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ABSTRACT 

  

 Job Shop Scheduling Problem (JSSP) is one of the well-known hard 

combinatorial scheduling problems and one of the most computationally difficult 

combinatorial optimization problems considered to date. This intractability is one of the 

reasons why the problem has been so widely studied. The problem was initially tackled 

by “exact methods” such as the branch and bound method, which is based on the 

exhaustive enumeration of a restricted region of solutions containing exact optimal 

solutions. Exact methods are theoretically important and have been successfully applied 

to benchmark problems, but sometimes they, in general are very time consuming even 

for moderate-scale problems. Metaheuristic is one of the “approximation methods” that 

is able to find practically acceptable solutions especially for large-scale problems within 

a limited amount of time. Genetic Algorithms (GA) which is based on biological 

evolution is one of the metaheuristics that has been successfully applied to JSSP.  

 

 In this study an indirect representation incorporating a schedule builder that 

performs a simple local search to decode the chromosome into legal schedule called 

active schedule is proposed. The chromosomes are decoded into active schedules thus 

increasing the probability of obtaining near or optimal solution significantly.  

 

Crossover between two parents is traditionally adopted in GA while multi-

parents crossover (more than two parents) technique is still lacking. This research 

proposes extended precedence preservative crossover (EPPX) which uses multi-parents 

for recombination in the GA. This crossover operator attempts to recombine the good 

features in the multi-parents into a single offspring with the hope that the offspring 
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fitness is better than all its parents. EPPX can be suitably modified and implemented 

with, in principal, unlimited number of parents.  

 

 JSSP generates a huge search space. An iterative forward-backward pass which 

reduces search space has been shown to produce significant improvement in reducing 

makespan in other field of scheduling problem. The iterative forward-backward pass is 

applied on the schedules generated to rearrange their operation sequences to seek 

possible improvements in minimizing the total makespan.   

 

 Reduction of the search space does not guarantee the optimal solution will be 

found. Therefore, a neighborhood search is embedded in the structure of GA and it acts 

as intensification mechanism that exploits a potential solution. This mechanism is 

restricted to search the possible solutions in a critical path. Modification on the path by 

using neighborhood search significantly reduces the total length of the makespan.  

    

 The hybrid GA is tested on a set of benchmarks problems selected from 

literatures and compared with other approaches to ensure the sustainability of the 

proposed method in solving JSSP. The new proposed hybrid GA is able to produce 10 

better or comparable solutions when compared to similar GA algorithms that employ 

two-parent crossover. In general this algorithm produces less than 6% deviation when 

compared to the best known solutions, especially in larger problems consisting of 20 

jobs and 15 machines.  
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ABSTRAK 

 

 Kerja kedai penjadualan masalah (JSSP) adalah salah satu masalah penjadualan 

kombinasi yang terkenal dan merupakan salah satu masalah yang paling sukar dalam 

pengoptimuman kombinasi. Ciri kesukaran JSSP adalah salah satu sebab masalah ini 

dikaji secara meluas. Kaedah penyelesaian untuk JSSP pada mulanya menggunakan 

"kaedah tepat" seperti kaedah cabang dan batas yang berdasarkan penghitungan lengkap 

rantau penyelesaian yang terhad yang mengandungi penyelesaian optimum.  Dari segi 

teori, kaedah tepat ini adalah amat penting dan telah berjaya digunakan untuk 

sesetengah masalah "benchmark", tetapi ia memerlukan masa komputasi yang amat 

panjang walaupun untuk penyelasaian masalah yang bersaiz sederhana. Metaheuristik 

adalah salah satu "kaedah penghampiran" yang mampu mendapatkan penyelesaian yang 

boleh diterima (penyelesaian hampir optimum) secara praktikal terutamanya bagi 

masalah yang bersaiz besar dalam jumlah masa yang terhad. Algoritma Genetik (GA) 

yang berdasarkan evolusi biologi adalah salah satu metaheuristik yang telah berjaya 

digunakan untuk JSSP. 

 

Kajian ini mencadangkan penggabungan perwakilan secara tidak langsung 

dengan pembina jadual yang melaksanakan kaedah carian tempatan mudah untuk 

menyahkodkan kromosom ke dalam jadual yang dinamakan jadual aktif.  Kromosom 

yang dinyahkod ke dalam jadual aktif akan meningkatkan kebarangkalian untuk 

mendapatkan penyelesaian yang hampir atau optimum. 

 

 Secara tradisinya, persilangan ini biasanya melibatkan dua ibubapa induk sahaja 

manakala teknik persilangan berbilang induk  (lebih daripada dua induk) masih kurang 

digunakan dalam bidang GA. Kajian ini mencadangkan persilangan  pengekalan  
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keutamaan lanjutan  (EPPX) yang menggunakan induk berbilang untuk penggabungan 

semula dalam GA. Operator persilangan ini akan cuba menggabungkan ciri-ciri yang 

baik daripada berbilang induk untuk menghasilkan individu yang lebih baik. EPPX 

boleh diubahsuai dan dilaksanakan tanpa mengehadkan jumlah induk yang terlibat. 

  

 JSSP menjana ruang carian yang luas. Kaedah lelaran "forward-backward pass" 

yang mengurangkan ruang carian telah terbukti menghasilkan peningkatan yang ketara 

dalam mengurangkan pengurangan masa siap (makespan) dalam bidang masalah 

penjadualan yang lain. Kaedah lelaran forward-backward pass digunakan dalam 

pembinaan jadual dengan menyusun semula urutan operasi untuk mendapatkan 

penambahbaikan serta meminimumkan jumlah masa siap. 

 

 Pengurangan ruang carian tidak menjamin akan menemui penyelesaian optimum. 

Oleh sebab itu, carian kejiranan yang dimasukkan ke dalam struktur GA akan bertindak 

sebagai mekanisme intensifikasi untuk mengeksploitasi penyelesaian yang berpotensi. 

Mekanisme ini dihadkan untuk mencari penyelesaian dalam laluan kritikal. 

Pengubahsuaian ke atas laluan tersebut dengan menggunakan carian kejiranan boleh 

mengurangkan jumlah masa siap tersebut. 

 

 Hibrid GA  diuji ke atas set masalah "benchmark" yang dipilih dari 

kesusasteraan dan dibandingkan dengan pendekatan lain untuk memastikan 

kemampanan dalam kaedah yang dicadangkan dalam menyelesaikan JSSP. Hibrid GA 

baru yang dicadangkan mampu menghasilkan 10 keputusan lebih baik atau setanding 

berbanding dengan algoritma GA seumpamanya yang menggunakan dua ibubapa induk 

sahaja. Secara umum, algoritma ini menghasilkan sisihan kurang daripada 6% 

berbanding dengan penyelesaian yang paling baik, terutamanya menonjol dalam 
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mencari penyelesaian di dalam masalah lebih rumit yang mempunyai 20 kerja dan 15 

mesin.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background of the Study 

 

 In the current competitive economy, manufacturing industries have to shorten 

their production time significantly in order to meet customer demands and requirements, 

and survive in the market. Effective scheduling plays an important role in reducing the 

production processing time. Without incurring additional costs, such as machines or 

labor in the production line, effective scheduling aids in reduction of cost (time), 

increase of resource utilization and output. When a new product has been introduced 

into the production line, rearrangement of the process activities become a major factor 

in influencing the overall performance of the production rate, because the new product 

has its own process sequences. In order to fit them into the production line, the process 

activities that are assigned to the resources need to be relocated. 

 

 Optimization strategy of assigning a set of processing activities for products 

(jobs) into the resources has been studied intensively (Jones, 1999). The difficulty of the 

assignment is increased when the production line is producing variable products. Poor 

scheduling in this kind of production line are not time efficient because of ineffective 

resource allocation. This phenomenon is perennially seen in the manufacturing 

industries, especially in small and medium sized manufacturing companies which lack 

specialized personnel or effective tools for proper production scheduling optimization. 

Such inefficiencies in production scheduling result in an increased production time and 

diminished production rate.  
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Job Shop Scheduling Problem (JSSP) is one of the well-known hard 

combinatorial scheduling problems which is appropriate for addressing the practical 

problems related to production scheduling. It becomes complicated to solve when the 

size of the problems increases. The size of the problems refers to the total number of 

operation tasks and the total number of machines that are involved in the process. This 

condition simulates practical production scheduling when the new products and the 

associated new resources are introduced into the production line increasing the 

complexity of the task arrangement. 

 

 Since JSSP is a practical problem related to production scheduling, it has 

received a lot of attention from researchers. There are many different strategies ranging 

from mathematical programming (exact algorithms) to metaheuristics (especially 

Genetic Algorithm (GA)) to solve the problems (Jones, 1999). Käschel et al. (1999) 

compares the different methods for GA and concludes that the performance of GA is 

only average on many test cases, but GA is still considered as a powerful instrument 

because of its ability to adapt to new problem types. Due to the high capability of GA, a 

lot of studies and research have been conducted to investigate how GA could be 

effectively applied to JSSP (Cheng et al., 1996).   

 

 In recent years, since the first application of GA based algorithms to solve JSSP 

proposed by Davis (1985), GA has attracted the efforts of many researchers to make 

improvements in the algorithm to better solve the scheduling problems. GA does not 

always find the optimal solution; therefore, various GA strategies have been introduced 

to increase the efficiency of GA in finding the optimal or near optimal solutions for 

JSSP. 
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 JSSP generates a huge search space. Reduction of search space has been shown 

to produce significant improvement in reducing makespan in JSSP. Therefore, search 

methods that focus on active schedule are introduced into GA to reduce the search space. 

The methods include GT algorithm (Giffler and Thompson, 1960) and active-decoding 

process (Wang and Zheng, 2001), which are used to generate active schedules.  

Recombination applied on these schedules shows significant improvement in generating 

new solutions. 

 

 In the GA strategies, hybridization of GA with other methods or local search 

methods provided good results in solving problems. Such strategies capitalize on the 

strength of GA incorporating local search options for locating the optimal or near 

optimal solutions. Specifically, the local search procedure of Nowicki and Smutnicki 

(1996) is embedded into GA because of its effectiveness and it has been shown to 

increase the performance of GA (Gonçalves et al., 2005; Zhang et al. 2008). Besides 

this, combination of metaheuristics algorithms with GA has also been proposed and the 

ability of such hybrid methods has also been tested for solving problems. 

 

 Additionally, the structure of the GA can be modified and enhanced to reduce 

problems often encountered in GA optimization. Park et al. (2003) retard the premature 

convergence in GA by using parallelization of GA (PGA) to find the near optimal 

solutions. Watanabe et al. (2005) proposed a GA with search area adaption and a 

modified crossover operator for adapting to the structure of the solutions space. Ripon et 

al. (2011) embedded heuristic method into crossover functions to reduce the tail 

redundancy of chromosomes when implementing crossover operations. 
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 Throughout the literature survey it is observed that the GA’s abilities are 

increased by modifying the structure of the GA. All these researches show that GA is 

not restricted to a single procedure and performs well when its structure is modified or 

hybridization is implemented with local search to increase the accuracy of identifying 

solutions. Such inherent flexibility in its structure has encouraged researchers to use and 

test GA in combination with different strategies. The framework of GA also allows for 

some modifications to be made accordingly to suit the problem at hand, including: 

selection of several parents (more than two parents) for the recombination operation, 

also known aptly as multi-parents crossover.  

 

 In solving combinatorial scheduling problems, to the best of our knowledge, 

only limited number of multi-parents crossover has been proposed and none is in JSSP. 

Therefore, the basic ideas and behaviors of the multi-parents recombination approach 

need to be understood before the method is applied in GA.  

 

 The application of multi-parents recombination can be found in different 

research areas. Mühlenbein and Voigt (1995) proposed Gene Pool Recombination (GPR) 

in solving discrete domain problems. Eiben and Kemenade (1997) introduced the 

diagonal crossover as the generalization of uniform crossover and one-point crossover 

in GA for numerical optimization problems. Wu et al. (2009) proposed multi-parents 

orthogonal recombination to determine the identity of an unknown image contour. 

Tsutsui and Jain (1998) proposed multi-cut and seed crossover for binary coded 

representation and Tsutsui et al. (1999) proposed simplex crossover for real coded GA.  

The multi-parents crossover operators have shown the good search ability of the 

operator but they are very problem dependent. 
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 The above literatures indicated the ascendency of multi-parents crossover over 

two parents’ crossover. Although multi-parents crossover has been used in different 

fields, to the best of our knowledge, only limited numbers are applied to combinatorial 

scheduling problems. In particular, Eiben et al. (1994) proposed multi-parents for the 

adjacency based crossover and Ting et al. (2010) developed Multi-Parents Extension of 

Partially Mapped Crossover (MPPMX) for the Travelling Salesman Problems (TSP). 

Although the experimental results point out that adjacency based crossover of multi-

parents has no tangible benefit, MPPMX show significant improvement in the use of 

multi-parents in crossover. In other words, one would expect that by biasing the 

recombination operator the performance of the GA would improve.  

 

 Based on the literature reviews about multi-parents recombination approach it is 

found that some of the crossover operators are extended from the two parents’ 

recombination method. They are modified to make it possible to adopt multi-parents 

into the operators. This means that the representation that is used for the two parents’ 

recombination can also be reused in the multi-parents recombination technique to solve 

the problems, instead of being limited to using two parents only. As a result, some of 

these operators perform well compared to the two parents’ recombination with the same 

recombination method. 

 

 In this study, we propose Extended Precedence Preservative Crossover (EPPX) 

as a multi-parents recombination method. EPPX is built based on the precedence 

preservative crossover (PPX) approach proposed by Bierwirth et al. (1996). PPX is used 

as our recombination references because of its capability to preserve the phenotypical 

properties of the schedules. Therefore, EPPX as a crossover operator will retain this 

advantage in the GA. EPPX is used to solve JSSP in conjunction with local search. 
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Furthermore, the large solution search space problem encountered by the GA is reduced 

by applying an iterative scheduling method. The simulations’ results show the 

sustainability of this GA in solving JSSP.  

 

 

1.2 Problem Statement 

 

 Previous studies show that two parents’ crossover is commonly used in solving 

JSSP and there are rare applications of multi-parents crossover in GA optimizations. In 

this study, a new approach of multi-parents crossover EPPX is adapted in GA.  

 

 GA often encounters problems such as large search space and premature 

convergence. In the large search space, there always exist poor quality solutions. 

Therefore, we introduce the iterative forward-backward scheduling which had been 

used by Lova et al. (2000) in the multi-project scheduling problem to reduce the search 

space. 

 

 Neighborhood search embedded in GA has been proven to help improve the 

solutions of GA in solving JSSP. Hence, neighborhood search is applied in our 

algorithm to handle the problem of premature convergence and to escape from the local 

optima in order to find better solutions. Neighborhood searches for better solutions 

through the restricted movement of the jobs on the critical paths in the schedule.  

 

 These methods are tested on a set of benchmarks for JSSP. The results are 

compared with other methods to measure the capabilities of the proposed hybrid GA. 
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1.3 Objectives of the Study 

 

The objectives of this research are: 

 

 To propose multi-parents crossover in GA as crossover operator. 

 Suitable parameters for the multi-parents crossover are tested. 

 Diversification of the recombination methods by introducing multi-

parents recombination instead of two parents. 

 

 To hybridize GA with local search to increase the efficiency of GA in searching 

for the optimal solutions. The methods include: 

 Scheduling method which is employed from other areas and applied to 

GA to increase its efficiency. 

 Neighborhood search procedure on critical path in schedule that acts as 

an exploitation mechanism in the search for the best solutions. 

 

 To evaluate the capability of both algorithms in reducing the total makespan 

time of the jobs using job shop scheduling problems benchmarks as references. 

Results are compared with other JSSP strategies as well. 

 

 

1.4 Outline of the Dissertation 

 

 This dissertation is devoted to JSSP based on GA using multi-parents crossover 

as recombination operator and the hybridization with local search and scheduling 

methods to increase the performance of the GA. 
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 In Chapter 2, the JSSP is introduced. Notation and the precedence constraints of 

JSSP is defined by formulating the objective functions. The main focus of JSSP is to 

find the minimum makespan for the scheduling (𝐶𝑚𝑎𝑥 ). The different methods for 

feasible scheduling are explained. The local searches embedded in the GA are 

introduced. This chapter also contains the reviews of related literature for different 

multi-parents strategy and its capability in solving a manifold of problems. 

Hybridization methods that have already been applied to JSSP are explained with 

special focus on the effect of hybridization of GA in solving such problems. The 

benchmarks that are commonly used are introduced and their levels of difficulties are 

described in great details. 

 

 In Chapter 3, the methodology of the GA is explained. The framework of the 

GA, which is built on the hybridization approach with other methods, is described in 

this chapter. EPPX is proposed and the algorithm is explained in details.  An iterative 

forward-backward scheduling adapted from other scheduling problems is applied to 

reduce large search space and the neighborhood search on critical path acts as 

exploitation mechanism to reduce the makespan.  

 

 In Chapter 4, suitable parameters for the crossover and mutation rates are 

examined before the algorithm is adapted to solve problems. The simulations are 

performed on a set of benchmarks from the literatures and the results are compared to 

ensure the sustainability of multi-parents recombination in solving the JSSP. The 

outcome of the comparison is discussed and analyzed in this chapter.  

 

 In Chapter 5, the research is summarized and concluded. Further works and 

directions are suggested for future studies. 
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CHAPTER 2  

THE JOB SHOP SCHEDULING PROBLEM 

 

2.1 Introduction 

 

 In this chapter, the background of the job shop scheduling problems is 

introduced. Job Shop Scheduling Problem is represented as JSSP and the terminology of 

manufacturing such as job, operation, machine, processing time, and task are used to 

express the conditions and requirements for the problem. 

  

 This chapter is divided into several sections. In Section 2.2, the details of JSSP 

are explained, including the scheduling methods for JSSP. Section 2.3 discusses the 

different metaheuristics and their methodologies that are used to solve the JSSP, 

especially in the last part of this section; the focus is dedicated to GA which is the 

foundation of this study.  Section 2.4 introduces the multi-parents recombination 

operator with different strategies and Section 2.5 explains the concept of hybrid GA for 

JSSP. The testing of an algorithm’s effectiveness is usually done on a set of benchmarks, 

which are described in Section 2.6. Finally, Section 2.7 concludes with discussions of 

the propose GA for JSSP. 

 

 

2.2 Descriptions of the Job Shop Scheduling Problem 

 

 In production, scheduling may be described as sequencing in order to arrange 

the activities into a schedule. Kumar and Suresh (2009) classified the production 

systems which include the job shop problem in scheduling and controlling production 
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activities. Entities which pass through the shop are called jobs (products) and the work 

conducted on them on a machine (resource) is called an operation (task).  Where it is 

applicable, the required technological ordering of the operations on each job is called a 

routing. To encompass the scheduling theory, Graves (1981) classifies the production 

scheduling problems by using the following dimensions:   

 

1. Requirement generation 

A manufacturing processing can be classified into an open shop or a closed shop. In an 

open shop, no inventory is stocked and the production orders are by customer requests.  

In a closed shop, a customer’s order is retrieved from the current inventory. The open 

shop scheduling problem is also called job shop scheduling problem. 

 

2. Processing complexity 

It refers to the number of processing steps and resources that are associated with the 

production process. The types of this dimension are grouped as follows: 

 

 a. One stage, one processor. 

 b. One stage, multiple processors. 

 c. Multistage, flow shop. 

 d. Multistage, job shop. 

 

One stage in a processor or multiple processors refers to a job that requires one 

processing step to be done in a machine or multiple machines, respectively. Multistage 

for flow shop indicates that several operations in the job that are required to be 

processed by distinct machines and there is a common route for all jobs. Multistage for 
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job shop refers to the alternative routes and resources which can be chosen and there is 

no restriction on the processing steps.  

 

3. Scheduling criteria 

Scheduling criteria is set by referring to the objectives in the schedule that need to be 

met. Mellor (1966) listed 27 objectives that need to be met in the scheduling criteria. In 

JSSP, the main objectives can be summarized as follows: 

 

a. Minimum makespan problem 

The first operation in the production needs to be started and the last operation needs to 

be finished as soon as possible. Therefore, the sum of completion times should be 

minimized. It can be done by utilizing the usage of the resources (reduce the idle time of 

the machine). 

 

b. Due date problem  

Efforts need to be taken in reducing the total delay time and the penalty due to the 

tardiness by rescheduling. 

 

c. Multi objective scheduling problem 

Consideration focuses several objectives and compromises the alternative ways to 

achieve the objectives. 

 

2.2.1 Problem Definition 

 JSSP can be defined as a set of 𝑛 jobs which needs to be processed on a set of 𝑚 

machines. A job consists of a set of operations 𝐽, where 𝑂𝑖𝑗 , represents the 𝑗𝑡(1 ≤ 𝑗 ≤

𝐽)  operation of the 𝑖𝑡(1 ≤ 𝑖 ≤ 𝑛)  job. The technological requirements for each 
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operation processing time is denoted as 𝑝𝑖𝑗  and a set of machines is denoted by 𝑀𝑘(1 ≤

𝑘 ≤ 𝑚). 

 

Precedence constraint of the JSSP is defined as (Cheng et al., 1996): 

 Operation 𝑗𝑡  must finish before operation 𝑗𝑡 + 1 in the job.  

 A job can visit a machine once and only once.  

 Only one operation can be processed in the machine at a time for one time. 

 The delay time for the job transfer machine will be neglected and operation 

allocation for machine will be predefined.  

 Preemption of operations is not allowed.  

 There are no precedence constraints among the operations of different jobs. 

 Neither release times nor due dates are specified. 

 

2.2.2 Objectives Function  

 The main objective of JSSP is to find the minimum makespan for the scheduling. 

The finish time of job 𝑖 and operation processing time are represented by 𝐹𝑖𝐽  and 𝑝𝑖𝑗  

repectively.  The completion of the whole schedule or the makespan is also the 

maximum finish time in the set of the jobs 𝑖. Therefore, the makespan is denoted by 

𝐶𝑚𝑎𝑥  is expressed as follow:        

   𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝐹𝑖𝐽           (1.1) 

Let 𝐺(𝑘) be the set of operations being processed in machine 𝑘, and let  

𝑋𝑂𝑖𝑗 ,𝑘 =  
1   if 𝑂𝑖𝑗  has been assigned to machine 𝑘

0   otherwise                                                    
  

The conceptual model of the JSSP can be expressed as follows (Gonçalves et al., 2005): 

 

  Minimize   𝐹𝑖𝐽             (1.2) 
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  𝐹𝑖𝑗 ≤ 𝐹𝑖𝑗 +1 − 𝑝𝑖𝑗 +1,        𝑗 = 1,2, …𝐽, for all 𝑖      (1.3) 

   𝑋𝑂𝑖𝑗 ,𝑘 ≤ 1,𝑂𝑖𝑗 𝜖𝐺 𝑘       for all 𝑘        (1.4) 

 

The objective function represented by Eq. (1.2) minimizes the maximum finish time in 

the set of the jobs 𝑖, therefore it minimizes the makespan. Eq. (1.3) satisfies precedence 

relationships between operations and Eq. (1.4) imposes that an operation can only be 

assigned to a machine at a time. The problem is to determine a schedule that minimizes 

the makespan, that is, to minimize the time required to complete all jobs. 

An example of 3 jobs and their sequences are given in Table 2.1. 

 

Table 2.1: Example of 3 Job and 3 Machine Problem 

  Job 
Operation routing 

1 2 3 

Processing time 

1 3 3 2 

2 1 5 3 

3 3 2 3 

     

Machine sequence 

1 M1 M2 M3 

2 M1      M3 M2 

3 M2       M1 M3 

 

The problem can also be represented in the processing time matrix (𝑝) (Figure 2.1) and 

machine sequences matrix (𝑀) (Figure 2.2) such as below: 

 

𝑝 =  
3 3 2
1 5 3
3 2 3

                                      𝑀 =  
1 2 3
1 3 2
2 1 3

  

 Figure 2.1: Processing Time  Figure 2.2: Machine Sequence 

 

The rows of matrices represent the jobs and the columns represent the operations 

routing. 
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2.2.3 Scheduling 

(a) Gantt Chart 

 In the project scheduling problem, Gantt chart is commonly used to illustrate the 

schedule of the process. It makes describing the JSSP solution more simple and the 

makespan of the schedule can be easily visualized. Researchers use the Gantt chart to 

illustrate their methods because the Gantt chart is able to illustrate the arrangement of 

the procedures of operation in the schedule (Porter, 1968). Gantt chart consist of blocks 

which are constituted by the operation 𝑂𝑖𝑗 . The Gantt chart’s vertical axis shows a set of 

machines that are involved in the processing and the horizontal axis shows the 

accumulation of the processing time for the operations. In Figure 2.3, the Gantt chart 

shows that the minimum makespan can be found by referring to the maximum finish 

time (𝐶𝑚𝑎𝑥 = 17) in the last operation in the chart, 𝑚𝑎𝑥  𝐹𝑖𝐽  . 

 

 

Figure 2.3: Gantt Chart 

 

The sequence of the operation in the machine is presented in Figure 2.4. The matrix 

rows represent the machines.  

 

𝑆 =  

𝑂11 𝑂21 𝑂32

𝑂31 𝑂23 𝑂12

𝑂22 𝑂33 𝑂13

  

Figure 2.4: Operation Sequence 

 

In addition disjunctive graph can also be used to calculate the makespan time for 

the JSSP.  

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 22 O 33

0 Time14 16 182 4 6 8 10 12

O 32

O 13
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(b) Disjunctive Graph 

 A disjunctive graph (Balas, 1969) is a graphical structure that can be viewed as 

one kind of job pair relation-based representation. In JSSP, these are frequently used in 

problem solving methods to illustrate the relationship between the operations and the 

machines. Yamada and Nakano (1997) described that a disjunctive graph can be written 

as 𝐺 =  (𝑁, 𝐴, 𝐸)  where 𝑁  denotes a set of operations with additional two tasks: a 

source and a sink. 𝐴 represents the connection arc of the consecutive operations in the 

same job, and 𝐸 contains the arcs that connects the operations which are processes in 

the same machine. The length of the makespan can be calculated by finding the longest 

path from the source to the sink. This can be done by summing all the consecutive arcs 

which are connected continuously in the graph. Figure 2.5 illustrates a disjunctive graph 

for the example given in Table 2.1. 

 

 

Figure 2.5: Disjunctive Graph 
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2.2.4 Critical Path  

 The critical path is the longest path in the schedule that the operation process 

passes through with respect to the individual operations’ interdependencies (Gen et al., 

2008). It is the shortest time in the schedule that starts from first operation until the last 

operation to complete the schedule. Any delay of any operation on the critical path will 

delay the makespan. The critical path can be identified in a schedule by determining the 

parameter of each operation (Kelly and Walker, 1959): 

 

Earliest start time (ES): The earliest time at which the operation can start given that its 

precedent activities must be completed first. 

Earliest completion time (EF): The sum of the earliest start time for the activity and the 

time required to complete the operation. 

Latest start time (LS): The latest time at which the operation can be completed without 

delaying the project. 

Latest completion time (LF): The latest finish time minus the time required to complete 

the operation. 

 

 The slack time for an operation is the difference between the ES and LS or EF 

and LF. An operation which is in the critical path is called a critical operation and can 

be identified if it contains zero slack time, i.e. 𝐸𝑆 = 𝐿𝑆 and 𝐸𝐹 = 𝐿𝐹. The critical path 

in the Gantt chart is illustrated in Figure 2.6.  

 

 

Figure 2.6: Critical Path in Gantt Chart 

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 33

0 Time

Non critical operations

Critical operations in critical path 

2 4 6 8 10 12 14 16 18

O 32

O 13O 22
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 Figure 2.7 presents an example of non critical operations. Note that without 

changing the operation sequence in the machines, the operations 𝑂31, 𝑂32, and 𝑂33 can 

start latest without delaying the schedule time 𝐸𝑆 ≠ 𝐿𝑆 and 𝐸𝐹 ≠ 𝐿𝐹, therefore they are 

not critical operations. 

 

 

Figure 2.7: Non Critical Operations  

 

 The critical path also can be represented in the disjunctive graph (Figure 2.8). 

The longest path in the network is defined as that path which is connected consecutively 

forms a critical path. 

 

 

Figure 2.8: Critical Path in Disjunctive Graph 
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2.2.5 Type of Schedules 

 In the JSSP, the total solutions for all possible schedules are  𝑛! 𝑚  for 𝑛 jobs 

and 𝑚  machines (Cai et al., 2011). Clearly, it is hard to find all the solutions and 

compare them with each other. Even for the easy problems, with 6 jobs and 6 machines 

(FT06) (Jain and Meeran, 1999), the total solutions consist of about 1.36x1017  

schedules. Even in this case it is unreasonable to calculate all possible solutions. The 

total number of solutions comprises of feasible and infeasible schedules.  

 

 Feasible solutions consist of three types of schedules: semi-active, active and 

non-delay schedule (Sprecher et al., 1995). These distinctions of schedules narrow down 

the finding of optimal solutions that is located in the search space. Besides that, Baker 

(1974) defined that an operation can be left shifted without delaying any other operation 

in the schedule as a global left shift. This is used to differentiate the types of schedules. 

 

The details of the types of schedules are described below: 

 

Semi-active schedule: A feasible non-preemptive schedule is called active if it is not 

possible to construct another schedule by changing the order of processing on the 

machines and having at least one job/operation finishing earlier and no job/operation 

finishing later. Global left shift is possible in this type of schedule.  

 

Active schedule: A feasible non-preemptive schedule is called semi-active if no 

job/operation can be finishing earlier without changing the order of processing on any 

one of the machines and global left shift is not possible. Active schedules the sub set of 

the semi-active schedules.  

 



19 
 

Non- delay schedule: A feasible schedule is called a non-delay schedule if no machine is 

kept idle while a job/an operation is waiting for processing. This schedule is also an 

active and semi-active schedule.  

 

 Optimal solution of the scheduling always lies in the active schedule (Gen and 

Cheng, 1997). Therefore, we only need to find the optimal solution in the set of active 

schedules. Figure 2.9 illustrates the relationship of the schedules. 

 

 

Figure 2.9: Relationship of Semi-Active, Active, and Non-Delay Schedules 

 

2.2.6 Active Schedule Generation 

2.2.6.1 Giffler and Thompson Algorithm (GT Algorithm) 

 In JSSP, the scheduling algorithm that has been proposed by Giffler and 

Thompson (1960) (GT algorithm) is the famous example representing the generation of 

active schedule. GT algorithm has been used widely by other researchers to generate 

active schedules that fit their algorithm.  Bierwirth and Mattfeld (1999) combined GT 

algorithm and non-delay schedule that they had defined to find the performance in 

Semi-active 

Active 

Non-delay 

Optimal 

Feasible 
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generating the production scheduling solution. Yamada and Nakano (1997) used the GT 

algorithm and modified it into the form that was compatible with their algorithm. As a 

result, it shows significant improvement in solving tougher larger sized JSSP.  

 

Below are the steps to obtain the active schedule by using GT algorithm:  

Step 1: Let 𝐶 be the a set of tasks that are not schedule yet  

Step 2: Let 𝑡 be the earliest completion time of the operation which is calculated for all 

the operations 

Step 3: Let 𝐺 denote the set of all operations that are processed in the machine 𝑚 with 

the 𝑡𝑖𝑚𝑒 < 𝑡 

Step 4: Select an operation from 𝐺 and insert it into the schedule 

Step 5: Update the sets 𝐶 and 𝐺 

Step 6: Repeat the Step 1 – Step 5 until all operation is scheduled. 

 

The schedule that is generated using this algorithm always produces the active schedule.  

 

2.2.6.2 Active-Decoding Process 

 An active schedule can be obtained by shifting the operations to the left of a 

semi-active schedule without delaying other jobs, such reassigning, is called a 

permissible left shift, and a schedule with no more permissible left shifts is called an 

active schedule. This condition enables one to convert the semi-active schedule to an 

active schedule by using an active-decoding process that was introduced by Wang and 

Zheng (2001). Each process that is assigned is always shifted to the left until time 

equals to zero or inserted into empty time interval between operations to find the earliest 

completion time. The process is repeated until all operations are scheduled. A schedule 

generated by this procedure can be guaranteed to be an active schedule (Baker, 1974). 
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Figure 2.10: Active-Decoding Process in Gantt Chart 

 

Figure 2.10 illustrates the transformation of semi-active schedule into active schedule. 

The operations are shifted to the left in the semi-active schedule and this may decrease 

the makespan time.  

 

 

2.3 Metaheuristics 

 

 Metaheuristics are designed to tackle complex optimization problems where 

other optimization methods have failed to be either effective or efficient (Ólafsson, 

2006) in solving problems. The term ―meta heuristic‖ was first used by Glover (1986). 

Osman and  Laporte (1996) defined that metaheuristic is an iterative generation process 

which guides subordinate heuristics by combining different concepts and learning 

strategies that efficiently lead to near-optimal solutions. Blum and Roli (2003) 

summarize that metaheuristics are high level strategies for exploring search space by 

using different methods. The added search flexibility makes the algorithm attempt to 

find all the possible best solutions in the search space of an optimization problem. The 

advantage of metaheuristics is that it usually finds solutions quickly and the 

disadvantage is that the quality of the solution is generally unknown (Taha, 2011).  

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 22 O 33

0 Time

M1 O 11 O 21

M2 O 31 O 23 O 12
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0 Time

(b) Active Schedule after Active-Decoding Process
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 The common procedure of the metaheuristic is the application of an iterative 

procedure that is continuously operated and terminates when certain criterion is met. 

Examples of the terminations are (Taha, 2011): 

 

 The search iteration number reach is a specified number. 

 The frequently number of the best solution found that exceed a specified number. 

 The optimal solution is found or the current best quality solution is acceptable. 

 

 One of the commonly used iterative search procedures in metaheuristics is called 

local search. Local search does not have consistent definition (Zäpfel et al., 2010). It is 

dependent on how the algorithm searches the result locally in the current solution. When 

a solution obtained is slightly different from the original solution, it is regarded as a 

neighbor. If it receives a set of neighboring solutions, it is called ―neighborhood‖. In the 

iteration, the current solution tries to move to the best solutions within the neighborhood 

in hope of getting the optimal solution with the hill climbing. When there are no 

improvements present in the neighborhood, local search is stuck at local optimum. Then 

the algorithm has to restart (Lourenço et al., 2003). 

   

 In the next section, the metaheuristics that is applied on the JSSP is introduced. 

The three prominent metaheuristics introduced are tabu search, simulated annealing, and 

emphasizing on genetic algorithms which is the focus of this study. 

 

 

2.3.1 Simulated Annealing (SA) 

 Kirkpatrick et al. (1983) and Cemy (1985) independently introduced the concept 

of SA in the combinatorial problem. This concept is based on the thermal process for 
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obtaining low energy of a solid in a heat bath which increases the heat until the 

maximum value is reached and then the temperature is slowly decreased to allow the 

particles to rearrange their own positions. 

  

 The main structure of the SA is almost the same as the local search but the 

difference is that SA does not specify the neighborhood but rather specifies an approach 

to accepting or rejecting solutions that allows the method to escape local optima 

(Zäpfelet al., 2010). SA from this point of view is using temperature control mechanism 

which affects the process of solution acceptance as illustrated in Figure 2.11. The 

acceptance criterion of the solution in the SA may be proposed based on the problem 

requirements, for example, Van Laarhoven et al. (1992) proposed the acceptance 

criterion based on statistical properties of the cost for SA in JSSP. 

 

Figure 2.11: Simulated Annealing (SA) 

  

 SA has been applied to JSSP earlier, e.g., Van Laarhoven et al. (1992) had been 

applied SA to JSSP and performed a complexity analysis of their heuristics which are 

designed to minimize the makespan. Steinhöfel et al. (1999) analyze a neighborhood 

function which involves a non-uniform generation probability by using SA to search the 

results for JSSP.  
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2.3.2 Tabu Search (TS)  

 TS which was originally developed by Glover (1986), has been widely used in 

solving combinatorial problems. TS is a general framework for iterative local search 

strategy for problem optimization. TS, which extended from local search, uses the 

concept of memory to control the algorithm execution via a tabu list for the forbidden. 

Glover (1986) introduced the short-term memory to prevent the recent moves and 

longer-term frequency memory to reinforce attractive components.When TS encounters 

a local optimum, it will allow moves from the previous tabu list (see Algorithm 2.1). 

 

Algorithm 2.1: Simple Tabu search 

 

 

 Tabu Search Algorithm with Back Jump Tracking (TSAB) proposed by Nowicki 

and Smutnicki (1996) is considered as one of the most restricted search in the TS. In the 

TSAB, the search focuses on the critical path. The critical path is divided into blocks 

which are called critical blocks that contain a maximum adjacent critical operation 

which require the same machine.  

 

Through the finding, a good solution may be found by swapping the operations 

at the border of the block instead of swapping the operations inside the block. Given 𝑏 

blocks, if 1 < 𝑔 < 𝑏, then swap only the first two and the last two block operations. 

Initialize solution s 
 
Initialize tabu list T 
 
while termination criterion = false do 
 
Determine a set of move, neighborhood N of current solution s; 
Best non-tabu solution is chosen s0 from N; 
Replace s by s0; 
Update tabu list T and best found solution; 
 
End while 
 
Best solution is found 
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Otherwise, if 𝑔 = 1 (𝑏), swap only the last (first) two block operations (see Figure 2.12). 

In the case where the first and/or the last block contain only two operations, these 

operations are swapped. If a block contains only one operation then no swap is made.  

 

 

Figure 2.12: Swapping in the Critical Blocks 

 

 The possible swap is predetermine and the best swap that provides the best 

solution is used for the next solution and swapped operations is updated in the tabu list. 

When the tabu list reaches a certain memory, the forbidden moves are eliminated from 

the list and reused for the next search. There is an aspiration criterion in which if the 

swap is able to reduce to the makespan, it is accepted and cancelled from the tabu list 

(Zäpfel et al., 2010). 

 

 Dell'Amico et al. (1993) applies the tabu search technique to the JSSP and show 

that implementation of this method dominates both a previous approach with TS and the 

other heuristics based on iterative improvements. Recent results that use TS algorithm 

embedded within their algorithms includes Gonçalves et al., 2005 and Cai et al. (2011) 

in solving JSSP. In particular Zhang et al., (2008) propose a combination of SA and TS 

and their paper produces some of the best known results to date.  

 

 

First block Intermediate block Last block 

Border of the block 
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2.3.3 Genetic Algorithm (GA)   

 In recent years, since the first use of GA based algorithm to solve the JSSP 

proposed by Davis (1985), GA has attracted many researchers to improve efficiency of 

the scheduling method and frequently used to solve scheduling problem. Various GA 

strategies are introduced to increase the efficiency of GA to find the optimal or near 

optimal solutions for JSSP (Cheng et al., 1996; Cheng et al. 1999).  

 

 GA is a heuristic based search which mimics the evolutionary processes in 

biological systems. Evolutionary processes such as reproduction, selection, crossover, 

and mutation, which are inspired by natural evolution, are used to generate solutions for 

optimization problems (see Algorithm 2.2). Those techniques are translated into the 

form of computer simulations. GA begins with a population, which represents a set of 

potential solutions in the search space. It then attempts to combine the good features in 

each individual in the population using random search information exchange in order to 

construct individuals who are better suited than those in the previous generation(s). 

Through the process of evolution, individuals who are poor or unfit tend to be replaced 

by fitter individuals to generate a new and better population. In this way, GA usually 

converges to the estimation for a desired optimal solution. 

 

Algorithm 2.2: A Standard Genetic Algorithm 

 

 
Initialize population 
 
Evaluation 
 
while termination criterion=false do 
 
 Selection 
 Crossover 
 Mutation 
 Evaluation 
 Reinsertion 
 
End while 
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2.3.3.1 Representation 

 GA is an iterative and stochastic process that operates on a set of individuals 

(population). Each individual represents a potential solution to the problem. This 

solution is obtained by encoding and decoding an individual called chromosome (Taha, 

2011). The illegality of the chromosomes refers to the phenomenon of whether a 

particular chromosome represents a solution or not (Cheng et al., 1996). An illegal 

chromosome needs to go through the legalization process to generate a feasible solution. 

 

 In the survey by Cheng et al. (1996), chromosome representation in JSSP was 

divided into two approaches: direct and indirect. The difference between direct and 

indirect approach depends on whether a solution is directly encoded into the 

chromosome. As an example: direct approach encoded a schedule directly into a binary 

string to evolve and find a better solution. Indirect approach requires a schedule builder 

to encode integer representations for the jobs into the chromosome. 

 

 Abdelmaguid (2010) classified the GA into two main categories, model based 

and algorithm based. The model based category enables chromosomes to be directly 

interpreted into feasible or infeasible solution. Algorithm based is used to store the 

information in order to generate feasible solution. The author points out that the 

different representations of JSSP affects the quality of the solution found and the 

calculation time.  

 

 Therefore, simplification of the representation is important in the steps related to 

encoding and decoding of a chromosome. One of the representations proposed by Gen 

et al. (1994) called operation based representation by using permutation with repetition 

integers that are able to encode a schedule according to the sequences into chromosome 
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without violating the technological constraint. Figure 2.13 presents examples of binary 

and integer with repetition to encode a chromosome. 

Figure 2.13: Examples of Representations for 3 Job and 3 Machine Problem 

 

 

2.3.3.2 Initialize Population 

 A genetic algorithm work starts by building a population which contains a 

number of individuals; a set of possible solutions for the optimization problem.  Each 

individual is called a chromosome. These individuals are evaluated by assigning value 

or fitness function to measure their quality in achieving the problem’s solutions.  

Individuals are selected based on the fitness function to breed a new generation through 

the recombination process.  

 

The two important aspects of population in GA are: 

1) Initialization of population generation 

2) Population size 

 

Initialization of population generation 

 The population is normally generated randomly to achieve a set of solutions for 

breeding. However, Park et al. (2003) mentioned from their research that the initial 

solution plays a critical role in determining the quality of the final solution. Therefore, 

they generated the population using GT algorithm to acquire a set of active schedule 

chromosomes. 

 

Chromosome= [1  1  1  0  0  1 0  1  0] 

Chromosome= [1  2  3  2  1  3 3  1  2] 

a)  Binary representation 

b) Operation based representation 
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Population size 

 Goldberg et al. (1991) had shown that with a population size which is larger, it is 

easy to explore the search space. The disadvantages of the larger population size are that 

it demands more computational cost, memory, and time; so normally 100 individuals is 

a common population size selected in solving the GA problem (Sivanandam and Deepa, 

2008).  

 

 Some problems have very large solution spaces which contain many variables 

and large ranges of permissible values for solutions. Therefore, a fixed population is 

probably not enough because it simply does not represent a large enough space sample 

for the solution space. The number of individuals can be changed due to machine 

capabilities in terms of time and memory, and the result qualities can be compared. For 

example, the number of individuals in the population generated by Gonçalves et al. 

(2005) is calculated based on twice the number of total operations in the different 

structures of JSSP.  

 

2.3.3.3 Termination Criterion 

 Termination is the criterion by which the genetic algorithm decides whether to 

continue searching or stop the search. Each of the enabled termination criterion is 

checked after each generation to see if it is time to stop. The termination criteria in the 

JSSP are based on the maximum number of generations or the stage when the optimal 

solution is found. 

 

2.3.3.4 Selection 

 Selection is a process of choosing the parents for recombination operations. It is 

a method to pick the parents according the parents’ fitness. The fitness of an individual 
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is based on the evaluation of the objective function of the problem. In the JSSP, each 

job has a different finish time due to different schedules of operation time. 𝐶𝑚𝑎𝑥  will be 

the maximum time for completion in the scheduling (please refer to Eq. (1.1)). The 

objective of the evaluation is to determine the ranking of the chromosome, which is 

used in the process of selection. Each chromosome competes with the others and the 

selected chromosome will survive to the next generation based on the objective function 

(fitness value). A chromosome with greater fitness means that it has a greater 

probability for survival. The highest ranking chromosome in a population is considered 

as the best solution. It is noted that the lower makespan is given the highest ranking in 

JSSP. This selection pressure of GA forces the population to improve its fitness over 

continuing generations (Sivanandam and Deepa, 2008). 

 

The common use of the selection methods in GA are:  

a) Roulette wheel selection 

b) Stochastic universal sampling (Baker, 1987) 

c) Tournament selection (Miller and Goldberg, 1996) 

 

a) Roulette Wheel Selection 

 Roulette wheel selection selects the parents according to their proportional 

fitness (Zäpfel et al., 2010).The fitness of an individual is represented as a proportionate 

slice of the roulette wheel. The wheel is then spun and the slice underneath the wheel, 

when it stops, determines which individual becomes a parent. With high fitness value, 

there is a higher chance that the particular individual is selected (Eq. (2.1)). 

     𝑝𝑖 =
𝑓𝑖

 𝑓𝑖
     (2.1) 

𝑝𝑖  = probability that individual 𝑖 will be selected, 

𝑓𝑖  = fitness of the individual 𝑖, and 

𝑓𝑖  = sum of all the fitness values of the individuals within the population. 
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b) Stochastic Universal Sampling (SUS)  

 This fitness based proportionate selection, which was proposed by Baker (1987), 

selects and classifies the chromosomes into a recombination process with minimum 

spread and zero bias. Instead of the single selection pointer employed in roulette wheel 

methods, SUS uses N equally spaced pins on the wheel, where N is the number of 

selections required. The population is shuffled randomly and a single random number in 

the range   𝑓𝑖 𝑁   is generated. The difference between the roulette wheel selection 

and stochastic universal sampling can be illustrated in Figure 2.14. 

 
 

Figure 2.14: The Fitness Proportional Selection 

 

c) Tournament Selection  

 Tournament selection is one of the important selection mechanisms for GA 

(Miller and Goldberg, 1996). In this selection scheme, a small number of individuals 

from the population are chosen randomly. These individuals then compete with each 

other and the winner of the competition is then inserted back into the mating pool. This 

tournament process is repeated until the mating pool is filled to generate offspring. The 

fitness difference provides the selection pressure, which drives GA to improve the 

fitness of the succeeding genes. Selection pressure is easily adjusted by changing the 

a) Roulette Wheel Selection b) Stochastic Universal Sampling 
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tournament size. If the tournament size is larger, weak individuals have a smaller 

chance to be selected. 

 

 Among these selection techniques, stochastic universal sampling and tournament 

selection are often used in practice because both selections have less stochastic noise, or 

are fast, easy to implement, and have a constant selection pressure (Blickle and Thiele, 

1996). 

 

2.3.3.5 Crossover  

 Crossover is a solution combination method that combines the selected solutions 

to yield a new solution (Zäpfelet al., 2010). The crossover operator is applied on the 

selected parents for mating purposes to create a better offspring. The offspring that is 

generated by crossover may exist in one or more combined solutions.   

 

The processes of crossover are done by three steps (Sivanandam and Deepa, 2008): 

Step 1: The reproduction operator selects at random some parents for the mating. 

Step 2: Cross point(s) along the chromosome is determined 

Step 3: The position values are swapped between the parents following the cross point(s) 

 

 Different crossover strategies have been introduced in the literatures for JSSP. 

Yamada and Nakano (1992) proposed modified GT algorithm as a crossover operator. 

The crossover selected active schedule chromosome as parents to generate the new 

offspring that also is in the active schedule. Such recombination of active schedules 

produces good results. 
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 Partial-mapped crossover (PMX) was proposed by Goldberg and Lingle (1985) 

is a variation of the two-cut-point crossover. This kind of crossover may generate an 

illegal offspring. By incorporating the algorithm with a special repairing procedure, 

possible illegitimacy can be solved. PMX can be divided into four major steps to 

generate new children. They consist of: selection of substring, exchange of substring, 

mapping of substring and legalization of the offspring. 

 

 Bierwirth (1995) proposed the crossover method based on the permutation 

crossover operator to preserve the phenotypical properties in the schedules. The 

chromosome represented in the form of permutation with repetition that is used for 

recombination. Figure 2.15 is an example of the precedence preservative crossover 

(PPX) proposed by Bierwirth et al. (1996). The vector is generated randomly with the 

element set 1,2 . The vector will define genes that are drawn from parent 1 or parent 2. 

After a gene is drawn from one parent, another parent with the same number at the left 

most side is also deleted. This process is continued until the end of the vector. 

 

 
 

Figure 2.15: Precedence Preservative Crossover (PPX) 

 

 

 In the literature (Bierwirth (1995); Bierwirth et al. (1996); Gonçalves et al. 

(2005); Park et al. (2003); Ripon et al. (2011); Wang and Zheng (2001); Yamada and 

Nakano (1992)), the crossovers are applied on the active schedule chromosomes and the 

solutions generated are in comparable ranges. These show that the active schedule 

chromosome and the crossover are interrelated in generating good solutions. 

  

Parent 1 : 3  3  1  1  2  1  2  2  3 

Parent 2 : 3  2  2  1  1  1  3  3  2 

Vector : 1  1  2  1  2  1  2  1  2 

Child : 3  3  2  1  2  1  1  2  3 
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2.3.3.6 Mutation 

 Mutation is a genetic operator, analogous to the biological mutation, which is 

used to maintain genetic diversity from one generation in a population of chromosomes 

to the next. The purpose of mutation in GA is to diversify, thus allowing the algorithm 

to avoid local minima by preventing the population of chromosomes from becoming too 

similar to each other, thus slowing or even stopping the evolution. This reasoning also 

explains the fact that most GA systems tend to avoid taking only the fittest of the 

population when generating the next chromosome but rather select a random contingent 

from the population (or pseudo-random with a weighting towards those that are fitter). 

 

 The main idea of mutation in JSSP is generally followed by changing the gene 

position in the chromosome to generate new offspring. For example, a Forward 

Insertion Mutation (FIM) and a Backward Insertion Mutation (BIM), which were 

proposed by Cai et al. (2011), will place a chosen gene into selected positions. 

 

 In the evolutionary process, crossover and mutation operators are very popular 

for research endeavors. The reason for their preference is that the different rates for both 

operators influence the result of the solution. The operator with high rate will be the 

major operator in the process or vice versa. Typically, the crossover rate is set at the 

highest value and mutation rate is usually much smaller (Langdon et al., 2010) but some 

of the researchers prefer that the mutation rate is at a high value to ensure that the 

population is diversified enough (Ochoa et al., 1999). Therefore, there is further 

possibility of modifying the relative proportions of crossover and mutation as the search 

progresses (Reeves, 2003). 
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2.4 Multi-Parents Crossover  

 

 The multi-parents recombination or multi-parents crossover can be defined as 

using more than two parents in the crossover operator to perform the recombination 

process (Eiben, 2003). In the general GA, the crossover operator uses two parents for 

recombination. It is very typical to select multi-parents for recombination in a search 

protocol that mimics nature, since in nature there are only two types of reproduction 

(recombination), asexual (one parent) and bisexual (two parents) reproduction. However, 

in the computational mathematics, there is no restriction on the number of parents to use 

as long as the multi-parents crossover can be logically implemented in the GA. 

 

 Multi-parents recombination is not a new idea and has been used in research 

involving disparate fields of study.  In testing multi-parents recombination affected on 

the representation, Tsutsui and Jain (1998) proposed multi-cut and seed crossover for 

binary coded representation. Additionally, Tsutsui et al. (1999) proposed simplex 

crossover for real coded GA.  The crossover operators that are used in these two areas 

show good search ability of the operator but are very problem dependent. 

 

 In solving discrete domain problems, Mühlenbein and Voigt (1995) proposed 

gene pool recombination (GPR). In GPR, the genes for crossover are selected from the 

gene pool, which consists of several pre-selected parents instead of two parents. The 

authors conclude that GPR is mathematically more tractable and able to search more 

reasonably than two parents’ recombination. 

 

 In the other field, Wu et al. (2009) proposed multi-parents orthogonal 

recombination to determine the identity of an unknown image contour. This 
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recombination is used to rearrange the genes by dividing the genes and gathering the 

information from the genes of different parents selected for the recombination. One of 

the major enhancements of the method is that the performance is more stable, consistent, 

and insensitive to the nature of the input contour. 

  

 Multi-parents recombination can produce one child or multiple children. This 

can be done by one of the multi-parents crossover techniques, called diagonal crossover, 

proposed by Eiben and Kemenade (1997). The crossover is based on the ratio using 

uniform crossover to create 𝑟  children from 𝑟  parents by selecting 𝑟 − 1  crossover 

points in the parents and then composing them into chromosome. The offspring will 

include the characteristics from the different parents after recombination. The process 

can be illustrated as in Figure 2.16. 

 

 
Figure 2.16: Diagonal Crossover with different Number of Offspring Generation 

 

 Besides creating new multi-parents crossover operators, the crossover operator 

can also be extend from the current crossover operator. Tsutsui and Jain (1998), Wu et 

al. (2009), and Ting et al. (2010) extended their multi-parents crossover technique from 

two parent crossover operator. 

Parent 1 

 

Parent 2 

 

Parent 3 

 

Offspring 1 

 

Offspring 2 

 

Offspring 3 

 

Offspring 

 

Parent 1 

 

Parent 2 

 

Parent 3 

 

(b)  Single Offspring 

 

(a)  Multi Offspring 
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2.4.1 Occurrence Based Adjacency Based Crossover 

 In the combinatorial scheduling problem, the position or sequences in the 

chromosome is relatively important because it represents the arrangement of the actual 

schedule.  

 

 Occurrence based adjacency based crossover (OB-ABC) is specifically designed 

from Eiben et al. (1994) for solving the TSP, which is one of the hard combinatorial 

scheduling problem. The first gene value in the child is always inherited from the first 

gene value in the first parent. Then, for each parent its marker is set to the first 

successor of the previously selected value which does not already occur in the child 

(each individual must be seen as a cycle in order for this to work). The value to be 

inherited by the child is chosen based on which value occurs most frequently in the 

parents. If no value is in the majority, the marked value in the first parent is chosen to 

inherit. Figure 2.17 illustrates occurrence based adjacency based crossover. 

 

 
 

Figure 2.17: OB-ABC 

 

 

 

 

Parent 1 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8

Parent 2 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6

Parent 3 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7

Parent 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4

Offspring 3 3 1 3 1 6 3 1 6 5

Parent 1 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8

Parent 2 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6

Parent 3 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7

Parent 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4

Offspring 3 1 6 5 8 3 1 6 5 8 7 3 1 6 5 8 7 2 3 1 6 5 8 7 2 4
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2.4.2 Multi-Parent Extension of Partially Mapped Crossover (MPPMX) 

 MPPMX crossover is originated from the partially mapped crossover PMX 

method that was used by Ting et al. (2010) in the TSP. The difference between PPX and 

MPPMX is that they use multi-parents for recombination. In this way, Ting et al. (2010) 

proposed the suitable methods to legalize the chromosome into feasible solution.  

 

Their crossover can be done in four steps:  

Step 1 : Selection substring - Cut the parents into two substrings. 

Step 2 : Substring exchange - Exchange the selected substrings. 

Step 3 : Mapping list determination- Determine mapping relationship on selected 

substring. 

Step 4 : Offspring legalization - Legalize the offspring into feasible solution. 

  

 As a result, the MPPMX test shows significant improvement in results compared 

to the PMX when applied to solve the same problem. The best solutions appear in the 

different number of parents for different problems. 

 

 

2.5 Hybrid GA 

 

 In the GA strategies, hybridization of GA with other methods or local search 

methods provides good results in solving the problems. In such hybridization, the GA 

capitalizes on the strength of the local search method in locating the optimal or near 

optimal solutions.  

 



39 
 

 Application of GA will be limited in application for problems when the problem 

size increases (Sivanandam and Deepa, 2008). For example, GA will encounter 

premature convergence when the complexity of the problem increases. This is because 

high complexity in JSSP will be lead to the high search space and solution pool will be 

dominated by certain individuals before the best result can be reached. Hence, 

modifications made to the structure or hybridization of the GA with other methods will 

make the resultant GA more capable in finding solutions. 

 

 Complex JSSP contains very large search space, this increases the computation 

cost as it takes a longer time to finish an iteration, which is proportional to the 

population size. Cantú-Paz (1998) pioneered the concept of parallel GA, which divides 

a task into smaller chunks and solves the chunks simultaneously by using multi-

processor. The PGA subdivides the population into subpopulations to decrease the time 

of computation and the best individuals are shared between the subpopulations through 

migration. Yusof et al. (2011) harnessed the power of PGA by isolating the 

subpopulations from each other and running them in the GA by using different 

computers to reduce the time of computation.  

 

 The research of Park et al. (2003) proposed another idea, the Island-parallel GA. 

The GA maintains distinct subpopulations which act as single GAs. Some individuals 

can migrate from one subpopulation to another at certain intervals. The migration 

among subpopulations can retard premature convergence and may be allowed to evolve 

independently. 

 

 Sels et al. (2011) used the scatter search algorithm that had been proposed by 

Glover (1998) to split the single population into a diverse and high quality set in order 
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to exchange information between the individuals in a controlled way. The extension of 

splitting a single to a dual population acts as a stimulator to add diversity in the search 

process.   

 

 The extracted behavior of the methods, Watanabe et al. (2005) proposed the use 

of crossover search phase into the GA with search area adaption. This modified GA has 

capacity for adapting to the structure of the solutions space. 

 

 In the representation of the job shop scheduling, chromosomes that contain a 

sequence of all operations that decoded to the real schedule according to the gene 

sequences will have high redundancy at the tail of the chromosome and little 

significance of rear genes on the overall schedule quality. To solve these problems, 

Song et al. (2000) applied the heuristic method on the tail of the chromosome to reduce 

the redundancy. The method was also used by Ripon et al. (2011) in proposing a new 

crossover operator called improved precedence preservation crossover (IPPX).  In this 

crossover operator the PPX crossover will be modified by adding the heuristic method. 

The crossover will perform PPX at the early gene in the chromosomes then follow it by 

the heuristic method. The method shows improvement in time reduction compared to 

the original PPX operator. 

 

2.5.1 Hybridization with Local Search 

 GA has its own limitation in finding the global local optimum and identifying 

the local optima. Therefore, GA needs to be coupled with a local search technique. The 

configuration of this hybrid GA is not straightforward and may vary by adopting 

different local search techniques. The idea of combining the GA with local search is not 
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new and it has been studied intensively. Various methods of hybridization have been 

investigated extensively to test their ability to adapt to the problems in JSSP.  

 

 In the GA strategies, hybridization of GA with local search methods provided 

good results in solving the problems, where GA capitalized on the strength of the local 

search in identifying the optimal or near optimal solutions. For example, Gonçalves et al. 

(2005) and Zhang et al. (2008) embedded the local search procedure of Nowicki and 

Smutnicki (1996) into GA due to the effectiveness of this particular local search which 

increases the performance of GA.  

 

 Hasan et al. (2007) proposed the use of heuristic job ordering within a genetic 

algorithm. The heuristic ordering guides the individuals to a global optimum instead of 

conventional GA which may lead to convergence to local minima. It is done by using 

the heuristic information in the machine’s sequences for each job. The highest priority 

machine in a schedule will be chosen first to be incorporated into the reproduction 

process. Algorithm 2.3 illustrates hybrid GA proposed by Hasan et al. (2007). 

 

Algorithm 2.3: Hybrid GA 

 

 
 

 

Initialize population 
 
Evaluation 
 
While termination criterion=false do 
 
 Selection 
 Heuristic ordering  insert 
 Crossover 
 Mutation 
 Evaluation 
 Reinsertion 
 
End 
 
Best solution is found 
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 Besides that, there are various ways to implement the combination of GA with 

SA to build a hybrid GA. The first one is by using parallel evolution structure. This 

framework which combines the GA and SA is called GASA by Wang and Zheng (2001) 

and can be described as below: 

 

Step1: GA provided a population for SA to perform that using Metropolis structure 

sample for each solution until equilibrium condition is reach. 

Step 2: Solution from SA is used by GA to continue parallel which means that the 

individual created from the SA is used to perform reproduction process in 

crossover and mutation operators. 

Step 3: Result for the operator is used to search locally by SA for the current solution to 

achieve better solution. 

Step 4: The procedure is repeated until termination. 

 

 Another effort that can be presented, for the hybrid relationship between GA and 

SA, is SA is used to replace the mutation operator in GA and becomes an operator in 

GA (Wang and Zheng, 2002).  

 

 Local search such as TS, provide the intensification for the solution, while GA 

provides diversification in the total solutions.  Intensification tends to search for the 

optimal solution in the current solution; meanwhile diversification is an algorithmic 

mechanism that functions by forcing the search into previously unexplored areas of the 

search space (Zäpfel et al., 2010). The advantage of adding the TS with other methods is 

that it will outperform other optimization methods. For example, the hybrid SA with TS 

(TSSA), proposed by Zhang et al. (2008), is able to get the best solution for certain 

unsolved problems.  
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 Application of tabu search in GA was implemented by Ombuki and Ventresca 

(2004) for the purpose of finding possible solutions for JSSP. This hybrid strategy using 

the genetic algorithm reinforced with a tabu search. In this hybrid GA, TS technique is 

applied on a given set of chromosomes for a number of generations to exploit for better 

solution. In this case, intensification is performed by tabu search and diversification is 

performed by GA. 

 

 

2.6 Benchmarks Problems 

 

 In current JSSP benchmark problems, the FT problem is the oldest benchmark 

problem which has been referred by many researchers in JSSP area. In the benchmarks, 

the problem size can be as small as 6 jobs, 6 machines, which denotes as 6x6, and can 

be as large as 100x20. 

 

 The possible solutions for the problem can be calculated by  𝑛! 𝑚 , where 𝑛 

denotes the number of jobs and m denotes the number of machines. Hence, there is a 

large range from small problem to big problem. Based on Table 2.2, the solution spaces 

of LA31-LA35  30x10  are bigger than the FT10  10x10  in the calculation. Logically, 

it may lead to the consideration that the LA31-LA35 is harder than FT10. But according 

to the data acquired from Jain and Meeran (1999), LA31-LA35 is considered as an easy 

problem while FT10 is thought to be a difficult one. This shows that the problem 

structures have the most significant influence on the problem difficulty. 

 

 The measurements of the hard problems are summarized by Jain and Meeran 

(1999) as: 𝑁 (𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) ≥ 200, where 𝑛 ≥ 15, 𝑚 ≥ 10, and 𝑛 < 2.5𝑚 which 
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satisfy 2𝑆𝐸𝑇 principle, 𝑘 = 2 which 2𝑆𝐸𝑇 principle, 𝑘 = 2 may refer to the Demirkol 

et al. (1998). The hard problems in the benchmarks are mostly used to test the 

researchers’ algorithms. 

 

 

 

Table 2.2: Benchmarks for JSSP 

 

Benchmarks 
Problem size 

Proposed by 
  

Jobs x Machines   

FT06 6 x 6 
   

FT10 10 x 10 Fisher and Thompson  (1963) 

FT20 20 x 5 
   

       
LA01 - LA05 10 x 5 

   
LA05 - LA10  15 x 5 

   
LA11 - LA15 20 x 5 

   
LA16 - LA20 10 x 10 Lawrence (1984) 

LA21 - LA25 15 x 10 
   

LA26 - LA30 20 x 10 
   

LA31 - LA35 30 x 10 
   

LA36 - LA40 15 x 15 
   

       
ABZ5 - ABZ6 10 x 10 Adams et al. (1988) 

ABZ7 - ABZ9 20 x 15 
   

       
ORB01 - ORB10 10 x 10 Applegate and Cook (1991) 

       
SWV01 - SWV05 20 x 10 

 
SWV06 - SWV10 20 x 15 Storer et al. (1992) 

SWV11 - SWV20 50 x 10 
   

       
YN1 - YN4 20 x 20 Yamada and Nakano (1992) 

       
TA01 - TA10 15 x 15 

   
TA11 - TA20 20 x 15 

   
TA21 - TA30 20 x 20 

   
TA31 - TA40 30 x 15 Taillard  (1993) 

TA41 - TA50 30 x 20 
   

TA51 - TA60 50 x 15 
   

TA61 - TA70 50 x 20 
   

TA71 - TA80 100 x 20       
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2.7 Conclusion 

 

 Efficiency of GA in adapting different problem size can be increased by 

hybridizing GA with other methods. In previous studies, GA has been well 

implemented in solving the JSSP. GA is able to perform as a powerful tool in solving 

the problem when combined with local search methods. 

 

 The results from the researches show that GA is not restricted to a single 

procedure and performs better when its structure is modified or it is hybridized with 

other methods to increase the accuracy of searching solutions. Hence, GA can be 

modified accordingly to suit the problem at hand, including selecting several parents for 

the crossover operation.  
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CHAPTER 3 

GENETIC ALGORITHM FOR JOB SHOP SCHEDULING 

PROBLEM 

 

3.1 Introduction 

 

 GA structure can be modified to exhibit its capability for solving different types 

of problems. Various stages of GA can be modified easily to adapt to different 

applications. In particular, the application of GA is not restricted to the use of two 

parents for crossover, rather multi-parents which is a combination of more than two 

parents can also be performed.  

 

 In the past, GA had been studied intensively to measure its performance on 

different problems, capabilities and adaptations required to adapt it for the specific 

problem, including JSSP. Various GA strategies have been developed to determine the 

most suitable and problem specific approach in solving a particular problem. However 

many previous researches, most of the GAs’ crossovers are based on the two parent 

crossover method. Multi-parents are still rarely utilized especially for solving JSSP. 

 

 In this study, we propose the extended precedence preservative crossover 

(EPPX). This crossover operator originated from the precedence preservative crossover 

(PPX) method first proposed by Bierwirth et al. (1996). The advantage of this crossover 

technique is that it is able to maintain the phynetopical of the chromosome. This 

crossover operator is extended from two parents to multi-parents by using the same 

approach. Operation based is used because it can be easily interpreted into feasible 

solution. 
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 In order to increase the efficiency of this modified GA, hybrid GA is introduced. 

The idea of combining GA and some local search techniques for solving optimization 

problems was discussed in Chapter 2 (Section 2.5). In our proposed hybrid GA, a 

neighborhood search is added into the GA structure. This neighborhood search adapts 

the swapping operations proposed by Nowicki and Smutnicki (1996). 

  

 The set of active schedules generated by the local search procedure usually 

contains a very large search space and poor quality in terms of makespan, because of the 

fact that the solution space consists of many high delay times for the concerned 

operations. In order to reduce the size of the search space we used the concept of 

iterative forward-backward pass to reduce or eliminate poor solutions and increase the 

quality of the overall search space. 

 

 This study aims to propose the new multi-parents crossover and hybridization of 

GA for the JSSP. This hybrid GA is tested on different benchmark sets of JSSP to 

assess its performance and is discussed in latter part of this chapter. The algorithm is 

evaluated by the efficiency of the GA in searching for the optimal or near optimal 

solutions. The flow chart describing every step of the research methodology is shown in 

Figure 3.1. 
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Figure 3.1: Flow Chart of Research Methodology 
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3.2 Representation  

 

 A suitable representation is vital in any GA algorithm. The chromosome in this 

study is represented as a permutation integer with repetition; a strategy proposed by 

Bierwirth (1995). This representation is called an operation based representation (Cheng 

et al., 1996) where integers in the chromosome represent the sequences of the jobs in 

the schedule. In this representation, number 𝑖 where 𝑖 = 1, 2, 3 … represents the number 

of jobs and 𝑖 is repeated according to the number of operations required. Figure 3.2 

illustrates the representation of 3 jobs and 3 operations/machines. The chromosome is 

represented as [1 2 3 3 2 2 3 1 1] , where numbers 1, 2, and 3 in the chromosome 

represent job 1, 2, and 3 respectively. Each job consists of three operations so it is 

repeated three times in the chromosome. The chromosome is scanned from left to right 

with the 𝑗𝑡  occurrence of a job number referring to the 𝑗𝑡  operation in the 

technological sequence of this job. The chromosome created is always feasible and legal. 

For this type of representation, the total feasible solutions can be calculated as  𝑛! 𝑚 . 

 

 

Figure 3.2: Permutation with Repetition Representation for 3 Jobs 3 Machines 

 

 

 

 

Permutation with 

repetition 
1      2      3      3      2      2      3      1      1 

Machine 1 

Machine 2 

Machine 3 

1      2             3                                                                                                                                                                                               

 3                      2              1                  

  2              3              1 
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3.3 Decoding  

 

 A scheduling can be built by decoding the genes of the chromosome from left to 

right to a list of ordered operations. The first operation in the list is scheduled first, then 

the second operation, and so on. While placing the job in the schedule, it must meet the 

technological requirement and precedence constraints. Referring to the chromosome 

representation given in Figure 3.2, the technological requirement for the chromosome is 

based on Table 3.1.  

 

When a job (gene) is placed into a schedule, there are two considerations: 

1) Finish time of the predecessor operation 

2) Finish time of the last operation in the same machine  

 

 The job is placed based on the possible earliest start time. If time of  1 >  2, the 

operation will start by referring the finish time as 1. On the other hand, if time of  2 > 1, 

the operation will start by using the finish time of 2 . Based on this operational 

arrangement, the operation inserted will always be at the last phase in the operation of 

the machine. Figure 3.3 illustrates that the schedule is built by decoding the genes 

starting from left to the right in the chromosome. 

 

Table 3.1: Example of 3 Job and 3 Machine Problem 

 

  Job 
Operation routing 

1 2 3 

Processing time 

1 3 3 2 

2 1 5 3 

3 3 2 3 

     

Machine sequence 

1 M1 M2 M3 

2 M1      M3 M2 

3 M2       M1 M3 
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Figure 3.3: Schedule for JSSP 
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3.3.1 Active Schedule Builder 

 Optimal solution of the scheduling always lies in the active schedule with no 

permissible left shift in the schedule being possible. Recombination of such active 

schedule chromosomes produces good solutions (Yamada and Nakano, 1992). In order 

to build the active schedule chromosome, the chromosome needs to be decoded into a 

feasible schedule. This is achieved by constructing a schedule builder that performs a 

simple local search. 

 

 An active schedule can be built by selecting the gene (job) of the chromosome 

from left to right and inserting it into a schedule with an active schedule builder and 

then deleting it from the chromosome (Gen et al., 1994). The job always finds the 

earliest completion time to be inserted by using a simple local search. Figure 3.4(a) 

illustrates the scheduling without local search and the job will be placed by following 

the sequences encoded in the chromosome [1 1 3 … ]. Applying the local search enables 

the job to find the possible vacant time interval before appending an operation at the last 

position (Figure 3.4(b)) and the chromosome encoded becomes [1 3 1 … ]. 

 

 

Figure 3.4: Local Search Procedure 

 

 

M1 J1

M2 J1 J3

M3

0 2 4 6 8 10

M1 J1

M2 J3 J1

M3

0 2 4 6 8 10

(a) Semi-active schedule without simple 

local search  

(b) Active schedule after simple local search 

M1 J1

M2 J1 J3

M3

0 2 4 6 8 10

M1 J1

M2 J3 J1

M3

0 2 4 6 8 10
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 When the schedule is finished, it is encoded into the chromosome and the 

arrangement in the genes is the reference for the start time sequences in the schedule. 

The gene that is placed earlier into a schedule is forced to the left in the chromosome 

according to its earliest start time in the schedule. 

 

 

3.4 Proposed Hybrid GA Structure 

 

 In the hybrid GA structure, the EEPX crossover is used as the crossover operator. 

This recombination operator attempts to combine the best features of each individual to 

get the best solutions. Besides that, the local search and the search space reduction 

method will also aid the flow of GA. The hybrid GA algorithm is represented by 

Algorithm 3.1, as illustrated below. 

 

Algorithm 3.1: Genetic Algorithm 

 

  

 In this hybridization, the intensification and diversification are executed by 

different operators. For intensification, the local search (neighborhood search on critical 

path) exploits the best possible solution in an individual. GA structure performs 

Initialize population 
 
while termination criterion 
 
 Selection 
 Crossover 
 Mutation 
 Iterative forward-backward pass 
 Neighborhood search on critical path  
 Reinsertion  
 
End while 
 
Best Solution 
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diversification by providing different individuals for the local search. This interrelated 

behavior makes the search more efficient. 

 

 The quality of the offspring generated by crossover and mutation is generally 

unknown. When the offspring reaches an iterative forward-backward pass, the offspring 

is evaluated and the quality of the offspring is upgraded by rearranging the genes in the 

offspring in this scheduling method.  

 

 During the current research, this hybrid GA is modified from time to time. If the 

result of the simulation does not reach the optimal or deviates too far from the best 

known solutions, the first consideration of modification focuses on local search operator. 

Several methods of local search have been tested and it was found that the local search 

performed on the critical path has the highest impact in generating a schedule. Therefore, 

the use of neighborhood search in the critical path is proposed. After that, if the 

performance of the GA reaches an acceptable condition, the parameters in GA, such as 

crossover and mutation rates are adjusted to optimize its functionality. 

 

 

3.5 Initial Population  

 

 The population generates potential solutions for GA to search in solution space. 

The individuals that are generated randomly from inheritance must be presented in the 

form of operation based representation. At the initial stage of the population, the 

individuals generated normally have very poor quality in terms of makespan. These 

poor quality individuals go through the reproduction process to recombine and become 

better solutions. New population is generated after the recombination process and 
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reused for the next process, finally the iteration stopped when the termination criterion 

is reached. 

 

3.6 Termination Criteria 

 

 Termination criteria are set to stop the GA from running in the unlimited 

iteration mode. Termination of the searching procedure is active when GA has achieved 

the optimal solution (if there exists one) or reaches the maximum number of generations. 

If the number of generations is set at a high value, it is time consuming and ineffective 

because the potential solutions at the end of the generation are converging into a single 

solution (because all the chromosomes are similar to each other). Thus in JSSP, the 

maximum number of generations is set based on the population. For example, if the 

population size is small, the maximum number of generations is also small.  

 

 In the multi-parents crossover we proposed, the parents are recombined to 

generate one child. Therefore, there exists different numbers of parents for 

recombination with different total number of offspring (solutions).  The total solutions 

can be defined as: 

 

   
𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 =

𝑀𝐴𝑋𝐺𝑒𝑛 ×𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑠𝑖𝑧𝑒

𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑎𝑟𝑒𝑛𝑡𝑠
   

(3.1) 

 

𝑀𝐴𝑋𝐺𝑒𝑛  = maximum number of generations 

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒  = total number of individuals in the search space 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 = parents that are used for the recombination process 

 

  

 Referring to Eq. (3.1), if the number of parents selected is increased, the total 

number of solutions generated is reduced. When comparisons are needed to be made 

between different numbers of parents, it is not comparable because the total solutions 
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generated are different from each other. To preserve consistency, the total solutions will 

be fixed so different numbers of parents are able to generate approximately the same 

number of solutions for comparison. 

 

 In Eq. (3.1), the population size is fixed to control the total individuals involved 

in evolutionary process.  The only variables that can be adjusted are maximum number 

of generations and number of parents.  The total number of generations is adjusted to 

make sure that different number of parents for recombination generates approximately 

the same number of total solutions.  Maximum number of generation is calculated by 

referring to the Eq. (3.2). The maximum number of generations, 𝑀𝐴𝑋𝐺𝑒𝑛, is adjusted 

as follows: 

 

   
𝑀𝐴𝑋𝐺𝑒𝑛 =

𝑡𝑜𝑡𝑎𝑙  𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ×𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑎𝑟𝑒𝑛𝑡𝑠

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛  𝑠𝑖𝑧𝑒
   

(3.2) 

 

 

3.7 Selection  

 

 In selection operator, we use Stochastic Universal Sampling (SUS). This fitness 

based proportionate selection technique chooses the chromosomes for recombination 

process with minimum spread and zero bias.  This ensures that even poor quality 

individuals have a chance to participate in the solution process. Unlike the tournament 

search and the roulette wheel selection, the selection probabilities for good quality 

individuals are very high and the chance to select other individuals is low resulting in 

those solutions dominating the population (Goldberg, 1989). Sometimes there are some 

good features in the poor quality individuals which combined with other individuals 

may produce good result because solutions from recombination between individuals are 
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unpredictable. So, this is the principal reason of using the SUS as the selection 

parameter in the GA. 

 

 

3.8 Reinsertion 

 

 Elitism strategy is used to maintain a good solution for the population. Elitism 

strategy is applied to maintain the best fitness of the population, thus ensuring that the 

good individual is propagated to the next generation.  

 

In the reinsertion procedure, some of the new offspring replace the bad 

individuals in the previous population to generate new population. The selected fittest 

individuals that are used to replace the bad individuals are the same proportion in order 

to maintain the size of the population. Under this selection pressure, the new population 

generated is expected to be better than previous.  

 

 

3.9 Mutation 

 

 Mutation operator acts as a mechanism to diversify the individuals in order to 

escape from the local optima. In this study, the mutation is applied by swapping two 

genes which correspond to different jobs, in two different positions in the same 

chromosome. The process is repeated if two genes are selected are at the same position 

or represent the same job. Figure 3.5 illustrates the swapping of the two genes in the 

chromosome. 
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Figure 3.5: Mutation by Swapping Two Genes in the Chromosome 

 

 This mutation operator does not consider the restrictions of precedence 

constraints and operation sequences and it is just implemented by swapping the different 

genes. As a result of the mutation, the sequences of the operations in the machine are 

changed and this may affect the whole quality of the offspring. 

 

 

3.10 Proposed Extended Precedence Preservative Crossover (EPPX) 

 

 In GA, there are no limitations that the recombination process needs only two 

parents, rather multi-parents consisting of more than two parents are also acceptable. 

Some of the multi-parents crossover operators are extended from the two parents’ 

crossover operators for recombination process (Tsutsui and Jain, 1998; Tsutsui et al., 

1999; Wu et al., 2009; Ting et al., 2010). In this hybrid GA, multi-parents crossover, 

EPPX, is an extension from PPX.  

 

 A crossover mask in the form of a vector is generated randomly to determine the 

genes in which parent, specified in the mask, to be selected for recombination. The 

multi-parents recombine into a single offspring (Figure 3.6 (a)). Starting from the first 

element on the mask vector, the first gene in that parent 1 is selected. The selected job 

(job 3) is eliminated in the other parents (Figure 3.6 (b, c)). The second element in the 

 

Before mutation 

After mutation  
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mask indicates that the first element (after deletion) is to be selected also from parent 1 

(Figure 3.6 (c)). The third element in the mask shows that the first element in parent 3 is 

selected (Figure 3.6(d)). The process continues until all the elements in the mask have 

been examined.  

 

 

Figure 3.6: EPPX 

  

 The offspring created contains the elements from the parents with the hope that 

the offspring is better than the parents. This crossover always generates feasible 

solutions due to the offspring that are created are always legal; therefore legalization of 

the offspring which is very time consuming is eliminated. Higher number of parents can 

be easily adapted in the crossover for multi-parents recombination. Pseudo code for 

EPPX is presented as in Algorithm 3.2. 

 

 

  

Parent 1 : 3    3    1    1    2    1    2    2    3                 

Parent 2 : 3    2    2    1    1    1    3    3    2         

Parent 3 : 1    3    2    2    1    1    2    3    3        

Vector     : 1    1    3    2    3    3    1    1    2          

Child       : 3    3    1    2    2    1    1    2    3 

 Parent 1:○3    3    1    1    2    1    2    2    3       

Parent 2  : 3     2    2    1    1    1    3    3    2 

Parent 3  : 1     3    2    2    1    1    2    3    3         

Vector    : ○1  1    3    2    3    3    1    1    2 

Child      : 3                                                                
Vector number 1= select first gene from Parent 1           

Vector number 2= select first gene from Parent 2            

Vector number 3= select first gene from Parent 3 

 

 Parent 1   : 3    3    1    1    2    1    2    2    3         

Parent 2   : 3    2    2    1    1    1    3    3    2         

Parent 3  :○1  3    2    2    1    1    2    3    3        

Vector     : 1    1  ○3   2    3    3    1    1    2          

Child       : 3    3    1 

 
Parent 1: 3  ○3   1    1    2    1    2    2    3           

Parent 2 : 3    2    2    1    1    1    3    3    2            

Parent 3 : 1    3    2    2    1    1    2    3    3         

Vector   : 1   ○1   3   2    3    3    1    1    2            

Child     : 3    3 

(a) Example of EPPX (b) First step - Vector number 1, the first gene in 

Parent 1 is selected and the same job from the 

other parents is removed. 

(c) Second step - Previous selected gene will be 

deleted, first gene (after deletion) in parent 1 selected 

and the job from the other parents are removed.   

(d) Repeat - The process will continue until 

at the end of the vector 
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Algorithm 3.2: Pseudo Code for EPPX (3 Parents) 

 

 

 

3.11 Iterative Forward-Backward Pass  

 

 The set of active schedules generated by the shifted left operations usually 

contain very large search space and are poor quality in terms of makespan because it 

consists of many high delay times of the operations. In order to reduce the size of search 

space and to reduce makespan, we used the concept of iterative forward-backward pass. 

 

 Lova et al. (2000) applied the iterative forward-backward pass into their multi-

project scheduling which is similar with JSSP in which it also has precedence 

constraints to generate a schedule.  The authors use this iterative method to reduce the 

Crossover vector generated randomly 
  
Three parents selected ->S1, S2, and S3   
 
for k=1 to length of the chromosome do 
 
 
 Select vector number by position k-th starting from the left in  vector 
 
 case  vector number of 
 
  Vector number 1: 
   Choose first gene at left most S1 
   Search same job number at left most in S2 and S3 
   Remove the first gene in S1 
   Remove the gene searched in S2 and S3 
 
  Vector number 2: 
   Choose first gene at left most S2 
   Search same job number at left most in S1 and S3  
   Remove the first gene in S2 
   Remove the gene searched in S1 and S3 
 
  Vector number 3: 
   Choose first gene at left most S3 
   Search same job number at left most in S1 and S2 
   Remove the first gene selected in S3 
   Remove the gene searched in S1 and S2 
  end case 
 
 Selected gene insert to new chromosome by sequence from left to  right 
 
end for 
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makespan time in their projects thus reduce the cost of the project and it is claimed that 

the method shows some improvement when compared with other methods.  

 

 The iterative forward-backward pass approach is applied in hybrid GA because 

of its capability to reduce makespan time. This approach is inserted in the structure of 

GA as an operator. An individual that passes through this operator is rescheduled to 

reduce the makespan time and then new individual is produced to a higher quality. This 

method consists of two types of scheduling methods that are used iteratively: Forward 

Pass and Backward Pass. 

 

 A Forward Pass is a process of shifting left the operations in a schedule, starting 

from beginning of the schedule until the end of the schedule, 𝑚𝑎𝑥  𝐹𝑖𝐽   and the 

operations are able to be shifted left until the time equals to zero. In Backward Pass, the 

process starts from the end of the schedule, 𝑚𝑎𝑥  𝐹𝑖𝐽   and ends at the beginning of the 

schedule, 𝑚𝑖𝑛  𝐹𝑖1  in which the operations is shifted right until the time equals to the 

𝑚𝑎𝑥  𝐹𝑖𝐽  . The Forward Pass is similar to the local search illustrated in Figure 3.4 and 

the Backward Pass is presented in Figure 3.7. 

 

 When applied, the iterative forward-backward pass approach is able to shorten 

the makespan time of the schedule. The iterative forward-backward can be described in 

the following steps: 

 

Step 1: Chromosome is scanned from left to right to generate an active schedule by 

Forward Pass (see example Figure 3.4). Next, the new schedule is decode into 

chromosome with maximum makespan, 𝑚𝑎𝑥  𝐹𝑖𝐽  . 
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Step 2: New chromosome from the Step 1 is used by Backward Pass. The chromosome 

is scanned from right to left with start time 𝑚𝑎𝑥  𝐹𝑖𝐽  . A new chromosome is 

generated and the makespan of this schedule represented as below: 

    𝐵𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝐹𝑖𝐽  − 𝑚𝑖𝑛 𝐹𝑖1      
(3.3) 

 

Step3: If the makespan 𝐵𝐶𝑚𝑎𝑥 <  𝑚𝑎𝑥  𝐹𝑖𝐽  , there is improvement of the schedule and 

the  chromosome generated by Backward Pass is used in Step 1. Step 1 and Step 

2 are repeated until there is no more improvement on the schedule. 

 

 

Figure 3.7: Backward Pass 

 

 

Figure 3.8: Iterative Forward-Backward Pass 

 

Figure  3.8 illustrates the Iterative Forward-Backward Pass carried out in this 

study. It is noted that in this iterative function, the makespan of the both processes is 

 
(a) Before Backward Pass  

Chromosome = [… 3 1 1]  Chromosome = [… 1 3 1]  

(a) After Backward Pass  

max (FiJ) 

M1 J1

M2 J3 J1

M3

0

M1 J1

M2 J1 J3

M3

0 max (FiJ) 

 

Forward Pass 

Backward Pass 

No improvement 
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mutually restricted hence the makespan of new solution generated is either lesser or 

remain unchanged. The search space is reduced hence the overall of the quality of the 

chromosomes is improved, increasing the possibility of getting the optimal or near 

optimal solutions. 

 

 

3.12 Neighborhood Search 

 

 Reduction of the search space does not always guarantee that the optimal 

solution will be found. Kelly and Walker (1959) noted that one of the effective ways to 

change and modify the scheduling time length is by changing the operations sequence in 

the critical path, because critical path determines the length of the process to be finished. 

Therefore, we use neighborhood search as exploitation mechanism to decrease the 

makespan and the neighborhood search starts with the identification of the critical path 

in the schedule generated by the scheduling process.  

 

 Critical path in the schedule is determined by using the Critical Path Method 

(Kelly and Walker, 1959). Operations on the critical path are called critical operations 

and a critical block consists of a maximal sequence of adjacent critical operations that 

are processed on the same machine (Nowicki and Smutnicki,1996). Figure 3.9 

illustrates example of critical blocks consisting of several critical operations. 

 

 The neighborhood is defined as the random swap between two jobs in a critical 

block that contains two or more operations. If the critical block contains only one 

operation, no swap is made. All possible moves of the operations will be predetermined 

as illustrated in Figure 3.9. A swap of the operations is accepted if it improves the 
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makespan from its present state. Otherwise, the swap is undone if all of the possible 

swaps do not improve the makespan and the original solution is maintained. Once the 

swap is accepted, a new critical path is identified. The procedure is repeated and stops if 

there are no swaps that can improve the makespan. In this neighborhood search, the 

process is iterative and the iteration is terminated if no improvement is found. 

Algorithm 3.3 presents the pseudo code for neighborhood search. 

 

 

 

Figure 3.9: Critical Path, Critical Operations and Possible Operations Swaps 

 

Algorithm 3.3: Pseudo Code for Neighborhood Search 

 

M1

M2

M3

0

Critical operations in critical path 

22 242 4 6 8 10 12 14 32

J3

J3 J2

J3 J1 J2

16 18 20

J2 J1

J1

26 28 30

 
    while New solution  accepted = true 
 
    New solutions accepted = false 
    Determine the critical path, critical block in New schedule 
    List out the possible swaps of the operations  
 
    for  k=1 to total of possible swaps do 
     Swap a pair of operations 
     New schedule generated and makepsan recalculated (New 
   makespan) 
 
            if  New makespan< Current makespan 
      Current makespan = New Makespan 
      New solution accepted = true 
   

   end if 
  

end for 
 
     end while 
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 Local search in this hybrid GA tries to find the best solution that is attainable by 

using the single offspring. It exploits the best possible solution by using neighborhood 

search method.  

 

 

3.13 Conclusion 

 

 This chapter presents a hybrid genetic algorithm with multi-parents crossover, 

EPPX, for the job shops scheduling problem. EPPX is a variation of the precedence 

preservative crossover (PPX) which is one of the crossovers that perform well to find 

the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in 

recombination for the next generation. Legalization of children (offspring) can be 

eliminated due to the JSSP representation encoded by using permutation with repetition 

that guarantees the feasibility of chromosomes.  

 

 The hybrid GA combines with neighborhood search in which GA performs the 

exploration of the population and the neighborhood search performs the exploitation 

around individuals. The chromosome represented by operation-based representation is 

used to generate an active schedule through iterative forward-backward pass which can 

further reduce the search space.   

 

 The simulations are performed on a set of benchmarks from the literatures and 

the results are compared in the following chapter to ensure the sustainability of multi-

parents recombination in solving the JSSP. 
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CHAPTER 4 

RESULTS AND DISCUSSIONS 

 

4.1 Introduction 

 

 The hybrid GA is developed by using MATLAB 7.11 R2010b and the 

simulations are run on workstation Intel Xeon CPU E5620 12GB RAM.  The source of 

the benchmarks are from the OR library (Beasley, 1990). Selected benchmarks that are 

used to test the hybrid GA are the FT, ABZ, and ORB problems. These benchmarks 

were chosen because they are considered as hard problems and often used by other 

researchers for comparison and testing their algorithms in solving the JSSP. 

 

 

4.2  Data Set – Benchmarks Problems 

 

4.2.1 FT Problem 

 The FT problem which was developed by Fisher and Thompson (1963) has been 

widely applied in different algorithms. The FT10 and FT20 are considered as difficult 

computational problems especially the FT10 problem which is referred as a ―notorious‖ 

problem because it remained unsolved for 20 years and now is no longer 

computationally challenging as most of the algorithms managed to attain optimal 

solution. 

 

 In Table 4.1, the first column shows the names of the instances which are 

followed by the total job and machines in the problem. The last column records the 

optimal solutions for the FT that has been solved optimally in past literatures. There are 
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only three types of problem sizes in the FT problem. They are written as 

𝑗𝑜𝑏𝑠 x 𝑚𝑎𝑐𝑖𝑛𝑒, e.g. 6x6 for FT06, 10x10 for FT10, and 20x5 for FT20. 

 

Table 4.1: Instances for FT Problem 

Instances No. of Jobs No. of Machines Optimal 

FT 06 6 6 55 

FT 10 10 10 930 

FT 20 20 5 1165 

 

 

4.2.2 ABZ Problem 

 The ABZ problem proposed by Adams et al. (1988) contains the problem that is 

more difficult than the FT10 especially the instances of ABZ8 and ABZ9 which are still 

open problems. Table 4.2 shows the selected instances from the library with their best 

known solutions (BKS). Note that instances with asterisks are part of the ten tough 

problems (proposed by Applegate and Cook (1991)) which are more difficult than the 

FT10 problem. 

 

Table 4.2: Instances for ABZ Problem 

Instances No. of Jobs No. of Machines BKS 

ABZ5 10 10 1234 

ABZ6 10 10 943 

ABZ7* 20 15 656 

ABZ8* 20 15 665 

ABZ9* 20 15 678 

 

4.2.3 ORB Problem 

 The ORB problem proposed by Applegate and Cook (1991) consists of instances 

with the same size problems of the FT10.  Applegate and Cook (1991) collected the 

instances from different authors then renamed them as ORB. 
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Table 4.3: Instances for ORB Problem 

Instances No. of Jobs No. of Machines BKS 

ORB01 10 10 1059 

ORB02 10 10 888 

ORB03 10 10 1005 

ORB04 10 10 1005 

ORB05 10 10 887 

ORB06 10 10 1010 

ORB07 10 10 397 

ORB08 10 10 899 

ORB09 10 10 934 

ORB10 10 10 944 

 

 

4.3 Hybrid GA Parameters  

 

In this hybrid GA, the parameters that need to be set are: 

• Population size 

• Maximum number of generation 

• Reinsertion rate 

• Crossover rate  

• Mutation rate 

 

 These parameters varied in the GA when applied in different fields of the 

problems. Thus, the parameters in our algorithm need to be set first before being applied 

to the JSSP. The population size and reinsertion rate portion refer to the mostly used 

value in the GAs and the maximum number of generation is adjusted based on the 

number of parents. Parameters such as the crossover rate and mutation rate need to be 

tested before being applied to other problems. 
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 A population is set with 100 individuals for the problems FT06, FT10, ABZ5, 

ABZ6, and ORB01-ORB10. This is because this size of population is frequently used in 

other GAs (Sivanandam and Deepa, 2008). For the problems that contain large 

problems sizes and variables (FT20, ABZ7-ABZ9), their population sizes are increased 

to 150 to acquire more chances of obtaining optimal or near optimal solutions. After the 

recombination process, elitism strategy is applied and 10% of the best fitness new 

offspring replace the 10% of the worst individuals in the previous population to 

generate a new population. 

 

 Chapter 3 (Section 3.5) explains how the different numbers of parents for 

recombination generate different numbers of total solutions. To ensure the solutions 

from crossovers with different numbers of parents are fair and comparable, the 

maximum numbers of generations are adjusted based on the number of parents (Eq. 

(3.2)). In calculating the maximum number of generations, the 𝑀𝐴𝑋𝐺𝑒𝑛 , 

𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠  for instances FT06, FT10, ABZ5, ABZ6, and ORB01-ORB10 are 

fixed at 5000 schedules and the problems FT20 and ABZ7-ABZ9 are fixed at 10,000 

schedules. 

 

Table 4.4: Maximum Number of Generation  

Maximum number of 

generation 

Number of parents 

3 4 5 6 7 8 9 10 

100 initial individuals 150 200 250 300 350 400 450 500 

         
150 initial individuals 200 267 333 400 467 533 600 667 
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Table 4.5: Total Solutions Generated 

Generated solutions 
Number of parents 

3 4 5 6 7 8 9 10 

100 initial individuals 4950 5000 5000 4800 4900 4800 4950 5000 

         
150 initial individuals 10000 9879 9990 10000 9807 9594 10000 10005 

 

 Table 4.4 and Table 4.5 show the maximum number of generations for different 

numbers of parents and the total solutions generated respectively. The total solutions 

generated are slightly different from the original values because the total individuals in 

a population are divided by the number of parents before being rounded toward zero. 

With these numbers of generations, the results are more comparable and fair. 

 

 

4.4 Parameters Testing for Hybrid GA 

 

 The parameters setting of crossover rate and mutation rate for the GA are very 

problem dependent. In the JSSP, there are no specific rates for these parameter values. 

Therefore, we use the instance FT10 to identify suitable parameters. 

 

In testing the crossover rate and mutation rate, we consider three different cases: 

 

Case 1: The crossover rate is set as a static value (0.9 to 0.5 with a decrement of 0.1) 

whilst the mutation rates are represented by the following equations: 

      𝑝𝑚 = 0.1 +
𝑔𝑒𝑛

𝑚𝑎𝑥𝑔𝑒𝑛
 0.4          (4.1) 

      𝑝𝑚 = 0.1 +
𝑔𝑒𝑛

𝑚𝑎𝑥𝑔𝑒𝑛
 0.9        (4.2) 

𝑝𝑚   = mutation rate 

𝑔𝑒𝑛  = current number of generation 

𝑚𝑎𝑥𝑔𝑒𝑛 = maximum number of generation 
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a) Mutation rate increases from 0.1 to 0.5 when the maximum number of generation 

increases (Eq. (4.1)). 

b) Mutation rate increases from 0.1 to 1.0 when the maximum number of generation 

increases (Eq. (4.2)). 

 

Table 4.6 shows the results of the different mutation rate for Case 1 with different 

crossover rate. a and b are represented  Case 1(a) and Case 1(b) respectively. The lowest 

average solution obtains by Case 1(a) and Case 1(b) are using crossover rate at 0.6 and 

0.8 respectively.  

 

Table 4.6: Case 1 Results 

 
Case 1 

Crossover rate 

0.9 0.8 0.7 0.6 0.5 

Average  

Solutions 
a 979.23 978.87 972.23 968.10 976.40 

b 973.03 970.77 973.80 972.67 978.07 

 

 

 

Figure 4.1: Graph for Case 1 
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 The results in Table 4.6 are plotted into a line graph (Figure 4.1). In Figure 4.1, 

line-a shows that when the crossover rate increases, the average solutions (makespan) 

decreases by a different value of mutation rate. Line-b reflects that when the crossover 

rates increase, the average solutions are also increased. This graph shows that different 

conditions of mutation rate affects the crossover rate to attain best average solutions and 

the best average solutions for line-a and line-b are 0.6 and 0.8 respectively. 

 

Case 2:  Mutation rate is fixed and it varies from 0.1 to 1.0 with an increment of 0.1 and 

 crossover rate  decreases from 0.9 to 0.5 by Eq. (4.3).  

 

   𝑝𝑐 = 0.9 −
𝑔𝑒𝑛

𝑚𝑎𝑥𝑔𝑒𝑛
 0.4              (4.3) 

𝑝𝑐= crossover rate 

𝑔𝑒𝑛 = current number of generation 

𝑚𝑎𝑥𝑔𝑒𝑛 = maximum number of generation 

 

 

Table 4.7: Case 2 Results 

 
Mutation 

rate 
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

           Average 

solutions 
981.70 979.20 976.70 985.17 969.67 970.73 971.00 963.93 968.80 967.97 

 

 

 
 

Figure 4.2: Graph for Case 2 
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 When the mutation rate increases (Figure 4.2), the average value is in a 

decreasing trend and this signifies that higher mutation rates are able to obtain better 

average solutions. 

 

Case 3:  Adaptive crossover rate that has reverse hyperbolic relation with the mutation 

rate (decreases from 0.9 to 0.5 using Eq. (4.3)) and 

 

a) Mutation rate varies from 0.1 to 1.0 by using Eq. (4.2) 

b) Mutation rate varies from 0.1 to 0.5 by using Eq. (4.1) 

 

Table 4.8: Case 3 Results 

  Case 3a Case 3b 

Average solutions 970.5 979.71 

 

 

Figure 4.3: Bar Chart for Case 3 

  

 Table 4.8 displays the average solutions obtained by different cases and plotted 

in Figure 4.3 as bar chart. Figure 4.3 shows that with high mutation rate, the results will 

be better.  
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 It can be concluded from Figure 4.1 that the crossover rate is best set in between 

0.5 to 0.9 and Figure 4.2 and Figure 4.3 show that the mutation rate should be set higher. 

In the next section, these results are used as a guide to identify the fixed rate and apply 

it onto all problems to avoid confusion in parameters determination for the hybrid GA.   

 

4.4.1 Crossover Rate 

 In our cases, due to the different problem sizes and different numbers of parents 

for recombination, we need to fix these parameters and use them for all numbers of 

parents. When setting these parameters, the instance FT10 is selected as the reference 

because it is considered as a difficult problem. Among the multi-parents crossover, three 

parents crossover are used as reference because we consider them as the starting point 

of multi-parents recombination (more than two parents).  

 

 The dependencies between the crossover and mutation rates are tested by the GA. 

The crossover rates are set from 1.0 to 0.5 with varied mutation rates from 0.1 to 1.0. 

Each case (example: crossover rate=1.0, mutation rate =0.1) will be run for 100 times 

and the average will be figured out. The relative errors are calculated by computing the 

difference between the average solutions for each crossover rate and the optimal 

solution of FT10 (930). 

 

Table 4.9: Output for different Crossover Rate and Mutation Rate 

  Mut_01 Mut_02 Mut_03 Mut_04 Mut_05 Mut_06 Mut_07 Mut_08 Mut_09 Mut_10 Average 
Relative error 

(%) 

Crs_10 971.96 978.20 972.64 968.06 969.28 972.34 971.58 965.46 963.24 968.12 970.09 4.31 

Crs_9 967.38 975.94 965.82 968.24 970.30 965.36 963.44 961.14 961.00 960.32 965.89 3.86 

Crs_8 971.54 968.00 967.24 965.92 966.10 964.28 964.58 958.92 958.84 959.12 964.45 3.70 

Crs_7 973.94 968.32 969.26 963.72 963.48 961.58 958.46 957.84 959.02 958.94 963.46 3.60 

Crs_6 972.96 968.32 969.30 965.26 964.02 965.10 964.08 960.16 959.90 959.58 964.87 3.75 

Crs_5 971.88 975.96 975.60 969.12 962.58 967.36 960.92 961.60 961.04 957.10 966.32 3.90 

Crs_10 represents crossover rate at 1.0, Crs_9 represents crossover rate at 0.9 and so on 

Mut_01 represents mutation rate at 0.1, Mut_02 represents mutation rate at 0.2 and so on 
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 In Table 4.9, the relative error for crossover rate at 0.7 appears as the lowest 

value compared to the other crossover rates. The frequencies of optimal solutions for 

FT10 at the crossover rate 0.7 are the highest in Figure 4.4. Thus, it is reasonable for us 

to use the crossover rate at 0.7 for other instances. 

 

 

Figure 4.4: Frequent of Optimal Solutions Appear (930) at different Crossover Rate 

 

4.4.2 Mutation Rate 

 In the literature, there are arguments about the influences of crossover rates and 

mutation rates in the GA. Some of the researchers preferred for the crossover rate to be 

set at a high value (higher than 0.7) with low mutation rate (not more than 0.1) as the 

crossover is the priority operator in the GA. On the other side, some researches show 

that mutation also plays an important role in the GA to generate better results. In the 

multi-parents crossover application, especially in the JSSP, there is a lack of 

information about the mutation rate values. Hence, we try to find the suitable mutation 

rate for our GA. 
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 Due to the inconsistencies of the results between the crossover rates and 

mutation rates we obtained from the simulation, Figures 4.5 plotted the best fit line for 

the problems. All lines for the different crossover rates are decreasing from left to right 

which means that the average solutions will get better when the mutation rates increase. 

Thus, we conclude that the last mutation rate (1.0) performs the best when applied in 

this GA and it will be used as parameter for other instances. 

 

 

Figure 4.5: Best Fit Line for Crossover with different Mutation Rates  

 

 

4.5 Results 

 

 Table 4.10, Table 4.11, and Table 4.12 summarize the experimental results. 

Crossover rate and mutation rate are set to 0.7 and 1.0 respectively for all the instances. 

The first column lists the problem name (instances) and the problem optimal solutions 

(optimal) or BKS. Second column lists the makespan of the problem which include 

minimum (best solution), maximum, and average makespan. The last column lists the 

solutions obtained by different number of parents. 
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Table 4.10: Results for FT Problem 

Instances Makespan 
No. of parents 

3 4 5 6 7 8 9 10 

FT 06 Min. (best) 55 55 55 55 55 55 55 55 

Optimal 

= 55 

Max. 55 55 55 55 55 55 55 55 

Average 55 55 55 55 55 55 55 55 

          
FT 10 Min. (best) 930 930 930 930 930 930 930 937 

Optimal 

= 930 

Max. 1023 1016 1018 1025 1019 1029 1032 1024 

Average 961.93 965.93 966.61 973.33 969.79 977.18 975.40 978.60 

          
FT 20 Min. (best) 1178 1185 1184 1190 1187 1198 1183 1197 

Optimal 

= 1165 

Max. 1272 1252 1266 1259 1262 1283 1294 1286 

Average 1214.59 1216.37 1223.08 1224.9 1224.94 1231.38 1230.88 1232.34 

 

 

 Results from Table 4.10 show that EPPX is considered suitable for solving the 

JSSP. Instance FT06 can be solved easily with the number of parents used for crossover 

ranging from 3 to 10 parents. For difficult problems such as FT10, EPPX is able to get 

the optimum solution with the number of parents of 3 to 9 for the crossover operation. 

For instance FT20, the smallest deviation from the optimal solution is obtained with the 

best solution of 1178 (approximately 1%) by using 3 parents for the crossover operation. 
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Table 4.11: Results for ABZ Problem 

Instances Makespan 

Solutions 

no. of parents 

3 4 5 6 7 8 9 10 

ABZ5 Min. (best) 1238 1234 1238 1238 1238 1238 1238 1238 

Optimal = 1234 
Max. 1262 1269 1266 1270 1266 1266 1266 1267 

Average 1250.09 1249.27 1251.23 1251.31 1249.5 1249.41 1249.92 1248.88 

          
ABZ6 Min. (best) 947 945 943 945 943 947 946 947 

Optimal = 943 
Max. 966 967 967 966 967 967 970 970 

Average 948.65 949.24 949.64 949.81 949.14 949.41 950.82 948.83 

          
ABZ7 Min. (best) 680 684 687 684 688 686 693 692 

Optimal = 656 
Max. 710 711 713 714 713 715 718 712 

Average 696.81 698.39 698.53 700.94 700.68 701.39 702.69 701.93 

          
ABZ8 Min. (best) 701 699 705 699 702 705 705 707 

BKS = 665 
Max. 727 727 726 728 734 727 733 728 

Average 712.5 713.45 714.83 715.68 716.57 717.28 718.26 718.09 

          
ABZ9 Min. (best) 710 708 713 717 708 721 716 720 

BKS= 678 
Max. 745 745 745 747 748 749 755 758 

Average 728.75 730.2 730.4 733.34 733.23 733.88 734.4 734.76 

 

 

 Table 4.11 presents the results for ABZ problem which contains five instances 

with sizes ranging from 10x10 to 20x15. No optimal solutions have been known for 

ABZ8 and ABZ9, thus the BKS for both instances are obtained from the literatures 

(Zhang et al., 2008). EPPX is able to get the optimal solution for ABZ5 and ABZ6 but 

varies between 3 – 5 % from the optimal or the best known results.  
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Table 4.12: Results for ORB Problem 

Instances Makespan 
no. of parents 

3 4 5 6 7 8 9 10 

ORB01 Min. (best) 1077 1077 1087 1077 1086 1070 1086 1089 

Optimal = 1059 
Max. 1140 1147 1152 1140 1142 1153 1148 1150 

Average 1100.8 1101.03 1098.21 1100.66 1101.37 1102.54 1100.9 1103.32 

          
ORB02 Min. (best) 889 892 889 889 894 892 889 897 

Optimal = 888 
Max. 934 940 941 942 941 945 941 945 

Average 910.57 912.56 917.16 918.62 920.88 920.90 919.20 922.24 

          
ORB03 Min. (best) 1022 1035 1022 1028 1029 1041 1039 1030 

Optimal = 1005 
Max. 1114 1121 1138 1134 1156 1156 1146 1174 

Average 1065.21 1071.79 1074.07 1076.22 1081.39 1090.06 1091.36 1092.30 

          
ORB04 Min. (best) 1006 1011 1005 1005 1011 1005 1005 1011 

Optimal = 1005 
Max. 1052 1062 1054 1060 1060 1062 1056 1062 

Average 1032.32 1034.17 1033.27 1033.36 1030.85 1033.51 1032.43 1031.96 

          
ORB05 Min. (best) 890 890 890 890 891 891 890 890 

Optimal = 887 
Max. 947 952 943 959 966 959 957 959 

Average 908.93 910.14 910.01 914.56 917.64 918.84 918.31 921.44 

          
ORB06 Min. (best) 1031 1028 1031 1030 1031 1031 1033 1031 

Optimal = 1010 
Max. 1088 1082 1088 1109 1087 1088 1112 1108 

Average 1055.24 1057.69 1061.23 1064.76 1063.00 1063.44 1065.02 1064.91 

          
ORB07 Min. (best) 397 400 398 397 397 400 399 417 

Optimal = 397 
Max. 421 422 431 419 422 428 429 421 

Average 408.72 409.54 410.68 406.91 410.19 411.27 410.68 411.24 

          
ORB08 Min. (best) 914 914 899 899 911 899 927 912 

Optimal = 899 
Max. 983 990 992 1001 1009 1002 1006 1006 

Average 945.73 948.27 951.72 952.84 955.76 958.75 960.66 962.64 

          
ORB09 Min. (best) 934 942 940 943 941 940 939 943 

Optimal = 934 
Max. 988 996 997 996 997 1007 996 997 

Average 960.29 961.51 963.55 963.48 964.37 963.60 961.48 964.51 

          
ORB10 Min. (best) 944 944 944 944 944 946 944 944 

Optimal = 944 
Max. 999 993 1004 1005 1005 1004 1004 1012 

Average 959.78 960.28 957.83 960.94 962.10 961.20 962.43 961.96 
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 In the Table 4.12, the results for ORB problem show that EPPX found the 

optimal solution in 5 instances (ORB04, ORB07-ORB10).  The best solutions found are 

located in the different numbers of parents for different instances thus it is proven that 

GA is not restricted to two parents crossover in order to find the best solution.  

 

 Table 4.13 presents the average computational time in 100 runs for different 

numbers of parents in each instance. 

 

Table 4.13: Computational Time 

Instances Size 

Computational time (in second)  

no. of parents 

3 4 5 6 7 8 9 10 

FT 06 6 x  6 3.24 3.48 2.78 3.72 3.12 3.44 3.52 3.53 

FT 10 10x10 192.99 195.63 198.07 194.35 192.10 193.66 203.56 197.60 

FT 20 20x  5 290.42 290.61 293.55 316.24 292.71 291.80 276.30 296.74 

ORB01 10x10 182.17 186.19 186.76 180.22 185.76 180.31 189.43 186.72 

ORB02 10x10 166.47 168.31 167.32 162.40 171.36 165.52 171.48 175.58 

ORB03 10x10 191.34 194.01 194.58 187.84 191.01 196.11 204.05 197.58 

ORB04 10x10 165.19 173.07 173.17 167.05 171.72 173.59 185.18 183.84 

ORB05 10x10 170.83 177.57 176.27 174.45 172.74 171.55 178.28 187.80 

ORB06 10x10 189.83 190.79 193.13 184.82 198.95 187.90 192.94 198.92 

ORB07 10x10 168.13 171.68 168.20 164.56 169.46 164.22 165.59 171.01 

ORB08 10x10 188.48 187.48 188.75 181.74 179.71 179.89 189.04 189.52 

ORB09 10x10 165.02 170.29 173.51 165.79 173.23 177.53 174.90 178.03 

ORB10 10x10 175.14 178.67 175.92 167.22 173.31 172.76 178.86 179.98 

ABZ5 10x10 165.07 165.07 165.99 156.42 161.96 158.92 170.12 171.79 

ABZ6 10x10 156.02 156.80 160.49 161.87 162.80 165.04 167.25 173.18 

ABZ7 20x15 1507.93 1486.89 1518.80 1542.58 1519.09 1460.59 1468.86 1608.26 

ABZ8 20x15 1545.53 1553.63 1536.08 1532.17 1503.69 1472.42 1485.99 1558.98 

ABZ9 20x15 1397.51 1368.41 1376.06 1377.28 1353.83 1336.95 1313.06 1393.12 

 

 

 The computational time in all instances varies due to the different structures of 

the problems. As it uses the heuristic method, computational times for repeated 

problems also do not have consistent values. The computational time for easy problem 

FT06 is very short because the optimal solutions can be found quickly and the GA 
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terminated and stopped running when it reaches the optimal solutions. The average 

computational time for difficult problem takes a longer time because some of the runs 

were unable to reach the optimal solution and they are only terminated at the end of the 

maximum number of generation. 

 

 Table 4.14 lists the results of FT problem run with multi-parents crossover and 

in non-hybrid environment with fixed maximum generation. Table 4.15 lists the results 

using the complete hybrid GA proposed for the FT problem. 

 

Table 4.14: Before Hybrid 

Instances Optimal Number of Parents 

    3 4 5 6 7 8 9 10 

FT06 55 55 55 55 55 55 55 55 55 

FT10 930 953 955 955 950 955 990 976 960 

FT20 1165 1204 1208 1211 1206 1228 1236 1254 1250 

 

 

Table 4.15: After Hybrid 

Instances Optimal Number of Parents 

    3 4 5 6 7 8 9 10 

FT06 55 55 55 55 55 55 55 55 55 

FT10 930 930 930 930 930 930 930 930 937 

FT20 1165 1178 1185 1184 1190 1187 1198 1183 1197 

 

 

 The proposed hybrid GA shows significant improvement compared to the GA 

with only multi-parents crossover. The hybrid GA can find the optimal solutions for the 

problem FT10 and the deviation between optimal solution and best found solution in 

FT20 is lesser than the GA with multi-parents crossover only. These notable 

improvements proved that the hybridization of GA with other methods is able to 

increase the performance of GA. 
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 Table 4.16 presents frequency of the best solutions found in each number of 

parents. It is observed that the top 4 numbers of parents contributed the most found best 

solutions are 3, 4, 5 and 6 number of parents. Figure 4.6 depicts the frequency of the 

number of parents 3, 4, 5 and 6 in achieving the most optimal or near optimal solutions. 

Thus, they may be considered as the best numbers of parents that may be used for the 

crossover operations. The number of parents equals 10 appears as the lowest to reach 

the optimal or near optimal value. The multi-parents crossover that achieved the best 

solutions has more tendencies to be on the left side of the graph, meaning that if the 

number of parents increases, the possibilities to find the best solutions will be lower. 

 

Table 4.16: Best Solutions for different No. of Parents 

Instances 
no. of parents 

3 4 5 6 7 8 9 10 

FT10 1 1 1 1 1 1 1 
 

FT20 1 
       

ABZ5 
 

1 
      

ABZ6 
  

1 
 

1 
   

ABZ7 1 
       

ABZ8 
 

1 
 

1 
    

ABZ9 
 

1 
  

1 
   

ORB01 
     

1 
  

ORB02 1 
 

1 1 
  

1 
 

ORB03 1 
 

1 
     

ORB04 
  

1 1 
 

1 1 
 

ORB05 1 1 1 1 
  

1 1 

ORB06 
 

1 
      

ORB07 1 
  

1 1 
   

ORB08 
  

1 1 
 

1 
  

ORB09 1 
       

ORB10 1 1 1 1 1   1 1 

Total 9 7 8 8 5 4 5 2 

 

 



83 
 

 

Figure 4.6: Bar Chart for Best Solutions for different No. of Parents 

 

 

4.6 Comparison with Others that are based on Permutation Crossover 

Operator 

 

 The comparison in Table 4.17 is made with other GA algorithms which adopt 

the concept of permutation crossover operator. The table contains the authors, year, 

crossover operator, and best solutions for the instances for comparison. Previously, the 

authors (Gen et al., 1994; Bierwirth, 1995) used only two parents for the crossover 

operation and the optimal result achieved for the FT10 and the deviation from the 

optimal solution for FT20 are less than 2%. The acceptable ranges of comparable GAs 

are up until 7% (Bierwirth, 1995). Therefore, the deviation ranges more than these 

values are considered not effective. Tested results reflect that the EPPX is able to obtain 

the solution within these values and considered applicable for solving the JSSP. The 

instance FT06 can be solved easily with the number of parents used for crossover 

ranging from 3 to 10 parents. For difficult problems such as the FT10, the EPPX also 

performs well as it is able to obtain the optimum solution with the number of parents 
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ranging from 3 to 9 in crossover operation. Meanwhile, when the variable of JSSP 

increases (instance FT20), deviation occurs between the optimal solution and EPPX 

solutions with the best solution 1178 found by using 3 parents in the EPPX’s crossover 

operation. 

 

Table 4.17: Comparison for FT06, FT10, and FT20 with n Jobs x m Machines 

Author(s) Year Crossover operator FT06 

(6x6) 

FT10 

(10x10) 

FT20 

(20x5) 

Optimum    55 930 1165 

Gen et al. 1994 Partial schedule exchange 

crossover 

55 962 1175 

Bierwirth  1995 Generalized Permutation GP-GA 55 936 1181 

Park et al. 2003 Parallel Genetic Algorithm PGA 55 930 1173 

Ripon et al. 2010 Improved Precedence 

Preservation Crossover IPPX 

55 930 1180 

 2012 Multi-Parents Crossover EPPX 55 930 1178 

    

 

 

4.7 Comparison with Results from the Literatures 

 

 The ABZ contains five instances with two different sizes of problems: 

10x10 and 20x15. In this problem, we compare our tested results with different JSSP 

strategies such as: hybridization of TS and SA (TSSA) (Zhang et al., 2008), parallel 

genetic algorithms (PGA) (Park et al., 2003), and greedy randomized adaptive search 

procedure (GRASP) (Binato et al., 2001). Table 4.18 and Table 4.19  list for each test 

instance, its name, size (number of jobs x number of machines), the best known 

solutions (BKS), the best solutions found (Best), multi-parents that obtained the best 

solutions (MP), and relative error (RE). The RE is calculated from the gap between Best 

and BKS in percentage. Total RE in the last column shows the total relative error which 

is used to analyze the effectiveness of the proposed algorithm. 
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 Results in Table 4.18 show the comparison between EPPX with three other 

methods. The EPPX performs only averagely if compared among the methods listed in 

the 10x10 problem size. When the sizes of the problems are increased to 20x15, the 

EPPX performs better compared to the PGA and GRASP with less relative errors with 

the overall best algorithm is the hybrid tabu search and simulated annealing of Zhang et 

al. (2008).  These significant results indicated that the EPPX is capable to adapt bigger 

size problems with comparable relative errors ranging from 0.3% to 7.0%. The best 

solutions found are located in the different numbers of parents for different instances. 

 

Table 4.18: Comparison for ABZ Problem 

Instances Size BKS 
 

EPPX 
 

TSSA 
 

PGA 
 

GRASP 

        Best RE MP   Best RE   Best RE   Best RE 

ABZ5 10x10 1234 
 

1234 0.00 4 
 

1234 0.00 
 

1236 0.16 
 

1238  0.32 

ABZ6 10x10 943 
 

943 0.00 5, 7 
 

943 0.00 
 

943 0.00 
 

947 0.42 

ABZ7 20x15 656 
 

680 3.66 3 
 

658 0.30 
 

685 4.42 
 

723 10.21 

ABZ8 20x15 665 
 

699 5.11 4,6 
 

667 0.30 
 

704 5.86 
 

729 9.62 

ABZ9 20x15 678 
 

708 4.42 4,7 
 

678 0.00 
 

723 6.64 
 

758 11.80 

Total RE   13.19        0.60     17.08     32.37 

 

 

Table 4.19: Comparison for ORB Problem 

Instances Size BKS 
 

EPPX 
 

TSSA 
 

PGA 
 

GRASP 

        Best RE MP   Best RE   Best RE   Best RE 

ORB01 10x10 1059 
 

1070 1.04 8 
 

1059 0.00 
 

1060 0.09 
 

1070 1.04 

ORB02 10x10 888 
 

889 0.11 3,5,6,9 
 

888 0.00 
 

889 0.11 
 

889 0.11 

ORB03 10x10 1005 
 

1022 1.69 3,5 
 

1005 0.00 
 

1020 1.49 
 

1021 1.59 

ORB04 10x10 1005 
 

1005 0.00 5,6,8,9 
 

1005 0.00 
 

1005 0.00 
 

1031 2.59 

ORB05 10x10 887 
 

890 0.34 3-6,9,10 
 

887 0.00 
 

889 0.23 
 

891 0.45 

ORB06 10x10 1010 
 

1028 1.78 4 
 

1010 0.00 
 

1013 0.30 
 

1013 0.30 

ORB07 10x10 397 
 

397 0.00 3,6,7 
 

397 0.00 
 

397 0.00 
 

397 0.00 

ORB08 10x10 899 
 

899 0.00 5,6,8 
 

899 0.00 
 

899 0.00 
 

909 1.11 

ORB09 10x10 934 
 

934 0.00 3 
 

934 0.00 
 

934 0.00 
 

945 1.18 

ORB10 10x10 944 
 

944 0.00 3-7,9,10 
 

944 0.00 
 

944 0.00 
 

953 0.95 

Total RE   4.96       0.00     2.22     9.32 
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 Table 4.19 lists the comparison for different methods. The hybrid GA (EPPX), 

which performs better than the GRASP, achieves optimal solutions for five problems 

(ORB04, ORB07, ORB08, ORB09, and ORB10). The EPPX and PGA have the same 

unsolved instances (ORB01, ORB02, ORB03, ORB05, and ORB06) but the total 

relative error (Total RE) of the PGA is slightly better compared to the EPPX. Overall, 

the performance of EPPX is comparable to all the three methods with the hybrid tabu 

search and simulated annealing of Zhang et al. (2008) performs the best overall.  

 

 Consequently, as can be seen in the problem size 10x10 (ABZ and ORB), both 

EPPX and PGA which propose a hybrid GA encounter difficulty in solving the 

problems compared to the TSSA which uses the hybridization of tabu search and 

simulated annealing. It is evident from Table 4.13 that when the problem sizes become 

larger and harder, the computational time takes more time to search for the solutions 

and this is especially true for problem ABZ7, ABZ8 and ABZ9.  

 

4.8 Conclusion 

 

 In the experimental results, EPPX using multi-parents is able to get the solutions 

within the acceptable range of GA values. Results show that the best solutions are 

obtained from different numbers of parents for crossover thus it is proven that GA able 

to use more than two parents crossover in order to find the best solution. The number of 

parents used in EPPX and GA is very much dependent on the problem instances and it 

may be observed by the best solutions for different instances were produced by different 

numbers of parents. Although EPPX outperforms some the proposed algorithms in the 

literatures for relatively larger problems but it still cannot achieve the best solution 

found especially on the open problems. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Conclusion 

 

 In Chapter 2, the job shop scheduling is described and formulated. The 

background of the job shop scheduling problem is explained in great detail and relevant 

literatures are presented. The requirements of this combinatorial scheduling problem 

and their constraints and assumption were converted into mathematical model. Related 

metaheuristics that are designed for Job Shop Scheduling Problem (JSSP) are reviewed 

and these algorithms are specially designed to tackle problems that are unable to be 

solved by the exact method. These heuristic methods are explored in search space with 

the iterative function to find the potential solutions. 

 

 The metaheuristics do not guarantee that the optimal solution can be found. 

Therefore, additional search methods are embedded or hybridize with metaheuristics to 

increase the accuracy in solving the problem. In the literature, these hybrid 

metaheuristics searching methods are classified as intensification and diversification 

(Zäpfel et al., 2010). The intensification mechanisms tend to find a good solution in a 

potential solution. Diversification will diversify the solution to escape from the 

entrapment of the local optima.  

 

 One of the hybrid metaheuristics, hybrids GA, also applies both mechanisms in 

the searching procedure. In most cases, the GA acts as a diversification mechanism that 

provides diversified potential solutions whereas the local search embedded into the GA 
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operates as the intensification of the searching and exploiting the potential solutions in 

search for better solutions. 

 

 In Chapter 3, our proposed hybrid GA is built on these approaches. The GA has 

a limitation in searching solutions because it faces the problems of premature 

convergence and large search space. Thus, the proposed iterative forward-backward 

pass and neighborhood search are used to overcome these problems. The proposed 

methods that build the hybrid GA are divided into three, the multi-parents crossover, 

neighborhood search on critical path and iterative forward-back pass. The multi-parents 

crossover proposed requires more than three parents to perform the recombination, the 

EPPX instead of using two parents for recombination. The neighborhood search in this 

hybrid GA acts as an intensification mechanism that attempts to search for the best 

solution by exploiting the provided current solutions. In the problem of the large search 

space, the search space is reduced by improving the quality of the chromosomes.  

 

 In Chapter 4, the algorithms are performed on selected benchmarks problems. 

Rigorous tests are carried out to determine suitable parameters for the algorithms and 

the initial parameters are set based on the literatures. The crossover rate and mutation 

parameter are acquired from the test on the FT 10 problem and they are applied to all 

instances. The maximum numbers of generations are adjusted to ensure that the 

comparable results are fair. The results from the simulations are compared with the 

different methods in the literatures to measure the capabilities of the algorithm. Through 

observation, the performance of this hybrid GA is comparable to other methods 

especially in its ability to become prominent when adapted to bigger size problems. This 

hybrid GA can still be improved to obtain better solutions.  
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 The objectives in this study are met. We proposed a new crossover operator 

EPPX and it is able to perform well if compared to the other crossover operators that 

use two parents crossover in the GA. The search spaces are reduced by applying the 

scheduling method from different areas of scheduling into the JSSP and it shows that 

there are improvements in searching for solutions. The neighborhood search shows that 

searching in the critical path reduces the makespan. This is because the critical path is 

determined by the length of the whole schedule so the search may concentrate on the 

changes of critical path for better solutions.  

 

 Consequently, these three methods combined together in a hybrid GA are able to 

increase the efficiency of the GA performance. The GA efficiency increases when 

embedded with the local search and iterative forward-backward schedule. Thus, we may 

conclude that the local search plays an important role in the GA to achieve the best 

solutions. 

 

 

5.2 Future Works 

 

 In future works, the hybrid GA needs to explore the combination with other 

local searches. As shown in the literatures of our research, the local search embedded 

into the GA perform better compared to the GA that does not combine with other 

methods. 

 

The proposed future works that need to be done are: 

 Adding more efficient local searches into the GA and capitalize the local search 

by using GA in the searching solution.  
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 Design a better algorithm to reduce the search space. The quality of the 

chromosome being increased through reduction of the search space. With better 

quality of chromosomes, the GA is able to produce better generation that 

contains the optimal or near optimal solutions. 

 

 The multi-parents crossover needs to be studied more to test its ability in the GA. 

In the JSSP, the multi-parents crossover variety needs to increase to allow more 

investigation in exploring the multi-parents crossover effects in the GA. 

 

 

 Hybridizing with other metaheuristics such as tabu search or simulated 

annealing and both, may result in a better algorithm. The GA may be used to 

generate some initial solutions and tabu search or simulated annealing (or both) 

may be used to intensify the solution. 

 

 The GA takes a longer time to find the best results compared to other methods. 

This is because it uses the iterative method where time will increase when being 

hybrid with other local searches. The calculation requires a longer time due to 

the complexity of the search algorithm. Good calculation methods should 

comprise of lower computational time and better results. In order to achieve 

these, the methods need to be improved by creating efficient methods. 
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APPENDIX A 
 

Instances for the Problems 

 

FT Problems 

 
instance ft06 

  

 +++++++++++++++++++++++++++++ 

 Fisher and Thompson 6x6 instance, alternate name (mt06) 

 6 6 

 2  1  0  3  1  6  3  7  5  3  4  6 

 1  8  2  5  4 10  5 10  0 10  3  4 

 2  5  3  4  5  8  0  9  1  1  4  7 

 1  5  0  5  2  5  3  3  4  8  5  9  

 2  9  1  3  4  5  5  4  0  3  3  1 

 1  3  3  3  5  9  0 10  4  4  2  1 

 +++++++++++++++++++++++++++++ 

  

 instance ft10 

  

 +++++++++++++++++++++++++++++ 

 Fisher and Thompson 10x10 instance, alternate name (mt10) 

 10 10 

 0 29 1 78 2  9 3 36 4 49 5 11 6 62 7 56 8 44 9 21 

 0 43 2 90 4 75 9 11 3 69 1 28 6 46 5 46 7 72 8 30 

 1 91 0 85 3 39 2 74 8 90 5 10 7 12 6 89 9 45 4 33 

 1 81 2 95 0 71 4 99 6  9 8 52 7 85 3 98 9 22 5 43 

 2 14 0  6 1 22 5 61 3 26 4 69 8 21 7 49 9 72 6 53 

 2 84 1  2 5 52 3 95 8 48 9 72 0 47 6 65 4  6 7 25 

 1 46 0 37 3 61 2 13 6 32 5 21 9 32 8 89 7 30 4 55 

 2 31 0 86 1 46 5 74 4 32 6 88 8 19 9 48 7 36 3 79 

 0 76 1 69 3 76 5 51 2 85 9 11 6 40 7 89 4 26 8 74 

 1 85 0 13 2 61 6  7 8 64 9 76 5 47 3 52 4 90 7 45 

 +++++++++++++++++++++++++++++ 

  

 instance ft20 

  

 +++++++++++++++++++++++++++++ 

 Fisher and Thompson 20x5 instance, alternate name (mt20) 

 20 5 

 0 29 1  9 2 49 3 62 4 44 

 0 43 1 75 3 69 2 46 4 72 

 1 91 0 39 2 90 4 12 3 45 

 1 81 0 71 4  9 2 85 3 22 

 2 14 1 22 0 26 3 21 4 72 

 2 84 1 52 4 48 0 47 3  6 

 1 46 0 61 2 32 3 32 4 30 

 2 31 1 46 0 32 3 19 4 36 

 0 76 3 76 2 85 1 40 4 26 

 1 85 2 61 0 64 3 47 4 90 

 1 78 3 36 0 11 4 56 2 21 

 2 90 0 11 1 28 3 46 4 30 

 0 85 2 74 1 10 3 89 4 33 

 2 95 0 99 1 52 3 98 4 43 

 0  6 1 61 4 69 2 49 3 53 

 1  2 0 95 3 72 4 65 2 25 

 0 37 2 13 1 21 3 89 4 55 

 0 86 1 74 4 88 2 48 3 79 

 1 69 2 51 0 11 3 89 4 74 

 0 13 1  7 2 76 3 52 4 45 

 +++++++++++++++++++++++++++++ 

 

 
ABZ Problems 

 
 instance abz5 

  

 +++++++++++++++++++++++++++++ 

 Adams, Balas, and Zawack 10x10 instance (Table 1, instance 5) 

 10 10 

 4 88 8 68 6 94 5 99 1 67 2 89 9 77 7 99 0 86 3 92 

 5 72 3 50 6 69 4 75 2 94 8 66 0 92 1 82 7 94 9 63 

 9 83 8 61 0 83 1 65 6 64 5 85 7 78 4 85 2 55 3 77 
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 7 94 2 68 1 61 4 99 3 54 6 75 5 66 0 76 9 63 8 67 

 3 69 4 88 9 82 8 95 0 99 2 67 6 95 5 68 7 67 1 86 

 1 99 4 81 5 64 6 66 8 80 2 80 7 69 9 62 3 79 0 88 

 7 50 1 86 4 97 3 96 0 95 8 97 2 66 5 99 6 52 9 71 

 4 98 6 73 3 82 2 51 1 71 5 94 7 85 0 62 8 95 9 79 

 0 94 6 71 3 81 7 85 1 66 2 90 4 76 5 58 8 93 9 97 

 3 50 0 59 1 82 8 67 7 56 9 96 6 58 4 81 5 59 2 96 

 +++++++++++++++++++++++++++++ 

  

 instance abz6 

  

 +++++++++++++++++++++++++++++ 

 Adams, and Zawack 10x10 instance (Table 1, instance 6) 

 10 10 

 7 62 8 24 5 25 3 84 4 47 6 38 2 82 0 93 9 24 1 66 

 5 47 2 97 8 92 9 22 1 93 4 29 7 56 3 80 0 78 6 67 

 1 45 7 46 6 22 2 26 9 38 0 69 4 40 3 33 8 75 5 96 

 4 85 8 76 5 68 9 88 3 36 6 75 2 56 1 35 0 77 7 85 

 8 60 9 20 7 25 3 63 4 81 0 52 1 30 5 98 6 54 2 86 

 3 87 9 73 5 51 2 95 4 65 1 86 6 22 8 58 0 80 7 65 

 5 81 2 53 7 57 6 71 9 81 0 43 4 26 8 54 3 58 1 69 

 4 20 6 86 5 21 8 79 9 62 2 34 0 27 1 81 7 30 3 46 

 9 68 6 66 5 98 8 86 7 66 0 56 3 82 1 95 4 47 2 78 

 0 30 3 50 7 34 2 58 1 77 5 34 8 84 4 40 9 46 6 44 

 +++++++++++++++++++++++++++++ 

  

 instance abz7 

  

 +++++++++++++++++++++++++++++ 

 Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7) 

 20 15 

  2 24  3 12  9 17  4 27  0 21  6 25  8 27  7 26  1 30  5 31 11 18 14 16 13 39 10 19 12 26 

  6 30  3 15 12 20 11 19  1 24 13 15 10 28  2 36  5 26  7 15  0 11  8 23 14 20  9 26  4 28 

  6 35  0 22 13 23  7 32  2 20  3 12 12 19 10 23  9 17  1 14  5 16 11 29  8 16  4 22 14 22 

  9 20  6 29  1 19  7 14 12 33  4 30  0 32  5 21 11 29 10 24 14 25  2 29  3 13  8 20 13 18 

 11 23 13 20  1 28  6 32  7 16  5 18  8 24  9 23  3 24 10 34  2 24  0 24 14 28 12 15  4 18 

  8 24 11 19 14 21  1 33  7 34  6 35  5 40 10 36  3 23  2 26  4 15  9 28 13 38 12 13  0 25 

 13 27  3 30  6 21  8 19 12 12  4 27  2 39  9 13 14 12  5 36 10 21 11 17  1 29  0 17  7 33 

  5 27  4 19  6 29  9 20  3 21 10 40  8 14 14 39 13 39  2 27  1 36 12 12 11 37  7 22  0 13 

 13 32 11 29  8 24  3 27  5 40  4 21  9 26  0 27 14 27  6 16  2 21 10 13  7 28 12 28  1 32 

 12 35  1 11  5 39 14 18  7 23  0 34  3 24 13 11  8 30 11 31  4 15 10 15  2 28  9 26  6 33 

 10 28  5 37 12 29  1 31  7 25  8 13 14 14  4 20  3 27  9 25 13 31 11 14  6 25  2 39  0 36 

  0 22 11 25  5 28 13 35  4 31  8 21  9 20 14 19  2 29  7 32 10 18  1 18  3 11 12 17  6 15 

 12 39  5 32  2 36  8 14  3 28 13 37  0 38  6 20  7 19 11 12 14 22  1 36  4 15  9 32 10 16 

  8 28  1 29 14 40 12 23  4 34  5 33  6 27 10 17  0 20  7 28 11 21  2 21 13 20  9 33  3 27 

  9 21 14 34  3 30 12 38  0 11 11 16  2 14  5 14  1 34  8 33  4 23 13 40 10 12  6 23  7 27 

  9 13 14 40  7 36  4 17  0 13  5 33  8 25 13 24 10 23  3 36  2 29  1 18 11 13  6 33 12 13 

  3 25  5 15  2 28 12 40  7 39  1 31  8 35  6 31 11 36  4 12 10 33 14 19  9 16 13 27  0 21 

 12 22 10 14  0 12  2 20  5 12  1 18 11 17  8 39 14 31  3 31  7 32  9 20 13 29  4 13  6 26 

  5 18 10 30  7 38 14 22 13 15 11 20  9 16  3 17  1 12  2 13 12 40  6 17  8 30  4 38  0 13 

  9 31  8 39 12 27  1 14  5 33  3 31 11 22 13 36  0 16  7 11 14 14  4 29  6 28  2 22 10 17 

 +++++++++++++++++++++++++++++ 

  

 instance abz8 

  

 +++++++++++++++++++++++++++++ 

 Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 8) 

 20 15 

  0 19  9 33  2 32 13 18 10 39  8 34  6 25  4 36 11 40 12 33  1 31 14 30  3 34  5 26  7 13 

  9 11 10 22 14 19  5 12  4 25  6 38  0 29  7 39 13 19 11 22  1 23  3 20  2 40 12 19  8 26 

  3 25  8 17 11 24 13 40 10 32 14 16  5 39  9 19  0 24  1 39  4 17  2 35  7 38  6 20 12 31 

 14 22  3 36  2 34 12 17  4 30 13 12  1 13  6 25  9 12  7 18 10 31  0 39  5 40  8 26 11 37 

 12 32 14 15  1 35  7 13  8 32 11 23  6 22  4 21  0 38  2 38  3 40 10 31  5 11 13 37  9 16 

 10 23 12 38  8 11 14 27  9 11  6 25  5 14  4 12  2 27 11 26  7 29  3 28 13 21  0 20  1 30 

  6 39  8 38  0 15 12 27 10 22  9 27  2 32  4 40  3 12 13 20 14 21 11 22  5 17  7 38  1 27 

 11 11 13 24 10 38  8 15  9 19 14 13  5 30  0 26  2 29  6 33 12 21  1 15  3 21  4 28  7 33 

  8 20  6 17  5 26  3 34  9 23  0 16  2 18  4 35 12 24 10 16 11 26  7 12 14 13 13 27  1 19 

  1 18  7 37 14 27  9 40  5 40  6 17  8 22  3 17 10 30  0 38  4 21 12 32 11 24 13 24  2 30 

 11 19  0 22 13 36  6 18  5 22  3 17 14 35 10 34  7 23  8 19  2 29  1 22 12 17  4 33  9 39 

  6 32  3 22 12 24  5 13  4 13  1 11  0 11 13 25  8 13  2 15 10 33 11 17 14 16  9 38  7 24 

 14 16 13 16  1 37  8 25  2 26  3 11  9 34  4 14  0 20  6 36 12 12  5 29 10 25  7 32 11 12 

  8 20 10 24 11 27  9 38  5 34 12 39  7 33  4 37  2 31 13 15 14 34  3 33  6 26  1 36  0 14 

  8 31  0 17  9 13  1 21 10 17  7 19 13 14  3 40  5 32 11 25  2 34 14 23  6 13 12 40  4 26 

  8 38 12 17  3 14 13 17  4 12  1 35  6 35  0 19 10 36  7 19  9 29  2 31  5 26 11 35 14 37 

 14 20  3 16  0 33 10 14  5 27  7 31  8 16  6 31 12 28  9 37  4 37  2 29 11 38  1 30 13 36 

 11 18  3 37 14 16  6 15  8 14 12 11 13 32  5 12  1 11 10 29  7 19  4 12  9 18  2 26  0 39 

 11 11  2 11 12 22  9 35 14 20  7 31  4 19  3 39  5 28  6 33 10 34  1 38  0 20 13 17  8 28 

  2 12 12 25  5 23  8 21  6 27  9 30 14 23 11 39  3 26 13 34  7 17  1 24  4 12  0 19 10 36 

 +++++++++++++++++++++++++++++ 

  

 instance abz9 

  

 +++++++++++++++++++++++++++++ 

 Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 9) 

 20 15 

  6 14  5 21  8 13  4 11  1 11 14 35 13 20 11 17 10 18 12 11  2 23  3 13  0 15  7 11  9 35 
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  1 35  5 31  0 13  3 26  6 14  9 17  7 38 12 20 10 19 13 12  8 16  4 34 11 15 14 12  2 14 

  0 30  4 35  2 40 10 35  6 30 14 23  8 29 13 37  7 38  3 40  9 26 12 11  1 40 11 36  5 17 

  7 40  5 18  4 12  8 23  0 23  9 14 13 16 12 14 10 23  3 12  6 16 14 32  1 40 11 25  2 29 

  2 35  3 15 12 31 11 28  6 32  4 30 10 27  7 29  0 38 13 11  1 23 14 17  5 27  9 37  8 29 

  5 33  3 33  6 19 12 40 10 19  0 33 13 26  2 31 11 28  7 36  4 38  1 21 14 25  9 40  8 35 

 13 25  0 32 11 33 12 18  4 32  6 28  5 15  3 35  9 14  2 34  7 23 10 32  1 17 14 26  8 19 

  2 16 12 33  9 34 11 30 13 40  8 12 14 26  5 26  6 15  3 21  1 40  4 32  0 14  7 30 10 35 

  2 17 10 16 14 20  6 24  8 26  3 36 12 22  0 14 13 11  9 20  7 23  1 29 11 23  4 15  5 40 

  4 27  9 37  3 40 11 14 13 25  7 30  0 34  2 11  5 15 12 32  1 36 10 12 14 28  8 31  6 23 

 13 25  0 22  3 27  8 14  5 25  6 20 14 18  7 14  1 19  2 17  4 27  9 22 12 22 11 27 10 21 

 14 34 10 15  0 22  3 29 13 34  6 40  7 17  2 32 12 20  5 39  4 31 11 16  1 37  8 33  9 13 

  6 12 12 27  4 17  2 24  8 11  5 19 14 11  3 17  9 25  1 11 11 31 13 33  7 31 10 12  0 22 

  5 22 14 15  0 16  8 32  7 20  4 22  9 11 13 19  1 30 12 33  6 29 11 18  3 34 10 32  2 18 

  5 27  3 26 10 28  6 37  4 18 12 12 11 11 13 26  7 27  9 40 14 19  1 24  2 18  0 12  8 34 

  8 15  5 28  9 25  6 32  1 13  7 38 11 11  2 34  4 25  0 20 10 32  3 23 12 14 14 16 13 20 

  1 15  4 13  8 37  3 14 10 22  5 24 12 26  7 22  9 34 14 22 11 19 13 32  0 29  2 13  6 35 

  7 36  5 33 13 28  9 20 10 30  4 33 14 29  0 34  3 22 11 12  6 30  8 12  1 35  2 13 12 35 

 14 26 11 31  5 35  2 38 13 19 10 35  4 27  8 29  3 39  9 13  6 14  7 26  0 17  1 22 12 15 

  1 36  7 34 11 33  8 17 14 38  6 39  5 16  3 27 13 29  2 16  0 16  4 19  9 40 12 35 10 39 

 +++++++++++++++++++++++++++++ 

 

 
ORB Problems 

 
instance orb01 

  

 +++++++++++++++++++++++++++++ 

 trivial 10x10 instance from Bill Cook (BIC2) 

 10 10 

 0 72 1 64 2 55 3 31 4 53 5 95 6 11 7 52 8  6 9 84 

 0 61 3 27 4 88 2 78 1 49 5 83 8 91 6 74 7 29 9 87 

 0 86 3 32 1 35 2 37 5 18 4 48 6 91 7 52 9 60 8 30 

 0  8 1 82 4 27 3 99 6 74 5  9 2 33 9 20 7 59 8 98 

 1 50 0 94 5 43 3 62 4 55 7 48 2  5 8 36 9 47 6 36 

 0 53 6 30 2  7 3 12 1 68 8 87 4 28 9 70 7 45 5  7 

 2 29 3 96 0 99 1 14 4 34 7 14 5  7 6 76 8 57 9 76 

 2 90 0 19 3 87 4 51 1 84 5 45 9 84 6 58 7 81 8 96 

 2 97 1 99 4 93 0 38 7 13 5 96 3 40 9 64 6 32 8 45 

 2 44 0 60 8 29 3  5 6 74 1 85 4 34 7 95 9 51 5 47 

 +++++++++++++++++++++++++++++ 

  

 instance orb02 

  

 +++++++++++++++++++++++++++++ 

 doomed 10x10 instance from Monika (MON2) 

 10 10 

 0 72 1 54 2 33 3 86 4 75 5 16 6 96 7  7 8 99 9 76 

 0 16 3 88 4 48 8 52 9 60 6 29 7 18 5 89 2 80 1 76 

 0 47 7 11 3 14 2 56 6 16 4 83 1 10 5 61 8 24 9 58 

 0 49 1 31 3 17 8 50 5 63 2 35 4 65 7 23 6 50 9 29 

 0 55 6  6 1 28 3 96 5 86 2 99 9 14 7 70 8 64 4 24 

 4 46 0 23 6 70 8 19 2 54 3 22 9 85 7 87 5 79 1 93 

 4 76 3 60 0 76 9 98 2 76 1 50 8 86 7 14 6 27 5 57 

 4 93 6 27 9 57 3 87 8 86 2 54 7 24 5 49 0 20 1 47 

 2 28 6 11 8 78 7 85 4 63 9 81 3 10 1  9 5 46 0 32 

 2 22 9 76 5 89 8 13 6 88 3 10 7 75 4 98 1 78 0 17 

 +++++++++++++++++++++++++++++ 

  

 instance orb03 

  

 +++++++++++++++++++++++++++++ 

 deadlier 10x10 instance from Bruce Gamble (BRG1) 

 10 10 

 0 96 1 69 2 25 3  5 4 55 5 15 6 88 7 11 8 17 9 82 

 0 11 1 48 2 67 3 38 4 18 7 24 6 62 5 92 9 96 8 81 

 2 67 1 63 0 93 4 85 3 25 5 72 6 51 7 81 8 58 9 15 

 2 30 1 35 0 27 4 82 3 44 7 92 6 25 5 49 9 28 8 77 

 1 53 0 83 4 73 3 26 2 77 6 33 5 92 9 99 8 38 7 38 

 1 20 0 44 4 81 3 88 2 66 6 70 5 91 9 37 8 55 7 96 

 1 21 2 93 4 22 0 56 3 34 6 40 7 53 9 46 5 29 8 63 

 1 32 2 63 4 36 0 26 3 17 5 85 7 15 8 55 9 16 6 82 

 0 73 2 46 3 89 4 24 1 99 6 92 7  7 9 51 5 19 8 14 

 0 52 2 20 3 70 4 98 1 23 5 15 7 81 8 71 9 24 6 81 

 +++++++++++++++++++++++++++++ 

  

 instance orb04 

  

 +++++++++++++++++++++++++++++ 

 deadly 10x10 instance from Bruce Shepherd (BRS1) 

 10 10 
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 0  8 1 10 2 35 3 44 4 15 5 92 6 70 7 89 8 50 9 12 

 0 63 8 39 3 80 5 22 2 88 1 39 9 85 6 27 7 74 4 69 

 0 52 6 22 1 33 3 68 8 27 2 68 5 25 4 34 7 24 9 84 

 0 31 1 85 4 55 8 80 5 58 7 11 6 69 9 56 3 73 2 25 

 0 97 5 98 9 87 8 47 7 77 4 90 3 98 2 80 1 39 6 40 

 1 97 5 68 0 44 9 67 2 44 8 85 3 78 6 90 7 33 4 81 

 0 34 3 76 8 48 7 61 9 11 2 36 4 33 6 98 1  7 5 44 

 0 44 9  5 4 85 1 51 5 58 7 79 2 95 6 48 3 86 8 73 

 0 24 1 63 9 48 7 77 8 73 6 74 4 63 5 17 2 93 3 84 

 0 51 2  5 4 40 9 60 1 46 5 58 8 54 3 72 6 29 7 94 

 +++++++++++++++++++++++++++++ 

  

 instance orb05 

  

 +++++++++++++++++++++++++++++ 

 10x10 instance from George Steiner (GES1) 

 10 10 

 9 11 8 93 0 48 7 76 6 13 5 71 3 59 2 90 4 10 1 65 

 8 52 9 76 0 84 7 73 5 56 4 10 6 26 2 43 3 39 1 49 

 9 28 8 44 7 26 6 66 4 68 5 74 3 27 2 14 1  6 0 21 

 0 18 1 58 3 62 2 46 6 25 4  6 5 60 7 28 8 80 9 30 

 0 78 1 47 7 29 5 16 4 29 6 57 3 78 2 87 8 39 9 73 

 9 66 8 51 3 12 7 64 5 67 4 15 6 66 2 26 1 20 0 98 

 8 23 9 76 6 45 7 75 5 24 3 18 4 83 2 15 1 88 0 17 

 9 56 8 83 7 80 6 16 4 31 5 93 3 30 2 29 1 66 0 28 

 9 79 8 69 2 82 4 16 5 62 3 41 6 91 7 35 0 34 1 75 

 0  5 1 19 2 20 3 12 4 94 5 60 6 99 7 31 8 96 9 63 

 +++++++++++++++++++++++++++++ 

  

 instance orb06 

  

 +++++++++++++++++++++++++++++ 

 trivial 10X10 instance from Bill Cook (BIC1) 

 10 10 

 0 99 1 74 2 49 3 67 4 17 5  7 6  9 7 39 8 35 9 49 

 0 49 3 67 4 82 2 92 1 62 5 84 8 45 6 30 7 42 9 71 

 0 26 3 33 1 82 2 98 5 83 4 16 6 64 7 65 9 36 8 77 

 0 41 1 62 4 73 3 94 6 51 5 46 2 55 9 31 7 64 8 46 

 1 68 0 26 5 50 3 46 4 25 7 88 2  6 8 13 9 98 6 84 

 0 24 6 80 2 91 3 55 1 48 8 99 4 72 9 91 7 84 5 12 

 2 16 3 13 0  9 1 58 4 23 7 85 5 36 6 89 8 71 9 41 

 2 54 0 41 3 38 4 53 1 11 5 74 9 88 6 46 7 41 8 65 

 2 53 1 50 4 40 0 90 7  7 5 80 3 57 9 60 6 91 8 47 

 2 45 0 59 8 81 3 99 6 71 1 19 4 75 7 77 9 94 5 95 

 +++++++++++++++++++++++++++++ 

  

 instance orb07 

  

 +++++++++++++++++++++++++++++ 

 doomed 10x10 instance from Monika (MON1) 

 10 10 

 0 32 1 14 2 15 3 37 4 18 5 43 6 19 7 27 8 28 9 31 

 0  8 3 12 4 49 8 24 9 52 6 19 7 23 5 19 2 17 1 32 

 0 25 7 19 3 27 2 45 6 21 4 15 1 13 5 16 8 43 9 19 

 0 24 1 18 3 41 8 29 5 14 2 17 4 23 7 15 6 18 9 23 

 0 27 6 29 1 39 3 21 5 15 2 15 9 25 7 26 8 44 4 20 

 4 17 0 15 6 51 8 17 2 46 3 16 9 33 7 25 5 30 1 25 

 4 15 3 31 0 25 9 12 2 13 1 51 8 19 7 21 6 12 5 26 

 4  8 6 29 9 25 3 15 8 17 2 22 7 32 5 20 0 11 1 28 

 2 41 6 10 8 32 7  5 4 21 9 59 3 26 1 10 5 16 0 29 

 2 20 9  7 5 44 8 22 6 33 3 25 7 29 4 12 1 14 0  0 

 +++++++++++++++++++++++++++++ 

  

 instance orb08 

  

 +++++++++++++++++++++++++++++ 

 deadlier 10x10 instance from Bruce Gamble (BRG2) 

 10 10 

 0 55 1 74 2 45 3 23 4 76 5 19 6 18 7 61 8 44 9 11 

 0 63 1 43 2 51 3 18 4 42 7 11 6 29 5 52 9 29 8 88 

 2 88 1 31 0 47 4 10 3 62 5 60 6 58 7 29 8 52 9 92 

 2 16 1 71 0 55 4 55 3  9 7 49 6 83 5 54 9  7 8 57 

 1  7 0 41 4 92 3 94 2 46 6 79 5 34 9 38 8  8 7 18 

 1 25 0  5 4 89 3 94 2 14 6 94 5 20 9 23 8 44 7 39 

 1 24 2 21 4 47 0 40 3 94 6 71 7 89 9 75 5 97 8 15 

 1  5 2  7 4 74 0 28 3 72 5 61 7  9 8 53 9 32 6 97 

 0 34 2 52 3 37 4  6 1 94 6  6 7 56 9 41 5  5 8 16 

 0 77 2 74 3 82 4 10 1 29 5 15 7 51 8 65 9 37 6 21 

 +++++++++++++++++++++++++++++ 
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 instance orb09 

  

 +++++++++++++++++++++++++++++ 

 deadly 10x10 instance from Bruce Shepherd (BRS2) 

 10 10 

 0 36 1 96 2 86 3  7 4 20 5  9 6 39 7 79 8 82 9 24 

 0 16 8 95 3 67 5 63 2 87 1 24 9 62 6 49 7 92 4 16 

 0 65 6 71 1  9 3 67 8 70 2 48 5 49 4 66 7  5 9 96 

 0 50 1 31 4  6 8 13 5 98 7 97 6 93 9 30 3 34 2 83 

 0 99 5  7 9 55 8 78 7 68 4 81 3 90 2 75 1 66 6 40 

 1 42 5 11 0  5 9 39 2 10 8 30 3 39 6 50 7 20 4 51 

 0 38 3 68 8 86 7 77 9 32 2 89 4 37 6 53 1 43 5 89 

 0 19 9 11 4 37 1 41 5 72 7  7 2 52 6 31 3 68 8 10 

 0 83 1 21 9 23 7 87 8 58 6 89 4 74 5 29 2 74 3 23 

 0 44 2 57 4 69 9 50 1 65 5 69 8 60 3 58 6 89 7 13 

 +++++++++++++++++++++++++++++ 

  

 instance orb10 

  

 +++++++++++++++++++++++++++++ 

 10x10 instance from George Steiner (GES2) 

 10 10 

 9 66 8 13 0 93 7 91 6 14 5 70 3 99 2 53 4 86 1 16 

 8 34 9 99 0 62 7 65 5 62 4 64 6 21 2 12 3  9 1 75 

 9 12 8 26 7 64 6 92 4 67 5 28 3 66 2 83 1 38 0 58 

 0 77 1 73 3 82 2 75 6 84 4 19 5 18 7 89 8  8 9 73 

 0 34 1 74 7 48 5 44 4 92 6 40 3 60 2 62 8 22 9 67 

 9  8 8 85 3 58 7 97 5 92 4 89 6 75 2 77 1 95 0  5 

 8 52 9 43 6  5 7 78 5 12 3 62 4 21 2 80 1 60 0 31 

 9 81 8 23 7 23 6 75 4 78 5 56 3 51 2 39 1 53 0 96 

 9 79 8 55 2 88 4 21 5 83 3 93 6 47 7 10 0 63 1 14 

 0 43 1 63 2 83 3 29 4 52 5 98 6 54 7 39 8 33 9 23 

 +++++++++++++++++++++++++++++ 
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APPENDIX B 
 

Main Structure of Hybrid GA Programming in MATLAB 

 
%JOB SHOP INPUT 

%Machine sequence based on the job and operation 

M= [0,1,2,3,4,5,6,7,8,9;... 

    0,2,4,9,3,1,6,5,7,8;... 

    1,0,3,2,8,5,7,6,9,4;... 

    1,2,0,4,6,8,7,3,9,5;... 

    2,0,1,5,3,4,8,7,9,6;... 

    2,1,5,3,8,9,0,6,4,7;... 

    1,0,3,2,6,5,9,8,7,4;... 

    2,0,1,5,4,6,8,9,7,3;... 

    0,1,3,5,2,9,6,7,4,8;... 

    1,0,2,6,8,9,5,3,4,7 ]; 

             

p= [29,78, 9,36,49,11,62,56,44,21;... 

    43,90,75,11,69,28,46,46,72,30;... 

    91,85,39,74,90,10,12,89,45,33;... 

    81,95,71,99, 9,52,85,98,22,43;... 

    14, 6,22,61,26,69,21,49,72,53;... 

    84, 2,52,95,48,72,47,65, 6,25;... 

    46,37,61,13,32,21,32,89,30,55;... 

    31,86,46,74,32,88,19,48,36,79;... 

    76,69,76,51,85,11,40,89,26,74;... 

    85,13,61, 7,64,76,47,52,90,45 ]; 

  

  

[Mrow,Mcolumn]=size(M); 

for i=1:Mrow 

   S=M(i,:); 

    

   for j=1:Mcolumn 

    S(j)=S(j)+1; 

   end 

   M(i,:)=S; 

end 

  

%INITIALIZATION 

NIND = 100;     %numbers of individuals per populations (population size) 

MAXGEN=150;     %maximum number of generations (1 generation = population size* cross over rate) 

OXrate= 0.7;    %crossover possibilities (rate) 

MUTrate=1.0;    %mutation possibilities (rate) 

noprt=3;        %number of parents  

gen=0;          %initial counter for iteration 

  

tic 

%create chromosomes 

BaseV= crtbase ([10 10 10 10 10 10 10 10 10 10],[1 2 3 4 5 6 7 8 9 10]); 

Chrom = zeros(NIND, length(BaseV)); 

for C=1:NIND 

    randjob=randperm(length(BaseV)); 

    Chrom(C,:)=randjob; 

    for C1=1:length(BaseV) 

        ChromJ=Chrom(C,C1); 

        Chrom(C,C1)=BaseV(ChromJ); 

    end 

end 

  

%EVALUATION 

for D=1:NIND 

    Chro=Chrom(D,:);    

    [MStart,MFinish,MJob,MSeq]=scheduling13(M,p,Chro);   

    [Mm,Mn]=size(MFinish); 

    Makespan(D,1)=max(reshape(MFinish,1,Mm*Mn));     

end 

ObjV=Makespan; 

  

  

%find minimum makespan at initial population 

MinVal=min(ObjV); 

  

%calculate solutions generated after recombination 

Num=NIND/noprt; 

Num1=fix(Num); 

ObjVSel=zeros(Num1,1); 

  

% Generational loop 

   while gen < MAXGEN  

  

    % Assign fitness-value to entire population 

        FitnV = ranking(ObjV); 

         

    % Select individuals for breeding 

        SelCh = select('sus', Chrom, FitnV); 

         

    % Recombine selected individuals (crossover) 
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        SelCh01=crsovr_multi01_3(SelCh,NIND,OXrate,noprt); 

  

    % Perform mutation on offspring 

        SelCh01=mtt(SelCh01,Num1,MUTrate); 

         

        for E=1:Num1 

            Chro=SelCh01(E,:); 

             

            % Perform iterative forward-backward pass 

            [Chro,MakespanA]=CP_FB(M,p,Chro);  

                

            % Perform neighborhood seach 

            [Chro,MakespanA]=CP_SIN(M,p,Chro); 

  

            % Evaluation on the offspring for reinsertion 

            SelCh01(E,:)=Chro; 

            Makespan01(E,1)=MakespanA; 

        end 

        ObjVSel=Makespan01; 

    %default reinsertion in the GA toolbox 

        [Chrom ObjV]=reins(Chrom,SelCh01,1,[1 0.3],ObjV,ObjVSel); 

  

        

    %get the minimum  makespan new population and compare 

        MinRsrt=min(ObjV); 

  

        if MinVal>MinRsrt 

           MinVal=MinRsrt; 

  

        end 

  

    % Increment generational counter        

   gen = gen+1; 

    

   end 

  

%get the best  solution 

BestMinVal=MinVal 

    

 toc      

     

% End of GA 

 

 

Initialize chromosome 

 
% CRTBASE.m - Create base vector  

% 

% This function creates a vector containing the base of the loci 

% in a chromosome. 

% 

% Syntax: BaseVec = crtbase(Lind, Base) 

% 

% Input Parameters: 

% 

%       Lind    - A scalar or vector containing the lengths 

%                 of the alleles.  Sum(Lind) is the length of 

%                 the corresponding chromosome. 

% 

%       Base    - A scalar or vector containing the base of 

%                 the loci contained in the Alleles. 

% 

% Output Parameters: 

% 

%       BaseVec - A vector whose elements correspond to the base 

%                 of the loci of the associated chromosome structure. 

% 

 

function BaseVec = crtbase(Lind, Base) 

  

[ml LenL] = size(Lind) ; 

if nargin < 2  

    Base = 2 * ones(LenL,1) ; % default to base 2 

end 

[mb LenB] = size(Base) ; 

  

% check parameter consistency 

if ml > 1 | mb > 1 

    error( 'Lind or Base is not a vector') ; 

elseif (LenL > 1 & LenB > 1 & LenL ~= LenB) | (LenL == 1 & LenB > 1 )  

    error( 'Vector dimensions must agree' ) ; 

elseif LenB == 1 & LenL > 1 

    Base = Base * ones(LenL,1) ; 

end 

  

BaseVec = [] ; 

for i = 1:LenL 

    BaseVec = [BaseVec, Base(i)*ones(Lind(i),1)']; 

end 
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Evaluation (Generate Active Schedule by Forward Pass) 

 
function [MFinishA,MStartA,MJobM,ChroMMM]=CP_Fwd(M,p,Chro) 

  

[i,j]=size(M); 

  

%get the matrix for the machine 

MStartA=zeros(j,i); 

MFinishA=zeros(j,i); 

MJobM=zeros(j,i); 

  

%get the matrix for the job for record purpose 

FpcopyM=zeros(i,j); 

SpcopyM=zeros(i,j); 

MMJob=zeros(i,j); 

maxChro=length(Chro); 

  

%chromosome for the machines 

MChro=Chro; 

  

for k=1:maxChro 

    gene=MChro(1); 

    ind=find(MChro==gene); 

    getpos=length(ind); 

    remain=j-getpos; 

     

    %change the matrix to chromosome for the time and machine  

    NChroM(1,k)=M(gene,1+remain); 

        

  

    MChro(1)=[]; 

end 

  

Chro2=Chro; 

  

   %find the ealiest completion time for each operation 

   for movB=1:maxChro 

       %find the machine position 

        geneB=NChroM(1); 

        indB=find(NChroM==geneB); 

        getposB=length(indB); 

        remainB=i-getposB; 

         

        %the chro(job) number 

        geneC=Chro2(1); 

        indC=find(Chro2==geneC); 

        getposC=length(indC); 

        remainC=j-getposC; 

         

        %if the job operation is 1 

        if  remainC==0 

             

            %check the possiblilities for the for 1st job at machine 

            if MStartA(geneB,1)>=p(geneC,1+remainC) 

                     

                    %insertion for the job 

                    FMMFinishA=MFinishA(geneB,:); 

                    SMMStartA=MStartA(geneB,:); 

                    MMMJobM=MJobM(geneB,:); 

                    insertA=p(geneC,1+remainC) ; 

                    FMMFinishA(end)=[]; 

                    SMMStartA(end)=[]; 

                    MMMJobM(end)=[]; 

                    FMMFinishA=[insertA  FMMFinishA(1:end)]; 

                    SMMStartA=[0 SMMStartA(1:end)]; 

                    MMMJobM=[Chro2(1) MMMJobM(1:end)]; 

                     

                    %get the machine time 

                    MFinishA(geneB,:)= FMMFinishA; 

                    MStartA(geneB,:)=SMMStartA; 

                    MJobM(geneB,:)=MMMJobM; 

                     

                    %get the job time 

                    FpcopyM(geneC,1+remainC)=insertA; 

                    SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC)); 

                    MMJob(geneC,1+remainC)=geneB; 

            else 

                    %check the possibilities of insertion for the 2nd job or above for machine 

                    movC=1; 

               while  (MStartA(geneB,movC+1)-MFinishA(geneB,movC))<p(geneC,1+remainC) && movC<(i-1) 

                   movC=movC+1; 

               end 

        

               if (MStartA(geneB,movC+1)-MFinishA(geneB,movC))>=p(geneC,1+remainC)   

                    

                    FMMFinishA=MFinishA(geneB,:); 
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                    SMMStartA=MStartA(geneB,:); 

                    MMMJobM=MJobM(geneB,:); 

                     

                    insertA=MFinishA(geneB,movC)+p(geneC,1+remainC) ; 

                     

                    FMMFinishA(end)=[]; 

                    SMMStartA(end)=[]; 

                    MMMJobM(end)=[]; 

                     

                     

                    FMMFinishA=[FMMFinishA(1:movC) insertA  FMMFinishA((movC+1):end)]; 

                    SMMStartA=[SMMStartA(1:movC) (insertA-p(geneC,1+remainC)) 

SMMStartA((movC+1):end)]; 

                    MMMJobM=[MMMJobM(1:movC) Chro2(1) MMMJobM((movC+1):end)]; 

                     

                                          

                        

                    MFinishA(geneB,:)= FMMFinishA; 

                    MStartA(geneB,:)=SMMStartA; 

                    MJobM(geneB,:)=MMMJobM; 

                        

                    FpcopyM(geneC,1+remainC)=insertA; 

                    SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC)); 

                    MMJob(geneC,1+remainC)=geneB; 

                

                         

               else 

                    MFinishA(geneB,1+remainB)=max(MFinishA(geneB,:))+p(geneC,1+remainC); 

                    MStartA(geneB,1+remainB)=MFinishA(geneB,1+remainB)-p(geneC,1+remainC); 

                        

                    FpcopyM(geneC,1+remainC)=MFinishA(geneB,1+remainB); 

                    SpcopyM(geneC,1+remainC)=MStartA(geneB,1+remainB); 

                    MMJob(geneC,1+remainC)=geneB; 

                

                    MJobM(geneB,1+remainB)=Chro2(1); 

             

               end 

            end 

        %if the job operation is 2 or above for insertion 

        else 

            movC=1; 

               while  ((MStartA(geneB,movC+1)-FpcopyM(geneC,remainC))<p(geneC,1+remainC) 

||(MStartA(geneB,movC+1)-MFinishA(geneB,movC))<p(geneC,1+remainC) ) && movC<(i-1) 

                   movC=movC+1; 

               end 

           if (MStartA(geneB,movC+1)-FpcopyM(geneC,remainC))>=p(geneC,1+remainC) 

&&(MStartA(geneB,movC+1)-MFinishA(geneB,movC))>=p(geneC,1+remainC) 

                    if FpcopyM(geneC,remainC)<MFinishA(geneB,movC) 

                        FMMFinishA=MFinishA(geneB,:); 

                        SMMStartA=MStartA(geneB,:); 

                        MMMJobM=MJobM(geneB,:); 

                     

                        insertA=MFinishA(geneB,movC)+p(geneC,1+remainC) ; 

                     

                        FMMFinishA(end)=[]; 

                        SMMStartA(end)=[]; 

                        MMMJobM(end)=[]; 

                     

                     

                        FMMFinishA=[FMMFinishA(1:movC) insertA  FMMFinishA((movC+1):end)]; 

                        SMMStartA=[SMMStartA(1:movC) (insertA-p(geneC,1+remainC)) 

SMMStartA((movC+1):end)]; 

                        MMMJobM=[MMMJobM(1:movC) Chro2(1) MMMJobM((movC+1):end)]; 

                     

                     

                      

                        

                        MFinishA(geneB,:)= FMMFinishA; 

                        MStartA(geneB,:)=SMMStartA; 

                        MJobM(geneB,:)=MMMJobM; 

                        

                        FpcopyM(geneC,1+remainC)=insertA; 

                        SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC)); 

                        MMJob(geneC,1+remainC)=geneB; 

                    else 

                        FMMFinishA=MFinishA(geneB,:); 

                        SMMStartA=MStartA(geneB,:); 

                        MMMJobM=MJobM(geneB,:); 

                     

                        insertA=FpcopyM(geneC,remainC)+p(geneC,1+remainC) ; 

                     

                        FMMFinishA(end)=[]; 

                        SMMStartA(end)=[]; 

                        MMMJobM(end)=[]; 

                     

                     

                        FMMFinishA=[FMMFinishA(1:movC) insertA  FMMFinishA((movC+1):end)]; 

                        SMMStartA=[SMMStartA(1:movC) (insertA-p(geneC,1+remainC)) 

SMMStartA((movC+1):end)]; 

                        MMMJobM=[MMMJobM(1:movC) Chro2(1) MMMJobM((movC+1):end)]; 

                     



106 
 

                     

                      

                        

                        MFinishA(geneB,:)= FMMFinishA; 

                        MStartA(geneB,:)=SMMStartA; 

                        MJobM(geneB,:)=MMMJobM; 

                        

                        FpcopyM(geneC,1+remainC)=insertA; 

                        SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC)); 

                        MMJob(geneC,1+remainC)=geneB; 

                         

                         

                         

                    end 

           else 

               if max(MFinishA(geneB,:))>=FpcopyM(geneC,remainC) 

                   MFinishA(geneB,1+remainB)=max(MFinishA(geneB,:))+p(geneC,1+remainC); 

                   MStartA(geneB,1+remainB)= MFinishA(geneB,1+remainB)-p(geneC,1+remainC); 

                

                   FpcopyM(geneC,1+remainC)=MFinishA(geneB,1+remainB); 

                   SpcopyM(geneC,1+remainC)=MStartA(geneB,1+remainB); 

                   MMJob(geneC,1+remainC)=geneB; 

                

                   MJobM(geneB,1+remainB)=Chro2(1); 

                

               else 

                   MFinishA(geneB,1+remainB)=FpcopyM(geneC,remainC)+p(geneC,1+remainC); 

                   MStartA(geneB,1+remainB)= MFinishA(geneB,1+remainB)-p(geneC,1+remainC); 

                

                   FpcopyM(geneC,1+remainC)=MFinishA(geneB,1+remainB); 

                   SpcopyM(geneC,1+remainC)=MStartA(geneB,1+remainB); 

                   MMJob(geneC,1+remainC)=geneB; 

                

                   MJobM(geneB,1+remainB)=Chro2(1); 

               end 

           end 

               

        

         

        end 

        NChroM(1)=[]; 

        Chro2(1)=[]; 

   end 

   

% New chromosome generated 

[ChroMMM]=timearr_01(MStartA,MJobM); 

 
 

Generate New Chromosome from the Active Schedule 

 
function [ChroMMM]=timearr_01(MStartA,MJobM) 

  

[Srow,Scolumn]=size(MStartA); 

Chro_SM=reshape(MStartA,1,Srow*Scolumn); 

Chro_JM=reshape(MJobM,1,Srow*Scolumn); 

ArrTS=sort(Chro_SM); 

pjgSM=length(Chro_SM); 

ChroMMM=zeros(1,pjgSM); 

  

%Generate new chromosome 

for loopA=1:pjgSM 

    posArrTS=find(Chro_SM==ArrTS(1)); 

    ChroMMM(loopA)=Chro_JM(posArrTS(1)); 

     

    Chro_SM(posArrTS(1))=[]; 

    Chro_JM(posArrTS(1))=[]; 

    ArrTS(1)=[]; 

end 

 

 

Ranking for Chromosome (Check Fitness)  
 
% RANKING.M      (RANK-based fitness assignment) 

% 

% This function performs ranking of individuals. 

% 

% Syntax:  FitnV = ranking(ObjV, RFun, SUBPOP) 

% 

% This function ranks individuals represented by their associated 

% cost, to be *minimized*, and returns a column vector FitnV 

% containing the corresponding individual fitnesses. For multiple 

% subpopulations the ranking is performed separately for each 

% subpopulation. 

% 

% Input parameters: 
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%    ObjV      - Column vector containing the objective values of the 

%                individuals in the current population (cost values). 

%    RFun      - (optional) If RFun is a scalar in [1, 2] linear ranking is 

%                assumed and the scalar indicates the selective pressure. 

%                If RFun is a 2 element vector: 

%                RFun(1): SP - scalar indicating the selective pressure 

%                RFun(2): RM - ranking method 

%                         RM = 0: linear ranking 

%                         RM = 1: non-linear ranking 

%                If RFun is a vector with length(Rfun) > 2 it contains 

%                the fitness to be assigned to each rank. It should have 

%                the same length as ObjV. Usually RFun is monotonously 

%                increasing. 

%                If RFun is omitted or NaN, linear ranking 

%                and a selective pressure of 2 are assumed. 

%    SUBPOP    - (optional) Number of subpopulations 

%                if omitted or NaN, 1 subpopulation is assumed 

% 

% Output parameters: 

%    FitnV     - Column vector containing the fitness values of the 

%                individuals in the current population. 

%                 

% 

function FitnV = ranking(ObjV, RFun, SUBPOP); 

  

% Identify the vector size (Nind) 

   [Nind,ans] = size(ObjV); 

  

   if nargin < 2, RFun = []; end 

   if nargin > 1, if isnan(RFun), RFun = []; end, end 

   if prod(size(RFun)) == 2, 

      if RFun(2) == 1, NonLin = 1; 

      elseif RFun(2) == 0, NonLin = 0;  

      else error('Parameter for ranking method must be 0 or 1'); end 

      RFun = RFun(1); 

      if isnan(RFun), RFun = 2; end 

   elseif prod(size(RFun)) > 2, 

      if prod(size(RFun)) ~= Nind, error('ObjV and RFun disagree'); end 

   elseif prod(size(RFun)) < 2, NonLin = 0;    

   end 

  

   if nargin < 3, SUBPOP = 1; end 

   if nargin > 2, 

      if isempty(SUBPOP), SUBPOP = 1; 

      elseif isnan(SUBPOP), SUBPOP = 1; 

      elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end 

   end 

  

   if (Nind/SUBPOP) ~= fix(Nind/SUBPOP), error('ObjV and SUBPOP disagree'); end 

   Nind = Nind/SUBPOP;  % Compute number of individuals per subpopulation 

    

% Check ranking function and use default values if necessary 

   if isempty(RFun), 

      % linear ranking with selective pressure 2 

         RFun = 2*[0:Nind-1]'/(Nind-1); 

   elseif prod(size(RFun)) == 1 

      if NonLin == 1, 

         % non-linear ranking 

         if RFun(1) < 1, error('Selective pressure must be greater than 1'); 

         elseif RFun(1) > Nind-2, error('Selective pressure too big'); end 

         Root1 = roots([RFun(1)-Nind [RFun(1)*ones(1,Nind-1)]]); 

         RFun = (abs(Root1(1)) * ones(Nind,1)) .^ [(0:Nind-1)']; 

         RFun = RFun / sum(RFun) * Nind; 

      else 

         % linear ranking with SP between 1 and 2 

         if (RFun(1) < 1 | RFun(1) > 2), 

            error('Selective pressure for linear ranking must be between 1 and 2'); 

         end 

         RFun = 2-RFun + 2*(RFun-1)*[0:Nind-1]'/(Nind-1); 

      end 

   end; 

  

   FitnV = []; 

  

% loop over all subpopulations 

for irun = 1:SUBPOP, 

   % Copy objective values of actual subpopulation 

      ObjVSub = ObjV((irun-1)*Nind+1:irun*Nind); 

   % Sort does not handle NaN values as required. So, find those... 

      NaNix = isnan(ObjVSub); 

      Validix = find(~NaNix); 

   % ... and sort only numeric values (smaller is better). 

      [ans,ix] = sort(-ObjVSub(Validix)); 

  

   % Now build indexing vector assuming NaN are worse than numbers, 

   % (including Inf!)... 

      ix = [find(NaNix) ; Validix(ix)]; 

   % ... and obtain a sorted version of ObjV 

      Sorted = ObjVSub(ix); 

  

   % Assign fitness according to RFun. 
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      i = 1; 

      FitnVSub = zeros(Nind,1); 

      for j = [find(Sorted(1:Nind-1) ~= Sorted(2:Nind)); Nind]', 

         FitnVSub(i:j) = sum(RFun(i:j)) * ones(j-i+1,1) / (j-i+1); 

         i =j+1; 

      end 

  

   % Finally, return unsorted vector. 

      [ans,uix] = sort(ix); 

      FitnVSub = FitnVSub(uix); 

  

   % Add FitnVSub to FitnV 

      FitnV = [FitnV; FitnVSub]; 

end 

  

% End of function 

 

 

Selection  

 
% SELECT.M          (universal SELECTion) 

% 

% This function performs universal selection. The function handles 

% multiple populations and calls the low level selection function 

% for the actual selection process. 

% 

% Syntax:  SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP) 

% 

% Input parameters: 

%    SEL_F     - Name of the selection function 

%    Chrom     - Matrix containing the individuals (parents) of the current 

%                population. Each row corresponds to one individual. 

%    FitnV     - Column vector containing the fitness values of the 

%                individuals in the population. 

%    GGAP      - (optional) Rate of individuals to be selected 

%                if omitted 1.0 is assumed 

%    SUBPOP    - (optional) Number of subpopulations 

%                if omitted 1 subpopulation is assumed 

% 

% Output parameters: 

%    SelCh     - Matrix containing the selected individuals. 

 

function SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP); 

  

% Check parameter consistency 

   if nargin < 3, error('Not enough input parameter'); end 

  

   % Identify the population size (Nind) 

   [NindCh,Nvar] = size(Chrom); 

   [NindF,VarF] = size(FitnV); 

   if NindCh ~= NindF, error('Chrom and FitnV disagree'); end 

   if VarF ~= 1, error('FitnV must be a column vector'); end 

   

   if nargin < 5, SUBPOP = 1; end 

   if nargin > 4, 

      if isempty(SUBPOP), SUBPOP = 1; 

      elseif isnan(SUBPOP), SUBPOP = 1; 

      elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end 

   end 

  

   if (NindCh/SUBPOP) ~= fix(NindCh/SUBPOP), error('Chrom and SUBPOP disagree'); end 

   Nind = NindCh/SUBPOP;  % Compute number of individuals per subpopulation 

  

   if nargin < 4, GGAP = 1; end 

   if nargin > 3, 

      if isempty(GGAP), GGAP = 1; 

      elseif isnan(GGAP), GGAP = 1; 

      elseif length(GGAP) ~= 1, error('GGAP must be a scalar'); 

      elseif (GGAP < 0), error('GGAP must be a scalar bigger than 0'); end 

   end 

  

% Compute number of new individuals (to select) 

   NSel=max(floor(Nind*GGAP+.5),2); 

  

% Select individuals from population 

   SelCh = []; 

   for irun = 1:SUBPOP, 

      FitnVSub = FitnV((irun-1)*Nind+1:irun*Nind); 

      ChrIx=feval(SEL_F, FitnVSub, NSel)+(irun-1)*Nind; 

      SelCh=[SelCh; Chrom(ChrIx,:)]; 

   end 

  

  

% End of function 
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Stochastic Universal Sampling, SUS 
 
% SUS.M          (Stochastic Universal Sampling) 

% 

% This function performs selection with STOCHASTIC UNIVERSAL SAMPLING. 

% 

% Syntax:  NewChrIx = sus(FitnV, Nsel) 

% 

% Input parameters: 

%    FitnV     - Column vector containing the fitness values of the 

%                individuals in the population. 

%    Nsel      - number of individuals to be selected 

% 

% Output parameters: 

%    NewChrIx  - column vector containing the indexes of the selected 

%                individuals relative to the original population, shuffled. 

%                The new population, ready for mating, can be obtained 

%                by calculating OldChrom(NewChrIx,:). 

 

function NewChrIx = sus(FitnV,Nsel); 

  

% Identify the population size (Nind) 

   [Nind,ans] = size(FitnV); 

  

% Perform stochastic universal sampling 

   cumfit = cumsum(FitnV); 

   trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)'); 

   Mf = cumfit(:, ones(1, Nsel)); 

   Mt = trials(:, ones(1, Nind))'; 

   [NewChrIx, ans] = find(Mt < Mf & [ zeros(1, Nsel); Mf(1:Nind-1, :) ] <= Mt); 

  

% Shuffle new population 

   [ans, shuf] = sort(rand(Nsel, 1)); 

   NewChrIx = NewChrIx(shuf); 

  

  

% End of function 

 

 

Mutation 

 
function ChromNew=mtt(SelCh,NIND,MUTrate) 

  

 ChromNew=SelCh; 

 opr=length(SelCh(1,:)); 

 opr=randperm(opr); 

  

for i=1:NIND  

     

a=rand; 

 if MUTrate>a; 

      

j=2; 

    S=SelCh(i,:); 

    while S((opr(1)))==S(opr(j))      

    j=j+1; 

    end  

 

    temp=S((opr(1))); 

    S(opr(1))=S(opr(j)); 

    S(opr(j))=temp; 

  

   

    ChromNew(i,:)=S; 

 end 

end 

 

Reinsertion 

 
% REINS.M        (RE-INSertion of offspring in population replacing parents) 

% 

% This function reinserts offspring in the population. 

% 

% Syntax: [Chrom, ObjVCh] = reins(Chrom, SelCh, SUBPOP, InsOpt, ObjVCh, ObjVSel) 

% 

% Input parameters: 

%    Chrom     - Matrix containing the individuals (parents) of the current 

%                population. Each row corresponds to one individual. 

%    SelCh     - Matrix containing the offspring of the current 

%                population. Each row corresponds to one individual. 

%    SUBPOP    - (optional) Number of subpopulations 

%                if omitted or NaN, 1 subpopulation is assumed 

%    InsOpt    - (optional) Vector containing the insertion method parameters 

%                ExOpt(1): Select - number indicating kind of insertion 
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%                          0 - uniform insertion 

%                          1 - fitness-based insertion 

%                          if omitted or NaN, 0 is assumed 

%                ExOpt(2): INSR - Rate of offspring to be inserted per 

%                          subpopulation (% of subpopulation) 

%                          if omitted or NaN, 1.0 (100%) is assumed 

%    ObjVCh    - (optional) Column vector containing the objective values 

%                of the individuals (parents - Chrom) in the current  

%                population, needed for fitness-based insertion 

%                saves recalculation of objective values for population 

%    ObjVSel   - (optional) Column vector containing the objective values 

%                of the offspring (SelCh) in the current population, needed for 

%                partial insertion of offspring, 

%                saves recalculation of objective values for population 

% 

% Output parameters: 

%    Chrom     - Matrix containing the individuals of the current 

%                population after reinsertion. 

%    ObjVCh    - if ObjVCh and ObjVSel are input parameters, then column  

%                vector containing the objective values of the individuals 

%                of the current generation after reinsertion. 

%            

 

  

function [Chrom, ObjVCh] = reins(Chrom, SelCh, SUBPOP, InsOpt, ObjVCh, ObjVSel); 

  

% Check parameter consistency 

   if nargin < 2, error('Not enough input parameter'); end 

   if (nargout == 2 & nargin < 6), error('Input parameter missing: ObjVCh and/or ObjVSel'); end 

  

   [NindP, NvarP] = size(Chrom); 

   [NindO, NvarO] = size(SelCh); 

  

   if nargin == 2, SUBPOP = 1; end 

   if nargin > 2, 

      if isempty(SUBPOP), SUBPOP = 1; 

      elseif isnan(SUBPOP), SUBPOP = 1; 

      elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end 

   end 

  

   if (NindP/SUBPOP) ~= fix(NindP/SUBPOP), error('Chrom and SUBPOP disagree'); end 

   if (NindO/SUBPOP) ~= fix(NindO/SUBPOP), error('SelCh and SUBPOP disagree'); end 

   NIND = NindP/SUBPOP;  % Compute number of individuals per subpopulation 

   NSEL = NindO/SUBPOP;  % Compute number of offspring per subpopulation 

  

   IsObjVCh = 0; IsObjVSel = 0; 

   if nargin > 4,  

      [mO, nO] = size(ObjVCh); 

      if nO ~= 1, error('ObjVCh must be a column vector'); end 

      if NindP ~= mO, error('Chrom and ObjVCh disagree'); end 

      IsObjVCh = 1; 

   end 

   if nargin > 5,  

      [mO, nO] = size(ObjVSel); 

      if nO ~= 1, error('ObjVSel must be a column vector'); end 

      if NindO ~= mO, error('SelCh and ObjVSel disagree'); end 

      IsObjVSel = 1; 

   end 

        

   if nargin < 4, INSR = 1.0; Select = 0; end    

   if nargin >= 4, 

      if isempty(InsOpt), INSR = 1.0; Select = 0;    

      elseif isnan(InsOpt), INSR = 1.0; Select = 0;    

      else 

         INSR = NaN; Select = NaN; 

         if (length(InsOpt) > 2), error('Parameter InsOpt too long'); end 

         if (length(InsOpt) >= 1), Select = InsOpt(1); end 

         if (length(InsOpt) >= 2), INSR = InsOpt(2); end 

         if isnan(Select), Select = 0; end 

         if isnan(INSR), INSR =1.0; end 

      end 

   end 

    

   if (INSR < 0 | INSR > 1), error('Parameter for insertion rate must be a scalar in [0, 1]'); end 

   if (INSR < 1 & IsObjVSel ~= 1), error('For selection of offspring ObjVSel is needed'); end  

   if (Select ~= 0 & Select ~= 1), error('Parameter for selection method must be 0 or 1'); end 

   if (Select == 1 & IsObjVCh == 0), error('ObjVCh for fitness-based exchange needed'); end 

  

   if INSR == 0, return; end 

   NIns = min(max(floor(INSR*NSEL+.5),1),NIND);   % Number of offspring to insert    

  

% perform insertion for each subpopulation 

   for irun = 1:SUBPOP, 

      % Calculate positions in old subpopulation, where offspring are inserted 

         if Select == 1,    % fitness-based reinsertion 

            [Dummy, ChIx] = sort(-ObjVCh((irun-1)*NIND+1:irun*NIND)); 

         else               % uniform reinsertion 

            [Dummy, ChIx] = sort(rand(NIND,1)); 

         end 

         PopIx = ChIx((1:NIns)')+ (irun-1)*NIND; 

      % Calculate position of Nins-% best offspring 
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         if (NIns < NSEL),  % select best offspring 

            [Dummy,OffIx] = sort(ObjVSel((irun-1)*NSEL+1:irun*NSEL)); 

         else               

            OffIx = (1:NIns)'; 

         end 

         SelIx = OffIx((1:NIns)')+(irun-1)*NSEL; 

      % Insert offspring in subpopulation -> new subpopulation 

         Chrom(PopIx,:) = SelCh(SelIx,:); 

         if (IsObjVCh == 1 & IsObjVSel == 1), ObjVCh(PopIx) = ObjVSel(SelIx); end 

   end 

  

% End of function 
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APPENDIX C 

 
Multi-Parents Crossover 

 
function SelCh01 = crsovr_multi01_3(SelCh,NIND,OXrate,noprt) 

  

lgChro=length(SelCh(1,:)); 

%number of parents 

Num=fix(NIND/noprt); 

  

  

%create space to store 

Vc00=zeros(1,lgChro); 

SelCh01=zeros(Num,lgChro); 

  

  

  

SelNum=randperm(NIND); %randomly select chromosome 

S11=zeros(1,lgChro); 

g=1; 

  

%Crossover operation 

for i=1:noprt:(Num*noprt) 

    a=rand; 

  

    if OXrate>a; 

         

       for Vec=1:lgChro 

           rand_num=randperm(noprt); 

           Vc00(1,Vec)=rand_num(1); 

       end 

        

    %already fine Vc00 and Vc01 

      

        S1=SelCh(SelNum(i),:); 

        S2=SelCh(SelNum(i+1),:); 

        S3=SelCh(SelNum(i+2),:); 

      

        for k=1:lgChro 

            x=Vc00(k); 

              

            switch x 

                case 1 

                    S11(k)=S1(1); 

                    pos02=find(S2==S1(1)); 

                    pos03=find(S3==S1(1)); 

                    S1(1)=[]; 

                    S2(pos02(1))=[]; 

                    S3(pos03(1))=[]; 

                           

                case 2 

                    S11(k)=S2(1); 

                    pos01=find(S1==S2(1)); 

                    pos03=find(S3==S2(1)); 

                    S2(1)=[]; 

                    S1(pos01(1))=[]; 

                    S3(pos03(1))=[]; 

                     

                case 3 

                    S11(k)=S3(1); 

                    pos01=find(S1==S3(1)); 

                    pos02=find(S2==S3(1)); 

                    S3(1)=[]; 

                    S1(pos01(1))=[]; 

                    S2(pos02(1))=[]; 

            end         

        end 

         

    else 

        S11=SelCh(SelNum(i),:); 

    end     

        SelCh01(g,:)=S11; 

        g=g+1; 

end 
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APPENDIX D 
 

Neighborhood Search 

 
function [Chro,Makespan]=CP_SIN(M,p,Chro) 

  

do=1; 

while do==1 

%Earliest start time 

[EF,ES,EJ,Chro]=CP_Fwd(M,p,Chro); 

Makespan=max(EF(:,end)); 

  

%Latest start,finish time, job 

[LF,LS,LJ]=CP_Bwd_NoShift(M,p,Chro,Makespan); 

MStartA=ES; 

MFinishA=EF; 

MJobA=EJ; 

  

  

%identified the critical operations 

[Mrow,Mcolumn]=size(LS); 

for i=1:Mrow 

     

   for j=1:Mcolumn 

        

       sLS=find(EJ(i,:)==LJ(i,j)); 

       if LS(i,j)~=ES(i,sLS) 

           LS(i,j)=-1; 

           LF(i,j)=-1; 

           LJ(i,j)=-1; 

            

           ES(i,sLS)=-1; 

           EF(i,sLS)=-1; 

           EJ(i,sLS)=-1; 

       end 

   end 

end 

  

[ChES,ChEF,ChEJ,ChEM]=timearr_01_critical_path(ES,EF,EJ); 

  

sTES=ChES(1); 

pChES=ChES(1); 

pChEF=ChEF(1); 

pChEJ=ChEJ(1); 

pChEM=ChEM(1); 

sg=0; 

CChES=ChES; 

CChEF=ChEF; 

CChEJ=ChEJ; 

CChEM=ChEM; 

ms=1; 

  

% identified critical path 

while sg<length(ChES) && sTES==0 

 ms=0;   

     

    while max(pChEF(:,end))<Makespan && ms<length(ChES)+2% the path 

         

        [xp,yp]=size(pChES); 

  

        pc=0; 

        for loDP=1:xp 

            if loDP==1 

            pChES(:,end+1)=0; 

            pChEF(:,end+1)=0; 

            pChEJ(:,end+1)=0; 

            pChEM(:,end+1)=0; 

            end 

            loDP=loDP-pc; 

            mst=0; 

            InP=find(CChES==pChEF(loDP,end-1)); 

             

            if length(InP)>1 

                for Ei=1:length(InP) 

                    mst(Ei)=CChEM(InP(Ei)); 

                end 

                mmst=mode(mst); 

                indmst=find(mst==mmst); 

                if length(indmst)>1 

                pChES(loDP,end)=CChES(InP(indmst(1))); 

                pChEF(loDP,end)=CChEF(InP(indmst(1))); 

                pChEJ(loDP,end)=CChEJ(InP(indmst(1))); 

                pChEM(loDP,end)=CChEM(InP(indmst(1))); 

                InP=InP(indmst(2)); 

                pChES(:,end+1)=0; 

                pChEF(:,end+1)=0; 

                pChEJ(:,end+1)=0; 

                pChEM(:,end+1)=0; 
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                end 

             

            end 

  

  

             

            if pChEF(loDP,end-1)==0  

                pChES(loDP,:)=[]; 

                pChEF(loDP,:)=[]; 

                pChEJ(loDP,:)=[]; 

                pChEM(loDP,:)=[]; 

                pc=pc+1; 

            else 

                 

  

            if length(InP)==1  

                pChES(loDP,end)=CChES(InP); 

                pChEF(loDP,end)=CChEF(InP); 

                pChEJ(loDP,end)=CChEJ(InP); 

                pChEM(loDP,end)=CChEM(InP); 

  

                 

            else 

                if isempty(InP)==1; 

                    pc=pc+1; 

                end 

                for loEP=1:length(InP) 

                     

                    pChES(loDP,end)=CChES(InP(1)); 

                    qChES(loEP,:)=pChES(loDP,:); 

                     

                    pChEF(loDP,end)=CChEF(InP(1)); 

                    qChEF(loEP,:)=pChEF(loDP,:); 

                     

                    pChEJ(loDP,end)=CChEJ(InP(1)); 

                    qChEJ(loEP,:)=pChEJ(loDP,:); 

                     

                    pChEM(loDP,end)=CChEM(InP(1)); 

                    qChEM(loEP,:)=pChEM(loDP,:); 

                     

                end 

                 

                pChES(loDP,:)=[]; 

                pChES=[pChES;qChES]; 

                qChES=[]; 

                 

                pChEF(loDP,:)=[]; 

                pChEF=[pChEF;qChEF]; 

                qChEF=[]; 

                 

                pChEJ(loDP,:)=[]; 

                pChEJ=[pChEJ;qChEJ]; 

                qChEJ=[]; 

                 

                pChEM(loDP,:)=[]; 

                pChEM=[pChEM;qChEM]; 

                qChEM=[]; 

                 

            end 

            end             

             

        end 

    ms=ms+1; 

    end 

     

sg=sg+1; 

sTES=CChES(1); 

  

end 

  

spChEF=find(pChEF(:,end)==Makespan); 

if length(spChEF)~=1 

    pChES=pChES(spChEF(1),:); 

    pChEF=pChEF(spChEF(1),:); 

    pChEJ=pChEJ(spChEF(1),:); 

    pChEM=pChEM(spChEF(1),:); 

end 

  

%find critical blocks and possible swaps 

BlkMac=pChEM(1); 

NoBlk=1; 

BlkPos=1; %block position based on machinein pchro 

cr=1; 

for loCrB=2:length(pChEM) 

     

    if pChEM(loCrB)==pChEM(loCrB-1) 

        NoBlk(cr,1)=NoBlk(cr,1)+1; 

        BlkPos(cr,2)=loCrB; 

    else 

        cr=cr+1; 

        BlkMac(cr,1)=pChEM(loCrB); 



115 
 

        NoBlk(cr,1)=1; 

        BlkPos(cr,:)=loCrB; 

    end 

end 

  

lia=0; 

for loCrS=1:cr 

    TtlBlk=BlkPos(loCrS,2)-BlkPos(loCrS,1)+1; 

     

    if TtlBlk>=2   

        swpA=randperm(TtlBlk); 

        BlkA=pChEJ(BlkPos(loCrS,1)+swpA(1)-1); 

        BlkB=pChEJ(BlkPos(loCrS,1)+swpA(2)-1); 

        lia=lia+1; 

        LiaMac(lia,1)=BlkMac(loCrS,1); 

        LiaJob(lia,:)=[BlkA BlkB]; 

    end 

end 

do=0; 

  

% Evaluate the swap and maintain the best swap 

for losw=1:length(LiaMac) 

    MJobM=MJobA; 

    swp=ismember(MJobM(LiaMac(losw),:),LiaJob(losw,:)); 

    swpos=find(swp==1); 

    MJobM(LiaMac(losw),swpos(1))=LiaJob(losw,2); 

    MJobM(LiaMac(losw),swpos(2))=LiaJob(losw,1); 

     

    [ChroMMM]=timearr_01(MStartA,MJobM); 

    [BMFinish,BMStart,BMJob,ChroMMM]=CP_Fwd(M,p,ChroMMM); 

    [BMm,BMn]=size(BMFinish); 

    BMakespan=max(reshape(BMFinish,1,BMm*BMn)); 

    if BMakespan<Makespan 

        Chro=ChroMMM; 

        Makespan=BMakespan; 

        do=1; 

    end 

  

end 

end 

 

 

Late Start time of the Operations 

 
function [MFinishA,MStartA,MJobM]=CP_Bwd_NoShift(M,p,Chro,Makespan) 

[i,j]=size(M); 

  

%get the matrix for the machine 

  

MStartA=zeros(j,i); 

MFinishA=zeros(j,i); 

MJobM=zeros(j,i); 

  

  

%get the matrix for the job for record purpose 

FpcopyM=zeros(i,j); 

SpcopyM=zeros(i,j); 

MMJob=zeros(i,j); 

  

  

maxChro=length(Chro); 

  

%matrix for the machines 

MChro=Chro; 

  

for k=1:maxChro 

    gene=MChro(1); 

    ind=find(MChro==gene); 

    getpos=length(ind); 

    remain=j-getpos; 

     

    %change the matrix to chromosome for the time and machine  

    NChroM(1,k)=M(gene,1+remain); 

        

    MChro(1)=[]; 

end 

  

Chro2=Chro; 

  

   %find the ealiest completion time for each operation 

   for movB=1:maxChro 

       %find the machine position 

        geneB=NChroM(end); 

        indB=find(NChroM==geneB); 

        getposB=length(indB); 

        remainB=getposB; 

         

        %the chro(job) number 
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        geneC=Chro2(end); 

        indC=find(Chro2==geneC); 

        %indCC=find(Chro3==geneC); 

        getposC=length(indC); 

        %getposCC=length(indCC); 

        remainC=getposC; 

         

        %if the job operation is 1 

        if  remainC==j 

             

  

                   if remainB==i 

                    MFinishA(geneB,remainB)=Makespan; 

                    MStartA(geneB,remainB)=Makespan-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end); 

  

                   else 

                    MFinishA(geneB,remainB)=MStartA(geneB,remainB+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end); 

          

                   end 

             

              

  

        %if the job operation is 2 or above 

        else 

  

       

                   if remainB==i 

                    MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end); 

  

                   else 

                       if MStartA(geneB,remainB+1)<=SpcopyM(geneC,remainC+1) 

                     

                    MFinishA(geneB,remainB)=MStartA(geneB,remainB+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end);  

  

  

                       else 

                    MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end);  

  

  

                       end 

                   end 

  

        

         

        end 

        NChroM(end)=[]; 

        Chro2(end)=[]; 

   end 
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Sequencing Job in Critical Path (Based on Time Priority) 

 
function [ChES,ChEF,ChEJ,ChEM]=timearr_01_critical_path(ES,EF,EJ) 

  

[Srow,Scolumn]=size(ES); 

EM=zeros(Srow,Scolumn); 

  

%Machine 

for SM=1:Srow 

    EM(SM,:)=crtbase(Scolumn,SM); 

end 

  

Chro_ES=reshape(ES,1,Srow*Scolumn); 

Chro_EF=reshape(EF,1,Srow*Scolumn); 

Chro_EJ=reshape(EJ,1,Srow*Scolumn); 

Chro_EM=reshape(EM,1,Srow*Scolumn); 

  

  

ArrTS=sort(Chro_ES); 

  

pjgES=length(Chro_ES); 

  

ChES=zeros(1,pjgES); 

ChEF=zeros(1,pjgES); 

ChEJ=zeros(1,pjgES); 

ChEM=zeros(1,pjgES); 

  

%Generated the sequnces base on time 

for loopA=1:pjgES 

    posArrTS=find(Chro_ES==ArrTS(1)); 

     

    ChES(loopA)=Chro_ES(posArrTS(1)); 

    ChEF(loopA)=Chro_EF(posArrTS(1)); 

    ChEJ(loopA)=Chro_EJ(posArrTS(1)); 

    ChEM(loopA)=Chro_EM(posArrTS(1)); 

     

    Chro_ES(posArrTS(1))=[]; 

    Chro_EF(posArrTS(1))=[]; 

    Chro_EJ(posArrTS(1))=[]; 

    Chro_EM(posArrTS(1))=[]; 

     

    ArrTS(1)=[];   

     

end 

  

delCh=max(find(ChES==-1)); 

ChES(1:delCh)=[]; 

ChEF(1:delCh)=[]; 

ChEJ(1:delCh)=[]; 

ChEM(1:delCh)=[]; 
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APPENDIX E 
 

Iterative Forward-Backward Pass 

 
function [Chro, AMakespan]=CP_FB(M,p,Chro) 

  

doA=1; 

ASMP=0; 

AMakespan=0; 

BSMP=-1; 

BMakespan=-1; 

  

% Perform iterative forward-backward pass. 

  

while doA==1 

     

    % Compare with backward pass 

    if ASMP~=BSMP && doA==1 

    [EF,ES,EJ,Chro]=CP_Fwd(M,p,Chro); 

    AMakespan=max(EF(:,end)); 

    else 

        doA=0; 

    end 

     

    % Compare with forward pass 

    if BMakespan~=AMakespan && doA==1 

        [LF,LS,LJ,Chro]=CP_Bwd_Shift(M,p,Chro,AMakespan); 

        BSMP=min(LS(:,1)); 

        BMakespan=AMakespan-BSMP; 

         

    else 

        doA=0; 

    end 

  

end 

 

 

Backward Pass 

 
function [MFinishA,MStartA,MJobM,ChroMMM]=CP_Bwd_Shift(M,p,Chro,Makespan) 

  

[i,j]=size(M); 

  

%get the matrix for the machine 

  

MStartA=zeros(j,i); 

MFinishA=zeros(j,i); 

MJobM=zeros(j,i); 

  

%get the matrix for the job for record purpose 

FpcopyM=zeros(i,j); 

SpcopyM=zeros(i,j); 

MMJob=zeros(i,j); 

maxChro=length(Chro); 

  

%matrix for the machines 

MChro=Chro; 

  

for k=1:maxChro 

    gene=MChro(1); 

    ind=find(MChro==gene); 

    getpos=length(ind); 

    remain=j-getpos; 

     

    %change the matrix to chromosome for the time and machine  

    NChroM(1,k)=M(gene,1+remain); 

    MChro(1)=[]; 

end 

  

Chro2=Chro; 

  

   %find the ealiest completion time for each operation 

   for movB=1:maxChro 

       %find the machine position 

        geneB=NChroM(end); 

        indB=find(NChroM==geneB); 

        getposB=length(indB); 

        remainB=getposB; 

         

        %the chro(job) number 

        geneC=Chro2(end); 

        indC=find(Chro2==geneC); 

        getposC=length(indC); 

        remainC=getposC; 
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        %if the job operation is 1 

        if  remainC==j 

             

            %check the possiblilities for the for 1st job at machine 

            if (Makespan-MFinishA(geneB,i))>=p(geneC,remainC)  

                 

                    FMMFinishA=MFinishA(geneB,:); 

                    SMMStartA=MStartA(geneB,:); 

                    MMMJobM=MJobM(geneB,:); 

                     

                    insertA=p(geneC,remainC) ; 

                     

                    FMMFinishA(1)=[]; 

                    SMMStartA(1)=[]; 

                    MMMJobM(1)=[]; 

                     

                     

                    FMMFinishA=[FMMFinishA(1:end) Makespan]; 

                    SMMStartA=[SMMStartA(1:end) Makespan-insertA]; 

                    MMMJobM=[MMMJobM(1:end) Chro2(end)]; 

                    %get the machine time 

                    MFinishA(geneB,:)= FMMFinishA; 

                    MStartA(geneB,:)=SMMStartA; 

                    MJobM(geneB,:)=MMMJobM; 

                    %get the job time 

                    FpcopyM(geneC,remainC)=Makespan; 

                    SpcopyM(geneC,remainC)=(Makespan-p(geneC,remainC)); 

                    MMJob(geneC,remainC)=geneB; 

                     

            %check the possibilities fot the 2nd job or above for machine 

            else 

                movC=0; 

               while  (MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))<p(geneC,remainC) && movC<(i-2) 

                   movC=movC+1; 

               end 

        

               if (MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))>=p(geneC,remainC)   

                    

                    FMMFinishA=MFinishA(geneB,:); 

                    SMMStartA=MStartA(geneB,:); 

                    MMMJobM=MJobM(geneB,:); 

                     

                    insertA=MStartA(geneB,i-movC)-p(geneC,remainC) ; 

                     

                    FMMFinishA(1)=[]; 

                    SMMStartA(1)=[]; 

                    MMMJobM(1)=[]; 

                     

                     

                    FMMFinishA=[FMMFinishA(1:i-movC-2) insertA+p(geneC,remainC)  FMMFinishA((i-movC-

1):end)]; 

                    SMMStartA=[SMMStartA(1:i-movC-2) insertA SMMStartA((i-movC-1):end)]; 

                    MMMJobM=[MMMJobM(1:i-movC-2) Chro2(end) MMMJobM((i-movC-1):end)]; 

                     

                                          

                        

                    MFinishA(geneB,:)= FMMFinishA; 

                    MStartA(geneB,:)=SMMStartA; 

                    MJobM(geneB,:)=MMMJobM; 

                        

                    FpcopyM(geneC,remainC)=insertA+p(geneC,remainC); 

                    SpcopyM(geneC,remainC)=insertA; 

                    MMJob(geneC,remainC)=geneB; 

     

               else 

                   if remainB==i 

                    MFinishA(geneB,remainB)=Makespan; 

                    MStartA(geneB,remainB)=Makespan-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end); 

  

                   else 

                    MFinishA(geneB,remainB)=MStartA(geneB,remainB+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end); 

          

                   end 

             

               end 

            end 

        %if the job operation is 2 or above 

        else 
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            movC=0; 

               while  (SpcopyM(geneC,remainC+1)-(MFinishA(geneB,i-movC-1))<p(geneC,remainC) 

||(MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))<p(geneC,remainC)) && movC<(i-2) 

                   movC=movC+1; 

               end 

           if (SpcopyM(geneC,remainC+1)-MFinishA(geneB,i-movC-1))>=p(geneC,remainC) && 

(MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))>=p(geneC,remainC) 

                    if SpcopyM(geneC,remainC+1)>=MStartA(geneB,i-movC) 

                        FMMFinishA=MFinishA(geneB,:); 

                        SMMStartA=MStartA(geneB,:); 

                        MMMJobM=MJobM(geneB,:); 

                         

                        insertA=MStartA(geneB,i-movC)-p(geneC,remainC) ; 

                                             

                        FMMFinishA(1)=[]; 

                        SMMStartA(1)=[]; 

                        MMMJobM(1)=[]; 

                     

                        FMMFinishA=[FMMFinishA(1:i-movC-2) insertA+p(geneC,remainC)  FMMFinishA((i-

movC-1):end)]; 

                        SMMStartA=[SMMStartA(1:i-movC-2) insertA SMMStartA((i-movC-1):end)]; 

                        MMMJobM=[MMMJobM(1:i-movC-2) Chro2(end) MMMJobM((i-movC-1):end)]; 

                     

                                          

                        

                        MFinishA(geneB,:)= FMMFinishA; 

                        MStartA(geneB,:)=SMMStartA; 

                        MJobM(geneB,:)=MMMJobM; 

                        

                        FpcopyM(geneC,remainC)=insertA+p(geneC,remainC); 

                        SpcopyM(geneC,remainC)=insertA; 

                        MMJob(geneC,remainC)=geneB; 

                         

  

                    else 

                        FMMFinishA=MFinishA(geneB,:); 

                        SMMStartA=MStartA(geneB,:); 

                        MMMJobM=MJobM(geneB,:); 

                     

                        insertA=SpcopyM(geneC,remainC+1)-p(geneC,remainC) ; 

                     

                        FMMFinishA(1)=[]; 

                        SMMStartA(1)=[]; 

                        MMMJobM(1)=[]; 

                     

                        FMMFinishA=[FMMFinishA(1:i-movC-2) insertA+p(geneC,remainC)  FMMFinishA((i-

movC-1):end)]; 

                        SMMStartA=[SMMStartA(1:i-movC-2) insertA SMMStartA((i-movC-1):end)]; 

                        MMMJobM=[MMMJobM(1:i-movC-2) Chro2(end) MMMJobM((i-movC-1):end)]; 

                     

                                          

                        

                        MFinishA(geneB,:)= FMMFinishA; 

                        MStartA(geneB,:)=SMMStartA; 

                        MJobM(geneB,:)=MMMJobM; 

                        

                        FpcopyM(geneC,remainC)=insertA+p(geneC,remainC); 

                        SpcopyM(geneC,remainC)=insertA; 

                        MMJob(geneC,remainC)=geneB;       

                    end 

           else      

                   if remainB==i 

                    MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end); 

  

                   else 

                       if MStartA(geneB,remainB+1)<=SpcopyM(geneC,remainC+1) 

                     

                    MFinishA(geneB,remainB)=MStartA(geneB,remainB+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 

                

                    MJobM(geneB,remainB)=Chro2(end);  

  

  

                       else 

                    MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1); 

                    MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC); 

                        

                    FpcopyM(geneC,remainC)=MFinishA(geneB,remainB); 

                    SpcopyM(geneC,remainC)=MStartA(geneB,remainB); 

                    MMJob(geneC,remainC)=geneB; 
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                    MJobM(geneB,remainB)=Chro2(end);  

  

  

                       end 

                   end 

           end                

        end 

        NChroM(end)=[]; 

        Chro2(end)=[]; 

   end 

% Generated new chromosome 

[ChroMMM]=timearr_01(MStartA,MJobM); 

  

  

 

  

  

  

  

  

 

 
 

 


