ABSTRACT

Methane (CH₄) is an important greenhouse gas with a global warming potential 25 times higher than carbon dioxide (CO₂). Landfill is a one of the major contributor to global CH₄ emission and is estimated to be 500-800 Mt CO₂ eq/year. Previous studies have shown that microbial oxidation of CH₄ in landfill cover soil can be enhanced using substrates that are rich in organic matter, such as compost. Methanotrophs are group of bacteria that utilize CH_4 as its sole carbon and energy source. Therefore this study is aimed to characterize the physiochemical properties of biocover material, while identifying the potential methanotrophic bacteria from landfill cover soil. It is also intended to evaluate a comparative assessment of the CH₄ efficiency of the biocover material under controlled conditions for bottle and column experiments with the addition of potential methanotrophic bacteria. Compost has been identified as best biocover material based on the associated physiochemical properties and their ability to oxidize 4% of CH₄ within 4 days. Three types of methanotrophic bacteria were isolated from landfill soil and identified as Methylomonas sp, Methylococcus sp 1 and *Methylococcus* sp 2. *Methylococcus* sp 1 showed the highest CH_4 oxidation capacity when compared to Methylomonas sp and Methylococcus sp 2 which took only 24 hours for complete CH₄ oxidation. Batch experiment with addition of individual cultures and mixed cultures to the compost carried out at different parameters indicated higher CH₄ oxidation capacity at 35°C and 40°C, pH 6 and at 60% v/v moisture level. Addition of *Methylococcus* sp 1 showed the highest CH₄ oxidation activity at the rate of 8.33 X $10^3 \,\mu g \, g^{-1} h^{-1}$ while the CH₄ oxidation rate with addition of *Methylomonas* sp was 4.16 X $10^3 \ \mu g \ g^{-1}h^{-1}$. Addition of *Methylococcus* sp 2

showed 75% lower activity compared to *Methylococcus* sp 1 and 50% lower activity compared to Methylomonas sp. Bacterial count at end of the experiment showed highest count for *Methylomonas* sp and *Methylococcus* sp 1. Statistical analysis (P < (0.05) showed significant increase in CH₄ oxidation with the addition of Methylomonas sp and Methylococcus sp 1 to the compost at optimum temperature, moisture and pH when compared to the control. Column experiment carried out with addition of potential methanotrophic bacteria to the compost at different column height showed highest CH_4 oxidation activity at 60cm with the addition of Methylomonas sp and Methylococcus sp 1 and the comparison with control also showed 50% increase in the CH_4 oxidation activity. The experiment carried out at different incubation temperature and moisture content showed highest CH₄ oxidation at the temperature of 35° C to 40° C and 60% moisture level which are similar to batch experiment. Kinetic studies using Michaelis Menten equation for batch experiment at optimum parameters showed highest potential CH₄ oxidation rate with the addition of Methyloccocus sp 1. Addition of methanotrophic bacteria to compost showed an enhancement and significant increase in the CH₄ oxidation under optimum parameters which are also similar to tropical conditions. A biocover with 60cm column height is potentially the best height for optimal CH₄ oxidation.

ABSTRAK

Gas Metana (CH₄) merupakan gas rumah hijau yang penting dengan potensi pemanasan global 25 kali lebih tinggi daripada karbon dioksida (CO₂). Tapak pelupusan merupakan salah satu penyumbang utama kepada pembebasan CH₄ global dan dianggarkan 500-800 Mt CO₂ persamaan / tahun. Kajian terdahulu telah menunjukkan bahawa pengoksidaan mikrob CH₄ dalam tanah penutup tapak pelupusan boleh dipertingkatkan dengan menggunakan substrat yang kaya dengan bahan organik, seperti kompos. Bakteria Metanotrofik adalah kumpulan bakteria yang menggunakan CH₄ sebagai karbon tunggal dan sumber tenaga. Oleh itu kajian ini bertujuan untuk mencirikan sifat-sifat physiochemical bahan biocover, di samping mengenal pasti bakteria methanotropik yang berpotensi dari tanah penutup tapak pelupusan. Ia juga bertujuan untuk menilai perbandingan kecekapan CH₄ bahan biocover bawah keadaan terkawal untuk botol dan column eksperimen dengan penambahan bakteria Metanotrofik yang berpotensi. Kompos telah dikenal pasti sebagai bahan biocover yang terbaik berdasarkan sifat-sifat yang berkaitan fisiokimia dan keupayaan mereka untuk mengoksidakan 4% CH₄ dalam tempoh 4 hari. Tiga jenis bakteria Metanotrofik telah diasingkan daripada tanah tapak pelupusan dan dikenalpasti sebagai spesies Methylomonas, spesies Methylococcus 1 dan spesies Methylococcus 2. Spesies Methylococcus 1 menunjukkan kapasiti pengoksidaan tertinggi CH₄ apabila dibandingkan dengan spesies Methylomonas dan spesies Methylococcus 2 yang mengambil masa hanya 24 jam untuk pengoksidaan CH₄ lengkap. Eksperimen kelompok dengan tambahan individu dan campuran kompos dijalankan pada parameter yang berbeza menunjukkan kapasiti pengoksidaan CH₄

yang lebih tinggi pada suhu 35 ° C - 40 ° C, pH 6 dan pada tahap kelembapan 60% v / v. Penambahan species Methylococcus 1 menunjukkan aktiviti pengoksidaan CH₄ pada kadar tertinggi, 8.33 X 10³ µg g⁻¹h⁻¹ manakala kadar CH₄ pengoksidaan dengan penambahan spesies Methylomonas adalah 4.16 X 10³ µg g⁻¹h⁻¹. Penambahan spesies Methylococcus 2 menunjukkan aktiviti 75% lebih rendah berbanding dengan spesies Methylococcus 1 dan aktiviti 50% lebih rendah berbanding spesies Methylomonas. Kiraan bakteria pada akhir eksperimen menunjukkan bilangan tertinggi dengan penambahan spesies Methylomonas dan spesies Methylococcus 1. Analisis statistik (P <0.05) menunjukkan peningkatan yang ketara dalam pengoksidaan CH₄ dengan penambahan spesies Methylomonas dan spesies Methylococcus 1 untuk kompos pada suhu, lembapan, dan pH optimum. Column eksperimen dijalankan dengan penambahan bakteria metanotrofik yang berpotensi untuk kompos pada ketinggian yang berbeza menunjukkan pengoksidaan CH_4 tertinggi pada ketinggian 60cm dengan penambahan spesies Methylomonas dan spesies Methylococcus 1 dan perbandingan dengan kawalan juga menunjukkan peningkatan sebanyak 50% dalam aktiviti pengoksidaan CH₄. Eksperimen yang dijalankan pada suhu berbeza dan kandungan lembapan menunjukkan pengoksidaan CH₄ yang tertinggi pada suhu 35 ° C hingga 40 ° C dan kelembapan 60% tahap yang sama kepada kumpulan eksperimen. Kajian kinetik menggunakan persamaan Michaelis Menten bagi eksperimen kelompok pada parameter optimum menunjukkan potensi kadar pengoksidaan CH₄ yang tertinggi dengan penambahan spesies Methylococcus 1. Penambahan bakteria metanotrofik pada kompos menunjukkan peningkatan yang ketara dalam pengoksidaan CH₄ di bawah parameter optimum yang juga sama dengan keadaan tropika. Biocover dengan ketinggian 60cm adalah berpotensi untuk pengoksidaan optimum CH₄.

ACKNOWLEDGEMENT

First of all, I would like to thank God and Guruji for being with me throughout the entire journey in completing my research successfully.

My sincere gratitude goes to my supervisor Professor Dr Agamuthu Pariatamby who dynamically guided me throughout my research studies.

My special thanks for funding Research project by IPPP (PS297/2010A), and UMRG grant (RG143/11SUS) and Ministry of Higher Education (MyBrain15) for providing me scholarship.

I am also thankful to Dr. Fauziah Shahul Hamid, Dr Abioye Peter, Lim Boon Tien, Siva Shangari, Emenike Chijioke, Theepa, Arezoo, Siti Zubaidah, Leong Hong Yeng, Nizam, Kasapo and also my other fellow lab mates and friends for their valuable co-operation and advice.

Last but not least, I would like to thanks my parents (Mr Barasarathi and Mrs. Vanaja) and my sisters, Puvaneswari and Mangeikarasi for their endless supports in completion of my studies.

CONTENTS

Abstr	act	ii
Abstr	ak	iv
Ackn	owledgement	vi
Conte	ents	vii
List o	f Figures	xiv
List o	of Tables	XX
List o	f Plates	xxi
List o	f symbol and abbreviations	xxii
Chap	ter 1.0: Introduction	
1.1	Waste generation	1
1.2	Landfill	2
1.3	Landfill Gas	3
1.4	Global Warming	5
1.5	Methane Oxidation	6
1.6	Biocover as Landfill Cover	7
1.7	Methanotrophic bacteria in CH ₄ Oxidation	8
1.8	Problem Statement	9
1.9	Research Objective	10
Chap	ter 2: Literature Review	
2.1	Waste	11
2.2	MSW Generation	11
2.3	Source of MSW and Characterization	12
2.4	MSW Composition	13

2.5	Solid Waste Management	15
2.6	Different options for Solid waste treatment	16
2.7	Landfilling as Disposal method	17
	2.7.1 Landfilling in Malaysia	17
2.8	Landfill output	20
2.9	Generation of LFG	20
	2.9.1 Factors that affect landfill gas production	24
2.10	Landfill gas composition	25
2.11	Landfill CH ₄ mass balance	27
2.12	Landfill Gas and the Impacts	28
	2.12.1 Greenhouse gas effect	30
	2.12.2 Ozone depletion	31
	2.12.3 Fire and explosion hazards	31
	2.12.4 Health risks due to Toxic VOC's in air	31
	2.12.5 Damages to vegetation	32
	2.12.6 Odour nuisances	33
2.13	Global landfill gas CH ₄ emission	33
2.14	Potential application of LFG	35
	2.14.1 Gas collection system	38
	2.14.2 Power generation from LFG	39
	2.14.3 Direct use of LFG	39
2.15	Issues in LFG use	39
2.16	Methanotrophic activity in CH ₄ oxidation	40
	2.16.1 Methanotrophic bacteria	41

	2.16.2 Factors that affect methanotrophic activity	44
	2.16.2.1 Temperature	44
	2.16.2.2 Moisture content	46
	2.16.2.3 pH	47
	2.16.2.4 CH ₄ Concentration	48
	2.16.2.5 Oxygen supply	49
	2.16.2.6 Organic contents and nutrients	49
2.17	Landfill components	50
2.18	Landfill cover	51
	2.18.1 Different Cover Material	54
2.19	Compost as Landfill cover/Biocover	56
2.20	CH ₄ oxidation	57
2.21	Kinetics of CH ₄ oxidation	60
2.22	Summary of Literature Review	63
Chap	ter 3: Materials and Method	
3.1	Composting	64
3.2	Isolation of methanotrophs	65
3.3	The bacteria culture preparation	67
	3.3.1 Preparation of individual culture	67
	3.3.2 Preparation of mixed culture	67
3.4	Batch experiment on CH_4 oxidation activity with Matured compost	68
3.5	CH ₄ depletion efficiency by pure culture of methanotrophs	69
3.6	Batch experiment on CH_4 oxidation activity with addition of	
	methanotrophic bacteria individual culture to the compost at	

	differe	ent concentration	70
	3.6.1	Methylomonas sp	70
	3.6.2	Methylococcus sp 1	70
	3.6.3	Methylococcus sp 2	70
3.7	Batch	experiment carried out at different varying parameters for	
	indiv	idual cultures	71
	3.7.1	Influence of temperature on the CH4 oxidation rate with the	
		addition of Methylomonas sp, Methylococcus sp 1 and	
		Methylococcus sp 2 individually	71
	3.7.2	Influence of moisture content on the CH4 oxidation rate	
		with the addition of Methylomonas sp, Methylococcus sp 1	
		and Methylococcus sp 2 individually.	71
	3.7.3	Influence of pH on the CH_4 oxidation rate with the	
		addition of Methylomonas sp, Methylococcus sp 1 and	
		Methylococcus sp 2 individually	72
3.8	Batch	experiment: Methane oxidation rate with the	
	additi	on of mixed culture of Methylomonas sp, Methylococcus sp 1	
	and M	<i>lethylococcus</i> sp 2	72
3.9	Batch	experiment carried out at different parameters with	
	mixed	cultures	72
	3.9.1	Influence of temperature on the CH ₄ oxidation rate with the	
		addition of mixed culture	72
	3.9.2	Influence of moisture content on the CH ₄ oxidation rate with	
		the addition of mixed culture	73

	3.9.3 Influence of moisture content on the CH_4 oxidation rate with	
	the addition of mixed culture	73
3.10	Batch experiment with different concentration of CH ₄	73
3.11	Batch experiment: Study with compost and sterilized compost with	
	addition of Individual cultures or mixed cultures at fixed amounts	
	and fixed parameters	74
3.12	Batch experiment with different bacteria type combination	74
3.13	Bacterial counting	75
3.14	Column Experiment	75
	3.14.1 Column experiment tested at different incubation temperature	77
	3.14.2 Column experiment tested at different moisture content	77
3.15	Column experiment tested with and without daily O ₂ input	78
3.16	The calculation on the CH ₄ oxidation rate	78
3.17	Kinetic modeling studies	79
3.18	Bacteria characterization and Identification	79
Chap	ter 4: Results and Discussion	
4.1	Physico-chemical properties of Biocover Material	80
4.2	Batch experiment on CH ₄ oxidation activity with Matured compost	82
4.3	Isolation and identification of methanotrophic bacteria	86
4.4	CH ₄ depletion efficiency by pure culture of methanotrophs	
	(4% CH ₄ introduced)	88
4.5	Batch experiment on CH_4 oxidation activity with addition	
	of methanotrophic bacteria individual culture to the compost	
	at different concentration	89

	4.5.1	Batch experiment: Influence of temperature on the CH ₄ oxidation	
		rate with the addition of individual cultures Methylomonas sp,	
		Methylococcus sp 1 and Methylococcus sp 2 to compost.	93
	4.5.2	Batch Experiment: The influence of moisture content on the	
		CH ₄ oxidation rate with the addition of individual cultures	
		of Methylomonas sp, Methylococcus sp 1 and Methylococcus sp 2	
		to compost.	100
	4.5.3	Batch experiment: The influence of pH on the CH ₄	
		oxidation rate with the addition of individual cultures of	
		Methylomonas sp, Methylococcus sp 1 and Methylococcus sp 2	
		to compost	105
4.6	Batch	experiment on CH_4 oxidation activity with addition of	
	metha	notrophic bacteria mixed culture Methylomonas sp,	
	Methy	lococcus sp 1 and Methylococcus sp 2) to the compost at	
	differe	ent concentration	110
	4.6.1	The influence of temperature on the CH ₄ oxidation rate with	
		the addition of mixed microbial culture (Methylomonas sp,	
		Methylococcus sp 1 and Methylococcus sp 2).	111
	4.6.2	Batch Experiment: The influence of moisture content on the	
		CH ₄ oxidation rate with the addition of mixed microbial culture	
		(Methylomonas sp, Methylococcus sp 1 and Methylococcus sp 2)	114
	4.6.3	Batch Experiment: The influence of pH on the CH ₄	
		oxidation rate with the addition of mixed microbial culture	
		(Methylomonas sp, Methylococcus sp 1 and Methylococcus sp 2).	116

xii

4.7	Batch experiment with different concentration of CH ₄ tested		
	with individual methanotrophic cultures and mixed culture	119	
4.8	Batch experiment: The comparative study on compost and sterilized		
	compost with the addition of cultures at fixed amounts and		
	fixed parameters.	121	
4.9	Batch experiment with different bacteria type combination	124	
4.10	Bioreactor Column Experiments with addition of methanotrophic bacteria	127	
	4.10.1 Column experiment tested at different incubation temperature	132	
	4.10.2 Column experiment tested at different moisture content	140	
	4.10.3 Column experiment with and without daily O_2 daily	147	
4.11	Kinetic modeling to evaluate the efficiency of CH ₄ oxidation	150	
	4.11.1 Kinetic modeling to evaluate the efficiency of batch		
	experiments on CH ₄ oxidation activity with the addition of		
	methanotrophic bacteria at optimum parameters	151	
	4.11.2 Kinetic modeling for column experiment calculated for		
	biocover heights of 60cm with addition of methanotrophic bacteria	156	
Chapt	Chapter 5: Conclusion 16		
Refere	ences	163	

LIST OF FIGURES

Figure 1.1:	LFG production phases and times variation of landfill	4
Figure 2.1:	Waste disposal options	16
Figure 2.2:	The sectional view of municipal solid waste sanitary landfill	18
Figure 2.3:	Major stages of waste degradation in landfills	21
Figure 2.4:	Time-dependent methane production and recovery over a landfill lifetime	24
Figure 2.5:	Landfill gas compositions over time	27
Figure 2.6:	Landfill Methane Balance	28
Figure 2.7:	Different scales of landfill effects	29
Figure 2.8:	Natural greenhouse gas effect	30
Figure 2.9:	Passive gas collection system	36
Figure 2.10:	Active gas collection system	38
Figure 2.11:	Complete pathway of the microbial oxidation of CH_4 to CO_2 by methanotrophs	42
Figure 2.12:	Schematic diagrams of MSW landfill containment systems	51
Figure 2.13:	Schematic diagram of a methane oxidation layer in a biocover system	54
Figure 2.14:	Conceptual CH ₄ oxidation zone in a landfill cover soil	60
Figure 4.1:	Headspace gas analysis for CH ₄ , O ₂ and CO ₂	83
Figure 4.2:	Percentage of CH ₄ reduction	86
Figure 4.3:	CH_4 depletion with addition of pure methanotrophic cultures. (Bar indicates standard error, n=3).	88
Figure 4.4:	Influence of <i>Methylomonas</i> sp bacterial culture concentrations on the CH_4 oxidation rate. (Bar indicates standard error, $n=3$).	90

Figure 4.5:	Influence of <i>Methylococcus</i> sp 1 bacterial culture concentrations on the CH_4 oxidation rate. (Bar indicates standard error, n=3).	91
Figure 4.6:	Influence of <i>Methylococcus</i> sp 2 bacterial culture concentrations on the CH_4 oxidation rate. (Bar indicates standard error, n=3).	92
Figure 4.7:	Influence of temperature on CH_4 oxidation rate with the addition of <i>Methylomonas</i> sp. (Bar indicates standard error, n=3)	95
Figure 4.8:	Influence of temperature on CH_4 oxidation rate with the addition of <i>Methylococcus</i> sp 1. (Bar indicates standard error, n=3)	97
Figure 4.9:	Influence of temperature on CH4 oxidation rate with the addition of <i>Methylococcus</i> sp 2. (Bar indicates standard error, $n=3$)	98
Figure 4.10:	Bacterial counts at end of experiment for temperature with the addition of bacteria cultures	99
Figure 4.11:	Influence of moisture on CH_4 oxidation rate with the addition of <i>Methylomonas</i> sp. (Bar indicates standard error, n=3)	101
Figure 4.12:	Influence of moisture on CH_4 oxidation rate with the addition of <i>Methylococcus</i> sp 1. (Bar indicates standard error, n=3).	102
Figure 4.13:	Influence of moisture on CH4 oxidation rate with the addition of Methylococcus sp 2. (Bar indicates standard error, n=3).	103
Figure 4.14:	Bacterial count at end of experiment for moisture content experiments with the addition of bacteria cultures	105
Figure 4.15:	Influence of pH on CH ₄ oxidation rate with the addition of <i>Methylomonas</i> sp. (Bar indicates standard error, $n=3$)	106
Figure 4.16:	Influence of pH on CH_4 oxidation rate with the addition of <i>Methylococcus</i> sp 1. (Bar indicates standard error, n=3)	108
Figure 4.17:	Influence of pH on CH ₄ oxidation rate with the addition of <i>Methylococcus</i> sp 2. (Bar indicates standard error, $n=3$)	108

Figure 4.18:	Bacterial count at end of experiment for pH experiments with the addition of bacteria culture	110
Figure 4.19:	CH ₄ oxidation rate with addition of different concentration of mixed culture. (Bar indicates standard error, n=3)	111
Figure 4.20:	Influence of temperature on CH_4 oxidation rate with addition of mixed culture to the compost. (Bar indicates standard error, n=3).	112
Figure 4.21:	Bacterial count for influence of temperature on CH_4 oxidation with addition of bacterial culture. (Bar indicates standard error, n=3).	113
Figure 4.22:	Influence of moisture content on CH ₄ oxidation rate with addition of mixed culture to the compost. (Bar indicates standard error, n=3).	115
Figure 4.23:	Bacterial count of the influence of moisture content on CH_4 oxidation with addition of bacterial culture. (Bar indicates standard error, n=3).	116
Figure 4.24:	Influence of pH on CH_4 oxidation rate with and without addition of bacteria culture to the compost. (Bar indicates standard error, n=3)	118
Figure 4.25:	Bacterial count for the influence of pH on CH_4 oxidation with addition of bacterial culture. (Bar indicates standard error, n=3)	118
Figure 4.26:	Influence of CH_4 concentration on the methanotrophic activity. (Bar indicates standard error, n=3)	119
Figure 4.27:	Comparison study with compost and sterilized compost with addition of cultures. (Bar indicates standard error, n=3).	122
Figure 4.28:	Bacterial count at end of experiment set up for comparison study with compost and sterilized compost with addition of cultures. (Bar indicates standard error, n=3)	123
Figure 4.29:	CH ₄ oxidation activity at different concentration with bacterial combination of <i>Methylomonas</i> sp and <i>Methylococcus</i> sp 1 (ratio of 1:1). (Bar indicates standard error, n=3).	124
Figure 4.30:	CH ₄ oxidation activity at different concentration with bacterial combination of <i>Methylomonas</i> sp and <i>Methylococcus</i>	

	sp 2 (ratio of 1:1). (Bar indicates standard error, n=3).	125
Figure 4.31:	CH ₄ oxidation activity at different concentration with bacterial combination of <i>Methylococcus</i> sp 1 and <i>Methylococcus</i> sp 2 (ratio of 1:1). (Bar indicates standard error, n=3).	127
Figure 4.32:	Column Experiment of Control without addition of bacteria (Bar indicates standard error, n=3)	128
Figure 4.33:	Column Experiment with addition of <i>Methylomonas</i> sp to compost. (Bar indicates standard error, n=3).	129
Figure 4.34:	Column Experiment with addition of <i>Methylococcus</i> sp 1 to compost. (Bar indicates standard error, n=3).	130
Figure 4.35:	Column Experiment with addition of <i>Methylococcus</i> sp 2 to compost. (Bar indicates standard error, n=3).	131
Figure 4.36:	Bacterial count at the end of experiment for column experiment to compost. (Bar indicates standard error, n=3).	132
Figure 4.37:	Column experiment with addition of mixed culture at 30°C (Bar indicates standard error, n=3).	133
Figure 4.38:	Bacterial population at end of the experiment at 30° C with the addition of methanotrophic mixed culture and control. (Bar indicates standard error, n=3).	134
Figure 4.39:	Column experiment with addition of mixed culture at 35°C (Bar indicates standard error, n=3).	136
Figure 4.40:	Bacterial counting at end of the experiment at 35° C with the addition of methanotrophic mixed culture and control. (Bar indicates standard error, n=3).	137
Figure 4.41:	Column experiment with addition of mixed culture at 40° C (Bar indicates standard error, n=3).	138
Figure 4.42:	Bacterial counting at end of the experiment at 40°C with the addition of mixed culture and control. (Bar indicate standard error, n=3).	140
Figure 4.43:	Column experiment with addition of mixed culture at 50% moisture content. (Bar indicates standard error, n=3).	141

Figure 4.44:	Bacterial counting at end of the experiment at 50% moisture content with the addition of methanotrophic mixed culture and control (Bar indicates standard error, n=3).	142
Figure 4.45:	Column experiment with addition of mixed culture at 60% moisture content. (Bar indicates standard error, n=3).	143
Figure 4.46:	Bacterial counting at end of the experiment at 60% moisture content with the addition of methanotrophic mixed culture and control. (Bar indicates standard error, $n=3$).	144
Figure 4.47:	Column experiment with addition of mixed culture at 70% moisture content. (Bar indicates standard error, n=3).	145
Figure 4.48:	Bacterial counting at end of the experiment at 70% moisture content with the addition of methanotrophic mixed culture and control (Bar indicates standard error, $n=3$).	146
Figure 4.49:	The column experiment with 8% O_2 supply daily. (Bar indicates standard error, n=3).	147
Figure 4.50:	The column experiment with one time O_2 supply. (Bar indicates standard error, n=3).	148
Figure 4.51:	Bacterial counting at the end of experiment set up for column experiment for daily O_2 supply. (Bar indicates standard error, n=3).	149
Figure 4.52:	Bacterial counting at the end of experiment set up for column experiment for with one time O_2 supply. (Bar indicates standard error, n=3).	150
Figure 4.53:	CH ₄ oxidation value of control (Bar indicates standard error, n=3).	152
Figure 4.54:	CH ₄ oxidation value with addition of <i>Methylomonas</i> sp. (Bar indicates standard error, n=3).	152
Figure 4.55:	CH ₄ oxidation value with addition of <i>Methylococcus</i> sp 1. (Bar indicates standard error, n=3).	153
Figure 4.56:	CH_4 oxidation value with addition of <i>Methylococcus</i> sp 2 (Bar indicates standard error, n=3).	154
Figure 4.57:	CH_4 oxidation value with addition of methanotrophic mixed culture. (Bar indicates standard error, n=3).	154

Figure 4.58:	CH ₄ oxidation value of column experiment at 60cm height for control (Bar indicates standard error, n=3).	156
Figure 4.59:	CH ₄ oxidation value of column experiment at 60cm height with addition of <i>Methylomonas</i> sp. (Bar indicates standard error, n=3).	157
Figure 4.60:	CH_4 oxidation value of column experiment at 60cm height with addition of <i>Methylococcus</i> sp 1. (Bar indicates standard error, n=3).	157
Figure 4.61:	CH_4 oxidation value of column experiment at 60cm height with addition of <i>Methylococcus</i> sp 2. (Bar indicates standard error, n=3).	158
Figure 4.62:	CH_4 oxidation value of column experiment at 60cm height with addition of mixed culture. (Bar indicates standard error, n=3).	159

LIST OF TABLES

Table 2.1:	Source and Types of Solid Waste	13
Table 2.2:	Waste Composition in Malaysia (1995-2010)	14
Table 2.3:	MSW Composition of selected countries	15
Table 2.4:	Landfills in Malaysia as of 2012	19
Table 2.5:	Characteristics of Landfill gas	26
Table 2.6:	Global sources of CH ₄ to the atmosphere	34
Table 2.7:	The phylogenetic relationship of 11 genera of methanotrophic bacteria identified and their morphological and physiological properties	43
Table 2.8:	Design parameters and structures of landfill cover for optimization of CH_4 oxidation	53
Table 2.9:	Kinetic studies of the CH ₄ oxidation	62
Table 3.1:	Bacterial Combination	74
Table 4.1:	Physiochemical properties of compost used for methane oxidation	81
Table 4.2:	Characteristics of methanotrophic bacteria isolated	87
Table 4.3:	Potential CH ₄ oxidation rate, Rp is calculated for batch experiment at optimum parameters	155
Table 4.4:	Potential CH ₄ oxidation rate, Rp is calculated for column experiment at optimum heights of 60cm and optimum parameters.	160

LIST OF PLATES

Plate 1.1:	Passive release of landfill gas to the atmosphere	5
Plate 3.1:	Matured Compost from grass clippings	65
Plate 3.2:	Methylomonas sp	66
Plate 3.3:	Methylococcus sp 1	66
Plate 3.4:	Methylococcus sp 2	67
Plate 3.5:	Wheaton bottles experiment with compost	68
Plate 3.6:	Gas chromatography	69
Plate 3.7:	Injection of gas sample to GC	69
Plate 3.8:	Schematic picture of a column	76
Plate 3.9:	Column	77

LIST OF SYMBOL AND ABBREVIATIONS

- ASTM American Society for Testing and Materials
- GHG Greenhouse gas
- GWP Global Warming Potential
- LFG Landfill Gas
- NMVOC's Non methane volatile organic compounds
- VOC Volatile Organic compound
- CO₂ Carbon dioxide
- CH₄ Methane
- NH₄ Ammonium
- H₂S Hydrogen sulphide
- O₂ Oxygen
- H₂0 Water
- C Carbon
- N Nitrogen
- NH₃ Ammonia