UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate:

(I.C/Passport No:

)

Registration/Matric No:

Name of Degree:

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Field of Study:

I do solemnly and sincerely declare that:

- (1) I am the sole author/writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature

Date

Name: Designation

ABSTRACT

Dielectric barrier discharge (DBD) under atmospheric pressure can be generated in a simple and economical way without complicated vacuum system and it has found many uses ranging from the industry to medicine. This work presents the characteristics of a filamentary dielectric barrier discharge jet (DBD jet) in Ar, N₂ and Ar:N₂ (47%:53%) mixture. The jet was designed based on DBD configuration which consisted of a hemispherical powered electrode, grounded end plate with nozzle and a glass test tube as the insulator. The discharge was ignited between the electrodes and gas flow across the discharge and through the 1.0 mm nozzle then formed the jet. This configuration resulted in constriction of the gas flow and the DBD was subjected to pressures above atmospheric pressure.

The ignition of the jet was investigated for different kinds of gases. The ignition voltage for Ar was the lowest. The highest number of current filaments was obtained from Ar discharge while N₂ discharge registered the least even though at higher ignition voltage. Influence of operating parameters (applied high voltage, gas flow rate, gap width) on the electrical characteristics (charge transferred, energy deposited and power dissipated between the electrodes) of the DBD jet for Ar, N₂ and Ar:N₂ was studied experimentally based on the *Q*-*V* Lissajous method. The measured mean power dissipated was less than 7 W for all the gases employed, yielding an efficiency <19%. The dielectric capacitance, C_d deduced from *Q*-*V* Lissajous plot decreased at higher gas flow rate for the gases employed in this study except in Ar discharge, in which C_d remained constant.

The physical structure of the plasma jets was qualitatively analyzed from the digital images and correlated to the electrical characteristics of the DBD jet. Ar, N_2 and $Ar:N_2$ jets grew longer and wider with increase in gas flow rate. At the applied voltage of

14.2 kV and flow rate of 12.5 LPM, Ar jet length expanded up to 6.2 mm in open air whereas the width grew from 0.4 mm at 1.8 LPM to 1.4 mm at 12.5 LPM. These were the optimum conditions to obtain a 'good' jet (in terms of dimension and luminosity) in the present setup. The net charges transported in the plasma jets were measured by placing a copper disc to intercept the jet stream. The charges transported out of the nozzle were higher in N_2 jet than Ar jet.

The optical diagnostic of DBD jet had been employed by using a spectrometer where line intensities from the jet in Ar and N₂ were observed and chemically active species of the jet were determined. The chemically active species (O, OH, N) transported through the jet are useful for surface treatment. Surface treatment was carried out for Ar and N₂ discharges at various treatment times (15 s, 30 s, 60 s, 90 s, and 120 s). It was found that treated Mylar film by N₂ and Ar plasma jets demonstrated ability to enhance surface wettability. The ageing effect on the Mylar film treated for 120 s showed that the sample did not fully recover to the untreated state even after 50 days of ageing.

ABSTRAK

Sistem nyahcas penghalang dielektrik (DBD) di bawah tekanan atmosfera boleh dijana dengan cara yang mudah dan ekonomi tanpa sistem vakum yang rumit serta mempunyai pelbagai kegunaan dalam lingkungan industri sehingga perubatan. Projek ini membentangkan ciri-ciri nyahcas penghalang dielektrik jet (DBD jet) beroperasi di bawah Ar, N₂ dan campuran gas Ar:N₂ (47%:53%). Jet ini telah direka berdasarkan konfigurasi DBD yang terdiri daripada hemisfera elektrod, plat yang dibumikan dengan muncung serta tiub kaca sebagai penebat. Nyahcas dihidupkan di antara elektrod dan gas dibenarkan mengalir ke dalam nyahcas dan mengalir keluar melalui muncung yang bersaiz 1.0 mm. Jet dibentuk seterusnya. Konfigurasi ini mengakibatkan penyempitan dalam aliran gas dan DBD mengalami tekanan melebihi tekanan atmosfera.

Pencucuhan jet telah dikaji untuk pelbagai jenis gas. Voltan pencucuh bagi gas Ar adalah terendah. Bilangan filamen yang tertinggi telah diperolehi daripada jet Ar manakala jet N₂ mencatatkan bilangan yang terendah walaupun voltan pencucuh yang dikenakan lebih tinggi. Pengaruh parameter yang beroperasi (voltan kuasa tinggi, kadar aliran gas, jurang antara elektrod) ke atas ciri-ciri elektrik (caj dipindahkan, tenaga disimpan dan kuasa yang dilesapkan antara elektrod) untuk jet DBD dalam gas Ar, N₂ dan Ar:N₂ telah dikaji berdasarkan kaedah Lissajous *Q-V*. Kuasa yang dilesapkan didapati kurang daripada 7 W untuk semua gas yang digunakan dan menghasilkan kecekapan <19%. Kemuatan, *C_d* diperoleh dari plot Lissajous *Q-V* menurun pada kadar aliran gas yang lebih tinggi bagi gas yang digunakan dalam kajian ini kecuali dalam nyahcas Ar, *C_d* berada dalam tahap yang malar.

Struktur fizikal jet plasma telah dianalisis secara kualitatif dari imej berdigital dan dihubungkaitkan dengan ciri-ciri elektrik jet DBD. Jet Ar, N₂ dan Ar:N₂ berkembang lebih panjang dan lebih lebar dengan peningkatan kadar aliran gas. Pada voltan sebanyak 14.2 kV dan kadar aliran gas sebanyak 12.5 LPM, panjang jet Ar berkembang sehingga 6.2 mm di udara manakala lebar meningkat daripada 0.4 mm pada 1.8 LPM kepada 1.4 mm pada 12.5 LPM. Ini adalah keadaan optimum untuk memperolehi jet yang 'baik' (dari segi dimensi dan kilauan) dalam persediaan ini. Caj bersih diangkut dalam jet plasma diukur dengan meletakkan cakera kuprum untuk memintas aliran jet. Caj yang dibawa keluar dari muncung adalah lebih tinggi dalam jet N₂ daripada jet Ar .

Diagnostik optik untuk jet DBD ini telah diuji dengan menggunakan spektrometer di mana keamatan garis spektrum dari jet Ar dan N₂ telah diperhatikan dan spesies aktif yang terdapat pada jet ini telah ditentukan. Spesies aktif (O, OH, N) yang diangkut melalui jet adalah berguna untuk rawatan permukaan. Rawatan permukaan telah dijalankan untuk Ar dan N₂ pada masa rawatan yang berlainan (15 s, 30 s, 60 s, 90 s, dan 120 s). Didapati bahawa filem Mylar yang telah dirawat oleh plasma jet N₂ dan Ar menunjukkan keupayaan untuk meningkatkan kebolehbasahan permukaan. Kesan penuaan pada filem Mylar yang dirawat untuk 120 s menunjukkan bahawa sampel tersebut tidak pulih sepenuhnya kepada keadaan yang tidak dirawat walaupun selepas 50 hari penuaan.

ACKNOWLEDGEMENT

First and foremost, I would like to express my deepest appreciation to my supervisor, Associate Professor Dr. Chin Oi Hoong, for her guidance, useful discussion and advice throughout the research. Her contributions of time, ideas and knowledge have been of great value to me. This work would not have been possible without her support and supervision.

My sincere thanks go to Mr. Jasbir Singh for the technical assistance. I also wish to express my warm and special gratitude to my friends under the same laboratory: Kanesh, Chee Kin and Wee Horng for sharing their research experience with me.

I am indebted to the teachers, brothers and sisters in the Dharma and all my friends who have given me lots of encouragement and blessing.

My deepest gratitude goes to my boyfriend, Chee Siong, for his continuous support, love and encouragement. I offer my blessings to everyone who supported me in any respect during the undertaking of this work.

I would like to dedicate this dissertation to my family members. I am blessed to have them. My life would be less meaningful without the love, care, moral support and encouragement given by my family.

TABLE OF CONTENTS

TITLE	i
ORIGINAL LITERACY WORK DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENT	vii
TABLE OF CONTENTS	viii
LIST OF FIGURES	xi
LIST OF TABLES	xvi
LIST OF SYMBOLS AND ABBREVIATIONS	xvii

CONTENTS	TITLE	PAGE
CHAPTER 1	INTRODUCTION	
	1.1 Overview of Atmospheric Pressure Plasma	1
	1.2 Atmospheric Pressure Non-Thermal Plasma Jet	3
	1.3 Motivation and Objective	4
	1.4 Layout of Dissertation	5
CHAPTER 2	DIELECTRIC BARRIER DISCHARGE JET	
	2.1 Dielectric Barrier Discharges (DBD)	6
	2.1.1 DBD Configuration	6
	2.1.2 Electrical Breakdown Consideration	8
	2.1.3 Historical Development of DBD Research	10
	2.2 Development of Plasma Jet	17
	2.2.1 Configurations of Plasma Jet	18
	2.2.2 Excitation Schemes of Plasma Jet	19
	2.3 Applications of Plasma Jet	25
CHAPTER 3	EXPERIMENTAL SETUP	
	3.1 DBD Jet System	32
	3.1.1 Configuration of DBD Jet	32
	3.1.2 H.V. Source	33

	3.1.3 Gas Flow System	34
	3.2 Electrical Diagnostics	38
	3.2.1 Current and Voltage Measurement	38
	3.2.2 <i>Q</i> - <i>V</i> measurement	39
	3.2.3 Charge Measurement of the Jet via an	41
	Intercepting Plate	
	3.3 Optical Diagnostics	42
	3.3.1 Imaging setup	42
	3.3.2 Spectral Emission Measurement	43
	3.3.2.1 Ocean Optics HR4000 Spectrometer	44
	3.3.2.2 Avantes AvaSpec 3648 High Resolution	44
	Spectrometer	
	3.3.2.3 Setup for Measurement of Spectral	45
	Emission	
	3.4 Surface Treatment	46
	3.4.1 Sample Preparation	46
	3.4.2 Sample Positioning	47
	3.4.3 Contact Angle Measurement	47
	3.4.4 Surface Treatment Procedure	48
CHAPTER 4	ELECTRICAL AND OPTICAL CHARACTERISTICS	
	OF DBD JET	
	4.1 Electrical Characteristics of DBD Jet	50
	4.1.1 Ignition Voltage	50
	4.1.2 Voltage-Current Waveforms	55
	4.1.3 Current Filaments	59
	4.1.3.1 Positive Current Filaments	59
	4.1.3.2 Negative Current Filaments	63
	4.1.3.3 Number of Current Filaments	66
	4.1.4 <i>Q-V</i> Lissajous Plots	72
	4.1.4.1 Influence of Applied H.V.	72
	4.1.4.2 Influence of Gas Flow	77
	4.1.4.3 Influence of Gap Width	80
	4.2 Physical Structure of the DBD Jet	81

	4.3 Optical Characteristics of the DBD Jet	91
	4.3.1 N ₂ Emission Spectra	91
	4.3.2 Ar Emission Spectra	95
CHAPTER 5	SURFACE TREATMENT	
	5.1 Influence of Treatment Time	99
	5.2 Ageing Effect	103
CHAPTER 6	CONCLUSION AND SUGGESTIONS	
	6.1 Conclusion	107
	6.1.1 Electrical Characteristics	107
	6.1.2 Optical Characteristics	108
	6.1.3 Surface Treatment	109
	6.2 Suggestions for Future Work	109
APPENDIX A		111
APPENDIX B		112
REFERENCES		114

LIST OF FIGURES

FIGURE NO.	TITLE	PAGE
2.1	Numerous volume discharge and surface discharge configurations. (a)-(d) volume discharges, (e)-(f) coplanar discharges, and (g)-(l) surface discharges	7
2.2	Illustration of electrical breakdown mechanism between two parallel-plate electrodes	8
2.3	The process of streamer formation	10
2.4	Various configurations of plasma jets at atmospheric pressure	18-19
2.5	AFM images of PET substrate before and after treatment with 5 scans, 50 scans and 500 scans	29
2.6	AFM images of treated (a) PE substrate and (b) PTFE substrate after 500 scans	29
3.1	Schematic of the DBD jet	33
3.2	Schematic circuit of H.V. source	34
3.3	Schematic of gas flow system	36
3.4	Figure of flowmeter	36
3.5	The corrected reading for N ₂ , Ar and N ₂ :Ar	37
3.6	Variation of the estimated flow velocity at the nozzle versus corrected gas flow rate	38
3.7	Dimensions of the Pearson Current Monitor (Model 4100)	39
3.8	A typical Q-V Lissajous plot when DBD is ON	40
3.9	The Q - V Lissajous plot when the DBD is OFF	41
3.10	Arrangement to measure the charges transferred by the plasma jet	42
3.11	Position of camera to capture the image of DBD jet	43
3.12	The arrangement of spectral emission measurement	46
3.13	The setup of sample positioning. Sample was positioned at 1.0 mm from the grounded electrode	47

3.14	The contact angle, θ at the three-phase boundary	48
4.1	Ignition voltage (measured as peak AC voltage across the electrode) versus flow rate for different gas compositions	51
4.2	Dependence of built-up pressure in the reactor on gas flow rate for different gas compositions	52
4.3	Dependence of ignition voltage on gas flow rate for Ar and N_2 gas at different gap widths	54
4.4	The dependence of RMS ignition voltage on pd (in Torr-cm) for Ar and N ₂ gas at 0.5 mm, 1.0 mm and 1.5 mm gap width. The calculated Paschen curve is indicated in black line for Ar and dotted line for N ₂ gas	55
4.5	Voltage and current waveforms when the discharge is OFF	57
4.6 (a)	Discharge voltage (14 kVp-p) and discharge current of the DBD jet with 0.5 mm gap in Ar at flow rate of 3 LPM	57
4.6 (b)	Discharge voltage (14 kVp-p) and discharge current of the DBD jet with 0.5 mm gap in N_2 at flow rate of 3 LPM	58
4.6 (c)	Discharge voltage (14 kVp-p) and discharge current of the DBD jet with 0.5 mm gap in $Ar:N_2$ at total flow rate of 3 LPM	58
4.7 (a)	The positive 'lead' current filament followed by a series of shorter duration current filaments after $\approx 4 \ \mu s$ in Ar DBD jet at 0.5 mm gap and 3 LPM of gas flow	60
4.7 (b)	The 'lead' current filament shown in Fig. 4.7 (a) displayed in expanded time	60
4.8	Typical current filaments of 10-20 ns for (a) Ar, and (b) $N_{\rm 2}$ DBD jet at 0.5 mm gap	61
4.9	Series of positive current filaments over 10 μ s across 0.5 mm gap for (a) Ar and (b) N ₂ DBD jet at 3 LPM	62
4.10	Series of negative current filaments over 10 μ s across the 0.5 mm gap for (a) Ar and (b) N ₂ DBD jet at 3 LPM	64-65
4.11	The time interval between the negative 'lead' current filament and series of current filaments for Ar DBD jet at 0.5 mm gap and 3 LPM of gas flow	65
4.12	Variation of the number of positive current filaments per half cycle for (a) Ar, 14 kVp-p and (b) N_2 19 kVp-p at 0.5 mm, 1.0 mm and 1.5 mm gap widths	68

4.13	The occurrence of first current filament in N_2 at increasing gas flow rate for (a) positive and (b) negative polarity at 20 kVp-p	69
4.14	The number of positive current filament per half cycle against different voltage for N_2 discharge at 0.5 mm gap	70
4.15	The enlarged negative current filament of Ar discharge at 3 LPM for 0.5 mm gap	71
4.16	Q-V Lissajous plot for discharge in (a) Ar, (b) N ₂ and (c) Ar:N ₂ at 5 LPM with 0.5 mm gap at different voltage	75-76
4.17	Glow covers the entire surface of the glass dielectric in (a) Ar discharge as compared to partial surface in (b) N_2 discharge. Camera settings: $f/5.6$, ISO 200, 0.5 s exposure time	76
4.18	Mean power dissipated per cycle against various Vp-p at 0.5 mm gap, 3 LPM for Ar, Ar: N_2 , and N_2 discharges	77
4.19 (a)	Mean power dissipated per cycle against gas flow rate in Ar discharge at 12.4 kV for 0.5 mm, 1.0 mm and 1.5 mm gaps	78
4.19 (b)	Mean power dissipated per cycle against gas flow rate in N_2 discharge at 19.4 kV for 0.5 mm, 1.0 mm and 1.5 mm gaps	79
4.19 (c)	Mean power dissipated per cycle against gas flow rate in Ar:N ₂ discharge at 14.2 kV for 0.5 mm, 1.0 mm and 1.5 mm gaps	79
4.20	The variation of dielectric capacitance against gas flow rate deduced from Q - V plot for Ar, Ar:N ₂ and N ₂ discharges at 0.5 mm gap	80
4.21	The slope of the dielectric capacitance of N_2 DBD jet at 0.5 mm and 1.5 mm gaps	81
4.22	Images of plasma jet formed in N ₂ , 20 kVp-p at (a) 1 LPM, (b) 2 LPM (c) 3.2 LPM, (d) 4.4 LPM, (e) 5.8 LPM, (f) 7.4 LPM and (g) 9.4 LPM. Camera settings: $f/5.6$, 4 s, ISO 400	83
4.23	Images of plasma jet formed in Ar, 14 kVp-p at (a) 0.9 LPM, (b) 1.8 LPM, (c) 2.8 LPM, (d) 3.9 LPM, (e) 5.1 LPM, (f) 6.5 LPM and (g) 8.3 LPM, (h) 10.3 LPM and (i) 12.5 LPM. Camera settings: $f/5.6$, 4 s, ISO 400	84
4.24	Images of plasma jet formed in Ar:N ₂ , 17 kVp-p at (a) 1.9 LPM, (b) 3.0 LPM, (c) 4.0 LPM, (d) 5.3 LPM, (e) 6.8 LPM, (f) 8.4 LPM, (g) 10.4 LPM, and (h) 12.7 LPM. Camera settings: $f/5.6$, 4 s, ISO 400	85

- 4.25 (a) The construction of DBD jet with bigger tube diameter 87 and (b) the physical structure of the jet with bigger tube diameter
- 4.26 Images of plasma jet formed in N₂ at different Vp-p 88 (a) 15 kVp-p, (b) 16 kVp-p, (c) 17.2 kVp-p, (d) 18.2 kVp-p, (e) 20 kVp-p. Camera settings: f/5.6, 4 s, ISO 400
- 4.27 DC voltage shift measured by the intercepting disc versus 90 flow rate at jet positions 2, 4, 6 and 10 mm for (a) N_2 , 18.8 kVp-p and (b) Ar, 14.5 kVp-p discharges
- 4.28 The emission spectrum of N_2 SPS in the region from 300 nm 93 -440 nm at flow rate of 6 LPM. Numbers in the bracket (v-v') denote the vibrational transitions where v is upper electronic states and v' is lower electronic states. Spectrometer was set at 200 ms integration time
- 4.29 Intensity of N₂ SPS emission lines (337.13 nm, 357.69 nm 93 and 380.49 nm) as a function of N₂ gas flow rate at applied voltage of 20 kVp-p and 0.5 mm gap width
- 4.30 The emission spectra of N_2 DBD jet for 650 nm 950 nm 94 range at flow rate of 6 LPM. The first positive system (FPS) and Herman's IR system in N_2 are observed. Spectrometer was set at 200 ms integration time
- 4.31 The emission spectra of Ar DBD jet in the region from 96 650 nm - 1000 nm at corrected flow of 6 LPM
- 4.32 The emission spectra of Ar DBD jet in the region of 250 nm 98 450 nm at flow rate of 6 LPM
- 4.33 Intensity of atomic Ar lines (772.42 nm, 811.53 nm and 98 826.45 nm, 842.46 nm, 912.30nm) as a function of Ar gas flow rate at applied voltage of 14 kVp-p and 0.5 mm gap width
- 5.1 Water droplet on untreated and treated Mylar film by N₂ 101
 (a)-(g) DBD jet at 20 kVp-p, gas flow rate of 6 LPM for various treatment times
- 5.2 Water droplet on untreated and treated Mylar film by Ar 102
 (a)-(g) DBD jet at 14.4 kVp-p, gas flow rate of 6 LPM for various treatment times
- 5.3 The water contact angle value as a function of various 103 treatment times for Nitrogen and Argon treatment with peak-to-peak voltage of 20 kV and 14.4 kV respectively
- 5.4 (a) The water contact angle of N_2 and Ar DBD jets treated films 106 against ageing time at room temperature

5.4 (b)	The water contact angle of N_2 and Ar DBD jets treated films for the first 3 hours of ageing time	
A.1	The relative transmission curve of the optical fibre used with	111

B.1 The emission lines of DBD jet at lower intensity (< 200 112 counts) for the wavelength ranging from (a) 440 nm - 550 nm and (b) 550 nm - 650 nm

HR 4000 spectrometer for wavelength 200 nm - 1000 nm

LIST OF TABLES

TABLE NO.	TITLE	PAGE
1.1	Characteristics of low temperature plasma and high temperature plasma	2
4.1	The duration of occurrence, Δt per half cycle of positive current filaments for (a) Ar, 14 kVp-p (0.5 mm, 1.0 mm) and (b) N ₂ , 19 kVp-p (0.5mm, 1.0mm) DBD jets at various gas flow rate	67
4.2	Measured total charge transferred per half cycle monotonically for 0.5 mm gap at 5 LPM flow rate	74
4.3	The dimensions of the jet for (a) Ar, 14 kVp-p, (b) N_2 , 20 kVp-p and (c) Ar: N_2 , 17 kVp-p at 0.5 mm gap	86
5.1	Contact angle of 2 μ l water droplet on Mylar sheet at different treatment time with peak-to-peak voltage of (a) 20 kV for N ₂ and (b) 14 kV for Ar DBD jets	100
B.1	The configurations and terms for the atomic (Ar I) and ionic (Ar II) Ar lines detected from 300 nm - 1000 nm. All the lines are shown in Figs. 4.31 & 4.32 except lines with low intensity (marked with *)	113

LIST OF SYMBOLS AND ABBREVIATIONS

C_g	air gap capacitance
AC	alternating current
А	ampere
Å	angstrom
Ar	argon
APGD	atmospheric pressure glow discharge
AFM	atomic force microscopy
V_b/V_{ON}	breakdown voltage / ignition voltage
cm	centimeter
CCD	charge-coupled device
Q-V	charge-voltage
CFC	chlorofluorocarbon
CMOS	complementary metal-oxide-semiconductor
θ	contact angle
Α	cross sectional area
°C	degree Celsius
DI	deionized
D	density
Ø	diameter
DBD	dielectric barrier discharge
C_d	dielectric capacitance
DC	direct current
d	distance
Ε	electric field / energy deposited per cycle
e	electron
eV	electron volt

T_e	electron temperature
F	farad
FWHM	full width half maximum
f	function / focal length
Hz	hertz
H.V.	high voltage
ISO	image sensitivity
T_i	ion temperature
K	kelvin
kHz	kilohertz
kVp-p	kilovolt (peak-to-peak)
LPM	litre per minute
Ma	mach number
Р	mean power dissipated per cycle
MHz	megahertz
ΜΩ	mega ohm
Hg	mercury
MOSFET	metal-oxide-semiconductor field-effect transistor
μF	microfarad
μL	microlitre
μm	micrometer
μs	microsecond
mA	milliampere
mm	millimetre
ms	millisecond
min	minute
nC	nano Coulomb
nF	nanofarad

nm	nanometre
ns	nanosecond
NIR	near infrared
T_n	neutral gas particles temperature
N_2	nitrogen
Ν	number density
V_p	peak voltage
pF	picofarad
PE	polyethylene
РЕТ	polyethylene terephthalate
PTFE	polytetrafluoroethylene
PVC	polyvinyl chloride
р	pressure
RF	radio frequency
τ	residence time
RMS	root mean square
γ	secondary emission coefficient
SLR	single lens reflex
Т	temperature
C_T	total capacitance
UV	ultra violet
USB	universal serial port
VIS	visible
VOC	volatile organic compounds
W	watt
XPS	X-ray photoelectron spectroscopy