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ABSTRACT 

 

In this work, anthocyanin dye extracted from roselle (Hibiscus sabdariffa L.) has been 

used as colourant in poly(vinyl alcohol) coating. Various additives were individually 

introduced into the aqueous anthocyanin. Coating was formulated by mixing the 

aqueous anthocyanin containing additive with PVA. Stability and properties of 

anthocyanin dye in aqueous as well as in coating were studied. In study of UV stability 

of aqueous anthocyanin, addition of hydrochloric acid enhanced UV stability of 

anthocyanin with a lower degradation rate of 0.0033 h
-1

. In study of storage stability of 

the aqueous anthocyanin, zinc nitrate was found to inhibit fungi growth, with no fungi 

colony visible and high colour stability as shown with a low total colour change (ΔE) of 

13.60. Hydrochloric acid has also caused a shift in the degradation temperature to 

305.37°C, considerably the highest among other samples. In UV degradation study of 

PVA coating, addition of acetic acid and hydrochloric acid has individually enhanced 

colour stability of the coating, with a total colour change of 8.95 and 16.89 respectively, 

lower compared to other samples. Addition of nitrate salts, on the other hand, caused a 

structural change in the coating. Formation of hydrogen bonding can be deduced from 

infrared spectroscopy. Shifts in the O-H stretching and bending, CH2, and CH3 

vibrations can be observed. Increase in relative intensities of these groups due to 

presence of nitrate indicates hydrogen bonding between PVA and nitrate. Presence of 

hydrogen bonding can also be reflected on the increase in glass transition temperature of 

PVA samples. This indicated that the coating became glassy. Structural change in the 

coating was also supported by XRD study. Broadness of the diffraction halo has 

increased upon addition of nitrate salt. This subsequently reduced the size of the ordered 

domains as indicated by a shorter Scherrer column length.  
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ABSTRAK 

 

Dalam kerja ini, pewarna antosianin diekstrak daripada rosel (Hibiscus sabdariffa L.) 

telah digunakan sebagai pewarna dalam saduran poli(vinil alkohol). Pelbagai bahan 

tambahan telah ditambah secara individu ke dalam antosianin akueous. Saduran telah 

dirumuskan dengan mencampurkan antosianin akueous mengandungi bahan tambahan 

dengan PVA. Kestabilan dan ciri-ciri pewarna antosianin dalam akueous dan dalam 

saduran telah dikaji. Dalam kajian kestabilan UV antosianin akueous, penambahan asid 

hidroklorik telah meningkatkan kestabilan UV antosianin dengan kadar degradasi yang 

lebih rendah iaitu 0.0033 h
-1

. Dalam kajian kestabilan penyimpanan antosianin akueous, 

zink nitrat ditemui merencatkan pertumbuhan fungi, dengan tiada koloni fungi 

dinampak dan kestabilan warna yang tinggi seperti yang ditunjuk oleh jumlah 

perubahan warna (ΔE) yang rendah, iaitu 13.60. Asid hidroklorik telah menyebabkan 

peralihan dalam suhu degradasi kepada 305.37°C, boleh dianggap paling tinggi antara 

sampel-sampel lain. Dalam kajian degradasi UV saduran PVA, tambahan asid asetik 

dan asid hidroklorik telah secara individu meningkatkan kestabilan warna saduran 

tersebut, dengan jumlah perubahan warna 8.95 dan 16.89 masing-masing, lebih rendah 

dibandingkan sampel-sampel lain. Tambahan garam nitrat, sebaliknya, menyebabkan 

perubahan struktur dalam saduran. Pembentukan ikatan hidrogen boleh disimpulkan 

daripada spektroskopi infra merah. Peralihan dalam getaran O-H regangan dan 

bongkokan, CH2, and CH3 dapat diperhatikan. Peningkatan dalam intensiti relatif 

kumpulan ini kesan daripada kehadiran nitrat menunjukkan ikatan hidrogen antara PVA 

dan nitrat. Kehadiran ikatan hydrogen boleh juga diperhatikan daripada peningkatan 

suhu peralihan kaca sampel PVA. Ini menunjukkan saduran menjadi lebih bersifat kaca. 

Perubahan struktur dalam saduran juga disokong oleh kajian XRD. Kelebaran halo 
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belauan telah meningkat dengan penambahan garam nitrat. Ini seterusnya 

mengurangkan saiz domain tersusun seperti yang ditunjukkan oleh Sherrer panjang lajur 

yang lebih pendek. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Research Background 

In this research, emphasis is on the development of a coating system by mixing 

poly(vinyl alcohol), a water soluble polymer with anthocyanin extracted from Hibiscus 

sabdariffa L. plant as dye in the coating, with various additives. Coatings or paints refer 

to liquid, paste or powder materials which are applied to a substrate and form films on 

the surface. The terms coating and paint have always been used interchangeably. 

However, it is now common to use coatings as a more general term, including the 

electroplated copper, zinc coatings, inner and outer surface of a can, printing inks, paper 

and fabrics coatings, kitchen finish etc., while paint refers to architectural, household 

and internal design decoration. In modern days, polymeric materials have gained much 

attention as coating materials compared to phenolic resins and alkyd resins in the 1930’s. 

Among the common are polyurethane, polyester, polyol acrylic and vinyl coatings. In 

this work, coating is developed from mixture of poly(vinyl alcohol) as binder with 

anthocyanin as dye. Effect of additives to both the anthocyanin dye and the coating is 

studied. 

  

Poly(vinyl alcohol) was first synthesized by Hermann and Haehnel in 1924 through 

hydrolysis of poly(vinyl acetate) in ethanol with potassium hydroxide [Saxena, 2004]. It 

has found many uses in various areas such as food industry, paper industry and 

biomedical field. Poly(vinyl alcohol) is chemically stable, biodegradable and non-toxic, 

hence the various applications. In this work, potential of poly(vinyl alcohol) as coating 

material is assessed.  
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Anthocyanin has been an interesting subject of research in biochemistry, food science 

and technology and medical science. It is the most abundant natural pigment after 

chlorophyll. To date, more than 539 anthocyanins have been identified in nature 

[Andersen & Jordheim, 2006]. The word anthocyanin is derived from two Greek words: 

anthos (meaning flower) and kyanos (meaning blue). Anthocyanins have been used in 

art and decoration in early civilization. Use of anthocyanin as food colourant can be 

traced back to 1500BC in Egypt, where the Egyptians used wine as colourant for 

candies. Early industrial use of anthocyanin was as dye for fabrics [Deroles, 2009]. In 

recent days, there has been increasing interest in anthocyanin as natural food colourant 

[Bridle & Timberlake, 1997]. It was estimated that sales of anthocyanins obtained from 

grape skin reached S$200 million worldwide [Deroles, 2009]. Some of the earlier works 

regarding anthocyanins were done by Robert Robinson and Richard Willstatter, and 

both were awarded Nobel Prize in Chemistry. In this work, potential use of anthocyanin 

as colourant for coating is explored. 

 

Research on integration of natural plant pigments in coating has been scarce. Abidin et 

al. (2006) has studied the potential use of curcumin, carotenoid, and lawsonia pigment 

as colourant in acrylic coating. Use of natural pigment as colourant in coatings is 

environmental friendly and cost effective. Being natural pigment, anthocyanin is 

obtained from plant sources and does not contribute to pollution of environment, which 

is in line with “green” concept that industries and authorities have been trying to 

achieve. 

 

1.2 History of Coatings 

History of coatings started in the ancient days as paints. Ancient people decorated walls 

in the cave with oil paints mixed with pigments such as ochre, manganese ore, and 
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chalk. In early civilization such as Egypt, Babylon and Greece, paint was made from the 

mixtures of gummy substances and colour component from various sources. Linseed oil 

was used as paint in fine arts during the Renaissance. Until early 1900s, vegetable oils 

and wood resins remained as important materials for paint production. Synthetic resins 

were introduced after that. Phenolic resins were the first synthetic binders produced in 

the 1920s, followed by alkyd resins in the 1930s. However, introduction of solvent-

borne synthetic resins brought along VOC (volatile organic compound), which became 

a source of environmental pollution. Beginning late 1960s, emphasis has been more on 

the development of new renewable coating material and natural products which use 

water as solvent. 

 

1.3 Coatings in Industry 

Use of paint is not only fuelled by domestic demand, but also industrial demand. It is a 

lucrative business product in areas such as automobiles, building, and oil & gas 

industries. In 2003, global coatings market was estimated at US$70 billion [Tullo, 2004]. 

For architectural coating alone, it accounted for 58% of total volume of coating in the 

United States in 2003 [Wicks et al., 2007]. Architectural coatings include paint used for 

building protection, either inside or outside, and also include household furniture. On 

the other hand, industrial coatings accounted for 29% of total volume of coating in the 

same year and these included automobile, appliances, aircraft, metal cans etc.  

 

1.4 Scope of Thesis 

In the coating industry, majority of the coating materials used are solvent-based and 

involve the use of organic solvent with high volatility such as xylene, toluene, acetone, 

methyl ethyl ketone, etc. However, this poses a potential danger to the coating 

applicator and also the environment. An issue concerning the selection of pigments for 
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coating is the cost of the pigment materials. Synthetic pigments cost relatively higher 

than natural pigments which are obtainable from plant sources. In this work, new 

coating systems containing water soluble poly(vinyl alcohol) as binder and 

anthocyanins dye derived from roselle are developed. Various additives are added into 

the system and the effects of additive on both the aqueous anthocyanins and PVA 

coatings are studied.  

 

Information regarding primary components of a coating, properties of poly(vinyl 

alcohol), and stability of anthocyanins are given in Chapter Two. Chapter Three deals 

with methodology which covers preparation and characterisation techniques for both 

aqueous anthocyanins and coatings. In Chapter Four, results of characterisation on 

aqueous anthocyanins including the pH differential method, UV-Vis absorption 

spectroscopy, UV stability and stability to fungal attack are presented.  

 

Chapter Five presents results of characterisation on poly(vinyl alcohol) coating systems, 

such as the Fourier Transform Infrared spectroscopy, thermogravimetric analysis, glass 

transition temperature by DSC, UV-induced colour degradation, and X-ray diffraction. 

In Chapter Six, discussion regarding the properties and performance of the anthocyanins 

dye and coating systems with addition of various additives is presented. Conclusions of 

this work as well as suggestions for improvement and for further works are given in 

Chapter Seven. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Coating and Its Composition 

Coatings are essentially made up of four major components: binder, pigment, solvent 

and additive. 

 

2.2 Binder 

Binder, also called resin or polymer, is the main component of a coating. It acts as “glue” 

that binds other components together in a coating and forms the matrix of the coating. It 

is also responsible for adhesion of the coating to the substrate. Examples of binders are: 

alkyd, epoxy, acrylics, silicone, polyurethane, polyesters, and phenolic resin, to name a 

few. Binders can be classified into thermoplastics or thermosets, depending on the 

curing mechanism. Curing can occur physically or chemically. Physical curing is known 

as drying, which involves evaporation of solvent from the coating. Binders that cure this 

way are called thermoplastics. Chemical curing occurs when a chemical reaction occurs 

between the components of a binder, which leads to polymerization and cross-linking 

between the components. In this way, the binder is “set” and cures, and is known as 

thermoset.  

 

Molecular weight of binders can range from 500 to 200000 or higher. Low molecular 

weight binders have low viscosity while high molecular weight binders have high 

viscosity. Binders with high molecular weight exhibit better properties such as elasticity, 

hardness and impact deformation than that with low molecular weight [Heiling, 1998]. 

However, viscosity of these binders will be high. For ease of application, binders should 

have low viscosity. Solvents can be used to adjust the viscosity, but this will pose an 
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issue to the environment as the VOC contributes to the pollution of environment. Hence, 

a compromise is often inevitable.  

 

Even though some binder materials exhibit exceptional properties and performance, 

some of them are potentially dangerous to handle. Polyurethane, for example, is 

produced from cross-linking between polyol and polyisocyanate. Raw materials for 

polyisocyanate are isocyanates, such as toluene diisocyanate (TDI), and 

diphenylmethane diisocyanate (MDI), which are toxic and potentially carcinogenic. 

Another example is epoxy, some of which contains bisphenol A, a potential irritant, and 

epichlorhydrin, a suspected carcinogen in animals [Gempeler & Schneider, 1998]. A 

balance has to be achieved in choosing binder materials depending on the functions of 

the coating. Poly(vinyl alcohol) has proven to be a non-toxic, biodegradable and 

significantly safe and easy to handle, that leads to its many popular applications in the 

coating industry such as paper coating. 

 

2.2.1 Poly(Vinyl Alcohol) (PVA) 

Poly(vinyl alcohol) is a water soluble, biodegradable, hydrophilic, non-toxic synthetic 

polymer. It was first synthesized by Hermann and Haehnel in 1924 through hydrolysis 

of poly(vinyl acetate) in ethanol with potassium hydroxide [Saxena, 2004]. Properties of 

poly(vinyl alcohol) are dependent on the degree of polymerization, degree of hydrolysis 

and molecular weight. It can be classified into two categories: partially hydrolysed and 

fully hydrolysed. Monomer unit of poly(vinyl alcohol) is vinyl alcohol. Structure of 

poly(vinyl alcohol) is [CH2CH(OR)] depicted below, where R is H or COCH3: 
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Figure 2.1 Repeating unit of poly(vinyl alcohol). 

 

 

2.2.2 Synthesis 

Poly(vinyl alcohol) is commercially synthesized from poly(vinyl acetate) by a 

continuous process. The acetate groups are hydrolysed by ester interchange with 

methanol in the presence of aqueous sodium hydroxide [Saxena, 2004]. Raw material 

used in manufacturing poly(vinyl alcohol) is vinyl acetate. Poly(vinyl acetate) is first 

formed from polymerization of vinyl acetate monomer, after which it undergoes 

hydrolysis reaction with methanol in the presence of aqueous sodium hydroxide. In 

hydrolysis of poly(vinyl acetate), ester group of the vinyl acetate is replaced by the 

hydroxyl group. Aqueous saponification agent is gradually added in the reaction. 

Poly(vinyl alcohol) is precipitated, washed and dried. Degree of hydrolysis is controlled 

by the time when saponification reaction is stopped [Saxena, 2004]. Poly(vinyl alcohol) 

with different amount of hydroxyl groups and hence different properties can be 

produced. Hydrolysis reaction of poly(vinyl acetate) into poly(vinyl alcohol) is depicted 

in Figure 2.2. 
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Figure 2.2: Hydrolysis of poly(vinyl acetate) into poly(vinyl alcohol). 

 

 

2.2.3 Physical and Chemical Properties 

Poly(vinyl alcohol) in granular powder form is odourless, tasteless and white or creamy 

in colour. It is soluble in water and slightly soluble in ethanol. Its solubility in water 

decreases with increase in molecular weight and decrease in hydrolysis. Poly(vinyl 

alcohol) containing up to 20 wt% vinyl acetate is insoluble in organic solvents [Heiling, 

1998]. A typical 5% poly(vinyl alcohol) solution exhibits pH range of 5.0-6.5. Melting 

point of poly(vinyl alcohol) can range from 180°C to 190°C.  

 

Poly(vinyl alcohol) films are clear and colourless. The polymer films exhibit good 

mechanical properties, crack resistance and good lightfastness [Heiling, 1998]. It is 

resistant to oils, fats, greases and waxes. It has good pigment binding capacity and good 

compatibility with pigment and extenders used in the industry. However, disadvantage 

of poly(vinyl alcohol) is its weak water and electrolyte resistance. 

 

There is no quantitative method available to determine poly(vinyl alcohol). It has been 

suggested that filter paper treated with potassium iodide and iodine solutions be used to 

measure poly(vinyl alcohol) concentration in wastewater in the range of 1000-
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20000mg/l [Saxena, 2004]. Colours of poly(vinyl alcohol) in various solvents have been 

used to identify its presence. 

 

2.2.4 Applications 

There are various applications of poly(vinyl alcohol) in domestic sector as well as in 

industry, and its potentials are being currently explored and expanded to many other 

fields. Poly(vinyl alcohol) has been used as adhesive and in the paper industry as paper 

coating [Schuman et al., 2004]. It is also used in the food industry as binding and 

coating agent for food supplement tablets and capsules [Saxena, 2004]. Poly(vinyl 

alcohol) has also many applications in the pharmaceutical and biomedical field 

[Pourciel et al., 2003]. It has been used for controlled drug release tests due to its 

biodegradable and non-toxic properties [Peppas et al., 2000]. It has also been used in 

many biomaterial applications such as in artificial pancreas [Young et al., 1996], 

haemodialysis [Paul et al., 1997], and implantable biomaterials [Chuang et al., 1999]. 

Poly(vinyl alcohol) is also used in wastewater treatment as encapsulation material 

[Chang et al., 2005]. Recent researches indicated that poly(vinyl alcohol) has potential 

as polymer electrolyte for energy devices such as fuel cell and battery [Kadir et al., 

2010].  

 

2.3 Pigment and Dye 

Pigments are finely divided solids of uniform size that are dispersed and suspended in 

the binder after curing. Primary function of a pigment is to provide colour, gloss and 

opacity to the system and subsequently hide the substrate. Some pigments are also used 

to improve corrosion properties of the coating. Colour pigments that are soluble are 

referred to as dyes or colourants.  
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Pigments can be classified into two types: organic and inorganic. Organic pigments are 

generally complicated organic molecules which main function is to provide colour 

[Weldon, 2009]. They are seldom used in heavy-duty industrial coatings. Inorganic 

pigments consist of discreet crystalline particles, which are dispersed in coatings with 

special additives to improve compatibility [Weldon, 2009]. Two of the most common 

inorganic pigments are titanium dioxide and iron oxide. Titanium dioxide is a white 

colour inorganic pigment most widely used. It provides clean white colour and high 

refractive index. Its commercial products include Bayertitan (Bayer), Kemira (Kemira 

Pigments Oy), and Hombitan (Sachtleben) [Kohler, 1998]. Iron oxide pigment is an 

inorganic red pigment with good heat resistance suitable for aggressive environments 

[Fuller, 1973]. Its commercial products are Bayferrox (Bayer), Harcros (Harrison & 

Crosfield), and Ferrofin (Laporte PLC) [Kohler, 1998].  

 

A major concern about synthetic pigments is their toxicity. Heavy metal pigments such 

as lead, chromium, cadmium and barium pose serious health and environmental 

problems [Forsgren, 2006]. Another issue regarding synthetic pigment is their escalating 

cost, including raw material cost, synthesis and production cost. A viable alternative to 

synthetic pigment is natural pigment derived from plant sources. Abidin et al. (2006) 

has studied the potential of yellow and brown natural pigment extracted respectively 

from turmeric and Henna as dye in the coating system. Potential usage of carotenoid 

natural pigment as dye in coating has also been studied by Omar and Ahmad (2009). 

Natural red pigment can also be obtained from plant sources as an alternative to 

synthetic pigment. Red colour in nature can be found in anthocyanin, a natural 

chromophore capable of giving colours ranging from red to blue. 
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2.3.1 Anthocyanin Pigment 

Anthocyanins are the largest and most important group of water soluble natural 

pigments. They belong to a larger group of phenolic compounds called flavonoids 

[Britton, 1983]. Anthocyanins are distributed in vacuole of a plant cell. They are found 

primarily in fruits, flowers, roots and other parts of higher plants. They are responsible 

for a wide range of colours, such as blue, violet, red and orange in many plants and 

vegetables. There are many sources of anthocyanins, some of the common are listed in 

Table 2.1. To date, there are more than 539 anthocyanins identified in nature [Andersen 

& Jordheim, 2006]. 

 

 

Table 2.1: Sources and average amount of anthocyanins. 

Anthocyanin source Amount (mg.kg
-1

) 

Blueberry 825-4200 

Chokeberry 506-10000 

Red Grapes 300-7500 

Blood Orange 2000 

Eggplant 7500 

Red Cabbage 250 

Source: Mateus & de Freitas (2009). 

 

 

In the past few decades, anthocyanin has gained much attention both from scientific 

research community and industry. There have been researches in biological activities 

and effects of anthocyanin to human in medical applications. Among the interesting 

researches in medical and pharmaceutical applications are the antioxidant and 

antiradical properties of anthocyanin [Igarashi et al., 2006; Tsai et al., 2002; Kong et al., 
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2003], anti-inflammatory and anti-oedema properties [Wagner, 1985]. Anthocyanin has 

also shown promising potential as natural dye to replace artificial colourant in food 

industry [Bridle & Timberlake, 1997; Melo et al., 2009]. Zhu et al. (2008) has reported 

the use of anthocyanin as dye in dye-sensitised solar cells.  

 

2.3.2 Structure of Anthocyanin 

Anthocyanins are glycosides of anthocyanidins, the aglycones having the characteristic 

C6C3C6 carbon skeleton [Harborne, 1998]. The base structure is 2-phenylbenzopyrylium, 

or known as flavylium cation. The structure of anthocyanidin and anthocyanin is given 

in Figure 2.3. Anthocyanidin does not occur naturally due to the instability of the 

structure [Melo et al., 2009]. Upon glycosylation, it is known as anthocyanin, the stable 

form that exists in nature. In both anthocyanidin and anthocyanin, position 7 of A ring 

and position 4’ of B ring are bonded with hydroxyl group (OH). In anthocyanidin, 

position 5 of A ring and position 3 of C ring are bonded with hydroxyl group, while in 

anthocyanin, position 3 is glycosylated and position 5 is occasionally glycosylated. 

Figure 2.3 shows the general structures of anthocyanidin and anthocyanin. 

 

 

Figure 2.3: General structure of anthocyanin and anthocyanidin. 
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Glycosylation increases water solubility while acylation decreases water solubility [He 

& Giusti, 2010]. It improves anthocyanin stability by forming intramolecular hydrogen 

bonding network within the molecule [Borkowski et al., 2005]. Some common sugar 

moieties attached to the anthocyanins are glucose, galactose, rhamnose, arabinose, 

xylose, rutinose, and sambubiose. The sugar moieties can be further acylated with 

organic aromatic or aliphatic acids such as cinnamic acid, caffeic acid, malonic acid, 

acetic acid, p-coumaric acid, ferulic acid and succinic acid.  

 

There are 25 different anthocyanidins that have been identified. However, 90% of all 

anthocyanins are based on only six common aglycones (anthocyanidins): cyanidin 

(30%), delphinidin (22%), pelargonidin (18%), peonidin, malvidin and petunidin 

(altogether 20%) [Andersen & Jordheim, 2006]. Variety in the types of anthocyanins is 

due to the different substituents at position 3’ and 5’ of B ring of anthocyanin, and 

whether they are hydroxylated or methylated. This leads to changes in the maximum 

absorption wavelength and colour of the anthocyanins. Table 2.2 [Melo et al., 2009] 

lists the six common anthocyanidins and corresponding substituents at the B ring.  

 

 

Table 2.2: Common anthocyanidins and their corresponding substituents, λmax 

and colour. 

Name R3’ R5’ λmax (nm) Colour 

Cyanidin OH H 535 Red orange 

Delphinidin OH OH 545 Violet 

Pelargonidin H H 520 Orange 

Peonidin OCH3 H 532 Red 

Malvidin OCH3 OCH3 542 Violet 

Petunidin OCH3 OH 543 Violet 

Source: Melo et al. (2009). 
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2.3.3 Anthocyanin Stability 

Natural pigments are generally unstable and the same applies to anthocyanins. 

Anthocyanins are sensitive to various factors such as pH, light, temperature, and oxygen. 

Anthocyanins are reported to undergo structural transformation at different pH 

[Brouillard & Dubois, 1977]. Colour of anthocyanins also changes along with the 

change of the molecular structure at different pH.  

 

Four major forms of anthocyanins occur in equilibria: flavylium cation, quinonoidal 

bases, carbinol (hemiacetal) base and chalcone. At pH below 2, anthocyanins exist 

dominantly as the flavylium cation - a weak acid, which is red in colour. In less acidic 

medium (pH 4-6), deprotonation of the flavylium cation to water readily occurs to 

generate quinonoidal bases, which are bluish. This is a very fast process. However, at 

this pH range, the flavylium cation also readily undergoes nucleophilic attack by water 

at position C-2, forming the colourless carbinol or hemiacetal base [Quina et al., 2009]. 

This process (hydration) is also moderately fast. The reversible processes for 

deprotonation and hydration are also fast. The carbinol pseudobase can further 

equilibrate to an open ring form, the colourless chalcone, at a slower rate [He & Giusti, 

2010]. Likewise, reconversion from chalcone to flavylium cation is also a very slow 

process [Francis, 1989]. The process is illustrated in Figure 2.4. 
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Figure 2.4: Structural transformation of anthocyanins in solution. 

 

 

Light has a profound influence on anthocyanin stability [Giusti & Wallace, 2009]. It 

accelerates degradation of anthocyanins. Anthocyanins are susceptible to degradation 

due to the lack of structural stability and tinctorial strength. Anthocyanins with 

hydroxyl-substituted C-5 are more susceptible to light than unsubstituted anthocyanins.  

Anthocyanin stability is also affected by heat. It was reported that anthocyanin 

undergoes first order degradation kinetics [Patras et al., 2010]. First step in thermal 

degradation of anthocyanin is conversion to colourless chalcone which eventually 

produces α-diketone [Wrolstad, 2004]. Anthocyanin is also susceptible to oxidative 

degradation by oxygen. Reaction of anthocyanin with oxygen yields yellow-brown 

oxidized product.  
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2.3.4 Hibiscus sabdariffa L. Plant 

Hibiscus sabdariffa L. is in the family Malvaceae. It is commonly known as roselle. It is 

a tropical plant mainly found in Asia and Tropical Africa [Mahadevan, 2009]. It is 

estimated at about 3.5m tall and has a deep penetrating taproot. It has smooth and 

cylindrical, typically dark green to red stems. Its leaves are alternate, green with red 

veins and petioles. Its red calyxes consist of 5 large sepals with a collar of 8-12 slim 

[Mahadevan, 2009]. Its fruit is a capsule containing 5 valves encapsulating seeds. The 

seeds are kidney-shaped and light-brown in colour. Roselle propagates by seed. 

 

 

 

Figure 2.5: Roselle calyxes. 

 

 

Roselle has found various domestic and biomedical uses. It is commonly used to make 

jellies, jams and beverages in Egypt and Sudan [Mahadevan, 2009], in Taiwan [Tsai & 

Huang, 2004], and in Thailand [Chumsri et al., 2008]. It has also been traditionally used 

as antiseptic, aphrodisiac, astringent, chlogagueee, demulcent, digestive and tonic 

[Mahadevan, 2009]. Calyx extracts of roselle have been found to exhibit strong in vitro 
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and in vivo antioxidant properties [Prenesti et al., 2007]. It also exhibits strong 

antihypertensive action in human [Mojiminiyi et al., 2007] and cardioprotective effects 

in rats [Odigie et al., 2003]. 

 

Calyxes of roselle are bright red in colour and rich in anthocyanins. Du and Francis 

(1973) have reported 2 major: delphinidin-3-sambubioside and cyanidin-3-

sambubioside, and 2 minor anthocyanins: delphinidin-3-glucoside and cyanidin-3-

glucoside in the calyxes of roselle. Chemical structures of the major anthocyanins found 

in roselle are illustrated in Figure 2.6 and Figure 2.7. Wong et al. (2002) has studied the 

physico-chemical properties of roselle calyxes. Roselle was reported as highly acidic 

with low sugar content. Major sugars identified in roselle were glucose, fructose and 

sucrose.   

 

 

  

Figure 2.6: Delphinidin-3-sambubioside. Figure 2.7: Cyanidin-3-sambubioside. 

 

 

 

 



Chapter 2  Literature Review 

18 

 

2.4 Solvent 

Solvents or volatile organic compounds are volatile liquids that dissolve the binder. 

They modify the viscosity of the binder system and enhance flow and uniformity of the 

mixture. This will ease difficulty during application so that the paint can be applied as a 

uniform, thin film on the substrate. Solvents also act as carrier for non-volatile 

components. After application, the solvents evaporate, forming coating film on the 

substrate. Solvents significantly affect not only the application characteristics of paint, 

but also the appearance, physical properties, and durability of coating [Yuhas, 1995]. 

Two important performance requirements that must be considered in choosing the types 

of solvents are solvency and evaporation rate. These characteristics control the initial 

paint viscosity during application, coating viscosity at various stages of drying, and final 

coating appearance [Yuhas, 1995]. Solvent for a particular binder must be capable of 

dissolving the binder particles to form coating. Evaporation rate of a solvent used in 

coatings cannot be too high or too low. Slow rate of evaporation would lead to blistering, 

trapped liquid or air in the coating that makes it fail. On the other hand, if the 

evaporation rate is high, the coating may not have the chance to form a smooth, 

continuous film, leaving the surface rough [Weldon, 2009]. Examples of solvents are 

alcohols, ketones, esters and ethers. Some characteristics of solvents are listed in Table 

2.3 [Schweitzer, 2006]. 
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Table 2.3: Characteristics of some organic solvents. 

Solvent Strength/Solvency Polarity 
Specific 

gravity 

Evaporation 

rate
 

Toluene High Intermediate 0.87 4.5 

Xylene High Intermediate 0.87 9.5 

Methyl ethyl 

ketone 
Strong High 0.81 2.7 

Ethyl acetate Intermediate Intermediate 0.90 2.7 

Ethanol Weak Intermediate 0.79 6.8 

Source: Schweitzer (2006). 

 

 

The main concern regarding use of solvents is that after application, solvents enter the 

atmosphere as pollutant during evaporation or drying, causing hazards to environment 

and also the personnel in work. Among some of the environmental effects caused by 

solvents or VOC are ozone holes, summer smogs, green house effects, and acid rain 

[Warnon, 2004]. Effects of solvents on human may vary under different circumstances. 

Short term exposure to high solvent doses may cause acute damage, whereas absorption 

of smaller amounts over a prolonged period leads to chronic damage and sensitization 

[Ortelt, 1998]. Due to concern over solvent emissions, alternatives to solvent are of 

great interest to the coating industry, and these include radiation cured coating, powder 

coating and water-borne coating.  

 

Water appears to be a potential candidate as vehicle for water soluble binder materials. 

It has been used as vehicle in water-reducible coatings, which have either carboxylic 

acid or amine groups that are at least partially neutralized with low molecular weight 

amines or acids, respectively [Wicks, 2007]. Examples of water-reducible coatings 



Chapter 2  Literature Review 

20 

 

include water reducible polyester, alkyds, and urethanes. Besides, water has also been 

used as vehicle for emulsion coatings. The water-based emulsions are usually 

formulated with high-molecular-weight resins such as copolymers of poly(vinyl 

chloride), or poly(vinyl acetate), styrene-butadiene, acrylic ester etc. [Schweitzer, 2006]. 

In water-based coating, curing is usually by physical drying or evaporation of water. 

 

2.5 Additives 

Additives are often added to the coating system in small amount to perform specific 

functions. Even though they are in minute amount, they give significant effects on the 

properties of the coating. Effects of additive depends on their types, they perform 

specific functions to enhance application characteristics and properties of the cured 

coating. These include surfactants, wetting agents, coalescing agents, anti-skinning 

agents, catalysts, thickening agents, anti-fungal biocides and hardener. For instance, 

zinc oxide is used to prevent deterioration of resin by heat of the actinic sun rays. Cobalt 

and manganese naphthanates act as dryers for alkyds and oil-based paint. Further 

information about the types and functions of some of the additives is tabulated in Table 

2.4 [Weldon, 2009].  
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Table 2.4: Examples and function of some additive types. 

Additive Function Example 

Anti-settling agent 

Break down and disperse 

large agglomerates of 

pigments in the 

resin/solvent system. 

Waxes, chemically treated 

clays, low molecular 

weight polyethylenes. 

Viscosity modifier 

Increase viscosity so that 

excessive flow does not 

occur after application 

Cellulose ethers, 

micronized silica. 

Surfactant 

Alter the surface tension of 

resins or polymers so that 

they become compatible 

with water 

Salts of fatty acids, 

quarternary ammonium 

compounds. 

Anti-skinning agent 

To prevent surface skin 

formation caused by 

contact with atmospheric 

oxygen 

Methyl ethyl ketoxime, 

butyraldehyde oxime. 

Plasticizer 
Increase flexibility of the 

coating films 

Dioctyl phthalate, 

chlorinated parafins, 

organic phosphate. 

Source: Weldon (2009). 
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CHAPTER 3: METHODOLOGY 

 

3.1 Sample Preparation 

There are two parts in the sample preparation. In the first part, anthocyanin pigment is 

extracted from calyxes of Hibiscus sabdariffa L. (roselle) by using water extraction 

method, where calyxes were soaked in distilled water for 3 hours. The extract was then 

filtered by Whatman filter paper (110mm diameter) to remove insoluble impurities and 

foreign particles. After that, pH differential method was employed to estimate the total 

anthocyanin content in the crude extract. Two types of additives were introduced into 

the extracts: acids and salts. The acids were 5wt% acetic acid, 5wt% citric acid, and 1wt% 

hydrochloric acid. Hydrochloric acid was fixed at 1wt% to avoid excessive acidity of 

the aqueous solution. The added salts were 5wt% calcium nitrate, 5wt% magnesium 

nitrate, 5wt% zinc nitrate. Table 3.1 lists the designation of anthocyanin extract samples. 

Characterisation conducted on anthocyanin and samples with additives were UV-Vis 

absorption spectroscopy, UV degradation, and fungal degradation.  

 

Table 3.1: Designation for pure anthocyanin extract and extract with additive. 

Designation Extract  Additive 

Antho 100wt% Anthocyanin - 

ACal 95wt% Anthocyanin 5wt% Calcium nitrate 

AMag 95wt% Anthocyanin 5wt% Magnesium nitrate 

AZin 95wt% Anthocyanin 5wt% Zinc nitrate 

AAce 95wt% Anthocyanin 5wt% Acetic acid 

ACit 95wt% Anthocyanin 5wt% Citric acid 

AHyd 99wt% Anthocyanin 1wt% Hydrochloric acid 
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In the second part, crude extract and extracts containing additive were mixed with 

poly(vinyl alcohol), PVA. The ratio was 75wt% extract to 25wt% PVA. It was found 

that other ratio would cause inhomogeneous mixtures, leading to inapplicable paint 

system. Pure PVA was dissolved with distilled water as solvent without anthocyanin 

and additives to be used as control. All coating samples were coated on glass slide for 

approximately 1 day to dry. Poly(vinyl alcohol) (80% hydrolysed) was obtained from 

Sigma Aldrich Malaysia. Compositions of the coating system are tabulated in Table 3.2. 

Fourier Transform Infrared (FTIR) spectroscopy, thermogravimetric analysis, 

differential scanning calorimetry, UV degradation by CIE colourimetry, and X-ray 

diffractometry (XRD) analysis were conducted on the coating samples.   

 

Table 3.2: Composition of coating system containing poly(vinyl alcohol), 

anthocyanin, and additive. 

Designation Binder Extract/Solvent 

PurePVA 25wt% PVA 75wt% H2O 

PAntho 25wt% PVA 75wt% Antho 

PACal 25wt% PVA 75wt% ACal 

PAMag 25wt% PVA 75wt% AMag 

PAZin 25wt% PVA 75wt% AZin 

PAAce 25wt% PVA 75wt% AAce 

PACit 25wt% PVA 75wt% ACit 

PAHyd 25wt% PVA 75wt% AHyd 

 

 

3.2 Characterisation on Anthocyanin Extract 

3.2.1 UV-Visible Absorption Spectroscopy  

When a transparent material is illuminated by visible light, it absorbs some wavelengths 

of the light while some other wavelengths are transmitted. When atoms or molecules 

absorb an electromagnetic radiation, they are excited from ground state to excited state. 



Chapter 3  Methodology 

24 

 

In the case of excitation by UV and visible light, the transition corresponds to the 

electronic transition between energy levels. For an atom, transition between two discreet 

energy levels results to a sharp line in the UV-visible spectrum. For a molecule, due to 

the small difference in the vibrational levels of ground and excited states, which results 

in many possible transitions between the ground and excited states, the spectrum 

becomes continuous band. Electronic transition in the UV and visible ranges are n -> π* 

transition [Valeur, 2002].  

 

UV-visible absorption spectroscopy is governed by Beer-Lambert Law, which states 

that absorbance is directly proportional to the molar absorptivity and concentration of 

the absorbing species, and pathlength of radiation through the species. Beer-Lambert 

law is given as in Equation 3.1. 

 

             (3.1) 

 

Where, A is absorbance, ϵ is molar absorptivity, c is concentration and l is optical 

pathlength. However, the law may not be obeyed if solute and solvent form complexes, 

when thermal equilibrium exists between the ground state and low-lying state, or when 

fluorescent compounds are present [Pavia et al., 2009]. 

 

UV-visible absorption spectrum can be generally related to the colour appearance of a 

material. Materials that absorb strongly in the long wavelengths (red) region appear blue, 

since short wavelengths (blue region) are reflected or transmitted. Likewise, materials 

that absorb strongly in the short wavelengths (blue) region appear red. Shifting in the 

peak of absorption spectrum is of most concern in the study of stability. Bathochromic 

shift refers to shift to longer wavelengths, while hypsochromic shift refers to shift to 
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shorter wavelengths. On the other hand, hyperchromic shift refers to increase in 

absorbance whereas hypochromic shift refers to decrease in absorbance value. 

Bathochromic shift of absorption peak to the red region causes the material to appear 

bluer, whereas hypsochromic shift causes the material to appear redder. Hyperchromic 

and hypochromic shifts can also affect colour appearance of a material. Figure 3.1 

shows the shifts in the absorption spectrum. 

 

 

Figure 3.1: Shifts in the absorption spectrum. 

 

 

Instrument usually used in UV-visible absorption spectroscopy is the double beam UV-

Vis spectrophotometer. It measures absorption of light by a substance at a specific 

wavelength. The spectrophotometer uses deuterium and hydrogen lamps as source of 

UV radiation and tungsten filament lamp as a source of visible radiation. It has a 

monochromator to select wavelength which is radiated once at a time. Quartz or fused 

silica cuvettes are used as the container for the sample. Detector of the transmitted 

radiation is a photomultiplier tube.  
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3.2.2 The pH Differential Method 

The pH differential method is a method for measurement of total anthocyanin content in 

a sample. It is based on the structural transformation of anthocyanins between pH 1.0 

and 4.5. At pH 1.0, anthocyanin exists predominantly as red-coloured flavylium cation, 

while at pH 4.5, the colourless hemiacetal or carbinol form [Lee et al., 2005]. Hence, 

difference in the absorbance of the λvis-max is proportional to the concentration of the 

pigment. Figure 3.2 depicts the absorption spectra of anthocyanins in pH 1.0 and pH 4.5. 

 

 

 

Figure 3.2: Spectral characteristics of anthocyanins in pH 1.0 and pH 4.5. 

Source: Giusti and Wrolstad (2001). 

 

The total anthocyanin concentration is given as: 

 

                          (   ⁄ )  
                  

     
    (3.2) 

 

and 
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  (              )       (              )          (3.3) 

 

 

where MW is molecular weight in g/mol, DF is dilution factor, ε is molar absorptivity in 

l x mol
-1

 x cm
-1

, and A is the difference in absorbance value for the maximum 

absorption peak in visible range at two different pH value after correcting for haze. 

Equation 3.2 is actually a modified form of Beer-Lambert’s equation for absorbance. 

 

Molecular weight and molar absorptivity values of the identified anthocyanin present in 

the sample should be used in calculating the concentration of that anthocyanin. It has 

been reported that molar absorptivity of anthocyanins is different with different 

extraction method and solvent [Giusti & Wrolstad, 2001]. In pH differential method, for 

a specific anthocyanin, extraction method and solvent used should be same as that used 

by the researcher who reported the molar absorptivity of that anthocyanin, so that the 

reported molar absorptivity value, ε can be used. In the event that the anthocyanin is not 

identified, or lack of literature for molar absorptivity value, it is more appropriate to 

express the anthocyanin as cyanidin-3-glucoside [Lee et al., 2005].     

 

Buffer solutions used are 0.025M potassium chloride for pH 1.0 and 0.4M sodium 

acetate for pH 4.5. The absorbance value should be corrected for haze at 700nm. Haze is 

cloudy appearance due to scattering of light by sediments or colloidal materials. This 

scattering of light can be corrected at 700nm, where no absorbance of sample occurs. A 

comprehensive methodology was published by Giusti and Wrolstad (2001). 
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3.2.3 Test for UV Stability 

UV radiation causes photodegradation, a reaction where energy (in the form of absorbed 

photon) is transferred into a substance. The photochemical reaction will occur if the 

incoming photons have sufficient energy to break of form new bond [Koutchma, 2009]. 

UV radiation is a non-ionising radiation and its energy is lower than ionising radiation 

such as X-ray and gamma rays. However, UV radiation is capable of promoting 

electronic transitions in atoms and molecules, and hence causing photochemical 

reaction to occur. The effect of UV radiation on anthocyanins has also been studied 

before by Bakowska et al. (2003), Marco et al. (2011) and Setareh et al. (2007). 

 

In the test for UV stability of anthocyanin extract and extracts containing additive, the 

samples were kept in air tight laboratory bottles and exposed to UV radiation of 

wavelength 312nm and illuminance of 17.55lx continuously for 8 hours. Absorption 

spectra were obtained before exposure and at 4
th

, 6
th

, and 8
th

 hour of exposure. Changes 

in the absorption spectra, such as shifting in the peak are used as indication of 

anthocyanin degradation.  

 

3.2.4 Test for Fungal Degradation 

It has been known that natural products such as juice extracts and plant materials are 

susceptible to infestation by atmospheric fungi for their nutrients. Anthocyanin crude 

extract is also susceptible to attack by fungi for its nutrients. However, sterilization of 

anthocyanin extract is impractical for coating applications. For anthocyanin extracted 

with water to be used as colourant in coating, it is therefore important to assess its 

stability and inhibition of fungi activity. 
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Three approaches were employed in the test. Visual observation was required to detect 

any fungi growth. CIELAB colourimetry was conducted to detect change in colour of 

the samples, as it was reported that anthocyanins are readily decolourised by fungi 

[Huang, 1955]. Measurement of fungi dry weight is another approach used to indicate 

fungi activity. It has been utilised by many researchers as a conventional approach of 

indication of fungi growth rate [Reeslev & Kjøller, 1995; Sutton & Starzyk, 1973; 

Priyadarshini & Tulpule, 1978]. In this approach, the extracts with fungi were filtered 

with Whatman filter paper (110mm diameter), and stored in oven at 40°C overnight to 

remove moisture. Weight of dry fungi was taken, minus the weight of the filter paper. 

Amount of samples used in this characterisation was 10.0g. All three methods were 

conducted at the 35
th

 day of storage.  

 

3.3 Characterisation on PVA Coatings 

3.3.1 Fourier Transform Infrared (FTIR) Spectroscopy  

Infrared spectroscopy has been used for material analysis for over seventy years. The 

main principle in infrared spectroscopy is absorption and transmission of infrared 

radiations by molecules and their functional groups which are infrared-active. 

Wavelengths in vibrational infrared region of an electromagnetic spectrum correspond 

to energy of vibration of chemical bonds [Smith, 1996]. When an infrared radiation 

passes through a material, radiation with wavelength matching the natural vibrational 

frequency of a chemical bond will cause an increase in the vibrational amplitude [Pavia 

et al., 2009]. A decrease in the infrared intensity is detected at wavelength which 

absorption occurs. Covering the vibrational infrared region, the resulting spectrum will 

be either spectrum of transmission or absorption of the sample. As with UV-Vis 

absorption spectroscopy, Beer-Lambert Law can also be applied in infrared 

spectroscopy.  
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Typical practical useful range of infrared radiation lies between 400-4000cm
-1

. An 

important aspect for infrared absorption is that the molecular vibration must cause a 

change in the dipole moment of the molecule [Larkin, 2011]. Molecules that satisfy this 

condition are said to be infrared active. Homonuclear diatomic molecules such as N2 

and O2 do not possess infrared spectra since there is no dipole moment [Smith, 1999]. 

These are infrared inactive. Infrared spectroscopy also cannot be used to detect atoms, 

monoatomic ions or noble gases such as argon and helium since they do not possess 

vibration motion. 

 

The main use of infrared spectroscopy is to determine structural information and 

identify functional groups of molecules present in a sample. Different types of chemical 

bonds and functional groups exhibit different vibrational normal frequencies. This is 

due to the difference in bond strength and mass of atoms in different bond. For example, 

triple bond, which is stronger than single bond, vibrates at higher frequency. Infrared 

spectroscopy can also be used to do fingerprinting of molecules [Kendall, 2006]. This is 

due to the fact that different materials have different molecular structures. 

 

Infrared spectroscopy uses dispersive material like prism or grating to separate different 

wavelengths in the infrared region before being illuminated on the sample. However, 

this process is time-consuming, since the individual wavelength has to be separated first. 

Modern type infrared spectrometers are usually Fourier transform infrared (FTIR) 

spectrometers. In this method, all the infrared wavelengths pass through the sample 

simultaneously. The resultant spectrum is the overlap and superposition of all the 

absorbed or transmitted wavelengths. Fourier transform is applied to resolve and 

separate each individual mode or frequency. In this work, acquisition of infrared spectra 
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was conducted in transmission mode from 650-4000cm
-1

 with resolution 2points/cm 

using the Thermo Scientific Nicolet iS10 Spectrometer.  

 

Infrared spectroscopy has been employed for characterisation of coating. An important 

application of infrared spectroscopy in coating industry is the chemical analysis and 

determination of composition of a coating [Kendall, 2006]. Vengadaesvaran (2003) has 

applied FTIR spectroscopy technique to study blending of acrylic resin with silicone 

resin in coating. It was reported that reaction has taken place between acrylic and 

silicone intermediate, and can be observed from the appearance of new peaks and 

shifted peaks. Ramesh et al. (2008) has employed the infrared spectroscopy to identify 

the compositions of silicone-polyester resin, and also the changes in the infrared spectra 

with different silicone/polyester composition as shown in Figure 3.3. 

 

 

Figure 3.3: FTIR spectra of different compositions of silicone and polyester resins 

(range of wave number: 2000-4000 cm
-1

).  

Source: Ramesh et al. (2008). 
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3.3.2 Thermogravimetric Analysis (TGA) 

Thermogravimetric analysis is a technique in which mass of a material is measured as a 

function of temperature. This requires heating the material in a controlled environment. 

Polymers generally exhibit mass loss upon heating. Mass loss may be categorised as 

volatile components such as moisture, residue solvents, or low molecular mass additives 

that generally evaporate between ambient and 300°C [Bruce Prime et al., 2009].  

 

TGA is used to determine polymer thermal stability. Polymers that can withstand higher 

temperature without decomposing are more thermally stable than those which 

decompose at lower temperature. In general, degradation mechanisms of polymers are 

free-radical processes initiated by bond dissociation at the temperature of pyrolysis 

[Wampler, 2007]. The three specific modes are random scission, unzipping to monomer, 

and sidegroup elimination. TGA is also used for compositional analysis. In a 

multicomponent material, the individual component can be separated by temperature, 

due to different thermal properties. For instance, low molecular weight solvent which 

evaporates and boils at low temperature can be separated from inorganic materials 

which are thermally stable up to 900°C. When a low boiling point material decomposes, 

a change in mass is noticeable, and detectible from the TGA thermogram. There has 

also been report that TGA can be utilised in forensic applications [Ihms and Brinkman, 

2004]. 

 

Derivative TGA (DTG) is an important technique in providing useful information in 

TGA experiments. It is able to distinguish overlapping mass loss events, identify shapes 

and maxima of mass loss processes and identify minor mass loss steps [Bruce Prime et 

al., 2009]. The maximum derivative peak indicates maximum gradient of mass loss, and 
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hence, each peak indicate separate events. However, DTG should not be used for kinetic 

analysis due to the larger amount of noise [Bruce Prime et al., 2009].   

 

Nonvolatiles and thermal stability determinations are usually conducted in coating 

analysis. Compositional analysis may also be applied in coating analysis, where weight 

loss at different temperatures and modes could indicate differences in materials [Gilman, 

2006]. Chew et al. (2007) used TGA to study thermal stability of silicone/acrylic resin 

blends and thermal stability of 30% silicone showed best performance as in Figure 3.4. 

Vengadaesvaran (2003) has also used TGA method to study thermal decomposition of 

blending of two types of silicone resins with acrylic resin, and it was reported that mass 

loss decrease with the increase in silicone concentration.  

 

 

 

Figure 3.4: TGA of silicone/acrylic blends. 

Source: Chew et al. (2007). 
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Comparison of thermal stability of materials can be assessed in thermogravimetric 

analysis by drawing horizontal line and vertical line across the thermogram. In vertical 

line comparison, materials with higher weight percentage are more thermally stable than 

materials with lower weight percentage at a particular temperature, as the latter 

degraded more. Likewise, in horizontal line analysis, materials with a higher 

temperature at a particular weight percentage are more stable than materials with lower 

temperature. This is because the former degraded at a higher temperature at the same 

weight percent.  

 

In TGA experiment conducted on the coating samples, Hi-Res mode was used. In Hi-

Res mode, heating rate is varied in response to changes to the sample’s rate of mass loss. 

This enables better separation of closely overlapped degradation steps. Heating range 

was from room temperature up to 900°C and purge gas used was nitrogen.  

 

3.3.3 Glass Transition Temperature by DSC 

Glass transition temperature, Tg is defined as the temperature at which an increase in 

thermal expansion coefficient occurs in an amorphous material [Wicks, 2007]. In 

amorphous material, its specific volume increases when its temperature increases. There 

is no sharp change in volume and hence no melting point. Rather, there is an increase in 

gradient of specific volume with respect to temperature. Temperature at which this 

change occurs is the glass transition temperature. The phenomenon was first observed in 

glass, hence the name glass transition. Glass is non-crystalline, mechanically solid and 

rigid. In molten state, its motion is mainly translational, while in glassy state, its 

segmental motion is mainly vibrational [Menczel et al., 2009]. Therefore, for polymer 

above Tg, it is in rubbery state while below Tg, it is in rigid glassy state.  
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Glass transition temperature can be considered the lowest temperature at which 

segments of polymer molecules can move with some facility relative to neighbouring 

segments [Wicks, 2007]. When an amorphous polymer is heated, atoms in the polymer 

vibrate more vigorously and collide with neighbouring polymer molecule more 

frequently. At Tg, empty spaces or free volume between adjacent molecules are large 

enough that adjacent molecule or segment of a polymer molecule can fit into the spaces. 

Greater increase in thermal expansion coefficient above Tg gives the higher degree of 

freedom of polymer molecules. This results in higher volume increase with the increase 

in temperature. For a given molecule, the increased degrees of freedom represent 

additional ways of absorbing energy, hence the increase in specific heat [Gabbott, 2008]. 

Figure 3.5 shows the increase in gradient of specific volume with respect to temperature 

above Tg. 

 

 

 

Figure 3.5: Specific volume as a function of temperature for amorphous material. 

 

 

Glass transition temperature can be measured using differential scanning calorimetry 

(DSC) method. Differential scanning calorimetry is a thermoanalytical method in which 

Tg Temperature 

Specific volume (cm3/g) 
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difference in amount of heat required to raise the temperature of a sample and a 

reference is measured as a function of their temperature. Figure 3.6 shows typical DSC 

curve of heat flow to the sample against its temperature.  

 

 

Figure 3.6: Typical DSC curve. 

 

 

Endothermic part of the curve means the sample absorbs heat or releases less heat 

relative to the upper part whereas exothermic part of the curve means the sample 

releases heat or absorbs less heat relative to the lower part [Brown, 2004]. Glass 

transition temperature, Tg, often taken to be the mid-point of the drop, indicates the 

increase in energy supplied to the sample to maintain it at the same temperature as the 

reference material. There is an increase in heat capacity in the sample as it undergoes 

glass transition and goes into the rubbery form. Above Tg, the sample has higher heat 

capacity due to larger free volume in it, hence being able to absorb more heat to raise 

the temperature by the same amount.  

 

Heat flow (W/g) 

Temperature (°C) Tg 

Exothermic 

Endothermic 
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The sample pan which contains sample material and the reference pan which is empty 

are kept in a heating chamber, where heat is supplied to them electrically. Temperature 

of each pan is measured by a thermocouple and is kept to be the same. Due to the extra 

polymer material contained in the sample pan, the sample needs to absorb more heat to 

keep the temperature of the sample increase at the same rate as the reference. The heater 

will then put more heat to the sample to keep its temperature same as the reference. The 

difference of heat is measured and plotted against the temperature of the polymer 

sample.  

 

DSC method has been used to determine glass transition temperature of coating 

materials which can be used to predict flexibility and hardness of coating [Abidin, 2006; 

Ramesh et al., 2007; and Vengadaesvaran, et al., 2010]. Abidin (2006) reported that 

increasing dammar content in the acrylic resin increases its Tg value which leads to 

higher cross-linking and more brittle characteristics. Ramesh et al. (2007) reported an 

increase in Tg value with addition of silicone into polyester matrix, as shown in Figure 

3.7. It was reported that network density was increased, caused by silica cluster 

formation around the end groups of polyesters. 
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Figure 3.7: DSC thermogram of the silicone/polyester binder system. 

Source: Ramesh et al. (2007). 

 

3.3.4 CIELAB Colourimetry 

Colour is a perspective of human eye and not measureable. The parameters measured 

are colour stimuli. Appearance of colour to human is limited to visible range of the 

electromagnetic spectrum. In 1931, Commission Internationale de l’Eclairage (CIE) 

recommended a standard colourimetric system including colour matching functions for 

a standard colourimetric observer, standard illuminants, standard light sources, and a 

chromaticity diagram [Ohta & Robertson, 2005]. Hence, the 1931 RGB colourimetric 

system was introduced. In 1964, CIE introduced a new colourimetric system with 

addition of second standard observer. In 1976, CIE recommended two new uniform 

colour spaces: CIELAB and CIELUV [Schanda, 2007].  

 

To date, CIELAB remains the most common used colourimetric system. In CIELAB 

system, colour space is three dimensional and is represented by three parameters: L*, a*, 

and b*. L* means lightness or brightness, with values range from 0 (total dark) to 100 
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(total bright). The positive a* value represents red colour stimuli, while negative a* 

represents green colour stimuli. The positive b* value represents yellow colour, whereas 

negative b* value represents blue colour. Figure 3.8 shows the three dimensional L*, a*, 

b* colour space. 

 

 

 

Figure 3.8: 3-D L*a*b* colour space. 

 

 

Two parameters can be derived from the L*, a*, and b* parameters: the C* (chroma) 

and h (hue angle). They are defined as follows:  

 

   (       )  ⁄    (3.4) 

          (    ⁄ )   (3.5) 
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Total colour difference, ΔE between colour pairs is defined as follows:  

 

    (   )  (   )  (   )    ⁄   (3.6) 

 

Where ΔL* is difference of lightness, Δa* is difference of a* value, and Δb* is 

difference of b* value between two colours. A value of ΔE = 1 was assumed to be the 

minimum value of colour difference differentiable by human eye [Gonnet, 1998]. 

CIELAB colour measurement has been a reliable method in estimating degradation of 

natural pigments. Sanmartin et al. (2011) has reported the effective use of CIELAB in 

estimating chlorophyll degradation. Degradation of anthocyanins in relation with 

CIELAB has also been reported by Yang et al. (2008) and Marco et al. (2011). In this 

work, colour stability of the coating samples upon exposure to UV radiation of 

wavelength 312nm for 24 hours at room temperature was determined by comparing 

changes in colour parameters before exposure and after exposure. Spectroline TVC-

312A UV lamp was used to produce UV light of 17.55lx. Standard illuminant D65, 

which represents average daylight and exhibits correlated colour temperature of 6500K, 

and 2° standard observer were used for measurement of colour. Avantes AvaSpec-2048 

Fiber Optic Spectrometer and AvaSoft Colour Application Software were used to obtain 

the colour parameters and colour diagrams.   

 

3.3.5 X-Ray Diffraction Measurement 

X-ray diffraction is a very important technique that has been used to determine crystal 

structures and size [Cullity, 1956]. It is based on the diffraction or scattering of x-rays 

by a material. In the case that a material exhibits ordered crystal patterns, the x-rays 

would be diffracted and favour a certain direction and hence, constructive interference 

occurs. X-ray diffraction appears on a diffractogram as a sharp peak. The angle at which 
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this occurs is the glancing angle, the angle between the incident x-ray and atomic plane. 

This occurs when Bragg’s condition is satisfied as given in Equation.     

 

            (3.7) 

 

Where d is the interplanar distance, Ɵ is the glancing angle, n is the order of diffraction 

and λ is the x-ray wavelength.  

 

XRD can also be used to characterise polymer materials. Due to the amorphous nature 

of most polymer materials, broad diffraction halo can be observed in the diffractogram. 

Amorphousness of a material can be represented by the broadness of the halo, where 

increase in the broadness of peak leads to increase in the amorphous nature [Hema et al., 

2010; Mishra et al., 2006]. Broadness can be measured as the full width at half 

maximum (FWHM) of the peak. Study in the broadness of a peak can be expanded to 

study the size of ordered domains, or the crystallite size. Analysis of crystallite size in 

characterisation of polymer has also been conducted by Khayet and García-Payo (2009). 

The crystallite size or Scherrer’s column length is given by: 

 

          ⁄    (3.8) 

 

Where K is Scherrer’s constant (0.9 in this study), λ is x-ray wavelength, B is the full 

width at half maximum in radians, and Ɵ is the glancing angle or Bragg angle. 
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CHAPTER 4: CHARACTERISATION ON AQUEOUS ANTHOCYANIN  

 

4.1 The pH Differential Method 

At pH 1.0, anthocyanins exist primarily as red flavylium cation. This can be shown in 

Figure 4.1, where maximum absorption in the visible range occurs at 518nm at pH 1.0. 

It can be noticed also that at pH 4.5, the absorption peak in the visible region shows 

decrease in absorbance by a large amount, and the solution became almost colourless. 

This is because at pH 4.5, structural equilibrium is disturbed and anthocyanins are 

discoloured and exist as colourless carbinol form. Hence, it can be inferred that 

anthocyanins extracted from Hibiscus sabdariffa L. (roselle) plant are also subjected to 

structural transformation between the two pH values. 

 

Difference in absorbance values at the maximum absorption in visible wavelength, λvis-

max between the two spectra after correcting for haze at 700nm can be used to estimate 

anthocyanin concentration. It yields an absorbance value of 1.1246. By using the 

modified Beer-Lambert equation, total anthocyanin content expressed as cyanidin-3-

glucoside was calculated as 187.8 mg/l. This value falls within the appropriate range 

from 20 to 3000 mg/l, according to Lee et al. (2005). Value of molecular weight was 

taken as 449.2g/mol, dilution factor employed was 10, molar absorptivity value was 

taken as 26900 lmol
-1

cm
-1

. In conducting pH differential method to estimate 

anthocyanin content, selection of solvent is crucial as it will affect the position of the 

absorption band [Giusti & Wrolstad, 2001]. 
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Figure 4.1: UV-visible absorption spectra of anthocyanins at pH 1.0 and pH 4.5. 

 

 

4.2 UV-Visible Absorption Spectroscopy 

Absorption spectra of anthocyanin displayed two bands of absorption: one in the UV 

region with maximum peak at around 283.5nm and another in the visible region with 

maximum peak at around 518.0nm. These two bands are spectral characteristics of 

anthocyanin and can be used to identify it. Giusti and Wrolstad (2001) reported that 

absorption band in the UV region was around 260-280nm, while that in the visible 

region was around 490-550nm. Eder (2000) reported that maximum absorption bands of 

anthocyanin fall in 270-280nm (UV region) and 465-550nm (visible region). Effect of 

additives on the aqueous anthocyanin can be examined by UV-visible absorption 

spectroscopy. Figure 4.2 and 4.3 shows the effect of acid and salt respectively on the 

UV-visible spectrum of aqueous anthocyanin. Relative intensities of the maximum 

peaks at UV and visible range were studied to reveal masked information. In this work, 



Chapter 4  Characterisation on Aqueous Anthocyanin 

44 

 

relative intensity studies were conducted by taking the ratio of the absorbance of the 

maximum peak at the visible region to that of the UV region. Table 4.1 lists the relative 

peak intensities.  

 

It can be seen that addition of 5wt% citric acid and 1wt% hydrochloric acid affected the 

anthocyanins the most. Hyperchromic effect is observed in those two spectra, where 

absorption intensity at maximum visible peak shows a large increase. This is shown in 

the relative peak study where ratios of Avis to Auv increase to 0.6803 and 0.7128 

compared to pure roselle anthocyanin’s 0.4204. Addition of 5wt% acetic acid however, 

shows minimal change as the relative intensity of visible to UV absorbance is 0.4220, 

close to that of roselle anthocyanins. The hyperchromic shift is due to the increase in the 

π-π electrons system responsible for absorption in the visible range [Yawadio & Morita, 

2007]. However, not much change in peak position at both visible and UV regions can 

be observed.  

 

For samples with 5wt% calcium nitrate, magnesium nitrate and zinc nitrate, an increase 

in peak intensity at the UV region can be detected. This increase can be attributed to the 

presence of nitrate anions in all three solutions [Gvozdić et al., 2009; Tomišić et al., 

2005]. The absorption maximum at the UV region has changed to around 300nm. Due 

to changes in position and shape of the maximum peak at UV region, comparison 

cannot be made between the anthocyanin sample and samples with salts. However, 

ratios of the visible to UV peak intensity are greatly reduced to 0.1889, 0.1999 and 

0.2384 for solution with calcium nitrate, magnesium nitrate, and zinc nitrate, 

respectively, due to the addition of nitrate salts. It has been reported that the strong 

absorption at the UV region was due to the π*←n transition of nitrate ions [Gvozdić et 
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al., 2009]. No change in the visible peak position can be observed, as shown in Table 

4.1, where the maximum wavelength remained the same.   

 

Table 4.1: Relative intensities of maximum peaks at UV and visible range. 

Sample λuv-max (nm) 
Absorbance, 

Auv 
λvis-max (nm) 

Absorbance, 

Avis 

Ratio (Avis 

to Auv) 

Antho 283.5 1.7459 518.0 0.7340 0.4204 

AAce 283.0 1.6653 518.0 0.7027 0.4220 

ACit 282.5 1.7715 519.5 1.2051 0.6803 

AHyd 282.0 1.8083 518.0 1.2890 0.7128 

ACal 299.0 3.1346 518.0 0.5920 0.1889 

AMag 300.0 3.2666 518.0 0.6530 0.1999 

AZin 299.5 2.9896 518.0 0.7128 0.2384 

 

 

 

Figure 4.2: Effect of acid on the absorption peak of aqueous anthocyanins. 
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Figure 4.3: Effect of nitrate salt on the absorption peak of aqueous anthocyanins. 

 

 

4.3 UV Stability of Anthocyanins with Additives 

UV-visible absorption spectra of aqueous anthocyanins and anthocyanin extracts with 

additives exposed to UV radiation for 8 hours are depicted in Figures 4.4 – 4.10. UV 

radiation has been reported to cause photodegradation of anthocyanins, further causing 

discolouration effect [Pala & Toklucu, 2011]. From the absorption spectra, degradation 

of anthocyanins can be associated as drop in the absorption intensity, or the 

hypochromic effect. It has been reported that degradation of anthocyanin follows first 

order kinetics [Ahmed et al., 2004; Ozale et al., 2007; Yang et al., 2008]. In first order 

kinetics, degradation of anthocyanins follows exponential decay and depends only on 

the initial value. The reaction rate and half-life of first order kinetics are as follows: 

 

  (   ⁄ )         (4.1) 
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   ⁄           (4.2) 

 

Where A is absorbance at time t, Ao is the initial absorbance, k is the rate constant, and 

t1/2 is the half-life. Initial absorbance values of the samples before UV irradiation 

(absorbance values at 0
th

 hour) were taken as Ao. In kinetic analysis of all samples, 

absorbance data at visible range peak obtained from absorption spectra was fitted to the 

first order kinetics model using the equations above. In degradation study, absorbance 

value, Avis of the maximum peak at the visible region (λvis-max) was used as it is 

indicative of anthocyanin in the flavylium cation form. Plots of ln(A/Ao) versus t for 

samples with acid and salt were plotted and illustrated respectively in Figure 4.11 and 

4.12. The degradation rate and half-life were calculated and tabulated in Table 4.2. 

 

 

 

Figure 4.4: UV degradation of Antho. 
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Figure 4.5: UV degradation of AAce. 

 

 

Figure 4.6: UV degradation of ACit. 
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Figure 4.7: UV degradation of AHyd. 

 

 

Figure 4.8: UV degradation of ACal. 
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Figure 4.9: UV degradation of AMag. 

 

 

Figure 4.10: UV degradation of AZin. 
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Figure 4.11: Fitted first order kinetics of anthocyanin samples with acid. 

 

 

Figure 4.12: Fitted first order kinetics of anthocyanin samples with salt. 
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Table 4.2: Degradation rates and half-lives of aqueous samples. 

Sample k (h
-1

) t1/2 (h) R
2
 

Antho 0.0219 31.6 0.9957 

AAce 0.0256 27.1 0.9991 

ACit 0.0117 59.2 0.9653 

AHyd 0.0033 210 0.9963 

ACal 0.4097 1.69 0.9381 

AMag 0.3743 1.85 0.9792 

AZin 0.3215 2.16 0.9478 

 

 

From Figure 4.4 – 4.10, it can be noted that all samples show hypochromic effect 

(decrease in absorbance) after irradiation by UV light after 8 hours. According to Marco 

et al. (2011), when anthocyanins are exposed to UV radiation, transformation of the red 

flavylium cations into colourless cabinol and quinonoidal base occurs. From Figure 4.11 

and 4.12, it can be shown that UV degradation of anthocyanins, and anthocyanins with 

acid and salt is a close fit to the first order kinetics, with R
2
 value close to 1. 

Degradation rate and half-life of roselle anthocyanins were calculated as 0.0219h
-1

 and 

31.6h, respectively. Comparatively, samples with lower degradation rate and 

subsequently longer half-life exhibit better anthocyanin retention properties in 

exponential degradation. A longer half-life indicates that more time is required for a 

material in study to reach half of its initial amount, and therefore, better stability.   

 

Sample AHyd showed good UV inhibition properties with lowest degradation rate and 

longest half-life at 0.0033h
-1

 and 210h respectively, a 7-fold increase from half-life of 

pure aqueous anthocyanins. Sample ACit also showed improved UV stability with 

59.2h. Performance of AAce was similar to that of pure anthocyanins, with half-life 
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27.0h, slightly lower than that of pure anthocyanins. All samples with salt added (ACal, 

AMag, and AZin) showed increased degradation rates and decreased half-lives by a 

large amount. The performance in UV inhibition dropped by 15-fold, to a few hours as 

compared to pure anthocyanins. Since UV degradation of anthocyanins is related to the 

structural transformation, it is possible that the salts disturbed the equilibrium and 

facilitate transformation to colourless carbinol and quinonoidal base.  

 

4.4 Degradation of Anthocyanins by Fungi 

In the study of fungal degradation, aspect of interest under study is the observation and 

detection of presence of fungi, not fungi growth rate. In line of this, visual comparison 

on day 0 and day 35 of samples kept at room temperature and unexposed to light is 

tabulated in Table 4.3. Visual inspection of the samples can be supported and improved 

by CIELAB colourimetric measurement and change in colour of the samples on day 0 

and day 35 as indication of degradation. Figures 4.13-4.19 show the colour difference of 

samples on 0
th

 day and 35
th

 day of storage. Physical measurement of dry weight of the 

fungi can further support the presence of fungi in both visual inspection and CIELAB 

colourimetry. Table 4.4 lists the colour parameters and dry weights of all samples.  
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Table 4.3: Visual comparison of samples on day 0 and day 35. 

Sample Day 0 Day 35 

Antho 

  

AAce 

  

ACit 

  

AHyd 

  

ACal 

  

AMag 

  

AZin 
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Figure 4.13: Colour degradation of Antho sample by fungi. 

 

 

Figure 4.14: Colour degradation of AAce sample by fungi. 
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Figure 4.15: Colour degradation of ACit sample by fungi. 

 

 

Figure 4.16: Colour degradation of AHyd sample by fungi. 
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Figure 4.17: Colour degradation of ACal sample by fungi. 

 

 

Figure 4.18: Colour degradation of AMag sample by fungi. 
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Figure 4.19: Colour degradation of AZin sample by fungi. 

 

Table 4.4: Colour parameters of samples on 0
th

 day and 35
th

 day and fungi dry 

weight. 

Sample 

0
th

 Day 35
th

 Day 
Total 

colour 

difference, 

ΔE 

Fungi 

dry 

weight, 

g 
L* a* b* L* a* b* 

Antho 35.99 72.92 68.16 29.00 25.88 47.30 51.93 0.030 

AAce 39.84 77.11 73.32 27.01 25.19 47.03 55.59 0.024 

ACit 41.07 79.37 75.35 31.48 62.95 58.01 25.73 0.022 

AHyd 39.28 78.50 72.79 23.18 54.51 51.18 36.08 0.014 

ACal 39.05 77.88 72.36 87.04 2.03 21.89 102.97 0.122 

AMag 38.37 76.78 71.16 37.92 19.54 47.55 61.92 0.111 

AZin 38.91 78.00 71.85 32.91 69.17 63.43 13.60 - 
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From visual inspection, it can be observed that fungi colonies are detected in Antho, 

ACit, ACal, and AMag samples. In AAce and AHyd samples, fungi colony is not 

observed visually, but presence of sedimentary material can be noticed. Presence of 

sediments could indicate fungi or microbial activity. No fungi colony or sedimentary 

materials are observed in AZin sample, hence, no data on dry weight can be obtained. 

 

In the study of colour, all samples showed colour change towards b-axis or a-axis from 

day 0 to day 35 as shown in Figure 4.13- 4.19. This is an indication of colour 

degradation in all samples. The amount of change can be represented by the length of 

the arrows. All samples showed decreased values of a* and b*, which means 

colourfulness or saturation of the colour has decreased. Decrease in a* value indicates 

the samples are becoming less red in appearance while decrease in b* value indicates 

they are becoming less yellow in colour. Antho, AAce, ACal, and AMag samples 

showed distinctive change towards y-axis, i.e. the yellow zone. This indicated 

degradation of a larger amount of anthocyanin, as anthocyanins can be associated with 

red colour (positive a*) in the flavylium cation form. Direction of colour change 

towards yellow zone also indicated that degradation products constitute a higher amount 

than anthocyanins after 35 days. ACit, AHyd, and AZin samples showed direction of 

colour change towards the origin (grey zone). Decrease in a* and b* values is almost the 

same. It can be shown from the fungi dry weight measurement and visual inspection 

that fungi growth is less favoured in these samples.  

 

Relationship between the colour degradation and dry weight of the fungi can be 

established.  Generally, the higher the total colour difference before and after 35 days, 

the higher the dry weight of fungi harvested. However, the dry weight measured 

included weight of degradation products, such as sediments. In AAce sample, total 
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colour difference obtained was 55.59, higher than Antho sample. However, the dry 

weight obtained was lower, at 0.024g. This could be due to the absence of fungi colony 

on the surface of the sample, but weight of the sediments was included. In AHyd sample, 

total colour change was lower compared to Antho sample. Presence of sediments gave a 

dry weight of 0.014g, even though no fungi colony can be observed.  

 

ACit and AHyd samples showed better fungi activity inhibition compared to pure 

anthocyanin sample. This can be deduced from the smaller values of total colour 

difference, ΔE and fungi dry weight. AAce sample did not show improvement as the 

total colour difference was almost the same and the dry weight obtained high. Samples 

with the least fungi activity inhibition were ACal and AMag.  Both samples showed 

high value of total colour difference at 102.97 and 61.92 respectively, compared to 

51.93 of Antho sample. Both samples also yielded large amount of fungi, at 0.122g for 

ACal sample and 0.111g for AMag sample. This indicates that both samples exhibited 

increased rate of fungi activity, which could be due to the role of calcium and 

magnesium as macronutrients required for fungi growth and enzyme activation [Griffin, 

1994].  Sample with the best fungal inhibition property was AZin, which showed the 

smallest colour difference at 13.60 with neither fungi colony nor sediments observed. 

Hence, the zinc nitrate additive exhibits the potential as fungi inhibitor. Even though 

zinc is identified as a micronutrient for fungi growth [Griffin, 1994], it has also been 

reported to be toxic and inhibitory to fungi growth [Babich & Stotzky, 1978]. Since no 

fungi growth can be observed, the difference in colour can be attributed to the natural 

degradation of anthocyanins in the sample. 
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CHAPTER 5: CHARACTERISATION ON PVA-ANTHOCYANIN COATINGS  

 

5.1 Fourier Transform Infrared (FTIR) Spectroscopy 

Fourier Transform Infrared spectra of coating with acid and salt as additives are shown 

in Figure 5.1 and 5.2 respectively. Table 5.1 lists the peaks and their position 

assignment in pure PVA sample. For pure PVA sample, the bands assigned are 

characteristic functional groups presence in poly(vinyl alcohol) and can be used as 

reference. Presence of broad band observed from 3100 cm
-1 

to 3500 cm
-1

 may be 

assigned to O-H stretching due to strong intramolecular and intermolecular hydrogen 

bonds [Costa et al., 2008; Andrade et al., 2006]. Presence of bands at 1090.11 cm
-1

, 

1240.54 cm
-1

 and 1732.32 cm
-1

 can be attributed to the C-O stretching, C-C-O 

stretching and C=O stretching vibrations of non-hydrolysed residual vinyl acetate 

groups of PVA polymer. 

 

 

Table 5.1: Band assignment of peaks in pure PVA sample. 

Wave number (cm
-1

) Band assignment References 

844.74 Symmetric C-C-O Smith (1999) 

1090.11 C-O stretch 
Linga Raju et al. (2007) 

Costa et al. (2008) 

1240.54 Acetate C-C-O stretch Smith (1999) 

1329.25 OH bend Costa et al. (2008) 

1373.61 Symmetric C-CH3 bend Smith (1999) 

1424.72 CH2 bend Costa et al. (2008) 

1732.32 C=O stretch (acetate) 
Costa et al. (2008) 

Smith (1999) 

2870-2960 CH stretch Costa et al. (2008) 

3100-3500 OH stretch Costa et al. (2008) 
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Figure 5.1: FTIR spectra of PVA coatings with acid as additive: (i) PurePVA, (ii) 

PAntho, (iii) PAAce, (iv) PACit, and (v) PAHyd. 
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Figure 5.2: FTIR spectra of PVA coatings with nitrate salt as additive: (i) 

PurePVA, (ii) PAntho, (iii) PACal, (iv) PAMag, and (v) PAZin. 

 

 

Since the spectra of the samples appeared similar, relative intensities and positions of 

the peaks were studied to reveal information masked. Lambert-Beer’s law states that 

concentration of a species is proportional to its absorbance, transmission intensities 

were converted to absorbance values. In relative intensity studies, absorbance of a 

specific functional group of a sample was compared to absorbance of the same 

functional group from another sample, and a ratio was obtained between the two. By 
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comparing the ratio with that for another functional group, information regarding 

relative amount of the functional group between the two samples can be determined. 

Relative intensities of the major peaks for all samples are tabulated in Table 5.2 - 5.8.  

 

 

Table 5.2: Relative peak intensities between sample PurePVA and PAntho. 

Sample 

Ratio of 

APAntho to 

APurePVA 

PAntho PurePVA 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APurePVA 

844.22 0.0894 843.74 0.1234 0.7243 

1089.15 0.1443 1090.11 0.1988 0.7256 

1239.09 0.1659 1240.54 0.2258 0.7349 

1326.84 0.0573 1329.25 0.0798 0.7182 

1373.13 0.0888 1373.61 0.1239 0.7167 

1427.61 0.0667 1424.72 0.0943 0.7071 

1732.32 0.1058 1732.32 0.1399 0.7563 

3301.19 0.0634 3296.37 0.1035 0.6127 

 

 

Table 5.3: Relative peak intensities between sample PAntho and PAAce. 

Sample 

Ratio of APAAce 

to APAntho 

PAAce PAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAAce 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

845.67 0.1158 844.22 0.0894 1.2953 

1089.15 0.1967 1089.15 0.1443 1.3634 

1238.61 0.2319 1239.09 0.1659 1.3976 

1329.73 0.0775 1326.84 0.0573 1.3523 

1373.13 0.1235 1373.13 0.0888 1.3905 

1426.64 0.0947 1427.61 0.0667 1.4202 

1732.32 0.1415 1732.32 0.1058 1.3378 

3303.12 0.0910 3301.19 0.0634 1.4347 
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Table 5.4: Relative peak intensities between sample PAntho and PACit. 

Sample 

Ratio of APACit 

to APAntho 

PACit PAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APACit 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

843.74 0.1107 844.22 0.0894 1.2381 

1089.15 0.1812 1089.15 0.1443 1.2562 

1239.09 0.2077 1239.09 0.1659 1.2515 

1327.32 0.0717 1326.84 0.0573 1.2518 

1373.61 0.1113 1373.13 0.0888 1.2534 

1425.19 0.0830 1427.61 0.0667 1.2449 

1728.46 0.1314 1732.32 0.1058 1.2418 

3300.71 0.1104 3301.19 0.0634 1.7417 

 

 

Table 5.5: Relative peak intensities between sample PAntho and PAHyd. 

Sample 

Ratio of 

APAHyd to 

APAntho 

PAHyd PAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAHyd 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

845.67 0.1071 844.22 0.0894 1.1980 

1089.15 0.1741 1089.15 0.1443 1.2069 

1240.06 0.2004 1239.09 0.1659 1.2077 

1325.87 0.0702 1326.84 0.0573 1.2260 

1373.61 0.1091 1373.13 0.0888 1.2285 

1428.57 0.0820 1427.61 0.0667 1.2291 

1732.32 0.1311 1732.32 0.1058 1.2389 

3301.67 0.0887 3301.19 0.0634 1.3992 
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Table 5.6: Relative peak intensities between sample PAntho and PACal. 

Sample 

Ratio of APACal 

to APAntho 

PACal PAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APACal 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

824.45 0.1535 844.22 0.0894 1.7176 

1088.67 0.2371 1089.15 0.1443 1.6437 

1241.02 0.2846 1239.09 0.1659 1.7151 

1332.63 0.1763 1326.84 0.0573 3.0774 

1372.16 0.1992 1373.13 0.0888 2.2435 

1420.86 0.1570 1427.61 0.0667 2.3541 

1731.84 0.1487 1732.32 0.1058 1.4061 

3323.37 0.1244 3301.19 0.0634 1.9622 

 

 

Table 5.7: Relative peak intensities between sample PAntho and PAMag. 

Sample 

Ratio of 

APAMag to 

APAntho 

PAMag PAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAMag 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

826.87 0.1597 844.22 0.0894 1.7862 

1088.18 0.2222 1089.15 0.1443 1.5401 

1243.91 0.2654 1239.09 0.1659 1.5996 

1333.11 0.1654 1326.84 0.0573 2.8880 

1372.64 0.1927 1373.13 0.0888 2.1700 

1413.14 0.1424 1427.61 0.0667 2.1354 

1731.84 0.1377 1732.32 0.1058 1.3019 

3315.17 0.1342 3301.19 0.0634 2.1157 
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Table 5.8: Relative peak intensities between sample PAntho and PAZin. 

Sample 

Ratio of APAZin 

to APAntho 

PAZin PAntho 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAZin 

Peak Wave 

Number (cm
-1

) 

Absorbance, 

APAntho 

826.38 0.1610 844.22 0.0894 1.8013 

1088.67 0.2355 1089.15 0.1443 1.6325 

1242.47 0.2837 1239.09 0.1659 1.7098 

1331.66 0.1545 1326.84 0.0573 2.6977 

1372.64 0.1892 1373.13 0.0888 2.1311 

1416.04 0.1390 1427.61 0.0667 2.0831 

1731.84 0.1555 1732.32 0.1058 1.4700 

3299.26 0.1284 3301.19 0.0634 2.0254 

 

 

Infrared spectra of PurePVA and PAntho samples have similar shape. Changes in the 

position of the peaks are minimal. Addition of anthocyanins into PVA does not cause 

significant change in the position of peaks. However, study into the relative peak 

intensity reveals some changes. For PAntho sample, there has been small increase in the 

C=O and C-O functional groups relative to PurePVA, as can be seen in the increased 

ratios of 0.7563 and 0.7349 at 1732.32 and 1239.09 cm
-1

 respectively, compared to 

PurePVA. The increase in these functional groups could be due to the anthocyanins.  

 

For samples with acid as additive, shape and peak positions of the spectra are very 

similar to PAntho, which does not contain additive. For PAAce, no significant shift can 

be observed in the peak position. Increase in the relative intensities of O-H stretch, CH2, 

CH3, and C-O detected respectively at 3303.12 cm
-1

, 1426.64 cm
-1

, 1373.13 cm
-1

, and 

1238.61 cm
-1

, can be attributed to acetic acid. Increased O-H and C-O relative 

intensities could suggest that hydrogen bonding occur between acetic acid and PVA. 
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For PACit and PAHyd samples, the position, shape and relative intensities of peaks are 

also very similar to that of without acid. For PACit sample, small shift detected at 

1728.46 cm
-1

, which corresponds to C=O bond, could be due to the effect of C=O 

vibration in citric acid. Presence of relatively higher ratio of C-O, O-H bend and O-H 

stretch peaks respectively at 1089.15 cm
-1

, 1327.32 cm
-1

 and 3300.71 cm
-1

 compared to 

that of PAntho suggests that hydrogen bonding occurs between citric acid with PVA 

coating. For PAHyd sample, small increase in the relative intensity ratios of CH2, CH3, 

O-H bend, and O-H stretch can be observed at 1428.57 cm
-1

, 1373.61 cm
-1

, 1325.87 cm
-

1
, and 3301.67 cm

-1
 respectively. Due to the molecular structure of hydrochloric acid 

which consists of a hydrogen atom and a chlorine atom, increased intensities of these 

groups indicate more hydrogen bonding with PVA. 

 

For samples with salt as additive, more obvious changes in peak position, shape and 

relative intensities can be observed. For all PACal, PAMag, and PAZin samples, a new 

peak appears at 824.45 cm
-1

, 826.27 cm
-1

, and 826.38 cm
-1

 respectively. This vibrational 

band can be assigned as N-O out-of-plane bending for nitrates [Smith, 1999]. Shifts are 

detected at 1326.84 cm
-1

 and 1427.61 cm
-1

, which are assigned as O-H and CH2 bending 

vibrations in PAntho sample. For O-H bending vibration, the peaks shifted to 1332.63 

cm
-1

, 1333.11 cm
-1

 and 1331.66 cm
-1

 while for CH2 bending vibration, the peaks shifted 

to 1420.86 cm
-1

, 1413.14 cm
-1

, and 1416.04 cm
-1

 for PACal, PAMag and PAZin 

respectively. Shifts in O-H stretching vibration can also be noted. PACal, PAMag, and 

PAZin samples showed shifts to 3323.37 cm
-1

, 3315.17 cm
-1

, and 3299.26 cm
-1

 

respectively. Increase in relative intensities and shifts in the O-H stretch, O-H bending, 

CH2, and CH3 vibrations can be observed for the PACal, PAMag and PAZin samples 

compared to PAntho sample. This indicated an increase of amount in these functional 

groups in the three samples. Shifts in the O-H and CH2 bands and appearance of nitrate 
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groups could suggest that interaction occurred in the form of hydrogen bonding between 

nitrate functional group and PVA.  

 

5.2 Thermogravimetric Analysis (TGA) 

Results of thermogravimetric analysis and derivative TGA (DTG) are shown in 

thermograms in Figures 5.3 – 5.10. Overlapped thermograms of all samples are 

illustrated in Figure 5.11. Table 5.9 lists the remaining percent weight of the samples at 

300°C, while Table 5.10 lists temperature of the samples when they are at 70% weight. 

Thermogravimetric analysis and its derivative analysis are very important technique in 

determining thermal stability of coating materials. In addition to that, these techniques 

can also be used to study the degradation of coating materials including their 

degradation products.   

 

From the thermogram of PurePVA sample, it is noticeable that poly(vinyl alcohol) 

undergoes three degradation steps. The first weight loss at temperature below 100°C is 

due to the water content. This degradation step was also observed in all other samples, 

which indicated evaporation of moisture. Second degradation step at 200°C - 400°C, 

which accounts for the highest percent change in weight, is due to the thermal 

degradation of PVA molecule. The third weight loss from 400°C - 500°C was due to 

PVA byproducts [Chen et al., 2008].  

 

PAntho sample, in which anthocyanins are added, showed an additional small 

degradation step of about 5.35% and a DTG peak at 200°C - 250°C, as shown in Figure 

5.4. By comparing this with pure PVA sample, the additional step can be attributed to 

the degradation of anthocyanin, or its degradation byproducts. Thermogram of PAAce 

sample is similar to that of PAntho and addition of acetic acid has minimal effect on the 
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degradation of PVA. For PACit sample, appearance of large weight loss steps and DTG 

bands of peaks at 200°C - 250°C and 400°C - 450°C as shown in Figure 5.6 can be 

attributed to the fragments or decomposition products of citric acid [Hardy et al., 2003]. 

For PAHyd sample, degradation at 400°C - 450°C was also enhanced, which could be 

due to the evolution of hydrochloric acid.  

 

For PACal, PAMag, and PAZin samples, in which nitrate salt was added as additive, 

additional steps can also be observed. From Figures 5.7 -5.9, small degradation steps 

and DTG peaks observed at temperature 150°C - 200°C can be attributed to evolution of 

water and fragments of nitrates such as NO and NO2 gasses [Malecka et al., 2003]. 

Besides, appearance of weight loss steps and DTG peaks can also be detected at 

temperature 300°C - 400°C in the three samples. These decomposition steps are due to 

NO, NO2 and O2 gasses, which are the decomposition byproducts of nitrates [Malecka 

et al., 2003; Madarasz et al., 2007; Migdal-Mikuli et al., 2004]. It can also be observed 

from Figures 5.8-5.10 that PACal, PAMag, and PAZin samples which respectively 

contained calcium, magnesium and zinc metal cation showed higher residue content at 

temperature higher than 600°C. This could be due to the formation of the respective 

metal oxides which are thermally stable after the liberation of NO, NO2 and O2 gasses 

[Malecka et al., 2003; Migdal-Mikuli et al., 2004; Brockner et al., 2007]. 
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Figure 5.3: Thermogram and DTG of PurePVA sample. 

 

 

 

Figure 5.4: Thermogram and DTG of PAntho sample. 
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Figure 5.5: Thermogram and DTG of PAAce sample. 

 

 

 

Figure 5.6: Thermogram and DTG of PACit sample. 
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Figure 5.7: Thermogram and DTG of PAHyd sample. 

 

 

 

Figure 5.8: Thermogram and DTG of PACal sample. 
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Figure 5.9: Thermogram and DTG of PAMag sample. 

 

 

 

Figure 5.10: Thermogram and DTG of PAZin sample. 
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Addition of anthocyanin into the PVA does not alter much the thermal stability of PVA, 

as decomposition of PVA main chain (degradation with the largest step) occur almost at 

the same temperature as shown in Figure 5.11. This can also be shown in Table 5.10 

where degradation temperatures of PurePVA and PAntho at 70% weight are close, at 

280.70°C and 277.33°C respectively. Addition of acetic acid has minimal effect on the 

thermal stability of the coating, as can be shown from the close values of percent weight 

at 300°C and temperature at 70% weight from Table 5.9 and 5.10 respectively. Addition 

of citric acid and hydrochloric acid shifts the degradation of PVA to higher temperature, 

at 300°C - 350°C as compared to 250°C - 300°C in PurePVA, PAntho and PAAce, 

hence enhancing thermal stability of PACit and PAHyd samples. This can also be seen 

in Table 5.9, where weight percentages of PACit and PAHyd are respectively 67.69% 

and 78.60%, higher than PurePVA and PAntho with only 45.61% and 27.21% left. 

From Table 5.10, PACit and PAHyd has also displayed higher temperature at 298.16°C 

and 305.37°C respectively compared to PAntho at 277.33°C. 

 

On the other hand, addition of salt shifts PVA decomposition to lower temperature at 

220°C - 270°C, causing the samples to be less thermally stable. This is also shown from 

Table 5.10 where samples with nitrate salts as additive displayed lower temperature at 

70% weight compared to PurePVA and PAntho. As can be noticed from DTG curves of 

samples with salts, decomposition at lower temperature could be initiated by evolution 

of NO and NO2 gasses. However, at 300°C, their weight percentages are higher than 

that of PurePVA and PAntho as observed in Table 5.9. This could be due to the 

presence of more thermally stable nitrate salts in these samples [Malecka et al., 2003; 

Migdal-Mikuli et al., 2004]. Referring to the thermograms of PACal, PAMag, and 

PAZin, it is observed that decomposition of the material is continuous due to the 

presence of more decomposition products and fragments of the additives, as opposed to 
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sharp drop in weight in PurePVA and PAntho samples. Hence, it can be deduced that 

thermal stability of PVA coating can be influenced by the addition of additives and 

thermal stability of the additives.  

 

 

Table 5.9: Percent weight of all coating samples at 300°C. 

Sample Weight at 300°C (%) 

PurePVA 45.61 

PAntho 27.21 

PAAce 22.26 

PACit 67.69 

PAHyd 78.60 

PACal 48.35 

PAMag 50.00 

PAZin 45.94 

 

 

Table 5.10: Temperature of coating samples at 70% weight. 

Sample Temperature at 70% weight (°C) 

PurePVA 280.70 

PAntho 277.33 

PAAce 277.74 

PACit 298.16 

PAHyd 305.37 

PACal 256.27 

PAMag 247.87 

PAZin 250.01 
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Figure 5.11: Overlapped thermograms of all coating samples. 

 

 

5.3 Glass Transition Temperature by DSC 

Glass transition temperatures of the all samples are shown in Figure 5.12 – 5.19. It can 

be observed that glass transition temperature of pure PVA is found to be 62.97°C. It has 

been reported that glass transition temperature of PVA ranges from 70 - 80°C [Malathi 

et al., 2010; Sudhamani et al., 2003]. Anthocyanins do not seem to have significant 

effect on PVA. The recorded Tg of PAntho sample is 61.46°C, which is close to that of 

pure PVA. Addition of additives into PVA could affect its glass transition temperature. 

Increase in glass transition temperature indicates less chain mobility and more 

intramolecular and intermolecular hydrogen bonding [Nugent et al., 2005]. On the other 

hand, lower glass transition temperature causes higher segmental motion of polymer 

chain due to plasticization [Malathi et al., 2010].  

 



Chapter 5 Characterisation on PVA-Anthocyanin Coatings 

78 

 

Addition of acid has minimal effect on the glass transition temperature of PVA. This 

can be seen in Figures 5.14 - 5.16. Addition of acetic acid increases the Tg to 62.34°C, 

which is close to the value of 61.46°C for PAntho. Addition of hydrochloric acid has 

also increased the Tg by a small amount to 64.28°C. Addition of citric acid causes a 

small drop in Tg value of PVA from 61.46°C to 59.37°C. On the other hand, addition of 

nitrate salts into PVA causes large increase in the Tg of the PVA sample. PACal, 

PAMag, and PAZin samples recorded high Tg values at 83.10°C, 83.76°C and 74.46°C, 

respectively, at least a 13°C increase, as compared to 61.46°C of PAntho. The large 

increase could be attributed to the interaction between nitrate functional group and PVA 

through hydrogen bonding. Formation of the hydrogen bonding in these samples can be 

observed in the increase intensity and shift in O-H, CH2 and CH3 bonds in the infrared 

spectra of these samples, as discussed in Section 5.1. There has been report that 

presence of hydrogen bonding could increase glass transition temperature [Lin et al., 

2010; Xu et al., 2002]. Increase in glass transition temperature upon addition of 

inorganic salt has also been reported by Kim et al. (2003), Every et al. (1998), and 

Belfiore et al. (1992).  
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Figure 5.12: Glass transition temperature of PurePVA sample. 

 

 

 

Figure 5.13: Glass transition temperature of PAntho sample. 
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Figure 5.14: Glass transition temperature of PAAce sample. 

 

 

 

Figure 5.15: Glass transition temperature of PACit sample. 
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Figure 5.16: Glass transition temperature of PAHyd sample. 

 

 

 

Figure 5.17: Glass transition temperature of PACal sample. 
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Figure 5.18: Glass transition temperature of PAMag sample. 

 

 

 

Figure 5.19: Glass transition temperature of PAZin sample. 
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5.4 UV Degradation by CIELAB Colourimetry 

According to ASTM D4329, length of exposure to UV radiation should be that enough 

to cause substantial change in property of interest. In assessing performance of the 

coating, comparison is made after 24 hours of exposure to UV radiation. Colour 

changes of all samples before and upon UV irradiation are depicted in Figure 5.20 – 

5.26. Table 5.11 lists the CIELAB colour parameters at the 0
th

 and 24
th

 hour of UV 

exposure and the respective colour differences of all samples. From Figure 5.20 – 5.26, 

it can be observed that colour degradation occurs in all samples upon UV exposure. 

Length of the arrow indicates the amount of change in chroma (C*) values of the 

samples, which indicates the colour degradation. Chroma is a measure of colourfulness 

or vividness [Ohta & Robertson, 2005]. The colour of all samples moves towards origin 

or the a/-b axis. This indicates that colour changes from the red (positive a*) and blue 

(negative b*) region towards green (negative a*) and yellow (positive b*) region. 

PAntho, PAAce, and PACit samples showed direction of colour change towards or 

approaching origin, i.e. the grey zone. However, no correlation can be established with 

the amount of colour change. PACal, PAMag, and PAZin samples showed distinctive 

change towards the red and further to the yellow zone. This indicated a significant 

change in the b* values and yellowing of the samples.  

 

From Table 5.11, it is noticeable that all samples showed increase in lightness, L* and 

b* values and decrease in a* and C* values. It can be deduced that UV irradiation 

increases lightness and lowers redness and blueness of all samples, in which the change 

could be due to the degradation of anthocyanins in the samples, as the colour is due to 

the presence of anthocyanins. Yang et al. (2008) has reported that decrease in a* value 

could be attributed to degradation of monomeric anthocyanins, while increase in b* 

value indicated the formation of yellow chalcone species. Colour degradation can also 
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be assessed by the total colour difference, ΔE. A minimum of ΔE = 1 was assumed to be 

the basis for colour difference noticeable by human eye [Gonnet, 1998]. 

 

Total colour difference of PAntho sample was calculated to be 26.67. Addition of acetic 

acid and hydrochloric acid enhanced the UV stability of the coating. This can be seen 

from the lower total colour difference of 8.95 and 16.89 in the PAAce and PAHyd 

samples respectively. Although total colour difference of PAAce sample is the lowest, 

its colour was not vivid, as indicated by the low C* value initially and after UV 

irradiation. For PAHyd sample, however, the C* value before and after UV exposure 

was very high, and hence the vivid colour even after UV irradiation. However, addition 

of citric acid causes faster UV degradation as indicated by the higher total colour 

difference. On the other hand, addition of salt accelerated the UV degradation of 

anthocyanins in coating. This is observed from the high ΔE values of 31.83, 47.22 and 

31.20 of PACal, PAMag, and PAZin samples respectively. As observed in the UV 

degradation of aqueous anthocyanins, in which the ACal, AMag, and AZin samples also 

showed increased degradation rate, it can be deduced that all the nitrate salts in this 

study caused faster UV degradation of anthocyanins. 
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Figure 5.20: Colour change of PAntho sample upon exposure to UV for 24 hours. 

 

 

Table 5.11: CIELAB parameters of all samples upon UV irradiation for 24 hours. 

Sample 0
th

 hour 24
th

 hour ΔE 

L* a* b* C* L* a* b* C* 

PAntho 74.85 38.21 -22.23 44.21 85.71 17.62 -9.21 19.88 26.67 

PAAce 84.24 15.35 -15.15 21.57 87.34 9.89 -8.77 13.22 8.95 

PACit 74.76 43.31 -19.91 47.67 88.12 15.07 -7.22 16.71 33.72 

PAHyd 60.91 58.96 -24.77 63.96 67.02 43.95 -20.01 48.29 16.89 

PACal 83.81 41.73 -16.84 45.00 92.69 15.52 -1.11 15.56 31.83 

PAMag 75.95 53.67 -22.12 58.05 88.97 15.29 2.12 15.44 47.22 

PAZin 72.07 45.60 -21.77 50.53 78.74 20.95 -3.85 21.30 31.20 
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Figure 5.21: Colour change of PAAce sample upon exposure to UV for 24 hours. 

 

 

Figure 5.22: Colour change of PACit sample upon exposure to UV for 24 hours. 
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Figure 5.23: Colour change of PAHyd sample upon exposure to UV for 24 hours. 

 

 

Figure 5.24: Colour change of PACal sample upon exposure to UV for 24 hours. 
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Figure 5.25: Colour change of PAMag sample upon exposure to UV for 24 hours. 

 

 

Figure 5.26: Colour change of PAZin sample upon exposure to UV for 24 hours. 
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5.5 X-Ray Diffraction (XRD) 

Results of X-ray diffraction of coating samples are shown in Figures 5.27 - 5.28. The 

diffractograms of all samples were smoothed in the Origins Pro 8.0 software. Table 5.12 

lists the measured 2θ and FWHM and the calculated d-spacing and Scherrer length. 

From the diffractograms of all samples, it is obvious that all the samples exhibited 

amorphous characteristics, with the presence of a broad diffraction halo. From the 

diffractogram of PurePVA sample, the halo peak is located at 19.5° which is the same 

as obtained by Hema et al. (2010). This halo indicates that the d-spacing for all samples 

is in the range 4.53-4.55Å. The d-spacing can be related to the interchain distance of a 

polymer (Huang et al., 2006). The almost preserved d-spacing tells that the interaction 

between all additives and PVA gives insignificant effect on the interchain distance 

between PVA molecules. The full width at half maximum (FWHM) of PurePVA 

sample was measured to be 8.0° and the Scherrer length was calculated to be 10.08 Å. 

Addition of anthocyanins reduced the FWHM to 6.7° and hence reduced the broadness 

of the halo. This consequently improved the size of the ordered structures that give the 

halo peak as shown by the increased Scherrer column length. It can be said that the 

amorphous nature of the sample becomes less dominant upon addition of anthocyanins.  

 

Addition of acetic acid has minimal effect on the amorphous properties of the sample. 

This is shown in the FWHM of 6.4°, which is close to 6.7° of PAntho. Addition of citric, 

however, increased the amorphousness of the coating, as can be shown in the increase in 

FWHM to 8.8° and decrease in crystallite size to 9.16 Å. For PAHyd sample, the 

FWHM and Scherrer value is close to that of PAntho, at 6.6° and 12.21 Å, respectively. 

It can be inferred that addition of hydrochloric acid has minimal effect on the structural 

characteristics of the PVA-anthocyanin coating. On the other hand, addition of nitrate 

salts significantly increased the FWHM values of the coating to 9.5°, 11.5°, and 8.7° for 
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the PACal, PAMag, and PAZin samples respectively. The corresponding Scherrer 

column length for PACal, PAMag and PAZin has also been reduced compared to 

PAntho, indicating that the size of the ordered structure has been reduced. Hence, it can 

be deduced that addition of nitrate salts disturbed the ordered structure and caused the 

coating to become more amorphous. This interaction can be deduced from hydrogen 

bonding between nitrates with OH bonds from PVA. Presence of hydrogen bonding has 

been discussed in Section 5.1 and 5.3. Hema et al. (2010) has also reported that addition 

of salt could increase the amorphous nature of PVA. 

 

 

 

Figure 5.27: X-ray diffractograms of coating samples (i) PurePVA, (ii) PAntho, (iii) 

PAAce, (iv) PACit, (v) PAHyd. 
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Figure 5.28: X-ray diffractograms of coating samples (i) PurePVA, (ii) PAntho, (iii) 

PACal, (iv) PAMag, (v) PAZin. 

 

Table 5.12: FWHM values from XRD diffraction halo for all PVA coating samples. 

Sample 2θ d-spacing (Å) FWHM 
Scherrer 

length, L (Å) 

PurePVA 19.5° 4.55 8.0° 10.08 

PAntho 19.6° 4.53 6.7° 12.03 

PAAce 19.5° 4.55 6.4° 12.60 

PACit 19.6° 4.53 8.8° 9.16 

PAHyd 19.5° 4.55 6.6° 12.21 

PACal 19.6° 4.53 9.5° 8.49 

PAMag 19.6° 4.53 11.5° 7.01 

PAZin 19.5° 4.55 8.7° 9.27 
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CHAPTER 6: DISCUSSION  

 

 From the pH differential method, it can be shown that the maximum peak in the 

visible region has diminished at pH 4.5, as compared to pH 1.0. At pH 1.0, a high 

absorption band is noticeable in the green to yellow region, including a portion of the 

blue region, hence giving anthocyanins red colour. At pH 4.5, the band has diminished, 

causing the anthocyanins to appear colourless. This is an indication that structural 

transformation has occurred in the anthocyanins structure, from the red flavylium cation 

at pH 1.0 to the colourless carbinol at pH 4.5 [Giusti & Wrolstad, 2001]. From the UV-

Vis absorption spectroscopy of the anthocyanins and anthocyanins with added additives, 

it can be seen that addition of acids generally enhances the absorption band in the 

visible range. On the other hand, addition of nitrate salts enhances the absorption in the 

UV range, which could be due to the nitrates [Gvozdić et al., 2009 and Tomišić et al., 

2005].  

 

In the study of UV degradation of aqueous anthocyanins and anthocyanins with 

additives, all the samples are shown to follow first order degradation kinetics, in which 

degradation occurs exponentially. Addition of hydrochloric acid has greatly enhanced 

the UV inhibition properties of the aqueous anthocyanins, increasing the half-life 7 

times higher to 210 h. Addition of nitrate salts, however, accelerates the degradation 

process. This could be due to the change in the equilibrium, since the discolouration is 

due to the transformation of flavylium cation to the colourless carbinol. 
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In the study of natural degradation by fungi, AZin sample shows the best performance 

in terms of fungi inhibition, where no fungi growth can be observed in the sample. This 

is supported by CIELAB colourimetry, in which a minimal change in the total colour 

difference (ΔE) of 13.60 is noted, which can be due to the natural degradation of 

anthocyanins rather than by fungi. There is a vast potential for zinc nitrate to be used as 

fungi inhibitor, if aqueous anthocyanins are to be stored for a prolonged period. In all 

other samples, a certain degree of degradation by fungi can be noticeable. Samples that 

did not fare very well are ACal and AMag, where calcium nitrate and magnesium 

nitrate are respectively added as additives. In both samples, fungi growth is visible and 

can be confirmed by the high values of measured fungi dry weight, as well as the high 

values of total colour difference.  

 

From the FTIR spectra of the coating samples, major vibrational bands are assigned. 

Relative intensity studies were conducted to reveal information in comparing samples 

with similar spectra shapes and peak positions. Addition of anthocyanins into PVA 

causes small increase in the C-O and C=O functional groups from the study of relative 

intensity. Increase in the C-O and O-H bands relative intensity in PACit sample and 

CH2, CH3, and O-H bands relative intensity in PAHyd sample compared to PAntho 

could suggest the presence of hydrogen bonding in these samples. On the other hand, 

appearance of new peaks at 824.45 cm
-1

, 826.27 cm
-1

, and 826.38 cm
-1

 in PACal, 

PAMag, and PAZin samples respectively can be assigned to N-O out-of-plane bending 

due to the nitrates. Large increase and shifts in the relative intensity of O-H bending, 

CH2, and CH3 bands could suggest the occurrence of more hydrogen bonds between 

nitrate salts and PVA. 
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In thermogravimetric analysis, degradation of individual compounds or their fragments 

can be identified from the thermogram as a weight loss step and from DTG as a peak. In 

PACit sample, presence of large weight loss steps at 200°C - 250°C and 400°C - 450°C 

can be due to the decomposition of citric acid. In PACal, PAMag, and PAZin samples, 

presence of weight loss steps at temperature 300°C - 400°C are due to NO, NO2 and O2 

gasses [Malecka et al., 2003, Madarasz et al., 2007, Migdal-Mikuli et al., 2004], which 

are the decomposition byproducts of nitrates. In thermal stability study, position of a 

degradation step and percent weight loss can be used to assess thermal stability of a 

material. Addition of hydrochloric acid and citric acid enhances thermal stability of the 

coating samples. This can be seen in the main thermal degradation at higher temperature 

(300°C - 350°C) compared to that of PAntho (250°C - 300°C). By comparing the 

weight percentage at 300°C, it can also be shown that PACit and PAHyd samples 

recorded weight percent of 67.69% and 78.60% respectively, higher than other samples. 

This indicates that thermal stability of these coating samples is higher than others at 

300°C. 

 

In the glass transition temperature study, large increase in the glass transition 

temperature of PACal, PAMag, and PAZin samples can be seen. The increase indicates 

that the amount of hydrogen bonding in the samples has increased, which could be due 

to the interaction of nitrates with PVA. This can be related to the FTIR study, where 

large increase in the relative intensity of N-O, O-H stretching, O-H bending, CH2, and 

CH3 bands are observed in these samples. Presence of these groups, which could also 

indicate presence of more hydrogen bonding, could lead to less free volume, hence 

increasing the glass transition temperature. Increase in glass transition temperature due 

to hydrogen bonding has been reported by Lin et al. (2010). Higher glass transition 

temperature leads to more glassy and hard structure. 
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All the coating samples exhibited colour degradation upon exposure to UV radiation. 

This can be seen in the decrease in a* values and increase in b* values and colour 

change direction towards yellow-green region in the colour space. Addition of acetic 

acid and hydrochloric acid inhibited the colour degradation of anthocyanins in the 

coatings by UV, as can be seen from the lower values of total colour difference. It is 

possible that hydrochloric acid interacts with anthocyanin and stabilizes it in the 

flavylium form. On the other hand, PACal, PAMag and PAZin did not perform well as 

these samples exhibit larger values of colour change. In the UV degradation study of 

aqueous anthocyanins, ACal, AMag, and AZin samples have shown to exhibit the 

lowest UV stability. Hence, it can be inferred that calcium nitrate, magnesium nitrate 

and zinc nitrate increase the UV degradation rate in both aqueous solution and coating. 

 

Presence of broad diffraction halo indicates that all coating samples are amorphous. The 

amorphousness is due to the poly(vinyl alcohol), and the peak at 19.5° confirms this. It 

has been reported that salt could increase the amorphousness of PVA [Hema et al., 

2010]. Upon addition of calcium nitrate, magnesium nitrate and zinc nitrate into the 

coating sample, broadness of the amorphous halo in X-ray diffractogram of these 

samples increases, as can be noted from the increase in FWHM values. In addition, 

calculated Scherrer length for these samples has increased. This shows that the size of 

the ordered domains has decreased due to interaction of PVA with nitrate. 
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CHAPTER 7: CONCLUSIONS AND SUGGESTIONS FOR FUTURE 

WORKS 

 

Integration of anthocyanins as red colourant into poly(vinyl alcohol) coating has been 

achieved. The integration is made possible due to the use of water as common solvent. 

Anthocyanin is water soluble pigment; hence water can be used to extract anthocyanin 

from cell vacuole. Poly(vinyl alcohol) is a water soluble non-toxic polymer. Therefore, 

the extract containing anthocyanins can also be used to dissolve poly(vinyl alcohol). 

Coating prepared from mixture of poly(vinyl alcohol) and anthocyanin is environmental 

friendly. Anthocyanin, a natural dye obtained from plant source is used instead of 

artificial colourant. Poly(vinyl alcohol), a water soluble, non-toxic and biodegradable 

polymer, is one of the safest sources to be used as binder in coating. In addition, no 

organic solvent is used in the preparation and formulation of the coating. This further 

reduces the harmful effect of VOC towards environment and also the coating applicator.  

 

In terms of performance, the anthocyanin dye and coating did not fare well. 

Anthocyanin is susceptible to UV degradation upon exposure to UV radiation, in both 

extract and coating. Being extracted by water, anthocyanin is susceptible to attack by 

fungi. This affected storage properties of the paint. Thermal stability of the coating is 

dependent on the thermal stability poly(vinyl alcohol) as the binder in the coating. Upon 

addition of additive, the performance in different aspects of the extract and coating can 

be enhanced. However, there is no universal additive that can enhance every aspect of a 

coating’s performance in the coating industrial. Different additive is used to achieve 

specific functions and effects on the coating, which is why additive is functional 

specific. 
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In this work, hydrochloric acid has shown to affect the properties and performance of 

anthocyanins and coating. Addition of hydrochloric acid enhanced the UV stability of 

the anthocyanins extract to 210h, a 7 fold increase compared to the anthocyanin extract 

without additive. In the colour degradation study of coating upon exposure to UV 

radiation, addition of hydrochloric reduced the total colour difference before and after 

UV irradiation, compared to that of coating without additive. Hydrochloric acid 

enhanced thermal stability of the coating, evident from the shifting of the main 

degradation towards higher temperature in thermogravimetric analysis. However, it did 

not fare well in storage stability and risked infested by fungi.  

 

In study of degradation by fungi, zinc nitrate has shown to enhance the fungi inhibition 

properties of the extract, where no fungi growth can be observed visually and supported 

by the small colour difference obtained in CIELAB colourimetry. Addition of zinc 

nitrate caused the coating to become hard and glassy due to increase in cross-link 

density, as seen in the increase in glass transition temperature, and appearance of nitrate 

functional group and hydrogen bonding from FTIR study. Addition of zinc nitrate, 

however, reduced the UV stability of anthocyanin in both extract and coating.  

 

From these evidences, it can be concluded that hydrochloric acid exhibits potential as 

colour stabilizer of anthocyanins in extract and coating, and thermal stabilizer in 

anthocyanin-PVA coating up to 300°C. On the other hand, zinc nitrate exhibits potential 

as fungi inhibitor and enhances storage stability of the anthocyanin extract.  

 

For further works, it is suggested that anthocyanin dye be extended to other coating 

applications. More additives can also be explored to enhance the performance of not 

only the coating, but also properties and stability of the natural dye. Selection of natural 
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colourants can also be extended, though stability and compatibility with coating has to 

be assessed. More characterisation techniques not included in this work could also be 

employed to assess the performance of the coating. 
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