
HYBRID GENETIC ALGORITHM WITH MULTI-

PARENTS RECOMBINATION FOR JOB SHOP

SCHEDULING PROBLEMS

ONG CHUNG SIN

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2013

HYBRID GENETIC ALGORITHM WITH MULTI-

PARENTS RECOMBINATION FOR JOB SHOP

SCHEDULING PROBLEMS

ONG CHUNG SIN

DISSERTATION SUBMITTED IN FULFILLMENT OF

 THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

INSTITUTE OF MATHEMATICAL SCIENCES

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2013

iii

ABSTRACT

 Job Shop Scheduling Problem (JSSP) is one of the well-known hard

combinatorial scheduling problems and one of the most computationally difficult

combinatorial optimization problems considered to date. This intractability is one of the

reasons why the problem has been so widely studied. The problem was initially tackled

by “exact methods” such as the branch and bound method, which is based on the

exhaustive enumeration of a restricted region of solutions containing exact optimal

solutions. Exact methods are theoretically important and have been successfully applied

to benchmark problems, but sometimes they, in general are very time consuming even

for moderate-scale problems. Metaheuristic is one of the “approximation methods” that

is able to find practically acceptable solutions especially for large-scale problems within

a limited amount of time. Genetic Algorithms (GA) which is based on biological

evolution is one of the metaheuristics that has been successfully applied to JSSP.

 In this study an indirect representation incorporating a schedule builder that

performs a simple local search to decode the chromosome into legal schedule called

active schedule is proposed. The chromosomes are decoded into active schedules thus

increasing the probability of obtaining near or optimal solution significantly.

Crossover between two parents is traditionally adopted in GA while multi-

parents crossover (more than two parents) technique is still lacking. This research

proposes extended precedence preservative crossover (EPPX) which uses multi-parents

for recombination in the GA. This crossover operator attempts to recombine the good

features in the multi-parents into a single offspring with the hope that the offspring

iv

fitness is better than all its parents. EPPX can be suitably modified and implemented

with, in principal, unlimited number of parents.

 JSSP generates a huge search space. An iterative forward-backward pass which

reduces search space has been shown to produce significant improvement in reducing

makespan in other field of scheduling problem. The iterative forward-backward pass is

applied on the schedules generated to rearrange their operation sequences to seek

possible improvements in minimizing the total makespan.

 Reduction of the search space does not guarantee the optimal solution will be

found. Therefore, a neighborhood search is embedded in the structure of GA and it acts

as intensification mechanism that exploits a potential solution. This mechanism is

restricted to search the possible solutions in a critical path. Modification on the path by

using neighborhood search significantly reduces the total length of the makespan.

 The hybrid GA is tested on a set of benchmarks problems selected from

literatures and compared with other approaches to ensure the sustainability of the

proposed method in solving JSSP. The new proposed hybrid GA is able to produce 10

better or comparable solutions when compared to similar GA algorithms that employ

two-parent crossover. In general this algorithm produces less than 6% deviation when

compared to the best known solutions, especially in larger problems consisting of 20

jobs and 15 machines.

v

ABSTRAK

 Kerja kedai penjadualan masalah (JSSP) adalah salah satu masalah penjadualan

kombinasi yang terkenal dan merupakan salah satu masalah yang paling sukar dalam

pengoptimuman kombinasi. Ciri kesukaran JSSP adalah salah satu sebab masalah ini

dikaji secara meluas. Kaedah penyelesaian untuk JSSP pada mulanya menggunakan

"kaedah tepat" seperti kaedah cabang dan batas yang berdasarkan penghitungan lengkap

rantau penyelesaian yang terhad yang mengandungi penyelesaian optimum. Dari segi

teori, kaedah tepat ini adalah amat penting dan telah berjaya digunakan untuk

sesetengah masalah "benchmark", tetapi ia memerlukan masa komputasi yang amat

panjang walaupun untuk penyelasaian masalah yang bersaiz sederhana. Metaheuristik

adalah salah satu "kaedah penghampiran" yang mampu mendapatkan penyelesaian yang

boleh diterima (penyelesaian hampir optimum) secara praktikal terutamanya bagi

masalah yang bersaiz besar dalam jumlah masa yang terhad. Algoritma Genetik (GA)

yang berdasarkan evolusi biologi adalah salah satu metaheuristik yang telah berjaya

digunakan untuk JSSP.

Kajian ini mencadangkan penggabungan perwakilan secara tidak langsung

dengan pembina jadual yang melaksanakan kaedah carian tempatan mudah untuk

menyahkodkan kromosom ke dalam jadual yang dinamakan jadual aktif. Kromosom

yang dinyahkod ke dalam jadual aktif akan meningkatkan kebarangkalian untuk

mendapatkan penyelesaian yang hampir atau optimum.

 Secara tradisinya, persilangan ini biasanya melibatkan dua ibubapa induk sahaja

manakala teknik persilangan berbilang induk (lebih daripada dua induk) masih kurang

digunakan dalam bidang GA. Kajian ini mencadangkan persilangan pengekalan

vi

keutamaan lanjutan (EPPX) yang menggunakan induk berbilang untuk penggabungan

semula dalam GA. Operator persilangan ini akan cuba menggabungkan ciri-ciri yang

baik daripada berbilang induk untuk menghasilkan individu yang lebih baik. EPPX

boleh diubahsuai dan dilaksanakan tanpa mengehadkan jumlah induk yang terlibat.

 JSSP menjana ruang carian yang luas. Kaedah lelaran "forward-backward pass"

yang mengurangkan ruang carian telah terbukti menghasilkan peningkatan yang ketara

dalam mengurangkan pengurangan masa siap (makespan) dalam bidang masalah

penjadualan yang lain. Kaedah lelaran forward-backward pass digunakan dalam

pembinaan jadual dengan menyusun semula urutan operasi untuk mendapatkan

penambahbaikan serta meminimumkan jumlah masa siap.

 Pengurangan ruang carian tidak menjamin akan menemui penyelesaian optimum.

Oleh sebab itu, carian kejiranan yang dimasukkan ke dalam struktur GA akan bertindak

sebagai mekanisme intensifikasi untuk mengeksploitasi penyelesaian yang berpotensi.

Mekanisme ini dihadkan untuk mencari penyelesaian dalam laluan kritikal.

Pengubahsuaian ke atas laluan tersebut dengan menggunakan carian kejiranan boleh

mengurangkan jumlah masa siap tersebut.

 Hibrid GA diuji ke atas set masalah "benchmark" yang dipilih dari

kesusasteraan dan dibandingkan dengan pendekatan lain untuk memastikan

kemampanan dalam kaedah yang dicadangkan dalam menyelesaikan JSSP. Hibrid GA

baru yang dicadangkan mampu menghasilkan 10 keputusan lebih baik atau setanding

berbanding dengan algoritma GA seumpamanya yang menggunakan dua ibubapa induk

sahaja. Secara umum, algoritma ini menghasilkan sisihan kurang daripada 6%

berbanding dengan penyelesaian yang paling baik, terutamanya menonjol dalam

vii

mencari penyelesaian di dalam masalah lebih rumit yang mempunyai 20 kerja dan 15

mesin.

viii

ACKNOWLEDGEMENTS

 I am greatly indebted and thankful to my supervisor Associate Prof. Dr. Noor

Hasnah Moin and Prof. Dr. Mohd Omar for giving me the opportunity to explore my

talents within and for being supportive. Their immense encouragement and ideas

contributed greatly to the successful completion of my dissertation.

Also, I offer my regards and blessings to all of those who supported me in any respect

during the completion of the project.

Last but not the least; I would like to thank my parents who drive my courage and

supporting me spiritually throughout my life.

ix

TABLE OF CONTENTS

ABSTRACT iii

ABSTRAK v

ACKNOWLEDGEMENTS viii

TABLE OF CONTENTS ix

LIST OF FIGURES xiii

LIST OF TABLES xv

LIST OF ALGORITHMS xvi

CHAPTER 1 INTRODUCTION 1

1.1 Background of the Study 1

1.2 Problem Statement 6

1.3 Objectives of the Study 7

1.4 Outline of the Dissertation 7

CHAPTER 2 THE JOB SHOP SCHEDULING PROBLEM 9

 2.1 Introduction 9

 2.2 Descriptions of the Job Shop Scheduling Problem 9

 2.2.1 Problem Definition 11

 2.2.2 Objectives Function 12

 2.2.3 Scheduling 14

 (a) Gantt Chart 14

 (b) Disjunctive Graph 15

 2.2.4 Critical Path 16

 2.2.5 Type of Schedules 18

x

 2.2.6 Active Schedule Generation 19

 2.2.6.1 Giffler and Thompson Algorithm (GT Algorithm) 19

 2.2.6.2 Active-Decoding Process 20

 2.3 Metaheuristics 21

 2.3.1 Simulated Annealing (SA) 22

 2.3.2 Tabu Search (TS) 24

 2.3.3 Genetic Algorithm (GA) 26

 2.3.3.1 Representation 27

 2.3.3.2 Initialize Population 28

 2.3.3.3 Termination Criterion 29

 2.3.3.4 Selection 29

 2.3.3.5 Crossover 32

 2.3.3.6 Mutation 34

 2.4 Multi-Parents Crossover 35

 2.4.1 Occurrence Based Adjacency Based Crossover 37

 2.4.2 Multi-Parent Extension of Partially Mapped Crossover

 (MPPMX) 38

 2.5 Hybrid GA 38

 2.5.1 Hybridization with Local Search 40

 2.6 Benchmarks Problems 43

 2.7 Conclusion 45

CHAPTER 3 GENETIC ALGORITHM FOR JOB SHOP SCHEDULING

 PROBLEM 46

 3.1 Introduction 46

 3.2 Representation 49

xi

 3.3 Decoding 50

 3.3.1 Active Schedule Builder 52

 3.4 Proposed Hybrid GA Structure 53

 3.5 Initial Population 54

 3.6 Termination Criteria 55

 3.7 Selection 56

 3.8 Reinsertion 57

 3.9 Mutation 57

 3.10 Proposed Extended Precedence Preservative Crossover (EPPX) 58

 3.11 Iterative Forward-Backward Pass 60

 3.12 Neighborhood Search 63

 3.13 Conclusion 65

CHAPTER 4 RESULTS AND DISCUSSIONS 66

 4.1 Introduction 66

 4.2 Data Set – Benchmarks Problems 66

 4.2.1 FT Problem 66

 4.2.2 ABZ Problem 67

 4.2.3 ORB Problem 67

 4.3 Hybrid GA Parameters 68

 4.4 Parameters Testing for Hybrid GA 70

 4.4.1 Crossover Rate 74

 4.4.2 Mutation Rate 75

 4.5 Results 76

 4.6 Comparison with Others that are based on Permutation Crossover

Operator 83

xii

 4.7 Comparison with Results from the Literatures 84

 4.8 Conclusion 86

CHAPTER 5 CONCLUSION 87

 5.1 Conclusion 87

 5.2 Future Works 89

REFERENCES 91

APPENDIX A

Instances for the Problems 97

APPENDIX B

Main Structure of Hybrid GA Programming in MATLAB 102

APPENDIX C

Multi-Parents Crossover 112

APPENDIX D

Neighborhood Search 113

APPENDIX E

Iterative Forward-Backward Pass 118

xiii

LIST OF FIGURES

Figure 2.1 Processing Time 13

Figure 2.2 Machine Sequence 13

Figure 2.3 Gantt Chart 14

Figure 2.4 Operation Sequence 14

Figure 2.5 Disjunctive Graph 15

Figure 2.6 Critical Path in Gantt Chart 16

Figure 2.7 Non Critical Operations 17

Figure 2.8 Critical Path in Disjunctive Graph 17

Figure 2.9 Relationship of Semi-Active, Active, and Non-Delay Schedules 19

Figure 2.10 Active-Decoding Process in Gantt Chart 21

Figure 2.11 Simulated Annealing (SA) 23

Figure 2.12 Swapping in the Critical Blocks 25

Figure 2.13 Example of Representations for 3 Job and 3 Machine Problem 28

Figure 2.14 The Fitness Proportional Selection 31

Figure 2.15 Precedence Preservative Crossover (PPX) 33

Figure 2.16 Diagonal Crossover with different Number of

 Offspring Generation 36

Figure 2.17 OB-ABC 37

Figure 3.1 Flow Chart of Research Methodology 48

Figure 3.2 Permutation with Repetition Representation for

 3 Jobs 3 Machines 49

Figure 3.3 Schedule for JSSP 51

Figure 3.4 Local Search Procedure 52

Figure 3.5 Mutation by Swapping Two Genes in the Chromosome 58

Figure 3.6 EPPX 59

xiv

Figure 3.7 Backward Pass 62

Figure 3.8 Iterative Forward-Backward Pass 62

Figure 3.9 Critical Path, Critical Operations and Possible Operations Swaps 64

Figure 4.1 Graph for Case 1 71

Figure 4.2 Graph for Case 2 72

Figure 4.3 Bar Chart for Case 3 73

Figure 4.4 Frequent of Optimal Soultions Appear (930) at

 different Crossover Rate 75

Figure 4.5 Best Fit Line for Crossover with different Mutation Rates 76

Figure 4.6 Bar Chart for Best Solutions for different No. of Parents 83

xv

LIST OF TABLES

Table 2.1 Example of 3 Job and 3 Machine Problem 13

Table 2.2 Benchmarks for JSSP 44

Table 3.1 Example for 3 Job and 3 Machine Problem 50

Table 4.1 Instances for FT Problem 67

Table 4.2 Instances for ABZ Problem 67

Table 4.3 Instances for ORB Problem 68

Table 4.4 Maximum Number of Generation 69

Table 4.5 Total Solutions Generated 70

Table 4.6 Case 1 Results 71

Table 4.7 Case 2 Results 72

Table 4.8 Case 3 Results 73

Table 4.9 Output for different Crossover Rate and Mutation Rate 74

Table 4.10 Results for FT Problem 77

Table 4.11 Results for ABZ Problem 78

Table 4.12 Results for ORB Problem 79

Table 4.13 Computational Time 80

Table 4.14 Before Hybrid 81

Table 4.15 After Hybrid 81

Table 4.16 Best Solutions for different No. of Parents 82

Table 4.17 Comparison for FT06, FT10, and FT20 with n Jobs x m Machines 84

Table 4.18 Comparison for ABZ Problem 85

Table 4.19 Comparison for ORB Problem 85

xvi

LIST OF ALGORITHMS

Algorithm 2.1 Simple Tabu Search 24

Algorithm 2.2 A Standard Genetic Algorithm 26

Algorithm 2.3 Hybrid GA 41

Algorithm 3.1 Genetic Algorithm 53

Algorithm 3.2 Pseudo Code for EPPX (3 Parents) 60

Algorithm 3.3 Pseudo Code for Neighborhood Search 64

1

CHAPTER 1

INTRODUCTION

1.1 Background of the Study

 In the current competitive economy, manufacturing industries have to shorten

their production time significantly in order to meet customer demands and requirements,

and survive in the market. Effective scheduling plays an important role in reducing the

production processing time. Without incurring additional costs, such as machines or

labor in the production line, effective scheduling aids in reduction of cost (time),

increase of resource utilization and output. When a new product has been introduced

into the production line, rearrangement of the process activities become a major factor

in influencing the overall performance of the production rate, because the new product

has its own process sequences. In order to fit them into the production line, the process

activities that are assigned to the resources need to be relocated.

 Optimization strategy of assigning a set of processing activities for products

(jobs) into the resources has been studied intensively (Jones, 1999). The difficulty of the

assignment is increased when the production line is producing variable products. Poor

scheduling in this kind of production line are not time efficient because of ineffective

resource allocation. This phenomenon is perennially seen in the manufacturing

industries, especially in small and medium sized manufacturing companies which lack

specialized personnel or effective tools for proper production scheduling optimization.

Such inefficiencies in production scheduling result in an increased production time and

diminished production rate.

2

Job Shop Scheduling Problem (JSSP) is one of the well-known hard

combinatorial scheduling problems which is appropriate for addressing the practical

problems related to production scheduling. It becomes complicated to solve when the

size of the problems increases. The size of the problems refers to the total number of

operation tasks and the total number of machines that are involved in the process. This

condition simulates practical production scheduling when the new products and the

associated new resources are introduced into the production line increasing the

complexity of the task arrangement.

 Since JSSP is a practical problem related to production scheduling, it has

received a lot of attention from researchers. There are many different strategies ranging

from mathematical programming (exact algorithms) to metaheuristics (especially

Genetic Algorithm (GA)) to solve the problems (Jones, 1999). Käschel et al. (1999)

compares the different methods for GA and concludes that the performance of GA is

only average on many test cases, but GA is still considered as a powerful instrument

because of its ability to adapt to new problem types. Due to the high capability of GA, a

lot of studies and research have been conducted to investigate how GA could be

effectively applied to JSSP (Cheng et al., 1996).

 In recent years, since the first application of GA based algorithms to solve JSSP

proposed by Davis (1985), GA has attracted the efforts of many researchers to make

improvements in the algorithm to better solve the scheduling problems. GA does not

always find the optimal solution; therefore, various GA strategies have been introduced

to increase the efficiency of GA in finding the optimal or near optimal solutions for

JSSP.

3

 JSSP generates a huge search space. Reduction of search space has been shown

to produce significant improvement in reducing makespan in JSSP. Therefore, search

methods that focus on active schedule are introduced into GA to reduce the search space.

The methods include GT algorithm (Giffler and Thompson, 1960) and active-decoding

process (Wang and Zheng, 2001), which are used to generate active schedules.

Recombination applied on these schedules shows significant improvement in generating

new solutions.

 In the GA strategies, hybridization of GA with other methods or local search

methods provided good results in solving problems. Such strategies capitalize on the

strength of GA incorporating local search options for locating the optimal or near

optimal solutions. Specifically, the local search procedure of Nowicki and Smutnicki

(1996) is embedded into GA because of its effectiveness and it has been shown to

increase the performance of GA (Gonçalves et al., 2005; Zhang et al. 2008). Besides

this, combination of metaheuristics algorithms with GA has also been proposed and the

ability of such hybrid methods has also been tested for solving problems.

 Additionally, the structure of the GA can be modified and enhanced to reduce

problems often encountered in GA optimization. Park et al. (2003) retard the premature

convergence in GA by using parallelization of GA (PGA) to find the near optimal

solutions. Watanabe et al. (2005) proposed a GA with search area adaption and a

modified crossover operator for adapting to the structure of the solutions space. Ripon et

al. (2011) embedded heuristic method into crossover functions to reduce the tail

redundancy of chromosomes when implementing crossover operations.

4

 Throughout the literature survey it is observed that the GA’s abilities are

increased by modifying the structure of the GA. All these researches show that GA is

not restricted to a single procedure and performs well when its structure is modified or

hybridization is implemented with local search to increase the accuracy of identifying

solutions. Such inherent flexibility in its structure has encouraged researchers to use and

test GA in combination with different strategies. The framework of GA also allows for

some modifications to be made accordingly to suit the problem at hand, including:

selection of several parents (more than two parents) for the recombination operation,

also known aptly as multi-parents crossover.

 In solving combinatorial scheduling problems, to the best of our knowledge,

only limited number of multi-parents crossover has been proposed and none is in JSSP.

Therefore, the basic ideas and behaviors of the multi-parents recombination approach

need to be understood before the method is applied in GA.

 The application of multi-parents recombination can be found in different

research areas. Mühlenbein and Voigt (1995) proposed Gene Pool Recombination (GPR)

in solving discrete domain problems. Eiben and Kemenade (1997) introduced the

diagonal crossover as the generalization of uniform crossover and one-point crossover

in GA for numerical optimization problems. Wu et al. (2009) proposed multi-parents

orthogonal recombination to determine the identity of an unknown image contour.

Tsutsui and Jain (1998) proposed multi-cut and seed crossover for binary coded

representation and Tsutsui et al. (1999) proposed simplex crossover for real coded GA.

The multi-parents crossover operators have shown the good search ability of the

operator but they are very problem dependent.

5

 The above literatures indicated the ascendency of multi-parents crossover over

two parents’ crossover. Although multi-parents crossover has been used in different

fields, to the best of our knowledge, only limited numbers are applied to combinatorial

scheduling problems. In particular, Eiben et al. (1994) proposed multi-parents for the

adjacency based crossover and Ting et al. (2010) developed Multi-Parents Extension of

Partially Mapped Crossover (MPPMX) for the Travelling Salesman Problems (TSP).

Although the experimental results point out that adjacency based crossover of multi-

parents has no tangible benefit, MPPMX show significant improvement in the use of

multi-parents in crossover. In other words, one would expect that by biasing the

recombination operator the performance of the GA would improve.

 Based on the literature reviews about multi-parents recombination approach it is

found that some of the crossover operators are extended from the two parents’

recombination method. They are modified to make it possible to adopt multi-parents

into the operators. This means that the representation that is used for the two parents’

recombination can also be reused in the multi-parents recombination technique to solve

the problems, instead of being limited to using two parents only. As a result, some of

these operators perform well compared to the two parents’ recombination with the same

recombination method.

 In this study, we propose Extended Precedence Preservative Crossover (EPPX)

as a multi-parents recombination method. EPPX is built based on the precedence

preservative crossover (PPX) approach proposed by Bierwirth et al. (1996). PPX is used

as our recombination references because of its capability to preserve the phenotypical

properties of the schedules. Therefore, EPPX as a crossover operator will retain this

advantage in the GA. EPPX is used to solve JSSP in conjunction with local search.

6

Furthermore, the large solution search space problem encountered by the GA is reduced

by applying an iterative scheduling method. The simulations’ results show the

sustainability of this GA in solving JSSP.

1.2 Problem Statement

 Previous studies show that two parents’ crossover is commonly used in solving

JSSP and there are rare applications of multi-parents crossover in GA optimizations. In

this study, a new approach of multi-parents crossover EPPX is adapted in GA.

 GA often encounters problems such as large search space and premature

convergence. In the large search space, there always exist poor quality solutions.

Therefore, we introduce the iterative forward-backward scheduling which had been

used by Lova et al. (2000) in the multi-project scheduling problem to reduce the search

space.

 Neighborhood search embedded in GA has been proven to help improve the

solutions of GA in solving JSSP. Hence, neighborhood search is applied in our

algorithm to handle the problem of premature convergence and to escape from the local

optima in order to find better solutions. Neighborhood searches for better solutions

through the restricted movement of the jobs on the critical paths in the schedule.

 These methods are tested on a set of benchmarks for JSSP. The results are

compared with other methods to measure the capabilities of the proposed hybrid GA.

7

1.3 Objectives of the Study

The objectives of this research are:

 To propose multi-parents crossover in GA as crossover operator.

 Suitable parameters for the multi-parents crossover are tested.

 Diversification of the recombination methods by introducing multi-

parents recombination instead of two parents.

 To hybridize GA with local search to increase the efficiency of GA in searching

for the optimal solutions. The methods include:

 Scheduling method which is employed from other areas and applied to

GA to increase its efficiency.

 Neighborhood search procedure on critical path in schedule that acts as

an exploitation mechanism in the search for the best solutions.

 To evaluate the capability of both algorithms in reducing the total makespan

time of the jobs using job shop scheduling problems benchmarks as references.

Results are compared with other JSSP strategies as well.

1.4 Outline of the Dissertation

 This dissertation is devoted to JSSP based on GA using multi-parents crossover

as recombination operator and the hybridization with local search and scheduling

methods to increase the performance of the GA.

8

 In Chapter 2, the JSSP is introduced. Notation and the precedence constraints of

JSSP is defined by formulating the objective functions. The main focus of JSSP is to

find the minimum makespan for the scheduling (𝐶𝑚𝑎𝑥). The different methods for

feasible scheduling are explained. The local searches embedded in the GA are

introduced. This chapter also contains the reviews of related literature for different

multi-parents strategy and its capability in solving a manifold of problems.

Hybridization methods that have already been applied to JSSP are explained with

special focus on the effect of hybridization of GA in solving such problems. The

benchmarks that are commonly used are introduced and their levels of difficulties are

described in great details.

 In Chapter 3, the methodology of the GA is explained. The framework of the

GA, which is built on the hybridization approach with other methods, is described in

this chapter. EPPX is proposed and the algorithm is explained in details. An iterative

forward-backward scheduling adapted from other scheduling problems is applied to

reduce large search space and the neighborhood search on critical path acts as

exploitation mechanism to reduce the makespan.

 In Chapter 4, suitable parameters for the crossover and mutation rates are

examined before the algorithm is adapted to solve problems. The simulations are

performed on a set of benchmarks from the literatures and the results are compared to

ensure the sustainability of multi-parents recombination in solving the JSSP. The

outcome of the comparison is discussed and analyzed in this chapter.

 In Chapter 5, the research is summarized and concluded. Further works and

directions are suggested for future studies.

9

CHAPTER 2

THE JOB SHOP SCHEDULING PROBLEM

2.1 Introduction

 In this chapter, the background of the job shop scheduling problems is

introduced. Job Shop Scheduling Problem is represented as JSSP and the terminology of

manufacturing such as job, operation, machine, processing time, and task are used to

express the conditions and requirements for the problem.

 This chapter is divided into several sections. In Section 2.2, the details of JSSP

are explained, including the scheduling methods for JSSP. Section 2.3 discusses the

different metaheuristics and their methodologies that are used to solve the JSSP,

especially in the last part of this section; the focus is dedicated to GA which is the

foundation of this study. Section 2.4 introduces the multi-parents recombination

operator with different strategies and Section 2.5 explains the concept of hybrid GA for

JSSP. The testing of an algorithm’s effectiveness is usually done on a set of benchmarks,

which are described in Section 2.6. Finally, Section 2.7 concludes with discussions of

the propose GA for JSSP.

2.2 Descriptions of the Job Shop Scheduling Problem

 In production, scheduling may be described as sequencing in order to arrange

the activities into a schedule. Kumar and Suresh (2009) classified the production

systems which include the job shop problem in scheduling and controlling production

10

activities. Entities which pass through the shop are called jobs (products) and the work

conducted on them on a machine (resource) is called an operation (task). Where it is

applicable, the required technological ordering of the operations on each job is called a

routing. To encompass the scheduling theory, Graves (1981) classifies the production

scheduling problems by using the following dimensions:

1. Requirement generation

A manufacturing processing can be classified into an open shop or a closed shop. In an

open shop, no inventory is stocked and the production orders are by customer requests.

In a closed shop, a customer’s order is retrieved from the current inventory. The open

shop scheduling problem is also called job shop scheduling problem.

2. Processing complexity

It refers to the number of processing steps and resources that are associated with the

production process. The types of this dimension are grouped as follows:

 a. One stage, one processor.

 b. One stage, multiple processors.

 c. Multistage, flow shop.

 d. Multistage, job shop.

One stage in a processor or multiple processors refers to a job that requires one

processing step to be done in a machine or multiple machines, respectively. Multistage

for flow shop indicates that several operations in the job that are required to be

processed by distinct machines and there is a common route for all jobs. Multistage for

11

job shop refers to the alternative routes and resources which can be chosen and there is

no restriction on the processing steps.

3. Scheduling criteria

Scheduling criteria is set by referring to the objectives in the schedule that need to be

met. Mellor (1966) listed 27 objectives that need to be met in the scheduling criteria. In

JSSP, the main objectives can be summarized as follows:

a. Minimum makespan problem

The first operation in the production needs to be started and the last operation needs to

be finished as soon as possible. Therefore, the sum of completion times should be

minimized. It can be done by utilizing the usage of the resources (reduce the idle time of

the machine).

b. Due date problem

Efforts need to be taken in reducing the total delay time and the penalty due to the

tardiness by rescheduling.

c. Multi objective scheduling problem

Consideration focuses several objectives and compromises the alternative ways to

achieve the objectives.

2.2.1 Problem Definition

 JSSP can be defined as a set of 𝑛 jobs which needs to be processed on a set of 𝑚

machines. A job consists of a set of operations 𝐽, where 𝑂𝑖𝑗 , represents the 𝑗𝑡(1 ≤ 𝑗 ≤

𝐽) operation of the 𝑖𝑡(1 ≤ 𝑖 ≤ 𝑛) job. The technological requirements for each

12

operation processing time is denoted as 𝑝𝑖𝑗 and a set of machines is denoted by 𝑀𝑘(1 ≤

𝑘 ≤ 𝑚).

Precedence constraint of the JSSP is defined as (Cheng et al., 1996):

 Operation 𝑗𝑡 must finish before operation 𝑗𝑡 + 1 in the job.

 A job can visit a machine once and only once.

 Only one operation can be processed in the machine at a time for one time.

 The delay time for the job transfer machine will be neglected and operation

allocation for machine will be predefined.

 Preemption of operations is not allowed.

 There are no precedence constraints among the operations of different jobs.

 Neither release times nor due dates are specified.

2.2.2 Objectives Function

 The main objective of JSSP is to find the minimum makespan for the scheduling.

The finish time of job 𝑖 and operation processing time are represented by 𝐹𝑖𝐽 and 𝑝𝑖𝑗

repectively. The completion of the whole schedule or the makespan is also the

maximum finish time in the set of the jobs 𝑖. Therefore, the makespan is denoted by

𝐶𝑚𝑎𝑥 is expressed as follow:

 𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝐹𝑖𝐽 (1.1)

Let 𝐺(𝑘) be the set of operations being processed in machine 𝑘, and let

𝑋𝑂𝑖𝑗 ,𝑘 =
1 if 𝑂𝑖𝑗 has been assigned to machine 𝑘

0 otherwise

The conceptual model of the JSSP can be expressed as follows (Gonçalves et al., 2005):

 Minimize 𝐹𝑖𝐽 (1.2)

13

 𝐹𝑖𝑗 ≤ 𝐹𝑖𝑗 +1 − 𝑝𝑖𝑗 +1, 𝑗 = 1,2, …𝐽, for all 𝑖 (1.3)

 𝑋𝑂𝑖𝑗 ,𝑘 ≤ 1,𝑂𝑖𝑗 𝜖𝐺 𝑘 for all 𝑘 (1.4)

The objective function represented by Eq. (1.2) minimizes the maximum finish time in

the set of the jobs 𝑖, therefore it minimizes the makespan. Eq. (1.3) satisfies precedence

relationships between operations and Eq. (1.4) imposes that an operation can only be

assigned to a machine at a time. The problem is to determine a schedule that minimizes

the makespan, that is, to minimize the time required to complete all jobs.

An example of 3 jobs and their sequences are given in Table 2.1.

Table 2.1: Example of 3 Job and 3 Machine Problem

 Job
Operation routing

1 2 3

Processing time

1 3 3 2

2 1 5 3

3 3 2 3

Machine sequence

1 M1 M2 M3

2 M1 M3 M2

3 M2 M1 M3

The problem can also be represented in the processing time matrix (𝑝) (Figure 2.1) and

machine sequences matrix (𝑀) (Figure 2.2) such as below:

𝑝 =
3 3 2
1 5 3
3 2 3

 𝑀 =
1 2 3
1 3 2
2 1 3

 Figure 2.1: Processing Time Figure 2.2: Machine Sequence

The rows of matrices represent the jobs and the columns represent the operations

routing.

14

2.2.3 Scheduling

(a) Gantt Chart

 In the project scheduling problem, Gantt chart is commonly used to illustrate the

schedule of the process. It makes describing the JSSP solution more simple and the

makespan of the schedule can be easily visualized. Researchers use the Gantt chart to

illustrate their methods because the Gantt chart is able to illustrate the arrangement of

the procedures of operation in the schedule (Porter, 1968). Gantt chart consist of blocks

which are constituted by the operation 𝑂𝑖𝑗 . The Gantt chart’s vertical axis shows a set of

machines that are involved in the processing and the horizontal axis shows the

accumulation of the processing time for the operations. In Figure 2.3, the Gantt chart

shows that the minimum makespan can be found by referring to the maximum finish

time (𝐶𝑚𝑎𝑥 = 17) in the last operation in the chart, 𝑚𝑎𝑥 𝐹𝑖𝐽 .

Figure 2.3: Gantt Chart

The sequence of the operation in the machine is presented in Figure 2.4. The matrix

rows represent the machines.

𝑆 =

𝑂11 𝑂21 𝑂32

𝑂31 𝑂23 𝑂12

𝑂22 𝑂33 𝑂13

Figure 2.4: Operation Sequence

In addition disjunctive graph can also be used to calculate the makespan time for

the JSSP.

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 22 O 33

0 Time14 16 182 4 6 8 10 12

O 32

O 13

15

(b) Disjunctive Graph

 A disjunctive graph (Balas, 1969) is a graphical structure that can be viewed as

one kind of job pair relation-based representation. In JSSP, these are frequently used in

problem solving methods to illustrate the relationship between the operations and the

machines. Yamada and Nakano (1997) described that a disjunctive graph can be written

as 𝐺 = (𝑁, 𝐴, 𝐸) where 𝑁 denotes a set of operations with additional two tasks: a

source and a sink. 𝐴 represents the connection arc of the consecutive operations in the

same job, and 𝐸 contains the arcs that connects the operations which are processes in

the same machine. The length of the makespan can be calculated by finding the longest

path from the source to the sink. This can be done by summing all the consecutive arcs

which are connected continuously in the graph. Figure 2.5 illustrates a disjunctive graph

for the example given in Table 2.1.

Figure 2.5: Disjunctive Graph

0 S

O31

O33

O32

O23

O22

O21

O13

O11 O12

arc A for the same job

arc E for the same machine

Source

Sink

16

2.2.4 Critical Path

 The critical path is the longest path in the schedule that the operation process

passes through with respect to the individual operations’ interdependencies (Gen et al.,

2008). It is the shortest time in the schedule that starts from first operation until the last

operation to complete the schedule. Any delay of any operation on the critical path will

delay the makespan. The critical path can be identified in a schedule by determining the

parameter of each operation (Kelly and Walker, 1959):

Earliest start time (ES): The earliest time at which the operation can start given that its

precedent activities must be completed first.

Earliest completion time (EF): The sum of the earliest start time for the activity and the

time required to complete the operation.

Latest start time (LS): The latest time at which the operation can be completed without

delaying the project.

Latest completion time (LF): The latest finish time minus the time required to complete

the operation.

 The slack time for an operation is the difference between the ES and LS or EF

and LF. An operation which is in the critical path is called a critical operation and can

be identified if it contains zero slack time, i.e. 𝐸𝑆 = 𝐿𝑆 and 𝐸𝐹 = 𝐿𝐹. The critical path

in the Gantt chart is illustrated in Figure 2.6.

Figure 2.6: Critical Path in Gantt Chart

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 33

0 Time

Non critical operations

Critical operations in critical path

2 4 6 8 10 12 14 16 18

O 32

O 13O 22

17

 Figure 2.7 presents an example of non critical operations. Note that without

changing the operation sequence in the machines, the operations 𝑂31, 𝑂32, and 𝑂33 can

start latest without delaying the schedule time 𝐸𝑆 ≠ 𝐿𝑆 and 𝐸𝐹 ≠ 𝐿𝐹, therefore they are

not critical operations.

Figure 2.7: Non Critical Operations

 The critical path also can be represented in the disjunctive graph (Figure 2.8).

The longest path in the network is defined as that path which is connected consecutively

forms a critical path.

Figure 2.8: Critical Path in Disjunctive Graph

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 33

0 Time14 16 18

Critical operations in critical path

2 4 6 8 10 12

O 32

O 22 O 13

0 S

O31

O33

O32

O23

O22

O21

O13

O11 O12

critical path

Source

Sink

18

2.2.5 Type of Schedules

 In the JSSP, the total solutions for all possible schedules are 𝑛! 𝑚 for 𝑛 jobs

and 𝑚 machines (Cai et al., 2011). Clearly, it is hard to find all the solutions and

compare them with each other. Even for the easy problems, with 6 jobs and 6 machines

(FT06) (Jain and Meeran, 1999), the total solutions consist of about 1.36x1017

schedules. Even in this case it is unreasonable to calculate all possible solutions. The

total number of solutions comprises of feasible and infeasible schedules.

 Feasible solutions consist of three types of schedules: semi-active, active and

non-delay schedule (Sprecher et al., 1995). These distinctions of schedules narrow down

the finding of optimal solutions that is located in the search space. Besides that, Baker

(1974) defined that an operation can be left shifted without delaying any other operation

in the schedule as a global left shift. This is used to differentiate the types of schedules.

The details of the types of schedules are described below:

Semi-active schedule: A feasible non-preemptive schedule is called active if it is not

possible to construct another schedule by changing the order of processing on the

machines and having at least one job/operation finishing earlier and no job/operation

finishing later. Global left shift is possible in this type of schedule.

Active schedule: A feasible non-preemptive schedule is called semi-active if no

job/operation can be finishing earlier without changing the order of processing on any

one of the machines and global left shift is not possible. Active schedules the sub set of

the semi-active schedules.

19

Non- delay schedule: A feasible schedule is called a non-delay schedule if no machine is

kept idle while a job/an operation is waiting for processing. This schedule is also an

active and semi-active schedule.

 Optimal solution of the scheduling always lies in the active schedule (Gen and

Cheng, 1997). Therefore, we only need to find the optimal solution in the set of active

schedules. Figure 2.9 illustrates the relationship of the schedules.

Figure 2.9: Relationship of Semi-Active, Active, and Non-Delay Schedules

2.2.6 Active Schedule Generation

2.2.6.1 Giffler and Thompson Algorithm (GT Algorithm)

 In JSSP, the scheduling algorithm that has been proposed by Giffler and

Thompson (1960) (GT algorithm) is the famous example representing the generation of

active schedule. GT algorithm has been used widely by other researchers to generate

active schedules that fit their algorithm. Bierwirth and Mattfeld (1999) combined GT

algorithm and non-delay schedule that they had defined to find the performance in

Semi-active

Active

Non-delay

Optimal

Feasible

20

generating the production scheduling solution. Yamada and Nakano (1997) used the GT

algorithm and modified it into the form that was compatible with their algorithm. As a

result, it shows significant improvement in solving tougher larger sized JSSP.

Below are the steps to obtain the active schedule by using GT algorithm:

Step 1: Let 𝐶 be the a set of tasks that are not schedule yet

Step 2: Let 𝑡 be the earliest completion time of the operation which is calculated for all

the operations

Step 3: Let 𝐺 denote the set of all operations that are processed in the machine 𝑚 with

the 𝑡𝑖𝑚𝑒 < 𝑡

Step 4: Select an operation from 𝐺 and insert it into the schedule

Step 5: Update the sets 𝐶 and 𝐺

Step 6: Repeat the Step 1 – Step 5 until all operation is scheduled.

The schedule that is generated using this algorithm always produces the active schedule.

2.2.6.2 Active-Decoding Process

 An active schedule can be obtained by shifting the operations to the left of a

semi-active schedule without delaying other jobs, such reassigning, is called a

permissible left shift, and a schedule with no more permissible left shifts is called an

active schedule. This condition enables one to convert the semi-active schedule to an

active schedule by using an active-decoding process that was introduced by Wang and

Zheng (2001). Each process that is assigned is always shifted to the left until time

equals to zero or inserted into empty time interval between operations to find the earliest

completion time. The process is repeated until all operations are scheduled. A schedule

generated by this procedure can be guaranteed to be an active schedule (Baker, 1974).

21

Figure 2.10: Active-Decoding Process in Gantt Chart

Figure 2.10 illustrates the transformation of semi-active schedule into active schedule.

The operations are shifted to the left in the semi-active schedule and this may decrease

the makespan time.

2.3 Metaheuristics

 Metaheuristics are designed to tackle complex optimization problems where

other optimization methods have failed to be either effective or efficient (Ólafsson,

2006) in solving problems. The term ―meta heuristic‖ was first used by Glover (1986).

Osman and Laporte (1996) defined that metaheuristic is an iterative generation process

which guides subordinate heuristics by combining different concepts and learning

strategies that efficiently lead to near-optimal solutions. Blum and Roli (2003)

summarize that metaheuristics are high level strategies for exploring search space by

using different methods. The added search flexibility makes the algorithm attempt to

find all the possible best solutions in the search space of an optimization problem. The

advantage of metaheuristics is that it usually finds solutions quickly and the

disadvantage is that the quality of the solution is generally unknown (Taha, 2011).

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 22 O 33

0 Time

M1 O 11 O 21

M2 O 31 O 23 O 12

M3 O 22 O 33

0 Time

(b) Active Schedule after Active-Decoding Process

14 16 182 4 6 8 10 12

O 32

O 13

O 32

2 4 6 8 10 12

(a) Semi-active Schedule

14 16 18

O 13

22

 The common procedure of the metaheuristic is the application of an iterative

procedure that is continuously operated and terminates when certain criterion is met.

Examples of the terminations are (Taha, 2011):

 The search iteration number reach is a specified number.

 The frequently number of the best solution found that exceed a specified number.

 The optimal solution is found or the current best quality solution is acceptable.

 One of the commonly used iterative search procedures in metaheuristics is called

local search. Local search does not have consistent definition (Zäpfel et al., 2010). It is

dependent on how the algorithm searches the result locally in the current solution. When

a solution obtained is slightly different from the original solution, it is regarded as a

neighbor. If it receives a set of neighboring solutions, it is called ―neighborhood‖. In the

iteration, the current solution tries to move to the best solutions within the neighborhood

in hope of getting the optimal solution with the hill climbing. When there are no

improvements present in the neighborhood, local search is stuck at local optimum. Then

the algorithm has to restart (Lourenço et al., 2003).

 In the next section, the metaheuristics that is applied on the JSSP is introduced.

The three prominent metaheuristics introduced are tabu search, simulated annealing, and

emphasizing on genetic algorithms which is the focus of this study.

2.3.1 Simulated Annealing (SA)

 Kirkpatrick et al. (1983) and Cemy (1985) independently introduced the concept

of SA in the combinatorial problem. This concept is based on the thermal process for

23

obtaining low energy of a solid in a heat bath which increases the heat until the

maximum value is reached and then the temperature is slowly decreased to allow the

particles to rearrange their own positions.

 The main structure of the SA is almost the same as the local search but the

difference is that SA does not specify the neighborhood but rather specifies an approach

to accepting or rejecting solutions that allows the method to escape local optima

(Zäpfelet al., 2010). SA from this point of view is using temperature control mechanism

which affects the process of solution acceptance as illustrated in Figure 2.11. The

acceptance criterion of the solution in the SA may be proposed based on the problem

requirements, for example, Van Laarhoven et al. (1992) proposed the acceptance

criterion based on statistical properties of the cost for SA in JSSP.

Figure 2.11: Simulated Annealing (SA)

 SA has been applied to JSSP earlier, e.g., Van Laarhoven et al. (1992) had been

applied SA to JSSP and performed a complexity analysis of their heuristics which are

designed to minimize the makespan. Steinhöfel et al. (1999) analyze a neighborhood

function which involves a non-uniform generation probability by using SA to search the

results for JSSP.

Acceptance

criterion

A set of

neighborhood

Current

solution

Selected

solution

Accepted

solution

Yes

No

Replaced the

current solution

24

2.3.2 Tabu Search (TS)

 TS which was originally developed by Glover (1986), has been widely used in

solving combinatorial problems. TS is a general framework for iterative local search

strategy for problem optimization. TS, which extended from local search, uses the

concept of memory to control the algorithm execution via a tabu list for the forbidden.

Glover (1986) introduced the short-term memory to prevent the recent moves and

longer-term frequency memory to reinforce attractive components.When TS encounters

a local optimum, it will allow moves from the previous tabu list (see Algorithm 2.1).

Algorithm 2.1: Simple Tabu search

 Tabu Search Algorithm with Back Jump Tracking (TSAB) proposed by Nowicki

and Smutnicki (1996) is considered as one of the most restricted search in the TS. In the

TSAB, the search focuses on the critical path. The critical path is divided into blocks

which are called critical blocks that contain a maximum adjacent critical operation

which require the same machine.

Through the finding, a good solution may be found by swapping the operations

at the border of the block instead of swapping the operations inside the block. Given 𝑏

blocks, if 1 < 𝑔 < 𝑏, then swap only the first two and the last two block operations.

Initialize solution s

Initialize tabu list T

while termination criterion = false do

Determine a set of move, neighborhood N of current solution s;
Best non-tabu solution is chosen s0 from N;
Replace s by s0;
Update tabu list T and best found solution;

End while

Best solution is found

25

Otherwise, if 𝑔 = 1 (𝑏), swap only the last (first) two block operations (see Figure 2.12).

In the case where the first and/or the last block contain only two operations, these

operations are swapped. If a block contains only one operation then no swap is made.

Figure 2.12: Swapping in the Critical Blocks

 The possible swap is predetermine and the best swap that provides the best

solution is used for the next solution and swapped operations is updated in the tabu list.

When the tabu list reaches a certain memory, the forbidden moves are eliminated from

the list and reused for the next search. There is an aspiration criterion in which if the

swap is able to reduce to the makespan, it is accepted and cancelled from the tabu list

(Zäpfel et al., 2010).

 Dell'Amico et al. (1993) applies the tabu search technique to the JSSP and show

that implementation of this method dominates both a previous approach with TS and the

other heuristics based on iterative improvements. Recent results that use TS algorithm

embedded within their algorithms includes Gonçalves et al., 2005 and Cai et al. (2011)

in solving JSSP. In particular Zhang et al., (2008) propose a combination of SA and TS

and their paper produces some of the best known results to date.

First block Intermediate block Last block

Border of the block

26

2.3.3 Genetic Algorithm (GA)

 In recent years, since the first use of GA based algorithm to solve the JSSP

proposed by Davis (1985), GA has attracted many researchers to improve efficiency of

the scheduling method and frequently used to solve scheduling problem. Various GA

strategies are introduced to increase the efficiency of GA to find the optimal or near

optimal solutions for JSSP (Cheng et al., 1996; Cheng et al. 1999).

 GA is a heuristic based search which mimics the evolutionary processes in

biological systems. Evolutionary processes such as reproduction, selection, crossover,

and mutation, which are inspired by natural evolution, are used to generate solutions for

optimization problems (see Algorithm 2.2). Those techniques are translated into the

form of computer simulations. GA begins with a population, which represents a set of

potential solutions in the search space. It then attempts to combine the good features in

each individual in the population using random search information exchange in order to

construct individuals who are better suited than those in the previous generation(s).

Through the process of evolution, individuals who are poor or unfit tend to be replaced

by fitter individuals to generate a new and better population. In this way, GA usually

converges to the estimation for a desired optimal solution.

Algorithm 2.2: A Standard Genetic Algorithm

Initialize population

Evaluation

while termination criterion=false do

 Selection
 Crossover
 Mutation
 Evaluation
 Reinsertion

End while

27

2.3.3.1 Representation

 GA is an iterative and stochastic process that operates on a set of individuals

(population). Each individual represents a potential solution to the problem. This

solution is obtained by encoding and decoding an individual called chromosome (Taha,

2011). The illegality of the chromosomes refers to the phenomenon of whether a

particular chromosome represents a solution or not (Cheng et al., 1996). An illegal

chromosome needs to go through the legalization process to generate a feasible solution.

 In the survey by Cheng et al. (1996), chromosome representation in JSSP was

divided into two approaches: direct and indirect. The difference between direct and

indirect approach depends on whether a solution is directly encoded into the

chromosome. As an example: direct approach encoded a schedule directly into a binary

string to evolve and find a better solution. Indirect approach requires a schedule builder

to encode integer representations for the jobs into the chromosome.

 Abdelmaguid (2010) classified the GA into two main categories, model based

and algorithm based. The model based category enables chromosomes to be directly

interpreted into feasible or infeasible solution. Algorithm based is used to store the

information in order to generate feasible solution. The author points out that the

different representations of JSSP affects the quality of the solution found and the

calculation time.

 Therefore, simplification of the representation is important in the steps related to

encoding and decoding of a chromosome. One of the representations proposed by Gen

et al. (1994) called operation based representation by using permutation with repetition

integers that are able to encode a schedule according to the sequences into chromosome

28

without violating the technological constraint. Figure 2.13 presents examples of binary

and integer with repetition to encode a chromosome.

Figure 2.13: Examples of Representations for 3 Job and 3 Machine Problem

2.3.3.2 Initialize Population

 A genetic algorithm work starts by building a population which contains a

number of individuals; a set of possible solutions for the optimization problem. Each

individual is called a chromosome. These individuals are evaluated by assigning value

or fitness function to measure their quality in achieving the problem’s solutions.

Individuals are selected based on the fitness function to breed a new generation through

the recombination process.

The two important aspects of population in GA are:

1) Initialization of population generation

2) Population size

Initialization of population generation

 The population is normally generated randomly to achieve a set of solutions for

breeding. However, Park et al. (2003) mentioned from their research that the initial

solution plays a critical role in determining the quality of the final solution. Therefore,

they generated the population using GT algorithm to acquire a set of active schedule

chromosomes.

Chromosome= [1 1 1 0 0 1 0 1 0]

Chromosome= [1 2 3 2 1 3 3 1 2]

a) Binary representation

b) Operation based representation

29

Population size

 Goldberg et al. (1991) had shown that with a population size which is larger, it is

easy to explore the search space. The disadvantages of the larger population size are that

it demands more computational cost, memory, and time; so normally 100 individuals is

a common population size selected in solving the GA problem (Sivanandam and Deepa,

2008).

 Some problems have very large solution spaces which contain many variables

and large ranges of permissible values for solutions. Therefore, a fixed population is

probably not enough because it simply does not represent a large enough space sample

for the solution space. The number of individuals can be changed due to machine

capabilities in terms of time and memory, and the result qualities can be compared. For

example, the number of individuals in the population generated by Gonçalves et al.

(2005) is calculated based on twice the number of total operations in the different

structures of JSSP.

2.3.3.3 Termination Criterion

 Termination is the criterion by which the genetic algorithm decides whether to

continue searching or stop the search. Each of the enabled termination criterion is

checked after each generation to see if it is time to stop. The termination criteria in the

JSSP are based on the maximum number of generations or the stage when the optimal

solution is found.

2.3.3.4 Selection

 Selection is a process of choosing the parents for recombination operations. It is

a method to pick the parents according the parents’ fitness. The fitness of an individual

30

is based on the evaluation of the objective function of the problem. In the JSSP, each

job has a different finish time due to different schedules of operation time. 𝐶𝑚𝑎𝑥 will be

the maximum time for completion in the scheduling (please refer to Eq. (1.1)). The

objective of the evaluation is to determine the ranking of the chromosome, which is

used in the process of selection. Each chromosome competes with the others and the

selected chromosome will survive to the next generation based on the objective function

(fitness value). A chromosome with greater fitness means that it has a greater

probability for survival. The highest ranking chromosome in a population is considered

as the best solution. It is noted that the lower makespan is given the highest ranking in

JSSP. This selection pressure of GA forces the population to improve its fitness over

continuing generations (Sivanandam and Deepa, 2008).

The common use of the selection methods in GA are:

a) Roulette wheel selection

b) Stochastic universal sampling (Baker, 1987)

c) Tournament selection (Miller and Goldberg, 1996)

a) Roulette Wheel Selection

 Roulette wheel selection selects the parents according to their proportional

fitness (Zäpfel et al., 2010).The fitness of an individual is represented as a proportionate

slice of the roulette wheel. The wheel is then spun and the slice underneath the wheel,

when it stops, determines which individual becomes a parent. With high fitness value,

there is a higher chance that the particular individual is selected (Eq. (2.1)).

 𝑝𝑖 =
𝑓𝑖

 𝑓𝑖
 (2.1)

𝑝𝑖 = probability that individual 𝑖 will be selected,

𝑓𝑖 = fitness of the individual 𝑖, and

𝑓𝑖 = sum of all the fitness values of the individuals within the population.

31

b) Stochastic Universal Sampling (SUS)

 This fitness based proportionate selection, which was proposed by Baker (1987),

selects and classifies the chromosomes into a recombination process with minimum

spread and zero bias. Instead of the single selection pointer employed in roulette wheel

methods, SUS uses N equally spaced pins on the wheel, where N is the number of

selections required. The population is shuffled randomly and a single random number in

the range 𝑓𝑖 𝑁 is generated. The difference between the roulette wheel selection

and stochastic universal sampling can be illustrated in Figure 2.14.

Figure 2.14: The Fitness Proportional Selection

c) Tournament Selection

 Tournament selection is one of the important selection mechanisms for GA

(Miller and Goldberg, 1996). In this selection scheme, a small number of individuals

from the population are chosen randomly. These individuals then compete with each

other and the winner of the competition is then inserted back into the mating pool. This

tournament process is repeated until the mating pool is filled to generate offspring. The

fitness difference provides the selection pressure, which drives GA to improve the

fitness of the succeeding genes. Selection pressure is easily adjusted by changing the

a) Roulette Wheel Selection b) Stochastic Universal Sampling

32

tournament size. If the tournament size is larger, weak individuals have a smaller

chance to be selected.

 Among these selection techniques, stochastic universal sampling and tournament

selection are often used in practice because both selections have less stochastic noise, or

are fast, easy to implement, and have a constant selection pressure (Blickle and Thiele,

1996).

2.3.3.5 Crossover

 Crossover is a solution combination method that combines the selected solutions

to yield a new solution (Zäpfelet al., 2010). The crossover operator is applied on the

selected parents for mating purposes to create a better offspring. The offspring that is

generated by crossover may exist in one or more combined solutions.

The processes of crossover are done by three steps (Sivanandam and Deepa, 2008):

Step 1: The reproduction operator selects at random some parents for the mating.

Step 2: Cross point(s) along the chromosome is determined

Step 3: The position values are swapped between the parents following the cross point(s)

 Different crossover strategies have been introduced in the literatures for JSSP.

Yamada and Nakano (1992) proposed modified GT algorithm as a crossover operator.

The crossover selected active schedule chromosome as parents to generate the new

offspring that also is in the active schedule. Such recombination of active schedules

produces good results.

33

 Partial-mapped crossover (PMX) was proposed by Goldberg and Lingle (1985)

is a variation of the two-cut-point crossover. This kind of crossover may generate an

illegal offspring. By incorporating the algorithm with a special repairing procedure,

possible illegitimacy can be solved. PMX can be divided into four major steps to

generate new children. They consist of: selection of substring, exchange of substring,

mapping of substring and legalization of the offspring.

 Bierwirth (1995) proposed the crossover method based on the permutation

crossover operator to preserve the phenotypical properties in the schedules. The

chromosome represented in the form of permutation with repetition that is used for

recombination. Figure 2.15 is an example of the precedence preservative crossover

(PPX) proposed by Bierwirth et al. (1996). The vector is generated randomly with the

element set 1,2 . The vector will define genes that are drawn from parent 1 or parent 2.

After a gene is drawn from one parent, another parent with the same number at the left

most side is also deleted. This process is continued until the end of the vector.

Figure 2.15: Precedence Preservative Crossover (PPX)

 In the literature (Bierwirth (1995); Bierwirth et al. (1996); Gonçalves et al.

(2005); Park et al. (2003); Ripon et al. (2011); Wang and Zheng (2001); Yamada and

Nakano (1992)), the crossovers are applied on the active schedule chromosomes and the

solutions generated are in comparable ranges. These show that the active schedule

chromosome and the crossover are interrelated in generating good solutions.

Parent 1 : 3 3 1 1 2 1 2 2 3

Parent 2 : 3 2 2 1 1 1 3 3 2

Vector : 1 1 2 1 2 1 2 1 2

Child : 3 3 2 1 2 1 1 2 3

34

2.3.3.6 Mutation

 Mutation is a genetic operator, analogous to the biological mutation, which is

used to maintain genetic diversity from one generation in a population of chromosomes

to the next. The purpose of mutation in GA is to diversify, thus allowing the algorithm

to avoid local minima by preventing the population of chromosomes from becoming too

similar to each other, thus slowing or even stopping the evolution. This reasoning also

explains the fact that most GA systems tend to avoid taking only the fittest of the

population when generating the next chromosome but rather select a random contingent

from the population (or pseudo-random with a weighting towards those that are fitter).

 The main idea of mutation in JSSP is generally followed by changing the gene

position in the chromosome to generate new offspring. For example, a Forward

Insertion Mutation (FIM) and a Backward Insertion Mutation (BIM), which were

proposed by Cai et al. (2011), will place a chosen gene into selected positions.

 In the evolutionary process, crossover and mutation operators are very popular

for research endeavors. The reason for their preference is that the different rates for both

operators influence the result of the solution. The operator with high rate will be the

major operator in the process or vice versa. Typically, the crossover rate is set at the

highest value and mutation rate is usually much smaller (Langdon et al., 2010) but some

of the researchers prefer that the mutation rate is at a high value to ensure that the

population is diversified enough (Ochoa et al., 1999). Therefore, there is further

possibility of modifying the relative proportions of crossover and mutation as the search

progresses (Reeves, 2003).

35

2.4 Multi-Parents Crossover

 The multi-parents recombination or multi-parents crossover can be defined as

using more than two parents in the crossover operator to perform the recombination

process (Eiben, 2003). In the general GA, the crossover operator uses two parents for

recombination. It is very typical to select multi-parents for recombination in a search

protocol that mimics nature, since in nature there are only two types of reproduction

(recombination), asexual (one parent) and bisexual (two parents) reproduction. However,

in the computational mathematics, there is no restriction on the number of parents to use

as long as the multi-parents crossover can be logically implemented in the GA.

 Multi-parents recombination is not a new idea and has been used in research

involving disparate fields of study. In testing multi-parents recombination affected on

the representation, Tsutsui and Jain (1998) proposed multi-cut and seed crossover for

binary coded representation. Additionally, Tsutsui et al. (1999) proposed simplex

crossover for real coded GA. The crossover operators that are used in these two areas

show good search ability of the operator but are very problem dependent.

 In solving discrete domain problems, Mühlenbein and Voigt (1995) proposed

gene pool recombination (GPR). In GPR, the genes for crossover are selected from the

gene pool, which consists of several pre-selected parents instead of two parents. The

authors conclude that GPR is mathematically more tractable and able to search more

reasonably than two parents’ recombination.

 In the other field, Wu et al. (2009) proposed multi-parents orthogonal

recombination to determine the identity of an unknown image contour. This

36

recombination is used to rearrange the genes by dividing the genes and gathering the

information from the genes of different parents selected for the recombination. One of

the major enhancements of the method is that the performance is more stable, consistent,

and insensitive to the nature of the input contour.

 Multi-parents recombination can produce one child or multiple children. This

can be done by one of the multi-parents crossover techniques, called diagonal crossover,

proposed by Eiben and Kemenade (1997). The crossover is based on the ratio using

uniform crossover to create 𝑟 children from 𝑟 parents by selecting 𝑟 − 1 crossover

points in the parents and then composing them into chromosome. The offspring will

include the characteristics from the different parents after recombination. The process

can be illustrated as in Figure 2.16.

Figure 2.16: Diagonal Crossover with different Number of Offspring Generation

 Besides creating new multi-parents crossover operators, the crossover operator

can also be extend from the current crossover operator. Tsutsui and Jain (1998), Wu et

al. (2009), and Ting et al. (2010) extended their multi-parents crossover technique from

two parent crossover operator.

Parent 1

Parent 2

Parent 3

Offspring 1

Offspring 2

Offspring 3

Offspring

Parent 1

Parent 2

Parent 3

(b) Single Offspring

(a) Multi Offspring

37

2.4.1 Occurrence Based Adjacency Based Crossover

 In the combinatorial scheduling problem, the position or sequences in the

chromosome is relatively important because it represents the arrangement of the actual

schedule.

 Occurrence based adjacency based crossover (OB-ABC) is specifically designed

from Eiben et al. (1994) for solving the TSP, which is one of the hard combinatorial

scheduling problem. The first gene value in the child is always inherited from the first

gene value in the first parent. Then, for each parent its marker is set to the first

successor of the previously selected value which does not already occur in the child

(each individual must be seen as a cycle in order for this to work). The value to be

inherited by the child is chosen based on which value occurs most frequently in the

parents. If no value is in the majority, the marked value in the first parent is chosen to

inherit. Figure 2.17 illustrates occurrence based adjacency based crossover.

Figure 2.17: OB-ABC

Parent 1 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8

Parent 2 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6

Parent 3 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7

Parent 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4

Offspring 3 3 1 3 1 6 3 1 6 5

Parent 1 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8 3 7 2 4 1 6 5 8

Parent 2 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6 4 2 7 3 1 5 8 6

Parent 3 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7 1 8 4 6 5 3 2 7

Parent 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4 5 8 7 2 3 1 6 4

Offspring 3 1 6 5 8 3 1 6 5 8 7 3 1 6 5 8 7 2 3 1 6 5 8 7 2 4

38

2.4.2 Multi-Parent Extension of Partially Mapped Crossover (MPPMX)

 MPPMX crossover is originated from the partially mapped crossover PMX

method that was used by Ting et al. (2010) in the TSP. The difference between PPX and

MPPMX is that they use multi-parents for recombination. In this way, Ting et al. (2010)

proposed the suitable methods to legalize the chromosome into feasible solution.

Their crossover can be done in four steps:

Step 1 : Selection substring - Cut the parents into two substrings.

Step 2 : Substring exchange - Exchange the selected substrings.

Step 3 : Mapping list determination- Determine mapping relationship on selected

substring.

Step 4 : Offspring legalization - Legalize the offspring into feasible solution.

 As a result, the MPPMX test shows significant improvement in results compared

to the PMX when applied to solve the same problem. The best solutions appear in the

different number of parents for different problems.

2.5 Hybrid GA

 In the GA strategies, hybridization of GA with other methods or local search

methods provides good results in solving the problems. In such hybridization, the GA

capitalizes on the strength of the local search method in locating the optimal or near

optimal solutions.

39

 Application of GA will be limited in application for problems when the problem

size increases (Sivanandam and Deepa, 2008). For example, GA will encounter

premature convergence when the complexity of the problem increases. This is because

high complexity in JSSP will be lead to the high search space and solution pool will be

dominated by certain individuals before the best result can be reached. Hence,

modifications made to the structure or hybridization of the GA with other methods will

make the resultant GA more capable in finding solutions.

 Complex JSSP contains very large search space, this increases the computation

cost as it takes a longer time to finish an iteration, which is proportional to the

population size. Cantú-Paz (1998) pioneered the concept of parallel GA, which divides

a task into smaller chunks and solves the chunks simultaneously by using multi-

processor. The PGA subdivides the population into subpopulations to decrease the time

of computation and the best individuals are shared between the subpopulations through

migration. Yusof et al. (2011) harnessed the power of PGA by isolating the

subpopulations from each other and running them in the GA by using different

computers to reduce the time of computation.

 The research of Park et al. (2003) proposed another idea, the Island-parallel GA.

The GA maintains distinct subpopulations which act as single GAs. Some individuals

can migrate from one subpopulation to another at certain intervals. The migration

among subpopulations can retard premature convergence and may be allowed to evolve

independently.

 Sels et al. (2011) used the scatter search algorithm that had been proposed by

Glover (1998) to split the single population into a diverse and high quality set in order

40

to exchange information between the individuals in a controlled way. The extension of

splitting a single to a dual population acts as a stimulator to add diversity in the search

process.

 The extracted behavior of the methods, Watanabe et al. (2005) proposed the use

of crossover search phase into the GA with search area adaption. This modified GA has

capacity for adapting to the structure of the solutions space.

 In the representation of the job shop scheduling, chromosomes that contain a

sequence of all operations that decoded to the real schedule according to the gene

sequences will have high redundancy at the tail of the chromosome and little

significance of rear genes on the overall schedule quality. To solve these problems,

Song et al. (2000) applied the heuristic method on the tail of the chromosome to reduce

the redundancy. The method was also used by Ripon et al. (2011) in proposing a new

crossover operator called improved precedence preservation crossover (IPPX). In this

crossover operator the PPX crossover will be modified by adding the heuristic method.

The crossover will perform PPX at the early gene in the chromosomes then follow it by

the heuristic method. The method shows improvement in time reduction compared to

the original PPX operator.

2.5.1 Hybridization with Local Search

 GA has its own limitation in finding the global local optimum and identifying

the local optima. Therefore, GA needs to be coupled with a local search technique. The

configuration of this hybrid GA is not straightforward and may vary by adopting

different local search techniques. The idea of combining the GA with local search is not

41

new and it has been studied intensively. Various methods of hybridization have been

investigated extensively to test their ability to adapt to the problems in JSSP.

 In the GA strategies, hybridization of GA with local search methods provided

good results in solving the problems, where GA capitalized on the strength of the local

search in identifying the optimal or near optimal solutions. For example, Gonçalves et al.

(2005) and Zhang et al. (2008) embedded the local search procedure of Nowicki and

Smutnicki (1996) into GA due to the effectiveness of this particular local search which

increases the performance of GA.

 Hasan et al. (2007) proposed the use of heuristic job ordering within a genetic

algorithm. The heuristic ordering guides the individuals to a global optimum instead of

conventional GA which may lead to convergence to local minima. It is done by using

the heuristic information in the machine’s sequences for each job. The highest priority

machine in a schedule will be chosen first to be incorporated into the reproduction

process. Algorithm 2.3 illustrates hybrid GA proposed by Hasan et al. (2007).

Algorithm 2.3: Hybrid GA

Initialize population

Evaluation

While termination criterion=false do

 Selection
 Heuristic ordering insert
 Crossover
 Mutation
 Evaluation
 Reinsertion

End

Best solution is found

42

 Besides that, there are various ways to implement the combination of GA with

SA to build a hybrid GA. The first one is by using parallel evolution structure. This

framework which combines the GA and SA is called GASA by Wang and Zheng (2001)

and can be described as below:

Step1: GA provided a population for SA to perform that using Metropolis structure

sample for each solution until equilibrium condition is reach.

Step 2: Solution from SA is used by GA to continue parallel which means that the

individual created from the SA is used to perform reproduction process in

crossover and mutation operators.

Step 3: Result for the operator is used to search locally by SA for the current solution to

achieve better solution.

Step 4: The procedure is repeated until termination.

 Another effort that can be presented, for the hybrid relationship between GA and

SA, is SA is used to replace the mutation operator in GA and becomes an operator in

GA (Wang and Zheng, 2002).

 Local search such as TS, provide the intensification for the solution, while GA

provides diversification in the total solutions. Intensification tends to search for the

optimal solution in the current solution; meanwhile diversification is an algorithmic

mechanism that functions by forcing the search into previously unexplored areas of the

search space (Zäpfel et al., 2010). The advantage of adding the TS with other methods is

that it will outperform other optimization methods. For example, the hybrid SA with TS

(TSSA), proposed by Zhang et al. (2008), is able to get the best solution for certain

unsolved problems.

43

 Application of tabu search in GA was implemented by Ombuki and Ventresca

(2004) for the purpose of finding possible solutions for JSSP. This hybrid strategy using

the genetic algorithm reinforced with a tabu search. In this hybrid GA, TS technique is

applied on a given set of chromosomes for a number of generations to exploit for better

solution. In this case, intensification is performed by tabu search and diversification is

performed by GA.

2.6 Benchmarks Problems

 In current JSSP benchmark problems, the FT problem is the oldest benchmark

problem which has been referred by many researchers in JSSP area. In the benchmarks,

the problem size can be as small as 6 jobs, 6 machines, which denotes as 6x6, and can

be as large as 100x20.

 The possible solutions for the problem can be calculated by 𝑛! 𝑚 , where 𝑛

denotes the number of jobs and m denotes the number of machines. Hence, there is a

large range from small problem to big problem. Based on Table 2.2, the solution spaces

of LA31-LA35 30x10 are bigger than the FT10 10x10 in the calculation. Logically,

it may lead to the consideration that the LA31-LA35 is harder than FT10. But according

to the data acquired from Jain and Meeran (1999), LA31-LA35 is considered as an easy

problem while FT10 is thought to be a difficult one. This shows that the problem

structures have the most significant influence on the problem difficulty.

 The measurements of the hard problems are summarized by Jain and Meeran

(1999) as: 𝑁 (𝑡𝑜𝑡𝑎𝑙 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛) ≥ 200, where 𝑛 ≥ 15, 𝑚 ≥ 10, and 𝑛 < 2.5𝑚 which

44

satisfy 2𝑆𝐸𝑇 principle, 𝑘 = 2 which 2𝑆𝐸𝑇 principle, 𝑘 = 2 may refer to the Demirkol

et al. (1998). The hard problems in the benchmarks are mostly used to test the

researchers’ algorithms.

Table 2.2: Benchmarks for JSSP

Benchmarks
Problem size

Proposed by

Jobs x Machines

FT06 6 x 6

FT10 10 x 10 Fisher and Thompson (1963)

FT20 20 x 5

LA01 - LA05 10 x 5

LA05 - LA10 15 x 5

LA11 - LA15 20 x 5

LA16 - LA20 10 x 10 Lawrence (1984)

LA21 - LA25 15 x 10

LA26 - LA30 20 x 10

LA31 - LA35 30 x 10

LA36 - LA40 15 x 15

ABZ5 - ABZ6 10 x 10 Adams et al. (1988)

ABZ7 - ABZ9 20 x 15

ORB01 - ORB10 10 x 10 Applegate and Cook (1991)

SWV01 - SWV05 20 x 10

SWV06 - SWV10 20 x 15 Storer et al. (1992)

SWV11 - SWV20 50 x 10

YN1 - YN4 20 x 20 Yamada and Nakano (1992)

TA01 - TA10 15 x 15

TA11 - TA20 20 x 15

TA21 - TA30 20 x 20

TA31 - TA40 30 x 15 Taillard (1993)

TA41 - TA50 30 x 20

TA51 - TA60 50 x 15

TA61 - TA70 50 x 20

TA71 - TA80 100 x 20

45

2.7 Conclusion

 Efficiency of GA in adapting different problem size can be increased by

hybridizing GA with other methods. In previous studies, GA has been well

implemented in solving the JSSP. GA is able to perform as a powerful tool in solving

the problem when combined with local search methods.

 The results from the researches show that GA is not restricted to a single

procedure and performs better when its structure is modified or it is hybridized with

other methods to increase the accuracy of searching solutions. Hence, GA can be

modified accordingly to suit the problem at hand, including selecting several parents for

the crossover operation.

46

CHAPTER 3

GENETIC ALGORITHM FOR JOB SHOP SCHEDULING

PROBLEM

3.1 Introduction

 GA structure can be modified to exhibit its capability for solving different types

of problems. Various stages of GA can be modified easily to adapt to different

applications. In particular, the application of GA is not restricted to the use of two

parents for crossover, rather multi-parents which is a combination of more than two

parents can also be performed.

 In the past, GA had been studied intensively to measure its performance on

different problems, capabilities and adaptations required to adapt it for the specific

problem, including JSSP. Various GA strategies have been developed to determine the

most suitable and problem specific approach in solving a particular problem. However

many previous researches, most of the GAs’ crossovers are based on the two parent

crossover method. Multi-parents are still rarely utilized especially for solving JSSP.

 In this study, we propose the extended precedence preservative crossover

(EPPX). This crossover operator originated from the precedence preservative crossover

(PPX) method first proposed by Bierwirth et al. (1996). The advantage of this crossover

technique is that it is able to maintain the phynetopical of the chromosome. This

crossover operator is extended from two parents to multi-parents by using the same

approach. Operation based is used because it can be easily interpreted into feasible

solution.

47

 In order to increase the efficiency of this modified GA, hybrid GA is introduced.

The idea of combining GA and some local search techniques for solving optimization

problems was discussed in Chapter 2 (Section 2.5). In our proposed hybrid GA, a

neighborhood search is added into the GA structure. This neighborhood search adapts

the swapping operations proposed by Nowicki and Smutnicki (1996).

 The set of active schedules generated by the local search procedure usually

contains a very large search space and poor quality in terms of makespan, because of the

fact that the solution space consists of many high delay times for the concerned

operations. In order to reduce the size of the search space we used the concept of

iterative forward-backward pass to reduce or eliminate poor solutions and increase the

quality of the overall search space.

 This study aims to propose the new multi-parents crossover and hybridization of

GA for the JSSP. This hybrid GA is tested on different benchmark sets of JSSP to

assess its performance and is discussed in latter part of this chapter. The algorithm is

evaluated by the efficiency of the GA in searching for the optimal or near optimal

solutions. The flow chart describing every step of the research methodology is shown in

Figure 3.1.

48

Figure 3.1: Flow Chart of Research Methodology

Develop structure of

genetic algorithm

Enhancement on the

crossover operator

(proposed extended

preservative crossover)

Embedded local search

into the genetic

algorithms

Setting parameters for

genetic algorithms

Simulate the algorithms

Problem Definition

Objective Function

Encoded and decoded

the problems for genetic

algorithms

Optimal

results

Modify the local

search

Change GA

parameter

End

Compare results with

other benchmarks

Yes

No No

49

3.2 Representation

 A suitable representation is vital in any GA algorithm. The chromosome in this

study is represented as a permutation integer with repetition; a strategy proposed by

Bierwirth (1995). This representation is called an operation based representation (Cheng

et al., 1996) where integers in the chromosome represent the sequences of the jobs in

the schedule. In this representation, number 𝑖 where 𝑖 = 1, 2, 3 … represents the number

of jobs and 𝑖 is repeated according to the number of operations required. Figure 3.2

illustrates the representation of 3 jobs and 3 operations/machines. The chromosome is

represented as [1 2 3 3 2 2 3 1 1] , where numbers 1, 2, and 3 in the chromosome

represent job 1, 2, and 3 respectively. Each job consists of three operations so it is

repeated three times in the chromosome. The chromosome is scanned from left to right

with the 𝑗𝑡 occurrence of a job number referring to the 𝑗𝑡 operation in the

technological sequence of this job. The chromosome created is always feasible and legal.

For this type of representation, the total feasible solutions can be calculated as 𝑛! 𝑚 .

Figure 3.2: Permutation with Repetition Representation for 3 Jobs 3 Machines

Permutation with

repetition
1 2 3 3 2 2 3 1 1

Machine 1

Machine 2

Machine 3

1 2 3

 3 2 1

 2 3 1

50

3.3 Decoding

 A scheduling can be built by decoding the genes of the chromosome from left to

right to a list of ordered operations. The first operation in the list is scheduled first, then

the second operation, and so on. While placing the job in the schedule, it must meet the

technological requirement and precedence constraints. Referring to the chromosome

representation given in Figure 3.2, the technological requirement for the chromosome is

based on Table 3.1.

When a job (gene) is placed into a schedule, there are two considerations:

1) Finish time of the predecessor operation

2) Finish time of the last operation in the same machine

 The job is placed based on the possible earliest start time. If time of 1 > 2, the

operation will start by referring the finish time as 1. On the other hand, if time of 2 > 1,

the operation will start by using the finish time of 2 . Based on this operational

arrangement, the operation inserted will always be at the last phase in the operation of

the machine. Figure 3.3 illustrates that the schedule is built by decoding the genes

starting from left to the right in the chromosome.

Table 3.1: Example of 3 Job and 3 Machine Problem

 Job
Operation routing

1 2 3

Processing time

1 3 3 2

2 1 5 3

3 3 2 3

Machine sequence

1 M1 M2 M3

2 M1 M3 M2

3 M2 M1 M3

51

Figure 3.3: Schedule for JSSP

M1 J1

M2

M3

0 Time

M1 J1 J2

M2

M3

0 Time

M1 J1 J2

M2 J3

M3

0 Time

M1 J1 J2 J3

M2 J3

M3

0 Time

M1 J1 J2 J3

M2 J3

M3 J2

0 Time

M1 J1 J2 J3

M2 J3 J2

M3 J2

0 Time

M1 J1 J2 J3

M2 J3 J2

M3 J2 J3

0 Time

M1 J1 J2 J3

M2 J3 J2 J1

M3 J2 J3

0 Time

M1 J1 J2

M2 J3 J2 J1

M3 J2 J3

0 Time

14 16 182 4 6 8 10 12

18

2 4 6 8 10 12 14 16 18

16 18

2 4 6 8 10 12 14 16

14 16 18

2 4 6 8 10 12 14

2 4 6 8 10 12

18

2 4 6 8 10 12 14 16 18

16 18

2 4 6 8 10 12 14 16

14 16 18

2 4 6 8 10 12 14

J3

J1

2 4 6 8 10 12

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

Chromosome = [1 2 3 3 2 2 3 1 1]

52

3.3.1 Active Schedule Builder

 Optimal solution of the scheduling always lies in the active schedule with no

permissible left shift in the schedule being possible. Recombination of such active

schedule chromosomes produces good solutions (Yamada and Nakano, 1992). In order

to build the active schedule chromosome, the chromosome needs to be decoded into a

feasible schedule. This is achieved by constructing a schedule builder that performs a

simple local search.

 An active schedule can be built by selecting the gene (job) of the chromosome

from left to right and inserting it into a schedule with an active schedule builder and

then deleting it from the chromosome (Gen et al., 1994). The job always finds the

earliest completion time to be inserted by using a simple local search. Figure 3.4(a)

illustrates the scheduling without local search and the job will be placed by following

the sequences encoded in the chromosome [1 1 3 …]. Applying the local search enables

the job to find the possible vacant time interval before appending an operation at the last

position (Figure 3.4(b)) and the chromosome encoded becomes [1 3 1 …].

Figure 3.4: Local Search Procedure

M1 J1

M2 J1 J3

M3

0 2 4 6 8 10

M1 J1

M2 J3 J1

M3

0 2 4 6 8 10

(a) Semi-active schedule without simple

local search

(b) Active schedule after simple local search

M1 J1

M2 J1 J3

M3

0 2 4 6 8 10

M1 J1

M2 J3 J1

M3

0 2 4 6 8 10

53

 When the schedule is finished, it is encoded into the chromosome and the

arrangement in the genes is the reference for the start time sequences in the schedule.

The gene that is placed earlier into a schedule is forced to the left in the chromosome

according to its earliest start time in the schedule.

3.4 Proposed Hybrid GA Structure

 In the hybrid GA structure, the EEPX crossover is used as the crossover operator.

This recombination operator attempts to combine the best features of each individual to

get the best solutions. Besides that, the local search and the search space reduction

method will also aid the flow of GA. The hybrid GA algorithm is represented by

Algorithm 3.1, as illustrated below.

Algorithm 3.1: Genetic Algorithm

 In this hybridization, the intensification and diversification are executed by

different operators. For intensification, the local search (neighborhood search on critical

path) exploits the best possible solution in an individual. GA structure performs

Initialize population

while termination criterion

 Selection
 Crossover
 Mutation
 Iterative forward-backward pass
 Neighborhood search on critical path
 Reinsertion

End while

Best Solution

54

diversification by providing different individuals for the local search. This interrelated

behavior makes the search more efficient.

 The quality of the offspring generated by crossover and mutation is generally

unknown. When the offspring reaches an iterative forward-backward pass, the offspring

is evaluated and the quality of the offspring is upgraded by rearranging the genes in the

offspring in this scheduling method.

 During the current research, this hybrid GA is modified from time to time. If the

result of the simulation does not reach the optimal or deviates too far from the best

known solutions, the first consideration of modification focuses on local search operator.

Several methods of local search have been tested and it was found that the local search

performed on the critical path has the highest impact in generating a schedule. Therefore,

the use of neighborhood search in the critical path is proposed. After that, if the

performance of the GA reaches an acceptable condition, the parameters in GA, such as

crossover and mutation rates are adjusted to optimize its functionality.

3.5 Initial Population

 The population generates potential solutions for GA to search in solution space.

The individuals that are generated randomly from inheritance must be presented in the

form of operation based representation. At the initial stage of the population, the

individuals generated normally have very poor quality in terms of makespan. These

poor quality individuals go through the reproduction process to recombine and become

better solutions. New population is generated after the recombination process and

55

reused for the next process, finally the iteration stopped when the termination criterion

is reached.

3.6 Termination Criteria

 Termination criteria are set to stop the GA from running in the unlimited

iteration mode. Termination of the searching procedure is active when GA has achieved

the optimal solution (if there exists one) or reaches the maximum number of generations.

If the number of generations is set at a high value, it is time consuming and ineffective

because the potential solutions at the end of the generation are converging into a single

solution (because all the chromosomes are similar to each other). Thus in JSSP, the

maximum number of generations is set based on the population. For example, if the

population size is small, the maximum number of generations is also small.

 In the multi-parents crossover we proposed, the parents are recombined to

generate one child. Therefore, there exists different numbers of parents for

recombination with different total number of offspring (solutions). The total solutions

can be defined as:

𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 =

𝑀𝐴𝑋𝐺𝑒𝑛 ×𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡𝑠

(3.1)

𝑀𝐴𝑋𝐺𝑒𝑛 = maximum number of generations

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 = total number of individuals in the search space

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡𝑠 = parents that are used for the recombination process

 Referring to Eq. (3.1), if the number of parents selected is increased, the total

number of solutions generated is reduced. When comparisons are needed to be made

between different numbers of parents, it is not comparable because the total solutions

56

generated are different from each other. To preserve consistency, the total solutions will

be fixed so different numbers of parents are able to generate approximately the same

number of solutions for comparison.

 In Eq. (3.1), the population size is fixed to control the total individuals involved

in evolutionary process. The only variables that can be adjusted are maximum number

of generations and number of parents. The total number of generations is adjusted to

make sure that different number of parents for recombination generates approximately

the same number of total solutions. Maximum number of generation is calculated by

referring to the Eq. (3.2). The maximum number of generations, 𝑀𝐴𝑋𝐺𝑒𝑛, is adjusted

as follows:

𝑀𝐴𝑋𝐺𝑒𝑛 =

𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 ×𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑟𝑒𝑛𝑡𝑠

𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒

(3.2)

3.7 Selection

 In selection operator, we use Stochastic Universal Sampling (SUS). This fitness

based proportionate selection technique chooses the chromosomes for recombination

process with minimum spread and zero bias. This ensures that even poor quality

individuals have a chance to participate in the solution process. Unlike the tournament

search and the roulette wheel selection, the selection probabilities for good quality

individuals are very high and the chance to select other individuals is low resulting in

those solutions dominating the population (Goldberg, 1989). Sometimes there are some

good features in the poor quality individuals which combined with other individuals

may produce good result because solutions from recombination between individuals are

57

unpredictable. So, this is the principal reason of using the SUS as the selection

parameter in the GA.

3.8 Reinsertion

 Elitism strategy is used to maintain a good solution for the population. Elitism

strategy is applied to maintain the best fitness of the population, thus ensuring that the

good individual is propagated to the next generation.

In the reinsertion procedure, some of the new offspring replace the bad

individuals in the previous population to generate new population. The selected fittest

individuals that are used to replace the bad individuals are the same proportion in order

to maintain the size of the population. Under this selection pressure, the new population

generated is expected to be better than previous.

3.9 Mutation

 Mutation operator acts as a mechanism to diversify the individuals in order to

escape from the local optima. In this study, the mutation is applied by swapping two

genes which correspond to different jobs, in two different positions in the same

chromosome. The process is repeated if two genes are selected are at the same position

or represent the same job. Figure 3.5 illustrates the swapping of the two genes in the

chromosome.

58

Figure 3.5: Mutation by Swapping Two Genes in the Chromosome

 This mutation operator does not consider the restrictions of precedence

constraints and operation sequences and it is just implemented by swapping the different

genes. As a result of the mutation, the sequences of the operations in the machine are

changed and this may affect the whole quality of the offspring.

3.10 Proposed Extended Precedence Preservative Crossover (EPPX)

 In GA, there are no limitations that the recombination process needs only two

parents, rather multi-parents consisting of more than two parents are also acceptable.

Some of the multi-parents crossover operators are extended from the two parents’

crossover operators for recombination process (Tsutsui and Jain, 1998; Tsutsui et al.,

1999; Wu et al., 2009; Ting et al., 2010). In this hybrid GA, multi-parents crossover,

EPPX, is an extension from PPX.

 A crossover mask in the form of a vector is generated randomly to determine the

genes in which parent, specified in the mask, to be selected for recombination. The

multi-parents recombine into a single offspring (Figure 3.6 (a)). Starting from the first

element on the mask vector, the first gene in that parent 1 is selected. The selected job

(job 3) is eliminated in the other parents (Figure 3.6 (b, c)). The second element in the

Before mutation

After mutation

59

mask indicates that the first element (after deletion) is to be selected also from parent 1

(Figure 3.6 (c)). The third element in the mask shows that the first element in parent 3 is

selected (Figure 3.6(d)). The process continues until all the elements in the mask have

been examined.

Figure 3.6: EPPX

 The offspring created contains the elements from the parents with the hope that

the offspring is better than the parents. This crossover always generates feasible

solutions due to the offspring that are created are always legal; therefore legalization of

the offspring which is very time consuming is eliminated. Higher number of parents can

be easily adapted in the crossover for multi-parents recombination. Pseudo code for

EPPX is presented as in Algorithm 3.2.

Parent 1 : 3 3 1 1 2 1 2 2 3

Parent 2 : 3 2 2 1 1 1 3 3 2

Parent 3 : 1 3 2 2 1 1 2 3 3

Vector : 1 1 3 2 3 3 1 1 2

Child : 3 3 1 2 2 1 1 2 3

 Parent 1:○3 3 1 1 2 1 2 2 3

Parent 2 : 3 2 2 1 1 1 3 3 2

Parent 3 : 1 3 2 2 1 1 2 3 3

Vector : ○1 1 3 2 3 3 1 1 2

Child : 3
Vector number 1= select first gene from Parent 1

Vector number 2= select first gene from Parent 2

Vector number 3= select first gene from Parent 3

 Parent 1 : 3 3 1 1 2 1 2 2 3

Parent 2 : 3 2 2 1 1 1 3 3 2

Parent 3 :○1 3 2 2 1 1 2 3 3

Vector : 1 1 ○3 2 3 3 1 1 2

Child : 3 3 1

Parent 1: 3 ○3 1 1 2 1 2 2 3

Parent 2 : 3 2 2 1 1 1 3 3 2

Parent 3 : 1 3 2 2 1 1 2 3 3

Vector : 1 ○1 3 2 3 3 1 1 2

Child : 3 3

(a) Example of EPPX (b) First step - Vector number 1, the first gene in

Parent 1 is selected and the same job from the

other parents is removed.

(c) Second step - Previous selected gene will be

deleted, first gene (after deletion) in parent 1 selected

and the job from the other parents are removed.

(d) Repeat - The process will continue until

at the end of the vector

60

Algorithm 3.2: Pseudo Code for EPPX (3 Parents)

3.11 Iterative Forward-Backward Pass

 The set of active schedules generated by the shifted left operations usually

contain very large search space and are poor quality in terms of makespan because it

consists of many high delay times of the operations. In order to reduce the size of search

space and to reduce makespan, we used the concept of iterative forward-backward pass.

 Lova et al. (2000) applied the iterative forward-backward pass into their multi-

project scheduling which is similar with JSSP in which it also has precedence

constraints to generate a schedule. The authors use this iterative method to reduce the

Crossover vector generated randomly

Three parents selected ->S1, S2, and S3

for k=1 to length of the chromosome do

 Select vector number by position k-th starting from the left in vector

 case vector number of

 Vector number 1:
 Choose first gene at left most S1
 Search same job number at left most in S2 and S3
 Remove the first gene in S1
 Remove the gene searched in S2 and S3

 Vector number 2:
 Choose first gene at left most S2
 Search same job number at left most in S1 and S3
 Remove the first gene in S2
 Remove the gene searched in S1 and S3

 Vector number 3:
 Choose first gene at left most S3
 Search same job number at left most in S1 and S2
 Remove the first gene selected in S3
 Remove the gene searched in S1 and S2
 end case

 Selected gene insert to new chromosome by sequence from left to right

end for

61

makespan time in their projects thus reduce the cost of the project and it is claimed that

the method shows some improvement when compared with other methods.

 The iterative forward-backward pass approach is applied in hybrid GA because

of its capability to reduce makespan time. This approach is inserted in the structure of

GA as an operator. An individual that passes through this operator is rescheduled to

reduce the makespan time and then new individual is produced to a higher quality. This

method consists of two types of scheduling methods that are used iteratively: Forward

Pass and Backward Pass.

 A Forward Pass is a process of shifting left the operations in a schedule, starting

from beginning of the schedule until the end of the schedule, 𝑚𝑎𝑥 𝐹𝑖𝐽 and the

operations are able to be shifted left until the time equals to zero. In Backward Pass, the

process starts from the end of the schedule, 𝑚𝑎𝑥 𝐹𝑖𝐽 and ends at the beginning of the

schedule, 𝑚𝑖𝑛 𝐹𝑖1 in which the operations is shifted right until the time equals to the

𝑚𝑎𝑥 𝐹𝑖𝐽 . The Forward Pass is similar to the local search illustrated in Figure 3.4 and

the Backward Pass is presented in Figure 3.7.

 When applied, the iterative forward-backward pass approach is able to shorten

the makespan time of the schedule. The iterative forward-backward can be described in

the following steps:

Step 1: Chromosome is scanned from left to right to generate an active schedule by

Forward Pass (see example Figure 3.4). Next, the new schedule is decode into

chromosome with maximum makespan, 𝑚𝑎𝑥 𝐹𝑖𝐽 .

62

Step 2: New chromosome from the Step 1 is used by Backward Pass. The chromosome

is scanned from right to left with start time 𝑚𝑎𝑥 𝐹𝑖𝐽 . A new chromosome is

generated and the makespan of this schedule represented as below:

 𝐵𝐶𝑚𝑎𝑥 = 𝑚𝑎𝑥 𝐹𝑖𝐽 − 𝑚𝑖𝑛 𝐹𝑖1
(3.3)

Step3: If the makespan 𝐵𝐶𝑚𝑎𝑥 < 𝑚𝑎𝑥 𝐹𝑖𝐽 , there is improvement of the schedule and

the chromosome generated by Backward Pass is used in Step 1. Step 1 and Step

2 are repeated until there is no more improvement on the schedule.

Figure 3.7: Backward Pass

Figure 3.8: Iterative Forward-Backward Pass

Figure 3.8 illustrates the Iterative Forward-Backward Pass carried out in this

study. It is noted that in this iterative function, the makespan of the both processes is

(a) Before Backward Pass

Chromosome = [… 3 1 1] Chromosome = [… 1 3 1]

(a) After Backward Pass

max (FiJ)

M1 J1

M2 J3 J1

M3

0

M1 J1

M2 J1 J3

M3

0 max (FiJ)

Forward Pass

Backward Pass

No improvement

63

mutually restricted hence the makespan of new solution generated is either lesser or

remain unchanged. The search space is reduced hence the overall of the quality of the

chromosomes is improved, increasing the possibility of getting the optimal or near

optimal solutions.

3.12 Neighborhood Search

 Reduction of the search space does not always guarantee that the optimal

solution will be found. Kelly and Walker (1959) noted that one of the effective ways to

change and modify the scheduling time length is by changing the operations sequence in

the critical path, because critical path determines the length of the process to be finished.

Therefore, we use neighborhood search as exploitation mechanism to decrease the

makespan and the neighborhood search starts with the identification of the critical path

in the schedule generated by the scheduling process.

 Critical path in the schedule is determined by using the Critical Path Method

(Kelly and Walker, 1959). Operations on the critical path are called critical operations

and a critical block consists of a maximal sequence of adjacent critical operations that

are processed on the same machine (Nowicki and Smutnicki,1996). Figure 3.9

illustrates example of critical blocks consisting of several critical operations.

 The neighborhood is defined as the random swap between two jobs in a critical

block that contains two or more operations. If the critical block contains only one

operation, no swap is made. All possible moves of the operations will be predetermined

as illustrated in Figure 3.9. A swap of the operations is accepted if it improves the

64

makespan from its present state. Otherwise, the swap is undone if all of the possible

swaps do not improve the makespan and the original solution is maintained. Once the

swap is accepted, a new critical path is identified. The procedure is repeated and stops if

there are no swaps that can improve the makespan. In this neighborhood search, the

process is iterative and the iteration is terminated if no improvement is found.

Algorithm 3.3 presents the pseudo code for neighborhood search.

Figure 3.9: Critical Path, Critical Operations and Possible Operations Swaps

Algorithm 3.3: Pseudo Code for Neighborhood Search

M1

M2

M3

0

Critical operations in critical path

22 242 4 6 8 10 12 14 32

J3

J3 J2

J3 J1 J2

16 18 20

J2 J1

J1

26 28 30

 while New solution accepted = true

 New solutions accepted = false
 Determine the critical path, critical block in New schedule
 List out the possible swaps of the operations

 for k=1 to total of possible swaps do
 Swap a pair of operations
 New schedule generated and makepsan recalculated (New
 makespan)

 if New makespan< Current makespan
 Current makespan = New Makespan
 New solution accepted = true

 end if

end for

 end while

65

 Local search in this hybrid GA tries to find the best solution that is attainable by

using the single offspring. It exploits the best possible solution by using neighborhood

search method.

3.13 Conclusion

 This chapter presents a hybrid genetic algorithm with multi-parents crossover,

EPPX, for the job shops scheduling problem. EPPX is a variation of the precedence

preservative crossover (PPX) which is one of the crossovers that perform well to find

the solutions for the JSSP. EPPX is based on a vector to determine the gene selected in

recombination for the next generation. Legalization of children (offspring) can be

eliminated due to the JSSP representation encoded by using permutation with repetition

that guarantees the feasibility of chromosomes.

 The hybrid GA combines with neighborhood search in which GA performs the

exploration of the population and the neighborhood search performs the exploitation

around individuals. The chromosome represented by operation-based representation is

used to generate an active schedule through iterative forward-backward pass which can

further reduce the search space.

 The simulations are performed on a set of benchmarks from the literatures and

the results are compared in the following chapter to ensure the sustainability of multi-

parents recombination in solving the JSSP.

66

CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Introduction

 The hybrid GA is developed by using MATLAB 7.11 R2010b and the

simulations are run on workstation Intel Xeon CPU E5620 12GB RAM. The source of

the benchmarks are from the OR library (Beasley, 1990). Selected benchmarks that are

used to test the hybrid GA are the FT, ABZ, and ORB problems. These benchmarks

were chosen because they are considered as hard problems and often used by other

researchers for comparison and testing their algorithms in solving the JSSP.

4.2 Data Set – Benchmarks Problems

4.2.1 FT Problem

 The FT problem which was developed by Fisher and Thompson (1963) has been

widely applied in different algorithms. The FT10 and FT20 are considered as difficult

computational problems especially the FT10 problem which is referred as a ―notorious‖

problem because it remained unsolved for 20 years and now is no longer

computationally challenging as most of the algorithms managed to attain optimal

solution.

 In Table 4.1, the first column shows the names of the instances which are

followed by the total job and machines in the problem. The last column records the

optimal solutions for the FT that has been solved optimally in past literatures. There are

67

only three types of problem sizes in the FT problem. They are written as

𝑗𝑜𝑏𝑠 x 𝑚𝑎𝑐𝑖𝑛𝑒, e.g. 6x6 for FT06, 10x10 for FT10, and 20x5 for FT20.

Table 4.1: Instances for FT Problem

Instances No. of Jobs No. of Machines Optimal

FT 06 6 6 55

FT 10 10 10 930

FT 20 20 5 1165

4.2.2 ABZ Problem

 The ABZ problem proposed by Adams et al. (1988) contains the problem that is

more difficult than the FT10 especially the instances of ABZ8 and ABZ9 which are still

open problems. Table 4.2 shows the selected instances from the library with their best

known solutions (BKS). Note that instances with asterisks are part of the ten tough

problems (proposed by Applegate and Cook (1991)) which are more difficult than the

FT10 problem.

Table 4.2: Instances for ABZ Problem

Instances No. of Jobs No. of Machines BKS

ABZ5 10 10 1234

ABZ6 10 10 943

ABZ7* 20 15 656

ABZ8* 20 15 665

ABZ9* 20 15 678

4.2.3 ORB Problem

 The ORB problem proposed by Applegate and Cook (1991) consists of instances

with the same size problems of the FT10. Applegate and Cook (1991) collected the

instances from different authors then renamed them as ORB.

68

Table 4.3: Instances for ORB Problem

Instances No. of Jobs No. of Machines BKS

ORB01 10 10 1059

ORB02 10 10 888

ORB03 10 10 1005

ORB04 10 10 1005

ORB05 10 10 887

ORB06 10 10 1010

ORB07 10 10 397

ORB08 10 10 899

ORB09 10 10 934

ORB10 10 10 944

4.3 Hybrid GA Parameters

In this hybrid GA, the parameters that need to be set are:

• Population size

• Maximum number of generation

• Reinsertion rate

• Crossover rate

• Mutation rate

 These parameters varied in the GA when applied in different fields of the

problems. Thus, the parameters in our algorithm need to be set first before being applied

to the JSSP. The population size and reinsertion rate portion refer to the mostly used

value in the GAs and the maximum number of generation is adjusted based on the

number of parents. Parameters such as the crossover rate and mutation rate need to be

tested before being applied to other problems.

69

 A population is set with 100 individuals for the problems FT06, FT10, ABZ5,

ABZ6, and ORB01-ORB10. This is because this size of population is frequently used in

other GAs (Sivanandam and Deepa, 2008). For the problems that contain large

problems sizes and variables (FT20, ABZ7-ABZ9), their population sizes are increased

to 150 to acquire more chances of obtaining optimal or near optimal solutions. After the

recombination process, elitism strategy is applied and 10% of the best fitness new

offspring replace the 10% of the worst individuals in the previous population to

generate a new population.

 Chapter 3 (Section 3.5) explains how the different numbers of parents for

recombination generate different numbers of total solutions. To ensure the solutions

from crossovers with different numbers of parents are fair and comparable, the

maximum numbers of generations are adjusted based on the number of parents (Eq.

(3.2)). In calculating the maximum number of generations, the 𝑀𝐴𝑋𝐺𝑒𝑛 ,

𝑡𝑜𝑡𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝑠 for instances FT06, FT10, ABZ5, ABZ6, and ORB01-ORB10 are

fixed at 5000 schedules and the problems FT20 and ABZ7-ABZ9 are fixed at 10,000

schedules.

Table 4.4: Maximum Number of Generation

Maximum number of

generation

Number of parents

3 4 5 6 7 8 9 10

100 initial individuals 150 200 250 300 350 400 450 500

150 initial individuals 200 267 333 400 467 533 600 667

70

Table 4.5: Total Solutions Generated

Generated solutions
Number of parents

3 4 5 6 7 8 9 10

100 initial individuals 4950 5000 5000 4800 4900 4800 4950 5000

150 initial individuals 10000 9879 9990 10000 9807 9594 10000 10005

 Table 4.4 and Table 4.5 show the maximum number of generations for different

numbers of parents and the total solutions generated respectively. The total solutions

generated are slightly different from the original values because the total individuals in

a population are divided by the number of parents before being rounded toward zero.

With these numbers of generations, the results are more comparable and fair.

4.4 Parameters Testing for Hybrid GA

 The parameters setting of crossover rate and mutation rate for the GA are very

problem dependent. In the JSSP, there are no specific rates for these parameter values.

Therefore, we use the instance FT10 to identify suitable parameters.

In testing the crossover rate and mutation rate, we consider three different cases:

Case 1: The crossover rate is set as a static value (0.9 to 0.5 with a decrement of 0.1)

whilst the mutation rates are represented by the following equations:

 𝑝𝑚 = 0.1 +
𝑔𝑒𝑛

𝑚𝑎𝑥𝑔𝑒𝑛
 0.4 (4.1)

 𝑝𝑚 = 0.1 +
𝑔𝑒𝑛

𝑚𝑎𝑥𝑔𝑒𝑛
 0.9 (4.2)

𝑝𝑚 = mutation rate

𝑔𝑒𝑛 = current number of generation

𝑚𝑎𝑥𝑔𝑒𝑛 = maximum number of generation

71

a) Mutation rate increases from 0.1 to 0.5 when the maximum number of generation

increases (Eq. (4.1)).

b) Mutation rate increases from 0.1 to 1.0 when the maximum number of generation

increases (Eq. (4.2)).

Table 4.6 shows the results of the different mutation rate for Case 1 with different

crossover rate. a and b are represented Case 1(a) and Case 1(b) respectively. The lowest

average solution obtains by Case 1(a) and Case 1(b) are using crossover rate at 0.6 and

0.8 respectively.

Table 4.6: Case 1 Results

Case 1

Crossover rate

0.9 0.8 0.7 0.6 0.5

Average

Solutions
a 979.23 978.87 972.23 968.10 976.40

b 973.03 970.77 973.80 972.67 978.07

Figure 4.1: Graph for Case 1

962

964

966

968

970

972

974

976

978

980

982

0.5 0.6 0.7 0.8 0.9

A
ve

ra
ge

 S
o

lu
ti

o
n

s

Crossover rate

a

b

72

 The results in Table 4.6 are plotted into a line graph (Figure 4.1). In Figure 4.1,

line-a shows that when the crossover rate increases, the average solutions (makespan)

decreases by a different value of mutation rate. Line-b reflects that when the crossover

rates increase, the average solutions are also increased. This graph shows that different

conditions of mutation rate affects the crossover rate to attain best average solutions and

the best average solutions for line-a and line-b are 0.6 and 0.8 respectively.

Case 2: Mutation rate is fixed and it varies from 0.1 to 1.0 with an increment of 0.1 and

 crossover rate decreases from 0.9 to 0.5 by Eq. (4.3).

 𝑝𝑐 = 0.9 −
𝑔𝑒𝑛

𝑚𝑎𝑥𝑔𝑒𝑛
 0.4 (4.3)

𝑝𝑐= crossover rate

𝑔𝑒𝑛 = current number of generation

𝑚𝑎𝑥𝑔𝑒𝑛 = maximum number of generation

Table 4.7: Case 2 Results

Mutation

rate
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

 Average

solutions
981.70 979.20 976.70 985.17 969.67 970.73 971.00 963.93 968.80 967.97

Figure 4.2: Graph for Case 2

73

 When the mutation rate increases (Figure 4.2), the average value is in a

decreasing trend and this signifies that higher mutation rates are able to obtain better

average solutions.

Case 3: Adaptive crossover rate that has reverse hyperbolic relation with the mutation

rate (decreases from 0.9 to 0.5 using Eq. (4.3)) and

a) Mutation rate varies from 0.1 to 1.0 by using Eq. (4.2)

b) Mutation rate varies from 0.1 to 0.5 by using Eq. (4.1)

Table 4.8: Case 3 Results

 Case 3a Case 3b

Average solutions 970.5 979.71

Figure 4.3: Bar Chart for Case 3

 Table 4.8 displays the average solutions obtained by different cases and plotted

in Figure 4.3 as bar chart. Figure 4.3 shows that with high mutation rate, the results will

be better.

74

 It can be concluded from Figure 4.1 that the crossover rate is best set in between

0.5 to 0.9 and Figure 4.2 and Figure 4.3 show that the mutation rate should be set higher.

In the next section, these results are used as a guide to identify the fixed rate and apply

it onto all problems to avoid confusion in parameters determination for the hybrid GA.

4.4.1 Crossover Rate

 In our cases, due to the different problem sizes and different numbers of parents

for recombination, we need to fix these parameters and use them for all numbers of

parents. When setting these parameters, the instance FT10 is selected as the reference

because it is considered as a difficult problem. Among the multi-parents crossover, three

parents crossover are used as reference because we consider them as the starting point

of multi-parents recombination (more than two parents).

 The dependencies between the crossover and mutation rates are tested by the GA.

The crossover rates are set from 1.0 to 0.5 with varied mutation rates from 0.1 to 1.0.

Each case (example: crossover rate=1.0, mutation rate =0.1) will be run for 100 times

and the average will be figured out. The relative errors are calculated by computing the

difference between the average solutions for each crossover rate and the optimal

solution of FT10 (930).

Table 4.9: Output for different Crossover Rate and Mutation Rate

 Mut_01 Mut_02 Mut_03 Mut_04 Mut_05 Mut_06 Mut_07 Mut_08 Mut_09 Mut_10 Average
Relative error

(%)

Crs_10 971.96 978.20 972.64 968.06 969.28 972.34 971.58 965.46 963.24 968.12 970.09 4.31

Crs_9 967.38 975.94 965.82 968.24 970.30 965.36 963.44 961.14 961.00 960.32 965.89 3.86

Crs_8 971.54 968.00 967.24 965.92 966.10 964.28 964.58 958.92 958.84 959.12 964.45 3.70

Crs_7 973.94 968.32 969.26 963.72 963.48 961.58 958.46 957.84 959.02 958.94 963.46 3.60

Crs_6 972.96 968.32 969.30 965.26 964.02 965.10 964.08 960.16 959.90 959.58 964.87 3.75

Crs_5 971.88 975.96 975.60 969.12 962.58 967.36 960.92 961.60 961.04 957.10 966.32 3.90

Crs_10 represents crossover rate at 1.0, Crs_9 represents crossover rate at 0.9 and so on

Mut_01 represents mutation rate at 0.1, Mut_02 represents mutation rate at 0.2 and so on

75

 In Table 4.9, the relative error for crossover rate at 0.7 appears as the lowest

value compared to the other crossover rates. The frequencies of optimal solutions for

FT10 at the crossover rate 0.7 are the highest in Figure 4.4. Thus, it is reasonable for us

to use the crossover rate at 0.7 for other instances.

Figure 4.4: Frequent of Optimal Solutions Appear (930) at different Crossover Rate

4.4.2 Mutation Rate

 In the literature, there are arguments about the influences of crossover rates and

mutation rates in the GA. Some of the researchers preferred for the crossover rate to be

set at a high value (higher than 0.7) with low mutation rate (not more than 0.1) as the

crossover is the priority operator in the GA. On the other side, some researches show

that mutation also plays an important role in the GA to generate better results. In the

multi-parents crossover application, especially in the JSSP, there is a lack of

information about the mutation rate values. Hence, we try to find the suitable mutation

rate for our GA.

76

 Due to the inconsistencies of the results between the crossover rates and

mutation rates we obtained from the simulation, Figures 4.5 plotted the best fit line for

the problems. All lines for the different crossover rates are decreasing from left to right

which means that the average solutions will get better when the mutation rates increase.

Thus, we conclude that the last mutation rate (1.0) performs the best when applied in

this GA and it will be used as parameter for other instances.

Figure 4.5: Best Fit Line for Crossover with different Mutation Rates

4.5 Results

 Table 4.10, Table 4.11, and Table 4.12 summarize the experimental results.

Crossover rate and mutation rate are set to 0.7 and 1.0 respectively for all the instances.

The first column lists the problem name (instances) and the problem optimal solutions

(optimal) or BKS. Second column lists the makespan of the problem which include

minimum (best solution), maximum, and average makespan. The last column lists the

solutions obtained by different number of parents.

950.00

955.00

960.00

965.00

970.00

975.00

980.00

0 2 4 6 8 10 12

A
ve

ra
ge

 fo
r

cr
o

ss
o

ve
r

ra
te

Mutation rate (divide by 10)

Crs_10

Crs_9

Crs_8

Crs_7

Crs_6

Crs_5

Linear (Crs_10)

Linear (Crs_9)

Linear (Crs_8)

Linear (Crs_7)

Linear (Crs_6)

Linear (Crs_5)

77

Table 4.10: Results for FT Problem

Instances Makespan
No. of parents

3 4 5 6 7 8 9 10

FT 06 Min. (best) 55 55 55 55 55 55 55 55

Optimal

= 55

Max. 55 55 55 55 55 55 55 55

Average 55 55 55 55 55 55 55 55

FT 10 Min. (best) 930 930 930 930 930 930 930 937

Optimal

= 930

Max. 1023 1016 1018 1025 1019 1029 1032 1024

Average 961.93 965.93 966.61 973.33 969.79 977.18 975.40 978.60

FT 20 Min. (best) 1178 1185 1184 1190 1187 1198 1183 1197

Optimal

= 1165

Max. 1272 1252 1266 1259 1262 1283 1294 1286

Average 1214.59 1216.37 1223.08 1224.9 1224.94 1231.38 1230.88 1232.34

 Results from Table 4.10 show that EPPX is considered suitable for solving the

JSSP. Instance FT06 can be solved easily with the number of parents used for crossover

ranging from 3 to 10 parents. For difficult problems such as FT10, EPPX is able to get

the optimum solution with the number of parents of 3 to 9 for the crossover operation.

For instance FT20, the smallest deviation from the optimal solution is obtained with the

best solution of 1178 (approximately 1%) by using 3 parents for the crossover operation.

78

Table 4.11: Results for ABZ Problem

Instances Makespan

Solutions

no. of parents

3 4 5 6 7 8 9 10

ABZ5 Min. (best) 1238 1234 1238 1238 1238 1238 1238 1238

Optimal = 1234
Max. 1262 1269 1266 1270 1266 1266 1266 1267

Average 1250.09 1249.27 1251.23 1251.31 1249.5 1249.41 1249.92 1248.88

ABZ6 Min. (best) 947 945 943 945 943 947 946 947

Optimal = 943
Max. 966 967 967 966 967 967 970 970

Average 948.65 949.24 949.64 949.81 949.14 949.41 950.82 948.83

ABZ7 Min. (best) 680 684 687 684 688 686 693 692

Optimal = 656
Max. 710 711 713 714 713 715 718 712

Average 696.81 698.39 698.53 700.94 700.68 701.39 702.69 701.93

ABZ8 Min. (best) 701 699 705 699 702 705 705 707

BKS = 665
Max. 727 727 726 728 734 727 733 728

Average 712.5 713.45 714.83 715.68 716.57 717.28 718.26 718.09

ABZ9 Min. (best) 710 708 713 717 708 721 716 720

BKS= 678
Max. 745 745 745 747 748 749 755 758

Average 728.75 730.2 730.4 733.34 733.23 733.88 734.4 734.76

 Table 4.11 presents the results for ABZ problem which contains five instances

with sizes ranging from 10x10 to 20x15. No optimal solutions have been known for

ABZ8 and ABZ9, thus the BKS for both instances are obtained from the literatures

(Zhang et al., 2008). EPPX is able to get the optimal solution for ABZ5 and ABZ6 but

varies between 3 – 5 % from the optimal or the best known results.

79

Table 4.12: Results for ORB Problem

Instances Makespan
no. of parents

3 4 5 6 7 8 9 10

ORB01 Min. (best) 1077 1077 1087 1077 1086 1070 1086 1089

Optimal = 1059
Max. 1140 1147 1152 1140 1142 1153 1148 1150

Average 1100.8 1101.03 1098.21 1100.66 1101.37 1102.54 1100.9 1103.32

ORB02 Min. (best) 889 892 889 889 894 892 889 897

Optimal = 888
Max. 934 940 941 942 941 945 941 945

Average 910.57 912.56 917.16 918.62 920.88 920.90 919.20 922.24

ORB03 Min. (best) 1022 1035 1022 1028 1029 1041 1039 1030

Optimal = 1005
Max. 1114 1121 1138 1134 1156 1156 1146 1174

Average 1065.21 1071.79 1074.07 1076.22 1081.39 1090.06 1091.36 1092.30

ORB04 Min. (best) 1006 1011 1005 1005 1011 1005 1005 1011

Optimal = 1005
Max. 1052 1062 1054 1060 1060 1062 1056 1062

Average 1032.32 1034.17 1033.27 1033.36 1030.85 1033.51 1032.43 1031.96

ORB05 Min. (best) 890 890 890 890 891 891 890 890

Optimal = 887
Max. 947 952 943 959 966 959 957 959

Average 908.93 910.14 910.01 914.56 917.64 918.84 918.31 921.44

ORB06 Min. (best) 1031 1028 1031 1030 1031 1031 1033 1031

Optimal = 1010
Max. 1088 1082 1088 1109 1087 1088 1112 1108

Average 1055.24 1057.69 1061.23 1064.76 1063.00 1063.44 1065.02 1064.91

ORB07 Min. (best) 397 400 398 397 397 400 399 417

Optimal = 397
Max. 421 422 431 419 422 428 429 421

Average 408.72 409.54 410.68 406.91 410.19 411.27 410.68 411.24

ORB08 Min. (best) 914 914 899 899 911 899 927 912

Optimal = 899
Max. 983 990 992 1001 1009 1002 1006 1006

Average 945.73 948.27 951.72 952.84 955.76 958.75 960.66 962.64

ORB09 Min. (best) 934 942 940 943 941 940 939 943

Optimal = 934
Max. 988 996 997 996 997 1007 996 997

Average 960.29 961.51 963.55 963.48 964.37 963.60 961.48 964.51

ORB10 Min. (best) 944 944 944 944 944 946 944 944

Optimal = 944
Max. 999 993 1004 1005 1005 1004 1004 1012

Average 959.78 960.28 957.83 960.94 962.10 961.20 962.43 961.96

80

 In the Table 4.12, the results for ORB problem show that EPPX found the

optimal solution in 5 instances (ORB04, ORB07-ORB10). The best solutions found are

located in the different numbers of parents for different instances thus it is proven that

GA is not restricted to two parents crossover in order to find the best solution.

 Table 4.13 presents the average computational time in 100 runs for different

numbers of parents in each instance.

Table 4.13: Computational Time

Instances Size

Computational time (in second)

no. of parents

3 4 5 6 7 8 9 10

FT 06 6 x 6 3.24 3.48 2.78 3.72 3.12 3.44 3.52 3.53

FT 10 10x10 192.99 195.63 198.07 194.35 192.10 193.66 203.56 197.60

FT 20 20x 5 290.42 290.61 293.55 316.24 292.71 291.80 276.30 296.74

ORB01 10x10 182.17 186.19 186.76 180.22 185.76 180.31 189.43 186.72

ORB02 10x10 166.47 168.31 167.32 162.40 171.36 165.52 171.48 175.58

ORB03 10x10 191.34 194.01 194.58 187.84 191.01 196.11 204.05 197.58

ORB04 10x10 165.19 173.07 173.17 167.05 171.72 173.59 185.18 183.84

ORB05 10x10 170.83 177.57 176.27 174.45 172.74 171.55 178.28 187.80

ORB06 10x10 189.83 190.79 193.13 184.82 198.95 187.90 192.94 198.92

ORB07 10x10 168.13 171.68 168.20 164.56 169.46 164.22 165.59 171.01

ORB08 10x10 188.48 187.48 188.75 181.74 179.71 179.89 189.04 189.52

ORB09 10x10 165.02 170.29 173.51 165.79 173.23 177.53 174.90 178.03

ORB10 10x10 175.14 178.67 175.92 167.22 173.31 172.76 178.86 179.98

ABZ5 10x10 165.07 165.07 165.99 156.42 161.96 158.92 170.12 171.79

ABZ6 10x10 156.02 156.80 160.49 161.87 162.80 165.04 167.25 173.18

ABZ7 20x15 1507.93 1486.89 1518.80 1542.58 1519.09 1460.59 1468.86 1608.26

ABZ8 20x15 1545.53 1553.63 1536.08 1532.17 1503.69 1472.42 1485.99 1558.98

ABZ9 20x15 1397.51 1368.41 1376.06 1377.28 1353.83 1336.95 1313.06 1393.12

 The computational time in all instances varies due to the different structures of

the problems. As it uses the heuristic method, computational times for repeated

problems also do not have consistent values. The computational time for easy problem

FT06 is very short because the optimal solutions can be found quickly and the GA

81

terminated and stopped running when it reaches the optimal solutions. The average

computational time for difficult problem takes a longer time because some of the runs

were unable to reach the optimal solution and they are only terminated at the end of the

maximum number of generation.

 Table 4.14 lists the results of FT problem run with multi-parents crossover and

in non-hybrid environment with fixed maximum generation. Table 4.15 lists the results

using the complete hybrid GA proposed for the FT problem.

Table 4.14: Before Hybrid

Instances Optimal Number of Parents

 3 4 5 6 7 8 9 10

FT06 55 55 55 55 55 55 55 55 55

FT10 930 953 955 955 950 955 990 976 960

FT20 1165 1204 1208 1211 1206 1228 1236 1254 1250

Table 4.15: After Hybrid

Instances Optimal Number of Parents

 3 4 5 6 7 8 9 10

FT06 55 55 55 55 55 55 55 55 55

FT10 930 930 930 930 930 930 930 930 937

FT20 1165 1178 1185 1184 1190 1187 1198 1183 1197

 The proposed hybrid GA shows significant improvement compared to the GA

with only multi-parents crossover. The hybrid GA can find the optimal solutions for the

problem FT10 and the deviation between optimal solution and best found solution in

FT20 is lesser than the GA with multi-parents crossover only. These notable

improvements proved that the hybridization of GA with other methods is able to

increase the performance of GA.

82

 Table 4.16 presents frequency of the best solutions found in each number of

parents. It is observed that the top 4 numbers of parents contributed the most found best

solutions are 3, 4, 5 and 6 number of parents. Figure 4.6 depicts the frequency of the

number of parents 3, 4, 5 and 6 in achieving the most optimal or near optimal solutions.

Thus, they may be considered as the best numbers of parents that may be used for the

crossover operations. The number of parents equals 10 appears as the lowest to reach

the optimal or near optimal value. The multi-parents crossover that achieved the best

solutions has more tendencies to be on the left side of the graph, meaning that if the

number of parents increases, the possibilities to find the best solutions will be lower.

Table 4.16: Best Solutions for different No. of Parents

Instances
no. of parents

3 4 5 6 7 8 9 10

FT10 1 1 1 1 1 1 1

FT20 1

ABZ5

1

ABZ6

1

1

ABZ7 1

ABZ8

1

1

ABZ9

1

1

ORB01

1

ORB02 1

1 1

1

ORB03 1

1

ORB04

1 1

1 1

ORB05 1 1 1 1

1 1

ORB06

1

ORB07 1

1 1

ORB08

1 1

1

ORB09 1

ORB10 1 1 1 1 1 1 1

Total 9 7 8 8 5 4 5 2

83

Figure 4.6: Bar Chart for Best Solutions for different No. of Parents

4.6 Comparison with Others that are based on Permutation Crossover

Operator

 The comparison in Table 4.17 is made with other GA algorithms which adopt

the concept of permutation crossover operator. The table contains the authors, year,

crossover operator, and best solutions for the instances for comparison. Previously, the

authors (Gen et al., 1994; Bierwirth, 1995) used only two parents for the crossover

operation and the optimal result achieved for the FT10 and the deviation from the

optimal solution for FT20 are less than 2%. The acceptable ranges of comparable GAs

are up until 7% (Bierwirth, 1995). Therefore, the deviation ranges more than these

values are considered not effective. Tested results reflect that the EPPX is able to obtain

the solution within these values and considered applicable for solving the JSSP. The

instance FT06 can be solved easily with the number of parents used for crossover

ranging from 3 to 10 parents. For difficult problems such as the FT10, the EPPX also

performs well as it is able to obtain the optimum solution with the number of parents

0
1
2
3
4
5
6
7
8
9

10

3 4 5 6 7 8 9 10

Fr
e

q
u

e
n

t

No. of parents

Best found solutions

Total

84

ranging from 3 to 9 in crossover operation. Meanwhile, when the variable of JSSP

increases (instance FT20), deviation occurs between the optimal solution and EPPX

solutions with the best solution 1178 found by using 3 parents in the EPPX’s crossover

operation.

Table 4.17: Comparison for FT06, FT10, and FT20 with n Jobs x m Machines

Author(s) Year Crossover operator FT06

(6x6)

FT10

(10x10)

FT20

(20x5)

Optimum 55 930 1165

Gen et al. 1994 Partial schedule exchange

crossover

55 962 1175

Bierwirth 1995 Generalized Permutation GP-GA 55 936 1181

Park et al. 2003 Parallel Genetic Algorithm PGA 55 930 1173

Ripon et al. 2010 Improved Precedence

Preservation Crossover IPPX

55 930 1180

 2012 Multi-Parents Crossover EPPX 55 930 1178

4.7 Comparison with Results from the Literatures

 The ABZ contains five instances with two different sizes of problems:

10x10 and 20x15. In this problem, we compare our tested results with different JSSP

strategies such as: hybridization of TS and SA (TSSA) (Zhang et al., 2008), parallel

genetic algorithms (PGA) (Park et al., 2003), and greedy randomized adaptive search

procedure (GRASP) (Binato et al., 2001). Table 4.18 and Table 4.19 list for each test

instance, its name, size (number of jobs x number of machines), the best known

solutions (BKS), the best solutions found (Best), multi-parents that obtained the best

solutions (MP), and relative error (RE). The RE is calculated from the gap between Best

and BKS in percentage. Total RE in the last column shows the total relative error which

is used to analyze the effectiveness of the proposed algorithm.

85

 Results in Table 4.18 show the comparison between EPPX with three other

methods. The EPPX performs only averagely if compared among the methods listed in

the 10x10 problem size. When the sizes of the problems are increased to 20x15, the

EPPX performs better compared to the PGA and GRASP with less relative errors with

the overall best algorithm is the hybrid tabu search and simulated annealing of Zhang et

al. (2008). These significant results indicated that the EPPX is capable to adapt bigger

size problems with comparable relative errors ranging from 0.3% to 7.0%. The best

solutions found are located in the different numbers of parents for different instances.

Table 4.18: Comparison for ABZ Problem

Instances Size BKS

EPPX

TSSA

PGA

GRASP

 Best RE MP Best RE Best RE Best RE

ABZ5 10x10 1234

1234 0.00 4

1234 0.00

1236 0.16

1238 0.32

ABZ6 10x10 943

943 0.00 5, 7

943 0.00

943 0.00

947 0.42

ABZ7 20x15 656

680 3.66 3

658 0.30

685 4.42

723 10.21

ABZ8 20x15 665

699 5.11 4,6

667 0.30

704 5.86

729 9.62

ABZ9 20x15 678

708 4.42 4,7

678 0.00

723 6.64

758 11.80

Total RE 13.19 0.60 17.08 32.37

Table 4.19: Comparison for ORB Problem

Instances Size BKS

EPPX

TSSA

PGA

GRASP

 Best RE MP Best RE Best RE Best RE

ORB01 10x10 1059

1070 1.04 8

1059 0.00

1060 0.09

1070 1.04

ORB02 10x10 888

889 0.11 3,5,6,9

888 0.00

889 0.11

889 0.11

ORB03 10x10 1005

1022 1.69 3,5

1005 0.00

1020 1.49

1021 1.59

ORB04 10x10 1005

1005 0.00 5,6,8,9

1005 0.00

1005 0.00

1031 2.59

ORB05 10x10 887

890 0.34 3-6,9,10

887 0.00

889 0.23

891 0.45

ORB06 10x10 1010

1028 1.78 4

1010 0.00

1013 0.30

1013 0.30

ORB07 10x10 397

397 0.00 3,6,7

397 0.00

397 0.00

397 0.00

ORB08 10x10 899

899 0.00 5,6,8

899 0.00

899 0.00

909 1.11

ORB09 10x10 934

934 0.00 3

934 0.00

934 0.00

945 1.18

ORB10 10x10 944

944 0.00 3-7,9,10

944 0.00

944 0.00

953 0.95

Total RE 4.96 0.00 2.22 9.32

86

 Table 4.19 lists the comparison for different methods. The hybrid GA (EPPX),

which performs better than the GRASP, achieves optimal solutions for five problems

(ORB04, ORB07, ORB08, ORB09, and ORB10). The EPPX and PGA have the same

unsolved instances (ORB01, ORB02, ORB03, ORB05, and ORB06) but the total

relative error (Total RE) of the PGA is slightly better compared to the EPPX. Overall,

the performance of EPPX is comparable to all the three methods with the hybrid tabu

search and simulated annealing of Zhang et al. (2008) performs the best overall.

 Consequently, as can be seen in the problem size 10x10 (ABZ and ORB), both

EPPX and PGA which propose a hybrid GA encounter difficulty in solving the

problems compared to the TSSA which uses the hybridization of tabu search and

simulated annealing. It is evident from Table 4.13 that when the problem sizes become

larger and harder, the computational time takes more time to search for the solutions

and this is especially true for problem ABZ7, ABZ8 and ABZ9.

4.8 Conclusion

 In the experimental results, EPPX using multi-parents is able to get the solutions

within the acceptable range of GA values. Results show that the best solutions are

obtained from different numbers of parents for crossover thus it is proven that GA able

to use more than two parents crossover in order to find the best solution. The number of

parents used in EPPX and GA is very much dependent on the problem instances and it

may be observed by the best solutions for different instances were produced by different

numbers of parents. Although EPPX outperforms some the proposed algorithms in the

literatures for relatively larger problems but it still cannot achieve the best solution

found especially on the open problems.

87

CHAPTER 5

CONCLUSION

5.1 Conclusion

 In Chapter 2, the job shop scheduling is described and formulated. The

background of the job shop scheduling problem is explained in great detail and relevant

literatures are presented. The requirements of this combinatorial scheduling problem

and their constraints and assumption were converted into mathematical model. Related

metaheuristics that are designed for Job Shop Scheduling Problem (JSSP) are reviewed

and these algorithms are specially designed to tackle problems that are unable to be

solved by the exact method. These heuristic methods are explored in search space with

the iterative function to find the potential solutions.

 The metaheuristics do not guarantee that the optimal solution can be found.

Therefore, additional search methods are embedded or hybridize with metaheuristics to

increase the accuracy in solving the problem. In the literature, these hybrid

metaheuristics searching methods are classified as intensification and diversification

(Zäpfel et al., 2010). The intensification mechanisms tend to find a good solution in a

potential solution. Diversification will diversify the solution to escape from the

entrapment of the local optima.

 One of the hybrid metaheuristics, hybrids GA, also applies both mechanisms in

the searching procedure. In most cases, the GA acts as a diversification mechanism that

provides diversified potential solutions whereas the local search embedded into the GA

88

operates as the intensification of the searching and exploiting the potential solutions in

search for better solutions.

 In Chapter 3, our proposed hybrid GA is built on these approaches. The GA has

a limitation in searching solutions because it faces the problems of premature

convergence and large search space. Thus, the proposed iterative forward-backward

pass and neighborhood search are used to overcome these problems. The proposed

methods that build the hybrid GA are divided into three, the multi-parents crossover,

neighborhood search on critical path and iterative forward-back pass. The multi-parents

crossover proposed requires more than three parents to perform the recombination, the

EPPX instead of using two parents for recombination. The neighborhood search in this

hybrid GA acts as an intensification mechanism that attempts to search for the best

solution by exploiting the provided current solutions. In the problem of the large search

space, the search space is reduced by improving the quality of the chromosomes.

 In Chapter 4, the algorithms are performed on selected benchmarks problems.

Rigorous tests are carried out to determine suitable parameters for the algorithms and

the initial parameters are set based on the literatures. The crossover rate and mutation

parameter are acquired from the test on the FT 10 problem and they are applied to all

instances. The maximum numbers of generations are adjusted to ensure that the

comparable results are fair. The results from the simulations are compared with the

different methods in the literatures to measure the capabilities of the algorithm. Through

observation, the performance of this hybrid GA is comparable to other methods

especially in its ability to become prominent when adapted to bigger size problems. This

hybrid GA can still be improved to obtain better solutions.

89

 The objectives in this study are met. We proposed a new crossover operator

EPPX and it is able to perform well if compared to the other crossover operators that

use two parents crossover in the GA. The search spaces are reduced by applying the

scheduling method from different areas of scheduling into the JSSP and it shows that

there are improvements in searching for solutions. The neighborhood search shows that

searching in the critical path reduces the makespan. This is because the critical path is

determined by the length of the whole schedule so the search may concentrate on the

changes of critical path for better solutions.

 Consequently, these three methods combined together in a hybrid GA are able to

increase the efficiency of the GA performance. The GA efficiency increases when

embedded with the local search and iterative forward-backward schedule. Thus, we may

conclude that the local search plays an important role in the GA to achieve the best

solutions.

5.2 Future Works

 In future works, the hybrid GA needs to explore the combination with other

local searches. As shown in the literatures of our research, the local search embedded

into the GA perform better compared to the GA that does not combine with other

methods.

The proposed future works that need to be done are:

 Adding more efficient local searches into the GA and capitalize the local search

by using GA in the searching solution.

90

 Design a better algorithm to reduce the search space. The quality of the

chromosome being increased through reduction of the search space. With better

quality of chromosomes, the GA is able to produce better generation that

contains the optimal or near optimal solutions.

 The multi-parents crossover needs to be studied more to test its ability in the GA.

In the JSSP, the multi-parents crossover variety needs to increase to allow more

investigation in exploring the multi-parents crossover effects in the GA.

 Hybridizing with other metaheuristics such as tabu search or simulated

annealing and both, may result in a better algorithm. The GA may be used to

generate some initial solutions and tabu search or simulated annealing (or both)

may be used to intensify the solution.

 The GA takes a longer time to find the best results compared to other methods.

This is because it uses the iterative method where time will increase when being

hybrid with other local searches. The calculation requires a longer time due to

the complexity of the search algorithm. Good calculation methods should

comprise of lower computational time and better results. In order to achieve

these, the methods need to be improved by creating efficient methods.

91

REFERENCES

Abdelmaguid, T. F. (2010). Representations in genetic algorithm for the job shop

scheduling problem: A computational study. Journal of Software Engineering

and Applications, 3(12), 1155-1162.

Adams, J., Balas, E., & Zawack, D. (1988). The shifting bottleneck procedure for job

shop scheduling. Management science, 34(3), 391-401.

Applegate, D., & Cook, W. (1991). A computational study of the job-shop scheduling

problem. ORSA Journal on Computing, 3(2), 149-156.

Balas, E. (1969). Machine sequencing via disjunctive graphs: an implicit enumeration

algorithm. Operations research, 17(6), 941-957.

Baker, K.R. (1974). Introduction to sequencing and scheduling. Wiley, New York.

Baker, J.E. (1987). Reducing bias and inefficiency in the selection algorithm. In J.J.

Grefenstette, J.J. (Eds.), Proceedings of the 2nd International Conference on

Genetic Algorithms (pp. 14-21). Hillsdale, New Jersey: L. Erlbaum Associates.

Beasley, J. E. (1990). OR-Library: distributing test problems by electronic mail. Journal

of the Operational Research Society, 1069-1072.

Beligiannis, G. N., Tsirogiannis, G. A., & Pintelas, P. E. (2005). Restartings: A

technique to improve classic genetic algorithms’ performance. World Academy

of Science, Engineering and Technology, 1, 1307-6884.

Bierwirth, C. (1995). A generalized permutation approach to job shop scheduling with

genetic algorithms. OR Spectrum, 17(2), 87-92.

Bierwirth, C., & Mattfeld, D. C. (1999). Production scheduling and rescheduling with

genetic algorithms. Evolutionary computation, 7(1), 1-17.

Bierwirth, C., Mattfeld, D.C., & Kopfer, H. (1996). On permutation representations for

scheduling problems. Parallel Problem Solving from Nature—PPSN IV, 310-

318.

Binato, S., Hery, W. J., Loewenstern, D. M., & Resende, M. G. C. (2001). A GRASP

for job shop scheduling. Essays and surveys in metaheuristics, 59-79.

Blickle, T., & Thiele, L. (1996). A comparison of selection schemes used in

evolutionary algorithms. Evolutionary Computation, 4(4), 361-394.

Blum, C., & Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. ACM Computing Surveys (CSUR), 35(3), 268-308.

Cai, B., Wang, S., & Hu, H. (2011). An effective hybrid genetic algorithm for job shop

scheduling problem. World Academy of Science, Engineering and Technology,

58, 42-48.

92

Cantú-Paz, E. (1998). A survey of parallel genetic algorithms. Calculateurs Parallèles,

Réseaux et Systèmes répartis, 10(2), 141-170.

Carlier, J., & Chretienne, P. (1988). Proble`mes d’ordonnancement, col. ERI. Paris:

Masson.

Černý, V. (1985). Thermodynamical approach to the travelling salesman problem: An

efficient simulation algorithm. Journal of Optimization Theory and Applications,

45(1), 41–51.

Cheng, R., Gen, M., & Tsujimura, Y. (1996). A tutorial survey of job-shop scheduling

problems using genetic algorithms—I. Representation. Computers & Industrial

Engineering, 30(4), 983-997.

Cheng, R., Gen, M., & Tsujimura, Y. (1999). A tutorial survey of job-shop scheduling

problems using genetic algorithms, part II: hybrid genetic search strategies.

Computers & Industrial Engineering, 36(2), 343-364.

Davis, L. (1985). Job shop scheduling with genetic algorithms. Proceedings of the 1st

International Conference on Genetic Algorithms, 136-140.

Dell'Amico, M., & Trubian, M. (1993). Applying tabu search to the job-shop scheduling

problem. Annals of Operations Research, 41(3), 231-252.

Demirkol, E., Mehta, S., & Uzsoy, R. (1998). Benchmarks for shop scheduling

problems. European Journal of Operational Research, 109(1), 137-141.

Eiben, A. E. (2003). Multiparent recombination in evolutionary computing. Advances in

evolutionary computing, 175-192.

Eiben, A. E., & Van Kemenade, C. H. (1997). Diagonal crossover in genetic algorithms

for numerical optimization. Control and Cybernetics, 26, 447-466.

Eiben, A., Raué, P., & Ruttkay, Z. (1994). Genetic algorithms with multi-parent

recombination. Parallel Problem Solving from Nature—PPSN III, 78-87.

Fisher, H., & Thompson, G.L. (1963). Probabilistic learning combinations of local job-

shop scheduling rules. In J.F. Muth, G.L. Thompson (Eds.), Industrial

Scheduling (pp. 225-251). Englewood Cliffs, New Jersey: Prentice Hall.

Gen, M., & Cheng, R., (1997). Genetic algorithms and engineering design. New York:

John Wiley Sons.

Gen, M., Tsujimura, Y., & Kubota, E. (1994, October). Solving job-shop scheduling

problems by genetic algorithm. In Systems, Man, and Cybernetics,

1994.'Humans, Information and Technology'., 1994 IEEE International

Conference on (Vol. 2, pp. 1577-1582). IEEE.

Gen, M., Cheng, R., & Lin, L. (2008). Network models and optimization: Multiobjective

genetic algorithm approach. Springer.

93

Giffler, B., & Thompson G.L. (1960). Algorithms for solving production-scheduling

problems. Operations Research, 8(4), 487-503.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13(5), 533-549.

Glover, F. (1998). A template for scatter search and path relinking. In Artificial

evolution (pp. 1-51). Springer Berlin/Heidelberg.

Goldberg, D.E. (1989). Genetic algorithms in search, optimization and machine

learning. Boston: Addison Wesley Longman.

Goldberg, D., & Lingle, R.A. (1985). Logic and the traveling salesman problem.

Proceeding of the 1st Internatinal Conference on GA, 154–159.

Goldberg, D.E., Deb, K., & Clark J.H. (1992). Genetic algorithms, noise, and the sizing

of populations. Complex Systems, 6, 333–362.

Gonçalves, J.F, Mendes,J.J.D., & Resende, M.G.C. (2005). A hybrid genetic algorithm

for the job shop scheduling problem. European Journal of Operational Research,

167(1), 77-95.

Graves, S.C. (1981). A review of production scheduling. Operations Research, 29(4),

Operations Management, 646-675.

Hasan, S.M.K., Sarker, R., & Cornforth, D. (2007). Hybrid genetic algorithm for

solving job-shop scheduling problem. Computer and Information Science, 2007.

ICIS 2007, 6
th

 IEEE/ACIS International Conference (pp. 519-524).

Jain, A.S., & Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and

future. European Journal of Operational Research, 113, 390-434.

Jones, A., Rabelo, L.C., & Sharawi, A.T. (1999). Survey of job shop scheduling

techniques. Wiley Encyclopedia of Electrical and Electronics Engineering.

Käschel, J., Teich, T., Köbernik, G., & Meier, B. (1999, June). Algorithms for the job

shop scheduling problem: A comparison of different methods. In European

Symposium on Intelligent Techniques. Greece, June (pp. 3-4).

Kelley Jr, J. E., & Walker, M. R. (1959, December). Critical-path planning and

scheduling. In Papers presented at the December 1-3, 1959, eastern joint IRE-

AIEE-ACM computer conference (pp. 160-173). ACM.

Kirkpatrick, S., & Vecchi, M. P. (1983). Optimization by simmulated annealing.

Science, 220(4598), 671-680.

Kumar, S.A., & Suresh, N. (2009). Operations Management. New Delhi: New Age

International.

Laarhoven, P. J.V., Aarts, E. H., & Lenstra, J. K. (1992). Job shop scheduling by

simulated annealing. Operations research, 40(1), 113-125.

94

Langdon, W.B., McKay, R.I., & Spector, L. (2010). Genetic programming. In Gendreau,

M., & Potvin, J. Y. (Eds.), Handbook of metaheuristics (pp. 185-225). New

York, NY: Springer-Verlag.

Lawrence, S. (1984). Resource constrained project scheduling: an experimental

investigation of heuristic scheduling techniques. (Supplement). School of

Industrial Administration, Carnegie-Mellon University, Pittsburgh,

Pennsylvania.

Lourenço, H., Martin, O., & Stützle, T. (2003). Iterated local search. Handbook of

metaheuristics, 320-353.

Lova, A., Maroto, C., & Tormos, P. (2000). A multicriteria heuristic method to improve

resource allocation in multiproject scheduling. European Journal of Operational

Research, 127(2), 408-424.

Mellor, P. (1966). A review of job shop scheduling. OR, 161-171

Miller, B. L., & Goldberg, D. E. (1996). Genetic algorithms, selection schemes, and the

varying effects of noise. Evolutionary Computation, 4(2), 113-131.

Mühlenbein, H., & Voigt, H. M. (1995). Gene pool recombination in genetic algorithms.

In Proc. of the Metaheuristics Conference. Kluwer Academic Publishers,

Norwell, USA.

Nowicki, E., & Smutnicki, C. (1996). A fast taboo search algorithm for the job shop

problem. Management Science, 42(6), 797-813.

Ochoa, G., Harvey, I., & Buxton, H. (1999, July). On recombination and optimal

mutation rates. In Proceedings of the Genetic and Evolutionary Computation

Conference (Vol. 1, pp. 488-495).

Ólafsson, S. (2006). Metaheuristics. Handbooks in operations research and

management science, 13, 633-654.

Osman, I. H., & Laporte, G. (1996). Metaheuristics: A bibliography. Annals of

Operations Research, 63(5), 511-623.

Park, B. J., Choi, H. R., & Kim, H. S. (2003). A hybrid genetic algorithm for the job

shop scheduling problems. Computers & industrial engineering, 45(4), 597-613.

Porter, D. B. (1968). The Gantt chart as applied to production scheduling and control.

Naval Research Logistics Quarterly, 15,311–317.

Reeves, C. (2003). Genetic algorithms. Handbook of metaheuristics, 55-82.

Ripon, K. S. N., Siddique, N. H., & Torresen, J. (2011). Improved precedence

preservation crossover for multi-objective job shop scheduling problem.

Evolving Systems, 2(2), 119-129.

95

Sels, V., Craeymeersch, K., & Vanhoucke, M. (2011). A hybrid single and dual

population search procedure for the job shop scheduling problem. European

Journal of Operational Research, 215(3), 512-523.

Sivanandam, S. N., & Deepa, S. N. (2007). Introduction to genetic algorithms. Springer

Publishing Company, Incorporated.

Song, Y., Hughes, J. G., Azarmi, N., & Voudouris, C. (2000). A Genetic Algorithm

with an incomplete representation for the Job Shop Scheduling Problems.

University of Ulster at Jordanstown.

Sprecher, A., Kolisch, R., & Drexl, A. (1995). Semi-active, active, and non-delay

schedules for the resource-constrained project scheduling problem. European

Journal of Operational Research, 80(1), 94-102.

Steinhöfel, K., Albrecht, A., & Wong, C. K. (1999). Two simulated annealing-based

heuristics for the job shop scheduling problem. European Journal of

Operational Research, 118(3), 524-548.

Storer, R. H., Wu, S. D., & Vaccari, R. (1992). New search spaces for sequencing

problems with application to job shop scheduling. Management science, 38(10),

1495-1509.

Taha, H. A. (2011). Operations research: An introduction. Upper Saddle River, NJ:

Prentice hall.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of

Operational Research, 64(2), 278-285.

Ting, C. K., Su, C. H., & Lee, C. N. (2010). Multi-parent extension of partially mapped

crossover for combinatorial optimization problems. Expert Systems with

Applications, 37(3), 1879-1886.

Tsutsui, S., & Jain, L.C. (1998, April). On the effect of multi-parents recombination in

binary coded genetic algorithms. In Knowledge-Based Intelligent Electronic

Systems, 1998. Proceedings KES '98. 1998 Second International Conference on

(Vol.3, pp. 155 – 160). IEEE.

Tsutsui, S., & Ghosh, A. (1998, May). A study on the effect of multi-parent

recombination in real coded genetic algorithms. In Evolutionary Computation

Proceedings, 1998. IEEE World Congress on Computational Intelligence., The

1998 IEEE International Conference on (pp. 828-833). IEEE.

Tsutsui, S., Yamamura, M., & Higuchi, T. (1999, July). Multi-parent recombination

with simplex crossover in real coded genetic algorithms. In Proceedings of the

genetic and evolutionary computation conference (Vol. 1, pp. 657-664).

Wang, L., & Zheng, D. Z. (2001). An effective hybrid optimization strategy for job-

shop scheduling problems. Computers & Operations Research, 28(6), 585-596.

Wang, L., & Zheng, D. Z. (2002). A modified genetic algorithm for job shop scheduling.

The International Journal of Advanced Manufacturing Technology, 20(1), 72-76.

96

Watanabe, M., Ida, K., & Gen, M. (2005). A genetic algorithm with modified crossover

operator and search area adaptation for the job-shop scheduling problem.

Computers & Industrial Engineering, 48(4), 743-752.

Wu, A., Tsang, P. W. M., Yuen, T. Y. F., & Yeung, L. F. (2009). Affine invariant object

shape matching using genetic algorithm with multi-parent orthogonal

recombination and migrant principle. Applied Soft Computing, 9(1), 282-289.

Yamada, T., & Nakano, R. (1992). A genetic algorithm applicable to large-scale job-

shop problems. Parallel problem solving from nature, 2, 281-290.

Yamada, T., & Nakano, R. (1997, March). Genetic algorithms for job-shop scheduling

problems. In Proceedings of the Modern Heuristics for Decision Support (pp.

67-81).

Yusof, R., Khalid, M., Hui, G. T., Md Yusof, S., & Othman, M. F. (2011). Solving job

shop scheduling problem using a hybrid parallel micro genetic algorithm.

Applied soft computing, 11(8), 5782-5792.

Zäpfel, G., Braune, R., & Bögl, M. (2010). Metaheuristic Search Concepts: A Tutorial

with Applications to Production and Logistics. Springer.

Zhang, C., Rao, Y., & Li, P. (2008). An effective hybrid genetic algorithm for the job

shop scheduling problem. The International Journal of Advanced Manufacturing

Technology, 39(9), 965-974.

Zhang, C. Y., Li, P., Rao, Y., & Guan, Z. (2008). A very fast TS/SA algorithm for the

job shop scheduling problem. Computers & Operations Research, 35(1), 282-

294.

97

APPENDIX A

Instances for the Problems

FT Problems

instance ft06

 +++++++++++++++++++++++++++++

 Fisher and Thompson 6x6 instance, alternate name (mt06)

 6 6

 2 1 0 3 1 6 3 7 5 3 4 6

 1 8 2 5 4 10 5 10 0 10 3 4

 2 5 3 4 5 8 0 9 1 1 4 7

 1 5 0 5 2 5 3 3 4 8 5 9

 2 9 1 3 4 5 5 4 0 3 3 1

 1 3 3 3 5 9 0 10 4 4 2 1

 +++++++++++++++++++++++++++++

 instance ft10

 +++++++++++++++++++++++++++++

 Fisher and Thompson 10x10 instance, alternate name (mt10)

 10 10

 0 29 1 78 2 9 3 36 4 49 5 11 6 62 7 56 8 44 9 21

 0 43 2 90 4 75 9 11 3 69 1 28 6 46 5 46 7 72 8 30

 1 91 0 85 3 39 2 74 8 90 5 10 7 12 6 89 9 45 4 33

 1 81 2 95 0 71 4 99 6 9 8 52 7 85 3 98 9 22 5 43

 2 14 0 6 1 22 5 61 3 26 4 69 8 21 7 49 9 72 6 53

 2 84 1 2 5 52 3 95 8 48 9 72 0 47 6 65 4 6 7 25

 1 46 0 37 3 61 2 13 6 32 5 21 9 32 8 89 7 30 4 55

 2 31 0 86 1 46 5 74 4 32 6 88 8 19 9 48 7 36 3 79

 0 76 1 69 3 76 5 51 2 85 9 11 6 40 7 89 4 26 8 74

 1 85 0 13 2 61 6 7 8 64 9 76 5 47 3 52 4 90 7 45

 +++++++++++++++++++++++++++++

 instance ft20

 +++++++++++++++++++++++++++++

 Fisher and Thompson 20x5 instance, alternate name (mt20)

 20 5

 0 29 1 9 2 49 3 62 4 44

 0 43 1 75 3 69 2 46 4 72

 1 91 0 39 2 90 4 12 3 45

 1 81 0 71 4 9 2 85 3 22

 2 14 1 22 0 26 3 21 4 72

 2 84 1 52 4 48 0 47 3 6

 1 46 0 61 2 32 3 32 4 30

 2 31 1 46 0 32 3 19 4 36

 0 76 3 76 2 85 1 40 4 26

 1 85 2 61 0 64 3 47 4 90

 1 78 3 36 0 11 4 56 2 21

 2 90 0 11 1 28 3 46 4 30

 0 85 2 74 1 10 3 89 4 33

 2 95 0 99 1 52 3 98 4 43

 0 6 1 61 4 69 2 49 3 53

 1 2 0 95 3 72 4 65 2 25

 0 37 2 13 1 21 3 89 4 55

 0 86 1 74 4 88 2 48 3 79

 1 69 2 51 0 11 3 89 4 74

 0 13 1 7 2 76 3 52 4 45

 +++++++++++++++++++++++++++++

ABZ Problems

 instance abz5

 +++++++++++++++++++++++++++++

 Adams, Balas, and Zawack 10x10 instance (Table 1, instance 5)

 10 10

 4 88 8 68 6 94 5 99 1 67 2 89 9 77 7 99 0 86 3 92

 5 72 3 50 6 69 4 75 2 94 8 66 0 92 1 82 7 94 9 63

 9 83 8 61 0 83 1 65 6 64 5 85 7 78 4 85 2 55 3 77

98

 7 94 2 68 1 61 4 99 3 54 6 75 5 66 0 76 9 63 8 67

 3 69 4 88 9 82 8 95 0 99 2 67 6 95 5 68 7 67 1 86

 1 99 4 81 5 64 6 66 8 80 2 80 7 69 9 62 3 79 0 88

 7 50 1 86 4 97 3 96 0 95 8 97 2 66 5 99 6 52 9 71

 4 98 6 73 3 82 2 51 1 71 5 94 7 85 0 62 8 95 9 79

 0 94 6 71 3 81 7 85 1 66 2 90 4 76 5 58 8 93 9 97

 3 50 0 59 1 82 8 67 7 56 9 96 6 58 4 81 5 59 2 96

 +++++++++++++++++++++++++++++

 instance abz6

 +++++++++++++++++++++++++++++

 Adams, and Zawack 10x10 instance (Table 1, instance 6)

 10 10

 7 62 8 24 5 25 3 84 4 47 6 38 2 82 0 93 9 24 1 66

 5 47 2 97 8 92 9 22 1 93 4 29 7 56 3 80 0 78 6 67

 1 45 7 46 6 22 2 26 9 38 0 69 4 40 3 33 8 75 5 96

 4 85 8 76 5 68 9 88 3 36 6 75 2 56 1 35 0 77 7 85

 8 60 9 20 7 25 3 63 4 81 0 52 1 30 5 98 6 54 2 86

 3 87 9 73 5 51 2 95 4 65 1 86 6 22 8 58 0 80 7 65

 5 81 2 53 7 57 6 71 9 81 0 43 4 26 8 54 3 58 1 69

 4 20 6 86 5 21 8 79 9 62 2 34 0 27 1 81 7 30 3 46

 9 68 6 66 5 98 8 86 7 66 0 56 3 82 1 95 4 47 2 78

 0 30 3 50 7 34 2 58 1 77 5 34 8 84 4 40 9 46 6 44

 +++++++++++++++++++++++++++++

 instance abz7

 +++++++++++++++++++++++++++++

 Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 7)

 20 15

 2 24 3 12 9 17 4 27 0 21 6 25 8 27 7 26 1 30 5 31 11 18 14 16 13 39 10 19 12 26

 6 30 3 15 12 20 11 19 1 24 13 15 10 28 2 36 5 26 7 15 0 11 8 23 14 20 9 26 4 28

 6 35 0 22 13 23 7 32 2 20 3 12 12 19 10 23 9 17 1 14 5 16 11 29 8 16 4 22 14 22

 9 20 6 29 1 19 7 14 12 33 4 30 0 32 5 21 11 29 10 24 14 25 2 29 3 13 8 20 13 18

 11 23 13 20 1 28 6 32 7 16 5 18 8 24 9 23 3 24 10 34 2 24 0 24 14 28 12 15 4 18

 8 24 11 19 14 21 1 33 7 34 6 35 5 40 10 36 3 23 2 26 4 15 9 28 13 38 12 13 0 25

 13 27 3 30 6 21 8 19 12 12 4 27 2 39 9 13 14 12 5 36 10 21 11 17 1 29 0 17 7 33

 5 27 4 19 6 29 9 20 3 21 10 40 8 14 14 39 13 39 2 27 1 36 12 12 11 37 7 22 0 13

 13 32 11 29 8 24 3 27 5 40 4 21 9 26 0 27 14 27 6 16 2 21 10 13 7 28 12 28 1 32

 12 35 1 11 5 39 14 18 7 23 0 34 3 24 13 11 8 30 11 31 4 15 10 15 2 28 9 26 6 33

 10 28 5 37 12 29 1 31 7 25 8 13 14 14 4 20 3 27 9 25 13 31 11 14 6 25 2 39 0 36

 0 22 11 25 5 28 13 35 4 31 8 21 9 20 14 19 2 29 7 32 10 18 1 18 3 11 12 17 6 15

 12 39 5 32 2 36 8 14 3 28 13 37 0 38 6 20 7 19 11 12 14 22 1 36 4 15 9 32 10 16

 8 28 1 29 14 40 12 23 4 34 5 33 6 27 10 17 0 20 7 28 11 21 2 21 13 20 9 33 3 27

 9 21 14 34 3 30 12 38 0 11 11 16 2 14 5 14 1 34 8 33 4 23 13 40 10 12 6 23 7 27

 9 13 14 40 7 36 4 17 0 13 5 33 8 25 13 24 10 23 3 36 2 29 1 18 11 13 6 33 12 13

 3 25 5 15 2 28 12 40 7 39 1 31 8 35 6 31 11 36 4 12 10 33 14 19 9 16 13 27 0 21

 12 22 10 14 0 12 2 20 5 12 1 18 11 17 8 39 14 31 3 31 7 32 9 20 13 29 4 13 6 26

 5 18 10 30 7 38 14 22 13 15 11 20 9 16 3 17 1 12 2 13 12 40 6 17 8 30 4 38 0 13

 9 31 8 39 12 27 1 14 5 33 3 31 11 22 13 36 0 16 7 11 14 14 4 29 6 28 2 22 10 17

 +++++++++++++++++++++++++++++

 instance abz8

 +++++++++++++++++++++++++++++

 Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 8)

 20 15

 0 19 9 33 2 32 13 18 10 39 8 34 6 25 4 36 11 40 12 33 1 31 14 30 3 34 5 26 7 13

 9 11 10 22 14 19 5 12 4 25 6 38 0 29 7 39 13 19 11 22 1 23 3 20 2 40 12 19 8 26

 3 25 8 17 11 24 13 40 10 32 14 16 5 39 9 19 0 24 1 39 4 17 2 35 7 38 6 20 12 31

 14 22 3 36 2 34 12 17 4 30 13 12 1 13 6 25 9 12 7 18 10 31 0 39 5 40 8 26 11 37

 12 32 14 15 1 35 7 13 8 32 11 23 6 22 4 21 0 38 2 38 3 40 10 31 5 11 13 37 9 16

 10 23 12 38 8 11 14 27 9 11 6 25 5 14 4 12 2 27 11 26 7 29 3 28 13 21 0 20 1 30

 6 39 8 38 0 15 12 27 10 22 9 27 2 32 4 40 3 12 13 20 14 21 11 22 5 17 7 38 1 27

 11 11 13 24 10 38 8 15 9 19 14 13 5 30 0 26 2 29 6 33 12 21 1 15 3 21 4 28 7 33

 8 20 6 17 5 26 3 34 9 23 0 16 2 18 4 35 12 24 10 16 11 26 7 12 14 13 13 27 1 19

 1 18 7 37 14 27 9 40 5 40 6 17 8 22 3 17 10 30 0 38 4 21 12 32 11 24 13 24 2 30

 11 19 0 22 13 36 6 18 5 22 3 17 14 35 10 34 7 23 8 19 2 29 1 22 12 17 4 33 9 39

 6 32 3 22 12 24 5 13 4 13 1 11 0 11 13 25 8 13 2 15 10 33 11 17 14 16 9 38 7 24

 14 16 13 16 1 37 8 25 2 26 3 11 9 34 4 14 0 20 6 36 12 12 5 29 10 25 7 32 11 12

 8 20 10 24 11 27 9 38 5 34 12 39 7 33 4 37 2 31 13 15 14 34 3 33 6 26 1 36 0 14

 8 31 0 17 9 13 1 21 10 17 7 19 13 14 3 40 5 32 11 25 2 34 14 23 6 13 12 40 4 26

 8 38 12 17 3 14 13 17 4 12 1 35 6 35 0 19 10 36 7 19 9 29 2 31 5 26 11 35 14 37

 14 20 3 16 0 33 10 14 5 27 7 31 8 16 6 31 12 28 9 37 4 37 2 29 11 38 1 30 13 36

 11 18 3 37 14 16 6 15 8 14 12 11 13 32 5 12 1 11 10 29 7 19 4 12 9 18 2 26 0 39

 11 11 2 11 12 22 9 35 14 20 7 31 4 19 3 39 5 28 6 33 10 34 1 38 0 20 13 17 8 28

 2 12 12 25 5 23 8 21 6 27 9 30 14 23 11 39 3 26 13 34 7 17 1 24 4 12 0 19 10 36

 +++++++++++++++++++++++++++++

 instance abz9

 +++++++++++++++++++++++++++++

 Adams, Balas, and Zawack 15 x 20 instance (Table 1, instance 9)

 20 15

 6 14 5 21 8 13 4 11 1 11 14 35 13 20 11 17 10 18 12 11 2 23 3 13 0 15 7 11 9 35

99

 1 35 5 31 0 13 3 26 6 14 9 17 7 38 12 20 10 19 13 12 8 16 4 34 11 15 14 12 2 14

 0 30 4 35 2 40 10 35 6 30 14 23 8 29 13 37 7 38 3 40 9 26 12 11 1 40 11 36 5 17

 7 40 5 18 4 12 8 23 0 23 9 14 13 16 12 14 10 23 3 12 6 16 14 32 1 40 11 25 2 29

 2 35 3 15 12 31 11 28 6 32 4 30 10 27 7 29 0 38 13 11 1 23 14 17 5 27 9 37 8 29

 5 33 3 33 6 19 12 40 10 19 0 33 13 26 2 31 11 28 7 36 4 38 1 21 14 25 9 40 8 35

 13 25 0 32 11 33 12 18 4 32 6 28 5 15 3 35 9 14 2 34 7 23 10 32 1 17 14 26 8 19

 2 16 12 33 9 34 11 30 13 40 8 12 14 26 5 26 6 15 3 21 1 40 4 32 0 14 7 30 10 35

 2 17 10 16 14 20 6 24 8 26 3 36 12 22 0 14 13 11 9 20 7 23 1 29 11 23 4 15 5 40

 4 27 9 37 3 40 11 14 13 25 7 30 0 34 2 11 5 15 12 32 1 36 10 12 14 28 8 31 6 23

 13 25 0 22 3 27 8 14 5 25 6 20 14 18 7 14 1 19 2 17 4 27 9 22 12 22 11 27 10 21

 14 34 10 15 0 22 3 29 13 34 6 40 7 17 2 32 12 20 5 39 4 31 11 16 1 37 8 33 9 13

 6 12 12 27 4 17 2 24 8 11 5 19 14 11 3 17 9 25 1 11 11 31 13 33 7 31 10 12 0 22

 5 22 14 15 0 16 8 32 7 20 4 22 9 11 13 19 1 30 12 33 6 29 11 18 3 34 10 32 2 18

 5 27 3 26 10 28 6 37 4 18 12 12 11 11 13 26 7 27 9 40 14 19 1 24 2 18 0 12 8 34

 8 15 5 28 9 25 6 32 1 13 7 38 11 11 2 34 4 25 0 20 10 32 3 23 12 14 14 16 13 20

 1 15 4 13 8 37 3 14 10 22 5 24 12 26 7 22 9 34 14 22 11 19 13 32 0 29 2 13 6 35

 7 36 5 33 13 28 9 20 10 30 4 33 14 29 0 34 3 22 11 12 6 30 8 12 1 35 2 13 12 35

 14 26 11 31 5 35 2 38 13 19 10 35 4 27 8 29 3 39 9 13 6 14 7 26 0 17 1 22 12 15

 1 36 7 34 11 33 8 17 14 38 6 39 5 16 3 27 13 29 2 16 0 16 4 19 9 40 12 35 10 39

 +++++++++++++++++++++++++++++

ORB Problems

instance orb01

 +++++++++++++++++++++++++++++

 trivial 10x10 instance from Bill Cook (BIC2)

 10 10

 0 72 1 64 2 55 3 31 4 53 5 95 6 11 7 52 8 6 9 84

 0 61 3 27 4 88 2 78 1 49 5 83 8 91 6 74 7 29 9 87

 0 86 3 32 1 35 2 37 5 18 4 48 6 91 7 52 9 60 8 30

 0 8 1 82 4 27 3 99 6 74 5 9 2 33 9 20 7 59 8 98

 1 50 0 94 5 43 3 62 4 55 7 48 2 5 8 36 9 47 6 36

 0 53 6 30 2 7 3 12 1 68 8 87 4 28 9 70 7 45 5 7

 2 29 3 96 0 99 1 14 4 34 7 14 5 7 6 76 8 57 9 76

 2 90 0 19 3 87 4 51 1 84 5 45 9 84 6 58 7 81 8 96

 2 97 1 99 4 93 0 38 7 13 5 96 3 40 9 64 6 32 8 45

 2 44 0 60 8 29 3 5 6 74 1 85 4 34 7 95 9 51 5 47

 +++++++++++++++++++++++++++++

 instance orb02

 +++++++++++++++++++++++++++++

 doomed 10x10 instance from Monika (MON2)

 10 10

 0 72 1 54 2 33 3 86 4 75 5 16 6 96 7 7 8 99 9 76

 0 16 3 88 4 48 8 52 9 60 6 29 7 18 5 89 2 80 1 76

 0 47 7 11 3 14 2 56 6 16 4 83 1 10 5 61 8 24 9 58

 0 49 1 31 3 17 8 50 5 63 2 35 4 65 7 23 6 50 9 29

 0 55 6 6 1 28 3 96 5 86 2 99 9 14 7 70 8 64 4 24

 4 46 0 23 6 70 8 19 2 54 3 22 9 85 7 87 5 79 1 93

 4 76 3 60 0 76 9 98 2 76 1 50 8 86 7 14 6 27 5 57

 4 93 6 27 9 57 3 87 8 86 2 54 7 24 5 49 0 20 1 47

 2 28 6 11 8 78 7 85 4 63 9 81 3 10 1 9 5 46 0 32

 2 22 9 76 5 89 8 13 6 88 3 10 7 75 4 98 1 78 0 17

 +++++++++++++++++++++++++++++

 instance orb03

 +++++++++++++++++++++++++++++

 deadlier 10x10 instance from Bruce Gamble (BRG1)

 10 10

 0 96 1 69 2 25 3 5 4 55 5 15 6 88 7 11 8 17 9 82

 0 11 1 48 2 67 3 38 4 18 7 24 6 62 5 92 9 96 8 81

 2 67 1 63 0 93 4 85 3 25 5 72 6 51 7 81 8 58 9 15

 2 30 1 35 0 27 4 82 3 44 7 92 6 25 5 49 9 28 8 77

 1 53 0 83 4 73 3 26 2 77 6 33 5 92 9 99 8 38 7 38

 1 20 0 44 4 81 3 88 2 66 6 70 5 91 9 37 8 55 7 96

 1 21 2 93 4 22 0 56 3 34 6 40 7 53 9 46 5 29 8 63

 1 32 2 63 4 36 0 26 3 17 5 85 7 15 8 55 9 16 6 82

 0 73 2 46 3 89 4 24 1 99 6 92 7 7 9 51 5 19 8 14

 0 52 2 20 3 70 4 98 1 23 5 15 7 81 8 71 9 24 6 81

 +++++++++++++++++++++++++++++

 instance orb04

 +++++++++++++++++++++++++++++

 deadly 10x10 instance from Bruce Shepherd (BRS1)

 10 10

100

 0 8 1 10 2 35 3 44 4 15 5 92 6 70 7 89 8 50 9 12

 0 63 8 39 3 80 5 22 2 88 1 39 9 85 6 27 7 74 4 69

 0 52 6 22 1 33 3 68 8 27 2 68 5 25 4 34 7 24 9 84

 0 31 1 85 4 55 8 80 5 58 7 11 6 69 9 56 3 73 2 25

 0 97 5 98 9 87 8 47 7 77 4 90 3 98 2 80 1 39 6 40

 1 97 5 68 0 44 9 67 2 44 8 85 3 78 6 90 7 33 4 81

 0 34 3 76 8 48 7 61 9 11 2 36 4 33 6 98 1 7 5 44

 0 44 9 5 4 85 1 51 5 58 7 79 2 95 6 48 3 86 8 73

 0 24 1 63 9 48 7 77 8 73 6 74 4 63 5 17 2 93 3 84

 0 51 2 5 4 40 9 60 1 46 5 58 8 54 3 72 6 29 7 94

 +++++++++++++++++++++++++++++

 instance orb05

 +++++++++++++++++++++++++++++

 10x10 instance from George Steiner (GES1)

 10 10

 9 11 8 93 0 48 7 76 6 13 5 71 3 59 2 90 4 10 1 65

 8 52 9 76 0 84 7 73 5 56 4 10 6 26 2 43 3 39 1 49

 9 28 8 44 7 26 6 66 4 68 5 74 3 27 2 14 1 6 0 21

 0 18 1 58 3 62 2 46 6 25 4 6 5 60 7 28 8 80 9 30

 0 78 1 47 7 29 5 16 4 29 6 57 3 78 2 87 8 39 9 73

 9 66 8 51 3 12 7 64 5 67 4 15 6 66 2 26 1 20 0 98

 8 23 9 76 6 45 7 75 5 24 3 18 4 83 2 15 1 88 0 17

 9 56 8 83 7 80 6 16 4 31 5 93 3 30 2 29 1 66 0 28

 9 79 8 69 2 82 4 16 5 62 3 41 6 91 7 35 0 34 1 75

 0 5 1 19 2 20 3 12 4 94 5 60 6 99 7 31 8 96 9 63

 +++++++++++++++++++++++++++++

 instance orb06

 +++++++++++++++++++++++++++++

 trivial 10X10 instance from Bill Cook (BIC1)

 10 10

 0 99 1 74 2 49 3 67 4 17 5 7 6 9 7 39 8 35 9 49

 0 49 3 67 4 82 2 92 1 62 5 84 8 45 6 30 7 42 9 71

 0 26 3 33 1 82 2 98 5 83 4 16 6 64 7 65 9 36 8 77

 0 41 1 62 4 73 3 94 6 51 5 46 2 55 9 31 7 64 8 46

 1 68 0 26 5 50 3 46 4 25 7 88 2 6 8 13 9 98 6 84

 0 24 6 80 2 91 3 55 1 48 8 99 4 72 9 91 7 84 5 12

 2 16 3 13 0 9 1 58 4 23 7 85 5 36 6 89 8 71 9 41

 2 54 0 41 3 38 4 53 1 11 5 74 9 88 6 46 7 41 8 65

 2 53 1 50 4 40 0 90 7 7 5 80 3 57 9 60 6 91 8 47

 2 45 0 59 8 81 3 99 6 71 1 19 4 75 7 77 9 94 5 95

 +++++++++++++++++++++++++++++

 instance orb07

 +++++++++++++++++++++++++++++

 doomed 10x10 instance from Monika (MON1)

 10 10

 0 32 1 14 2 15 3 37 4 18 5 43 6 19 7 27 8 28 9 31

 0 8 3 12 4 49 8 24 9 52 6 19 7 23 5 19 2 17 1 32

 0 25 7 19 3 27 2 45 6 21 4 15 1 13 5 16 8 43 9 19

 0 24 1 18 3 41 8 29 5 14 2 17 4 23 7 15 6 18 9 23

 0 27 6 29 1 39 3 21 5 15 2 15 9 25 7 26 8 44 4 20

 4 17 0 15 6 51 8 17 2 46 3 16 9 33 7 25 5 30 1 25

 4 15 3 31 0 25 9 12 2 13 1 51 8 19 7 21 6 12 5 26

 4 8 6 29 9 25 3 15 8 17 2 22 7 32 5 20 0 11 1 28

 2 41 6 10 8 32 7 5 4 21 9 59 3 26 1 10 5 16 0 29

 2 20 9 7 5 44 8 22 6 33 3 25 7 29 4 12 1 14 0 0

 +++++++++++++++++++++++++++++

 instance orb08

 +++++++++++++++++++++++++++++

 deadlier 10x10 instance from Bruce Gamble (BRG2)

 10 10

 0 55 1 74 2 45 3 23 4 76 5 19 6 18 7 61 8 44 9 11

 0 63 1 43 2 51 3 18 4 42 7 11 6 29 5 52 9 29 8 88

 2 88 1 31 0 47 4 10 3 62 5 60 6 58 7 29 8 52 9 92

 2 16 1 71 0 55 4 55 3 9 7 49 6 83 5 54 9 7 8 57

 1 7 0 41 4 92 3 94 2 46 6 79 5 34 9 38 8 8 7 18

 1 25 0 5 4 89 3 94 2 14 6 94 5 20 9 23 8 44 7 39

 1 24 2 21 4 47 0 40 3 94 6 71 7 89 9 75 5 97 8 15

 1 5 2 7 4 74 0 28 3 72 5 61 7 9 8 53 9 32 6 97

 0 34 2 52 3 37 4 6 1 94 6 6 7 56 9 41 5 5 8 16

 0 77 2 74 3 82 4 10 1 29 5 15 7 51 8 65 9 37 6 21

 +++++++++++++++++++++++++++++

101

 instance orb09

 +++++++++++++++++++++++++++++

 deadly 10x10 instance from Bruce Shepherd (BRS2)

 10 10

 0 36 1 96 2 86 3 7 4 20 5 9 6 39 7 79 8 82 9 24

 0 16 8 95 3 67 5 63 2 87 1 24 9 62 6 49 7 92 4 16

 0 65 6 71 1 9 3 67 8 70 2 48 5 49 4 66 7 5 9 96

 0 50 1 31 4 6 8 13 5 98 7 97 6 93 9 30 3 34 2 83

 0 99 5 7 9 55 8 78 7 68 4 81 3 90 2 75 1 66 6 40

 1 42 5 11 0 5 9 39 2 10 8 30 3 39 6 50 7 20 4 51

 0 38 3 68 8 86 7 77 9 32 2 89 4 37 6 53 1 43 5 89

 0 19 9 11 4 37 1 41 5 72 7 7 2 52 6 31 3 68 8 10

 0 83 1 21 9 23 7 87 8 58 6 89 4 74 5 29 2 74 3 23

 0 44 2 57 4 69 9 50 1 65 5 69 8 60 3 58 6 89 7 13

 +++++++++++++++++++++++++++++

 instance orb10

 +++++++++++++++++++++++++++++

 10x10 instance from George Steiner (GES2)

 10 10

 9 66 8 13 0 93 7 91 6 14 5 70 3 99 2 53 4 86 1 16

 8 34 9 99 0 62 7 65 5 62 4 64 6 21 2 12 3 9 1 75

 9 12 8 26 7 64 6 92 4 67 5 28 3 66 2 83 1 38 0 58

 0 77 1 73 3 82 2 75 6 84 4 19 5 18 7 89 8 8 9 73

 0 34 1 74 7 48 5 44 4 92 6 40 3 60 2 62 8 22 9 67

 9 8 8 85 3 58 7 97 5 92 4 89 6 75 2 77 1 95 0 5

 8 52 9 43 6 5 7 78 5 12 3 62 4 21 2 80 1 60 0 31

 9 81 8 23 7 23 6 75 4 78 5 56 3 51 2 39 1 53 0 96

 9 79 8 55 2 88 4 21 5 83 3 93 6 47 7 10 0 63 1 14

 0 43 1 63 2 83 3 29 4 52 5 98 6 54 7 39 8 33 9 23

 +++++++++++++++++++++++++++++

102

APPENDIX B

Main Structure of Hybrid GA Programming in MATLAB

%JOB SHOP INPUT

%Machine sequence based on the job and operation

M= [0,1,2,3,4,5,6,7,8,9;...

 0,2,4,9,3,1,6,5,7,8;...

 1,0,3,2,8,5,7,6,9,4;...

 1,2,0,4,6,8,7,3,9,5;...

 2,0,1,5,3,4,8,7,9,6;...

 2,1,5,3,8,9,0,6,4,7;...

 1,0,3,2,6,5,9,8,7,4;...

 2,0,1,5,4,6,8,9,7,3;...

 0,1,3,5,2,9,6,7,4,8;...

 1,0,2,6,8,9,5,3,4,7];

p= [29,78, 9,36,49,11,62,56,44,21;...

 43,90,75,11,69,28,46,46,72,30;...

 91,85,39,74,90,10,12,89,45,33;...

 81,95,71,99, 9,52,85,98,22,43;...

 14, 6,22,61,26,69,21,49,72,53;...

 84, 2,52,95,48,72,47,65, 6,25;...

 46,37,61,13,32,21,32,89,30,55;...

 31,86,46,74,32,88,19,48,36,79;...

 76,69,76,51,85,11,40,89,26,74;...

 85,13,61, 7,64,76,47,52,90,45];

[Mrow,Mcolumn]=size(M);

for i=1:Mrow

 S=M(i,:);

 for j=1:Mcolumn

 S(j)=S(j)+1;

 end

 M(i,:)=S;

end

%INITIALIZATION

NIND = 100; %numbers of individuals per populations (population size)

MAXGEN=150; %maximum number of generations (1 generation = population size* cross over rate)

OXrate= 0.7; %crossover possibilities (rate)

MUTrate=1.0; %mutation possibilities (rate)

noprt=3; %number of parents

gen=0; %initial counter for iteration

tic

%create chromosomes

BaseV= crtbase ([10 10 10 10 10 10 10 10 10 10],[1 2 3 4 5 6 7 8 9 10]);

Chrom = zeros(NIND, length(BaseV));

for C=1:NIND

 randjob=randperm(length(BaseV));

 Chrom(C,:)=randjob;

 for C1=1:length(BaseV)

 ChromJ=Chrom(C,C1);

 Chrom(C,C1)=BaseV(ChromJ);

 end

end

%EVALUATION

for D=1:NIND

 Chro=Chrom(D,:);

 [MStart,MFinish,MJob,MSeq]=scheduling13(M,p,Chro);

 [Mm,Mn]=size(MFinish);

 Makespan(D,1)=max(reshape(MFinish,1,Mm*Mn));

end

ObjV=Makespan;

%find minimum makespan at initial population

MinVal=min(ObjV);

%calculate solutions generated after recombination

Num=NIND/noprt;

Num1=fix(Num);

ObjVSel=zeros(Num1,1);

% Generational loop

 while gen < MAXGEN

 % Assign fitness-value to entire population

 FitnV = ranking(ObjV);

 % Select individuals for breeding

 SelCh = select('sus', Chrom, FitnV);

 % Recombine selected individuals (crossover)

103

 SelCh01=crsovr_multi01_3(SelCh,NIND,OXrate,noprt);

 % Perform mutation on offspring

 SelCh01=mtt(SelCh01,Num1,MUTrate);

 for E=1:Num1

 Chro=SelCh01(E,:);

 % Perform iterative forward-backward pass

 [Chro,MakespanA]=CP_FB(M,p,Chro);

 % Perform neighborhood seach

 [Chro,MakespanA]=CP_SIN(M,p,Chro);

 % Evaluation on the offspring for reinsertion

 SelCh01(E,:)=Chro;

 Makespan01(E,1)=MakespanA;

 end

 ObjVSel=Makespan01;

 %default reinsertion in the GA toolbox

 [Chrom ObjV]=reins(Chrom,SelCh01,1,[1 0.3],ObjV,ObjVSel);

 %get the minimum makespan new population and compare

 MinRsrt=min(ObjV);

 if MinVal>MinRsrt

 MinVal=MinRsrt;

 end

 % Increment generational counter

 gen = gen+1;

 end

%get the best solution

BestMinVal=MinVal

 toc

% End of GA

Initialize chromosome

% CRTBASE.m - Create base vector

%

% This function creates a vector containing the base of the loci

% in a chromosome.

%

% Syntax: BaseVec = crtbase(Lind, Base)

%

% Input Parameters:

%

% Lind - A scalar or vector containing the lengths

% of the alleles. Sum(Lind) is the length of

% the corresponding chromosome.

%

% Base - A scalar or vector containing the base of

% the loci contained in the Alleles.

%

% Output Parameters:

%

% BaseVec - A vector whose elements correspond to the base

% of the loci of the associated chromosome structure.

%

function BaseVec = crtbase(Lind, Base)

[ml LenL] = size(Lind) ;

if nargin < 2

 Base = 2 * ones(LenL,1) ; % default to base 2

end

[mb LenB] = size(Base) ;

% check parameter consistency

if ml > 1 | mb > 1

 error('Lind or Base is not a vector') ;

elseif (LenL > 1 & LenB > 1 & LenL ~= LenB) | (LenL == 1 & LenB > 1)

 error('Vector dimensions must agree') ;

elseif LenB == 1 & LenL > 1

 Base = Base * ones(LenL,1) ;

end

BaseVec = [] ;

for i = 1:LenL

 BaseVec = [BaseVec, Base(i)*ones(Lind(i),1)'];

end

104

Evaluation (Generate Active Schedule by Forward Pass)

function [MFinishA,MStartA,MJobM,ChroMMM]=CP_Fwd(M,p,Chro)

[i,j]=size(M);

%get the matrix for the machine

MStartA=zeros(j,i);

MFinishA=zeros(j,i);

MJobM=zeros(j,i);

%get the matrix for the job for record purpose

FpcopyM=zeros(i,j);

SpcopyM=zeros(i,j);

MMJob=zeros(i,j);

maxChro=length(Chro);

%chromosome for the machines

MChro=Chro;

for k=1:maxChro

 gene=MChro(1);

 ind=find(MChro==gene);

 getpos=length(ind);

 remain=j-getpos;

 %change the matrix to chromosome for the time and machine

 NChroM(1,k)=M(gene,1+remain);

 MChro(1)=[];

end

Chro2=Chro;

 %find the ealiest completion time for each operation

 for movB=1:maxChro

 %find the machine position

 geneB=NChroM(1);

 indB=find(NChroM==geneB);

 getposB=length(indB);

 remainB=i-getposB;

 %the chro(job) number

 geneC=Chro2(1);

 indC=find(Chro2==geneC);

 getposC=length(indC);

 remainC=j-getposC;

 %if the job operation is 1

 if remainC==0

 %check the possiblilities for the for 1st job at machine

 if MStartA(geneB,1)>=p(geneC,1+remainC)

 %insertion for the job

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=p(geneC,1+remainC) ;

 FMMFinishA(end)=[];

 SMMStartA(end)=[];

 MMMJobM(end)=[];

 FMMFinishA=[insertA FMMFinishA(1:end)];

 SMMStartA=[0 SMMStartA(1:end)];

 MMMJobM=[Chro2(1) MMMJobM(1:end)];

 %get the machine time

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 %get the job time

 FpcopyM(geneC,1+remainC)=insertA;

 SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC));

 MMJob(geneC,1+remainC)=geneB;

 else

 %check the possibilities of insertion for the 2nd job or above for machine

 movC=1;

 while (MStartA(geneB,movC+1)-MFinishA(geneB,movC))<p(geneC,1+remainC) && movC<(i-1)

 movC=movC+1;

 end

 if (MStartA(geneB,movC+1)-MFinishA(geneB,movC))>=p(geneC,1+remainC)

 FMMFinishA=MFinishA(geneB,:);

105

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=MFinishA(geneB,movC)+p(geneC,1+remainC) ;

 FMMFinishA(end)=[];

 SMMStartA(end)=[];

 MMMJobM(end)=[];

 FMMFinishA=[FMMFinishA(1:movC) insertA FMMFinishA((movC+1):end)];

 SMMStartA=[SMMStartA(1:movC) (insertA-p(geneC,1+remainC))

SMMStartA((movC+1):end)];

 MMMJobM=[MMMJobM(1:movC) Chro2(1) MMMJobM((movC+1):end)];

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 FpcopyM(geneC,1+remainC)=insertA;

 SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC));

 MMJob(geneC,1+remainC)=geneB;

 else

 MFinishA(geneB,1+remainB)=max(MFinishA(geneB,:))+p(geneC,1+remainC);

 MStartA(geneB,1+remainB)=MFinishA(geneB,1+remainB)-p(geneC,1+remainC);

 FpcopyM(geneC,1+remainC)=MFinishA(geneB,1+remainB);

 SpcopyM(geneC,1+remainC)=MStartA(geneB,1+remainB);

 MMJob(geneC,1+remainC)=geneB;

 MJobM(geneB,1+remainB)=Chro2(1);

 end

 end

 %if the job operation is 2 or above for insertion

 else

 movC=1;

 while ((MStartA(geneB,movC+1)-FpcopyM(geneC,remainC))<p(geneC,1+remainC)

||(MStartA(geneB,movC+1)-MFinishA(geneB,movC))<p(geneC,1+remainC)) && movC<(i-1)

 movC=movC+1;

 end

 if (MStartA(geneB,movC+1)-FpcopyM(geneC,remainC))>=p(geneC,1+remainC)

&&(MStartA(geneB,movC+1)-MFinishA(geneB,movC))>=p(geneC,1+remainC)

 if FpcopyM(geneC,remainC)<MFinishA(geneB,movC)

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=MFinishA(geneB,movC)+p(geneC,1+remainC) ;

 FMMFinishA(end)=[];

 SMMStartA(end)=[];

 MMMJobM(end)=[];

 FMMFinishA=[FMMFinishA(1:movC) insertA FMMFinishA((movC+1):end)];

 SMMStartA=[SMMStartA(1:movC) (insertA-p(geneC,1+remainC))

SMMStartA((movC+1):end)];

 MMMJobM=[MMMJobM(1:movC) Chro2(1) MMMJobM((movC+1):end)];

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 FpcopyM(geneC,1+remainC)=insertA;

 SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC));

 MMJob(geneC,1+remainC)=geneB;

 else

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=FpcopyM(geneC,remainC)+p(geneC,1+remainC) ;

 FMMFinishA(end)=[];

 SMMStartA(end)=[];

 MMMJobM(end)=[];

 FMMFinishA=[FMMFinishA(1:movC) insertA FMMFinishA((movC+1):end)];

 SMMStartA=[SMMStartA(1:movC) (insertA-p(geneC,1+remainC))

SMMStartA((movC+1):end)];

 MMMJobM=[MMMJobM(1:movC) Chro2(1) MMMJobM((movC+1):end)];

106

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 FpcopyM(geneC,1+remainC)=insertA;

 SpcopyM(geneC,1+remainC)=(insertA-p(geneC,1+remainC));

 MMJob(geneC,1+remainC)=geneB;

 end

 else

 if max(MFinishA(geneB,:))>=FpcopyM(geneC,remainC)

 MFinishA(geneB,1+remainB)=max(MFinishA(geneB,:))+p(geneC,1+remainC);

 MStartA(geneB,1+remainB)= MFinishA(geneB,1+remainB)-p(geneC,1+remainC);

 FpcopyM(geneC,1+remainC)=MFinishA(geneB,1+remainB);

 SpcopyM(geneC,1+remainC)=MStartA(geneB,1+remainB);

 MMJob(geneC,1+remainC)=geneB;

 MJobM(geneB,1+remainB)=Chro2(1);

 else

 MFinishA(geneB,1+remainB)=FpcopyM(geneC,remainC)+p(geneC,1+remainC);

 MStartA(geneB,1+remainB)= MFinishA(geneB,1+remainB)-p(geneC,1+remainC);

 FpcopyM(geneC,1+remainC)=MFinishA(geneB,1+remainB);

 SpcopyM(geneC,1+remainC)=MStartA(geneB,1+remainB);

 MMJob(geneC,1+remainC)=geneB;

 MJobM(geneB,1+remainB)=Chro2(1);

 end

 end

 end

 NChroM(1)=[];

 Chro2(1)=[];

 end

% New chromosome generated

[ChroMMM]=timearr_01(MStartA,MJobM);

Generate New Chromosome from the Active Schedule

function [ChroMMM]=timearr_01(MStartA,MJobM)

[Srow,Scolumn]=size(MStartA);

Chro_SM=reshape(MStartA,1,Srow*Scolumn);

Chro_JM=reshape(MJobM,1,Srow*Scolumn);

ArrTS=sort(Chro_SM);

pjgSM=length(Chro_SM);

ChroMMM=zeros(1,pjgSM);

%Generate new chromosome

for loopA=1:pjgSM

 posArrTS=find(Chro_SM==ArrTS(1));

 ChroMMM(loopA)=Chro_JM(posArrTS(1));

 Chro_SM(posArrTS(1))=[];

 Chro_JM(posArrTS(1))=[];

 ArrTS(1)=[];

end

Ranking for Chromosome (Check Fitness)

% RANKING.M (RANK-based fitness assignment)

%

% This function performs ranking of individuals.

%

% Syntax: FitnV = ranking(ObjV, RFun, SUBPOP)

%

% This function ranks individuals represented by their associated

% cost, to be *minimized*, and returns a column vector FitnV

% containing the corresponding individual fitnesses. For multiple

% subpopulations the ranking is performed separately for each

% subpopulation.

%

% Input parameters:

107

% ObjV - Column vector containing the objective values of the

% individuals in the current population (cost values).

% RFun - (optional) If RFun is a scalar in [1, 2] linear ranking is

% assumed and the scalar indicates the selective pressure.

% If RFun is a 2 element vector:

% RFun(1): SP - scalar indicating the selective pressure

% RFun(2): RM - ranking method

% RM = 0: linear ranking

% RM = 1: non-linear ranking

% If RFun is a vector with length(Rfun) > 2 it contains

% the fitness to be assigned to each rank. It should have

% the same length as ObjV. Usually RFun is monotonously

% increasing.

% If RFun is omitted or NaN, linear ranking

% and a selective pressure of 2 are assumed.

% SUBPOP - (optional) Number of subpopulations

% if omitted or NaN, 1 subpopulation is assumed

%

% Output parameters:

% FitnV - Column vector containing the fitness values of the

% individuals in the current population.

%

%

function FitnV = ranking(ObjV, RFun, SUBPOP);

% Identify the vector size (Nind)

 [Nind,ans] = size(ObjV);

 if nargin < 2, RFun = []; end

 if nargin > 1, if isnan(RFun), RFun = []; end, end

 if prod(size(RFun)) == 2,

 if RFun(2) == 1, NonLin = 1;

 elseif RFun(2) == 0, NonLin = 0;

 else error('Parameter for ranking method must be 0 or 1'); end

 RFun = RFun(1);

 if isnan(RFun), RFun = 2; end

 elseif prod(size(RFun)) > 2,

 if prod(size(RFun)) ~= Nind, error('ObjV and RFun disagree'); end

 elseif prod(size(RFun)) < 2, NonLin = 0;

 end

 if nargin < 3, SUBPOP = 1; end

 if nargin > 2,

 if isempty(SUBPOP), SUBPOP = 1;

 elseif isnan(SUBPOP), SUBPOP = 1;

 elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end

 end

 if (Nind/SUBPOP) ~= fix(Nind/SUBPOP), error('ObjV and SUBPOP disagree'); end

 Nind = Nind/SUBPOP; % Compute number of individuals per subpopulation

% Check ranking function and use default values if necessary

 if isempty(RFun),

 % linear ranking with selective pressure 2

 RFun = 2*[0:Nind-1]'/(Nind-1);

 elseif prod(size(RFun)) == 1

 if NonLin == 1,

 % non-linear ranking

 if RFun(1) < 1, error('Selective pressure must be greater than 1');

 elseif RFun(1) > Nind-2, error('Selective pressure too big'); end

 Root1 = roots([RFun(1)-Nind [RFun(1)*ones(1,Nind-1)]]);

 RFun = (abs(Root1(1)) * ones(Nind,1)) .^ [(0:Nind-1)'];

 RFun = RFun / sum(RFun) * Nind;

 else

 % linear ranking with SP between 1 and 2

 if (RFun(1) < 1 | RFun(1) > 2),

 error('Selective pressure for linear ranking must be between 1 and 2');

 end

 RFun = 2-RFun + 2*(RFun-1)*[0:Nind-1]'/(Nind-1);

 end

 end;

 FitnV = [];

% loop over all subpopulations

for irun = 1:SUBPOP,

 % Copy objective values of actual subpopulation

 ObjVSub = ObjV((irun-1)*Nind+1:irun*Nind);

 % Sort does not handle NaN values as required. So, find those...

 NaNix = isnan(ObjVSub);

 Validix = find(~NaNix);

 % ... and sort only numeric values (smaller is better).

 [ans,ix] = sort(-ObjVSub(Validix));

 % Now build indexing vector assuming NaN are worse than numbers,

 % (including Inf!)...

 ix = [find(NaNix) ; Validix(ix)];

 % ... and obtain a sorted version of ObjV

 Sorted = ObjVSub(ix);

 % Assign fitness according to RFun.

108

 i = 1;

 FitnVSub = zeros(Nind,1);

 for j = [find(Sorted(1:Nind-1) ~= Sorted(2:Nind)); Nind]',

 FitnVSub(i:j) = sum(RFun(i:j)) * ones(j-i+1,1) / (j-i+1);

 i =j+1;

 end

 % Finally, return unsorted vector.

 [ans,uix] = sort(ix);

 FitnVSub = FitnVSub(uix);

 % Add FitnVSub to FitnV

 FitnV = [FitnV; FitnVSub];

end

% End of function

Selection

% SELECT.M (universal SELECTion)

%

% This function performs universal selection. The function handles

% multiple populations and calls the low level selection function

% for the actual selection process.

%

% Syntax: SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP)

%

% Input parameters:

% SEL_F - Name of the selection function

% Chrom - Matrix containing the individuals (parents) of the current

% population. Each row corresponds to one individual.

% FitnV - Column vector containing the fitness values of the

% individuals in the population.

% GGAP - (optional) Rate of individuals to be selected

% if omitted 1.0 is assumed

% SUBPOP - (optional) Number of subpopulations

% if omitted 1 subpopulation is assumed

%

% Output parameters:

% SelCh - Matrix containing the selected individuals.

function SelCh = select(SEL_F, Chrom, FitnV, GGAP, SUBPOP);

% Check parameter consistency

 if nargin < 3, error('Not enough input parameter'); end

 % Identify the population size (Nind)

 [NindCh,Nvar] = size(Chrom);

 [NindF,VarF] = size(FitnV);

 if NindCh ~= NindF, error('Chrom and FitnV disagree'); end

 if VarF ~= 1, error('FitnV must be a column vector'); end

 if nargin < 5, SUBPOP = 1; end

 if nargin > 4,

 if isempty(SUBPOP), SUBPOP = 1;

 elseif isnan(SUBPOP), SUBPOP = 1;

 elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end

 end

 if (NindCh/SUBPOP) ~= fix(NindCh/SUBPOP), error('Chrom and SUBPOP disagree'); end

 Nind = NindCh/SUBPOP; % Compute number of individuals per subpopulation

 if nargin < 4, GGAP = 1; end

 if nargin > 3,

 if isempty(GGAP), GGAP = 1;

 elseif isnan(GGAP), GGAP = 1;

 elseif length(GGAP) ~= 1, error('GGAP must be a scalar');

 elseif (GGAP < 0), error('GGAP must be a scalar bigger than 0'); end

 end

% Compute number of new individuals (to select)

 NSel=max(floor(Nind*GGAP+.5),2);

% Select individuals from population

 SelCh = [];

 for irun = 1:SUBPOP,

 FitnVSub = FitnV((irun-1)*Nind+1:irun*Nind);

 ChrIx=feval(SEL_F, FitnVSub, NSel)+(irun-1)*Nind;

 SelCh=[SelCh; Chrom(ChrIx,:)];

 end

% End of function

109

Stochastic Universal Sampling, SUS

% SUS.M (Stochastic Universal Sampling)

%

% This function performs selection with STOCHASTIC UNIVERSAL SAMPLING.

%

% Syntax: NewChrIx = sus(FitnV, Nsel)

%

% Input parameters:

% FitnV - Column vector containing the fitness values of the

% individuals in the population.

% Nsel - number of individuals to be selected

%

% Output parameters:

% NewChrIx - column vector containing the indexes of the selected

% individuals relative to the original population, shuffled.

% The new population, ready for mating, can be obtained

% by calculating OldChrom(NewChrIx,:).

function NewChrIx = sus(FitnV,Nsel);

% Identify the population size (Nind)

 [Nind,ans] = size(FitnV);

% Perform stochastic universal sampling

 cumfit = cumsum(FitnV);

 trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)');

 Mf = cumfit(:, ones(1, Nsel));

 Mt = trials(:, ones(1, Nind))';

 [NewChrIx, ans] = find(Mt < Mf & [zeros(1, Nsel); Mf(1:Nind-1, :)] <= Mt);

% Shuffle new population

 [ans, shuf] = sort(rand(Nsel, 1));

 NewChrIx = NewChrIx(shuf);

% End of function

Mutation

function ChromNew=mtt(SelCh,NIND,MUTrate)

 ChromNew=SelCh;

 opr=length(SelCh(1,:));

 opr=randperm(opr);

for i=1:NIND

a=rand;

 if MUTrate>a;

j=2;

 S=SelCh(i,:);

 while S((opr(1)))==S(opr(j))

 j=j+1;

 end

 temp=S((opr(1)));

 S(opr(1))=S(opr(j));

 S(opr(j))=temp;

 ChromNew(i,:)=S;

 end

end

Reinsertion

% REINS.M (RE-INSertion of offspring in population replacing parents)

%

% This function reinserts offspring in the population.

%

% Syntax: [Chrom, ObjVCh] = reins(Chrom, SelCh, SUBPOP, InsOpt, ObjVCh, ObjVSel)

%

% Input parameters:

% Chrom - Matrix containing the individuals (parents) of the current

% population. Each row corresponds to one individual.

% SelCh - Matrix containing the offspring of the current

% population. Each row corresponds to one individual.

% SUBPOP - (optional) Number of subpopulations

% if omitted or NaN, 1 subpopulation is assumed

% InsOpt - (optional) Vector containing the insertion method parameters

% ExOpt(1): Select - number indicating kind of insertion

110

% 0 - uniform insertion

% 1 - fitness-based insertion

% if omitted or NaN, 0 is assumed

% ExOpt(2): INSR - Rate of offspring to be inserted per

% subpopulation (% of subpopulation)

% if omitted or NaN, 1.0 (100%) is assumed

% ObjVCh - (optional) Column vector containing the objective values

% of the individuals (parents - Chrom) in the current

% population, needed for fitness-based insertion

% saves recalculation of objective values for population

% ObjVSel - (optional) Column vector containing the objective values

% of the offspring (SelCh) in the current population, needed for

% partial insertion of offspring,

% saves recalculation of objective values for population

%

% Output parameters:

% Chrom - Matrix containing the individuals of the current

% population after reinsertion.

% ObjVCh - if ObjVCh and ObjVSel are input parameters, then column

% vector containing the objective values of the individuals

% of the current generation after reinsertion.

%

function [Chrom, ObjVCh] = reins(Chrom, SelCh, SUBPOP, InsOpt, ObjVCh, ObjVSel);

% Check parameter consistency

 if nargin < 2, error('Not enough input parameter'); end

 if (nargout == 2 & nargin < 6), error('Input parameter missing: ObjVCh and/or ObjVSel'); end

 [NindP, NvarP] = size(Chrom);

 [NindO, NvarO] = size(SelCh);

 if nargin == 2, SUBPOP = 1; end

 if nargin > 2,

 if isempty(SUBPOP), SUBPOP = 1;

 elseif isnan(SUBPOP), SUBPOP = 1;

 elseif length(SUBPOP) ~= 1, error('SUBPOP must be a scalar'); end

 end

 if (NindP/SUBPOP) ~= fix(NindP/SUBPOP), error('Chrom and SUBPOP disagree'); end

 if (NindO/SUBPOP) ~= fix(NindO/SUBPOP), error('SelCh and SUBPOP disagree'); end

 NIND = NindP/SUBPOP; % Compute number of individuals per subpopulation

 NSEL = NindO/SUBPOP; % Compute number of offspring per subpopulation

 IsObjVCh = 0; IsObjVSel = 0;

 if nargin > 4,

 [mO, nO] = size(ObjVCh);

 if nO ~= 1, error('ObjVCh must be a column vector'); end

 if NindP ~= mO, error('Chrom and ObjVCh disagree'); end

 IsObjVCh = 1;

 end

 if nargin > 5,

 [mO, nO] = size(ObjVSel);

 if nO ~= 1, error('ObjVSel must be a column vector'); end

 if NindO ~= mO, error('SelCh and ObjVSel disagree'); end

 IsObjVSel = 1;

 end

 if nargin < 4, INSR = 1.0; Select = 0; end

 if nargin >= 4,

 if isempty(InsOpt), INSR = 1.0; Select = 0;

 elseif isnan(InsOpt), INSR = 1.0; Select = 0;

 else

 INSR = NaN; Select = NaN;

 if (length(InsOpt) > 2), error('Parameter InsOpt too long'); end

 if (length(InsOpt) >= 1), Select = InsOpt(1); end

 if (length(InsOpt) >= 2), INSR = InsOpt(2); end

 if isnan(Select), Select = 0; end

 if isnan(INSR), INSR =1.0; end

 end

 end

 if (INSR < 0 | INSR > 1), error('Parameter for insertion rate must be a scalar in [0, 1]'); end

 if (INSR < 1 & IsObjVSel ~= 1), error('For selection of offspring ObjVSel is needed'); end

 if (Select ~= 0 & Select ~= 1), error('Parameter for selection method must be 0 or 1'); end

 if (Select == 1 & IsObjVCh == 0), error('ObjVCh for fitness-based exchange needed'); end

 if INSR == 0, return; end

 NIns = min(max(floor(INSR*NSEL+.5),1),NIND); % Number of offspring to insert

% perform insertion for each subpopulation

 for irun = 1:SUBPOP,

 % Calculate positions in old subpopulation, where offspring are inserted

 if Select == 1, % fitness-based reinsertion

 [Dummy, ChIx] = sort(-ObjVCh((irun-1)*NIND+1:irun*NIND));

 else % uniform reinsertion

 [Dummy, ChIx] = sort(rand(NIND,1));

 end

 PopIx = ChIx((1:NIns)')+ (irun-1)*NIND;

 % Calculate position of Nins-% best offspring

111

 if (NIns < NSEL), % select best offspring

 [Dummy,OffIx] = sort(ObjVSel((irun-1)*NSEL+1:irun*NSEL));

 else

 OffIx = (1:NIns)';

 end

 SelIx = OffIx((1:NIns)')+(irun-1)*NSEL;

 % Insert offspring in subpopulation -> new subpopulation

 Chrom(PopIx,:) = SelCh(SelIx,:);

 if (IsObjVCh == 1 & IsObjVSel == 1), ObjVCh(PopIx) = ObjVSel(SelIx); end

 end

% End of function

112

APPENDIX C

Multi-Parents Crossover

function SelCh01 = crsovr_multi01_3(SelCh,NIND,OXrate,noprt)

lgChro=length(SelCh(1,:));

%number of parents

Num=fix(NIND/noprt);

%create space to store

Vc00=zeros(1,lgChro);

SelCh01=zeros(Num,lgChro);

SelNum=randperm(NIND); %randomly select chromosome

S11=zeros(1,lgChro);

g=1;

%Crossover operation

for i=1:noprt:(Num*noprt)

 a=rand;

 if OXrate>a;

 for Vec=1:lgChro

 rand_num=randperm(noprt);

 Vc00(1,Vec)=rand_num(1);

 end

 %already fine Vc00 and Vc01

 S1=SelCh(SelNum(i),:);

 S2=SelCh(SelNum(i+1),:);

 S3=SelCh(SelNum(i+2),:);

 for k=1:lgChro

 x=Vc00(k);

 switch x

 case 1

 S11(k)=S1(1);

 pos02=find(S2==S1(1));

 pos03=find(S3==S1(1));

 S1(1)=[];

 S2(pos02(1))=[];

 S3(pos03(1))=[];

 case 2

 S11(k)=S2(1);

 pos01=find(S1==S2(1));

 pos03=find(S3==S2(1));

 S2(1)=[];

 S1(pos01(1))=[];

 S3(pos03(1))=[];

 case 3

 S11(k)=S3(1);

 pos01=find(S1==S3(1));

 pos02=find(S2==S3(1));

 S3(1)=[];

 S1(pos01(1))=[];

 S2(pos02(1))=[];

 end

 end

 else

 S11=SelCh(SelNum(i),:);

 end

 SelCh01(g,:)=S11;

 g=g+1;

end

113

APPENDIX D

Neighborhood Search

function [Chro,Makespan]=CP_SIN(M,p,Chro)

do=1;

while do==1

%Earliest start time

[EF,ES,EJ,Chro]=CP_Fwd(M,p,Chro);

Makespan=max(EF(:,end));

%Latest start,finish time, job

[LF,LS,LJ]=CP_Bwd_NoShift(M,p,Chro,Makespan);

MStartA=ES;

MFinishA=EF;

MJobA=EJ;

%identified the critical operations

[Mrow,Mcolumn]=size(LS);

for i=1:Mrow

 for j=1:Mcolumn

 sLS=find(EJ(i,:)==LJ(i,j));

 if LS(i,j)~=ES(i,sLS)

 LS(i,j)=-1;

 LF(i,j)=-1;

 LJ(i,j)=-1;

 ES(i,sLS)=-1;

 EF(i,sLS)=-1;

 EJ(i,sLS)=-1;

 end

 end

end

[ChES,ChEF,ChEJ,ChEM]=timearr_01_critical_path(ES,EF,EJ);

sTES=ChES(1);

pChES=ChES(1);

pChEF=ChEF(1);

pChEJ=ChEJ(1);

pChEM=ChEM(1);

sg=0;

CChES=ChES;

CChEF=ChEF;

CChEJ=ChEJ;

CChEM=ChEM;

ms=1;

% identified critical path

while sg<length(ChES) && sTES==0

 ms=0;

 while max(pChEF(:,end))<Makespan && ms<length(ChES)+2% the path

 [xp,yp]=size(pChES);

 pc=0;

 for loDP=1:xp

 if loDP==1

 pChES(:,end+1)=0;

 pChEF(:,end+1)=0;

 pChEJ(:,end+1)=0;

 pChEM(:,end+1)=0;

 end

 loDP=loDP-pc;

 mst=0;

 InP=find(CChES==pChEF(loDP,end-1));

 if length(InP)>1

 for Ei=1:length(InP)

 mst(Ei)=CChEM(InP(Ei));

 end

 mmst=mode(mst);

 indmst=find(mst==mmst);

 if length(indmst)>1

 pChES(loDP,end)=CChES(InP(indmst(1)));

 pChEF(loDP,end)=CChEF(InP(indmst(1)));

 pChEJ(loDP,end)=CChEJ(InP(indmst(1)));

 pChEM(loDP,end)=CChEM(InP(indmst(1)));

 InP=InP(indmst(2));

 pChES(:,end+1)=0;

 pChEF(:,end+1)=0;

 pChEJ(:,end+1)=0;

 pChEM(:,end+1)=0;

114

 end

 end

 if pChEF(loDP,end-1)==0

 pChES(loDP,:)=[];

 pChEF(loDP,:)=[];

 pChEJ(loDP,:)=[];

 pChEM(loDP,:)=[];

 pc=pc+1;

 else

 if length(InP)==1

 pChES(loDP,end)=CChES(InP);

 pChEF(loDP,end)=CChEF(InP);

 pChEJ(loDP,end)=CChEJ(InP);

 pChEM(loDP,end)=CChEM(InP);

 else

 if isempty(InP)==1;

 pc=pc+1;

 end

 for loEP=1:length(InP)

 pChES(loDP,end)=CChES(InP(1));

 qChES(loEP,:)=pChES(loDP,:);

 pChEF(loDP,end)=CChEF(InP(1));

 qChEF(loEP,:)=pChEF(loDP,:);

 pChEJ(loDP,end)=CChEJ(InP(1));

 qChEJ(loEP,:)=pChEJ(loDP,:);

 pChEM(loDP,end)=CChEM(InP(1));

 qChEM(loEP,:)=pChEM(loDP,:);

 end

 pChES(loDP,:)=[];

 pChES=[pChES;qChES];

 qChES=[];

 pChEF(loDP,:)=[];

 pChEF=[pChEF;qChEF];

 qChEF=[];

 pChEJ(loDP,:)=[];

 pChEJ=[pChEJ;qChEJ];

 qChEJ=[];

 pChEM(loDP,:)=[];

 pChEM=[pChEM;qChEM];

 qChEM=[];

 end

 end

 end

 ms=ms+1;

 end

sg=sg+1;

sTES=CChES(1);

end

spChEF=find(pChEF(:,end)==Makespan);

if length(spChEF)~=1

 pChES=pChES(spChEF(1),:);

 pChEF=pChEF(spChEF(1),:);

 pChEJ=pChEJ(spChEF(1),:);

 pChEM=pChEM(spChEF(1),:);

end

%find critical blocks and possible swaps

BlkMac=pChEM(1);

NoBlk=1;

BlkPos=1; %block position based on machinein pchro

cr=1;

for loCrB=2:length(pChEM)

 if pChEM(loCrB)==pChEM(loCrB-1)

 NoBlk(cr,1)=NoBlk(cr,1)+1;

 BlkPos(cr,2)=loCrB;

 else

 cr=cr+1;

 BlkMac(cr,1)=pChEM(loCrB);

115

 NoBlk(cr,1)=1;

 BlkPos(cr,:)=loCrB;

 end

end

lia=0;

for loCrS=1:cr

 TtlBlk=BlkPos(loCrS,2)-BlkPos(loCrS,1)+1;

 if TtlBlk>=2

 swpA=randperm(TtlBlk);

 BlkA=pChEJ(BlkPos(loCrS,1)+swpA(1)-1);

 BlkB=pChEJ(BlkPos(loCrS,1)+swpA(2)-1);

 lia=lia+1;

 LiaMac(lia,1)=BlkMac(loCrS,1);

 LiaJob(lia,:)=[BlkA BlkB];

 end

end

do=0;

% Evaluate the swap and maintain the best swap

for losw=1:length(LiaMac)

 MJobM=MJobA;

 swp=ismember(MJobM(LiaMac(losw),:),LiaJob(losw,:));

 swpos=find(swp==1);

 MJobM(LiaMac(losw),swpos(1))=LiaJob(losw,2);

 MJobM(LiaMac(losw),swpos(2))=LiaJob(losw,1);

 [ChroMMM]=timearr_01(MStartA,MJobM);

 [BMFinish,BMStart,BMJob,ChroMMM]=CP_Fwd(M,p,ChroMMM);

 [BMm,BMn]=size(BMFinish);

 BMakespan=max(reshape(BMFinish,1,BMm*BMn));

 if BMakespan<Makespan

 Chro=ChroMMM;

 Makespan=BMakespan;

 do=1;

 end

end

end

Late Start time of the Operations

function [MFinishA,MStartA,MJobM]=CP_Bwd_NoShift(M,p,Chro,Makespan)

[i,j]=size(M);

%get the matrix for the machine

MStartA=zeros(j,i);

MFinishA=zeros(j,i);

MJobM=zeros(j,i);

%get the matrix for the job for record purpose

FpcopyM=zeros(i,j);

SpcopyM=zeros(i,j);

MMJob=zeros(i,j);

maxChro=length(Chro);

%matrix for the machines

MChro=Chro;

for k=1:maxChro

 gene=MChro(1);

 ind=find(MChro==gene);

 getpos=length(ind);

 remain=j-getpos;

 %change the matrix to chromosome for the time and machine

 NChroM(1,k)=M(gene,1+remain);

 MChro(1)=[];

end

Chro2=Chro;

 %find the ealiest completion time for each operation

 for movB=1:maxChro

 %find the machine position

 geneB=NChroM(end);

 indB=find(NChroM==geneB);

 getposB=length(indB);

 remainB=getposB;

 %the chro(job) number

116

 geneC=Chro2(end);

 indC=find(Chro2==geneC);

 %indCC=find(Chro3==geneC);

 getposC=length(indC);

 %getposCC=length(indCC);

 remainC=getposC;

 %if the job operation is 1

 if remainC==j

 if remainB==i

 MFinishA(geneB,remainB)=Makespan;

 MStartA(geneB,remainB)=Makespan-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 else

 MFinishA(geneB,remainB)=MStartA(geneB,remainB+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 end

 %if the job operation is 2 or above

 else

 if remainB==i

 MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 else

 if MStartA(geneB,remainB+1)<=SpcopyM(geneC,remainC+1)

 MFinishA(geneB,remainB)=MStartA(geneB,remainB+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 else

 MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 end

 end

 end

 NChroM(end)=[];

 Chro2(end)=[];

 end

117

Sequencing Job in Critical Path (Based on Time Priority)

function [ChES,ChEF,ChEJ,ChEM]=timearr_01_critical_path(ES,EF,EJ)

[Srow,Scolumn]=size(ES);

EM=zeros(Srow,Scolumn);

%Machine

for SM=1:Srow

 EM(SM,:)=crtbase(Scolumn,SM);

end

Chro_ES=reshape(ES,1,Srow*Scolumn);

Chro_EF=reshape(EF,1,Srow*Scolumn);

Chro_EJ=reshape(EJ,1,Srow*Scolumn);

Chro_EM=reshape(EM,1,Srow*Scolumn);

ArrTS=sort(Chro_ES);

pjgES=length(Chro_ES);

ChES=zeros(1,pjgES);

ChEF=zeros(1,pjgES);

ChEJ=zeros(1,pjgES);

ChEM=zeros(1,pjgES);

%Generated the sequnces base on time

for loopA=1:pjgES

 posArrTS=find(Chro_ES==ArrTS(1));

 ChES(loopA)=Chro_ES(posArrTS(1));

 ChEF(loopA)=Chro_EF(posArrTS(1));

 ChEJ(loopA)=Chro_EJ(posArrTS(1));

 ChEM(loopA)=Chro_EM(posArrTS(1));

 Chro_ES(posArrTS(1))=[];

 Chro_EF(posArrTS(1))=[];

 Chro_EJ(posArrTS(1))=[];

 Chro_EM(posArrTS(1))=[];

 ArrTS(1)=[];

end

delCh=max(find(ChES==-1));

ChES(1:delCh)=[];

ChEF(1:delCh)=[];

ChEJ(1:delCh)=[];

ChEM(1:delCh)=[];

118

APPENDIX E

Iterative Forward-Backward Pass

function [Chro, AMakespan]=CP_FB(M,p,Chro)

doA=1;

ASMP=0;

AMakespan=0;

BSMP=-1;

BMakespan=-1;

% Perform iterative forward-backward pass.

while doA==1

 % Compare with backward pass

 if ASMP~=BSMP && doA==1

 [EF,ES,EJ,Chro]=CP_Fwd(M,p,Chro);

 AMakespan=max(EF(:,end));

 else

 doA=0;

 end

 % Compare with forward pass

 if BMakespan~=AMakespan && doA==1

 [LF,LS,LJ,Chro]=CP_Bwd_Shift(M,p,Chro,AMakespan);

 BSMP=min(LS(:,1));

 BMakespan=AMakespan-BSMP;

 else

 doA=0;

 end

end

Backward Pass

function [MFinishA,MStartA,MJobM,ChroMMM]=CP_Bwd_Shift(M,p,Chro,Makespan)

[i,j]=size(M);

%get the matrix for the machine

MStartA=zeros(j,i);

MFinishA=zeros(j,i);

MJobM=zeros(j,i);

%get the matrix for the job for record purpose

FpcopyM=zeros(i,j);

SpcopyM=zeros(i,j);

MMJob=zeros(i,j);

maxChro=length(Chro);

%matrix for the machines

MChro=Chro;

for k=1:maxChro

 gene=MChro(1);

 ind=find(MChro==gene);

 getpos=length(ind);

 remain=j-getpos;

 %change the matrix to chromosome for the time and machine

 NChroM(1,k)=M(gene,1+remain);

 MChro(1)=[];

end

Chro2=Chro;

 %find the ealiest completion time for each operation

 for movB=1:maxChro

 %find the machine position

 geneB=NChroM(end);

 indB=find(NChroM==geneB);

 getposB=length(indB);

 remainB=getposB;

 %the chro(job) number

 geneC=Chro2(end);

 indC=find(Chro2==geneC);

 getposC=length(indC);

 remainC=getposC;

119

 %if the job operation is 1

 if remainC==j

 %check the possiblilities for the for 1st job at machine

 if (Makespan-MFinishA(geneB,i))>=p(geneC,remainC)

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=p(geneC,remainC) ;

 FMMFinishA(1)=[];

 SMMStartA(1)=[];

 MMMJobM(1)=[];

 FMMFinishA=[FMMFinishA(1:end) Makespan];

 SMMStartA=[SMMStartA(1:end) Makespan-insertA];

 MMMJobM=[MMMJobM(1:end) Chro2(end)];

 %get the machine time

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 %get the job time

 FpcopyM(geneC,remainC)=Makespan;

 SpcopyM(geneC,remainC)=(Makespan-p(geneC,remainC));

 MMJob(geneC,remainC)=geneB;

 %check the possibilities fot the 2nd job or above for machine

 else

 movC=0;

 while (MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))<p(geneC,remainC) && movC<(i-2)

 movC=movC+1;

 end

 if (MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))>=p(geneC,remainC)

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=MStartA(geneB,i-movC)-p(geneC,remainC) ;

 FMMFinishA(1)=[];

 SMMStartA(1)=[];

 MMMJobM(1)=[];

 FMMFinishA=[FMMFinishA(1:i-movC-2) insertA+p(geneC,remainC) FMMFinishA((i-movC-

1):end)];

 SMMStartA=[SMMStartA(1:i-movC-2) insertA SMMStartA((i-movC-1):end)];

 MMMJobM=[MMMJobM(1:i-movC-2) Chro2(end) MMMJobM((i-movC-1):end)];

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 FpcopyM(geneC,remainC)=insertA+p(geneC,remainC);

 SpcopyM(geneC,remainC)=insertA;

 MMJob(geneC,remainC)=geneB;

 else

 if remainB==i

 MFinishA(geneB,remainB)=Makespan;

 MStartA(geneB,remainB)=Makespan-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 else

 MFinishA(geneB,remainB)=MStartA(geneB,remainB+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 end

 end

 end

 %if the job operation is 2 or above

 else

120

 movC=0;

 while (SpcopyM(geneC,remainC+1)-(MFinishA(geneB,i-movC-1))<p(geneC,remainC)

||(MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))<p(geneC,remainC)) && movC<(i-2)

 movC=movC+1;

 end

 if (SpcopyM(geneC,remainC+1)-MFinishA(geneB,i-movC-1))>=p(geneC,remainC) &&

(MStartA(geneB,i-movC)-MFinishA(geneB,i-movC-1))>=p(geneC,remainC)

 if SpcopyM(geneC,remainC+1)>=MStartA(geneB,i-movC)

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=MStartA(geneB,i-movC)-p(geneC,remainC) ;

 FMMFinishA(1)=[];

 SMMStartA(1)=[];

 MMMJobM(1)=[];

 FMMFinishA=[FMMFinishA(1:i-movC-2) insertA+p(geneC,remainC) FMMFinishA((i-

movC-1):end)];

 SMMStartA=[SMMStartA(1:i-movC-2) insertA SMMStartA((i-movC-1):end)];

 MMMJobM=[MMMJobM(1:i-movC-2) Chro2(end) MMMJobM((i-movC-1):end)];

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 FpcopyM(geneC,remainC)=insertA+p(geneC,remainC);

 SpcopyM(geneC,remainC)=insertA;

 MMJob(geneC,remainC)=geneB;

 else

 FMMFinishA=MFinishA(geneB,:);

 SMMStartA=MStartA(geneB,:);

 MMMJobM=MJobM(geneB,:);

 insertA=SpcopyM(geneC,remainC+1)-p(geneC,remainC) ;

 FMMFinishA(1)=[];

 SMMStartA(1)=[];

 MMMJobM(1)=[];

 FMMFinishA=[FMMFinishA(1:i-movC-2) insertA+p(geneC,remainC) FMMFinishA((i-

movC-1):end)];

 SMMStartA=[SMMStartA(1:i-movC-2) insertA SMMStartA((i-movC-1):end)];

 MMMJobM=[MMMJobM(1:i-movC-2) Chro2(end) MMMJobM((i-movC-1):end)];

 MFinishA(geneB,:)= FMMFinishA;

 MStartA(geneB,:)=SMMStartA;

 MJobM(geneB,:)=MMMJobM;

 FpcopyM(geneC,remainC)=insertA+p(geneC,remainC);

 SpcopyM(geneC,remainC)=insertA;

 MMJob(geneC,remainC)=geneB;

 end

 else

 if remainB==i

 MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 else

 if MStartA(geneB,remainB+1)<=SpcopyM(geneC,remainC+1)

 MFinishA(geneB,remainB)=MStartA(geneB,remainB+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

 MJobM(geneB,remainB)=Chro2(end);

 else

 MFinishA(geneB,remainB)=SpcopyM(geneC,remainC+1);

 MStartA(geneB,remainB)=MFinishA(geneB,remainB)-p(geneC,remainC);

 FpcopyM(geneC,remainC)=MFinishA(geneB,remainB);

 SpcopyM(geneC,remainC)=MStartA(geneB,remainB);

 MMJob(geneC,remainC)=geneB;

121

 MJobM(geneB,remainB)=Chro2(end);

 end

 end

 end

 end

 NChroM(end)=[];

 Chro2(end)=[];

 end

% Generated new chromosome

[ChroMMM]=timearr_01(MStartA,MJobM);

