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ABSTRACT 
 

 

 

 

      Dielectric barrier discharge (DBD) under atmospheric pressure can be generated in a 

simple and economical way without complicated vacuum system and it has found many 

uses ranging from the industry to medicine. This work presents the characteristics of a 

filamentary dielectric barrier discharge jet (DBD jet) in Ar, N2 and Ar:N2 (47%:53%) 

mixture. The jet was designed based on DBD configuration which consisted of a 

hemispherical powered electrode, grounded end plate with nozzle and a glass test tube 

as the insulator. The discharge was ignited between the electrodes and gas flow across 

the discharge and through the 1.0 mm nozzle then formed the jet. This configuration 

resulted in constriction of the gas flow and the DBD was subjected to pressures above 

atmospheric pressure. 

      The ignition of the jet was investigated for different kinds of gases. The ignition 

voltage for Ar was the lowest. The highest number of current filaments was obtained 

from Ar discharge while N2 discharge registered the least even though at higher ignition 

voltage. Influence of operating parameters (applied high voltage, gas flow rate, gap 

width) on the electrical characteristics (charge transferred, energy deposited and power 

dissipated between the electrodes) of the DBD jet for Ar, N2 and Ar:N2 was studied 

experimentally based on the Q-V Lissajous method. The measured mean power 

dissipated was less than 7 W for all the gases employed, yielding an efficiency <19%. 

The dielectric capacitance, Cd  deduced from Q-V Lissajous plot decreased at higher gas 

flow rate for the gases employed in this study except in Ar discharge, in which Cd 

remained constant. 

      The physical structure of the plasma jets was qualitatively analyzed from the digital 

images and correlated to the electrical characteristics of the DBD jet. Ar, N2 and Ar:N2 

jets grew longer and wider with increase in gas flow rate. At the applied voltage of   
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14.2 kV and flow rate of 12.5 LPM, Ar jet length expanded up to 6.2 mm in open air 

whereas the width grew from 0.4 mm at 1.8 LPM to 1.4 mm at 12.5 LPM. These were 

the optimum conditions to obtain a ‘good’ jet (in terms of dimension and luminosity) in 

the present setup. The net charges transported in the plasma jets were measured by 

placing a copper disc to intercept the jet stream. The charges transported out of the 

nozzle were higher in N2 jet than Ar jet.  

      The optical diagnostic of DBD jet had been employed by using a spectrometer 

where line intensities from the jet in Ar and N2 were observed and chemically active 

species of the jet were determined. The chemically active species (O, OH, N) 

transported through the jet are useful for surface treatment. Surface treatment was 

carried out for Ar and N2 discharges at various treatment times (15 s, 30 s, 60 s, 90 s, 

and 120 s). It was found that treated Mylar film by N2 and Ar plasma jets demonstrated 

ability to enhance surface wettability. The ageing effect on the Mylar film treated for 

120 s showed that the sample did not fully recover to the untreated state even after 50 

days of ageing.  
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ABSTRAK 
 

 

 

 

      Sistem nyahcas penghalang dielektrik (DBD) di bawah tekanan atmosfera boleh 

dijana dengan cara yang mudah dan ekonomi tanpa sistem vakum yang rumit serta 

mempunyai pelbagai kegunaan dalam lingkungan industri sehingga perubatan. Projek 

ini membentangkan ciri-ciri nyahcas penghalang dielektrik jet (DBD jet) beroperasi di 

bawah Ar, N2 dan campuran gas Ar:N2 (47%:53%). Jet ini telah direka berdasarkan 

konfigurasi DBD yang terdiri daripada hemisfera elektrod, plat yang dibumikan dengan 

muncung serta tiub kaca sebagai penebat. Nyahcas dihidupkan di antara elektrod dan 

gas dibenarkan mengalir ke dalam nyahcas dan mengalir keluar melalui muncung yang 

bersaiz 1.0 mm. Jet dibentuk seterusnya. Konfigurasi ini mengakibatkan penyempitan 

dalam aliran gas dan DBD mengalami tekanan melebihi tekanan atmosfera. 

      Pencucuhan jet telah dikaji untuk pelbagai jenis gas. Voltan pencucuh bagi gas Ar 

adalah terendah. Bilangan filamen yang tertinggi telah diperolehi daripada jet Ar  

manakala jet N2 mencatatkan bilangan yang terendah walaupun voltan pencucuh yang 

dikenakan lebih tinggi. Pengaruh parameter yang beroperasi (voltan kuasa tinggi, kadar 

aliran gas, jurang antara elektrod) ke atas ciri-ciri elektrik (caj dipindahkan, tenaga 

disimpan dan kuasa yang dilesapkan antara elektrod) untuk jet DBD dalam gas Ar, N2 

dan Ar:N2 telah dikaji berdasarkan kaedah Lissajous Q-V. Kuasa yang dilesapkan 

didapati kurang daripada 7 W untuk semua gas yang digunakan dan menghasilkan 

kecekapan <19%. Kemuatan, Cd diperoleh dari plot Lissajous Q-V menurun pada kadar 

aliran gas yang lebih tinggi bagi gas yang digunakan dalam kajian ini kecuali dalam 

nyahcas Ar,  Cd berada dalam tahap yang malar. 

      Struktur fizikal jet plasma telah dianalisis secara kualitatif dari imej berdigital dan 

dihubungkaitkan dengan ciri-ciri elektrik jet DBD. Jet Ar, N2 dan Ar:N2  berkembang 

lebih panjang dan lebih lebar dengan peningkatan kadar aliran gas. Pada voltan 
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sebanyak 14.2 kV dan kadar aliran gas sebanyak 12.5 LPM, panjang jet Ar berkembang 

sehingga 6.2 mm di udara manakala lebar meningkat daripada 0.4 mm pada 1.8 LPM 

kepada 1.4 mm pada 12.5 LPM. Ini adalah keadaan optimum untuk memperolehi jet 

yang 'baik' (dari segi dimensi dan kilauan) dalam persediaan ini. Caj bersih diangkut 

dalam jet plasma diukur dengan meletakkan cakera kuprum untuk memintas aliran jet. 

Caj yang dibawa keluar dari muncung adalah lebih tinggi dalam jet N2 daripada jet Ar .  

      Diagnostik optik untuk jet DBD ini telah diuji dengan menggunakan spektrometer di 

mana keamatan garis spektrum dari jet Ar dan N2 telah diperhatikan dan spesies aktif 

yang terdapat pada jet ini telah ditentukan. Spesies aktif (O, OH, N) yang diangkut 

melalui jet adalah berguna untuk rawatan permukaan. Rawatan permukaan telah 

dijalankan untuk  Ar dan N2 pada masa rawatan yang berlainan (15 s, 30 s, 60 s, 90 s, 

dan 120 s). Didapati bahawa filem Mylar yang telah dirawat oleh plasma jet N2 dan Ar 

menunjukkan keupayaan untuk meningkatkan kebolehbasahan permukaan. Kesan 

penuaan pada filem Mylar yang dirawat untuk 120 s menunjukkan bahawa sampel 

tersebut tidak pulih sepenuhnya kepada keadaan yang tidak dirawat walaupun selepas 

50 hari penuaan. 
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charge-voltage 

chlorofluorocarbon 

complementary metal–oxide–semiconductor 

contact angle 

cross sectional area 

degree Celsius 

deionized 

density 

diameter 

dielectric barrier discharge 

dielectric capacitance 

direct current 

distance 

electric field / energy deposited per cycle 

electron 

electron volt 



xviii 

 

Te 

F 

FWHM 

f 

Hz 

H.V. 

ISO 

Ti 

K 

kHz 

kVp-p 

LPM 

Ma 

P 

MHz 

M 

Hg 

MOSFET 

µF 

µL 

µm 

µs 

mA 

mm 

ms 

min 

nC 

nF 

electron temperature 

farad 

full width half maximum 

function / focal length 

hertz 

high voltage 

image sensitivity 

ion temperature 

kelvin 

kilohertz 

kilovolt (peak-to-peak) 

litre per minute 

mach number 

mean power dissipated per cycle 

megahertz 

mega ohm 

mercury 

metal–oxide–semiconductor field-effect transistor 

microfarad 

microlitre 

micrometer 

microsecond 

milliampere 

millimetre 

millisecond 

minute 

nano Coulomb 

nanofarad 



xix 

 

nm 

ns 

NIR 

Tn 

N2 

N 

Vp 

pF 

PE 

PET 

PTFE 

PVC 

p 

RF 

  

RMS 

  

SLR 

T 

CT 

UV 

USB 

VIS 

VOC 

W 

XPS 

 

 

nanometre 

nanosecond 

near infrared 

neutral gas particles temperature 

nitrogen 

number density 

peak voltage 

picofarad 

polyethylene 

polyethylene terephthalate 

polytetrafluoroethylene 

polyvinyl chloride 

pressure 

radio frequency 

residence time 

root mean square 

secondary emission coefficient 

single lens reflex 

temperature 

total capacitance 

ultra violet 

universal serial port 

visible 

volatile organic compounds 

watt 

X-ray photoelectron spectroscopy 

 

 


