS 
 

- 90 ml 
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3.4.2.7 Preparation of other stock solution 

3.4.2.7(a) Preparation of Penicillin-Streptomycin (P-S) stock solution  

Penicillin-Streptomycin (P-S) solution was used to supplement in cell culture medium 

to control bacterial contamination. Typically, P-S solution (10 ml) was prepared each 

time. Using a digital balance, penicillin-G (0.3 g) and streptomycin (0.5 g) were 

weighed and dissolved in PBS (-) solution (10 ml) in a sterile conical tube (15 ml). The 

chemical were dissolved slowly by gently shaking the conical tube. The resulting P-S 

solution was filter-sterilised by using syringe filter (0.22 µm pore size), aliquot (100 µl 

each) in microcentrifuge tubes, labelled on the cover, sealed with parafilm, wrapped in 

aluminium foil and stored in the freezer (-20oC) with a shelf life of 6 months (Table 

3.25).  

 

Table 3.25: Composition of Penicillin-Streptomycin (P-S) stock solution with a shelf 
life of 6 months (stored at -20oC) 

 
Chemical component  Catalogue number Quantity/10 ml 
Penicillin-G P7794                        0.3 g 
Streptomycin  S9137                        0.5 g 
PBS (-) -                         10 ml 

 
 

 

 

 

 

 

 

 

 



90 

 

3.4.2.8 Preparation of staining solution 

In the present study, fixative solution and bisBenzimide or Hoechst 33342 dye were 

prepared and used to stain the embryos for evaluation of their developmental stages. 

Fixative solution, is a useful step because it could be stored the stained embryos for 

several weeks before view under fluorescent microscope for the cell number. Typically, 

fixative solution (10 ml) was prepared each time. Using a sterile disposable 

micropipette tips (1 ml), PBS (-) (10 ml), Formaldehyde (40%, 200 µl) and 

Glutaraldehyde (25%, 25 µl) were measured and dispensed into a sterile conical tube 

(15 ml). Using a digital balance, PVP (0.01 g) was weighed and dissolved in the 

mixture. The resulting fixative solution was wrapped with aluminium foil and stored in 

the refrigerator (4oC) with a shelf life of 3 months.  

Hoechst 33342 was used to stain the nucleus or DNA in the embryos. Typically, 

Hoechst 33342 dye (2 ml) was prepared each time. Using a digital balance, Hoechst 

33342 (0.0025 g) was weighed and dissolved in PBS (-) solution (10 ml) in a sterile 

conical tube (15 ml). The chemicals were dissolved slowly by gently shaking the 

conical tube. The resulting Hoechst 33342 stock solution was aliquot (100 µl each) in 

microcentrifuge tube (1.5 ml) and labelled as “Stock A”. Subsequently, using a sterile 

disposable micropipette tips (1 ml), PBS (-) solution (900 µl) was measured and added 

into the “Stock A” of Hoechst 33342 and labelled as “Stock B”. Finally, the working 

solution of Hoechst 33342 was prepared by mixing the “Stock B” (1 ml) and glycerol (1 

ml) together by using the sterile disposable micropipette tips into a conical tube (15 ml). 

The working solution of Hoechst 33342 was aliquot in microcentrifuge tube (1.0 ml 

each) and stored in the refrigerator (4oC) with a shelf life of 3 months.  
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3.4.3 Preparation of Mouthpiece-controlled Pipette and Microneedles 

A mouthpiece-controlled pipette was used for handling the oocytes and embryos during 

manipulation work. It consisting of an aspirator mouthpiece, tubing and glass Pasteur 

pipette pulled on a flame. Microneedles used for the present study included holding 

pipette, cutting needle, aspiration pipette and injection pipette. All the pipettes and 

needles used in different experiments were prepared ‘in-house’ in the laboratory.   

 

3.4.3.1 Capillary cleaning and sterilisation 

The glass Pasteur pipettes for making mouthpiece-controlled pipettes were soaked 

overnight in RO water, rinsed with Milli-Q 5 times, sterilised by autoclaving and last 

dried thoroughly in the oven (56oC) overnight prior to use. While, the borosilicate 

capillaries for making microneedles were soaked in hydrochloric acid solution (10%) 

for 24 hours in a glass cylinder, rinsed with Milli-Q water 20 times to remove all traces 

of the acid, sterilised by autoclaving and thereafter, dried thoroughly in the oven (56oC) 

overnight before used. 

 

 3.4.3.2 Preparation of mouthpiece-controlled pipette 

The glass Pasteur pipette could be pulled to create a narrow opening by rotating the 

middle portion in a fine spirit burner flame until the glass became soft. After that, the 

glass was immediately withdrawn from the heat and both ends were quickly pulled 

smoothly in opposite directions so that the middle portion had an inner diameter (ID) of 

approximately 180 to 350 µm along the pulled pipette. The pulled portion of the glass 

pipette was scribed with a diamond stone and snapped at the scribed portion according 

to the inner diameter that needed for the experiments, for example, 160 to 180 µm of 

inner diameter were used for oocytes or embryos and 330 to 350 µm of inner diameter 

were used for COC. Subsequently, the tip of the glass pipette was fire-polished by 
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quickly touching the flame to achieve a smooth edge of the pipette tip. This step is 

important to prevent the injury of the oocytes and embryos when transferring from 

droplet to droplet. 

 

3.4.3.3 Preparation of microneedles 

In the present study, there were 5 different types of microneedles needed to prepare ‘in-

house’ according to the treatments designed. All types of microneedles were made from 

thin-walled borosilicate capillaries (Drummond, Broomall, USA) with an inner and 

outer diameter of 0.69 and 0.97 mm, respectively, and a length of 10 cm. Three 

instruments were necessary to prepare the needles, which namely, micropuller, 

microforge and microgrinder (Figure 3.1). A horizontal micropuller (P-97, Sutter 

Instrument, USA) is preferred to the vertical as the former produced needles of uniform 

shapes as shown in Figure 3.1. The quantity of heat, pull speed and strength had been 

established and stored in the program (heat = 665 units, pull = 150 units, time = 150 

units, pressure = 500 units). The ideal shape of the needle should be one that has a long 

and uniform tapering end with a length of approximately 10 mm. After pulling, 

microfoge (Technical Products Internationals, USA) and microgrinder (EG-4. Narashige 

Co. Ltd., Japan) were used to finalise the preparation of the needles. A microforge is an 

instrument to make holding, cutting and injection needles of a specific size which 

contains an electrical air blower and electrical network for control of the filament and 

the illuminator. Generally, the function of the air blower is to converge on the wire 

heating filament to provide for “spot” cooling of the heated element when preparing any 

microneedles. While, an electrical network is function to control the heat of the filament 

(the heat was ranging from levels 0 to 12). The "heat" can be determined by observing 

the colour of the glowing filament. The "lighter" and "whiter" the filament, the hotter it 

is. In the present study, the maximum heat needed for preparing the microneedles was 
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level 4, because above the level 4, the platinum-iridium filament would becomes a 

"dazzling" white and will quickly melt.  

Before needle processing could begin, it was necessary to place a small bead of 

glass on top of the heater element. It was to ensure the filament itself never came into 

direct contact with the needle. To make the glass bead, first, the filament glowed dull 

red (heat level = 4) with the heater control adjusted, and then a needle lowered on to the 

hot filament. The needle was lowering continuously as the glass melted until a bead of 

approximately 20 to 30 µm diameter has formed; and the heat switched off immediately. 

The needle closed to the bead was broke with a pair of fine forceps, and then broken 

pipette withdrawn as well as discarded. Finally, the bead was heated gently until the 

jagged portion absorbed. The microforge was now ready to process holding and 

injection pipettes.  

 

 

Figure 3.1: Preparation of microneedles. (a) Micropuller; (b) Microforge; and (c) 
Microgrinder. 
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3.4.3.3(a) Preparation of holding pipette 

Holding pipette was used to hold or stabilise the oocye during enucleation and injection 

of donor cell. There are 2 different diameters in the holding pipette, which were known 

as outer diameter and inner diameter. Basically, holding pipette was prepared by scoring 

the pulled capillary with an ampoule cutter, breaking it and fire polishing (heat level = 3) 

the tips with a microforge. The inner and outer diameters of the holding needle were 

approximately 25 µm and 120 to 140 µm, respectively. The holding pipette was then 

bent at 30o (heat level = 4) to allow a horizontal displacement on the microscope stage. 

 

3.4.3.3(b) Preparation of cutting needle 

Cutting needle was used to make a cutting point on the oocyte’s zona pellucida and 

subsequently squeeze out the polar body as well as 10% of cytoplasm which containing 

DNA chromosome. Typically, the pulled capillary was broke by using a diamond stone 

and placed vertically above the glass bead. The needle was brought slowly to touch the 

heated glass bead (heat level = 3), at the same time, repeatedly pull the needle up and 

down until it formed a sharp end needle. The cutting needle was then bent at 30o (heat 

level = 4) to allow a horizontal displacement on the microscope stage. 

 

3.4.3.3(c) Preparation of aspiration pipette 

Aspiration pipette was another type of microneedle that used to remove the polar body 

and DNA chromosome which contained in the cytoplasm of an oocyte and subsequently 

using the same aspiration pipette to inject a single donor cell into the oocyte’s 

perivitellin space. Aspiration pipette was prepared by cutting the tip of a pulled capillary 

on a heated glass bead (heat level = 1) of the microforge at an inner and outer diameters 

were approximately 20 to 22 µm and 22 to 24 µm, respectively. The needle tip was then 

ground to produce a bevelled edge with a microgrinder (Figure 3.1) at 45o desired angle 
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for approximately 3 minutes. After that, the aspiration pipette was fixed back to the 

microforge vertically above the glass bead. The filament was switched on (with a small 

amount of heat) and the aspiration pipette was brought near to the glass bead (heat level 

= 1). The tip of the aspiration pipette was touched on the glass bead and slowly pulled 

up to form a spike. The aspiration pipette with spike was bent at 18o (heat level = 1.5) 

for easier manipulation when doing cloning on the microscope stage. Lastly, the dust 

accumulated in the needle was washed away with alcohol (70%) for 5 seconds and 

rinsed thoroughly with Milli-Q water for another 5 seconds.   

 

3.4.3.3(d) Preparation of injection pipette 

Injection pipette was used to inject a single donor cell into the oocyte’s perivitellin 

space. The preparation of this injection pipette was similar to the aspiration pipette that 

had mentioned before but without a spike at the tip of the pipette. Besides that, the inner 

and outer diameters were smaller with approximately 16 to 18 µm and 18 to 20 µm, 

respectively. Briefly, after made a cut (heat level = 1) on the pulled capillary, the needle 

tip was ground to produce a bevelled edge with a microgrinder at 45o desired angle for 

approximately 3 minutes. The aspiration pipette was then bent at 18o (heat level = 1) for 

easier manipulation when doing cloning on the microscope stage. The dust accumulated 

in the needle was washed away with alcohol (70%) for 5 seconds and rinsed thoroughly 

with Milli-Q water for another 5 seconds.   

 

3.4.3.3(e) Preparation of intracytoplasmic injection (ICI) pipette 

ICI pipette was another type of injection pipette that used to inject a donor cell directly 

into the oocye’s cytoplasm. Basically, an ICI pipette was prepared by cutting the tip of a 

pulled capillary on a heated glass bead (heat level = 1) of the microforge at an inner and 

outer diameters were approximately 8 to 9 µm and 9 to 10 µm, respectively. The ICI 
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pipette was then bent at 18o (heat level = 1) for easier manipulation when doing cloning 

on the microscope stage.  

 

3.4.4 Preparation of Caprine Donor Cell (Donor Karyoplast) 

In the present study, caprine foetal fibroblast cell was used as donor cell. Typically, the 

caprine foetuses were derived at days 28 and 35, in which foetuses were produced by 

natural mating (Figures 3.2 and 3.3). On the day of caesareans, foetuses were surgically 

removed and placed in a culture dish (90 mm) containing equilibrated phosphate-

buffered saline (-) (PBS, Ca2+ /Mg2+–free). In the PBS (-) medium, the head and internal 

organs of the foetuses were removed by using a pair of surgical forceps. After removal 

the head and internal organs, the remaining tissues were mechanically dissociated. The 

explants were cultured in a culture dish (60 mm) containing α-modified Eagle medium 

(α-MEM) supplemented with foetal bovine serum (20%, FBS) and penicillin-

streptomycin (P-S) under a humidified atmosphere of CO2 (5%) in air at 37oC (Figure 

3.4). While the explants cultures contained a mixed population of cells, foetal fibroblasts 

were considered predominant. When the cells from the explants reached confluency 

(70%) (approximately 8 to 9 days), they were harvested using trypsin-EDTA (0.25%) 

and then subcultured to passage 1 or 2. The foetal fibroblast cells at passage 1 or 2 were 

harvested and cryopreserved using dimethyl sulfoxide (10%, DMSO) mixed in the 

tissue culture medium and stored in liquid nitrogen. The frozen cells were thawed and 

cultured up to confluence (80%) to use as donor cells. However, subsequent sub-

cultured donor cells were made to use as donor cells in nuclear transfer (passages 2 to 5). 
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Figure 3.2: Foetus at day 35. (i) Original photograph. (ii) Labelled photograph. 

 

Foetus 
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Figure 3.3: Collected foetuses. (i) Original photograph. (ii) Labelled photograph. (a) 
Foetus collected on day 28 with the length of 1.2 cm; (b) Foetus collected 
on day 35 with the length of 2.2 cm. 
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Figure 3.4: Arrangement of foetus tissues in culture dish. (i) Original photograph. (ii) 
Labelled photograph.  
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3.4.5 Preparation of Bovine Recipient Cytoplast 

In the present study, the bovine recipient cytoplasts were retrieved from local abattoir-

derived ovaries. 

 

3.4.5.1 Oocyte retrieval from abattoir-derived ovaries 

The bovine ovaries were transported back to the laboratory in ovary collecting medium 

which consisted of NaCl (0.9%) supplemented with penicillin-G (60 µg/ml) and 

streptomycin (50 µg/ml) (Table 3.1) at 30 to 35oC (Figure 3.5). Soon after reached the 

laboratory, ovaries were washed and rinsed few times with warm ovary collecting 

medium to wash off the blood. Two sterile beakers (100 ml) and a polystyrene culture 

dish (90 mm) were filled with warm TL-Hepes medium (35 to 37oC) and placed on a 

stage warmer that was set at 38.5oC. Each ovary was held with a sterile curved 

haemostat and checkerboard slicing was made to the entire surface of the ovary inside 

the culture dish by using the razor blade (Figure 3.6). The sliced ovary was rinsed in the 

beaker containing TL-Hepes medium. All the steps in the process were repeated until all 

the ovaries were sliced. The polystyrene culture dish containing COC and debris were 

scanned under a stereomicroscope for COC. After finishing the search for the COC in 

culture dish (90 mm), the TL-Hepes medium containing debris and COC was poured 

from the beaker into a sterile polystyrene culture dish (60 mm) to continue searching. 

All collected COC were placed in a culture dish (35 mm) containing TL-Hepes medium 

(2 ml) and then washed 2 times in TL-Hepes medium followed by 3 times in in vitro 

maturation (IVM) medium before cultured in IVM medium droplets overlaid with 

mineral oil. 
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Figure 3.5: Ovaries collected from the local abattoir. (i) Original photograph. (ii) 
Labelled photograph. 

    

Figure 3.6: Slicing of ovary. (i) Original photograph. (ii) Labelled photograph. 
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3.4.5.2 In vitro maturation procedure 

The IVM medium was prepared in microdroplets (80 µl for each droplet; 6 

microdroplets for each polystyrene culture dish) and overlaid with equilibrated light 

mineral oil in a small polystyrene culture dish (35 mm). After that, placed in the CO2 

(5%) incubator at 38.5oC in humidified atmosphere and equilibrated for at least 3 hours 

or overnight (12 hours) prior to use. After washing the collected COC, the selected 

oocytes were placed in IVM microdroplets (15 to 20 oocytes per each microdroplet). 

Typically, the oocytes surrounded by at least 3 layers of granulose cells were selected 

for IVM. The oocytes were cultured for 22 hours at 38.5oC in presence of CO2 (5%) in 

air in a humidified atmosphere of a CO2 incubator.   

 

3.4.6 Protocol of Interspecies Somatic Cell Nuclear Transfer (interspecies SCNT) 

The interspecies SCNT procedure including preparation of micromanipulation dish, 

microneedles alignment, oocytes denuding, enucleation, nuclear transfer, electrofusion 

and activation has been described in the following subsections. 

 

3.4.6.1 Preparation of micromanipulation dish 

The micromanipulation dish was prepared on the cover of a polystyrene culture dish (35 

mm). One microdroplet (10 µl) of TL-Hepes medium was placed on the centre, closed 

to the top of the dish for needles alignment. Three microdroplets (10 µl) of TL-Hepes 

medium with cytochalacin B was placed on the right side, closed to the centre of the 

dish. These microdroplets were used for the oocytes when doing enucleation. Another 3 

microdroplets (10 µl) of TL-Hepes medium was placed on the left side, closed to the 

centre of the dish. These microdroplets were used for oocytes when doing the injection 

of donor cell. Then, 4 to 5 microdroplets (2 to 3 µl) of PVP or TL-Hepes medium 

(according to the treatments carried out) for donor cells were prepared on the left side of 
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TL-Hepes medium microdroplets. Lastly, the whole dish was overlaid with mineral oil 

as soon as possible and the oil should just over the microdroplets completely to avoid 

evaporation. Micromanipulation dish was equilibrated on the stage warmer (38.5oC) 

(Figure 3.7). 

 

 

 

 

Figure 3.7: Arrangement of microdroplets on the micromanipulation dish. 

 

3.4.6.2 Alignment of microneedles 

In the present study, an alignment of microneedles on the micromanipulation dish was 

important and needed to ensure a smooth and easy performance of the interspecies 

SCNT. Firstly, all the knobs (X-, Y- and Z-control) and the syringes (3 ml) were 

adjusted to the centre of the scale. The micromanipulation dish was placed on the heated 

stage warmer with 38.5oC of the micromanipulator. From the microscope (under 4x 

objective), focus the microdroplet with TL-Hepes medium that prepared for the needle 

alignment. The holding pipette was inserted to the needle holder (left micromanipulator), 

tightened well and placed above the TL-Hepes medium microdroplet. The tip of the 

holding pipette was touched in the oil and kept for few minutes so that the end of the tip 
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was filled with oil by capillary action. Then the edge of the TL-Hepes medium 

microdroplet was sharply focused, the needle was brought inside the droplet near the 

edge and aligned properly. After that, the cutting needle or injection pipette (according 

to the experiments needed) was inserted to the needle holder (right micromanipulator) 

and tightened well. Like the holding pipette, the tip of the injection pipette was touched 

in the oil and kept for few minutes so that the end of the tip was filled with oil by 

capillary action (except for the cutting needle). The cutting needle or injection pipette 

was focused with the holding pipette and was aligned so that the working tips were 

parallel to the microscope stage (under 4x objective). Finally, both the holding pipette 

and cutting needle or injection pipette were checked under high magnification to ensure 

the accurate alignment (sharply in focus) and parallel. 

 

3.4.6.3 Preparation of oocytes for enucleation 

After 22 hours of maturation, cumulus cell were removed from oocytes by repeated 

pipetting in TL-Hepes medium containing hyaluronidase (0.1%) within 5 minutes. 

These denuded oocytes were washed through 5 times in TL-Hepes medium to wash off 

the hyaluronidase and accessed for maturation under stereomicroscope by rotating the 

oocytes using mouthpiece-controlled pipette. Oocytes with a clear first polar body (PB-

1) were considered as metaphase II (MII) stage and meiotic competent. These matured 

oocytes were then treated with TL-Hepes medium supplemented with cytochalasin B (5 

µg/ml) for 10 minutes prior to enucleation.      
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3.4.6.4 Preparation of donor cells (donor karyoplasts) 

Only the cultured donor cells reached in 70 to 80% of confluency were used as donor 

karyoplast in this study. Typically, PBS (-) and trypsin-EDTA were used to harvest the 

cultured donor cells from the culture dish. Washed twice in PBS (-) and incubate the 

donor cells for 3 to 5 minutes with trypsin-EDTA. Then, the donor cells with TL-Hepes 

medium were centrifuged to get a pellet form of donor cells. The unwanted supernatant 

medium was removed, and using a sterile disposable micropipette tips (100 µl), TL-

Hepes medium (100 µl) was added into the pellet form of donor cells. Slowly and 

gently, the donor cells were mixed with the medium and prepared to use for injection.   

 

 3.4.6.5 Enucleation of the matured oocyte 

In the present study, optimisation on enucleation techniques was carried out to improve 

the efficiency of interspecies cloned-caprine embryos: (i) Squeezing method and (ii) 

Aspiration method.  

 

(i) Squeezing method:    

Typically, all selected matured oocytes were transferred to the microdroplet containing 

TL-Hepes medium supplemented with cytochalasin B (5 µg/ml) of (enucleation 

medium) for 10 minutes before enucleation. All cytochalasin B treated matured oocytes 

were then transferred to the microdroplet (enucleation medium) on the 

micromanipulation dish for enucleation. Firstly, the first polar body of the matured 

oocyte was placed at 12 o’clock and achieved by rotating the oocyte at the tip of the 

holding needle with the cutting needle. While the oocyte was held firmly by the holding 

needle, a cut was made on the zona pellucida above the first polar body and 10% of the 

cytoplasm beneath the first polar body was gently squeezed out (Figure 3.8). All the 

steps in the process were repeated until all the oocytes were enucleated. The enucleated 
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oocytes were then washed 3 times in TL-Hepes medium, 3 times in waiting medium 

(TCM-199 medium supplemented with 10% FBS) and lastly kept in waiting medium at 

38.5oC in presence of CO2 (5%) in air in a humidified atmosphere of a CO2 incubator 

for 30 to 45 minutes prior to nuclear transfer. 

 

 

 

 

Figure 3.8: Oocyte enucleation by squeezing method. (a) A MII oocyte was held firmly 
by the holding pipette with PB-1 placed at 12 o’clock and a cut was made 
by the cutting needle; (b) The oocyte was released from the holding pipette 
and brought down to opposite side, few attritions were made between the 
cutting needle and holding pipette to form a cutting point; (c) The cutting 
point was placed at 12 o’clock (above the PB-1); (d) and (e) The PB-1 and 
cytoplasm (10%) beneath the PB-1 were gently squeezed out; and (f) 
Enucleated oocyte.         
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(ii) Aspiration method: 

For aspiration method, both enucleation and nuclear transfer (sub-zonal injection) were 

done together. Typically, the donor cells were prepared before enucleation had been 

carried out. After harvested from the culture dish, the donor cells were placed in the 

microdroplet containing TL-Hepes medium. Subsequently, all selected matured oocytes 

were transferred to the microdroplet containing TL-Hepes medium supplemented with 

cytochalasin B (5 µg/ml) (enucleation medium) for 10 minutes before enucleation. All 

cytochalasin B treated matured oocytes were then transferred to the microdroplet 

(enucleation medium) on the micromanipulation dish for enucleation. The first polar 

body of the oocyte was placed at 4 o’clock and held by the holding pipette. The 

aspiration pipette, bevelled with spike (ID: 20 to 22 µm and OD: 22 to 24 µm), was 

slowly advanced through the zona pellucida and gently aspirated the polar body with 

10% cytoplasm beneath the first polar body (Figure 3.9). After that, a single donor cell 

was placed at the perivitelline space by passing through the same cutting point (Figure 

3.10). The injected oocytes were washed 3 times in TL-Hepes medium, 3 times in 

waiting medium and incubate in the final microdroplet of waiting medium for 30 to 45 

minutes prior to fusion. 
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Figure 3.9: Oocyte enucleation by aspiration technique. (a) A MII oocyte was held 
firmly by the holding pipette with PB-1 placed at 5 o’clock; (b), (c) and (d) 
The aspiration pipette, beveled with spike (ID: 20 to 22 µm and OD: 22 to 
24 µm), was slowly advanced through the zona pellucida and gently 
aspirates the polar body with 10% cytoplasm beneath the first polar body; 
(e) The aspiration needle was gently removed from the oocyte; (f) The 
aspirated PB-1 and cytoplasm was released from the aspiration needle.  

 
 
 
 
 

 

Figure 3.10: Nuclear transfer by sub-zonal injection technique. (a) Once the PB-1 and 
cytoplasm was released, followed, a single donor cell in the aspiration 
needle was brought to the tip of the needle; (b) The injection needle is 
pushed through the zona pellucida via the cutting point made during 
aspiration; (c) and (d) A single donor cell was placed at the perivitelline 
space of an enucleated oocyte. 
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3.4.6.6 Nuclear transfer of the enucleated oocyte 

Besides that, an optimisation on nuclear transfer techniques was also carried out to 

improve the efficiency of interspecies cloned-caprine embryos: (i) Sub-zonal injection 

and (ii) Intracytoplasmic injection.  

 

(i) Sub-zonal injection method:    

For sub-zonal injection, the donor cells were placed in TL-Hepes medium microdroplets 

(2 to 3 µl). Briefly, after 30 to 45 minutes of enucleation (squeezing method), the 

incubated enucleated oocytyes were transferred and placed in TL-Hepes medium 

microdroplets (10 µl) of the micromanipulation dish. An injection needle with the donor 

cell was brought to the microdroplet containing oocyte. The cutting point that was made 

during enucleation was placed at 1 or 2 o’clock and achieved by rotating the oocyte at 

the tip of the holding pipette with the injection needle. While the oocyte was held firmly 

by the holding needle, the injection needle was brought near to the oocyte, gently 

passed through the cutting point and placed the donor cell at the perivitelline space 

(Figure 3.11). The injected oocytes were washed 3 times in TL-Hepes medium, 3 times 

in waiting medium and incubate in the final microdroplet of waiting medium for 30 to 

45 minutes prior to fusion. 
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Figure 3.11: Nuclear transfer by sub-zonal injection. (a) An enucleated oocyte was held 
firmly by the holding pipette with cutting point placed at 1 to 2 o’clock; (b) 
The injection needle with single donor cell was brought near to the 
enucleated oocyte; (c) The injection needle is pushed through the zona 
pellucida via cutting point; (d) The donor cell was placed at the 
perivitelline space of the enucleated oocyte.  

 

 

 

(ii) Intracytoplasmic injection method: 

For intracytoplasmic injection method, the recipient oocytes were placed in the TL-

Hepes medium microdroplets (10 µl) and the donor cells were placed in the PVP (10%) 

medium (2 to 3 µl). The plasma membrane of the donor cell was broke by pipette in and 

out few times in PVP (10%) medium using a blunt mouth injection needle (ID: 8 to 9 

µm; OD: 9 to 10 µm). The donor cell will become elongated shape (Figure 3.12). The 

oocyte was held by the holding pipette and placing the cutting point at 3 o’clock. The 

donor cell in the injection needle was gently pushed towards the tips. The injection 

needle was slowly advanced through the zona pellucida and get into the end point of the 

cytoplasm (9 o’clock position). A small amount of cytoplasm was gently aspirated into 

the injection needle until a sudden flux of cytoplasm goes into the needle observed. This 

is to confirm the breakage of the plasma membrane, thereby facilitating donor cell 

injection. A single donor cell was then gently deposited into the cytoplasm. After the 

injection, the needle was gently removed and the oocyte was released from the holding 
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pipette (Figure 3.13). The injected oocytes were washed 3 times in TL-Hepes medium, 

3 times in waiting medium and incubate in the final microdroplet of waiting medium for 

30 to 45 minutes prior to activation. 

 

 

Figure 3.12: Removing of cell plasma membrane. (a) A blunt mouth injection needle 
with ID: 8 to 9 µm and OD: 9 to 10 µm was brought near to the donor cell; 
(b) The donor cell was aspirated into the injection needle slowly; (c) The 
donor cell was pipette in and out few times in 10% PVP medium; (d) and 
(e) The cell plasma membrane of donor cell was broke and become 
elongated shape. 

 

 

Figure 3.13: Nuclear transfer by intracytoplasmic injection technique. (a) The oocyte 
was held firmly by the holding pipette and the cutting point was placed at 
3 o’clock; (b) The donor cell in the injection needle was gently pushed 
towards the tips. The injection needle was slowly advanced through the 
zona pellucida and get into the end point of the cytoplasm (9 o’clock 
position); (c) A small amount of cytoplasm was gently aspirated into the 
injection needle until a sudden flux of cytoplasm goes into the needle 
observed; (d) The aspirated cytoplasm and a single donor cell was then 
gently deposited back into the cytoplasm; (e) and (f) After the injection, 
the needle was gently removed. 
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3.4.6.7 Electrofusion 
 
Only the sub-zonal injection oocytes were undergone electrofusion to fuse the donor 

karyoplast into the cytoplasm of the recipient oocytes. Typically, 2 microdroplets (50 µl) 

of fusion medium as described in Table 3.12 were prepared in a polystyrene culture dish 

(35 mm), and overlaid with mineral oil prior to fusion. Before fusion, all the oocytes 

were washed 3 times in the fusion medium (5 minutes). In the present study, the fusion 

machine used was namely SUTF-1, which was manufactured by Suranaree University 

of Technology, Thailand. The parameter of the fusion was 20 voltages, 2 direct current 

(DC) pulses and 15 µseconds. After fusion, all the fused oocytes were washed 5 times in 

TL-Hepes medium, 3 times in waiting medium followed by transferred into the final 

microdroplet of waiting medium and incubate for at least 30 to 45 minutes prior to 

activation. 

 

3.4.6.8 Activation of the injected or fused oocytes 

All the injected or fused oocytes were subjected to activation with calcium ionophore 

and 6-DMAP. Typically, the activation dish was prepared at least 3 hours before 

activating the oocytes and equilibrated in the CO2 (5%) incubator at 38.5oC in 

humidified atmosphere. Microdroplets of activation medium (80 µl) were prepared on a 

polystyrene culture dish (35 mm) and all the injected and fused oocytes (10 to 15 

oocytes) were placed in each microdroplets overlaid with mineral oil to permit 

temperature and gas equilibration. All the injected or fused oocytes were activated in 5 

µm of calcium ionophore inside the CO2 (5%) incubator for 5 minutes. After that, the 

oocytes were wash 3 times in 6-DMAP microdroplets to wash off the calcium 

ionophore medium prior to culture in 6-DMAP for another 4 to 5 hours in CO2 (5%) 

incubator.   
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3.4.7 In Vitro Culture (IVC) of Cloned Embryos 

The IVC dish was prepared at least 3 hours before culture the reconstructed oocytes and 

equilibrated in the CO2 (5%) incubator. Typically, microdroplets of embryo culture (80 

µl) were prepared on a polystyrene culture dish (35 mm) and reconstructed oocytes (10 

to 15 oocytes) were placed in each microdroplets overlaid with mineral oil. All the 

activated oocytes were washed 3 times in IVC medium before being transferred in the 

final IVC microdroplets under a humidified atmosphere of CO2 (5%) in air at 38.5oC. 

This is to wash off the activation medium that might affect the development of embryos. 

All reconstructed cloned-caprine embryos were culture in KSOM A for the first 3 days. 

In the present study, 3 different changing medium treatments (Experiment 3) were 

carried out on the combination of squeezing with sub-zonal injection method: a) Group 

1 (KSOM A throughout culture), the embryos were observed and recorded on days 3, 5, 

7 and 8 without changing the medium; Group 2 (KSOM A on days 1-3, change KSOM 

A on days 3 and 5), the embryos were observed and recorded on days 3, 5, 7 and 8; and 

Group 3 (KSOM A on days 1-3, change KSOM B on days 3 and 5), the embryos were 

observed and recorded on days 3, 5, 7 and 8. Correspondingly, the development of 

embryos in vitro was observed under inverted microscope, and the embryo numbers 

were recorded.   

  

3.4.8 Assessment of Cloned Embryos using Hoechst Staining   

The embryos that were cleaved in vitro were observed under an inverted microscope 

and recorded. The stages of embryonic development of the cloned embryos were 

assessed by using Hoechst 33342 staining to determine the number of nuclei in the 

blastomeres. For Hoechst 33342 staining protocol, briefly, the embryos were washed 5 

times in PBS (-) (100 µl for each droplet without overlaid mineral oil) followed by 3 

times in fixative solution (100 µl for each droplet without overlaid mineral oil) on a 
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heated stage of a stereomicroscope. Finally, the embryos were transferred to the last 

droplet of fixative solution for 5 minutes at room temperature (25oC). While waiting, 4 

drops of Vaseline-wax were placed on the centre of the slide. After 5 minutes, all the 

embryos were transferred on the glass slide and mounted with coverslip. The coverslip 

was sealed with adhesive (cutex), labelled on the side of the glass slide and kept in the 

refrigerator (4oC) before being examined using an epifluorescent microscope.      

 

3.4.9 Embryo Transfer  

Oviduct embryo transfer (ET) was carried out in the recipient does with mid-ventral 

laporatomy surgery. A total of 5 laparotomy sessions were performed on 12 does. Four 

to 8 cell stage embryos were transferred at day 2 of IVC culture into the oviduct 

ipsilateral to the corpus luteum. Pregnancy was diagnosed at 30 days after ET using 

real-time ultrasound scanning. 

 

3.4.9.1 Treatment of recipient 

All the recipient does underwent oestrus synchronisation to manipulate the oestrous 

cycle for embryo transfer. Briefly, a controlled internal drug release device (EAZI 

BREEDTM, CIDR®) was inserted into the vagina of the doe with the help of a clean 

CIDR applicator and a veterinary obstetrical lubricant (K-Y Jelly). The device contained 

progesterone (0.3 g) and remained in the vagina for 16 days before being removed. At 

approximately 8 hours prior to CIDR removal, PMSG (Folligon, 300 IU) was 

administered intramuscularly to stimulate a cohort of follicular growth for ovulation. At 

approximately 15 hours after CIDR removal, the recipient does were observed for the 

onset of oestrus behaviour such as switching of the tail, increase vaginal secretion and 

willingness to be mounted on by a teaser buck. The oestrus behaviour of the recipient 
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does was checked continuously 3 days after CIDR removal with 3 sessions (morning, 

0830 hours; afternoon, 1330 hours and evening, 1830 hours) per day.    

 

3.4.9.2 Disinfection of surgical instruments  

On the day of surgery, all the surgical instruments and accessories used for embryo 

transfer such as paediatric grasper, fibre optic cable, light probe and scalpel were 

disinfected in Hibiscrub (10%) for 10 minutes and subsequently rinsed in RO water 

before being placed on a clean surgical trolley that was already covered with a sterile 

drape. While, the surgical set, trocar, embryo transfer tube and beakers were disinfected 

under UV light for 30 minutes.   

 

3.4.9.3 Anaethesia and sedation of recipient does 

The recipient does were off-fed for 18 to 24 hours prior to embryo transfer. On the day 

of performing the embryo transfer, anaethesia was induced with intramuscular 

administration of mixed Xylazine hydrochloride (1 ml) (Illium Xylazine-20) and 

Ketamine hydrochloride (50 ml) (Ketamil) (from the mixture, aspirated 1 ml for the first 

injection). After that, the doe was maintained under general anaethesia with Illium-

Ketamine (0.5 ml) administered intramuscularly as maintenance doeses every 20 to 30 

minutes or as required.     

 

3.4.9.4 Disinfection of skin area of doe 

When the recipient doe has been immobolised, it was fastened on a cradle (surgical 

table) at dorsal recumbence tilted at approximately 45o angle. The abdominal and 

inguinal skins were shaven, scrubbed and cleaned with Hibiscrub (10%). Surgical 

iodine solution (weak iodine) was applied on the surgical surface before starting the 
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embryo transfer procedure. The recipient doe was then covered with sterile drape with 

an opening that revealed the shaved bare skin and was ready for embryo transfer. 

 

3.4.9.5 Embryo transfer procedure 

First of all, the ovaries were checked for the presence of at least 1 corpus luteum (CL) 

via laporoscopic procedure. Briefly, a small incision was made on the bare skin and the 

verrus needle attached to plastic tubing that was connected to a CO2 tank via CO2 gas 

insufflators units was inserted into the incision to create a pneumoperitoneum. Once the 

pneumoperitoneum was made, small incisions (3 to 5 mm) were made, one near the 

umbilicus to facilitate insertion of trocar for passing the laparoscope and one on the 

right side of lower-ventral abdomen to insert the trocar for passing the grasping forceps. 

The paediatric Storz laparoscope that was connected to the CCD camera was inserted 

into the abdominal cavity through the trocar sheath. Then a paediatric grasper was 

passed through the small trocar sheath. The ovary was visualised with the help of 

laparoscope and exposed by pulling the oviduct in different directions with the grasper. 

The number of visible corpus luteum on both ovaries was counted and recorded. After 

that, only the recipient does with the presence of corpus luteum (n = 1 to 3 corpus 

luteum) were undergoing embryo transfer. Generally, the verrus needle and trocars were 

removed from the body, a mid-ventral incision (approximately 5 to 6 mm) was made at 

the lower abdomen near the udder. The ovaries with corpus luteum were located and 

exteriorised. Embryo transfer was carried out with a customised embryo transfer 

catheter, a flexible polythene tubing, threaded through a 25-G hypodermic needle 

(Figure 3.14). Briefly, a 1 ml insulin syringe that was filled with EmCare medium was 

connected to the embryo transfer catheter. The embryo transfer catheter was then 

flushed with EmCare medium  until 0.001 ml of the medium was left in the syringe. A 

small column of air was then aspirated into the catheter. Embryos (n=2 to 4, 4- to 8 cell 
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stage embryos) were then aspirated from the culture dish (35 mm) resulting in a 5 mm 

column containing the embryos and the medium. A further 5 mm air column was made. 

Embryos were transferred to the oviduct ipsilateral to the corpus luteum. The catheter 

was inserted through the ostium advancing the catheter as far as possible into the 

infundibulum of the oviduct and interspecies cloned-caprine embryos were gently 

released by completely depressing the plunger of the syringe (Figure 3.15). After 

transferred, the ovary was then returned back to the inner part of the body and the 

incisions on the abdomen were sutured; and finally the donor goat was carefully 

removed from the cradle. The sutured incision area was sprayed with antiseptic and 

insecticide containing cyphenothrin. The donor goat was administered with 

oxytetracycline (20 mg/kg body weight) via intramuscular injection once in 4 days 

within the duration of 2 weeks to prevent possible post-surgical infection.  

 

Figure 3.14: Embryo transfer tube. 
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Figure 3.15: Transferring of embryos through oviduct. 

 

3.4.10 Pregnancy Diagnosis 

Pregnancy of the recipient does was diagnosed at 30 days after embryo transfer. A real-

time ultrasound scanner (Aloka SSD500V, Tokyo, Japan) equipped with a 5.0 mHz 

linear array transducer for the transrectal approach was used. The coupling agent 

(contact fluid) for ultrasound transmission used was a carboxymethylcellulose gel.  
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3.5 EXPERIMENTAL DESIGN 

The author attempted to produce in vitro caprine embryos through interspecies somatic 

cell nuclear transfer. The present study was divided into 4 experiments. The design of 

each experiment has been described in the following sections. 

 

3.5.1 Effects of Enucleation Methods on In Vitro Cloned-Caprine Embryo 

Developmental Competence Following Interspecies SCNT (Experiment 1) 

The objective of this experiment was to examine the effect of 2 enucleation methods on 

cloned-caprine embryo developmental competence after interspecies SCNT. A total of 

69 bovine ovaries were collected from local abattoir. After recovery, the cumulus 

oocyte complexes were matured in IVM medium for 22 hours in the CO2 incubator in 

presence of CO2 (5%) at 38.5oC with humidified atmosphere. The cumulus oocyte 

complexes were denuded by pipetting in and out using a micropipette (100 µl) in 

hyaluronidase (0.1%) for 5 minutes and then transferred to the TL-Hepes microdroplet 

to select the MII oocyte under stereomicroscope. The selected denuded MII oocytes 

were washed 3 times in TL-Hepes, 3 times in waiting medium and finally cultured in 

the CO2 (5%) inbucator until enucleation could be performed. Prior to enucleation, the 

MII oocytes were treated with cytochalasin B (5 µg/ml) for 10 minutes. Two different 

enucleation methods were carried out, a) Group 1 (squeezing method): A cut was made 

on the zona pellucida above the first polar body and cytoplasm (10%) beneath the first 

polar body {containing metaphase II (MII) chromosomes} was gently squeezed out, b) 

Group 2 (aspiration method): A aspiration pipette, bevelled with spike (ID: 20 to 22 µm 

and OD: 22 to 24 µm), was slowly advanced through the zona pellucida and gently 

aspirated the polar body with cytoplasm (10%) beneath the first polar body. After 

enucleation, a donor cell was then injected into the perivitelline space of an enucleated 

oocyte. All injected oocytes were subjected to electrofusion with 20 voltages, 2 direct 
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current pulses and 15 µseconds. After fusion, all the fused oocytes were washed 5 times 

in TL-Hepes medium, 3 times in waiting medium followed by transferred into the final 

microdroplet of waiting medium and incubate for at least 30 to 45 minutes prior to 

oocyte activation. In this study, double activation procedure was carried out with 

culturing the fused oocytes in calcium ionophore for 5 minutes and then cultured in 6-

DMAP for 4 to 5 hours. All the activated oocytes were finally cultured in KSOM A 

medium in CO2 (5%) incubator for the first 3 days and culture medium was changed on 

days 3 and 5 with KSOM B. The embryos were checked when changing the culture 

medium and the developmental stages were recorded. The successfully enucleated, 

injected, reconstructed oocytes and developmental competence of embryos were 

recorded in percentages. Data were analysed by analysis of variance (ANOVA), 

followed by Duncan’s multiple range tests (DMRT) to determine differences between 

the treatments.  

  

3.5.2 Effects of Nuclear Transfer Methods on In Vitro Cloned-Caprine Embryo 

Developmental Competence Following Interspecies SCNT (Experiment 2) 

This study was designed to compare the 2 nuclear transfer methods on cloned-caprine 

embryo developmental competence after interspecies SCNT. A total of 73 bovine 

ovaries were collected from local abattoir. After recovery, the cumulus oocyte 

complexes were matured in IVM medium for 22 hours in the CO2 incubator in presence 

of CO2 (5%) at 38.5oC with humidified atmosphere. The cumulus oocyte complexes 

were denuded by pipetting in and out using a micropipette (100 µl) in hyaluronidase 

(0.1%) for 5 minutes and then transferred to the TL-Hepes microdroplet to select the 

MII oocyte under stereomicroscope. The selected denuded MII oocytes were washed 3 

times in TL-Hepes, 3 times in waiting medium and finally cultured in the CO2 inbucator 

until enucleation could be performed. Prior to enucleation, the MII oocytes were treated 
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with cytochalasin B (5 µg/ml) for 10 minutes. For enulceation, a cut was made on the 

zona pellucida above the first polar body and cytoplasm (10%) beneath the first polar 

body {containing metaphase II (MII) chromosomes} was gently squeezed out. After 

enucleation, a single donor cell was then injected into an enucleated oocyte either by 

sub-zonal injection (Group 1) or intracytoplasmic injection (Group 2). For Group 1, a 

donor cell was placed at the perivitelline space of an enucleated oocyte and then 

subjected to the electrofusion with 20 voltages, 2 direct current pulses and 15 µseconds. 

For Group 2, a single donor cell was gently deposited into the oocyte cytoplasm. After 

that, all the fused or injected oocytes were washed 5 times in TL-Hepes medium, 3 

times in waiting medium followed by transferred into the final microdroplet of waiting 

medium and incubate for at least 30 to 45 minutes prior to activation. In this study, 

double activation procedure was carried out with cultured the fused oocytes in calcium 

ionophore for 5 minutes and then cultured in 6-DMAP for 4 to 5 hours. All the activated 

oocytes were finally cultured in KSOM A medium for the first 3 days and culture 

medium was changed on days 3 and 5 with KSOM B. The embryos were checked when 

changing the culture medium and the developmental stages were recorded. The 

successfully enucleated, injected, reconstructed oocytes and developmental competence 

of embryos were recorded in percentages. Data were analysed by analysis of variance 

(ANOVA), followed by Duncan’s multiple range tests (DMRT) to determine 

differences between the treatments.  
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3.5.3 Effects of In Vitro Culture Medium on Cloned-Caprine Embryo 

Developmental Competence Following Interspecies SCNT (Experiment 3) 

In this experiment, the effects of 3 in vitro culture media on cloned-caprine embryo 

developmental competence after interspecies SCNT were investigated. A total of 107 

bovine ovaries were collected from local abattoir. After recovery, the cumulus oocyte 

complexes were matured in IVM medium for 22 hours in the CO2 incubator in presence 

of CO2 (5%) at 38.5oC with humidified atmosphere. The cumulus oocyte complexes 

were denuded by pipetting in and out using a micropipette (100 µl) in hyaluronidase 

(0.1%) for 5 minutes and then transferred to the TL-Hepes microdroplet to select the 

MII oocyte under stereomicroscope. The selected denuded MII oocytes were washed 3 

times in TL-Hepes, 3 times in waiting medium and finally cultured in the CO2 inbucator 

until enucleation could be performed. Prior to enucleation, the MII oocytes were treated 

with cytochalasin B (5 µg/ml) for 10 minutes. For enulceation, a cut was made on the 

zona pellucida above the first polar body and cytoplasm (10%) beneath the first polar 

body {containing metaphase II (MII) chromosomes} was gently squeezed out. After 

enucleation, a donor cell was then injected into the perivitelline space of an enucleated 

oocyte. All injected oocytes were underwent electrofusion with 20 voltages, 2 direct 

current pulses and 15 µseconds. After fusion, all the fused oocytes were washed 5 times 

in TL-Hepes medium, 3 times in waiting medium followed by transferred into the final 

microdroplet of waiting medium and incubate for at least 30 to 45 minutes prior to 

activation. In this study, double activation procedure were carried out with cultured the 

fused oocytes in calcium ionophore for 5 minutes and then cultured in 6-DMAP for 4 to 

5 hours. All reconstructed cloned-caprine embryos were culture in KSOM A for the first 

3 days. In the present study, 3 different changing medium treatments were carried out: 

Group 1 (KSOM A throughout culture); Group 2 (KSOM A on days 1-3; change 

KSOM A on days 3 and 5); and Group 3 (KSOM A on days 1-3; change KSOM B on 
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days 3 and 5). The embryos were observed and recorded for the respective groups on 

days 3, 5, 7 and 8. The developmental competence of embryos for each culture medium 

treatments were recorded in percentages. Data were analysed by analysis of variance 

(ANOVA), followed by Duncan’s multiple range tests (DMRT) to determine 

differences between the treatments.  

 

3.5.4 An Attempt on Oviduct Embryo Transfer of Interspecies SCNT Embryos 

and Subsequent Pregnancy Diagnosis Using Ultrasound Scanning 

(Experiment 4) 

This experiment was attempted to produce pregnancy via oviduct embryo transfer on 

cloned-caprine embryos obtained from interspecies SCNT technique. A total of 12 

recipient does were subjected to oestrus synchronisation and superovulation. The 

oestrus was synchronised with the insertion of a CIDR device (progesterone, 0.3 g) for 

16 days and at approximately 8 hours prior to CIDR removal, PMSG (Folligon, 300 IU) 

was administered intramuscularly to stimulate a cohort of follicular growth for 

ovulation. After 15 hours of CIDR removal, the recipient does were observed for the 

onset of oestrus behaviour such as switching of the tail, increase vaginal secretion and 

willingness to be mounted on by a teaser buck. The oestrus behaviour of the recipient 

does was checked continuously 3 days with 3 sessions (morning, 0830 hours; afternoon, 

1330 hours and evening, 1830 hours) per day. On day 5 after CIDR removal, the 

recipient does were brought to the surgery room for embryo transfer procedure. Only 

the recipient does with the presence of corpus luteum (n = 1 to 3) were undergoing 

embryo transfer. On the other hand, the cloned-caprine embryos with 4- to 8 cell stage 

were transferred on day 2 of IVC culture into the recipient does by oviduct ipsilateral 

transfer. Pregnancy of the recipients was diagnosed at 30 days by real-time ultrasound 

scanning (SSD500V; Aloka, Japan). The successful ovulation (presence of corpus 
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luteum) and pregnancy rate were recorded in percentages. Data were analysed 

statistically to determine the significance of this experiment. 

 

The experiments involved in this study were summarised and presented in the flow 

chart as illustrated in Figure 3.16. 

 

3.6 STATISTICAL ANALYSIS 

The effect of enucleation methods (squeezing and aspiration) on cloned-caprine embryo 

developmental competence (cleavage rate) following interspecies SCNT (Experiment 

1); effect of nuclear transfer methods (sub-zonal injection and intracytoplamic injection) 

on cloned-caprine embryo developmental competence (cleavage rate) following 

interspecies SCNT (Experiment 2); and effect of in vitro culture medium (KSOM A and 

B) on cloned-caprine embryo developmental competence (cleavage rate) following 

interspecies SCNT (Experiment 3) were all analysed by using one-way analysis of 

variance (ANOVA). Using SPSS statistical programme, means were obtained and 

analysed using ANOVA and differences among the means were determined using 

DMRT. As for an attempt on oviduct embryo transfer and subsequent pregnancy 

diagnosis using ultrasound scanning (Experiment 4), the data were analysis statistically 

to evaluate the significance of this experiment.  
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Figure 3.16: Flow chart of methodology. 
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b) Day 16 (0900 hr): PMSG (300 IU) 
c) Day 16 (1700 hr): CIDR out 
d) Days 17, 18 and 19: Oestrus checking 
e) Day 21: Embryo transfer (0800 hr)
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Chapter 4 

4.0 RESULTS 

 

4.1 EFFECTS OF ENUCLEATION METHODS ON IN VITRO CLONED-

CAPRINE EMBRYO DEVELOPMENTAL COMPETENCE 

FOLLOWING INTERSPECIES SCNT (EXPERIMENT 1) 

This experiment was designed to compare the efficacy of 2 enucleation methods and the 

effects of enucleation methods on in vitro cloned-caprine embryo development 

competence following interspecies somatic cell nuclear transfer (interspecies SCNT). 

The rates of oocytes successfully enucleated, injected and duration needed were 

calculated and depicted in Table 4.1. The results of in vitro cloned-caprine embryo 

developmental competence obtained from both enucleation methods were analysed and 

presented in Table 4.2.  

 

4.1.1 Effects of Enucleation Methods on the Manipulation Efficiency to the 

Production of Interspecies SCNT Cloned-caprine Embryos 

A total of 765 cumulus oocyte complexes (COC) were recovered from 69 bovine 

ovaries (abattoir source) and matured in vitro for 20 to 22 hours (Table 4.1). Out of 765 

COC, there were 414 (54.62±1.26%) matured oocytes indicated by the partial extrusion 

of first polar body. Squeezing and aspiration enucleation methods were carried out to 

evaluate their efficiencies on interspecies SCNT cloned-caprine embryos performance. 

The total percent successfully enucleated and injected oocytes were 89.84±1.79 and 

96.63±1.62%, respectively. 

There was no significant difference in the percent successfully enucleated 

oocytes (P>0.05) for both enucleation methods (squeezing vs. aspiration: 88.01±3.00% 
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vs. 91.68±1.92%, respectively). However, the percent successfully injected with donor 

karyoplasts after enucleation using aspiration method showed significantly higher 

(P<0.05) than the squeezing method (100.00±0.00 and 93.26±2.65%, respectively). In 

terms of manipulation efficiency, the duration needed to complete the enucleation 

together with injection (calculation was based on 30 oocytes used), the speed for 

aspiration with sub-zonal injection was significantly faster (P<0.05) than squeezing with 

sub-zonal injection (41.18±2.77 and 83.82±3.16 minutes, respectively). To standardise 

the experiment, sub-zonal injection method was chosen and used to transfer the donor 

karyoplast into an enucleated oocyte.        

 

4.1.2 Percent In Vitro Embryo Development from Two Different Enucleation 

Methods in Interspecies SCNT  

From Table 4.2, there were 314 (86.18±1.60%) successfully reconstructed couplets 

obtained after activation and subsequently cultured in vitro up to blastocyst stage. The 

total percent in vitro embryo development from 2- to 4-, 8 cell, morula and blastocyst 

stages for both enucleation methods were 60.86±2.32, 51.83±2.36, 38.46±2.58, 

22.76±2.33 and 11.51±1.67%, respectively.  

In in vitro embryo development, the percent interspecies SCNT cloned-caprine 

embryos from 2 cell stage up to blastocyst stage using squeezing and aspiration methods 

did not differ significantly (P>0.05). In all cases, the values of in vitro development of 

cloned-caprine embryos obtained from interspecies SCNT were apparently reduced 

from 2 cell stage up to blastocyst stage. For the squeezing method, there were 

significant differences in embryo development among the stages from 2 cell up to 

blastocyst (P<0.05). In the aspiration method, the in vitro cloned-caprine embryo 

development showed significant differences (P<0.05) among the embryo stages, except 
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for morula and blastocyst stages (P>0.05). Figure 4.1 shows the cleavage rates after 

interspecies SCNT for both enucleation methods. It was clearly shown that there were 

not significant differences (P>0.05) between these 2 enucleation methods.  
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Table 4.1: Successfully enucleated and injected rates (%, mean±SEM), and duration (min, mean±SEM) needed to complete the enucleation 

together with injection in interspecies SCNT cloned-caprine embryos 
 

Type of 
enucleation 

methods 

Total no. of 
ovaries 

Total no. of 
oocytes 

Percent of matured 
oocytes (MII) 

 

Percent oocytes 
successfully 
enucleated  

(n) 

* Percent oocytes 
successfully injected 
with donor karyoplast 

(n) 
 

** Duration needed to 
complete  

enucleation with injection 

Squeezing 
 

36 360 56.78±2.14a

(201/360) 
 

88.01±3.00a 
(179/201) 

 

93.26±2.65a 
(166/179) 

83.82±3.16b

Aspiration 
 

33 405 52.47±0.73a

(213/405) 
 

91.68±1.92a 
(197/213) 

 

100.00±0.00b 
(197/197) 

41.18±2.77a

Total 
 

69 765 54.62±1.26 
(414/765) 

89.84±1.79 
(376/414) 

96.63±1.62 
(363/376) 

 

62.50±6.73 

* The injection methods used in this experiment was standardised to sub-zonal injection method. 
** Calculation was based on 30 oocytes used. 
ab Means with different superscripts in a column were significantly different (P<0.05).
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Table 4.2: Percentages (%, mean±SEM) of reconstructed couplets and in vitro embryo development for different enucleation methods in 

interspecies SCNT cloned-caprine embryos 
 

Type of 
enucleation 

methods 

Total no. 
of oocytes 

Total no. 
of matured 

oocytes 
(MII) 

 

Percent 
reconstructed 

couplets  
(n) 

Percent cleaved interspecies SCNT cloned-caprine embryos at  
different cell stages (n) 

 
 

2 cell 
 

4 cell 
 

8 cell 
 

Morula 
 

Blastocyst 
 

Squeezing 
 

360 201 87.52±1.57a

(146/166) 
60.18±2.43az 

(88/146) 
53.80±2.84az 

(79/146) 
37.71±3.30ay 

(56/146) 
24.45±2.71ax 

(36/146) 
12.08±2.95aw 

(18/146) 
 

Aspiration 
 

405 213 84.84±2.85a

(168/197) 
 

61.55±4.20az 
(96/168) 

49.86±3.87ay 
(80/168) 

39.22±4.26ay 
(63/168) 

21.07±3.94ax 
(31/168) 

10.93±1.87ax 
(13/168) 

Total 765 414 
 

86.18±1.60 
(314/363) 

60.86±2.32 
(184/314) 

51.83±2.36 
(159/314) 

38.46±2.58 
(119/314) 

22.76±2.33 
(67/314) 

11.51±1.67 
(31/314) 

 
a Means with different superscripts in a column were not significantly different (P>0.05). 
wxyz Means with different superscripts in a row were significantly different (P<0.05). 
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Figure 4.1: Comparison between two enucleation methods on the cleavage rates after  
interspecies SCNT. 
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4.2 EFFECTS OF NUCLEAR TRANSFER METHODS ON IN VITRO 

CLONED-CAPRINE EMBRYO DEVELOPMENTAL COMPETENCE 

FOLLOWING INTERSPECIES SCNT (EXPERIMENT 2) 

This experiment was carried out to compare the effects of 2 nuclear transfer methods on 

the efficiency of successfully injected and reconstructed couplets as well as subsequent 

in vitro cloned-caprine embryo developmental competence following interspecies 

somatic cell nuclear transfer (interspecies SCNT). The percent oocytes successfully 

enucleated, injected and reconstructed were analysed and summarised in Table 4.3. The 

data on in vitro cloned-caprine embryo developmental competence obtained from both 

nuclear transfer methods were calculated and tabulated in Table 4.4. 

 

4.2.1 Percent Oocytes Successfully Enucleated, Injected, Reconstructed Couplets 

and Cleaved Embryo Obtained from Two Nuclear Transfer Methods in 

Interspecies SCNT 

A total of 725 cumulus oocyte complexes (COC) were recovered from 73 bovine 

ovaries (abattoir source) and subsequently matured in vitro for 20 to 22 hours (Table 

4.3). There were 400 (54.76±1.70%) matured oocytes indicated by the partial extrusion 

of first polar body. Two different types of nuclear transfer methods {sub-zonal injection 

(SUZI) and intracytoplasmic injection (ICI)} were carried out to evaluate the efficiency 

of interspecies SCNT on production of cloned-caprine embryos.  

The total percent successfully enucleated, injected and reconstructed couplets 

were 90.31±1.67, 91.80±1.71 and 89.67±1.43%, respectively. To standardise the 

experiment, squeezing method was chosen and used to remove the DNA materials from 

the oocytes for both nuclear transfer methods. There were no significant differences 

(P>0.05) in the injection and reconstruction rates for both nuclear transfer methods. 
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4.2.2 Percent In Vitro Embryo Development from Two Different Nuclear 

Transfer Methods in Interspecies SCNT  

In Table 4.4, the total percent in vitro embryo development from 2- to 4-, 8 cell, morula 

and blastocyst stages for both nuclear transfer methods were 56.73±1.63, 45.12±2.69, 

34.09±2.43, 19.65±1.78 and 7.75±1.78%, respectively. The percent cloned-caprine 

embryos obtained from interspecies SCNT at 2- and 8 cell using SUZI and ICI methods 

did not differ significantly (P>0.05). However, the percentages of cloned-caprine 

embryos at 4 cell, morula and blastocyst derived from SUZI method were significantly 

higher (P<0.05) compared to the ICI method (53.80±2.84% vs. 38.60±2.25%, 

24.45±2.71% vs. 16.05±1.43% and 12.08±2.95% vs. 4.51±1.45%, respectively).  

In all cases, there was a decline trend of in vitro cloned-caprine embryo 

development obtained from interspecies SCNT from 2 cell up to blastocyst stages. For 

the SUZI method, the in vitro cloned-caprine embryo development showed significant 

differences (P<0.05) among the embryo stages, except for 2- and 4 cell stages. For the 

ICI method, there were significant differences in embryo development among the stages 

from 2 cell up to blastocyst (P<0.05). Figure 4.2 shows the cleavage rates after 

interspecies SCNT for both nuclear transfer methods. It was clearly shown that the sub-

zonal injection (SUZI) method when used in interspecies SCNT gave higher cleavage 

rates in all cases compared with intracytoplasmic injection (ICI) method. 

 

 

 

 



 

134 

 
 
 
 
Table 4.3: Successfully enucleated, injected, reconstructed couplets and embryos cleaved rates (%, mean±SEM) for different injection methods 

in interspecies SCNT cloned-caprine embryos 
 

Type of 
 

 injection methods 

Total no. 
of ovaries 

Total no. 
of oocytes 

Percent of 
matured oocytes 

(MII) 
 

* Percent oocytes 
successfully 
enucleated  

(n) 

Percent oocytes 
successfully injected 
with donor karyoplast 

(n) 
 

Percent 
reconstructed 
couplets (n) 

Sub-zonal injection 
 

36 360  56.78±2.14a

(201/360) 
 

88.00±3.00a

(179/201) 
 

93.26±2.65a 
(166/179) 

87.52±1.57a 
(146/166) 

Intracytoplasmic injection 
 

37 365 53.24±2.49a

(199/365) 
92.04±1.80a

(186/199) 
90.70±2.30a 
(166/186) 

91.28±2.11a 
(150/166) 

 
Total 73 725  54.76±1.70 

(400/725) 
90.31±1.67 
(365/400) 

91.80±1.71 
(332/365) 

89.67±1.43 
(296/332) 

 
* The enucleation methods used in this experiment was standardised to squeezing method. 
a Means with different superscripts in a column were not significantly different (P>0.05). 
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Table 4.4: Percentages (%, mean±SEM) of reconstructed couplets and in vitro embryo development for different injection methods in 

interspecies SCNT cloned-caprine embryos 
 
Type of injection methods Total no. 

of 
oocytes 

Total no. 
of 

matured 
oocytes 
(MII) 

 

Percent of 
reconstructed 

couplets  
(n) 

Percent of cleaved interspecies SCNT cloned-caprine embryos at  
different cell stage (n) 

 
 

2 cell 
 

4 cell 
 

8 cell 
 

Morula 
 

Blastocyst 

Sub-zonal injection 
 

360 201 87.52±1.57a 
(146/166) 

 

60.18±2.43az 
(88/146) 

53.80±2.84bz 
(79/146) 

37.71±3.30ay 
(56/146) 

24.45±2.71bx 
(36/146) 

12.08±2.95bw 
(18/146) 

Intracytoplasmic injection 
 

365 199 91.28±2.11a

(150/166) 
 

54.14±1.79az 
(81/150) 

38.60±2.25ay 
(57/150) 

31.38±3.32ax 
(47/150) 

16.05±1.43aw 
(23/150) 

4.51±1.45av 
(6/150) 

Total 725 400 89.67±1.43 
(296/332) 

56.73±1.63 
(169/296) 

45.12±2.69 
(136/296) 

34.09±2.43 
(103/296) 

19.65±1.78 
(59/296) 

7.75±1.78 
(24/296) 

 
ab Means with different superscripts in a column were significantly different (P<0.05). 
vwxyz Means with different superscripts in a row were significantly different (P<0.05). 
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Figure 4.2: Comparison between two nuclear transfer methods on the cleavage rates 
after interspecies SCNT. 
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4.3 EFFECTS OF IN VITRO CULTURE MEDIUM ON CLONED-CAPRINE 

EMBRYO DEVELOPMENTAL COMPETENCE FOLLOWING 

INTERSPECIES SCNT (EXPERIMENT 3) 

This experiment was to evaluate the effects of culture medium on the in vitro cloned-

caprine embryo developmental competence following interspecies somatic cell nuclear 

transfer (interspecies SCNT). The percent oocytes successfully enucleated, injected and 

reconstructed rates are presented in Table 4.5. The effect of culture medium on in vitro 

cloned-caprine embryos developmental competence obtained from interspecies SCNT is 

shown in Table 4.6. 

 

4.3.1 Percent Oocytes Successfully Enucleated, Injected and Reconstructed 

Couplets for Different In Vitro Culture Systems in Interspecies SCNT  

A total of 1,050 cumulus oocyte complexes (COC) were recovered from 107 bovine 

ovaries (abattoir source) and subsequently matured in vitro for 20 to 22 hours. There 

were 594 (56.84±1.04%) matured oocytes indicated by the partial extrusion of first 

polar body. The total percent oocytes successfully enucleated, injected and 

reconstructed couplets were 90.95±1.31, 91.97±1.19 and 86.96±0.95%, respectively. 

There were no significant differences (P>0.05) in the enucleation, injection and 

reconstruction rates (P>0.05) for all stages of manipulation methods in interspecies 

SCNT.  

 

4.3.2 Percent In Vitro Embryo Development for Different In Vitro Culture 

Systems in Interspecies SCNT  

For the in vitro development, there were 434 (86.96±0.95%) successfully reconstructed 

couplets which were further divided into 3 groups and subsequently cultured up to 
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blastocyst stage. The total percent in vitro embryo development from 2- to 4-, 8 cell, 

morula and blastocyst were 53.01±1.88, 43.47±2.37, 31.17±1.74, 14.36±2.00 and 

4.03±1.66%, respectively (Table 4.6).  

From the results obtained, Group 3 showed significantly higher (P<0.05) in the 

in vitro development competence from 2 cell up to blastocyst stages compared to 

Groups 1 and 2. There was no significant difference (P>0.05) in the in vitro cloned-

caprine embryo development from 2 cell up to blastocyst stages between Groups 1 and 

2.  

In all cases, the cleavage rates of in vitro cloned-caprine embryos obtained from 

interspecies SCNT were successively reduced from 2 cell stage up to blastocyst stage. 

For the Groups 1 and 2, there were significant differences (P<0.05) in embryo 

development among the stages from 2 cell up to morula. In Group 3, the in vitro 

development of interspecies SCNT cloned-caprine embryos showed significant 

differences (P<0.05) among the embryo stages, except for 2- and 4 cell stages. Figure 

4.3 shows the cleavage rates after interspecies SCNT for different in vitro culture 

systems. It was clearly shown that the Group 3 was significant higher (P<0.05) cleavage 

rates in all cases compared with Groups 1 and 2. Morphology of COC and mature 

oocytes and donor karyoplast are shown in Figures 4.4 and 4.5, respectively. The 

nuclear transfer method and subsequent embryo development are depicted in Figures 

4.6 and 4.7, respectively. In addition, detailed embryo development for each stage, 

blastocyst stage and nucleus staining of the embryos are presented in Figures 4.8, 4.9 

and 4.10, respectively.   

 

 



 

139 

 
Table 4.5: Successfully enucleated, injected and reconstructed couplets rates (%, mean±SEM) for different in vitro culture systems in 

interspecies SCNT cloned-caprine embryos 
 
Groups Total no. of 

ovaries 
Total no. of 

oocytes 
Percent matured 

oocytes 
(n) 

Percent oocytes 
successfully 
enucleated  

(n) 

Percent oocytes 
successfully injected 
with donor karyoplast  

(n) 
 

Percent reconstructed 
couplets  

(n) 

1 33 395  57.86±1.09a

(229/395) 
 

91.47±1.14a 
(210/229) 

 

90.97±1.17a 
(191/210) 

87.57±1.51a 
(168/191) 

2 38 295  55.87±2.18a

(164/295) 
 

93.38±2.05a 
(153/164) 

 

91.69±2.35a 
(142/153) 

85.80±2.01a 
(120/142) 

3 36 360  56.78±2.14a

(201/360) 
 

88.01±3.00a 

(179/201) 
 

93.26±2.65a 
(166/179) 

87.52±1.57a 
(146/166) 

Total 107 1,050  56.84±1.04 
(594/1,050) 

 

90.95±1.31 
(542/594) 

91.97±1.19 
(499/542) 

86.96±0.95 
(434/499) 

* Culture system groups: Group 1 (KSOM A; no medium changing),  
Group 2 {KSOM A (day 0-3), KSOM A (day 3-9); change medium on day 3 and 5}, and  
Group 3 {KSOM A (day 0-3), KSOM B (day 3-9); change medium on day 3 and 5} 

** All embryos cultured were observed only on day 3, day 5, day 7, day 8 and day 9. 
*** KSOM A : KSOM  
**** KSOM B : KSOM additional supplemented with glucose  
 
ab Means with different superscripts in a column were significantly different (P<0.05). 
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Table 4.6: Percentages (%, mean±SEM) of reconstructed couplets and in vitro embryo development for different in vitro culture systems in 

interspecies SCNT cloned-caprine embryos 
 
Groups Total no. 

of oocytes 
Total no. of 

matured 
oocytes 
(MII) 

Percent 
reconstructed 

couplets  
(n) 

Percent cleaved interspecies SCNT cloned-caprine embryos at different cell stage (n) 
 

 
2 cell 

 
4 cell 

 
8 cell 

 
Morula 

 
Blastocyst 

 
1 395 229 87.57±1.51a

(168/191) 
49.01±2.02az 

(81/168) 
36.92±3.02ay 

(61/168) 
26.46±1.74ax

(44/168) 
8.42±0.47aw 

(14/168) 
0.00±0.00av 

(0/168) 
 

2 295 164 85.80±2.01a

(120/142) 
49.85±3.27az 

(60/120) 
39.68±2.72ay 

(49/120) 
29.34±1.87ax 

(36/120) 
10.22±1.49aw 

(13/120) 
0.00±0.00av 

(0/120) 
 

3 360 201 87.52±1.57a

(146/166) 
60.18±2.43bz 

(88/146) 
53.80±2.84bz 

(79/146) 
 

37.71±3.30by 
(56/146) 

24.45±2.71bx 
(36/146) 

12.07±2.95bw 
(18/146) 

Total 1,050 594 86.96±0.95 
(434/499) 

53.01±1.88 
(229/434) 

43.47±2.37 
(189/434) 

31.17±1.74 
(136/434) 

14.36±2.00 
(63/434) 

4.03±1.66 
(18/434) 

 
* Culture system groups: Group 1 (KSOM A; no medium changing),  

Group 2 {KSOM A (day 0-3), KSOM A (day 3-9); change medium on day 3 and 5}, and  
Group 3 {KSOM A (day 0-3), KSOM B (day 3-9); change medium on day 3 and 5} 

** All embryos cultured were observed only on day 3, day 5, day 7, day 8 and day 9. 
*** KSOM A : KSOM  
**** KSOM B : KSOM additional supplemented with glucose 
 
ab Means with different superscripts in a column were significantly different (P<0.05). 
wxyz Means with different superscripts in a row were significantly different (P<0.05). 
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Figure 4.3: Comparison between different in vitro culture systems on the cleavage rates 
after interspecies SCNT. 
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Figure 4.4: Morphology of COC and mature oocytes (i- original photomicrograph, ii- 

labeled photomicrograph). (a) COC before in vitro maturation, (b) COC 
after in vitro maturation with sunburst formation, (c, d) matured oocyte 
with the extrusion of polar body.   

 

Cumulus-oocyte complexes (COC)

cumulus cells 

oocyte 

PB 1

PB 1
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Figure 4.5: Morphology of donor karyoplast. (a) Foetal fibroblast cell line at day 2 
(60% of confluency) and (b) Single foetal fibroblast cell.  
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Figure 4.6: Nuclear transfer methods (i- original photomicrograph, ii- labeled 

photomicrograph). (a) The donor karyoplast is fused into the oocyte 
cytoplasm using the electrical pulse after sub-zonal injection, and (b) The 
donor karyoplast is injected into the oocyte cytoplasm by 
intracytoplasmic injection method.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

donor karyoplast 
fused into the 
cytoplasm 

donor karyoplast 
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Figure 4.7: In vitro embryo development (i- original photomicrograph, ii- labeled 

photomicrograph). (a) interspecies SCNT cloned-caprine embryos at day 3 
(4- to 8 cell stages), and (b) interspecies SCNT cloned-caprine embryos at 
day 7 (blastocyst stage). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8 cell 
undeveloped 
oocytes 

4 cell 
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Figure 4.8: Developmental stages in vitro of cloned-caprine embryos after interspecies 

SCNT. (a) 2 cell embryo, (b) 4 cell embryo, (c) 8 cell embryo, (d) 16 cell 
or early morula, (e) Compact morula, and (f) Early blastocyst. 
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Figure 4.9: In vitro development of blastocyst at different stages. (a) Mid blastocyst, (b 

and c) Late blastocyst, (d) Compacting blastocyst, (e and f) Hatching 
blastocyst. 
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Figure 4.10: Hoechst staining. (a) DNA materials after enucleation, (b) 2 cell, (c) 4 cell, 
(d) 8 cell, (e) Morula, (f) Early blastocyst, and (g) Mid blastocyst. 
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4.4 AN ATTEMPT ON OVIDUCT EMBRYO TRANSFER OF INTERSPECIES 

SCNT EMBRYOS AND SUBSEQUENT PREGNANCY DIAGNOSIS USING 

ULTRASOUND SCANNING (EXPERIMENT 4) 

This experiment was an attempt to produce pregnancy after oviduct embryo transfer of 

interspecies SCNT embryos and subsequent pregnancy diagnosis using ultrasound 

scanning. The percent oocytes successfully enucleated, injected, reconstructed and 

cleaved embryos rates are presented in Table 4.7. The number of embryo transfer 

replicates was showed in Table 4.8. 

 

4.4.1 Percent Oocytes Successfully Enucleated, Injected, Reconstructed Couplets 

and Cleaved Embryos Rates for Embryo Transfer   

A total of 265 cumulus oocyte complexes (COC) were recovered from 20 bovine 

ovaries (abattoir source) and subsequently matured in vitro for 20 to 22 hours. There 

were 153 (57.74%) matured oocytes indicated by the partial extrusion of first polar 

body. The total percent oocytes successfully enucleated, injected, reconstructed couplets 

and cleaved embryos rates were 92.16, 89.36, 88.10 and 56.76 %, respectively.  

 

4.4.2 Embryo Transfer of Interspecies SCNT Cloned-caprine Embryos  

A total of 63 cloned-caprine embryos were obtained from interspecies SCNT 

experiment. However, only 55 embryos with quality at grades 1 and 2 (4- and 8 cell 

stages) were chosen and transferred into 9 recipients with at least 1 CL observed in the 

ovaries (Figure 4.11). After ultrasound scanning on day 30, there is not pregnancy 

observed on the recipient goats after embryo transfer experiment (Figure 4.12). As a 

reference, Figure 4.13 shows the positive image of pregnancy in a doe as visualised via 

transrectal ultrasonography on day 30 (Mohd Nizam, 2011).       
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Table 4.7: Successfully enucleated, injected, reconstructed couplets and cleaved embryos rates (%) for an attempt of embryo transfer  
 

No. of 
replicates 

Total no. 
of ovaries 

Total no. of 
oocytes 

Percent matured 
oocytes 

(n) 

Percent oocytes 
successfully 
enucleated  

(n) 

Percent oocytes 
successfully injected 

with donor 
karyoplast  

(n) 
 

Percent 
reconstructed 

couplets  
(n) 

*Percent cleaved 
embryos on day 2 

(n) 
 

1 4 60  55.00
(33/60) 

 

90.91 
(30/33) 

 

86.67 
(26/30) 

84.62 
(22/26) 

54.55 
(12/22) 

2 5 65  53.85
(35/65) 

 

94.29 
(33/35) 

 

87.88 
(29/33) 

86.21 
(25/29) 

56.00 
(14/25) 

3 5 60  58.33
(35/60) 

 

91.43
(32/35) 

 

87.50 
(28/32) 

85.71 
(24/28) 

54.17 
(13/24) 

4 6 80 62.50 
50/80 

92.00 
(46/50) 

93.48 
(43/46) 

93.02 
(40/43) 

60.00 
(24/40) 

Total 20 265  57.74 
(153/265) 

 

92.16 
(141/153) 

89.36 
(126/141) 

88.10 
(111/126) 

56.76 
(63/111) 

* Cleaved embryos on day 2, included 4- to 8 cell. 
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Table 4.8: Embryo transfer of Interspecies SCNT cloned-caprine embryos 
 

No. of 
replicates 

Recipient 
underwent 

synchronisation* 
 

 
No. of corpus 

luteum 

 
No. of embryos 

transferred 

 
Grading of embryos 

 

 
Pregnancy 

rate 
  

4 cell 

 

8 cell 

 
Left 

 
Right 

 
Left 

 
Right 

 
A 

 
B 

 
A 

 
B 
 

1 B0201 3 0 2 2 1 - 1 2 0 
0103 0 1 4 4 3 1 2 2 0 

2 0134 1 0 2 2 1 - 2 1 0 
0154 2 0 2 2 2 1 1 - 0 

3 0140 0 2 - 4 1 1 2 - 0 
B0183 1 1 3 3 1 - 3 2 0 
B0175 2 1 3 2 1 - 3 1 0 

4 0032 1 2 5 5 2 - 5 3 0 
5240 1 2 5 5 - - 7 3 0 

  
Total 

 
11 

 
9 

 
26 

 
29 

  
12 

 
3 

 
26 

 
14 

 
0 

* Nine out of 12 synchronised recipient goats showed the presence of CL. 
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Figure 4.11: Corpora lutea (i- original photomicrograph, ii- labelled photomicrograph). 
(a) ovary with the presence of CL. 

 
 
 
 

Corpora lutea 
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Figure 4.12: Original image of an open doe via transrectal ultrasonography. No pregnancy 
related structure (such as umbilical cord and foetal heart) was detected (left 
ovary) on day 30 after embryo transfer. Ovary with follicle could be detected 
easily.  

 

 

Figure 4.13: Example image of pregnancy doe as visualised via transrectal ultrasonography 
(day 30 of pregnancy). Pregnancy related structure (such as umbilical cord and 
foetal heart) was detected (image adapted from Mohd Nizam B. Abd. Rashid, 
2011). 
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Chapter 5 

5.0 DISCUSSION 

 

5.1 INTRODUCTION 

Somatic cell nuclear transfer (SCNT) is a new reproductive technique that has great 

potentials to increase the number of a species at a rapid rate as an effort to prevent 

extinction of endangered species, to enhance the propagation and sustaining the current 

levels of genetics biodiversity, to multiply livestock animals for human animal protein 

consumption as well as to produce proteins, cells, tissues and organs for biomedical 

therapeutic purposes. Live offspring have been successfully produced by intraspecies 

SCNT in numerous species of animals including sheep (Wilmut et al., 1997), mouse 

(Wakayama et al., 1998), cattle (Cibelli et al., 1998), goat (Baguisi et al., 1999), pig 

(Polejaeva et al., 2000), horse (Galli et al., 2003), dog (Lee et al., 2005) and cat (Yin et 

al., 2007); however, the successful birth rate of SCNT is limited ranging from 5 to 15%.  

As for the new approach using interspecies SCNT, the live offspring delivered is 

particularly only in the closely related species with the success rate ranges from 1 to 8%, 

represented by argali-sheep (White et al., 1999), gaur-cattle (Lanza et al., 2000), 

European mouflon-sheep (Loi et al., 2001), African wild cat-domestic cat (Gomez et al., 

2004) and river buffalo-swamp buffalo (Yang et al., 2010). Other successful  

interspecies SCNT experiments only being reported up to in vitro embryo development, 

which included buffalo-cattle {Kitiyanant et al., 2001 (blastocyst: 33%)}, giant panda-

rabbit {Chen et al., 2002 (blastocyst: 19%)}, banteng-cattle {Sansinena et al., 2005 

(blastocyst: 15 to 28%)}, yak-cattle {Li et al., 2006 (blastocyst: 28%)}, pig-cattle {Uhm 

et al., 2007 (blastocyst: 4%)}, sheep-cattle {Dominko et al., 1999 (blastocyst: 18%)}, 

goat-sheep {Ma et al., 2008 (blastocyst: 7%)}, dog-pig {Sugimura et al., 2009 
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(blastocyst: 6 to 52%)}, marbled cat-domestic cat {Thongphakdee et al., 2010 

(blastocyst: 5%)} and goat-cattle {Song et al., 2008 (blastocyst: 8%); Abdullah et al., 

2011 (morula: 7%); Soh et al., 2011 (blastocyst: 12%)}. 

SCNT involved a series number of steps that might affect the efficiency and 

outcome of a successful cloned animal. To date, these SCNT steps have already been 

improved by monitoring the types of donor cells used (Wakayama and Yanagimachi, 

2001; Lagutina et al., 2005); selecting procedures for cell passage (Kubota et al., 2000; 

Li et al., 2003; Zhao et al., 2007; Zhang et al., 2008); treatment of the SCNT embryos 

with histone deacetylase inhibitors such as trichostatin A (TSA) (Kishigami et al., 2006) 

and scriptaid (Van Thuan et al., 2009); in vitro culture medium (Tang et al., 2011). 

However, most of the optimisations for these steps were particularly focusing on the 

intraspecies SCNT such as cattle, mouse and pig compared to goat, especially in 

interspecies SCNT experiments. The goals of this dissertation were obtained through 

experimentations to evaluate the effects of enucleation methods, nuclear transfer 

methods and in vitro culture systems on interspecies cloned goat-cattle in vitro embryo 

developmental competence as well as an attempt to produce cloned goat-cattle 

pregnancy after embryos transfer at early cell stages through oviduct transfer. Besides 

that, in the present research, intraspecies SCNT experiment on caprine, bovine and 

porcine were carried out as preliminary studies as preparation for actual experiments in 

order to specifically gain the nuclear transfer skill as well as to establish the cloning 

protocols in our laboratory. Consequently, the summarised data are presented in 

Appendix Table 3.1.  
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5.2 EFFECTS OF ENUCLEATION METHODS ON IN VITRO CLONED-

CAPRINE EMBRYO DEVELOPMENTAL COMPETENCE 

FOLLOWING INTERSPECIES SCNT (EXPERIMENT 1) 

In this experiment, squeezing and aspiration methods for oocyte enucleation were 

carried out to determine the efficiency of in vitro embryo developmental competence 

following interspecies SCNT. For the percentage of successful enucleation, no 

significant difference was observed between squeezing and aspiration methods with the 

values of 88 and 92%, respectively. The percentage for successful enucleation using 

squeezing method was found to be similar with the previous studies reported by Liu et 

al. (2002) (84% in bovine) and Abdullah et al. (2011) (96% in caprine and 89% in 

bovine). However, the percent successful enucleation using aspiration method in the 

present study was shown to be improved compared to that of Reggio et al. (2001) (72% 

in caprine), Lee and Campbell (2006) (78% in ovine) and Hosseini et al. (2008) (79% in 

ovine). 

 In the squeezing method, a small cut was created by an elongated sharp end 

enucleation needle in the zona pellucida above the first extrusion of polar body. 

Pressure was needed to press out the DNA materials through the cutting point that made 

by the enucleation needle. Therefore, some oocytes might degenerate due to damage in 

ooplasmic membrane generated by the pressure when pressing out the first polar body 

and the surrounding cytoplasm (10%). While, in the aspiration method, the zona 

pellucida was punctured by using a spike with beveled pipette (outer diameter: 22 µm) 

and the DNA materials of an oocyte were removed by aspirating out the first polar body 

together with minimal amount of surrounding cytoplasm (10%). This technique resulted 

in minimal injury to the oocyte, however aspiration out of more than 15% of the 
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surrounding cytoplasm was unavoidable and consequently causing the death of the 

oocyte.     

Our results demonstrated that in terms of duration needed for enucleation up to 

donor karyoplast injection, the speed for aspiration with sub-zonal injection method was 

faster than squeezing with sub-zonal injection method with the values of 41 and 84 

minutes (calculation was based on 30 oocytes used), respectively. This was in 

agreement with the findings reported by Lee et al. (2008) on the porcine SCNT. In their 

studied, the duration needed to complete the enucleation with injection method for 

squeezing and aspiration was 307 and 113 minutes (calculation was based on 100 

oocytes used), respectively. For the squeezing with sub-zonal injection method, 2 

different microtools were needed to complete the enucleation and injection methods 

namely, elongated sharp end enucleation needle and injection pipette (inner diameter: 

16 to 18 µm and outer diameter: 18 to 20 µm). Therefore, both steps have to be carried 

out separately throughout the cloning process. After squeezing, the enucleated oocytes 

were transferred into the waiting medium and incubated for 1 to 2 hours before injection. 

During the injection step, the slit made during enucleation had to be identified to insert 

donor karyoplast into the perivitelline space. This procedure was time-consuming and 

subsequently resulted in extended manipulation time (Lee et al., 2008). As for the 

aspiration with sub-zonal injection method, both steps were carried out simultaneously 

by using the same aspiration pipette (inner diameter: 20 to 22 µm and outer diameter: 22 

to 24 µm). The donor karyoplast was deposited in the aspiration pipette prior to 

enucleation. Therefore, after enucleation, the donor karyoplast was directly injected and 

placed in the perivitelline space through the same slit made during enucleation of an 

oocyte. In relationship to this, the squeezing method needed at least double as much 

time as the aspiration method in making the same number of SCNT embryos (Lee et al., 
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2008). At the same time, the percentage of successful injection for aspiration method 

was significantly higher (100%) than in the squeezing method (93%).  

In terms of cell-oocyte fusion and in vitro embryo development competence, 

there were no significant differences between these 2 enucleation methods in this study. 

However, Lee et al. (2008) reported that the blastocyst formation obtained from 

aspiration method was significantly higher than squeezing method (9 and 5%, 

respectively). In this experiment, we successfully obtained the interspecies cloned goat-

cattle embryo up to blastocyst stage with the percentage of 12% (squeezing method) and 

11% (aspiration method), respectively, using foetal fibroblast cell as donor karyoplast. 

This result was higher compared to the findings reported by Abdullah et al. (2011) on 

interspecies cloned goat-cattle embryo using squeezing method and the donor 

karyoplast was ear fibroblast cell. In their study, they only managed to produce the 

cloned embryos up to morula stage (7%). Yang et al. (2010) obtained a 18% of 

blastocyst rate on the interspecies cloned river buffalo-swamp buffalo using aspiration 

method and ear fibroblast cells as the donor karyoplast.  

Squeezing and aspiration methods were routinely used to remove the DNA 

materials of a matured oocyte in cloning procedure. However, there is still a lack of 

information on whether which methods can be applied more efficiently in the 

interspecies SCNT on goat-cattle. Present study showed that there was no significant 

difference on the outcome of in vitro embryo developmental competence between these 

2 enucleation methods, resulting in production of cloned blastocysts. Other enucleation 

methods such as Spindle-View System, Xyclone machine and enucleation on stained 

oocytes under UV light microscope were also proposed, but these methods were used in 

limited laboratories due to high cost of these machines. Furthermore, applying 

ultraviolet (UV) light during enucleation may cause damage to the maternal cytoplast 
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(Li et al., 2004). Chen et al. (2006) conducted studies on buffalo SCNT by comparing 3 

enucleation protocols, namely, blind-sucking, point-hitting and Spindle-View System. 

The enucleation rate of oocytes by the Spindle-View System (95%) was significantly 

higher than that achieved by blind-sucking (65%) and the point-hitting (82%). However, 

there was no significant difference in fusion rate, cleavage rate and blastocyst yield of 

the reconstructed embryos among the 3 enucleation methods. In their findings, they 

suggested that the point-hitting could be employed for enucleation of oocytes in 

consideration of the costs of the Spindle-View System. Currently, in our research 

laboratory, using Xyclone machine as an enucleation method has been carried out to 

compare with the squeezing technique. In this study, the Xyclone machine gave a better 

percentage of successful enucleation than squeezing method, 96.61 and 95.23%, 

respectively (Goh, 2011).    

 
 

 
5.3 EFFECTS OF NUCLEAR TRANSFER METHODS ON IN VITRO 

CLONED-CAPRINE EMBRYO DEVELOPMENTAL COMPETENCE 

FOLLOWING INTERSPECIES SCNT (EXPERIMENT 2) 

Nuclear transfer of a donor karyoplast to an enucleated oocyte and subsequent 

activation of the resulting couplet are important steps required to successfully generate 

embryos as well as live offspring by somatic cell nuclear transfer. In the past decades, 

various methods of nuclear transfer have been reported in order to improve the 

efficiency of SCNT, such as sub-zonal with electro-fusion (SUZI: Wilmut et al., 1997), 

intracytoplasmic injection (ICI: Wakayama et al., 1998) and whole cell intracytoplasmic 

injection (WCICI: Lee et al., 2003). In the present experiment, the effects of nuclear 

transfer methods, namely, SUZI electro-fusion and ICI on in vitro cloned embryo 

developmental competence following interspecies SCNT were determined. The former 
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method seems to be more commonly used by many intraspecies SCNT researchers. 

However, effectiveness of both methods still remains to be evaluated, especially in the 

interspecies SCNT.   

 In our study, percentage of successful reconstructed oocytes was not 

significantly different between SUZI and ICI methods. In terms of in vitro embryo 

development following interspecies SCNT, the overall success rates for 2 cell up to 

blastocyst were higher in the SUZI with electro-fusion compared to ICI; while 

significant differences were detected only at 4 cell (54% vs. 39%), morula (24% vs. 

16%) and blastocyst (12% vs. 5%) stages. Therefore, based on the present results, SUZI 

with electro-fusion was considered to be a better method than ICI in nuclear transfer on 

the production of cloned goat-cattle interspecies embryos using foetal fibroblast cell as 

donor karyoplast. The present comparative methods are in agreement with Nagashima et 

al. (2003) on the production of pig intraspecies SCNT using foetal fibroblast cell. They 

reported that the rate of normal cleavage and blastocyst formation were significantly 

higher in the SUZI with electro-fusion than ICI method (46% vs. 32% and 19% vs. 5%, 

respectively). Another similar study on the comparison of different nuclear transfer 

methods was conducted by Kurome et al. (2003) on pig intraspecies SCNT. They 

reported that using foetal fibroblast cell, former method gave significantly higher 

production blastocyst rate (19% vs. 5%, respectively). In contrast, Zou et al. (2001) 

demonstrated that the survival rate of cloned embryos derived from direct injection 

method was higher than the fusion method (63 and 46%, respectively) on caprine 

intraspecies nuclear transfer.          

  The first interspecies SCNT using bovine cytoplast and caprine karyoplast was 

reported by Song et al. (2008). They suggested that the cytoplasts of bovine oocyte 

could support blastocyst development of cloned embryos with porcine (3%) and caprine 
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(8%) donor cells, but they were not suitable for monkey donor cells (0%). Similarly in 

their study, foetal fibroblast cells were used as the donor karyoplast, and the nuclear 

transfer method was SUZI with electro-fusion. The blastocyst formation in the present 

study was slightly higher compared to the results obtained by Song et al. (2008) (12 and 

8%, respectively). However, the in vitro culture medium used in both studies was 

different, namely KSOM (present study) and CR1aa (Song et al., 2008). Therefore, 

further studies on different in vitro culture media should be carried out in the future in 

order to evaluate the relative efficiency of the nuclear transfer methods.   

 In recent years, different combinations of animal species for interspecies SCNT 

have been reported with specific nuclear transfer methods. For the SUZI with electro-

fusion, the combinations are: monkey-cattle (Dominko et al., 1999), sheep-cattle, 

(Dominko et al., 1999), pig-cattle (Dominko et al., 1999), red panda-rabbit (Chen et al., 

2002; Li et al., 2002b; Tao et al., 2009a), goat-cattle (Song et al., 2008; Soh et al., 

2011), ibex-rabbit (Jiang et al., 2005), camel-rabbit (Zhao et al., 2006), camel-sheep 

(Zhou and Guo, 2006) and gaur-cattle (Mastromonaco et al., 2007). By using this 

method, they managed to produce the interspecies cloned embryos up to blastocyst (7-

33%) stage. Yin et al. (2006) and Sainsinena et al. (2005) reported the pregnancy on 

leopard cat-domestic cat (1%) and banteng-cattle (17%), respectively, using SUZI with 

electro-fusion. Meanwhile, Lanza et al. (2000), Loi et al. (2001), Gomez et al. (2003) 

and Yang et al. (2010) reported the interspecies offspring using this method. As for the 

ICI method, the information of this technique is much limited compared to electro-

fusion. The examples of interspecies studies by using this method include: buffalo-cattle 

(Lu et al., 2005), cattle-buffalo (Lu et al., 2005), sheep-cattle (Hua et al., 2008), canine-

pig (Sugimura et al., 2009) and goat-cattle (Soh et al., 2011). In their results, the 

blastocyst formation ranged between 5 to 25%, however, none of them carried out the 
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embryo transfer. Based on the percentage of blastocyst formation in the present study 

and previous report, it is suggested that SUZI with electro-fusion gives better 

interspecies performance compared to ICI method.  

 Results obtained from comparing the nuclear transfer techniques, it was shown 

that the low efficiency of cloned-caprine embryo development in the ICI method might 

be due to the damage of the isolated nucleus before injection (Lee et al., 2003; Chen et 

al., 2007). In the ICI method, plasma membrane of a donor cell is necessary to be 

ruptured by pipetting in and out for a few times using a narrow microinjection needle in 

PVP (10%). Therefore, it is believed that the nucleus of the donor cells might be 

damaged during this micromanipulation procedure. As a result, donor cell nucleus failed 

to reprogramme by the oocyte cytoplasm after injection.  

 As for the SUZI with electro-fusion method, the donor karyoplast was placed in 

the perivitelline space of an enucleated oocyte and subsequently subjected with 

electrical fusion in fusion medium {10 mM sorbitol containing 0.02 mM 

Mg(CH3COO)2, 0.02 mM Hepes (free acid) and 2 mg/ml BSA-FV} under electrical 

pulses of 20 voltages, 2 direct current (DC) pulses and 15 µseconds. The percentages of 

successful injection and reconstruction by using this method were 93 and 88%, 

respectively. This may suggest that the donor karyoplast could easily be fused into the 

oocyte cytoplast, and at the same time the electrical fuse applied on the oocyte might 

also trigger the preparation of calcium oscillation within the cytoplasm. The fused 

oocyte was then subjected to the activation medium for further biological event to occur 

between the donor cell nucleus and the cytoplasm in an oocyte, such as inhibiting the 

level of maturation promoting factor (MPF) and calcium oscillation.    

 It was reported that different donor cell types compose different membrane 

surface properties, and this may contribute to the variation in the efficiency of the 
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reconstructed oocytes rate for nuclear transfer (Daniel et al., 2008). The present study 

showed a higher reconstructed oocytes rate (88%) compared to previous interspecies 

studies using bovine oocyte as the recipient cytoplast, such as Dominko et al. (1999), 

Sansinena et al. (2005) and Thongphakdee et al. (2008) with the values of 58, 73, and 

53%, respectively. In the present study, caprine foetal fibroblast cell was chosen as the 

donor karyoplast to produce cloned-caprine embryo using bovine cytoplast. While 

Dominko et al. (1999), Sansinena et al. (2005) and Thongphakdee et al. (2008) used ear 

skin fibroblast (sheep, pig, monkey and rat), adult skin fibroblast (banteng) and oviduct 

cells (cat) as the donor karyoplast, respectively. In contrast, Srirattana et al. (2010) 

reported a similar successful reconstructed oocytes rate using different types of donor 

cells in bovine intraspecies SCNT: foetal fibroblast cell (86%), ear fibroblast cell (92%), 

granulosa cell (90%) and cumulus cell (81%). In their studies, they demonstrated that 

the cumulus cells gave a lower fusion rate among all the donor cell types reconstructed 

with bovine oocytes. The reason for the low fusion rate of cumulus cell is not clear, but 

it may be due to the smaller size of compared to other fibroblasts. Therefore, the 

cumulus cell cannot withstand the high electrical pulse during fusion.  

 

 5.4 EFFECTS OF IN VITRO CULTURE MEDIUM ON CLONED-CAPRINE 

EMBRYO DEVELOPMENTAL COMPETENCE FOLLOWING 

INTERSPECIES SCNT (EXPERIMENT 3) 

The culture system plays a very important factor affecting the development efficiency of 

in vitro embryos in interspecies SCNT. However, it is unclear whether the culture 

system is dependent on the donor karyoplast or the recipient cytoplast or interaction of 

both for interspecies nuclear transfer embryos (Zhao et al., 2006). The present 

experiment was specifically conducted to evaluate in vitro culture system using various 



164 

 

modifications of standard KSOM medium on embryos developmental competence 

following interspecies SCNT. Briefly, all reconstructed interspecies SCNT cloned-

caprine oocytes were cultured in KSOM A (also known as standard KSOM) for the first 

3 days of cleavage. Three different changing medium treatments were carried out: 

Group 1 (KSOM A throughout culture), the embryos were observed and recorded on 

days 3, 5, 7 and 8 without changing the medium; Group 2 (KSOM A days 1-3, change 

KSOM A on days 3 and 5), the embryos were observed and recorded on days 3, 5, 7 and 

8; and Group 3 (KSOM A days 1-3, change KSOM B on days 3 and 5), the embryos 

were observed and recorded on days 3, 5, 7 and 8. KSOM A defined as the “K Simplex 

Optimisation Medium” (standard KSOM) which was modified by Lawitts and Biggers 

(1993). While KSOM B is the KSOM A supplemented with additional glucose (0.04%, 

0.4 mg/ml, 2.2 mM), and was modified by our senior researcher, Kwong Phek Jin.  

 The aim of the present study was to evaluate the performance of in vitro culture 

system to support the maximum in vitro development of interspecies SCNT cloned 

goat-cattle embryos. Our results indicate that Group 3 was significantly higher in in 

vitro embryo developmental competence from 2 cells up to blastocyst stage compared 

to Groups 1 and 2, suggesting that additional supplementation of glucose in the KSOM 

medium is important to provide the support of in vitro development of interspecies 

SCNT caprine embryos. In terms of blastocyst production, only Group 3 culture system 

was able to successfully cleave the interspecies SCNT cloned embryos with 12% 

blastocyst rate. In spite of that, in Groups 1 and 2, similar embryos were able to develop 

up to morula stage (8 and 10%, respectively), even though lower than that of Group 3 

(24%). It is clearly suggesting the importance of additional glucose supplementation in 

KSOM medium at later stages of preimplantation embryo development since there was 

still no blastocyst formation obtained in Groups 1 and 2. However, more detailed and 
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refined studies are needed in the future in order to obtain maximum blastocyst rate of 

interspecies SCNT cloned goat-cattle embryos, for examples, the optimum 

concentration of glucose at specific developmental stages of embryos as well as the 

exact timing for specific glucose concentration for particular embryo stages.  

 It is well established that embryos from different mammalian species require 

species-specific embryo culture conditions (Campbell et al., 2007). The commonly used 

culture media for caprine species were CR1aa and mSOF, however, the results of the in 

vitro embryo production are still variable. In our present study, we used KSOM medium 

to culture all our interspecies SCNT cloned embryos. It is interesting to observe that the 

cleavage of embryos in our laboratory was better in KSOM medium compared to 

previously used mSOF medium (Rahman, 2008). It is worth mentioning that in our 

laboratory caprine blastocyst was obtained for the first time after using KSOM medium 

for embryo culture in vitro. In one previously brief report on goat-cattle interspecies 

cloning demonstrated by Song et al. (2008), they used CR1aa medium supplement with 

BSA (0.3%) for the first 3 days. After 3 days, cleaved embryos were transferred to 

CR1aa medium supplemented with FBS (10%) and cultured for an additional 4 days. In 

their study, the rate of blastocyst formation was 8%. Fischer-Brown et al. (2002) 

reported that the KSOM produced more blastocyst embryos than mSOF medium in 

bovine intraspecies SCNT. Similar finding was reported by Bhuiyan et al. (2004), they 

observed that using KSOM medium provide a satisfactory embryo development rate in 

bovine intraspecies SCNT. In contrast, Niemann and Wrenzycki (2000), Wrenzycki et 

al. (2001b) and Sagirkaya et al. (2006) suggested that the in vitro derived bovine 

embryos generated in the mSOF system were reported to be more similar to their in vivo 

counterparts with regard to gene expression pattern reflecting viability of the embryos. 

Lorthongpanich et al. (2008) demonstrated that the mSOF medium provided better 
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support when embryos were co-cultured with bovine oviductal epithelial cells (BOVD) 

(blastocyst: 40%). It is reported that the oviduct epithelium exerts a specific action even 

in culture, combining the stimulation of cleavage with the preservation of viability. 

Therefore, the oviduct cell culture system could be used with confidence in a variety of 

experiments, including those designed to study the mechanisms underlying early 

embryogenesis and those involving genetic manipulation and nuclear transplantation 

(Gandolfi and Moor, 1987).  

Besides that, previous reports on the interspecies SCNT using rabbit oocyte as 

the recipient cytoplast have shown that the M199 with FCS (10%) supports in vitro 

development of panda-rabbit, cat-rabbit, chicken-rabbit and camel-rabbit embryos to the 

blastocyst stage. Another type of culture medium, namely G1/G2 medium which is one 

of the commercially available culture systems for human embryos, is widely used for 

the in vitro culture of mammalian embryos (Tang et al., 2011). Previous studies have 

shown that G1/G2 medium could support the development of bovine (Lane et al., 2003), 

caprine (Bormann et al., 2003; Koeman et al., 2003) and porcine (Swain et al., 2001) in 

vitro fertilisation (IVF) embryos. However, the hatching rates and cryotolerance of 

sheep blastocysts cultured in the G1/G2 sequential medium were reported to be lower 

than that of mSOF medium (Garcia-Garcia et al., 2007). Tang et al. (2011) investigated 

the effects of culture conditions on the developmental competence of cloned caprine 

embryos. Their results indicated that mSOF was superior to the sequential G1/G2 

medium in terms of hatching rate, while the supplementation of mSOF-BSA with FBS 

(10%) also increased the blastocyst hatching rate. Therefore, they suggested that the 

G1/G2 medium has the same accelerative effect on the development of caprine embryos, 

but further studies are required. 
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The in vitro culture medium has been reported to be critical in determining the 

ability of an embryo to survive (Martino et al., 1993; Lonergan et al., 2001). The use of 

different culture systems for embryo production provides the necessary specific 

conditions for embryo development. Likewise, the morphological and biochemical 

embryo characteristics are conditioned by the culture system employed (Massip et al., 

1995; Ohboshi et al., 1997; Kaidi et al., 1998; Pugh et al., 1998; Yamashita et al., 1999). 

Therefore, due to lack of information, it is important to take into consideration the 

nutrient requirements with regards interspecies SCNT-derived cloned-caprine embryos 

in order to improve the current in vitro production system including our laboratory. 

Mammalian embryos produced in vitro differ from their in vivo counterparts due in part 

to the sub-optimal nature of in vitro culture systems. In vitro produced preimplantation 

embryos are sensitive to environmental conditions that can affect embryo morphology, 

gene expression, embryonic growth and developmental potential both pre- and 

postnatally (Summers and Biggers, 2003; Fleming et al., 2004). It is indicated that 

mammalian embryos display environmental sensitivity to in vitro culture system which 

manifests in phenotypic condition known as large offspring syndrome (LOS) (Young et 

al., 1998; Wrenzycki et al., 2004). The LOS can be identified as obvious abnormalities, 

such as increased incidence of oversize foetuses, increased foetal myogenesis, dystocia, 

dysfunctional perinatal pulmonary activity, abnormalities in placental development and 

reduced pregnancy rates (Summers and Biggers, 2003; Fleming et al., 2004). These 

abnormalities are induced during critical periods of preimplantation development as a 

result of inadequate in vitro production system Campbell et al. (2007).     

In the present study, supplementation of glucose level (0.04%, 2.2 mM) at the 

late stage of embryo culture has significantly improved the blastocyst formation. In 

many species, glucose has been widely used as a major energy substrate in embryo 
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culture media. The role of glucose in preimplantation development has been 

demonstrated in various species, but the rationale for glucose supplementation is still 

ambivalent. In bovine embryo development, glucose is known as an important energy 

substrate for blastocyst formation (Rieger et al., 1992). According to Rieger et al. 

(1992), the first marked increase in glucose metabolism in the cattle embryos in their 

study occurred between the 8- and 16 cell stages, whereas the first marked increase 

occurs between the 4- and 8 cell stages in pig (Flood and Wiebold, 1988) and human 

(Wales et al, 1987) embryos, and between the 2- and 8 cell stages in sheep embryos 

(Thompson et al., 1991). To our knowledge, there is no report regarding the marked 

requirement of glucose for caprine embryos stage. Conversely, based on various studies, 

it is suggested that for the pig, human, sheep and cattle embryos, the first marked 

increase in glucose metabolism approximately coincides with the time of activation of 

the embryonic genome (Telford et al., 1990). It is interesting to note that the marked 

requirement of glucose at specific developmental stage of embryos for the caprine 

species as indicated by the findings of this study is an agreement with those of other 

domestic animals which may also coinciding with the activation of embryonic genome. 

This confirmed the role of glucose as important nutrient during preimplantation embryo 

development in domestic animals including caprine species. The extra glucose is needed 

during the caprine embryo in vitro culture to produce enough ATP to support the 

embryos in the zygotic transition stage (8- and 16 cell stages) in order for further 

development up to blastocyst stage. In contrast, it has also been reported that exposure 

to high concentrations of glucose during early embryonic stages caused developmental 

retardation in many species including hamster (Schini and Bavister, 1988; Barnett and 

Bavister, 1996; Barnett et al., 1997), mouse (Chatot et al., 1989; Lawitts and Biggers, 

1991; Scott and Whittingham, 1996), rat (Kishi et al., 1991; Miyoshi et al., 1994), cattle 
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(Kim et al., 1993), sheep (Thompson et al., 1992), and human (Conaghan et al., 1993). 

Consequently, in the present study, the reconstructed oocytes were cultured in KSOM A 

with low concentration of glucose in order to maintain the normal development of 

embryos at early stage.   

Typical chemically defined culture medium have been developed such as 

KSOM, CR1aa, mSOF, TCM199, NCSU 23 and G1/G2 (commercial medium), and 

were used to culture mammalian embryos in vitro. However, these in vitro culture 

media generally require supplementation with additional nutrients which can aid in vitro 

development, but in long term, these chemicals can compromise embryo quality. Serum 

and BSA are complex undefined mixtures containing hormones, growth factors, 

vitamins and numerous other factors. For examples, serum such as foetal bovine serum 

(FBS) and foetal calf serum (FCS) are known to be detrimental to embryonic and foetal 

development. While, the effects of serum compared to BSA supplementation during in 

vitro mouse development results in lower preimplantation development and neonatal 

offspring (Fernandez-Gonzalez et al., 2004). However, the role of serum on embryonic 

development is still controversial. Previous reports have shown that FBS has the 

beneficial effect to blastocyst development and hatching rate of embryos (Wang et al., 

1997; Kim et al., 2004; McElroy et al., 2008). However, the exposure of early embryos 

to FBS has been shown to be detrimental to the quality of blastocysts produced 

(Thompson et al., 1995; Rizos et al., 2002, 2003). Besides that, results of studies in 

cattle have suggested the enhancement of preimplantation development of cloned 

bovine embryos in FBS supplemented medium, even though it was not improving the 

calving outcome (Choi et al., 2002a). FBS has widely been used for the culture of 

nuclear transfer caprine embryos (Baguisi et al., 1999; Behboodi et al., 2004, 2005). 
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Even though controversial, most of the researches including our study prefer to use the 

BSA as a chemical supplement to the culture medium.  

In a nutshell, there is still a large gap of information among the media used for 

the culture of embryos obtained from various manipulation techniques. For an example, 

in one extreme case, Lorthongpanich et al. (2008) pointed out that different culture 

media did not enhance embryo growth, which was largely affected by nuclear 

manipulation. However, as clearly shown by our results of blastocyst production in 

caprine interspecies SCNT after additional supplementation of glucose in KSOM 

medium, we believe that maximum embryo developmental competence in vitro can be 

achieved if all the myriads of intrinsic and extrinsic factors are taken into consideration 

in formulating the culture media.         

 

5.5  AN ATTEMPT ON OVIDUCT EMBRYO TRANSFER OF 

INTERSPECIES SCNT EMBRYOS AND SUBSEQUENT PREGNANCY 

DIAGNOSIS USING ULTRASOUND SCANNING (EXPERIMENT 4) 

The final goal of any research involving culture of embryos in vitro is to produce live 

born offspring after embryo transfer. Embryo transfer is considered to be a terminal 

integral component of reproductive techniques including both intraspecies and 

interspecies SCNT. In the present study, active and enthusiastic attempts have been 

made in an effort to produce viable cloned offspring after the transfer of interspecies 

SCNT cloned-caprine embryos. Unfortunately, none of the recipients were detected 

pregnant after diagnosis using ultrasound scanning after 30 days of expected gestation. 

The reasons for the failures in pregnancy in this experiment are unexplained at this time 

and warrant intensive further investigations involving numerous intrinsic and extrinsic 

factors in future studies. 
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 Interspecies SCNT embryo transfer always comes with a crucial issue, which is 

the availability of suitable foster mothers for interspecies SCNT embryos. In this 

experiment, caprine DNA donor cells was used as karyoplast and bovine oocyte was 

used as cytoplast while caprine doe was used as the foster mother for the embryo 

transfer. In interspecies embryo transfer, the genetic background of the foster mother 

and the embryos may be a roadblock even more serious than the genomic/mitochondrial 

DNA compatibility or the zygotic genome activation (ZGA) activation in order to 

ensure normal developmental competence of embryos during in vitro culture, survival 

of foetus during gestation and the birth of healthy offspring. Therefore, the removal or 

intervention of species-specific boundaries for embryo transfer is a fundamental 

requirement for the successful multiplication of reconstructed embryos, for example via 

reproductive techniques including interspecies cloning. Up to date, however, there is a 

very little has been done with inter-specific embryo transfer in large animal (Loi et al., 

2011). 

In our study, prior to the surgical operation, the ovaries of the recipients were 

checked laparoscopically for the presence of corpus luteum. Only those recipients with 

at least 1 well developed corpus luteum were selected for embryo transfer. Each 

recipient received embryos 2 or 3 days after the beginning of oestrus. The embryos were 

surgically transferred into the oviducts of a synchronised recipient at the 4- to 8 cell 

stages. A total of 9 recipients received reconstructed embryos by surgical operation. 

Studies suggested that transferred the embryos at early cell stages might allow the 

reconstructed embryos underwent a relatively short in vitro culture period. It may be 

that avoidance of longer term culture may have alleviated some of the detrimental 

effects of in vitro culture (Keefer et al., 2001; Reggio et al., 2001). In intraspecies 

SCNT on caprine, most viable cloned caprine offspring were obtained from the transfer 
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of early stage cloned embryos into the foster mothers (Baguisi et al., 1999; Reggio et al., 

2001; Zou et al., 2002; Behboodi et al., 2004; Tang et al., 2011). Generally, caprine 

intraspecies embryos are known to have a comparatively lower in vitro developmental 

potential towards the late preimplantation stage compared to those of other domestic 

species. Most of the reports of success in producing cloned kids involved the transfer of 

embryos at early cloned embryos stages from 2- to 8 cell stages (Abdullah et al., 2011). 

Tang et al. (2011) showed that the pregnancy rate by transfer of early stage embryos 

was higher than that obtained in the in vitro cultured blastocysts group on intraspecies 

caprine SCNT. Behboodi et al. (2004) reported that the main reason for the difference in 

embryo transfer performance with regard to embryo stages may be due to the embryo 

damage during in vitro culture resulting in poor embryo quality before the embryo 

transfer. However, Ohkoshi et al. (2003) produced the first nuclear transfer-derived 

cloned caprine following transfer of blasotcysts, although it died 16 days after birth. 

Tang et al. (2011) demonstrated viable offspring after the transfer of in vitro produced 

blastocysts. They monitored the health status of the cloned kid for 6 months and 

observed that there were no abnormalities of the kid. Until now, most researchers prefer 

to transfer caprine embryos prior to blastocyst stage through oviduct embryo transfer 

due to the difficulty of culturing viable embryos in vitro to the blastocyst stage. 

Therefore, in the present study, we decided to transfer the cloned caprine embryos at 

early cell stages through oviduct transfer.  

From our results, together with the findings of cloned embryos in other 

interspecies, we speculate that the bovine cytoplast can be reprogrammed by the donor 

karyoplasts (Dominko et al., 1999; Sansinena et al., 2005; Song et al., 2008; Abdullah 

et al., 2011). However, up to now, embryo implantation was not detected after these 

goat-cattle interspecies cloned embryos were transferred to synchronised recipient 
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caprine, even though bovine cytoplast was shown to support the dedifferentiation of 

caprine somatic nuclei (Abdullah et al., 2011). During embryo implantation, the signals 

from embryos to a recipient uterus for implantation are controlled by the donor nucleus, 

and these signals may be species-specific (Chen et al., 2002). To be successfully 

implanted, the signals from both embryo trophectoderm and recipient uterus must 

compatible to trigger the process of implantation. Compatibility between nucleus and 

cytoplasm may be limited to closely related species (Wells et al., 1998), while more 

diverse relationships may result in early embryonic loss (Dominko et al., 1999; White et 

al., 1999). The birth of cloned gaur by interspecies SCNT and successful implantation 

of a yak interspecies SCNT embryo using bovine oocytes as recipient cytoplasm proves 

that a close phylogenetic distance between the donor nucleus and recipient cytoplasm 

results in a higher likelihood of success in delivering live offspring.  Nevertheless, more 

evidence for the improvement of embryo transfer performance in interspecies 

implantation is timely in order to establish interspecies cloning in goat using goat 

karyoplast and cattle cytoplast a reality in the near future.  

Factors such as the genetic differences between the embryo and the recipient 

could have affected pregnancy establishment in the present study. Andrabi and Maxwell, 

(2007) suggested that the interspecies embryo transfer between endangered species and 

domestic surrogates is limited by a low pregnancy success, and the foeto-maternal 

recognition mechanism is still remained unclear. Therefore, future research should focus 

on defining factors affecting embryo development and pregnancy establishment after 

transferring the interspecies SCNT embryos to phylogenetically related animals. This is 

to increase the efficiency of using interspecies SCNT for the conservation of wildlife in 

the future (Thongphakdee et al., 2010). Contrarily, this lack of prenatal loss may be a 



174 

 

species related phenomenon reflected in the cytoplast’s ability to reprogramme the 

donor nucleus.  

 

5.6 GENERAL DISCUSSION 

The present research is a comprehensive study on the manipulation methods on the 

production of interspecies goat-cattle in vitro embryo development as well as an attempt 

to produce pregnancy after embryo transfer. Interspecies SCNT has been an invaluable 

tool for studying donor karyoplast (nucleus)-recipient cytoplast (oocyte) interaction, and 

it may be a method for rescuing endangered species whose oocytes are difficult to 

obtain (Tao et al., 2009a). Many factors influencing the optimum embryo and foetus 

developmental competence of the present study have been discussed in the previous 

section such as the enucleation methods, nuclear transfer methods, in vitro culture 

systems and sustaining pregnancy. In spite of the above-mentioned constraints, it is 

believed that this is the first report in Malaysia in regard to successful in obtaining in 

vitro development of interspecies goat-cattle embryos, involving optimisation of the 

micromanipulator techniques as previously described. The following section will 

provide brief discussion on other specific factors affecting interspecies SCNT 

performance not covered in this study.  

 

5.6.1 Type of Oocytes Used as the Recipient Cytoplast 

In general, the use of alternative nuclear transfer techniques such as interspecies nuclear 

transfer has interesting potential for species constrained by a limited availability of 

oocytes source (Yin et al., 2006). Interspecies SCNT has successfully shown the 

evidence that one species oocytes (cytoplast) could reprogramme the highly 

differentiated somatic cells (karyoplast) of the other species (Tao et al., 2009a). In the 
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present study, bovine oocytes were used as the recipient cytoplasts in caprine 

interspecies SCNT. The bovine oocytes have been successfully used as recipient 

cytoplasts for producing interspecies cloned blastocysts of gaur (Lanza et al., 2000); 

buffalo (Kitiyanant et al., 2001; Saikhun et al., 2002); yak (Li et al., 2007); banteng 

(Sansinena et al., 2005); black bear (Ty et al., 2003); monkey (Dominko et al., 1999) 

and goat (Song et al., 2008; Soh et al., 2011) with reasonably high blastocyst rates (8-

35 %) regardless of species. Besides using bovine as the recipient cytoplast, some other 

combinations of the species in interspecies SCNT have also being carried out such as 

panda-rabbit (Chen et al., 2002), cat-rabbit (Wen et al., 2003), goat-sheep (Ma et al., 

2008) and dog-pig (Sugimura et al., 2009) (7-25%). To date, rabbit was also widely 

used as the recipient oocytes due to their small animal in size, short reproductive life 

span, and easy manipulation and inducement of ovulation. Besides that, Zhao et al. 

(2006) reported that the rabbit oocyte was an ideal model for many types of studies due 

to its large size, elasticity and easy handling as well as the oocyte cytoplasm is capable 

of dedifferentiating somatic cell nuclei from other species. 

 One of the main reasons of choosing the bovine oocytes as the recipient 

cytoplasts in the current study is due to the number of chromosome present in bovine 

was similar to the caprine donor karyoplast, which is 60. It is believed that the 

chromosome number between the species used in interspecies SCNT might affect the 

reprogramming of donor nucleus to the cytoplast. In contrast, Dominko et al. (1999) 

reported that the disparity in the number of chromosomes between species does not 

seem to be limiting for the embryo developmental success (60 in cattle, 54 in sheep, 38 

in pig, 42 in monkey, 42 in rat). They demonstrated that blastocysts are produced in 

vitro from interspecies SCNT from species with different chromosome numbers. 

Besides the equal chromosome numbers of caprine and bovine, the reason for bovine 
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cytoplasts (oocytes) was chosen in the present study due to difficulty obtaining 

sufficient number of oocytes from other species such as ovine, porcine or equine. 

Therefore, bovine oocyte is suggested to be a preferred alternative for the production of 

caprine embryo through interspecies SCNT.  

 In addition, using bovine ooplasm as the recipient cytoplast can support 

differentiation of the introduced nuclei (donor karyoplast) from different species such as 

the caprine; however, the genetic divergence between donor karyoplast and recipient 

cytoplast may indeed represent a limiting factor influencing interspecies SCNT outcome 

(Dominko et al., 1999; Thongphakdee et al., 2008). Li et al. (2006) suggested that a 

closer genetic background between the donor karyoplast and recipient cytoplast could 

enhance blastocyst development in vitro better than the diverse genetic background. In 

the present study, the encouraging of blasotcyst formation rate in the goat-cattle 

interspecies SCNT (12%) has opened a window of opportunity for interspecies cloning 

using 2 different species in our laboratory as well as in Malaysia. In spite of this, the 

quality of blastocyst obtained in this present study is uncertain as indicated in our 

embryo transfer experiment that none of the goat recipient was detected pregnant. The 

issue is whether the recipient factor or the embryo factor or both that the desired results 

were not obtained. Therefore, detailed studies are needed in the future to elucidate this 

phenomenon. There were still some issues that might be involved in the low production 

of interspecies blastocyst such as the genetic distance between bovine and caprine, 

which may result in incompatible genomic regulation and metabolic mechanism. As 

compatibility between the recipient ooplasm and the donor nucleus must be reflected in 

some part in the overall effectiveness of nuclear reprogramming, nucleo-cytoplasmic 

interactions may be responsible for some of the detrimental effects observed following 

nuclear transfer (Dominko et al., 1999). However, our results have shown that 
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improvement in the culture system such as appropriate culture medium by additional 

supplementation of glucose has improved significantly the blastocyst production in 

caprine interspecies SCNT.      

 

5.6.2 Types of Donor Cell Used as the Donor Karyoplast 

In the present study, caprine foetal fibroblast cell was used as the donor karyoplast in 

the production of interspecies cloned caprine embryos. To our knowledge, this is the 

second report on the interspecies SCNT between goat-cattle by using foetal fibroblast 

cells in the world next after Song et al. (2008). In our study, the percentage of blastocyst 

(12%) obtained was slightly improved to the results reported by Song et al. (2008) (8%). 

Foetal fibroblast cells were believed to have less genetic damage and more proliferative 

ability (as measured by cell doublings) than adult somatic cells. Therefore, they have 

been the cell type of choice as nuclear donors (Hill et al., 2000a). However, this 

presents a limitation in that the individual the donor cells are derived from (a foetus) has 

not had the chance to demonstrate its genetic merit (an adult) prior to somatic cell 

nuclear transfer.  

Generally, most of the reports on both intraspecies and interspecies SCNT were 

done by using either cumulus or ear skin fibroblast cells as they are easy to obtain and 

result in no injuries to animals (Yang et al., 2010). Selokar et al. (2011) reported that in 

their study the reason for low blastocyst rate could be the use of adult fibroblasts as 

donor cells, which have been reported to give far lower cloning efficiency compared to 

those obtained with foetal or new born fibroblasts in buffalo (Shah et al., 2009), cattle 

(Saikhun et al., 2002) and pig (Lee et al., 2007). 

When the efficiency of various cell types from adult, newborn and foetal male 

and female donor fibroblast cells was compared in intraspecies SCNT experiment, the 
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percentage of blastocysts produced from each cell type was found not to be significantly 

different (Kato et al., 2000). Similar results were obtained using various cell types 

derived from mice of different strains, sexes and ages (Wakayama and Yanagimachi, 

2001). Besides that, no significant differences were found in bovine embryo 

developmental rates to the blastocyst stage with adult, newborn or foetal cell nuclei; 

however, abortion in later stages of pregnancy was higher for cloned foetuses derived 

from adult cells (Kato et al., 2000). Similarly, no differences among embryos derived 

from foetal and adult bovine fibroblasts with regard to fusion, cleavage and blastocyst 

formation were detected (Niemann et al., 2002). However, more foetal losses after 

transfer into recipients were noted with embryos reconstructed with adult bovine donor 

cells (Hill et al., 2000b; Niemann et al., 2002). In terms of the production of transgenic 

animal, foetal fibroblast cells have been used most often (Schnieke et al., 1997; Cibelli 

et al., 1998; Hyun et al., 2003). This is because they have been considered the most 

suitable cell type for transgenic animal production. Therefore, it is suggested that foetal 

fibroblast cells could be the ideal donor karyoplasts in both SCNT and transgenic 

approach in the future. 

 

5.6.3 Epigenetic Reprogramming in Somatic Cell Nuclear Transfer 

Epigenetic remodeling must occur for normal embryo development to proceed (Dean et 

al., 2003). However, the most extreme version of this remodeling must take place when 

a differentiated somatic cell (donor karyoplast) is returned to an oocyte (recipient 

cytoplast) and challenged to undergo de-differentiation to restore totipotency of the 

cloned embryo (Li, 2002; Wade and Kikyo, 2002). Although a wide variety of nuclear 

donor types have been found to be successful in a number of different mammalian 

species, they all share the common problems of low efficiency and high levels of early 



179 

 

and later embryonic mortality, suggesting that the errors that arise are fundamental and 

systematic in nature. In order to achieve the reprogramming of the somatic nucleus 

(donor karyoplast), a number of critical processes must occur which include 

transcriptional silencing of the donor nucleus (karyoplast), erasure of differentiated 

cellular memory (cytoplast), appropriate activation of the reconstructed interspecies 

“one-cell embryo”, and appropriate embryonic gene expression at all later stages. Each 

of these steps involves a series of complex epigenetic alterations (Dean et al., 2003). 

Wade and Kikyo (2002) and Reik et al. (2001) reported that the changes in chromatin, 

involving the covalent modification of histones and in DNA methylation would seem to 

be prime factors determine the successful outcome for nuclear reprogramming.  

 Dean et al. (2003) demonstrated that the DNA methylation and chromatin errors 

may contribute significantly to the low rates of efficiency of somatic nuclear transfer. In 

their study, they used antibodies to 5-methyl cytosine to evaluate the genome-wide 

pattern of DNA methylation in cloned intraspecies bovine embryos. They found out that 

partial reprogramming was provided by the change in the organisation of methylation in 

“one-cell” reconstructed embryos, possibly as a result of active demethylation. However, 

it is interesting to note that the absence of passive demethylation and the inappropriately 

early de novo methylation at the 4- to 8 cell stages provided a strong indication that 

inadequate nuclear reprogramming had occurred (Dean et al., 2001a). While, in the 

blastocyst stage, the patterns normally observed between the differentiated lineages of 

ICM and trophectoderm were much less obvious as overall increases in DNA 

methylation had taken place, resulting in particular in aberrant hypermethylation in 

trophectoderm. Therefore, they concluded that aberrant epigenetic reprogramming 

occurs in the majority of both intraspecies and interspecies cloned preimplantation 

embryos. Boiani et al. (2002), Byrne et al. (2002) and Inoue et al. (2002) proposed that 
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the large scale reprogramming failure underlies, at least in part, the developmental 

failures of cloned embryos by interfering with appropriate gene expression.   

It is believed that major barriers to the development of interspecies embryos are 

first manifested at the time when the genome of the somatic cell (donor karyoplast) 

becomes independent from the maternal transcripts (recipient cytoplast) and initiates 

transcription on its won (reconstructed embryo) (Beyhan et al., 2007), the failure of 

occurrence of which may lead to imposition of developmental arrest (Latham, 2005). 

Therefore, it is critical in the caprine embryos in which the maternal-embryonic 

transition occurs at 8-16 cell stage. Dominko et al. (1999) reported that the use of 

alternative nuclear transfer techniques such as interspecies nuclear transfer has 

interesting potential for species constrained by a limited availability of oocytes as 

recipient cytoplast. However, an in vitro embryo developmental block as has been 

previously reported as well as other factors influencing interpsecies cloning procedure 

should be taken into consideration to ensure normal developmental competence of 

cloned embryos, particularly when the species of the donor karyoplasts and recipient 

cytoplasts are far apart in taxonomic classification. It is suggested in the present study 

that further experiment may carry out to compare the efficiency between both oviduct 

and uterine embryo transfer. 

 

 5.6.4 Summary 

In summary, blastocyst caprine embryos could be produced in vitro for the first time in 

Malaysia through interspecies SCNT under local setting. Bovine cytoplast could be 

reprogrammed by the caprine nuclei foetal fibroblast karyoplast. Both enucleation 

methods, i.e. squeezing and aspiration were able to produce in vitro cloned-caprine 

embryos up to blastocyst stage. Nuclear transfer by using sub-zonal injection with 
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electro-fusion gave a significantly higher blastocyst results than intracytopalsmic 

injection.  Relatively high proportions of reconstructed embryos developed to advanced 

stages in KSOM for first 3 days and changed medium with KSOM supplemented with 

additional glucose (0.04%, 2.2 mM) at days 3 and 5, suggesting that this in vitro culture 

system may be a suitable culture medium for caprine interspecies SCNT embryos using 

bovine oocytes as the recipient cytoplasts and caprine foetal fibroblast cells as the donor 

karyoplasts.  

In a nutshell, from the significant findings of this study, the optimised conditions 

for interspecies SCNT are suggested as following: 

a) Enucleation method  : Squeezing method 

b) Nuclear transfer method : Sub-zonal injection together with electrofusion 

c) In vitro culture medium : KSOM A on days 1-3; change medium with  

                                                  KSOM B on days 3 and 5   

 

5.6.5 Future Directions 

Limited information is available in the literature on the developmental competence of 

caprine interspecies SCNT embryos. In the present study, it is demonstrated that such 

embryos could be generated through goat-cattle interspecies SCNT with the production 

of blastocysts after culturing in modified KSOM medium. However, numerous extrinsic 

and intrinsic including technical factors influencing the efficiency of interspecies SCNT 

need to be refined and studied in details before this procedure could be used routinely 

for the production of cloned caprine embryos for biological research and industry 

application. It is well known that it is difficult to produce high percentage of caprine 

blastocysts in normal IVF and ICSI techniques. Hence, to produce such embryos using 

SCNT is more challenging particularly in interspecies SCNT. Since ABEL laboratory 
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obtained encouraging results from previous research, it is believed that a high 

percentage of viable blastocyst is achievable provided that all the constraints related to 

developmental competence of these interspecies embryos are solved. It should be 

appreciated that nuclear transfer is a complex protocol, which involves various steps 

and each step might affects the overall efficiency of its performance. The protocol 

involves the following steps such as the preparation of somatic cells, the preparation of 

enucleated oocytes, the injection or fusion of somatic cell nuclei into the enucleated 

oocyte, the reconstruction of the somatic chromosomes, oocyte activation and culture 

medium methods to produce a diploid cloned embryo. The subsequent challenge is to 

ensure the viability of the embryos after culturing in vitro using suitable culture medium. 

In order to obtain healthy and live born offspring, not only embryo quality but also the 

appropriate foster mothers physically and physiologically must be taken into 

consideration. In addition, proper embryo transfer skill must be acquired before 

venturing into embryo transfer programme. In a nutshell, besides the above-mentioned 

factors, the clarification and understanding of the genetic background, molecular 

biology and developmental biology of the interspecies SCNT should be given priority in 

future research in order to make increase caprine production using cloning as an 

alternative approach a reality in the near future.   
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Chapter 6 

6.0 CONCLUSIONS 

 

This study was carried out to investigate the effects of enucleation methods, nuclear 

transfer methods and in vitro culture systems for the in vitro development of cloned-

caprine embryos produced through interspecies somatic cell nuclear transfer 

(interspecies SCNT) technique using caprine foetal fibroblast cells as donor karyoplast 

and bovine oocyte as recipient ccytoplast. Specific conclusions can be made based on 

the findings from this research as follows: 

 

a) This is the first report of interspecies SCNT using caprine-foetal fibroblast cells 

as donor karyoplasts and bovine oocytes as recipient cytopalsts in the local 

setting at Animal Biotechnology-Embryo Laboratory, the University of Malaya, 

Malaysia.  

b) Bovine cytoplast could be reprogrammed by caprine foetal fibroblast karyoplast 

with the cloned-caprine blastocyst formation cultured in vitro ranging from 5 to 

12%.  

c) Both enucleation methods (squeezing and aspiration) have the ability to produce 

viable cloned-caprine embryos up to blastocyst with no significant difference to 

each another. 

d) Sub-zonal injection with electro-fusion was shown to be significantly higher in 

the production of cloned-caprine blastocyst compared to intracytoplasmic 

injection for the nuclear transfer method. 

e) Supplementation of glucose level (0.04%, 2.2 mM) at the late stage embryo 

culture has significantly improved the blastocyst formation. It is believed that 

this is the first report of using KSOM at early stages development and KSOM 
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supplemented with additional glucose (0.04%, 2.2 mM) at later stages 

development that produces good cleavage rate and satisfactory blastocyst rate of 

cloned-caprine embryos following interspecies SCNT. 

f) Production of in vitro caprine embryos through assisted reproduction was 

limited by the shortage of caprine oocytes source in Malaysia. It is suggested 

that, interspecies SCNT by substitution the recipient cytoplast to bovine oocyte 

will be a better alternative for the production of caprine embryos in Malaysia in 

near future. These embryos subsequently can be transferred into foster mother to 

produce live offspring in large number at a rapid rate for the industry. 

g) In a nut-shell, successful production of cloned-caprine embryos in vitro until 

blastocyst stage was obtained from interspecies nuclear transfer using bovine 

cytoplast and caprine karyoplast. 
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APPENDICES 

APPENDIX 1: LIST OF MATERIALS 

Appendix Table 1.1: List of equipment/instrument 
 
Equipment/instrument Model no. Manufacturer 
Abrasive stone or oilstone - Hall’s Arkansas Oilstones, 

USA 
Autoclave HA-300MII Hirayama Hiclave, Japan 
Centrifuge D37520 Heraeus, Germany 
CIDR applicator - Pharmaciaand Upjohn, 

New Zealand 
CO2 incubator HeraCell 240 Heraeus, Germany 
CO2 insufflator system PG001 Aesculap®, Germany 
Digital analytical balance AB104 Mettler Toledo, 

Switzerland 
Digital camera (X-Cam-α) - microLAMDA Sdn Bhd, 

Malaysia 
Dissecting microscope SZH10 Olympus, Japan 
Electrofusion machine SUTF-1 Suranaree University of 

Technology, Thailand 
Heating stage (Thermoplate) HATS-U55R30 Tokai Hit, Japan 
Impulse sealer KF-300H Khind, Taiwan 
Inverted microscope IX71 Olympus, Japan 
Laminar flow cabinet HLF-120 Gelman Sciences, 

Australia 
Laparoscopic system:  Aesculap®, Germany 

(a) Endoscopic camera system PV431  
(b) CCD camera PV430  
(c) Pediatric Storz laparoscope (7 

mm)  
PE688A  

(d) Light probe with fibre optic cable PO913  
(e) Light system (300 W) OP927  

Liquid nitrogen tank  SC2/1V MVE, USA 
Microforge - Technical Products 

Internationals, USA 
Micropipette grinder EG-4 Narashige, Japan 
Micropipette dispenser - Eppendorf, Germany 
Micropipette puller P-97 Sutter Instrument Co., 

USA 
Narishige hydraulic micromanipulators ON3-99D Narashige, Japan 
Osmometer Vapro 5520 WESCOR Inc., USA 
Oven 40050-IP20 Memmert GmbH, 

Germany 
pH meter HI-122 Hanna Instruments, 

Singapore 
Refrigerator and freezer SR-21NME Samsung Electronics, 

Korea 
(continued) 
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(continued) 
Equipment/instrument Model no. Manufacturer 
Spirit burner - Shanghai Machinery  
Stereomicroscope SZH10 Olympus Optical, Japan 
Surgical set - Aesculap®, Germany 
Surgical table - Syarikat Copens 

Enterprise, Malaysia 
Trocar and canula (5.5 mm & 7.0 mm) EJ456, EJ457 Aesculap®, Germany 
Ultrapure water purification system Milli-Q PF Plus Millipore, USA 
Vapour pressure osmometer 5520 Vapro Wescor, USA 
Equipment/instrument Model no. Manufacturer 
Vortex mixer VTX-3000L LMS, Japan 
Water bath GMP-GC-19 Memmert GmbH, 

Germany 
 
 
Appendix Table 1.2: List of chemicals, reagents and media 
 
Chemicals, reagents and media Catalogue no. Manufacturer 
6-dimethylaminopurine (6-DMAP) D2629 Sigma-Aldrich, USA 
70% ethanol - Prepared from absolute 

ethanol 
α-MEM powder M0644 Sigma-Aldrich, USA 
BSA-FV A7030 Sigma-Aldrich, USA 
BSA A6003 Sigma-Aldrich, USA 
Ethyl alcohol 99.8% (absolute ethanol) ET150-50 System ChemAR®, Poland 
Hibiscrub (antiseptic) HK-06770 SSL International Plc, UK 
BME amino acids solution (50X) B6766 Sigma-Aldrich, USA 
Calcium chloride (CaCl2) C5670 Sigma-Aldrich, USA 
Calcium chloride dihydrate (CaCl2.2H2O) C3881 Sigma-Aldrich, USA 
Calcium ionophore (Ca2+ ionophore) C7522 Sigma-Aldrich, USA 
Cleaning solution 7X®-PF - FlowLabTM, Australia 
Cysteamine M9768 Sigma-Aldrich, USA 
Cytochalasin B C6762 Sigma-Aldrich, USA 
D-glucose G6152 Sigma-Aldrich, USA 
Dimethyl sulphoxide (DMSO) D5879 Sigma-Aldrich, USA 
Disinfectant Gigasept® FF - Schülke & Mary GmbH, 

Germany 
EDTA E4884 Sigma-Aldrich, USA 
EDTA E9884 Sigma-Aldrich, USA 
Foetal bovine serum 10270 Gibco BRL, USA 
FSH Folltropin-V® Intervet International, 

Holland 
Gentamicin sulphate salt G3632 Sigma-Aldrich, USA 
Goat pellet feed - KMM Berhad, Malaysia 
HEPES (free acid) H3375 Sigma-Aldrich, USA 
HEPES: C8H17N2O4SNa H3784 Sigma-Aldrich, USA 
HEPES: C8H18N2O4S H6147 Sigma-Aldrich, USA 

   (continued) 
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(continued) 
Chemicals, reagents and media  Catalogue no. Manufacturer 
Hoechst 33342 B2261 Sigma-Aldrich, USA 
Hydrochloric acid HY450-70 Systerm ChemAR®, 

Poland 
Hyaluronidase (from bovine testes) H4272 Sigma-Aldrich, USA 
Intravaginal progesterone release devise - Pharmacia and Upjohn, 

New Zealand 
Ketamil injection (ketamine hydrochloride) L10077 Troy Laboratories, 

Australia 
K-Y Lubricating Jelly - Pharmedica Lab, South 

Africa 
L-glutamine G3126 Sigma-Aldrich, USA 
Liquid nitrogen - Mox Gases Berhad, 

Malaysia 
Magnesium acetate tetrahydrate 
[Mg(CH3COO)2] 

M0631 Sigma-Aldrich, USA 

Magnesium chloride hezahydrate 
(MgCl2.6H2O) 

M2393 Sigma-Aldrich, USA 

Magnesium sulphate (MgSO4) M7506 Sigma-Aldrich, USA 
MEM non-essential amino acids solution 
(100x) 

M7145 Sigma-Aldrich, USA 

Mineral oil M8410 Sigma-Aldrich, USA 
Oestradiol-17β E8875 Sigma-Aldrich, USA 
PBS Dulbecco A tablets BR0014G Oxoid, England 
Penicillin-G P7794 Sigma-Aldrich, USA 
Phenol red powder P3532 Sigma-Aldrich, USA 
Potassium chloride (KCl) P5405 Sigma-Aldrich, USA 
Potassium phosphate monobasic (KH2PO4) P5655 Sigma-Aldrich, USA 
PVP  PVP360 Sigma-Aldrich, USA 
Sodium bicarbonate (NaHCO3) S5761 Sigma-Aldrich, USA 
Sodium chloride (NaCl) S5886 Sigma-Aldrich, USA 
Sodium DL-lactate (60% syrup) L7900 Sigma-Aldrich, USA 
Sodium phosphate dibasic (Na2HPO4) S5136 Sigma-Aldrich, USA 
Sodium phosphate monobasic monohydrate 
(NaH2PO4.H2O) 

S9638 Sigma-Aldrich, USA 

Sodium pyruvate P4562 Sigma-Aldrich, USA 
Sorbitol S3889 Sigma-Aldrich, USA 
Streptomycin S1277 Sigma-Aldrich, USA 
Streptomycin S9137 Sigma-Aldrich, USA 
TCM-199 M4530 Sigma-Aldrich, USA 
Trypsin T4799 Sigma-Aldrich, USA 
Weak iodine solution - ICN Biomedicals, USA 
Xylazine hydrochloride (Ilium Xylazil-20) L10600 Troy Laboratories, 

Australia 
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Appendix Table 1.3: List of labwares and disposables 
 
Labwares and disposables Manufacturer 
Aluminium foil Reynolds Consumer Products, USA 
Autoclave disposable bag Megalab supplies, Malaysia 
Blades (Super Nacet) Gillette, USA 
Borosilicate glass tubing (Microcaps®) Drummond Scientific Company, 

USA 
Chromic catgut and other suture materials Aesculap®, Germany 
Culture dish Nunc, Denmark 
Disposable glass Pasteur pipette Hirschmann® Laborgerete, Germany 
Disposable hand tissues Megalab supplies, Malaysia 
FalconTM conical tube Becton Dickinson, USA 
FalconTM polystyrene round-bottom test tube Becton Dickinson, USA 
Glassware (beaker, flask, measuring cylinder etc.) Pyrex®, Japan 
Lens cleansing tissue (Kimswipe® EX-L) Kimberly-Clark, USA 
Microcentrifuge tube Elkay, Costelloe 
Micropipette tips without filter Axygen Scientific, USA 
Microscope slide Sail Brand, China 
Microscope glass cover slip Hirschmann® Laborgerate, Germany 
Millex®-GS syringe driven filter Schleicher and Schuell, Germany 
Needle Terumo Corporation, Japan 
Parafilm Pechiney Plastic Packaging, USA 
Schott bottle Duran, Germany 
Serogocal pipette LP Italian SPA, Italy 
Sterile glove Ansell International, Malaysia 
Syringe Terumo Corporation, Japan 
Tissue culture flask Nunc, Denmark 
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APPENDIX 2: STATISTICAL DATA 

Appendix Table 2.1: Successfully enucleated and injected rates, and duration needed to 
complete the enucleation together with injection in interspecies 
SCNT cloned-caprine embryos 

 
Fguetkrvkxgu 

  

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum   Lower Bound Upper Bound 

enucleated squeezing 6 88.0083 7.35186 3.00138 80.2930 95.7236 76.60 95.00

aspiration 6 91.6750 4.71479 1.92480 86.7271 96.6229 84.62 96.88

Total 12 89.8417 6.19185 1.78743 85.9076 93.7758 76.60 96.88

injected squeezing 6 93.2583 6.49917 2.65328 86.4379 100.0788 83.33 100.00

aspiration 6 100.0000 .00000 .00000 100.0000 100.0000 100.00 100.00

Total 12 96.6292 5.62096 1.62263 93.0578 100.2006 83.33 100.00

timing squeezing 6 83.8167 7.74515 3.16194 75.6886 91.9447 70.84 91.30

aspiration 6 41.1800 6.77865 2.76737 34.0662 48.2938 30.00 47.73

Total 12 62.4983 23.32253 6.73263 47.6799 77.3168 30.00 91.30

 
 

CPQXC 

  Sum of Squares df Mean Square F Sig. 

Matured Between Groups 55.815 1 55.815 3.633 .086

Within Groups 153.621 10 15.362   

Total 209.436 11    

Enucleated Between Groups 40.333 1 40.333 1.058 .328

Within Groups 381.395 10 38.140   

Total 421.729 11    

Injected Between Groups 136.350 1 136.350 6.456 .029

Within Groups 211.196 10 21.120   

Total 347.546 11    
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Appendix Table 2.2: Percentages of reconstructed couplets and in vitro embryo 
development for different enucleation methods in interspecies 
SCNT cloned-caprine embryos 

 
Fguetkrvkxgu 

  

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum   Lower Bound Upper Bound 

reconstructed squeezing 6 87.5150 3.85099 1.57216 83.4736 91.5564 83.33 93.33

aspiration 6 84.8383 6.98171 2.85027 77.5115 92.1652 75.00 92.00

Total 12 86.1767 5.55441 1.60342 82.6476 89.7058 75.00 93.33

twocell squeezing 6 60.1783 5.95601 2.43153 53.9279 66.4288 52.38 68.97

aspiration 6 61.5450 10.27959 4.19663 50.7572 72.3328 50.00 74.07

Total 12 60.8617 8.04151 2.32138 55.7523 65.9710 50.00 74.07

fourcell squeezing 6 53.8017 6.95327 2.83866 46.5047 61.0987 42.86 62.07

aspiration 6 49.8550 9.47305 3.86736 39.9136 59.7964 41.18 62.96

Total 12 51.8283 8.18625 2.36317 46.6270 57.0296 41.18 62.96

eightcell squeezing 6 37.7067 8.07377 3.29610 29.2338 46.1796 28.57 51.72

aspiration 6 39.2217 10.43737 4.26104 28.2683 50.1750 29.41 55.56

Total 12 38.4642 8.93160 2.57833 32.7893 44.1390 28.57 55.56

morula squeezing 6 24.4517 6.63297 2.70790 17.4908 31.4125 18.18 34.48

aspiration 6 21.0700 9.64728 3.93849 10.9458 31.1942 11.76 37.04

Total 12 22.7608 8.08837 2.33491 17.6217 27.8999 11.76 37.04

blastocyst squeezing 6 12.0783 7.22265 2.94864 4.4986 19.6580 4.76 20.69

aspiration 6 10.9317 4.58586 1.87217 6.1191 15.7442 5.77 18.52

Total 12 11.5050 5.79913 1.67406 7.8204 15.1896 4.76 20.69
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CPQXC 

  Sum of Squares df Mean Square F Sig. 

reconstructed Between Groups 21.494 1 21.494 .676 .430

Within Groups 317.872 10 31.787   

Total 339.366 11    

twocell Between Groups 5.603 1 5.603 .079 .784

Within Groups 705.721 10 70.572   

Total 711.324 11    

fourcell Between Groups 46.729 1 46.729 .677 .430

Within Groups 690.434 10 69.043   

Total 737.162 11    

eightcell Between Groups 6.886 1 6.886 .079 .784

Within Groups 870.623 10 87.062   

Total 877.508 11    

morula Between Groups 34.307 1 34.307 .501 .495

Within Groups 685.331 10 68.533   

Total 719.638 11    

blastocyst Between Groups 3.945 1 3.945 .108 .749

Within Groups 365.984 10 36.598   

Total 369.929 11    
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Appendix Table 2.3: Successfully enucleated, injected, reconstructed couplets and 
embryos cleaved rates for different injection methods in 
interspecies SCNT cloned-caprine embryos 

 
Fguetkrvkxgu 

  

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean 

Minimum Maximum   Lower Bound Upper Bound 

Enucleated SUZI 6 88.0083 7.35186 3.00138 80.2930 95.7236 76.60 95.00

ICI 8 92.0400 5.09540 1.80150 87.7801 96.2999 85.71 100.00

Total 14 90.3121 6.24943 1.67023 86.7038 93.9205 76.60 100.00

Injected SUZI 6 93.2583 6.49917 2.65328 86.4379 100.0788 83.33 100.00

ICI 8 90.6975 6.51700 2.30411 85.2492 96.1458 79.17 100.00

Total 14 91.7950 6.39098 1.70806 88.1050 95.4850 79.17 100.00

Reconstructed SUZI 6 87.5150 3.85099 1.57216 83.4736 91.5564 83.33 93.33

ICI 8 91.2775 5.97941 2.11404 86.2786 96.2764 83.78 100.00

Total 14 89.6650 5.35623 1.43151 86.5724 92.7576 83.33 100.00

Cleaved SUZI 6 60.1783 5.95601 2.43153 53.9279 66.4288 52.38 68.97

ICI 8 54.1425 5.06303 1.79005 49.9097 58.3753 45.16 58.82

Total 14 56.7293 6.08730 1.62690 53.2146 60.2440 45.16 68.97

 
 

CPQXC 

  Sum of Squares df Mean Square F Sig. 

Enucleated Between Groups 55.729 1 55.729 1.480 .247

Within Groups 451.991 12 37.666   

Total 507.720 13    

Injected Between Groups 22.484 1 22.484 .531 .480

Within Groups 508.495 12 42.375   

Total 530.980 13    

Reconstructed Between Groups 48.536 1 48.536 1.795 .205

Within Groups 324.424 12 27.035   

Total 372.960 13    

Cleaved Between Groups 124.907 1 124.907 4.201 .063

Within Groups 356.811 12 29.734   

Total 481.718 13    
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Appendix Table 2.4: Percentages of reconstructed couplets and in vitro embryo 
development for different injection methods in interspecies 
SCNT cloned-caprine embryos 

 
Fguetkrvkxgu 

  

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean

Minimum Maximum   Lower Bound Upper Bound 

reconstructed SUZI 6 87.5150 3.85099 1.57216 83.4736 91.5564 83.33 93.33

ICI 8 91.2775 5.97941 2.11404 86.2786 96.2764 83.78 100.00

Total 14 89.6650 5.35623 1.43151 86.5724 92.7576 83.33 100.00

twocell SUZI 6 60.1783 5.95601 2.43153 53.9279 66.4288 52.38 68.97

ICI 8 54.1425 5.06303 1.79005 49.9097 58.3753 45.16 58.82

Total 14 56.7293 6.08730 1.62690 53.2146 60.2440 45.16 68.97

fourcell SUZI 6 53.8017 6.95327 2.83866 46.5047 61.0987 42.86 62.07

ICI 8 38.6013 6.36451 2.25019 33.2804 43.9221 29.03 47.62

Total 14 45.1157 10.06696 2.69051 39.3032 50.9282 29.03 62.07

eightcell SUZI 6 37.7067 8.07377 3.29610 29.2338 46.1796 28.57 51.72

ICI 8 31.3775 9.37741 3.31542 23.5378 39.2172 16.67 42.86

Total 14 34.0900 9.10969 2.43467 28.8302 39.3498 16.67 51.72

morula SUZI 6 24.4517 6.63297 2.70790 17.4908 31.4125 18.18 34.48

ICI 8 16.0488 4.05301 1.43295 12.6604 19.4371 6.45 19.23

Total 14 19.6500 6.66251 1.78063 15.8032 23.4968 6.45 34.48

blastocyst SUZI 6 12.0783 7.22265 2.94864 4.4986 19.6580 4.76 20.69

ICI 8 4.5075 4.09603 1.44816 1.0831 7.9319 .00 9.52

Total 14 7.7521 6.64942 1.77713 3.9129 11.5914 .00 20.69
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CPQXC 

  Sum of Squares df Mean Square F Sig. 

reconstructed Between Groups 48.536 1 48.536 1.795 .205

Within Groups 324.424 12 27.035   

Total 372.960 13    

twocell Between Groups 124.907 1 124.907 4.201 .063

Within Groups 356.811 12 29.734   

Total 481.718 13    

fourcell Between Groups 792.181 1 792.181 18.097 .001

Within Groups 525.288 12 43.774   

Total 1317.469 13    

eightcell Between Groups 137.343 1 137.343 1.751 .210

Within Groups 941.480 12 78.457   

Total 1078.823 13    

morula Between Groups 242.088 1 242.088 8.673 .012

Within Groups 334.969 12 27.914   

Total 577.057 13    

blastocyst Between Groups 196.517 1 196.517 6.234 .028

Within Groups 378.276 12 31.523   

Total 574.793 13    
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Appendix Table 2.5: Successfully enucleated, injected and reconstructed couplets rates 
for different in vitro culture systems in interspecies SCNT cloned-
caprine embryos 

 
Fguetkrvkxgu 

  

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean

Minimum Maximum   Lower Bound Upper Bound 

Matured Group A 6 57.8633 2.68018 1.09418 55.0507 60.6760 54.29 62.50

Group B 6 55.8650 5.34522 2.18218 50.2555 61.4745 52.86 66.67

Group C 6 56.7783 5.24326 2.14055 51.2759 62.2808 50.00 65.71

Total 18 56.8356 4.39413 1.03571 54.6504 59.0207 50.00 66.67

Enucleated Group A 6 91.4733 2.79839 1.14244 88.5366 94.4101 86.21 94.59

Group B 6 93.3767 5.01378 2.04687 88.1150 98.6383 86.36 100.00

Group C 6 88.0083 7.35186 3.00138 80.2930 95.7236 76.60 95.00

Total 18 90.9528 5.55184 1.30858 88.1919 93.7136 76.60 100.00

Injected Group A 6 90.9700 2.85733 1.16650 87.9714 93.9686 85.71 94.29

Group B 6 91.6867 5.75225 2.34835 85.6501 97.7233 81.25 97.14

Group C 6 93.2583 6.49917 2.65328 86.4379 100.0788 83.33 100.00

Total 18 91.9717 5.05208 1.19079 89.4593 94.4840 81.25 100.00

Reconstructed Group A 6 87.5650 3.70442 1.51232 83.6774 91.4526 83.33 92.86

Group B 6 85.7983 4.91688 2.00731 80.6384 90.9583 76.92 91.67

Group C 6 87.5150 3.85099 1.57216 83.4736 91.5564 83.33 93.33

Total 18 86.9594 4.02773 .94934 84.9565 88.9624 76.92 93.33
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CPQXC 

  Sum of Squares df Mean Square F Sig. 

Matured Between Groups 12.009 2 6.005 .285 .756

Within Groups 316.233 15 21.082   

Total 328.242 17    

Enucleated Between Groups 88.896 2 44.448 1.532 .248

Within Groups 435.094 15 29.006   

Total 523.990 17    

Injected Between Groups 16.440 2 8.220 .295 .748

Within Groups 417.460 15 27.831   

Total 433.900 17    

Reconstructed Between Groups 12.141 2 6.071 .345 .713

Within Groups 263.643 15 17.576   

Total 275.784 17    

 

 
Post Hoc Tests 

 
Ocvwtgf

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 

Group B 6 55.8650 

Group C 6 56.7783 

Group A 6 57.8633 

Sig.  .486 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 
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Gpwengcvgf 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 

Group C 6 88.0083 

Group A 6 91.4733 

Group B 6 93.3767 

Sig.  .121 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 
Kplgevgf 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 

Group A 6 90.9700 

Group B 6 91.6867 

Group C 6 93.2583 

Sig.  .488 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 
Tgeqpuvtwevgf 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 

Group B 6 85.7983 

Group C 6 87.5150 

Group A 6 87.5650 

Sig.  .500 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 
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Appendix Table 2.6: Percentages of reconstructed couplets and in vitro embryo 
development for different in vitro culture systems in interspecies 
SCNT cloned-caprine embryos 

 
Fguetkrvkxgu 

  

N Mean Std. Deviation Std. Error 

95% Confidence Interval for Mean

Minimum Maximum   Lower Bound Upper Bound 

reconstructed Group A 6 87.5650 3.70442 1.51232 83.6774 91.4526 83.33 92.86

Group B 6 85.7983 4.91688 2.00731 80.6384 90.9583 76.92 91.67

Group C 6 87.5150 3.85099 1.57216 83.4736 91.5564 83.33 93.33

Total 18 86.9594 4.02773 .94934 84.9565 88.9624 76.92 93.33

twocell Group A 6 49.0117 4.95857 2.02433 43.8080 54.2154 41.03 55.00

Group B 6 49.8450 7.99828 3.26529 41.4513 58.2387 40.00 60.00

Group C 6 60.1783 5.95601 2.43153 53.9279 66.4288 52.38 68.97

Total 18 53.0117 7.98714 1.88259 49.0398 56.9836 40.00 68.97

fourcell Group A 6 36.9167 7.40840 3.02447 29.1420 44.6913 28.57 45.16

Group B 6 39.6800 6.66740 2.72196 32.6830 46.6770 33.33 51.72

Group C 6 53.8017 6.95327 2.83866 46.5047 61.0987 42.86 62.07

Total 18 43.4661 10.06670 2.37274 38.4601 48.4722 28.57 62.07

eightcell Group A 6 26.4617 4.27364 1.74471 21.9768 30.9466 21.43 32.26

Group B 6 29.3400 4.57170 1.86639 24.5423 34.1377 25.00 37.93

Group C 6 37.7067 8.07377 3.29610 29.2338 46.1796 28.57 51.72

Total 18 31.1694 7.40120 1.74448 27.4889 34.8500 21.43 51.72

morula Group A 6 8.4183 1.14962 .46933 7.2119 9.6248 7.14 10.00

Group B 6 10.2217 3.65592 1.49252 6.3850 14.0583 6.67 17.24

Group C 6 24.4517 6.63297 2.70790 17.4908 31.4125 18.18 34.48

Total 18 14.3639 8.46808 1.99595 10.1528 18.5750 6.67 34.48

blastocyst Group A 6 .0000 .00000 .00000 .0000 .0000 .00 .00

Group B 6 .0000 .00000 .00000 .0000 .0000 .00 .00

Group C 6 12.0783 7.22265 2.94864 4.4986 19.6580 4.76 20.69

Total 18 4.0261 7.04764 1.66115 .5214 7.5308 .00 20.69
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CPQXC 

  Sum of Squares df Mean Square F Sig. 

reconstructed Between Groups 12.141 2 6.071 .345 .713

Within Groups 263.643 15 17.576   

Total 275.784 17    

twocell Between Groups 464.333 2 232.167 5.615 .015

Within Groups 620.170 15 41.345   

Total 1084.504 17    

fourcell Between Groups 984.321 2 492.161 9.997 .002

Within Groups 738.433 15 49.229   

Total 1722.754 17    

eightcell Between Groups 409.472 2 204.736 5.886 .013

Within Groups 521.751 15 34.783   

Total 931.223 17    

morula Between Groups 925.625 2 462.813 23.660 .000

Within Groups 293.418 15 19.561   

Total 1219.043 17    

blastocyst Between Groups 583.545 2 291.772 16.779 .000

Within Groups 260.833 15 17.389   

Total 844.378 17    

 

 
Post Hoc Tests 

 
 

tgeqpuvtwevgf

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 

Group B 6 85.7983 

Group C 6 87.5150 

Group A 6 87.5650 

Sig.  .500 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 
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vyqegnn 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 2 

Group A 6 49.0117  

Group B 6 49.8450  

Group C 6  60.1783 

Sig.  .825 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 
 

hqwtegnn 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 2 

Group A 6 36.9167  

Group B 6 39.6800  

Group C 6  53.8017 

Sig.  .506 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 
 

gkijvegnn

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 2 

Group A 6 26.4617  

Group B 6 29.3400  

Group C 6  37.7067 

Sig.  .411 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 
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oqtwnc 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 2 

Group A 6 8.4183  

Group B 6 10.2217  

Group C 6  24.4517 

Sig.  .491 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 

 
 

dncuvqe{uv 

Duncana 

VAR00001 N 

Subset for alpha = 0.05 

1 2 

Group A 6 .0000  

Group B 6 .0000  

Group C 6  12.0783 

Sig.  1.000 1.000 

Means for groups in homogeneous subsets are displayed. 

a. Uses Harmonic Mean Sample Size = 6.000. 
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APPENDIX 3: SUPPLEMENTARY RESULTS FROM PRELIMINARY STUDIES 
 
Appendix Table 3.1: Preliminary experiment to develop techniques on nuclear transfer using intraspecies caprine, bovine and porcine as model animals 
 
Model animals Types of 

donor cell 
used 

Total no. 
of matured 

oocytes 

Percent 
oocyte 

successfully 
enucleated 

(n) 

Percent 
oocytes 

successfully 
injected  

(n) 

Percent 
reconstituted 

couplets  
(n) 

Percent cleaved SCNT cloned-embryos at different cell 
stage (n) 

Cleaved 
embryos 

4 cell 8 cell 16 cell Blastocyst 

           
Caprine 

(Squeezing + 
WCICI) 

 

Cumulus 
cell 

43 90.70 
(39/43) 

94.87 
(37/39) 

100.00 
(37/37) 

13.51 
(5/37) 

2.70 
(1/37) 

0.00 
(0/37) 

- - 

Bovine 
(Squeezing + 

WCICI) 
 

Cumulus 
cell 

218 76.15 
(166/218) 

90.96 
(151/166) 

76.16 
(115/151) 

29.57 
(34/115) 

15.65 
(18/115) 

10.43 
(12/115) 

0.87 
(1/115) 

0.00 
(0/115) 

Porcine 
(Aspiration + 
Electrofusion) 

 

Foetal 
fibroblast 

cell 

1270 89.37 
(1135/1270) 

95.24 
(1081/1135) 

83.35 
(901/1081) 

77.47* 
(698/901)

NA NA NA 21.75 
(196/901) 

 
*For porcine SCNT, the total number of cleaved embryos was included from 2- to 4 cell stages due to the embryos were only observed on days 2 and 6. 
 
The preliminary experiments on caprine and bovine intraspecies SCNT were carried out in ABEL, Institute of Biological Sciences, Faculty of Science, 
University of Malaya (July 2009 – April 2010). 
 
The experiment on porcine intraspecies SCNT was performed in YunNan Agricultural University (May – August 2010), China, on an agreement of 
“Memorandum on Academic Exchange between University of Malaya and YunNan Agricultural University, 2010-2015”. 
 
This table shows the summarised results of the actual experiments with aims to establish the SCNT methodology and to gain the nuclear transfer skill 
through learning curve from these preliminary studies. 
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Appendix Figure 3.1: In vitro embryo development of intraspecies SCNT cloned-

caprine embryos at day 1 (2 cell stage). 
 
 
 
 
 

 
Appendix Figure 3.2: In vitro embryo development of intraspecies SCNT cloned-

caprine embryos at day 2 (4 cell stage). 
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Appendix Figure 3.3: In vitro embryo development of intraspecies SCNT cloned-bovine 

embryos at day 1 (2 cell stage) and day 2 (4 cell stage). 
 

 
 

    
Appendix Figure 3.4: In vitro embryo development of intraspecies SCNT cloned-bovine 

embryos at day 3 (8 cell stages). 
 
 

 

 
Appendix Figure 3.5: In vitro embryo development of intraspecies SCNT cloned-bovine 

embryos at day 4 (16 cell stage). 
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Appendix Figure 3.6: In vitro embryo development of intraspecies SCNT cloned-

porcine embryos at day 2 (2- to 4 cell stages). 
 

 
Appendix Figure 3.7: In vitro embryo development of intraspecies SCNT cloned-

porcine embryos at day 6 (blastocyst stage). 
 

 
Appendix Figure 3.8: Hoechst staining on blastocyst. 
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a  b  s  t  r a  c t

The  production of cloned-caprine  embryos  using the intraspecies  somatic  cell  nuclear
transfer  (SCNT)  technique  is limited  by  the  low  source of caprine  oocytes  as the  recipi-
ent  cytoplasts  in certain  countries.  Therefore,  using bovine  oocytes as  recipient cytoplasts
in  interspecies somatic cell  nuclear transfer  (iSCNT),  is an alternative  approach to produce
a large number  of cloned-caprine  embryos  and  subsequently  offspring  at  a rapid  rate. The
aim of  this  research  was  to compare  the effect  of nuclear  transfer  methods  on iSCNT cloned
embryos’  developmental  competence,  involving:  (a)  an intracytoplasmic  injection  (ICI),  and
(b)  the  sub-zonal  injection  with  electrofusion  (SUZI), using fetal fibroblast cells  as  donor
karyoplasts.  The bovine  ovaries  were  collected  from  local abattoir and transported to the
laboratory within  2–3  h in NaCl  (0.9%).  The oocytes  (n  =  725) were  recovered  by  checker-
board  slicing of  the  entire surface  of the  ovary,  inside a culture dish,  using a razor  blade.
After  slicing, the  cumulus–oocyte  complexes (COCs) were recovered  and  selected  under  a
stereomicroscope.  Oocytes with  several compact  layers  of cumulus  cells  were  selected  and
cultured  in  in  vitro maturation (IVM)  medium  for  20–22  h. After maturation,  COCs  were
denuded  in  hyaluronidase (0.1%)  to remove  the  cumulus  cells. The matured oocytes  (with
extrusion  of  first  polar  body)  were  selected  for  enucleation  to remove  the  spindle.  Caprine-
fetal fibroblast  cells  (donor  karyoplasts)  were  harvested  and  transferred  to enucleated
bovine  oocytes,  by  using either  an intracytoplasmic  injection or  sub-zonal  injection, with
electrofusion. The injected/fused  oocytes  were  activated  and  the reconstructed  couplets
were cultured in KSOM medium  for  in vitro embryo development  in a  CO2 (5%) incuba-
tor, at  38.5 ◦C in a  humidified  atmosphere  for  8–9 days.  The culture medium  was changed
every  2 days  of IVC. The percentage  of cleaved embryos  and blastocyst  formation  follow-
ing sub-zonal  injection, with  electrofusion was higher  than  for  oocytes  which  underwent
intracytoplasmic  injection  (60.2%  vs. 54.1%  and 12.1%  vs. 4.5%,  respectively).  In  summary,  the
nuclear transfer  using both  methods  of sub-zonal  injection  and  intracytoplasmic  injection
showed satisfactory  results – with  the  former method being  apparently  higher in in vitro
developmental competence  in both cases. In conclusion, using caprine-bovine  iSCNT  to
produce caprine  embryos  and  offspring may  offer  a new  approach to increase genetically
superior  goat populations at  a  rapid  rate  to meet the  goat meat and milk  demand  for the
industry – especially in the  developing countries.

© 2012 Elsevier B.V. All rights reserved.

∗ Corresponding author. Tel.: +60 3 79674366; fax: +60 3 79674374.
E-mail address: ramli@um.edu.my (R.B. Abdullah).

1.  Introduction

The application of reproductive technologies in  goats is
still low, compared to other livestock species such as cat-
tle, sheep and pigs. However, in the current trend of goat
commercialization, there are vigorous efforts worldwide to

0921-4488/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.smallrumres.2012.01.006
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incorporate developed, advanced reproductive technolo-
gies (ARTs), such as artificial insemination (AI), in vitro
fertilization (IVF), intracytoplasmic sperm injection (ICSI),
oocytes and embryo cryopreservation and embryo trans-
fer into modern farm management practices. Other newer
techniques such as somatic cell nuclear transfer (SCNT)
and stem cell research are currently also being actively
researched in  the various laboratories across the globe.
However, one main issue of goat research is  the lack of
source of ovaries to obtain the oocytes for the various
reproductive techniques. This is due to the low goat popula-
tions slaughtered; and those slaughtered, are mainly male
goats. Therefore, using bovine oocytes as recipient cyto-
plasts in interspecies somatic cell nuclear transfer (iSCNT)
is an alternative approach to produce large number of
cloned-caprine embryos and subsequently offspring at a
rapid  rate.

In iSCNT, a  donor cell (karyoplast) is  transplanted into
a recipient enucleated oocyte (cytoplast) of a  different
species/family/order/class. The resulting embryo is  then
transplanted into the oviduct/uterus of a  suitable foster
mother for development to term (Loi et al., 2011). However,
most of the successfully live offspring have been obtained
by combining closely related species, such as Gaur-cattle
(Lanza et al., 2000), domestic argali sheep-sheep (White
et al., 1999), river buffalo-swamp buffalo (Yang et al., 2010)
and wild cat-domestic cat (Gómez et al., 2004).

The first report of mammalian iSCNT experiments was
on sheep, pigs, monkeys and rats by using ear skin fibrob-
lasts as donor karyoplasts and cattle as the recipient
cytoplast (Dominko et al., 1999). Even though there was no
pregnancy reported from these studies, this approach has
opened a  window of opportunity for interspecies cloning
using 2 different species to  produce a  large number of ani-
mals and to conserve endangered species. However, the
efficiency of iSCNT is still low. Therefore, future studies
should focus on  factors, such as effect of donor cell type,
manipulation methods (e.g. enucleation, nuclear transfer
and oocyte activation) and embryo culture systems in order
to  overcome iSCNT technical problems (Srirattana et al.,
2010).

Besides mitochondrial heteroplasmy, nuclear-
cytoplasmic incompatibilities and appropriate nuclear
reprogramming, the nuclear transfer method is  also one
of the factors affecting the developmental ability of iSCNT
embryos. Two procedures are currently being used to
produce cloned animals. The sub-zonal injection (SUZI)
involves placing a  donor cell in the perivitelline space of
an enucleated recipient oocyte and subsequently fusing
both the donor and the recipient cells with an electrical
pulse. This technique has been used to produce cloned
sheep (Wilmut et al., 1997), cattle (Cibelli et al., 1998; Kato
et al., 1998; Kubota et al., 2000), goats (Baguisi et al., 1999)
and pigs (Bondiolo et al., 2001; Dai et al., 2002; Lai et al.,
2002). In another non-fusion method, an intracytoplasmic
injection (ICI), the plasma membrane of the donor cell
is ruptured by pipetting it in  and out a  few times, using
a  narrow injection micropipette to facilitate the nuclear
reprogramming by the oocyte cytoplasm. This tech-
nique has been successfully applied in mice (Wakayama
et  al., 1998) and pigs (Onishi et al., 2000).  However, the

comparison between these 2 techniques has not been
reported in  iSCNT of cloned caprine-bovine. This study
was  conducted with the aim to compare the sub-zonal
injection and intracytoplasmic injection methods on the
developmental competency of interspecies cloned-caprine
embryos, using fetal fibroblast cells as donor karyoplasts.

2. Materials and methods

Unless otherwise stated, all  chemicals were purchased from
Sigma–Aldrich Co. (USA), and the media used in preparation of donor cells
obtained from Gibco (Grand Island, NY, USA). The Petri dishes for in vitro
culture were purchased from Nunc (Denmark).

2.1. Preparation of donor cells

The caprine-fetal fibroblast cell was used as the donor cell, accord-
ing to the method of Keefer et  al. (2001),  with minor modifications. Two
caprine fetuses, produced by natural mating, were derived at days 28
and 35  of gestation, respectively. Briefly, fetuses were surgically removed
and placed in a  culture dish containing equilibrated PBS(−).  In the PBS(−)
medium, the head and internal organs of the fetuses were removed, using a
pair of surgical forceps. The explants (remaining fetus’ skin tissues) were
mechanically dissociated in a culture dish containing �-modified Eagle
medium (�-MEM), supplemented with fetal bovine serum (FBS; 20%) and
penicillin–streptomycin (P–S) under a humidified atmosphere of CO2 (5%),
in air at 37 ◦C. While the explant cultures contained a mixed population
of cells, fetal fibroblasts were considered predominant. When the cells
from the explants reached 70% confluence, they were harvested using
trypsin/EDTA (0.25%) and then sub-cultured (approximately 30% of donor
cells were seeded on  each plate) to  passage 1 or 2. The fetal fibroblast cells
at passage 1 or 2 were then cryopreserved using DMSO (10%), mixed in
the tissue culture medium and stored in liquid nitrogen. The frozen cells
were thawed and cultured up to 90% confluence (it is  suggested that 90%
confluence of donor cells can  be used as karyoplasts to  produce optimal
interspecies cloned caprine-bovine embryos) (unpublished data, H.H. Soh,
2011), to  use as donor cells. However, subsequent sub-cultured donor cells
(approximately 30% of  donor cells were seeded on  each plate) were also
cultivated to use as donor cells in nuclear transfer (passages 2–5).

2.2. Oocyte collection and in vitro maturation

Bovine ovaries were transported to the laboratory in sterile saline
(0.9%), supplemented with penicillin-G (60 �g/ml) and streptomycin
(50 �g/ml) at 30–35 ◦C. Cumulus-oocyte complexes (COCs) were recov-
ered by  checkerboard slicing the entire surface of the ovary inside a  culture
dish containing TL-HEPES medium, with the aid of a razor blade. The COCs
surrounded with at least 3 compact layers of granulosa cells were selected
for in vitro maturation under a  stereomicroscope. The selected COCs were
washed 2 times in TL-HEPES medium, followed by 3 times in in  vitro mat-
uration (IVM) medium before being cultured in microdroplets (80 �l) IVM
medium (TCM 199 supplemented with 10 �g/ml FSH, 1 �g/ml 17-�  estra-
diol, 100 �M/ml  cysteamine, 0.2 mM sodium pyruvate, 10% FBS) overlaid
with mineral oil under a humidified atmosphere of CO2 (5%) in  air, at
38.5 ◦C for 20–22 h.

2.3. Enucleation of matured oocytes

After maturation, the COCs were denuded in TL-HEPES medium con-
taining 1 mg/ml  hyaluronidase (0.1%) for 5 min  and subsequently washed
5 times in TL-HEPES medium. All  selected matured oocytes with the
extrusion of  a  first polar body were transferred to  a microdroplet con-
taining TL-HEPES medium, supplemented with cytochalasin B  (5 �g/ml)
for 10 min, prior to  enucleation. Briefly, a cut was made on the zona pel-
lucida above the first polar body and 10% of the cytoplasm beneath the
first polar body was gently squeezed out. The enucleated oocytes were
then washed 3 times in TL-HEPES medium, 3  times in holding medium
(TCM-199 medium supplemented with 10% FBS), and lastly kept in hold-
ing medium at 38.5 ◦C in the presence of CO2 (5%) in air in a humidified
atmosphere of a  CO2 incubator for 30–60 min, prior to  nuclear transfer.
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Fig. 1. First polar body together with  cytoplasm (10%) after enucleation.

2.4. Nuclear transfer

For the sub-zonal injection, a  single fetal fibroblast cell  was injected
into the perivitelline space of an enucleated oocyte. The injected oocyte
was washed 3 times in TL-HEPES medium, 3 times in holding medium and
incubated in the final microdroplet of holding medium for 30–45 min  prior
to fusion. The injected oocyte was  fused in 50 �l  fusion medium (0.25 M
sorbitol, 500 �l  magnesium acetate, 0.5 mM HEPES and 0.2% BSA), overlaid
with mineral oil. The fusion machine used was  a  SUTF-1, manufactured
by the Suranaree University of Technology, Thailand. The current of  the
fusion was  20  V, with 2 direct current (DC) pulses in 15  �s. After fusion,
all the fused oocytes were washed 5 times in TL-HEPES medium and 3
times in holding medium – followed by the transfer into the final micro-
droplet of holding medium, and incubated for at least 30–45 min prior to
activation.

For intracytoplasmic injection, a single fetal fibroblast cell was  pipet-
ted in and out  few times in polyvinylpyrrolidone (PVP; 10%) medium,
using a blunt injection needle (ID: 8–9 �m;  OD: 9–10 �m) to break
the plasma membrane, prior to injection. Briefly, before injection, a
small amount of cytoplasm of an  oocyte was gently aspirated into the
injection needle until a  sudden flux of cytoplasm into  the needle was
observed. This confirmed the breakage of the cytoplasmic membrane,
thereby facilitating donor cell injection. A  single donor cell was  then
gently deposited into the cytoplasm. All  the injected oocytes were washed
3 times in TL-HEPES medium, 3 times in holding medium and incu-
bated in  the final microdroplet of holding medium for 30–45 min  prior to
activation.

Fig. 2. Caprine iSCNT embryos at day-2 (4- to  8-cell stages) (A and B),  caprine iSCNT cloned embryo at day-5 (morula stage) (C), caprine iSCNT cloned
embryo at day-7 (blastocyst stage) (D) post-activation.

2.5. Activation

All  the injected or fused oocytes were subjected to activation with a
calcium ionophore (5 �M) for 5 min, followed by 6-dimethylaminopurine
(6-DMAP; 1.9 �M) for 5  h.

2.6. In vitro culture

Following activation, the reconstructed oocytes were washed 5 times
and then cultured in KSOM medium under a humidified atmosphere of
CO2 (5%) in air, at 38.5 ◦C. The development of cloned-caprine embryos
were monitored every 2 days and recorded. At  the same time, the replace-
ment of culture medium was also  made every 2 days of culture.

2.7. Statistical analyses

Effects of  nuclear transfer methods (sub-zonal injection and intracyto-
plamic injection) on cloned-caprine embryo developmental competence
following iSCNT were all analyzed by using the one-way analysis of  vari-
ance (ANOVA). Using the SPSS statistical program, means were obtained
and analyzed using the ANOVA and differences between the means were
determined using Duncan multiple range test (DMRT) (Steel and Torrie,
1980).

3.  Results

A  total of 725 recovered bovine oocytes were matured
in vitro for 20–22 h, with 400 (55.2%) of the matured
oocytes showing the extrusion of a  first polar body. The
reconstructed and in vitro developmental rates are set
out  in Table 1 and Figs. 1–3. No significant differences
were recorded in  the injection and reconstruction rates for
both nuclear transfer methods. As for the in vitro devel-
opment, the percentage of cloned caprine-bovine embryos
at the 2- and 8-cell stage using the SUZI and ICI meth-
ods did not differ significantly. However, the percentage
of cloned caprine-bovine embryos at the morula and blas-
tocyst stage derived from SUZI method, were significantly
higher (P  < 0.05), compared to the ICI method (24.5% vs.
16.1%  and 12.1% vs. 4.5%, respectively). There were signif-
icant differences in  embryonic development between the
stages from the 2-cell up to the blastocyst stage, for both
nuclear transfer methods (P  < 0.05).

4. Discussion

Results demonstrate that using both nuclear transfer
methods (SUZI and ICI), both have the ability to pro-
duce interspecies cloned caprine-bovine blastocysts (12.1
and 4.5%, respectively). It was  also shown that the fetal
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Fig. 3.  Hoechst 33342 stained the DNA nucleus after enucleation corresponding to Fig. 1. (A), and day-7 blastocyst formed following iSCNT showing the
nuclei (B).

fibroblast nucleus could be redifferentiated and repro-
grammed in  enucleated bovine oocytes. Similar results
have been reported by Ma  et al. (2008) in caprine-ovine
interspecies cloning. In these studies, the caprine-fetal
fibroblast nuclei were transferred into enucleated ovine
oocytes and a 7.4% blastocyst formation rate obtained. In
contrast, a  previous study demonstrated that only 6.9%
morula were obtained from interspecies caprine-bovine
cloning using adult skin fibroblast cells (Abdullah et al.,
2011). One factor that may  cause the difference in results
may  be ascribed to the difference in  donor animal age (fetal
fibroblast cells vs. adult fibroblast cells) (Hua et al., 2008).
As mentioned by Saikhun et al. (2002),  more embryos are
derived from fetal fibroblast cells after fusion with adult
cumulus cells and fetal fibroblast cells with enucleated
bovine oocytes. Therefore, the fetal fibroblast nucleus can
be  easily reprogrammed in  the enucleated bovine oocyte,
when compared with the adult fibroblast nucleus. Accord-
ing to Zhang et al. (2004), 90% of the cell cycle phases are
found in  the G0 +  G1 stage, when the cells grow to nearly
90–100% confluence.

In this study, the nuclear transfer by the SUZI method
gave higher percentages of 2-, 8-cell, morulae and blas-
tocyst embryos, compared with nuclear transfer by the
ICI  method. However, only the percentage for morulae
and blastocysts showed significant differences (P < 0.05)
between these 2 nuclear transfer methods. The low effi-
ciency of cloned-caprine embryonic development using the
ICI  method may  be due to the damage induced in  the iso-
lated nucleus before injection (Lee et al., 2003; Chen et al.,
2007).  In the ICI method, the plasma membrane of the
donor cell had to be ruptured by pipetting it in and out for
a  few times, in  a  narrow micro-injection needle. Therefore,
it  is suggested that the nucleus of the donor cells may  be
damaged during these micromanipulation procedures. As a
result, the donor cell nucleus failed to  be reprogrammed by
the  oocyte cytoplasm after injection. Similar findings have
been reported in somatic cell nuclear transfer in porcine,
with  the blastocyst formation for SUZI and ICI being 18 and
13%, respectively (Kawano et al., 2004). Zou et al. (2001)

on the other hand, demonstrated that the survival rate of
cloned embryos derived from the direct injection method
was  higher than the fusion method (62.7 and 45.9%, respec-
tively), following caprine nuclear transfer. This ICI method
developed by Wakayama et al. (1998) was later modified
by  Lee et al. (2003), who used the whole cell intracytoplas-
mic  injection (WCICI) method in  porcine nuclear transfer
– bypassing the donor nucleus isolation and electrofusion.
This method has then been successfully used to produce
panda-rabbit interspecies cloned embryos by  Jiang et al.
(2004).  However, extra pressure and a large microneedle
were needed to properly insert the entire donor cell content
into the recipient cytoplasm (Hosseini et al., 2008). Thus, a
lower efficiency of embryo reconstruction was found in the
larger  donor cells, such as skin fibroblast cells (15–20 �m)
(Inoue  et al., 2003). In this study, fetal fibroblast cells were
used as  donor karyoplasts, to  produce interspecies cloned-
caprine blastocysts.

There are very few reports on caprine iSCNT research,
compared to other livestock species. The examples of
iSCNT in  caprine have been reported were caprine-bovine
(Abdullah et al., 2011) with the morula formation rate of
6.9%; caprine-ovine (Ma  et al., 2008) and caprine-bovine
(Sansiñena, 2004) with a  blastocyst formation rate of 7.4
and  15.0%, respectively. Present results on iSCNT using
caprine-bovine gave 5 and 12% blastocyst rates for the ICI
and SUZI methods, respectively. Using SCNT in  caprine,
Abdullah et al. (2011) demonstrated that 21% of the morula
stages had been obtained after nuclear transfer – however,
the  embryos did not develop further to  blastocysts. Tang
et  al. (2011) reported a  higher percentage of blastocysts
after nuclear transfer (20%), while Melican et al. (2005) pro-
duced cloned caprine offspring. The reason for the lower
efficiency in  iSCNT than in  SCNT, is  currently unclear. How-
ever, it may  be due to  the mitochondrial/genomic DNA
incompatibility and/or embryonic genome activation of the
donor nucleus by the recipient oocyte (Loi et al., 2011). In
an  interspecies experiment, 2 different species are  involved
and  used to produce cloned embryos, as well as offspring.
It  always comes with mitochondrial heteroplasmy (mtDNA
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from the donor cell and the recipient oocyte being mixed
in the cytoplasm of the reconstructed embryo), found in
the interspecies cloned embryos. It has been suggested
that mtDNA is responsible for the developmental arrest in
interspecies reconstructed embryos (Thongphakdee et al.,
2008), and it may  be the insufficient mitochondrial respira-
tion  that hampers the survival of cloned embryos. Ma et al.
(2008) reported that in caprine-ovine cloned embryos, the
expression of mtDNA from the caprine fetal fibroblast cells
(donor karyoplasts) was decreased from 1- to 2-cell stages,
being undetectable from the 4-cell up  to the blastocyst
stage. However, the expression of mtDNA from recipient
oocyte remains constant in  the 1- to  8-cell stages, and
gradually increases from 16-cell to the blastocyst stage. In
contrast, in  the closely related genetic interspecies, cloned
animals such as the Gaur-mouflon, the mtDNA were found
to be exclusively derived from the recipient oocytes (Lanza
et al., 2000; Loi et al., 2011; Meirelles et al., 2001).

Embryonic genome activation of the donor nucleus by
the  recipient oocyte is one of the important factors causing
the low efficiency in interspecies cloning of embryos. The
transcription is  often associated with a so-called critical
or developmental block stage during in vitro culture of the
pre-implantation embryos (Telford et al., 1990). The in vitro
block has been shown to coincide with the time of transi-
tion from the maternal to embryonic genomic control. The
new established genome starts to become transcription-
ally  active at different stages in pre-implantation embryos,
according to  the species [e.g. mice (2-cell) (Schultz, 1986;
Telford et al., 1990); pigs (4-cell) (Prather et al., 1989);
human and rabbits (8-cell) (Braude et al., 1979; Telford
et  al., 1990); sheep, cattle and goats (16-cell) (Camous et al.,
1984; Bavister, 1988)]. In the case of intra-order SCNT the
differences in the gene(s) products that trigger the first
burst of transcription contained in the oocyte, probably
fail to  bind the corresponding sequences of the introduced
nucleus – leading to early embryonic arrest (Loi et al.,
2011). Therefore, it is  essential to understand how embry-
onic genome activation occurs in  the iSCNT, in an effort to
increase the fundamental scientific information on early
embryo life and the potential technological applications in
medicine, agriculture and wildlife.

5. Conclusions

Cloned caprine embryos could be produced in vitro
through iSCNT, using both nuclear transfer methods and
fetal fibroblast cells as donor karyoplasts. The SUZI method
shows a  satisfactory rate of cleavage to the blastocyst stage,
compared to the ICI method. With the establishment of
iSCNT in the caprine and future refined related techniques,
caprine-bovine interspecies cloning could be the best alter-
native. To produce a  large number of superior caprine
clones genetically, both for research, production as well as
commercialization in  the 21st century.
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Since 1997 the first cloned sheep (1) derived from somatic cell
nuclear transfer (SCNT), numerous studies have been done to
improve the efficiency of cloning, such as effect of donor cell
type, manipulation methods (e.g. enucleation, cell injection,
oocyte activation) and embryo culture systems (2).

a) To produce cloned-porcine embryos in vitro through SCNT.
b) To compare the effect of timing of donor cell injection into

the enucleated oocyte on cleavage rate of porcine embryos
in vitro.

Time of donor 
cell injection

No. of 
matured 
oocyte

Successfully 
enucleated 

rate (n)

Successfully 
injected rate 

(n)

Successfully 
reconstituted 

rate (n)

Developmental competency rate 
of cloned embryos (n)

Cleaved 
embryo

Blastocyst Hatching 
Blastocyst

Injection 1-2 hr
after enucleation

610 92.30 
(563/610)

90.41 
(509/563)

87.62 
(446/509)

67.49 
(301/446)

17.94 
(54/301)

9.97 
(30/301)

Injection
simultaneously
with enucleation

660 86.67 
(572/660)

100.00 
(572/572)

79.55 
(455/572)

87.25 
(397/455)

35.77 
(142/397)

22.67 
(90/397)

Pathenogenesis
activation

662 - - - 60.42 
(400/662)

26.50 
(106/400)

7.75 
(31/400)

Table 1: The efficiency of porcine cloning on different times of donor cell 
injection

Injection of donor cell simultaneously with enucleation at the
perivitelline space of enucleated oocyte gave higher percentages of
cleaved, blastocyst and hatching blastocyst embryos compared to the
enucleated oocyte which have been injected 1-2 hr after enucleation.
This might due to the time exposure of oocyte to outside
environment and manipulation medium is less in injection
simultaneously with enucleation than the other method. Therefore,
this method can reduce the oocyte injury during the cloning process.

Our results demonstrate that in terms of time, the injection
simultaneously with enucleation method is more efficient than the
injection 1-2 hr after enucleation in the production of a large number
of SCNT embryos.

QDLGEVKXGU

The ovaries were collected from local slaughterhouse. Ovarian
follicular fluid was aspirated by using a 20 ml disposable syringe
attached with a 20-gauge needle and collect in a 15 ml centrifuge
tube. After sedimentation, the cumulus-oocyte complexes
(COCs) were recovered and selected under a stereo microscope.
Oocytes with several compact layers of cumulus cells were
selected and cultured in in vitro maturation (IVM) medium.
After 44 hr of maturation, COCs were denuded in 0.1%
hyaluronidase to remove the cumulus cells. The matured oocytes

Table 1 shows the efficiency of porcine cloning on different times
of donor cell injection to the enucleated oocyte. From the results
obtained, the proportion of successfully reconstituted oocytes by
incubating the enucleated oocyte 1-2 hr before injection method
was higher than that injection simultaneously with enucleation
(87.62% vs. 79.55%). However, the percentages for cleaved
embryo, blastocyst and hatching blastocyst formation for injection
simultaneously with enucleation were higher than the oocytes
which have been injected 1-2 hr after enucleation (87.25% vs.
67.49%; 35.77% vs. 17.94% and 22.67% vs. 9.97%, respectively).

in vitro. of SCNT embryos.

Furthermore, less time is needed for the injection simultaneously
with enucleation:
a)100 oocytes: For injection simultaneously with enucleation,

1 hr 30 min needed to finish the enucleation and
nuclear transfer (each batch of oocytes is 33).

b)100 oocytes: For injection 1-2 hr after enucleation,
3 hr needed to finish the enucleation and nuclear
transfer (each batch of oocytes is 33).

Besides that, it is very difficult to find back the cutting point for the

OCVGTKCNU"CPF"OGVJQFU

ya u o dase o e ove e cu u us ce s. e a u ed oocy es
with polar bodies were selected for enucleation to remove the
spindle. Fetal fibroblast cells (donor cells) were harvested and
transferred into enucleated oocytes 1-2 hr after or injected
simultaneously with enucleation. After nuclear transfer, both
groups of the injected oocytes underwent electro-fusion between
the donor cell and cytoplasm. The reconstructed oocytes were
activated and cultured in PZM3 medium for in vitro embryo
development until blastocyst.

Besides that, it is very difficult to find back the cutting point for the
enucleated oocyte which have been injected 1-2 hr after enucleation.
This is because the method we use to remove the DNA is aspiration
technique. Therefore, the cutting point we made at the zona
pellucida during the enucleation is much smaller and easier to re-
close back (especially the oocytes have been injected 1-2 hr after
enucleation) than using squeeze technique (3).

During the long manipulation time required to produce a large
number of embryos by SCNT, embryos might be exposed to
fluctuations in medium pH and temperature, which may be
detrimental to subsequent viability of SCNT embryos. Therefore, a
simple and efficient method of enucleation and cell injection is

Porcine embryos could be produced in vitro through SCNT using
the fetal fibroblast. The injection of donor cell simultaneously
with enucleation shows satisfactory rate of cleavage, however,
further technical improvement is needed in order to produce

Figure 1: Collected ovaries from 
local slaughterhouse.

Figure 2: Aspiration of the 
ovarian follicular fluid.

Figure 9: Day-2 cleaved embryos developed from the nuclear                 
transfer embryos reconstructed with fetal fibroblasts 
cell.

simple and efficient method of enucleation and cell injection is
necessary in porcine to prepare a large number of SCNT embryos to
transfer into surrogates (3).
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further technical improvement is needed in order to produce
maximum developmental competence cloned embryos in vitro as
well as in vivo.

Figure 3: Selected COCs.Figure 4: After IVM.

Figure 10: Day-7 blastocysts developed from the nuclear 
transfer embryos reconstructed with fetal 
fibroblasts cell.
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Figure 5: Matured oocyte with 
polar body.

Figure 6: Enucleation by aspiration 
technique.

Figure 7: Fetal fibroblast cell as 
the donor cellFigure 8: Injection of the donor

Figure 11: Expanded blastocyst. Figure 12: Hatching blastocyst.

The authors wish to thank ABEL members in University of
Malaya and also Banna In-bred Mini Pig Laboratory members in
China for their advices and assistance throughout this project.

the donor cell.Figure 8: Injection of the donor 
cell in perivitelline space.

Figure 9: Electro-fusion by using 
1 x 100 µs at 20 v/mm.

Figure 13: Hoechst 33342 stained 7-day 
blastocysts formed following 
SCNT showing the nuclei of ICM.
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Production of cloned-goat embryos using the intraSCNT is limited by
low source of goat oocytes as the recipient cytoplast in Malaysia.
Therefore, by using the cattle oocytes as recipient cytoplast in
interSCNT (iSCNT) is the only alternative approach to produce large

Our results demonstrate that the nuclear transfer by SUZI method gave
higher percentages for 2-, 4-, 8 cell, morula and blastocyst embryos
compared to the nuclear transfer by ICI method. However, only the

KPVTQFWEVKQP FKUEWUUKQP

interSCNT (iSCNT) is the only alternative approach to produce large
number of cloned-goat embryos and subsequently offspring at a rapid
rate. The first report of mammalian iSCNT experiments was on sheep,
pig, monkey and rat by using ear skin fibroblast as donor karyoplast
and cattle as the recipient cytoplast (1). Even though there was no
pregnancy reported from their studies, this approach has opened a
window of opportunity for interspecies cloning using 2 different
species to produce a large number of animals and to conserve
endangered species. However, the efficiency of iSCNT is still low;
therefore, future studies should focus on factors, such as effect of
donor cell type, manipulation methods (e.g. enucleation, nuclear
transfer and oocyte activation) and embryo culture systems in order to
overcome the iSCNT technical problems (2).

Figure 9: Foetal fibroblast cell as the donor karyoplast.

p y , y
percentages for 4 cell, morula and blastocyst showed significant
differences (P≤0.05) between these 2 nuclear transfer methods. Low
efficiency of cloned-goat embryo development in the ICI method might be
due to the damage to the isolated nucleus before injection (3). Similar
finding was reported in SCNT on pig with the blastocyst formation for
SUZI and ICI were 19% and 5%, respectively (4). In addition, our present
study shows that no difference between electrofusion and intracytoplasmic
injection on reconstruction of oocytes.

Also, there were significant differences for the embryo development from
8 cell to blastocyst (P≤0.05) for both nuclear transfer methods. This might
be due to the maternal-embryo transition or maternal-zygotic transition is
mainly occurring in the fourth cell cycle (8 cell to morula stage) in in vitro

Figure 10: Nuclear transfer by 
SUZI method.

Figure 12: Removal of plasma 
membrane of donor          
karyoplast.

The cattle ovaries were collected from local abattoir and transported to
the laboratory within 2 to 3 hours in 0.9% NaCl. Cattle oocytes
(n=586) were recovered by checkerboard slicing the entire surface of

a) To produce cloned-goat embryos in vitro through iSCNT.
b) To compare the effect of 2 different nuclear transfer methods on

iSCNT cloned-goat embryos developmental competence in vitro.

y g y ( g )
obtained embryos and the block moment is concurrent at this cycle (5).

To date, there is scarce report on the goat iSCNT research compared to
other mammalian animals (e.g. cattle and pig). The examples of iSCNT on
goat were goat-cattle (6), goat-sheep (7) and goat-cattle (8) with the
blastocyst rate 1.7%, 7.4% and 15%, respectively. Our results on iSCNT
using goat-cattle gives 12% and 5% blastocyst for SUZI and ICI methods
respectively. In view of these, further studies are needed to obtain
optimum results for the goat iSCNT.

*In our research, embryo transfer of cloned-goat embryos obtained from
iSCNT is done and undergoing pregnancy. Pregnancy diagnosis will be
done using ultrasound scanner and the delivery of the offspring as is
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Figure 11: Electrofusion.
Figure 13: Nuclear transfer by 

ICI method.

Oocyte activation using calcium ionophore (5 min) and 6-DMAP 
(4-5 hr), subsequently, cultured in KSOM medium.

( ) y g
the ovary inside the culture dish by using the razor blade. After slicing,
the cumulus-oocyte complexes (COC) were recovered and selected
under a stereomicroscope. Oocytes with several compact layers of
cumulus cells were selected and cultured in in vitro maturation (IVM)
medium for 22 hours. After maturation, COC were denuded in 0.1%
hyaluronidase to remove the cumulus cells. The matured oocytes
(n=358) with polar bodies were selected for enucleation to remove the
spindle. Goat-foetal fibroblast cells (donor cells) were harvested and
transferred into enucleated cattle oocytes by using either
intracytoplasmic injection (ICI) (n=157) or sub-zonal injection (SUZI)
with electrofusion (n=201). The reconstructed oocytes were activated
and cultured in KSOM medium for in vitro embryos development in
CO2 (5%) incubator at 38.5oC in humidified atmosphere for 8 to 9

Cloned-goat embryos could be produced in vitro through iSCNT using
both nuclear transfer methods. The SUZI method shows satisfactory rate of
cleavage up to blastocyst than ICI methods. To our knowledge, we
b li thi i th fi t t f d i l d t b i

Types of 
nuclear 
transfer 

insertion/ 
injection

No. of 
MII 

oocyte

Enucleation
rate (n)

Insertion/ 
injection 
rate (n)

Reconstructio
n rate (n)

Developmental competence rate of cloned 
embryos (n)

2 cell 4 cell 8 cell Morula Blast.

SUZI 201 90.07±2.97x

(179/201)
93.26±
2.65x

(166/179)

87.51±1.57x

(146/166)
60.18±
2.43d,x

(88/146
)

53.80±
2.84d,y

(79/146)

38.50±
2.93c,x

(56/146
)

23.88±
2.31b,y

(36/146
)

12.00±
2.49a,y

(18/146
)

Table 1: The embryo development of cloned-goat iSCNT for different 
types of nuclear transfer method

g y p g
expected in a few months time (unpublished data).
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days.

1) Dominko T., M. Mitalipova, B. Haley, Z. Beyhan, E. Memili, B. McKusick and
N L First 1999 Bovine oocyte cytoplasm supports development of embryos

believe this is the first report of producing cloned-goat embryos using
goat foetal fibroblast cells as donor karyoplast and cattle as recipient
cytoplasts in iSCNT in Malaysia. With the establishment of iSCNT in
goat and future refined of related techniques, the goat-cattle interspecies
cloning could be the best alternative to produce a large number of superior
goat genetically in Malaysia both for research, production as well as
commercialisation in the 24th century.

Table 1 shows the efficiency of iSCNT cloned-goat embryos using different
types of nuclear transfer methods. There were no significant differences in the
reconstruction rate (P>0.05) for both nuclear transfer methods. As for the in
vitro development of cloned-goat embryos, the percentages of cloned-goat
embryos at 2- and 8 cell using SUZI and ICI methods did not differ
significantly (P>0.05). However, the percentages of cloned-goat embryos at 4-
cell, morula and blastocyst derived from SUZI method was significantly higher
(P≤0.05) compared to the ICI method (53.80 vs. 39.97%; 23.88 vs. 17.42% and
12 00 5 15% i l ) C l h i ifi

) ) ) )

ICI 157 90.90±1.61x

(144/157)
91.07±
2.62x

(129/144)

92.35±2.10x

(119/129)
55.42±
1.44e,x

(67/119
)

39.97±
2.06d,x

(48/119)

32.59±
3.52c,x

(40/119
)

17.42±
0.48b,x

(23/119
)

5.15±
1.50a,x

(7/119)

TGHGTGPEGU

Establishment of goat-foetal
fibroblast cells

Establishment of cloned-goat 
embryos

xy: Means with different superscripts in a column were significantly different (P≤0.05).
abcd: Means with different superscripts in a row were significantly different (P≤0.05).
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12.00 vs. 5.15%, respectively). Conversely, there were no significant
differences between 2- and 4 cell cloned-goat embryos for the SUZI method;
however, there were significant differences in embryo development among the
stages from 4-cell up to blastocyst. While in ICI method, there were significant
differences in embryo development among stages from 2 cell to blastocyst.

Figure 4: Collected ovaries 
from local abattoir.

Figure 5: Slicing of the ovary.

Figure 1: Collected goat foetus on 
day 35 of gestation.

Figure 2: Arrangement of foetal
tissue in culture dish.
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Figure 6: COC (sun-burst) 
after IVM.

Figure 15: Compact morula (day 5).

Figure 14: 4-8 cell cloned-goat embryos developed from iSCNT technique (day 3).

Figure 3: 50-60% confluency of 
foetal fibroblast cell line.
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Figure 7: Matured oocyte
with polar body.

Figure 8: Enucleation of oocyte by squeezing method.

Figure 17: Hoechst 33342 stained 7 day blastocysts
formed following iSCNT showing the nuclei.

Figure 16: Hatching blastocyst (day 7).
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