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ABSTRACT

Low-lying excited states and structure of even-evdaformed, rare earth
152154156 g @ 1°%1°81001621041%0 0y nyclei are studiedd phenomenological model

is used to understand the properties of deformetenthe experimental data are
analyzed by theoretical analysis within this modjor steps in the derivation
of cranking model are briefly presented. Harrisapagterization for the energy
and angular momentum are formulated and analyzeel.ifertial parameters for
the even-even deformed nuclei are defined usingtiveis parameterization. The

angular frequency of rotation is derived from thabic equation of angular

momentum. The values of angular frequenay, (1) and rotational energy
E, (1) are calculated for thé®****%*gm and °0158601621841%8py nyclei at low

spin | <£10:. The energy spectra of positive-parity states tvhace in good
agreement with the experimental data are preseRt&d.new states that are not
available in the experimental data are predictedt higher total angular
momentum, deviation from the adiabatic theory isvam by the increment of
energy difference between theoretical and expetahealues. It is found that the
non-adiabaticity of rotational energy bands ocalireg¢ high spin due to the
Coriolis effect. The parameters fitted to the naate calculated. The complete
low energy structures oft%2!%*1%6gy and 1°%1°8100162104180ny  isotopes are

calculated by taking into account the Coriolis mgxbetween states. The effect of

K”=1bands on low-lying(K” =0;) ground statesB (K" =0})-, 5,



(K" =0;)-, and y (K" =2")- bands is studied. Larger values of Coriolis

interaction matrix elements(j,), . and the closeness between band head

energies,&, induce strong states mixing.



ABSTRAK

Keadaan teruja paras rendah dan struktur bahagi&teus tercangga genap-
genap nadir bumi 1521%41%6gy dgn 1°6158160162164166ny,  gikaji. Model

fenomenologi digunakan untuk memahami sifat nuklgescangga. Data
eksperimen dianalisis secara teori dalam model liangkah-langkah utama
dalam penerbitan model “cranking” dibentangkan ecengkas. Parameterisasi
Harris untuk tenaga dan momentum sudut dirumuskendianalisis. Parameter
inersia untuk nukleus tercangga genap-genap ditakridengan menggunakan
parameterisasi Harris. Frekuensi sudut putararrbiikan daripada persamaan

kuasa tiga momentum sudut. Nilai-nilai frekuensdwuc,(I) dan tenaga
putaranE,, () dikira untuk nukleus®*****¢gm dan °*1°81001621641%0y nada spin

rendahl| <10%. Spektrum tenaga keadaan berpariti positif yangdbeju dengan

baik dengan data eksperimen dibentangkan. Bebd@gdaan baru yang tidak
terdapat di dalam data eksperimen diramalkan. Radéah momentum sudut
yang lebih tinggi, sisihan daripada teori adiabditkinjukkan oleh peningkatan
beza tenaga antara nilai teori dan eksperimend#&letdiabatikan jalur tenaga
putaran di dapati berlaku pada spin tinggi keraesak Coriolis. Parameter yang

disesuaikan dalam model tersebut dikira.  Struktemaga rendah isotop

152158156 Q) (an 1°01°81001621841%8nyy yang lengkap dikira dengan mengambil kira

campuran Coriolis antara keadaan-keadaan. Kesan kaf =17 ke atas jalur-

jalur keadaan dasgk " =0;), dan B (K" =0;), B (K" =03), y (K" =2")



dikaji. Nilai elemen matriks saling tindakan Co'rsiaol(jx)K’K. yang besar dan

kedekatan di antara tenaga kepala j@liyrmmengaruhkan campuran keadaan yang

kuat.
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CHAPTER 1

INTRODUCTION

1.1 RareEarth Elements: Samarium and Dysprosium

Separated from the main body of the periodic tatne can see two rows of
elements below the main body chart. These elemehish include the
lanthanides and actinides are called rare earthezits in the mass region of
150< A<190. There are few opinions of the “rare” term. Soroarees state
that these elements are rare due to their scdlci®y. The rare earth elements
are typically dispersed and very difficult to fimad concentrated form. The
rarest rare earth metals are more abundant thah gibter and lead. It took
long and tedious processes to purify the metals fiteeir oxides. But, the ion-
exchange and solvent extraction processes useg whiah are low in cost
can produce purer metals in short time [3-4].

There are common properties that can be appliedlioof the rare earth
elements. They appear as silvery-white or grayatee¢hat have high luster. In
air, these elements are very easy to oxide. Thalmate very good electric
conductors and have magnetic properties due to ei@gmoment. Because of
these common properties, it is very difficult tatthguish these elements from
one another. Furthermore, they occur together inerais naturally, e.g. in
monazite sand. The elements themselves are nataddie, but they are
found in ore containing thorium and uranium.

Rare earth metals are vital to high-tech manufawguiThese metals are used

in most electronic devices. Powerfulness and efficy plus less in weight and



ability to pack energy in smaller space are thesara why most electronic
devices become smaller [2, 5].

Samarium and Dysprosium are categorized as lamtéant hey are quite well
studied experimentally and theoretically [6-32].ntsg@ium is a fairly hard,

pale silvery white metal as shown in Figure 1.1m&um has 30 known
isotopes and the stable isotopes inclaf&r, *°Sm, *°Sr and *'Sr. The
element™”3r is the most abundant isotope wid.73% natural abundance.
The element'*®Sm is extremely long-lived radioisotopes with haf&liof
7x10" yr. The naturally occurring elemet®Sm is also fairly long-lived
radioisotopes with half-life 0fl.03x10° yr. The long lived isotopes;°Sm

and**®Sm are primarily decayed by alpha decay to isotopesodymium.

Figure 1.1 Samarium [33].

Samarium can ignite in dry air if heated abd) C and form oxide coating

if not stored in inert gas. Main application of te@marium is in samarium-

2



cobalt alloy magnets in electronic devices due t® hHigh resistance to

demagnetization and its ability to operate at higimnperature up t&Z00° C.
The long-lived radioisotopes of samarium are usedamarium-neodymium

dating for determining the age relationships okeoand meteorites [34-35].

Figure 1.2 Dysprosium [33].

Dysprosium is a soft and silvery-white rare eartbtahas pictured in Figure

1.2. The stable isotopes of Dysprosium elementsidec™°Dy, ***Dy, **°Dy,

°Dy and '*Dy. The most abundant isotope'fDy at 2818%. This metal

reacts with cold water and dissolves in both dilatel concentrated acids.
Dysprosium is an excellent neutron absorber tha iised in dysprosium-
oxide-nickel cement in control rods in nuclear tees In addition,

Dysprosium is used in data storage application$ sisccompact discs and

hard discs [36].



1.2 Even- even Nuclei

Even-even nuclei have even number of protons aed aumber of neutrons,
for example™*Sm has 62 protons and 90 neutrons. According to theear
shell model, the ground state of even-even nuesizero angular momentum,
K™ =0" due to interaction of nucleons with equal magrét@hd opposite
direction of spins to form pairs. General propeartyeven-even nuclei is, with
the exception of the magic number nuclei, they hthe lowest2” state

energy. Figure 1.3 shows the energies of lov#ésstates of even-even nuclei.

50;
Eis
(Mev] *
m-
Be TC“

R CTNU (Y S ML UM | L
20 & 60 80 W0 120 w0 60 W0 200 220 240 A260

Figure 1.3 Energies of lowest 2 states in even-even nuclei. The lines
connect sequences of isotopes. The nuclei witredlogutron or proton shells

are marked by open circles [37].



1.3  Coallective Characteristic of Deformed nuclei
The isotopes™?**°°9m and 1°°8100162104185ny, gre classified as deformed

nuclei. The valence nucleons of these deformedenwahieve low energy
state for stability. Rotational and vibrational egyelevels exist in these nuclei
as they have nonspherically symmetric potential ihaensitive to collective

motions. The collective characteristic of even-edaflormed nuclei can be
indicated by larger value of reduced transitionbatailities, B(E2,0" - 2")

and constant value of energy ratio for the exatatdf lowest4™ and 2°

states, E,. / E,. =3.33. Rotation of a deformed charged object will emit

electric quadrupoleE2 radiation. The valuee,. / E,, =3.33 is equal to that

of the pure rigid rotator value. Figures 1.4 arishow the remarkable
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Figure 1.4 Reduced Transition Probabilities B(E2) for lowext states of

even-even nuclei [38].
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Figure 1.5 Energy ratioE,. / E,. for excitation of lowes2" and 4" states in

even-even nuclei. The lines connect sequencesiiss [39].

behavior of nuclei in the rare earth mass regiohghvis consistent with the
behavior of nuclei possessing large deformations.

Bohr and Mottelson suggested a theoretical diradtbodescribe the deformed
nuclei [40-41]. Nuclear behavior is predicted bgalar frequency, moment of
inertia and angular momentum induced by rotation.

For small values of angular momentumthe rotational energy is expanded as

a function of I (1 +1):

E.. (1(1 +2))= AI(1 +1)+ BI 2(1 +1)2 +CI 3(1 +1)° +...



But, this law of E,,, ~ I (| +1) is invalidate at high values df. Prior to this

weakness, more advance knowledge is explored toowephe understanding
and explanation of nuclear behavior.

Nuclei as we know, made up of two different typésocleons, i.e. protons
and neutrons. These nucleons, as described bydiwo-imodel have dipole
vibrational modes in which they oscillate aroundnoeon axis in opposite
phases. The oscillations generate isovector maguagible resonance. The
low-lying, collectively magnetic dipole excitations deformed nuclei were
discovered in the last decade [42]. Since therra@st to study the properties

of the deformed nuclei has increased especialllgaiast few years [43-50]. It

is evidently to state that the low-lyinlj states spread around the excitation
energy of 3 MeV in energy spectrum [51].

Taking into account the Coriolis mixing of the isator collective M1 states
with low-lying states will lead for the non-adialgétyy of electromagnetic

properties to occur [52-54].

1.4  Objectives
This study has two objectives:
1. To predict the energy spectra and study the longlyexcited
energy states df>°*°°gm and°%1°#e01eA1041%8 s isptopes.
2. To analyze the wave function structure of nucleamd states of

152154156 qngl 196158160162164186y jsotopes.



The basic states of the Hamiltonian inclufie” = 0; ) ground stateband,
p.(K*=05)-, ,BZ(K” = 0;)—, y(K’r = 2+)— vibrational bands and

K™ =1" collective states\ is the number of" collective states).

1.5 Organization of Thesis

This thesis contains five chapters. The followimguter presents the overall
theoretical and literature review done throughbetresearch. The description
of nuclear models, the concepts of deformed nueled the derivation of
Harris parameterization from the cranking modelcareered in Chapter 2.
The calculation and methodology of this study amdnstrated in Chapter 3.
The structural work involving the analytical pastautlined with a flowchart

presented in Figure 1.6.

Extraction and analysis Determination of inertial
of experimental data parameters

v

+

. , Calculation of rotational
Determination of (j J; 5 |4 angular frequency

Calculation of the
energy of low-lying
excited states of Sm
and Dy isotopes

Study the structure of
wave functions of Sm
and Dy isotopes

v

Figure 1.6 Work structure in the research.



Chapter 4 presents the results of the researchrédudts obtained for the
determinations of inertial parameters, headbandges® and the matrix
elements of Coriolis mixing foP>>°*°°9m and 1°%°81601621641%0nyy  nclei
are presented in this chapter. The calculated sadfiehe energy of low-
lying excited states and the wave function stredwf the nuclei are also
included in this chapter. The explanations regaydire results obtained
are discussed.

The final chapter summarizes the overall work dand concludes the
study of low-energy structure ~>*°°Sm and *°%°#1°01621%4180ny nyclei,

On-going and future works that may be exploredadse included at the

end of this chapter.



CHAPTER 2

NUCLEAR MODELS

The main problem of nuclear physics is to undestard explain the complex
interaction in a nucleus. By 1934, scientists laddt that the nucleus consists
of protons and neutrons, but they did not have sthmdea what is the
general shape of nucleus and how these partialasge themselves.

The nucleons inside an atomic nucleus are categbrazs many-particle
system that held by their mutual interaction viac&lomagnetic and strong
forces. We are dealing with many-body problem @agjcomplexity. Nuclear
model is a simple way to look into a nucleus toegar wide range of its
properties possible. A model is successful if is hhe ability to predict
measured nuclear properties that can be verifiederaxentally in the
laboratory. The results predicted by the model raissi be in good agreement
with previous results. This chapter presents tirermlogy of nuclear model

development relevant to this research.

21 TheLiquid Drop Mode: Semi-Empirical Mass Formula

A nucleus is not a simple collection of nucleomsalreaction betweea and
b, there is an intermediate st€pthat delays the emission of particl¥s and
y.

A+b—>C* —>X+y

A Danish physicist, Niels Bohr proposed in the intediate step, the energy is

distributed among all nucleons and ends up on thi¢ted particles [55]. In

10



this model, the nucleons interacting via internabrsg forces with their
nearest neighbors in short range and results ircdinstantly oscillating and
changing shape of the nucleus. In this respectntitdeus is incompressible
and not rigid as water droplet. As a consequere]ituid drop model was
suggested as early collective model in which thdividual quantum
properties of nucleons are completely ignored.

If two neighboring nucleons interact with each othitbe total mass of the
system is less than the sum of all the mass o¥ikhaial nucleons. The mass
defect is the difference in mass of the nucleusincbnstituent nucleonsZ

protons andN neutrons. The mass defect is defined by:

A=(zM, +NM,)-M(Z,N) (2.1)

where M ; and M | are the mass of the proton and neutron respegtivéle

stronger the interaction, the more the mass degseas
To see how strong the nucleons are bound together,mass defect is
converted to the mass-energy equivalence whidteisiticlear binding energy.

The nuclear binding energy is given by:

B(z,N) =[(zM, + NM,, ) -M(Z,N)]e?. (2.2)

The experimental nuclear binding energies of a walege of nuclides are

plotted in Figure 2.1. Binding energies per nucléocrease sharply af\

reaches the peak of ~ 8 MeV/nucleon at iron (Fd)than decreasing slowly

11



for the more massive nuclei. Above this value,dterage binding energy per
nucleon, B/ A is relatively constant indicating that the nucle®nsity is

almost constant and the nuclear force exhibitsaatun properties.

3
s
:
£
£
@ . L
g i
i ;
% S 1 i
g _||1|,H' s

LA L L I L L ] | D | | LI |

40 30 120 160 200 240
Mumbear of nucleans in nuclauws, A

Figure 2.1 Binding energy per nucleon along the stabilitgl[66].

On the basis of the liquid drop model, a systematiody leads to the
completion of nuclear binding energy formula wigwfterms that shows the
collective and the individual nucleons featuresioflei. Figure 2.2 shows the

contribution of the correction terms in the semip@mal formula:

2 1 _ 2
B(Z,A)=a,A-a A*-a Z(Z-1)A*3 —asym%w. (2.3)

12



The a,A term is proportional to the nuclear volume andresents the

volume energy for the case of constant saturatediriy energy per nucleon at

2
8 MeV. Thea A3 term corrects the binding energy formula due tosiwrface

Volume

15—

Volume + surface

Volume + surface + Coulomb

BiA (MeV per nucleon)

Volume + surface + Coulomb + symmetry

I | I | J

0 50 100 150 200 250
Mass number A

Figure 2.2 The contributions of various terms in the semieiogl mass

formula to the binding energy per nucleon [57].

effect. The nucleons at the surface layer do natritute to the binding

energy as much as those in the central regionnAld raindrop, the force in
the central core is saturated but drops to zetbeasurface [58]. For lighter
nuclei, the binding energy per nucleon is smalksduse of larger surface-to-

volume ratio.

1

The atZ(Z —1)A_5 term is due to Coulomb repulsion between the Zom®in

the nucleus. This Coulomb energy has destabiliafigct that reduces the

binding strength. This term is very important foeaky nuclei because

13



(A-2Z)?

additional neutrons are required for nuclear sitgbiThe a_ term

is called symmetry energy. Unlike the Coulomb epetgym, this term is
important for light nuclei, for whichZ =N =A/2 is strictly observed as

presented in Figure 2.3.

140 |- all 2

£1
a0

Meutron nonther %

ol

Atemic number £

Figure 2.3 The plot of N versus Z for all stable nuclei [59].

The last term is called the pairing energy. Thidus to nucleons tendency to
form pairs with zero spin. When the value of bothmbers of neutron and
proton are odd, the odd proton is converted inteatron (or vice versa), SO
that it gains binding energy to form a pair with formerly odd partner. The

pairing energy term of odd number of neutron armtqr is subtracted from

14



the binding energy formula as opposed to that efrtiaclei with even number
of neutron and proton, which have greater stabilkgr nuclei with odd
nucleon number, this term is taken as zero becausé nuclei can be

described without the last term.

The parameters, , ag, a, and 8y, are adjusted to give the best agreement
with the experimental curve. By using this expressior B, the semi-
empirical mass formulé formulated which is regarded as a first attetopt

apply nuclear models. Since nucleons are boundbitiding energy must be

subtracted from the total mass:

M(Z,A)=2ZM, +NM, -B(Z,N)/c? . (2.4)

1
20 50 100 150 200 250 A

Figure 2.4 Deviation of the experimental values of the bigdenergy per
nucleon from the semi-empirical values. The solidve represents the semi-
empirical binding energy formula, Equation (2.3gddhe open circles are the

experimental data [37].

15



However, it is proven in Figure 2.4 that the expemtal values deviate from
that of semi-empirical formula with large nucleanding energy at certain
number of neutrons and protons. These numbersallesl the magic numbers

of nuclei.

2.2  Spherical Shell Model

Nuclear shell model is obtained by analogous corsparwith atomic shell
model. The shell model accounts for many featufesnergy levels. In the
atomic shell model, the shells are filled with ¢&lens in increasing order of
energy. Finally, the inert core of filled shellsdawvalence electrons are
obtained. The atomic properties are then determiyetthe valence electrons.
This concept is applied on the nucleons in the eusgl Some measured
nuclear properties are remarkably in agreement with prediction of the
model.

The motion of each nucleon is governed by the aerdtractive force of all
other nucleons. The resulting orbits of moving eoals form shells. By Pauli
Exclusion Principle, each nucleon is assigned agjueiset of quantum
numbers to describe its motion. The nucleons il lowest-energy shells as
permitted by this principle. If the shells are yufilled, a nucleus would show
unusual stability. Magic number represents shelsule occurs at proton and
neutron numbers of 2, 8, 20, 28, 50, 82 and 126sd@tiilled shells have total
angular momentumid” =0". The next added nucleon, the valence nucleon
determines thel* of the new ground state. Thus, the shell modetriess the

energy required to excite nucleons and how thetgnanumbers change.

16



However, there are some differences between the atwl nucleus. The well-
known properties of atoms are the electrons modepgandently in an average
atomic potential. Unlike the electrons, nucleonsvenm an average potential
generated by other nucleons. Regarding large deroéthe nucleons relative
to the nucleus itself, how can the nucleons moweah defined orbits without
any collisions? The mean free path of a nuclearerg short compared to the
length of its orbit. This objection can be encougdieby the explanation of the
Pauli Exclusion Principle and how the shells atedi The collisions involve
the energy transfer of nucleons to one anotherldéndhat gains energy must
excite to the nearby levels but the filled shelenmot accept additional
nucleons. To move up to the valence band, moreggrsrrequired than the
transferred energy during collisions. Therefores tiollisions cannot occur,
and the nucleons orbit as if they were transpaceahe another.

In developing the shell model, the ordering andrgn®f the nuclear states

can be calculated by solving the three-dimensiG@cakodinger equation:
hZ
-—A+V(r r)=Ewlr). 2.5
[Zm ()}//() w(r) (2.5)

Assuming a nucleon moves in a spherical potentitd spherical coordinates

(r, 6, ¢) using the relations

e e (20

andl (6, ¢) is the angular momentum operator such that

2

I?=- _ii(sineij+%a—2 h®. (2.7)
sind 06 08) sin“60d¢

By applying variables separation method, a wavetfan having radial and

angular parts is obtained. The number of radialesad is the principle
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quantum number. The angular part is spherical bamny,"(6,p) with

guantum numbersandm corresponding to the angular momentum of the state
and the projection of the angular momentum onta@xds. Solutions obtained
are similar to the 3-dimensional harmonic oscillato

Another more realistic potential to describe theés applied on each nucleon

is Wood-Saxon potential:

V(r):—1+ exp[z:o— R)/ a] 28)

where potential well depthy, =50MeV, nuclear radiusR =1.2 A™3*fm,
and a representing the surface thickness of the nucleus).5fm.

The Wood-Saxon potential illustrated in Figure 2.5ased on the assumption
that each nucleon moves in an average interactittmall other nucleons. The
force is attractive at increasing distance. WHeRR within a, the force
towards the center is large. tf— R>>a, which meansr — o | the force
rapidly approaching zero indicating the nature bbrsdistance of strong
force.

However, if all the nucleons filled the particulstates according to Pauli
Exclusion Principle, the counted nucleons only edror the first three magic
numbers. The prediction fails to fit the experingrdbservation. In 1949,
Mayer and Jensen pointed out independently thahtleeage potential felt by

individual nucleons must include the spin-orbittet « 5 [60].
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Figure 2.5 The Wood-Saxon potential [61].

The applicable potential is:
U(r)=—%m(a)r)2+,6’lz+af°§ : (2.9)

The first term is the harmonic oscillator potenti@he correct sequence of
“magic numbers” is not reproduced by this potent@hly the first three
magic number, 2, 8, and 20 emerging from this seheihe individual
nucleon not only interacts with all other nucleobsit also with itself. A
nucleon is orbiting and also rotating. In Figur®,2we see that the spin
angular momentum parallel to the orbital angulanmantum is favored. Each
nucleon orbit is split into two components, labetgdthe total spinj =1 +3§

All j for all nucleons will give the resultant angulaomentum ( — j
coupling). However, this nuclear spin-orbit couglis different from the one
exists in atoms where total orbital angular momentf all electrons,L ,

combine with total of all spins to form J .
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Figure 2.6 The coupling between the spin angular momentum arbdal

angular momentum [62].

The introduction of the spin-orbit interaction idle to explain the
experimental shell closure at 2, 8, 28, 50, 82, 8P@ as pictured in Figure

2.7.

2.3  Nuclear Collective M odel
For closed-shells configuration, the nucleus tedodse spherical. The addition
of one or more nucleons produces small deformafibe. nuclear shell model

can explain this situation successfully. However, the nuclei in the region

20



(rare-earths and actinides), the departing fromsghteerical shape cannot be

ignored.
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Figure 2.7 The magic number configuration reproduced by spwbit

interaction [60].

The collective model proposed by Bohr and Mottelgtl], is inspired by the
liquid drop model and the Rainwater proposal [6Bpw the intrinsically
deformation of most nuclei away from closed shelith prolate quadrupole
shape. The whole nucleus is deformed by singlag@rmotions and the

observed electric quadrupole momex, is because of collective orbital

distortions.
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Analogous to liquid-drop idea, a nucleus consi$tlled-shells as inner core
and the outer valence nucleons as the surfacesdigghid drop. In addition to

the motion of individual nucleons, all the nucleonsthe nucleus move
coherently contributing to the collective excitatiomodes of the nucleus. A
nucleus gains angular momentum either collectivbly rotations and

vibrations of the nuclear matter or by nucleonsitakons. Practically, most
nuclear states carrying large angular momentumaangxture of these two

modes.

231 Vibration
“Phonons” of multipolarityZ is the vibrational quanta that carry energy. The
multipolarity 4 is used to characterize the multipolarity of thelaar surface.
One can imagine the nuclear vibration as a liquidpdvibrating at high
frequency. The nuclear average shape is spherntdhb instantaneous shape
is not spherical as illustrated in Figure 2.8. Tineleus is assumed to perform
harmonic vibrations about the spherical shape [64].

The instantaneous coordindﬂét)of a point on the nuclear surface(étgo) IS

R{t)=R, +Y i% ()Y, (0.9). (2.10)

721 p=—1

Each spherical harmonic) (H,go)will have amplitude «,, (t). Due to

Ly}

reflection symmetry,

22



~ ~
/ ,—Ji _\H‘“’ \ R(0) at 6,6
f % 4 y \\}
s Li_g}l,/ /!
A rar

Figure 2.8 A vibrating nucleus with spherical equilibrium gleg57].

The 4 =0(monopole) term corresponds to breathing mode afrapressible
fluid. The nuclear shape is spherical with averesgbus R, = RA™>. The
typical dipole(/l :1) mode corresponds to overall translation of centenass

of the fluid. It occurs when the proton and neutastillate out of phase

against each other. This is a collective isoveéto: 1) mode. It has quantum

number K* =1 (the parity of a phonong is given by(—l)i in even-even
nuclei and occurs at high energy. Low-energy quamlei(s = 2) vibrations

are dominant mode. This mode can have two formaxially symmetric
deformed nucleus. Variation of nuclear modes ofatibn is shown in Figure

2.9.
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Figure 2.9 Modes of nuclear vibration [65].

The first, g —vibrations are the elongations along the symmexig. arhe

angular momentum vector of such shape oscillatisngerpendicular to the
symmetry axis. Therefore, such bands arekof = 0 states. The second type
of vibration is y—vibration which is the travelling wave with angular

momentum vector points along the symmetry axiss Bives rise taK” = 2*

bands.

232 Deformation
Assume an incompressible deformed nucleus with taahsvolume, the
nuclear radius can be defined as the distance tihencenter of the nucleus to

the surface at angl@, ) and written as
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R(0.¢) = Ra{1+ > ZaY (m)} (2.11)

1=2 p=-),

where «,, are the coefficients of the spherical harmon?(;;(@,go), the

average radiuR,, = R,A™*® and R, is the radius of spherical nucleus having
the same volume with the deformed nucleus. Theevaful determines the
type of multipole deformations and is the projection ofl on the symmetry

axis. The/ = 2 terms represent the quadrupole deformations.

For pure quadrupole deformation,

R(@,(p) =Ry [1+ 020 (9 1(P) +0,Y, (0 1(P) +tay,Y,, (9 ’(/’)] . (2.12)

Lund convention expressed the coefficients as:
0, = f,COSy
Oy =0y p = B, SINY
with g, is the eccentricity and/ is the non-axiality or degree of axiality.
Figure 2.10 summarizes the nuclear shapes variatidhe (3,7) plane and
how they repeat every =60°. The plane is divided into six parts by

symmetries. In the 3-axis, the nucleus is in thegte shape with one axis is

long, and the other two axes equal, i.e. convealiprX =Y.
For spheroidal nuclei, the nuclear radius is

R(0.,0) = Ry [L+ .Yx0(0.0)] - (2.13)
The spheroidal nucleus has axial symmetry, eithdate (two equal semi-

major axes) = 60° or prolate (two equal semi-minor axeg}x 0°. This
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Figure 2.10 Nuclear shapes in the principal axes system as&ibn of J for

fixed g [37].

nucleus is in ellipsoidal shape that is its crasgien is ellipse. One symmetry
axis also is retained in this deformatiofi, is derived using the Lund’s
definition:

B=len 1)
4R is the difference between the semi-major and semomaxes of the
ellipsoid. Nuclear shapes variation in relation hwieccentricity, f, is
illustrated in Figure 2.11.

Nuclear charge distribution can be described by dfiective shape of the
nucleus through a parameter called nuclear elegtracirupole moment .

The value of electric quadrupole moment is reldateds deformations by the

relation:

Q=§ZRfﬂz(1+%ﬁ2 +j (2.15)
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Figure 2.11 Nuclear shapes in relation with eccentricify, [66].

Nuclear shapes variation in relation with electjicadrupole momentQ is

illustrated in Figure 2.12. The non-zero value lgiceic quadrupole moment
indicates that the charge distribution is not syaladly symmetric. The positive

value of Q represents the prolate shape of ellipsoid and tivegaalue

represents the oblate shape

Q=0 Oblate
FProlate

Figure 2.12 Nuclear shapes in relation with electric quadrapubment,Q

[67].
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233 Axially Symmetric Ellipsoid Shape
Rotational motion can only be detected if the nuglis in nonspherical shape.
The rotational of spherical nucleus is always ommetry axis and the
orientation of the axes is indistinguishable quantenechanically [68]. No
collective rotations occur about the symmetry axelk axial-symmetric
deformed nucleus, the rotational symmetry is broken
Imagine a deformed nucleus in a 3-dimensiopgly, z) coordinate space
with its center of mass is g0, 0, 0) coordinate.(x, y) plane is the rotational
plane of the nucleus which perpendicular Zosymmetry axis. By three
infinitesimal rotations, th€x, y) plane is transformed intpx', y') plane.
No rotation will be observed if the rotational axee parallel toZz axis. The
axially symmetric shape nuclei can only rotate gloaxes which are

perpendicular to symmetry axis. As no rotation ab@wmxis, moment of

inertia about the othex'and y' axes are equal i.el,, = 0, =0 [69]. Only

one value ofl] is assigned for the rotational energy spectrum.

From Figure 2.13, the total angular momentuntan be expressed as:

where R is the vector of rotational angular momentum, ahds the angular

momentum vector of intrinsic motion, and has itmponent onz axis, K .
Quantum numbers are constants of motion. Angulamemdum of intrinsic

motion | is not constant along with the rotation, $ocannot be considered

as good quantum number for deformed nuclei. Fopkaity, the angular
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Figure 2.13 Coupling scheme for particle in slowly rotatinghspoidal

nucleus in 2-D coordinate system [70].

momentum of intrinsic motion is taken to be zerotsat R is the total

angular momentum:

| =R.

The angular momentum of rotatioR is a constant of motion and is
perpendicular to the symmetry ax¥s for an axially symmetric nucleus (See
Figure 2.14). But, the quantum numbd& the component of angular
momentum summation of individual valence nucleofiss > j about the
symmetry axis has a fixed value for the rotatidreaid [68].

If fzz Is the operator for the angular momentum alongsttmemetry axis, then

. (oW
R.WY =-ia — | =0. 2.16
z (agj (2.16)

The axial-symmetric shape requires the Hamiltomaust be invariant with
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Rotational angular momentum

1

Symmetry dxis

Figure 2.14 The rotational angular momentuknis not along the symmetry
axis and the intrinsic angular momentymis assumed to be zero, for

simplicity.

respect to rotations about the symmetry axis, seths no associated
rotational energy about the symmetry axis. Onlyghase is changing as the
consequence of the rotation about the symmetry axis
The even parity wave function that fulfill the symtry relation is
nonvanishing if

(-1' =1.
Therefore the values for angular momentum are0, 2, 4, 6, ... Or even
parity wave function. The linear superposition loé wvave will cancel out for
odd | [60].

The degree of axial symmetry is zero with proldtape.
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234 Rotation Matrices
It is appropriate to introduce intrinsic (body-fdeframe with (x',y', z')
coordinates and laboratory (space-fixed) frame withy, z) coordinates.
Arbitrary rotation from (x, y, z) coordinates to(x',y',z') coordinates is
described by the familiar Euler ang@=(6,, 6,, 6;).

The following steps are done counterclockwise tavarat the frame

(x',y',z") from the original fram€x, y, z) [65, 71]:

a) The system is rotated through an angle(0< 6, < 2z )about Z axis,
thereby changing the position ok and Y axes. This yields
(X1, Y1r 2) -

b) The second rotation is through, (0<@, <2r)about the new
position of Y axis. This yieldgx,, Vi, ).

c) Finally, once again, rotation is done through (0< 6, < 27:1) about

the newest position o axis. This yields(x', y', z') whereZ = z,.

These three infinitesimal rotations through Euler nglas

6=1(9,,0,,0,)=(a, p,y) are defined in Figure 2.15.

If we specify the relationship between the represt@ns of state vector, the

rotated vector in the framgx', y', ') is
|IK y=0]IK ) (2.17)
where the rotation operatar] = exp(—%éﬁ- I') . We have to define respective

angular momentum operator for every infinitesinmahtion. Separating the
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Figure 2.15 Rotation of the coordinate axes frofg, y, z) to (x',y',z') by

Euler angleqa, 3, y) in three steps [41].

rotation operator to specify the ordered rotatitmeugh Euler angles,

0=0(6)0(6,)0(8) = eXpt- 6T, ) eXp- 6,1, )exp(-6iT,).

(2.18)
Fortunately,
expE—6,T, ) = exp—6,7, )expC—6,1,) expl-6,i,) (2.19)
h ! h fi fi
and
i, = i, - i -
exp(—%égl )= exp(—gé’zl yl)eXp(‘Egﬂ 2)
x exp(—'% o,l,) expéh a,1,) expéh 6,1,) . (2.20)

Finally, the full rotation in terms of angular montem operator
0(6) = exp(—'%elrz)exp(—'ge2 Fy)exp(—'%egrz) . (2.21)
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Using closure of the s¢tm ), we have the transformation jok ) into

[IK)'=0]IK) =>[IM }(IM |T]IK). (2.22)

Figure 2.16 defines the relationship between tretium numbersVl and K

Figure 2.16 Relationship between the total angular momentum, the
intrinsic angular momentum] , the rotational angular momenturR, and the
component ofi along the rotationak axis, M and the symmetry axis in the

body-fixed frame,K [72].

Defining the rotation matrices, or tHe—functions for short as the coefficient

of the relation

[1K)'= 22| IM )Dy (6) - @)2
M
Dy (8) =(IM [O(8)|IK )- (224

Dy (8) =(IM |exp(—%elrz)exp(—%@zry)exp(—%egrz)| IK). (2.25)
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Note that in Equation (2.21), the first and laséraor is diagonal in thEK ),

and|IM) is an eigenfunction of , . The matrix is simplified to

Dy (6) = ex;{—%(@lM + 6?3K)}<IM |exp(—%ezry)| IK). (2.26)

Dy (6) :ex;{—%(elM +03K)}d,{AK(92). (2.27)
d, (6,) is the real function of reduced rotation matrix:

dyk (6;) =(IM |exp(—%62fy)| IK). (2.28)

ML = M)+ K)I(I - K)l]z
—9)I(I +K —s)Is(M =K +3)!

21 +K-M-2s 2s+M-K
X(cos%j (—sin%j . (2.29)

The summation is over all possible integer values ofor which the factorial

dl, (6,) = Z( 2 [‘”

arguments are zero or greater.

The conjugate ofD,,, (6):

[IK)'= %D;;K &) IM). 2.30)
Dl (e>=ex{‘g(elm +93K)}d'MK ®,). 2.31)

The D,,, matrices are unitary,

%(DI{AK')* Dll/IK =0k and %(DII\/I'K )* Dl{/IK = O

It follows that
[IM) =Y Dy ()] IK) 2.32)
K
with the orthogonality relation between the—functions,
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Z(DIIVI'K )* DI{/I'M :%; Dllvnvr(Dllqvl'}r =

2.
and
22
1 T5ing,06,6,6,(Dnc J* Dl =27~ Gy B By
bl 21 +1

where the d,, is the Kronecker delta with value unity &@=band zero

otherwise.

235 Rotational Excitations
If nucleus is deformed, the core and valence nudeuwill rotate collectively.
The nonspherically symmetric potential is respomdgiv rotation because the
different orientation is distinguishable. The wawactions of the nucleons
that move collectively vary slowly with increasimgmgular momentum. For
collective rotation of even-even nuclei, in the syatric case, only one

moment of inertia is defined leading to

ﬁz
H.,=—. 2.33
rot 2|:| ( )

Quantum mechanicallyR = /I fl +15h for pure collective rotation [57, 68, 73,

74] that the total angular momenturR,= I . Then the spectrum will take a
term that is consistent with the energy of rotadlostate. The rotational

excitation band is similar to

2

Tsymmtop = ﬁ | (l + 1) . (234)
In order of increasing excitation, the ground staad consists of
hz
E =—I( +1) with 1 =0, 2 4,. (2.35)

20
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as graphically shown in Figure 2.17. Only even sege of/ is allowed

which gives the values:

E, =69
E, =209
E,. =429
2
where 9 :h—.
20
) W e 113
-
A T2
23
ﬁ: hml
53 42
4 —— P
H o @
ot — 0

Figure 2.17 Rotational band built upon the ground state oéfiined, even-

even nucleus in the rigid rotor approximation.

Thus, as shown in Figure 1.5, for an ideal rotagngn-even nucleus in the
ground band state, the energy ratio between thigaéros of lowest2™ and
4" statesare almost constant at 3.33 such that:

E,. /E, =333
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directly indicates that the ideal rotating evenrewneicleus is highly deformed
and located at thd50< A<19C and A<220 mass region [39, 75]. This
constant ratio is for extreme rigid rotator. It d@used as rigidity indicator of
a nucleus. If a nucleus is subjected to centrifiggedtching, this ratio value
will take a smaller value.

The ground states of the even-even nuclei h&e=0". The rotational

energy law is only valid for small value &f  The deviation froml (I +1) rule

is increasing with the increment of spin Figure 2.18 shows the abrupt
deviation of thel (I +1) rule as the spifl increases where the dotted straight
line is the predictions done by A. Bohr [76].

By analyzing Figure 1.3, the region of highly def@d, axially symmetric
rotational nuclei and the spherical vibrational leucan be specified. The
departure from thel (I +1) rule of certain nuclei indicates the transitional
regions between the highly deformed, axially symroebtational nuclei and
the spherical vibrational nuclei that are foundylgliy outside the region of

150< A<19C and A<220 The value E2+ =120keV is closer to those of

axially symmetric rotators. On the other hand,\thkeie the first2” of level of
*°Sm is closer to those of single phonon vibrationalrgies of spherical
nuclei [71].

For a given A, increasing deformation affecting on the momdrihertia by
increasing it and lowering the excitation energlgisTieads to smaller energy
spacing. Nucleus with largef has the larger value of moment of inertia [75]

and smaller values of rotational energy. Thisnspy related to the

5

0= A3, (2.36)
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Figure 2.18 Energy ratio in the ground band state in the exem nuclei in

the 152 < A< 186. Data were taken from (Firestared.€1996) [76].

24 Nuclear Adiabatic Model (Unified Nuclear Model)

Nuclear adiabatic model is formulated by Bohr anatti®lson [41]. The model
is formulated as an attempt to unify the conceptsotlective model and shell
model in the study of rotation-vibration interactiolhe model states that the
lowest excited state of axially symmetric ellipseiden-even nuclei is related
to rotational states with even angular momentuna ashole. The unified
model also states that the strong coupling of muete motions to the rotor

and follow the rotational axis motion adiabatically

38



The usual condition of adiabaticity is expressed as

Qo << Qyip << it (237

rot

where «,, is the rotational angular frequency,, the vibrational angular
frequency, andy,, the intrinsic angular frequency. This conditiorpires the

separation of rotational motions from the vibratoand single-particle
excitations. These three motions are treated inhely.

The adiabatic approximation is valid if the rotatb motion is sufficiently
slow without perturbing the nucleonic motion. Hentdee individual nucleon
can continuously readjust its wave function withaltanging states and
obliged to follow the deformations. The nucleusl|vahange its shape in
smooth manner without sudden change on the intrimgition. Large number
of nucleons patrticipates in the deformation [77].

In the unified nuclear model, the nuclear moti@n expressed as three
independent modes; the intrinsic motion, vibratiamation, and the rotation
of the nucleus itself. Consequently, the Hamiltarsan be expressed as:

H = Hint + Hrot + Hvib (2)38

where H, . is the Hamiltonian for the intrinsic motiotd,,, the Hamiltonian

int

for the rotational motion, andd,, the vibrational Hamiltonian. For rigid

rotation, the rotational Hamiltonian is

— 1 2 2 1 2
H ot _E(Rc +Ry')+ERZ (2.39)

z

where R,, R, and R, are the rotational angular momenta corresponding t

X', y' and Z'axes. Due to axial symmetryg, =0 and moment of inertia

about the othex'and y' axes are equal i.el, =0, =[]
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Using the equality from Figure 2.13:

R=I1-J

where R is the rotational angular momentum operator, decsag intof,
the total angular momentum operator which rotatesithole system and acts
only on the rotational wave function, and is the angular momentum

operator acting on intrinsic motion.

Now, the total Hamiltonian obtained is

H=H, +T,+H, +H, (2.40)
with
Tt = % (2.41)
and
H.o=-1 (.3 +1.3,). (2.42)
20
H ., is referred to as the Coriolis coupling whichihie coupling of intrinsic

and rotational motions. Coriolis interaction altehe projection of angular
momentum on the symmetry axis, admixing differeaities of K . K is only

a good quantum number when the potential is axgflymetry.|, acts on
total angular momentunh , while J, acts on intrinsic angular momentuin

. 1,J_ decreaseK and |_J, increasesK. The nucleus is considered a

good rotational nucleus when the Coriolis effeatelsitively small with small

reciprocal of moment of inertiglE , low angular momentunj , and low spin

| [78]. This term is neglected by the adiabatic agpnation. But at high spin
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| , a small axial asymmetry is produced and the adii@hbheory is deviated

[75].

24.1 Coriolis effect: Two states mixing

Mixing of two states is worth discussing in studyiime effect of certain types
of mixing on transition rate. The concept of twatst mixing is used in
regards to its triviality and simple semi quantitatcalculations without losing
the sight of the basic physics.
Consider two perturbed statgg and ¢, with approximately same energy,
spin and parity that can be written as combinatmfisure wave functions

Y =aq - B,

W, =By tag,
a and B are the normalization coefficients that repredéet major and
minor components of the wave functions such that, 3 and a? + g2 =1.
The two levels repel each other by difference&of(See Figure 2.19) and
change the moment of inertia.

Given the value of the perturbed (experimentalyges, Eéxpand Eezxp, it is
possible to calculate the interaction matrix elemen, j,from the pure

energiesel andg?2_ , such that

theor theor ?

( Et:heor Wrot JXJ(QJ =g (@j . (2.43)
Wrot I x Etﬁeor 2 * 2

In general, the mixing depends both on the spacfrthe initial unperturbed

energiedbetween two stateAE and on the strength of the matrix element

theor
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Figure 2.19 Two-level mixing.

j, [54, 75]. There are two limiting cases to be cdemd i.e. infinitely

strong and relatively weak mixing.

1. Suppose two initial states are degeneraf,(,, =0). The result is
that, for any isolated two-state system, the fggparation can never
be closer than twice the mixing matrix element.

But, suppose two levels mix. They can never cragsrépel and can
never be closer than twice the mixing matrix eletmafter mixing.
This behavior acts as an indication of strong ngxin

2. The weak mixing limit corresponds to the large safyan of the initial

unperturbed energidsetween two states relative to the mixing matrix

element @Etheor/jx >> 1)-

The two-state mixing situation can be extendeddfind the description of
two different band<; and K, mixing which is more complicated. The band

mixing can explain the back bending phenomenon [79]
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25  Cranking Modél

Rotational and vibrational motions are treated wswopically in collective

model. Based on deformation symmetry and adialgtidhe Coriolis

coupling does not appear explicitly, but manifegself in low angular

momentum dependence [41]. In order to determinedhective variables and
parameters, microscopic modeling of both collectaed single-particle
excitations is needed. To bring these two exciatito unity, cranking model
is added to deformed shell model. The effect ofidlis coupling on the

Hamiltonian will be taken into account by adding tbranking term to the
guasiparticle energies. It is more practical toknarthe intrinsic (body-fixed)

system than in the laboratory (space-fixed) systeranking model is suitable
to use as it can be extended to very high-spiestat

Cranking model as proposed by Inglis [80-81] isemi classical context. The
nuclear excited states are characterized by tlesickl quantity which is the
angular momentum rather than the angular frequehbis model assumes
that independent nucleons in the ground state ofu@eus move within

deformed self-consistent many-particles potengalct on external rotational
force applied onto them [69]. In short, momentrddrtia is derived by rotating
the intrinsic wave. Further evaluation of the fumctcan yield the energy
increment [74].

The coordinate system which is rigidly fixed to tth@otential rotates with
constant angular frequenay. The angular frequency is conceived to be
smaller compared to that of the collective motiBue to adiabaticity, the

intrinsic energies are larger than the rotatiomairgies [73].
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Considering a deformed potential well) that is single-particle, self-

consistent, and fixed shape rotating about an mxispace [74, 82]. With
respect to rotational axis, spherical coordinatati®duced. At timel =0,

UF;t)=u(r.0,0-wt;0). (2.44)

Nucleus is a dynamic system which depends on defioom variables and
time derivative. If the deformed potential wéll depends orp , U is time

dependence which means axial asymmetry is prodabedt rotational axis.

As we consider axially-symmetric deformed nuclethis research, the time
dependence of the potentldl will be eliminated later.

In laboratory system, we introduce time-dependeamHhtonian H and a

state function// describing the motion that satisfies the Schrodieggiation:
Hy = (gjw : (2.45)

The nucleus is assumed to rotate slowly aboutXhaxis. This rotationalX
axis is considerable to be perpendicular to thensgtry axis.
As mentioned before, the time dependence of therahefd potential U

needs to be eliminated to maintain axially symnsetondition. To eliminate
the time dependence, we can define unitary tramsftion, U :exr(—incot)
such that

w =U(t)y (2.46)
whered is the wave function in the latter system.
A transformation around rotational axis with angkes ot is induced.

Replacing (2.46) into (2.45) yields:
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D

L), )2 (2.47)

=i
ot ot

which rearranging the equation leads to:

} . 0U | _idg
U™ HUp—-ip—=—" . 2.48
{ p—ig Gt} 3t (2.48)
Equation (2.48) may be rewritten as:
Hp =idp/ ot 49)
wheref is given by:
H :U‘l{HU —i%—f}. (2)50

Note that we define unitary transformation for slicipy,
U =exd-iJ wt) (2.51)
and we can writeH as follows:
H = exp(— iJ Xa)t){H exp(— 1J Xa)t) - i[exp(— iJ Xa)t)][— iJ Xa)t]}
=H,-wJ,. (2.52)
The so-called general many-body Hamiltonian ofdrenking model consists
of two parts; the stationary state of the statiant@nian in the nuclear
system and the cranking term.
The cranking term is treated as perturbationafs small enough. If the
condition is fulfilled, the calculation of the quép of the energy and function
can be done by means of perturbation theory. We\cde:
Hop = Eg 53)

and the relation between the energy eigenvaluethéotwo systems with the

Coriolis interactions « J, is:
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=(w[H |v) 2.54)
=E +w(p|Iy|0)-
Inglis [72-73] developed the cranking formula foetmoment of inertia:

Dngis =242

[<il3, k>
£ —&

33)

where | and K are single particle bases antl, is the rotational angular

momentum operator. Figure 2.20 shows the plottechemd of inertia in rare

earth nuclei.
1 3 !
ﬁz.‘f Moments of inertia
Mev B--= -0 Experiment
w——0u cranking
- o8 o= +iphi- interaction ]ﬂm
Y\ﬁ PO
B a
n
(= '\r“'\ % e
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Figure 2.20 Moments of inertia in rare earth nuclei [37].

26  HarrisParameterization
From the previous section, Inglis cranking formj#@-81] for the moment of
inertia is stated. But the cranking formula is ttseial cranking model results

from the use of second-order perturbation theogyrisl parameterization [82]
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included terms up to fourth order iH' =-wJ, by making use of fourth-
order perturbation theory:

<O|H |[m><m|H |0>
Eo —Enm

E=E,+Y
m

4y SOIH [m><m|H [n><n|H |p><p|H |0>
mnp (Eo — En)(Eo —E )(Eo - Ep) (2.56)

_z|<0IH'In>I2I<0IH'Im>|z
mn (Eo_En)Z(Eo_Em)2

Here, @ must be calculated to third-order perturbation tiefor proper

normalization since terms up to fourth order iduded inH :

<O0|H |m><m|H |0>

H'|¢)=-2
(#1H'19)=-2% e E.
_4Z<0IH'Im><mIH'In><nIH'Ip><pIH'I0>

mnp (Eo — Em)(Eo —En)(Eq - Ep) (2.57)

44y KOIH In>Fi< O H [ m>"
mn (B — En)z(EO - Em)2

From (2.54), we obtain

<0]lJ. |m><ml|J, |0>
E:Eo_a)zz | X| | X|
m EO_Em

_agt 3 SO m><ml 3, [n><n| 3 | p>< pld, 0>
mnp (Eo —Em)(Eo —En)(Eq - Ep)

(2.58)
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Zl 0]J, In>FK0]J, |m>|°
mn (Eo_E)(Eo_E) .

+ 3w

Basically, the rotational energy is related to tiotaal frequencyw and all
terms containing the rotational frequency cannonbglected. Expressed in
terms of rotational frequency, the expression ef énergy of the laboratory

system is written in the form
1 2
E= E0+§D(a))a) : (2.59)

We finally obtain the moment of inertia dependeanehe angular frequency
expression:

O(w) = O, +3Cw? (260
where

|<m|J |0f°

2.61
“E (2.61)

_22

which is the expression that completely very similar to teealicranking

formula obtained from the use of second-order perturbation treatmdnt, an

C=py SO Im><mi, In><n|d, | p>< p|d, 0>
mnp (Eo — Em)(Eo —En)(Eq - Ep)

<0|J, |m>
_ g, 3 013 m>

2.62
m (E _Eo) ( )

The expectation value for the angular momentum of the intrinsic @taie

(p]3,]0) = »(0, +2Cw?). (2.63)
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Since higher-order perturbation theories are uedrapid convergence of the

large correction terms in the perturbation serigsoften doubted. Self-

consistency approach is used to overcome the doubt.

From (2.59), we write the energy in the form

[ee]

E=E, +%a)22apa}2p

p=0

and from (2.63), the angular momentum is of thenfas follows:

(13 19)=w) b,w™.
p=0

From (2.54),

Due to classical mechanics correlation,

0
ow

rot

(E(@or) = Wiyl ) =0

wherel =./I(I +1).

Expression (2.66) is differentiated to give

E :6_E+pr(2p+2y02p+l .

oo 0w <

For a stationary solution of

applying a theorem due to Feynmann, one has

oE oH
— =< —_— >,
e ¢|6a|¢

In this case,

(2.64)

(2.65)

(2)66

(2.67)
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oE
a_:_<¢|‘]x|¢>
w

=-0) bw® (2.68)
Combining (2.67) and (2.68), we obtain
9E => b, (2p+1)w**™* . (2.69)
oo 5

From (2.59), we get

0E 1
—==Ya (2p+2w". 2.70
S 2; (2p+2)w (2.70)

By direct comparison, (2.69) and (2.70) are vdli&j(p+1) =b,(2p+1) is
obeyed for allp . If we write
E=E, +%a)2(DO +3Ce? +5D0" + 7Fa® +...) 2.71)
and
(p]3,]¢) = (0, + 2Cw? +3D0* + 4F0® +...), (2.72)

self-consistency is achieved.

If D=F =0, both equations agree with previous results. In, conclutiien,

rotational energy and angular momentum of deformed nuclei are

E t:%wz(mo +3Co? +5D0* +TFw® +...) 2.71)

ro

and

J1T+1) = (0, + 2Cw? +3De* + 4F0® +...). (2.72))
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CHAPTER 3

THE MODEL

Interesting properties of °*°*°°Sm and 1°61%8160162184166 Dy, jgotopes  as
deformed nuclei can be studied by applying the phemological model [52-
53]. The basic states to be considered in this miodkude the(K™ =0;)

ground stateband, B (K7 =0;)-, B, (K" =03)-, y(K"=2%)-

vibrational bands andk ” =1' collective states y( is the number ofl’

collective states).

In order to explain the Coriolis mixing effect ametbasis states of a nucleus
within the phenomenological model, we shall st formulation of the
model with a stable deformed nucleus with a sentoinsic axes connected to

the rotation of laboratory axes by Euler anglés, We begin by introducing
the nuclear Hamiltonian containing rotational pakf, (I 2) and the Coriolis
interaction dependence part:
H=H,(1%)+H, (1) . (3.1)
The Coriolis interaction dependence part of tlaenitonian is
He o (D) == Oy o = Wit (N i XKDy oy - (3.2)

In Equation (3.2),(jX)K,K. is the matrix element describing the Coriolis

coupling of rotational bandsy,, (1) is the angular frequency of core rotation,

yielded from

Wy (1) =—dE3t|(') (3.3)
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(note that, for convenience, we have removed tbif& from each angular

momentum operator throughout this thesis.), &dis the band head energy

of respective th&”™ bands which is the lowest energy level and

_ |2 2
X(|,0)—l)((|,1)—{1 X +1)} : (3.4)

The Kronecker deltad, -

=1if K=K"or g, , =0if otherwise.
It is well established that a nucleus contains rgfly interacting Fermi
particles that obey the Pauli Exclusion Princigfermions must have anti-

symmetric wave functions under the interchange aitigles. The wave

function of the nuclear Hamiltonian

ﬂ\I/IK =§wﬂ«-| IMK>

21 +1 Wi
R Er= {fzwgm D}y + 3= [Dj (020 +(-1) " DY (0 [{0)
K - (3.5)
l//:(’K are the amplitudes of basis states mixing from {derV) bands
includes the (K7 =0;) ground state band, and the single-phonon
b}:zK|0>=b§|0> with B (K" =05)-, B, (K"=03)-, y(K7"=2%)-
vibrational bands andK” =1’ collective states \ is the number ofl"

collective states). The+ J, . ,factor in the second term takes into account the

difference in the normalization betwe&” =03, 05 and K” =2* bands.
By solving the Schrddinger equation

Hg,ql//:("q :ggl//II(,q (36)
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one obtains wave function and energy of states po8itive parity.

The total energy of states is taken to be

Eq ()=E()+&7 (1) - (3.7)
There are different methods available to deterntivee energy of rotational
core E,, (I ). Harris parameterization of the angular momentumt @nergy
[82] is chosen to determine the energy of rotaticnee E,, (1 ):

1 3
E ot (l ) = E Doa’rzot (I )+ Z Dla)r40t (l ) (3.8)

v l (I +1) = |]Owrot (l )+ Dlwégot (l ) (39)
where O,and [, are the adjustable inertial parameters of rotaticoge. A

method of defining the even-even deformed nuclertial parameters using
the experimental data up to< 87 for ground band is suggested in [83].
By solving the cubic equation, we obtain the rotadil frequency of the core

@, (). The resulting real root is as follows:
1
1)s3 1
a)rot(l): |_+ I_ + & + l—— I— + &
o0, |\20,) "\30; o, |\20,) 30,
(3.10)

where I =./1(1 +1) . Equation (3.10) gives value @f,,(I) at the given spin

3.1 Determination of w,(1)

In the cranking modela)rot(l) is the rotational angular frequency which is
determined by imposing that thkg, = I =J1(1+2)
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The inter-dependency dfand 2, is introduced by Harris [82]:

rot

Erot(I ) =_DOC‘)rzot(I )+_Dler€)t(|) (3-11)

VI +1) = Ogo (1) + D08, (1). (3.12)
Rearranging the expression:
Oowrer (1) + Doy (1) =T
Oo@ye (1) + Dy, (1)-1T =0
I

0
o ()+—Lw,  (1)-—
)+ Poall)-

=0.
By supposindl,/0, =q, -1 /0, =r and settingw,,(I)=® to construct a
simple new cubic equation which is
W’ +qw+r =0. (3.13)
It is appropriate to replace =v +z into the simple cubic equation which
gives
v3i+0%z+ 22+ 22 +qu+qz+r =0. (3.14)
It is clear that Equation (3.14) is separable itM@ parts which if added
together will equal to zero.
w?z+3¥ 2P +qr+gz=0 (3.14a)
and
v+ 28 +r =0. (3.14b)
By factorization of (3.14a),
(3v z+q)(|/+ z) =0.

We note that eitheBv z+q or v +zmight equal to zero. But obviously we

can say thav +z# 0 becausex =v + z cannot be zero.
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Here, we have two coupled equations: (3.14b) and

3vz+q=0. (3.13c)
Then, we have from (3.14c)
vz=-9
3
and later becomes
vz =-q?/27. (3.15)

Straightforwardly, we find from (3.14b)
vi+z®=-r. (3)16
The use of sum and product rules is a very connémiay to reduce the cubic

equations to much simpler form of quadratic equmatio
x* — (v3 + z3)x+ viz® =0 (3.17)
x2 = (=r)x+(~-g%/27)=0 (3.17a)
such thatx=v3or x=2%.

From the general solution of quadratic equatioa,ablutions are
—r £/r2-(aq*/27)
X = 5

x:—r/Zi\/@rj +(§qj (3.18)
v = —%+[(%rj +(%qj JZ (3.19)
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7= -%—[(%rj +(%qj‘] (3.20)

Recall thate. =v + z and w= @, (1) which yield

rot

2 1 2 1
R R R R
fot 2 |\l2 3 2 |12 3

(3.21)
Finally, we replaceg =0, /0, , r = —T/Dl in above expression, the rotational
(1) is now given by

frequency of the corey

rot

3.2  Determination of U, and [,

The ground states of the even-even nuclei h&/&=0". The necessary
condition for the rotational energy law to be vailkdsmall value ofl . The
deviation fromI (I +1) rule is increasing with the increment of spin

Rotational angular frequency for the nucleus is:

ESP(1 +1)- E®(I -1)

. (3.23)

we ()=

where E®®(I )is the energy from experiment [6-15].
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Effective moment of inertid (| ) is written in terms of nuclear rotational

angular frequency (1 ):

VI *1) (3.24)

Ot (| ):m :

Evaluating the above expression, one obtains tfeetefe moment of inertia
for statesU«( 1 ).
If we plot O (1) as a function ofv’; (1) at low spinl <87, the relation is

verified to be mainly linear. This relation of tiparameters is rephrased by

using Harris two-parameter formula:

Oerr(1)= 0o + Dhoge(1). (3.25)
Equation (3.25) defines the inertia parametéisand U, for the effective
moment of inertial, (I) when | <8i. The effective moment of inertia
depends on the degree of rotation. The least squatbod is used in the
equation to determine the numerical values of trampeterd], and L], .
The inertial parameters,}, and [; have their interesting physical meanings.
The parameter], is the moment of inertia of the ground states bamd the

parameter], represents the rigidity of the nucleus that leadhé centrifugal

stretching effect [83-84].

33  Determination of (j,), .

The lowest energies for ground-state affj — bands were taken from
experimental energies, since they are not affdayeitie Coriolis forces at spin
| =0:
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w, =Eg™(0) andw, =E;*(0).
The band head energies for the collectile states in********Sm and

1561581641660y nuclei are assumed to be, =3MeV because theK™ =1"

bands have not been observed experimentally faetimiclei respectively

[53]. Coriolis rotational states mixing matrix elents(j,), .. and y — band

head energies, are determined by using the least square fittieghod of

the diagonalize matrix

W —€ Walx V@) (@
[wrotix %‘f](@j @{%j.

Currently, the experimental energy spectrum for @e band in the***Sm

and '**Dy nuclei are not available. No calculations are dimmethis band in

respective nuclei.
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CHAPTER 4

RESULTSAND DISCUSSIONS

The values of the inertial parameters, and [J, are obtained from Equation
(3.25). O (1) is plotted as a function aff; (1) at low spin,| < 8% . The linear
dependency of effective moment of inertid(I) on the square of angular
frequency o/, (1) is invalidating at higher spin. Figures 4.1-4.Ristrate the
linear dependency of (1) on «f (1) at low spin, | <8k for isotopes

1521541565m, Figures 4.7-4.12 show the same behavior of tiatioa for isotopes
156158160162164166 3y, By using Equations (3.23) — (3.25) and utilizlagst square
method, 0, and [, are deduced from the fitted straight lingébe values of the

inertial parameters,J, and [J, obtained are tabulated in Table 4.1 for isotopes

1521541%Smand Table 4.6 for isotoped*81e0tea1641ee

From Tables 4.1 and 4.6, within same number ofgmst for constant total
angular momentum i.e. for ground band state, thenemb of inertia increases
gradually with nuclear size. This case is subjediedconservation law. To
conserve the total angular momentum while the rande&e increases, the nuclear
moment of inertia must increase and the rotatiothefnucleus must slow down.
The centrifugal stretching will come into play bgateasing the nucleons pairing
correlation and the nucleus fails to preserve kescal shape. Thus, larger

nucleus lacks more in rigidity and is more defornmlde smallest values af,

occur when the deformed prolate minimum in the pidéenergy surface.
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It is generally known that the effective momentradrtia of the ground-state band

is smaller compared to that ¢f, (0, .05 )- and - bands, (0, <0,.0,).

This arises because the Coriolis mixing of thesedbawith K* =1 rotational

bands is more intense than the mixing of grounditsate withK”™ =1 bands.

The effect of K™ :1; bands on low-lying levels is interesting to studye
intensity of mixing can be analyzed from the valaé€oriolis interaction matrix
elements/j, ), .. and band head energy, .

Wave function of stateg,,, represents the mixture components of other bands i

certain band. Tables 4.3-4.5 give the calculatedewanction of stateg,, for
192194199 m and Tables 4.8-4.13 give the calculated wave fonaif statesg,,,

for 1°41°81801621841%0y - The wave function of stateg!, is obtained by solving
the nuclear Hamiltonian in the form of Equatior2j3oy using the wave function
of Equation (3.5). Structure of*****°Sm and °%!%81001621641850y, can be

understood by these calculated values.

The results are presented as simple two-state giifdrm because of triviality.

The most important thing to understand are thetiogiships between the pure

band head energies spacings, .. and the value of Coriolis mixing matrix

elements(j ), ,, on one hand, the perturbed energy separationshanadmixed

K1’
wave functions on the other hand. In general, tivang depends both on the

proximity of the band head energy, between two bands and on the matrix

element(j,) ., [54, 75].
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The actual nuclear states are complex admixturemafy components. The

strong mixing of respective intrinsic excitationatets will lead to the
nonadiabaticity of electromagnetic transition frcﬁﬁl, O}Z and y state bands

[50-52]. This is an attempt to present accurate treatmershtov the realistic

calculation of nuclear spectra. Rotational moti@m e superimposed on the
vibrational motions. The rotational and intrinsiotions are strongly coupled due
to Coriolis forces. The non-adiabatic effects beeomore important as the
rotational frequency increases. The adiabatic agsamis applied on the wave

function of Equation (3.5) to separate the rotatl@and intrinsic motions.
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4.1
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Samarium isotopes
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Figure 4.1 The linear dependencies BE«( 1 ) on (1) for *2sm.

62




44

36 |

0.03

”’,y (1) (MeV")

Figure 4.2 The linear dependencies Bg( 1 )on afy(1) for **sm.
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Figure 4.3 The linear dependencies Bk¢( 1 )on aZx(1) for % sm.
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Table4.1 Inertial parameters of rotational core used indileulations.

Nucleus| Ty (MeV?) | O, (MeV?)
1525m 24.74 256.57
1%95m 36.07 178.88
1%65m 39.22 98.36

Table 4.2 Parameters used in the calculations. Band headieaen MeV [6].

Nucleus Cbﬂl ajgz ] Cuy (jx)gr,l (jx)ﬁl,l (jx)ﬁz,l (jx)y,l
1529m 0.685 1.083 3.0 1.0 0.742 0.821 0.864 0.855
1%4gm 1.099 1.203 3.0 1.380 0.345 0.403 0.408 0.417y
1%65m 1.068 - 3.0 1.365 0.749 0.872 - 0.903




Table 4.3 Structure of *2Sm states.

gr 0, | 05 | 1° y | or O | 05 | 17 y

Ground-state band 0;1
-0.9997 0.0-025 -0.0016| -0.0227 -0.0014 0.0032 -0.99p4 -0.0(L64 3260 -0.0065
-0.9993 0.0-065 -0.0043| -0.037| -0.0044 0.008p6 -0.9982 -0.0169 -®605-0.0199
-0.9987 0.0-109 -0.0073| -0.0483 -0.0076 0.0148 -0.9964 -0.0283 7@Q -0.0343
-0.9981 0.0-153 -0.0103| -0.0576 -0.0108 0.0211 -0.9942 -0.0397 84B0 -0.0485
-0.9975 0.0-197 -0.0132| -0.0657 -0.014 0.0276 -0.9917 -0.0508 -@B09-0.0621
-0.9968 0.0-239 -0.016 | -0.0729 -0.017, 0.0338 -0.9888 -0.0615 -®B1pP70.0752

y 0,

0.0022| 0.0078 -0.030p -0.0326 -0.9990 -0.002500#b| 0.9987| 0.039 -0.031

- - - 0.0473| 0.9989 - - - - -

Al wWw|DN

-0.0069| -0.024§ 0.0883 0.0630 0.9987 -0.006 &2010.9938| 0.0585 -0.093

- - - 0.0698| 0.9976 - - - - -

-0.0122| -0.0442 0.1452 0.0853 0.9846 -0.009 +¥Q020.9855| 0.0686 -0.152

- - - 0.0866| 0.9962 - - - - -

0.0175| 0.0643 -0.194p -0.1028 -0.9733 0.0115 5§K03-0.9753| -0.0736 0.204

- - - 0.1000| 0.9950 - - - - -

-0.0226| -0.0843 0.2352 0.1168 0.96[10 -0.0134044%K| 0.9645| 0.0759 -0.249

- - - 0.1112| 0.993§ - - - - -

-0.0274| -0.103§ 0.2691 0.1282 0.9485 -0.014904@%| 0.9538| 0.0764 -0.286
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Table 4.4 Structure of *** Sm states.

+ + + +
[ | 9r 051 0,32 1° y gr Oﬁl By 1" y

Ground-state band 0;1
2| 10 | 00002 00002 0.0076 0.0001 0.0008 go00 | 0.0037| 0.0142 | 00011
4| 0.9999 | 0.0006 | 0.0005| 0.0134| 0.0004 | %9999 09906 | 0.0114| 0.0250| 0.0041
6 | 0.9998| 00011 00010 00184 0.0009 0.003 g001 | 00215 | 0.0347 | 0.0080
8 | 0.9997| 0.0014 00015 0.0238 00013 ~. | 0.9984| 00329 0.0435 0012
10 | 0.9996| 00027 0.0021 00266 0.0018 .| 0.9975| 00449 0.0515 0.017
12 | 0.9995| 0.0029 0.0025 0.031 0.0023 »,q| 0.9964| 0.0571 0.0589 0.024

+
0/32 y

2| 0.0003] 0.0039 9999 | 0.0151 | 0.0019| 0.0002 | 0.0013 | 0.0021 | 00139 | 0.9999
3 ; ; - ; ; ; - - | 0.0216] 0.9998
4| 0.0009| 0.0121| 9-9996| 0.0262 0.0061 ; y0g| 00047 | 0.0075| 0-0280| 0.9996
5 ] ] ] ] ] ] ] - | 00344 0.9994
6 | 00016 | 0.0205| 0-9990| 00358 0.0129 (- | -0.009 | , 7, | 0.0390| 09991
7 ; ; - ; ; ; - - | 00451 0.999
8 | 0.0025] 0.035| (, 9982 | 0.0439| 0.0197 | 0.0024| 0.0138| 0.0223| 0-0480| 0.9985
9 - ; - ) - - - - | 00543 0.998%
101} 0.0034)  0.048) 9975 | 0.0508 | 0.0265| 0.0032| 0.0187| 0.0303 | 0-0°°4| 0-9978
11| - - ] - - - ; - | 00623 0.9981
121 0.0042) 0.0614 ) 9959 | 0.0568 | 0.0333| 0.0040| 0.0236 | 0.0383 | 00617 | 0.9971

67



Table 4.5 Structure of ** Sm states.

o 0y 1 y ar A 1 y
Ground-state band Ozl

2 0.9999 0.0008 0.0155 0.000% -0.0012 0.99P6 0.02800.0043

4 0.9996 0.0025 0.0277 0.0019 -0.0039 0.9986 0.05%03.0158

6 0.9992 0.005 0.0392 0.0034 -0.0079 0.9969 0.07150.032

8 0.9987 0.008 0.0499 0.0064 -0.0128 0.9944 0.0914.0513

10 0.9981 0.0113 0.0598 0.0091 0.0185 0.9911 0.110®.0723

12 0.9974 0.015 0.0689 0.0121 -0.0247 0.98)1 0.12720.094

y

2 -0.0009 -0.005 0.0277 0.999¢

3 - - 0.0436 0.999

4 0.0034 0.0187 -0.0564 -0.998p

5 - - 0.0708 0.9975

6 0.0069 0.0377 -0.0795 -0.9961

7 - - 0.0947 0.9955

8 0.0108 0.0604 -0.0983 -0.99383

9 - - 0.1158 0.9933

10 | -0.0149 -0.0851 0.1133 0.9898

11 - - 0.1346 0.9909

12 -0.0189 -0.1104 0.1252 0.9858
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For 2 sm , the Coriolis mixing matrix element§) 5 ; =0.864 MeV™ and

(Jx),1=0855 MeV?! are considered to be larger values from othenes@
two comparably equal and large values Coriolis ngxinatrix elements, with
very small band head energies spacifgg; , =0.083 MeV induced strong
mixing between0; — and y— bands.

A large spacing of the band head energies betweenbainds reduces the

influence of large mixing matrix element. One neeample occurs in the

structure of ***Sm Coriolis mixing matrix elemen(j,),, =0.417 MeV*

which is the highest among others and the pure baad energies spacings

Aa)y’ﬂz =0.177 MeV, Aa)yﬁl =0.281 MeV, and Aoy, =1.380 MeV. Even
though the mixing matrix element is large; the éaspacing reduces its effect.

The strong mixing induced in this isotope is beimv@%l - and 022 - bands
with Coriolis mixing matrix elements(j,)g , =0408 MeV?! and
(jx)ﬁ11 =0.403 MeV*™. The Coriolis mixing between these bands is
strengthened by the small band head energy spauz!bnlg@ﬁl =0.104 MeV.

The experimental energies fOl'f,,2 — band in**®* sm isotope are not available.
No calculations are done for this band. Insufficieamber of states from

other rotational bands and unavailability 0}2 — band make it difficult to

explain the structure of*® sm isotope by comparison. The intensity of

Coriolis mixing betweem},l - and y— bands is noticeable. This is because
the Coriolis mixing matrix element§j,),; =0.903 MeV? is the highest
followed by (jx) 51 =0.872MeV™" and (j4) 41 =0.749 MeV™. The Coriolis
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mixing between these bands is strengthened by ldseress of band head

energy,Aw, ; =0.297 MeV.
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Figure 4.4 Energy spectra of positive-parity states*éfmisotope.
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The theoretical energy spectra of positive-paritgtes in **>***°*Sm are
presented in Figures 4.4, 4.5 and 4.6 respectirelgomparison with the
experimental energies [6-9]. The theoretical enesggctra are calculated by

using Equation (3.7). From the figures, we sed #wergy difference

&(1) = |[Epeor (1) = Egp(1)| Of the 0 — band increases with the increase in

the angular momentuml. At high spin, | the nonadiabaticity of energy
rotational bands occurs. Two states with same spiand parity, 721from
different bands cross in that region causes Cariglixing. We predict the
existence of s-band states to perturb the @Ee— band states.

Other than this mentioned obvious deviation, theothtical positive-parity
states energy spectra are in best agreement vatexjperimental data. But at

higher spin, | the theoretical energies deviate from the obseemelgies

suggests the nonadiabaticity of energy rotatioalds. Few new states and

collective 1" band are predicted.
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4.2  Dysprosium isotopes 1°%1°8100162164160
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Table4.6 Inertial parameters of rotational core used endalculations.

Nucleus| O, (MeV?Y) | O, (MeV?)
1%6py 21.93 238.13
18py 29.69 174.26
1%0py 33.96 131.07
1%2py 36.61 105.77
%4py 40.25 121.09
1%6py 38.68 73.81

Table 4.7 Parameters used in the calculations. Band headieaen MeV [6].

Nucleus| ag p, @ w, () gra (Ix) g2 (1x) g1 (x)ya
%6py | 0.676 | 1.405 3.0 0.760 1.462 1.615 1.765 1.633
%8py | 0.991 | 1.269 3.0 0.847 2.598 2.966 2.605 2.481
%0py | 1.280 | 1.444| 1.775 0.879 1.689 2.170 2.224 2.031
®2py | 1.400 | 1.666| 1.720 0.807 0.077 0.103 0.109 0.098
%4py | 1.655 | 1.773 3.0 0.688 0.389 0.484 0.490 0.431
%6py | 1.149 - 3.0 0.780 0.174 0.205 - 0.195
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Table 4.8 Structure of 1**Dy states.

|| oor 0 | Op 1* y | or 0, | 0 1" y
Ground-state band 0;1

2 | -0.9986| -0.012Q0 -0.0068 -0.0503 -0.0088 0.0167.99M8| -0.0180 -0.07583 -0.1049

4 | 0.9956| 0.0309] 0.016% 0.0833 0.0264 0.0488 -0.94960492| -0.1336 -0.2748

6 | -0.9910| -0.0513 -0.0278 -0.1111 -0.0454 0.0865.89™4 | -0.0803 -0.1774 -0.3864

8 | -0.9852| -0.0723 -0.0394 -0.13%6 -0.0646 -0.12498531 | 0.1066| 0.2081 0.4494

10| 0.9782| 0.0927, 0.0510 0.1581 0.0834 0.1626 -0.818.1279| -0.2297 -0.484p

12| 0.9701| 0.1125 0.0626 0.1790 0.1007 0.1991 -0.789.1450| -0.2450 -0.505B8

' 0,

2 0.0101| 0.1093 -0.0141 -0.0518 -0.9925 -0.0111023&8| 0.9940| 0.1041 -0.0223

3 - - - 0.0872| 0.9962 - - - - -

4 | -0.0230| -0.2891 0.031 0.0729 0.9588 -0.0254 58BQ 0.9852| 0.1480 -0.0608

5 - - - 0.1259| 0.9920 - - - - -

6 | -0.0294| -0.4113 0.0389 0.0726 0.90y3 0.0377 ®@.0830.9766| -0.1699 0.0947

7 - - - 0.1534| 0.9882 - - - - -

8 0.0325| 0.4851] -0.0424 -0.0679 -0.8702 0.0477 710-0.9687| -0.1810 0.1230

9 - - - 0.1747| 0.9846 - - - - -

10| 0.0340| 0.53120 -0.0441 -0.0631 -0.8431 -0.0558.127®| 0.9615| 0.1866 -0.1465

11 - - - 0.1922| 0.9814 - - - - -

12| 0.0349| 0.5619 -0.0450 -0.0590 -0.8231 -0.0624.1431| 0.9550| 0.1892 -0.1663
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Table 4.9 Structure of *®Dy states.

Lo 0y Op, 1 y | oor 0y 0p 1* y
Ground-state band 0;}1

2 0.9972| 0.0167| 0.011% 0.0712 0.0183 -0.0230 0.98@10730| 0.1071] -0.146

4 | -0.9885| -0.0508 -0.035p -0.1302 -0.0466 -0.045288%P | 0.1274| 0.1199 -0.431

6 | -0.9713| -0.0942 -0.0658 -0.1883 -0.0886 0.0514.788%7| -0.1368 -0.099 0.588

8 | -0.9453| -0.1406 -0.099p -0.2434 -0.1327 0.0925.7386| -0.1364 -0.0831 0.658

10 | -0.9125| -0.1845 -0.1316 -0.2981 -0.1736 0.0%26.7018| -0.1350 -0.072 0.693

12 | -0.8765| -0.2227 -0.1605 -0.3358 -0.2086 0.0%29.6819| -0.1337 -0.064 0.714

' 0,

2 | -0.0223| 0.1339] 0.042¢6 0.0898 0.9857 0.0164 0.0969.9900| -0.0993 0.039¢

3 - - - 0.1125| 0.9936 - - - - -

4 | 0.0932| -0.3789 -0.1458 -0.2042 -0.8859 0.0347 0682 -0.9650, -0.1202 0.101

5 - - - 0.1706| 0.9853 - - - - -

6 | -0.1862| 0.4924] 0.2238 0.2716 0.77839 0.0455 0.2860.9395| -0.1161 0.1413

7 - - - 0.2136| 0.9769 - - - - -

8 | -0.2807| 0.5236| 0.2642 0.2994 0.6983 0.0315 0.334@.9204| -0.1073 0.1647

9 - - - 0.2470| 0.9690 - - - - -

10 | -0.3676| 0.5249 0.2828 0.3049 0.64p5 0.0550 @.3640.9069| -0.0991 0.178]

11 - - - 0.2736| 0.9618 - - - - -

12 | -0.4423| 0.5151] 0.2885 0.2989 0.60p3 0.0%72 0.3850.8971| -0.0922 0.1872
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Table 4.10 Structure of **° Dy states.

|| o 0, | Op 1* y | or 0, | Op 1* y
Ground-state band 0;1

2 0.9975| 0.0082 0.007% 0.0688 0.0091 -0.0288 0.92402187 | 0.2962| -0.098

4 | -0.9906| -0.0263 -0.024p -0.1275 -0.0337 -0.0659801% | 0.3511| 0.3635 -0.312

6 0.9773| 0.0523 0.0477 0.1878 0.0683 -0.0857 0.7048B3737| 0.3281] -0.484

8 | -0.9557| -0.0834 -0.076p -0.2487 -0.1090 0.0931.651®| -0.3680 -0.280] 0.586

10 | -0.9259| -0.1171 -0.1076 -0.30Y3 -0.1513 0.0959.6223| -0.3593 -0.243 0.644

12 | -0.8898| -0.1497 -0.1381 -0.3608 -0.1913 0.0969.5991| -0.3520 -0.215 0.679

y 0p

2 | -0.0194| 0.0514] 0.0378 0.1397 0.98F9 0.0205 0.3018.9207| -0.2410 0.054(

3 - - - 0.1921| 0.9814 - - - - -

4 | -0.0771| 0.1667] 0.1272 0.2947 0.9291 0.0284 0.4020.8450| -0.1873 0.0891

5 - - - 0.2846| 0.9586 - - - - -

6 | -0.1588| 0.2619] 0.2077 0.3946 0.8410 0.0304 0.560@.8091| -0.1444 0.098§

7 - - - 0.3472| 0.9378 - - - - -

8 | -0.2491| 0.3136| 0.2564 0.4392 0.7622 0.0311 0.5894.7919| -0.1187 0.102%

9 - - - 0.3913| 0.9203 - - - - -

10 | -0.3388| 0.3362] 0.2808 0.4490 0.7002 0.0314 6.6040.7825| -0.1023 0.1042

11 - - - 0.4235| 0.9059 - - - - -

12 | -0.4216] 0.3430 0.290Y 0.4398 0.6532 0.0316 6.6120.7768| -0.0909 0.1052
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Table 4.11 Structure of **2Dy states.

|| o 0, | Op 1* y | or 0, | Op 1* y
Ground-state band 0;1

2 1.0000| 0.0000, 0.000 0.0030 0.00p0 0.0001 -0.999B0006| -0.0213 0.0007%

4 | -1.0000| 0.0000f 0.000 -0.0053 -0.0001 0.0002 9989 -0.0018| -0.0379 0.000y

6 | -1.0000f -0.0001 -0.000L -0.0074 -0.0001 0.0005.9986| -0.0035 -0.0529 0.001B

8 | -1.0000| -0.0001 -0.000L -0.0093 -0.0002 0.0008.991B| -0.0055 -0.0665 0.0021L

10| 0.9999| 0.0002 0.0002 0.0110 0.00p3 0.0011 -0.994.0077| -0.0786 0.003

12| 0.9999| 0.0003 0.0002 0.0125 0.00p4 0.0014 -0.999.0100| -0.0895 0.0039

y 0p

2 0.0000| 0.0001 0.000 0.0085 1.00p0 0.0004 0.00339917| -0.1285 0.0008

3 - - - 0.0086| 1.0000 - - - - -

4 | -0.0001| 0.0002] 0.0002 0.0114 0.9999 0.0012 0.0099.9764| -0.2156 0.002¢

5 - - - 0.0139| 0.9999 - - - - -

6 | -0.0003] 0.0005| 0.0008 0.0163 0.9999 0.0021 0.0183.9595| -0.2810 0.004¢

7 - - - 0.0186| 0.9998 - - - - -

8 | -0.0004| 0.0007| 0.0005 0.0208 0.9998 0.0032 0.0270.9440| -0.3287 0.0073

9 - - - 0.0228| 0.9997 - - - - -

10 | -0.0006| 0.0011 0.0008 0.0247 0.9997 0.0041 0.0350.9308| -0.3637 0.0097

11 - - - 0.0265| 0.9996 - - - - -

12 | -0.0008| 0.0014{ 0.0010 0.0283 0.9996 -0.0p51 44RO 0.9198| 0.3898 -0.0119
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Table 4.12 Structure of 1**Dy states.

|| oo 0 | 05 | 1 vy | or 0y 0y 1 y
Ground-state band 0;1

2 1.0000| 0.0001 o0.000L 0.00Y8 0.0002 0.0003 -0.99970054| -0.0218 0.0004%

4 | 0.9999| 0.0004 0.0004 0.0139 0.0009 0.0010 -0.99910172| -0.03914 0.0018

6 | 0.9998| 0.0009 0.0008 0.0196 0.0018 -0.0020 0.997T@0337 | 0.0556| -0.003y

8 | 0.9997| 0.0014 0.0013 0.0248 0.0029 -0.0032 0.996D0533 | 0.0710f -0.0060

10| 0.9996| 0.0019 0.0018 0.0295 0.0041 -0.0046 6.993.0744| 0.0854| -0.008p

12| 0.9994| 0.0026 0.0024 0.0338 0.0054 -0.0060 @99m.0962| 0.0989 -0.011p

v 0,

2 | -0.0003| 0.0003 0.000p 0.0092 1.0000 -0.0003 B52Q000.9997| 0.0239 -0.000p

3 - - - 0.0143| 0.999¢ - - - - -

4 | -0.0012| 0.0010 0.000Pp 0.0190 0.9998 -0.0010 8®010.9989| 0.0419 -0.0017

5 - - - 0.0233| 0.9997 - - - - -

6 | -0.0023| 0.0021 0.0019p 0.0274 0.9996 0.0019 0.0869.9977| -0.0574 0.0034

7 - - - 0.0312| 0.9995 - - - - -

8 | -0.0038| 0.0033 0.003D0 0.03%0 0.9994 0.0029 0.0683.9958| -0.0703 0.0053

9 - - - | 0.0383] 09993 - - - - -

10 | -0.0054| 0.0047 0.0043 0.0418 0.9991 0.0040 6.0810.9934| -0.0809 0.0073

11 - - - 0.0447 0.999 - - - - -

12| -0.0071| 0.0062 0.0056 0.0480 0.9988 0.0051 @.1050.9904| -0.0894 0.0092
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Table 4.13 Structure of ***Dy states.

| ar 0y 1 y ar 5 1 y
Ground-state band 0;1

2 1.0000 0.0000 0.0037 0.0000 -0.0001 1.000 0.0069 -0.0002

4 1.0000 0.0001 0.0066 0.0002 -0.0004 0.999 0.0125 -0.0007

6 1.0000 0.0003 0.0093 0.0004 -0.0004 0.999 0.0176 -0.0015

8 0.9999 0.0004 0.0118 0.0006 -0.0007 0.999 0.0224 -0.0024

10 0.9999 0.0006 0.0142 0.0009 -0.0014 0.999 8.026 -0.0034

12 0.9999 0.0008 0.0163 0.0011 -0.0013 0.999 8.030 -0.0046

2 -0.0001 0.0002 0.0045 1.0000

3 - - 0.0071 1.0000

4 -0.0002 0.0006 0.0094 1.0000

5 - - 0.0258 0.7800

6 0.0005 -0.0012 -0.0137 -0.9999

7 - - 0.0157 0.9999

8 0.0008 -0.0020 -0.0177 -0.9998

9 - - 0.0195 0.9998

10 0.0012 -0.0029 -0.0213 -0.9998

11 - - 0.0229 0.9997

12 0.0015 -0.0038 -0.0246 -0.9997

86




In the structure of** Dy, a large spacing of the band head energies bettween
bands reduces the influence of large mixing maglement. Coriolis mixing

matrix element(j, )z ; =1.765 MeV* which is the highest among others and the
pure band head energies spacidgs; , =1.405 MeV, Awx, 5 =0.729 MeV,

and Awg , =0.645 MeV. Even though the mixing matrix element is Erghe

large spacing reduces its effect. Strong mixinigdsiced betweetﬁ)}}1 —andy-
bands due to the small pure band head energiemgpac ; , = 0.084 MeV.

The band head energies spacings play a very impaxée in two-state mixing.

Even a small mixing matrix element can induce gramxing if the band head

energies spacing is small. One nice example odeutbe structure of**®Dy.
Coriolis mixing matrix element(jy),, =2481 MeV? which is the smallest
among others and the pure headband energies spatitag,; =0.144 MeV,
Ad, o =0.847 MeV,andAw, ; =0.422 MeV.

Now, let us have a look at the structure’®Dy. We can see that the strong
mixing is induced betweeﬂ}}l - and 022 — bands. The Coriolis mixing matrix

elements (j,)z1=2224 MeV' and (j,)z,=2170 MeV*' which are

considerably large matrix elements. The pure barddhenergies spacings

Awy 5 =0.164 MeV is very small. Conversely, the Coriolis mixingatrix
element(jy) 4, =1.689 MeV* which is the lowest among others. Small mixing

is induced between the ground state é}}g— bands. Even though the Coriolis
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mixing matrix element 002}2 — band is very large, the Coriolis mixing effect is

reduced by small Coriolis mixing matrix elementgsbund state band and large

headband energies spacinya ; , =1.444 MeV.
For %2 py , the Coriolis mixing matrix elementgj,) s ; =1.080 MeV' and

(jx)m:l.OBO MeV?! are considered to be larger values from othergnEv

though these two Coriolis mixing matrix elements eomparable, the band head

energies spacings Ac, 4. =0.054 MeV is very small compared to
Awg ; =0.266 MeV. Therefore, large mixing is strikingly inducezetween
05 — and1® bands.

For **Dy isotope, the Coriolis mixing matrix element$,) 5 , =0.490 MeV™
and (jx)ﬂl’l = 0484 MeV! are nearly equal and considered to be largeresalu
from others. Due to closseness(o)}l - and O}}Z — bands with band head energies

spacingsic, 5 =0.118 MeV, the mixing between these two bands is nobiyea

induced. The intensity of Coriolis mixing of theseo bands with other low-lying

state bands is approximately equal.
The experimental energies f6; — band in'*® Dy isotope are not available. No

calculations are done for this band. There is nansch comparison can be done

to explain the structure of°Dy isotope. The intensity of Coriolis mixing
betweeno;;1 - and 1" bands is the highest compared to mixing of the mgou

state andy — bands with1* band. This is because the Coriolis mixing matrix
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element(j,) 5, = 0205 MeV*is the highest followed bgj,),; = 0.195 MeV*

and (jx)g1=0174 MeV?'. The pure band head energies spacings

Acw, .. =1.851 MeV is smaller thanAa)yI =2.220 MeV supports the strong

B

mixing between0;, — and1* bands.
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Figure 4.13 Energy spectra of positive-parity states8Dyisotope.
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Figure 4.15 Energy spectra of positive-parity states 8Dyisotope.
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Figure 4.16 Energy spectra of positive-parity states GDyisotope.
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The theoretical energy spectra of positive-parites in 1°01°8160162164185py gre

presented in Figures 4.13-4.18 respectively in aompn with the experimental
energies [6, 10-15]. The total energy of statescalculated by using Equation
(3.7). The rotational behaviour is included in tbeergies for each intrinsic
excitation.

The experimental energies are reproduced very byellsing Equation (3.7), but

they are clearly deviated ak increases. The energy difference between the

theoretical and experimental energig$(l) :‘E[heor(l)—Eexp(I)‘ increases with

the increase in the angular momentunespecially theg, - bands of 156Dy and

162Dy isotopes. At high spid | the nonadiabaticity of energy rotational bands

occurs. The understanding of these deviations ysiph is due to the Coriolis

mixing between states. This Coriolis mixing is takento account in the

calculation of the total energy of states. Twoestahust be with same splnand
parity n from different bands must stay close in order toirbslved in the
Coriolis mixing. The closeness of any two bande@esented by the value of the

band head energies spacinysy . -

In %Dy and*®?Dy isotopes, we predict the existence of s-band statpsrturb

the pureO}i — band states due to large deviations from the @xpetal energies.

Other than this mentioned obvious deviation, thpeexnental positive-parity

states energy spectra are reproduced. But at higpier | , the theoretical

energies deviate from the observed energies sugdhet nonadiabaticity of

energy rotational bands. Few new states and cidect”™ band are predicted.
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For other isotopes, insufficient number of statégoatational bands especially

02}2 — band makes it difficult to see the occurrence afadiabaticity of energy

rotational S, (0;3’1’ 0;2)—bands at high spin. However, few states still can b

predicted by the model.
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CHAPTER 5

CONCLUSIONS

51 Concluding Remarks

In adiabatic limit, the Coriolis coupling betweentational and intrinsic
motion is small. The rotational frequency is vemall compared to the
frequency of intrinsic motion for a given angulaommentum. A pure rotation
apart from the intrinsic motion is defined yieldintge observable pure
rotational spectrum. To make a good approximatiba,Coriolis coupling is
then treated as perturbation in the Harris cranknoglel.

Phenomenological model is exploited to show theiad®n of energy
spectrum of positive parity states in even-everomeéd nuclei from the

adiabatic theory. The calculations are done byntakinto account the Coriolis
mixing of the K7 =1" collective bands with low-lying groundgr), 25,
(05 0, ) — .y — vibrational and rotational bands. Few parametetedfito

this model are calculated.

Energy of rotational core is calculated by using Harris parameterization of
the angular momentum and energy. The real rooubiccequation of Harris
parameterization of the angular momentum gives vakie of rotational

angular frequency of rotational core. The adjustablertial parameters of
rotational core,, and [0, for '°*'**%gm and '°°HeNeHAEDy yclei are
calculated from the Harris two-parameter formula.

Coriolis rotational states mixing matrix elemerfts), . and y - band head

energies, are determined by using the least square fittirgghod of a
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diagonalizing matrix. The mixing components of thates are represented by
the calculated values of the wave function of tielear stategzi,,,K. The

value of the mixing component explained why dewiatoccurred. In general,

the strength of states mixing is influenced byvhkies of Coriolis interaction

matrix elements( ) - and the pure headband energies spacings ..
Larger values of Coriolis interaction matrix elemen(jx)K’K- and the

closeness between band head enerdigs|ead to strong states mixing.

Energy spectra for the isotope$?*4%gm and 03001028458y are
calculated. The levels appears in bands, each akamed by quantum

number K”. The experimental data is well reproduced at Iqin sl .
However, it is observed the energy levels withimaad do not follow the law

of E, (1)~ 1(1 +1) expected for rotor at high spin. This is from the fact

that the rotational and intrinsic motions are gftgncoupled. With the
agreement between the theoretical and experimdatal few states that have

never been observed experimentally are predicted.

52  FutureWork
Very clear-cut problems to be solved in coming geae listed. A number of
topics that deserved future intensive theoretitfakts to bring us closer to the
physical insights of nucleus are:
1. Calculation of the probability of electromagnetiartsitions in
even-even deformed nuclei.
2. Study of the back bending phenomenon by the desmriof

state-mixing.
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3. Study of the nuclear isomerism and the K-forbidttansition.
Last, but not least, a point of current interesgbistudy theK 7 =1* collective
bands that have magnetic characteristic. Taking axtcount the Coriolis
mixing of the isovector collective M1 states witwtlying states will lead to
the non-adiabaticity of electromagnetic propertesoccur. The orbital Ml

low-lying excitation strength is correlated withetlie2 excitation strength to

the first excited2” states in heavy deformed even-even nuclei.
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