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ABSTRAK 

 

Aliran mantap dua dimensi bendalir likat tak mampat dan pemindahan haba sekitar 

titik genangan bendalir Newtonan dikaji. Tiga jenis masalah aliran bendalir likat 

dipertimbangkan. Masalah pertama ialah mengenai kesan daya keapungan ke atas aliran 

sekitar titik genangan helaian mencancang yang meregang, sementara masalah kedua ialah 

aliran bendalir likat di atas helaian mendatar yang mengecut atau meregang secara 

eksponen. Dalam masalah ketiga, kajian terhadap aliran bendalir likat di atas helaian 

mendatar yang mengecut atau meregang secara eksponen diperluaskan, dengan 

mengambil kira pelesapan kelikatan dan pemindahan haba. Masalah ini dipengaruhi oleh 

parameter tertentu, iaitu keapungan, eksponen halaju, sedutan atau suntikan, dan 

keregangan atau kekecutan sempadan yang bergerak. Daripada tranformasi pembolehubah 

keserupaan, sistem persamaan pembezaan separa (PPS) dijelmakan kepada sistem 

persamaan pembezaan biasa (PPB). Penyelesaian sistem PPB diselesaikan secara 

berangka melalui beza terhingga tengah Keller-box, yang menurunkan persamaan PPB 

peringkat ketiga atau yang rendah kepada sistem PPB peringkat satu. Ciri-ciri aliran dan 

pemindahan haba untuk nilai-nilai parameter yang berbeza dikaji dan dibincangkan. 

Daripada penyelesaian ini, wujud dua penyelesaian yang bergantung kepada parameter-

parameter tertentu di mana selain penyelesaian aliran bendalir yang biasa terdapat pula 

penyelesaian aliran terbalik.  
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ABSTRACT 

 

Two-dimensional steady, incompressible viscous fluid flows and heat transfer near 

a stagnation point in Newtonian fluid are studied. Three different problems of fluid flows 

are considered. In the first problem buoyancy force on stagnation point flow towards a 

vertical stretching sheet is studied, whilst the second problem is about viscous fluid flow 

over an exponentially shrinking or stretching horizontal sheet. In the third problem, the 

study of viscous fluid flow over an exponentially stretching or shrinking sheet is extended 

with the inclusion of viscous dissipation and mass transfer. These problems are governed 

by certain parameters, namely buoyancy, velocity exponents, suction or injection, and 

stretching or shrinking of the moving boundary. From similarity variables transformations, 

the governing system of partial differential equations (PDEs) is transformed into a system 

of ordinary differential equations (ODEs). The solutions of system of ODEs are computed 

numerically by a central finite difference Keller-box method, which reduces third or lower 

order ODE to a system of first-order ODEs. The flow features and heat transfer 

characteristics for different values of the governing parameters are analyzed and 

discussed. From these solutions, it was found that dual solutions exist at certain range of 

parameters whereby apart from the normal fluid flow solutions, reverse flow solutions are 

also obtained.  
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CHAPTER 1 

 

 INTRODUCTION 

 

1.1 Background of the Study 

 Fluids, unlike solids, can deform continuously under a shear stress. Our interest in 

this thesis is to study the flows that are dominated by viscosity and thermal diffusivity, 

which are known as viscous flows. For a viscous flow over a flat plate, the fluid particles 

tend to decelerate faster nearer the solid plate surface compared to the free stream, thus 

creating a thin shear layer called boundary layer. This boundary layer is graphically 

depicted in Figure 1.1. 

 

  

Figure 1.1 Boundary layer at a flat plate 

 

 In this study, we are interested in seeing how the viscous action affects the 

boundary layer thickness, the skin friction (drag force) and the heat transfer rate. We 

restrict our attention to Newtonian fluid flows near a stagnation point. Here, Newtonian 

fluids are fluids in which its shear stress is directly proportional to the rate of deformation 

only. For example water, air and gasoline. Stagnation point is a point in the flow where the 
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velocity of the fluid is zero, for example as shown in Figure 1.2. The solutions at this 

stagnation point will give important information on the skin friction and heat transfer rate. 

 

 

Figure 1.2 Stagnation point flow 

  

 In this chapter we develope the fundamental concepts and equations of viscous 

fluid flow. To begin with, we derive the fundamental equations governing the fluid motion. 

Then follows the boundary layer equations, whereby the underlying physical and 

mathematical concepts of boundary layers will be illustrated. Next similarity variables to 

reduce the system of partial differential equations (PDEs) to system of ordinary 

differential equations (ODEs) is introduced. Then these ODEs are solved by numerical 

methods. 

 

1.2 Basic Conservation Equation 

The fundamental principles in deriving fluid motion and heat transfer are the laws 

of conservation of mass, linear and angular momentum and energy. We chose finite 

control volume method to convert the physical laws to mathematical equations.   
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1.2.1  Law of conservation of mass 

The law of conservation of mass of fluid particles can be derived by considering 

moving fluid particles entering and leaving a box fixed in space, as shown in Figure 1.3. 

The velocity components  ,  u v  and w  of fluid particles are in the direction of ,  x y  and z  

respectively. The mass flow rate per unit area into the box in the x -direction is given by 

 u dydz , where   is the density of the fluid, whilst the mass flow rate per unit area out 

of the box in the x -direction is  

                       x dx u x dx dydz    

  
   

2 22 2

2 2
... ...

2! 2!

dx dxu u
dx u dx dydz

x x x x

 

        

                     

 

                      

 
higher order terms

u
u dx dydz

x




 
   

 
.  

Therefore the net flow rate in the x -direction is  u dxdydz
x






. The same mass flow 

rate per unit area are applied in the y -direction and z -direction respectively. Hence, the 

net flow rate into the box  dxdydz   is 

                                 higher order termsu v w dxdydz
x y z
  

   
    

   
. (1.1) 

The mass increment per unit time of the fluid particles in this fixed box is 

        dx dy dz dx dy dz
t t




 


 
. (1.2) 
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Figure 1.3 Fluid particles in box fixed in space 

 

The laws of conservation of mass states that sum of the rate of mass entering the box fixed 

in space minus sum of the rate of mass leaving out of the box must equal to the mass 

increment per unit time in the box fixed in space. Thus combining Equations (1.1) and 

(1.2) and neglecting higher-order terms yield  

( ) ( ) ( ) 0u v w
t x y z


  

   
   

   
, 

that is,                                              0.
D

u
Dt


    (1.3) 

Here  ( , , )u u v w . For incompressible flow  0
D

Dt


 , thus Equation (1.3) reduces to 

 0
u v w

x y z

  
  

  
.   (1.4) 

Equation (1.4) is normally referred to as Equation of Continuity.  

 

 w
w dz

z








 

u  

dz  

z  

y  

x  

 u
u dx

x








 

dx  

dy  

w  
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In two-dimensional flow independent of coordinate z , Equation (1.4) becomes 

 0
u v

x y

 
 

   

. (1.5) 

 

1.2.2  Law of conservation of momentum 

According to the laws of conservation of momentum, which is also called 

Newton’s second law, mass ( )m  times acceleration ( )a  is equal to sum of the applied 

forces. In viscous flow, there are two types of forces to be considered, which are body 

forces (pressure) and surface forces (friction forces). The body forces act on every fluid 

particle of the body whereas the surface forces acts on the fluid surface element only, and 

these create the deformation of the fluid. If  bf   is the body force per unit volume, sf  
the 

surface force per unit area, and F is the sum of all body and surface forces, the 

relationship for the momentum equation in a control volume dxdydz  is  

  ;       = b sF ma F f f  . (1.6) 

Recall that the mass of the fluid particles in a control volume dxdydz  in a fixed frame of 

reference is  

    m dx dy dz , (1.7) 

and the acceleration of the fluid particles in Cartesian coordinate is  

                                                            

Du
a

Dt

u
u u

t




  


 
(1.8) 
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where D Dt  is the material derivative, u t   is local acceleration and u u  is the 

convective acceleration. Therefore, the acceleration field in ,  x y  and z direction 

respectively will be 

                                             

 ,

 ,

.

Du u u u u
u v w

Dt t x y z

Dv v v v v
u v w

Dt t x y z

Dw w w w w
u v w

Dt t x y z

   
   
   

   
   
   

   
   
   

 (1.9) 

 

                                         

In order to determine the surface forces, consider the diagram shown in Figure 1.4. 

Stresses are defined as surface forces per unit surface area.  Normal stresses   are stress 

components that act perpendicularly to surface of control volume dxdydz , while tangential 

(shear) stresses   are the components in the plane of the surface of control volume 

dxdydz . The surface forces can be expressed as follows: 

in the direction:    ,
xyxx xzx dx dy dz

x y z

   
   

   
 

in the direction:    ,
yx yy yz

y dx dy dz
x y z

     
   

     (1.10)

 
in the direction:    .

zyzx zzz dx dy dz
x y z

   
   

   
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Figure 1.4 Stresses on a control volume dxdydz in a fixed frame, only forces in      

directionx are shown. 

 

Let body force per unit volume be bf , with , ,b x y zf f f f . Substituting Equation (1.7), 

(1.9), (1.10) into (1.6), the momentum equations become  

                                              

xyxx xz
x

Du
f

Dt x y z

 
 

 
   

  
, 

                                               

yx yy yz

y

Dv
f

Dt x y z

  
 

  
   

  
, (1.11)

 
  

zyzx zz
z

Dw
f

Dt x y z

 
 

 
   

  
,  

where the volume   dx dy dz  of the fluid particles in control volume has been eliminated. 

Equation (1.11) is called Navier-Stokes Equations. To solve for ,  u v and w , we have to 

obtain suitable expression for the stresses in terms of the velocity and pressure field. Using 

the Stokes Hypothesis (conservation of angular momentum) as suggested by Stokes in 

1849 (detailed derivations may be found in Daily and Harleman (1966), Schlichting 

(1979), and White (2000)), the stresses can be expressed as follows:  

xz  xy  

xz
xz dx

x








 

xy

xy dx
x








 

xx  

dz  
z  

y  

x  

xx
xx dx

x








 

dx  

dy  



 

8 

 

xy

v u

x y
 

  
  

  
, 

yz

w v

y z
 

  
  

  
, 

                                                        
zx

u w

z x
 

  
  

  
, (1.12) 

2
2

3
xx

u
p u

x
  


    


, 

2
2

3
yy

v
p u

y
  


    


, 

                                                  
2

2
3

zz

w
p u

z
  


    


,   

where   is viscosity of the fluid,  is gradient operator and    .
u v w

u
x y z

  
   

     

p  is 

the local thermodynamic pressure, defined as   3xx yy zzp       . Substituting 

Equation (1.12) into (1.11), we obtain 

2
2

3
x

Du p u u v w u
f u

Dt x x x y y x z x z
    

                 
                                

,  

2
2

3
y

Dv p v u v v w
f u

Dt y y y x y x z z y
    

                  
                  

                  
, (1.13) 

2
2

3
z

Dw p w w u w w
f u

Dt z z z x x z y z y
    

                 
                                 

.  

These equations are the complete Navier-Stokes equations for three-dimensional, unsteady, 

and compressible viscous flow in Cartesian coordinates. 
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If viscosity   is constant and  u
 
is zero i.e the fluid is incompressible, Equation (1.13) 

is significantly reduced to 

                     

2 2 2

2 2 2 x

u u u u p u u u
u v w f

t x y z x x y z
  

         
          

          
, 

                     

2 2 2

2 2 2 y

v v v v p v v v
u v w f

t x y z y x y z
  

         
          

          
, 

 
2 2 2

2 2 2 z

w w w w p w w w
u v w f

t x y z z x y z
  

         
          

          
,  

                                                
2

b

Du
p u f

Dt
        . (1.14) 

For steady, two-dimensional compressible flow Equation (1.14) becomes 

                                   

2 2

2 2 x

u u p u u
u v f

x y x x y
  

      
       

       
, (1.15) 

                                   
2 2

2 2 y

v v p v v
u v f

x y y x y
  

      
       

       
. (1.16) 

 

1.2.3  Law of conservation of energy 

The equation for the conservation of energy can be deduced using the same 

approach as used when deriving the momentum equations. The first law of 

thermodynamics states that sum of the heat supplied and the work done on the fluid 

particles in a control volume dxdydz  is equal to the total energy gained in unit time, that is 
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DE

Q W
Dt

  , (1.17) 

where E  is the total energy, Q  is the heat supplied and W is the work done on the fluid. 

Let heat flux vector , ,x y zq q q q  denotes the heat transferred per unit surface area. The 

heat entering the box fixed in space in the directionx  is    xq dy dz
 
and the heat 

transferred out of the box is     x xq q x dx dy dz     . Therefore, the net total heat flux 

transferred in x -direction is      x xQ q x dx dy dz    . The same applies in the y  and 

z direction. Thus, the total heat supply is  

 

 

  

. ,

yx z
qq q

Q dx dy dz
x y z

q dV

  
    

   

  

 (1.18) 

where dV dxdydz . Assuming small temperature differences, from Fourier (1822) heat 

law, the heat conduction for the fluid is 

 ,    ,    x y z

T T T
q k q k q k

x y z

  
     

  
,  

that is,                                                  ,q k T      (1.19) 

where the thermal conductivity k  is a positive physical property. Thus, Equation (1.18) 

becomes  

                          
 

  

.

T T T
Q k k k dx dy dz

x x y y z z

k T dV

          
           

          

  

 .           (1.20) 
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Next, we derived the work done  W  on the fluid. Work done W  on a moving fluid 

particle in a fixed box is equal to the product of its velocity and the component of the 

stress forces in the direction of velocity. Hence work done on moving fluid particles by 

the stress forces in the x  direction is simply the velocity in the x  direction u multiply by 

the stress forces. With the aid of Figure (1.4), work done by the stress forces on the 

surface dydz of control volume dxdydz  in the x  direction is 

 

 

 

( ) ( ) higher order term

( ) ( ) higher order term

( ) ( ) higher order term

xx

xx xx

xy

xy xy

xz

xz xz

u
u x dx x dx dydz u dx dydz

x

u
u y dy y dy dxdz u dy dxdz

y

u
u z dz z dz dxdy u dz dxdy

z


 


 


 

 
     

 

 
     

  

 
     

 

 

(1.21) 

Neglecting the higher order terms, the net work done by the stress forces acting in the x  

direction is                                                

          

   

 

     

  
xyxx

xx xx xy xy

xz

xz xz

xyxx xz

uu
u dx u dydz u dy u dxdz

x y

u
u dz u dxdy

z

uu u
dxdydz

x y z


   


 

 

    
        
         

  
    

   

  
   

    

 

(1.22)
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The net work done by stress forces in the y  and z directions can be obtained in a similar 

manner, that is 

     

     

in the direction:    ,

in the direction:    .

xy yy yz

zyxz zz

v v v
y dx dy dz

x y z

ww w
z dx dy dz

x y z

  

 

   
   
   
 

  
   
   
 

 

(1.23)

 

Combining and rearranging these results, the total work done in control volume dxdydz  is                         

     xx xy xz yy yx yz zz zx zyW u v w v u w w u v dxdydz
x y z

        
   

         
   

. (1.24) 

Using Stokes’ Hypothesis (1.12) into the work done, we obtained  

     

     

2
2

3

2
2

3

xx xy xz yy yx yz zz zx zyu v w v u w w u v
x y z

u u v w v u w u
u v w

x x x y z x y x z

v u v w u
v u

y y x y z y

        

   

  

  
       

  

                   
                                   

       
      
       

2
2

3

v w v
w

x y z

w u v w u w v w
w u v

z z x y z z x z y



   

          
         
          

                   
                                    

(1.25) 

 

Finally, the total energy E  per unit time is the sum of the internal energy ( e ) and 

kinetic energy (
21

2
u ). This is given by 

 

2
1
2

( )
  

D e uDE
dx dy dz

Dt Dt

 
 . (1.26) 
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Substituting Equation (1.20), (1.24) and (1.25) into (1.17), we obtain the general form of 

the energy equation. 

 

However, from thermodynamics, the energy equation can also be expressed in 

terms of enthalpy h  by 

                                                                

p
h e


  .   (1.27) 

By using the general relation as suggested by Kestin (1966),   

                                                  
1

p

Dh DT T Dp
c

Dt Dt Dt






  ,        (1.28) 

where pc
 
is the specify heat capacity at constant pressure and 

1

pT






 
   

   is the 

coefficient of thermal expansion, the energy equation can thus be rewritten as 

                             
p

DT T T T Dp
c k k k T

Dt x x y y z z Dt
 

          
         

          
, (1.29) 

where   is the viscous dissipation function, defined as                   

 

2 2 22 2

22

2

2
 .

3

u v w v u w v

x y z x y y z

u w u v w

z x x y z





               
               

                

      
      

       

 (1.30) 
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If there is no energy dissipation, then the viscous dissipation term can be ignored, and for 

steady, two-dimensional incompressible flow, Equation (1.29) reduces to                                       

 

2 2

2 2

T T T T
u v

x y x y
 

   
  

   
, (1.31) 

where pk c  . 

 

1.3  Derivation of Boundary Layer Equations 

 Now consider the general equations of motion (1.3), (1.14), and energy (1.29). In 

our study, we are going to restrict the analysis to steady, laminar two-dimensional and 

incompressible fluid flows. Then the fluid flows and heat equations reduce to 

                                      0
u v

x y

 
 

 
 

,  (1.5) 

 
2 2

2 2

1
x

u u p u u
u v f

x y x x y




 
 
 

    
     

    
 

, (1.32) 

 
2 2

2 2

1
y

v v p v v
u v f

x y y x y




 
 
 

    
     

    
 

, (1.33) 

                                      
2 2

2 2

T T

x y

T T
u v

x y
 
 


 

 
 

 
 

. (1.31) 

 

 

Then we apply the boundary layer concept introduced by Ludwig Prandtl in 1904. He 

proposed that there is a thin region of viscous flow which is confined very close to the 

solid boundary (such that the no slip boundary condition is obeyed), outside which the 

flow is inviscid. Since the boundary layer is comparatively very thin, we start by 

examining the relative sizes of each term in these equations using the order of magnitude 
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argument. As a typical illustration, consider the flow past a horizontal plate. Let the x -

axis lie along the horizontal plane and y -axis perpendicular to it. Let   be the thickness 

of the boundary layer where 1  , l  is the length of the plate and also is (1)O , and  u  is 

the velocity that varies from 0  at the solid surface to U  of the main stream. Therefore  

 ( ),     ( ),     ( )x O l y O u O U    . (1.34) 

From the continuity equation (1.5), their order of magnitudes is;  

                                                    

   0
u v

x y

 
 

 
,

 

                                                , 
U v

O O
l 
   

  
  

. (1.35) 

Since both terms in the equation are of the same order of magnitude, the magnitude of 

velocity v  is  ( / )O U l . 

 

 Now, examine the order of magnitude of Equation (1.32), and relegating the body 

force xf to later consideration, we see that  

                                
2 2

2 2
        ,

1
            

u u p u u
u v

x y x x y




 
 
 

    
    

    

 
gives                  

2

2 2

1
 , = , , 

U U U U U U
O U O O O O

l l l l

 
 

  
     



        
        

        
. 

Multiplying by  
2

l

U

, this becomes 

                         
2

           1 , 1 = 1 , , 
l

O O O O O
U l U l

 

 

    
         

 (1.36) 
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Now the term 
2 2/u x   can be neglected when compared with the term

2 2/u y  , because 

 

22 2

2 2
1.

u u
O

x y l

   
  

   
 (1.37) 

Since the diffusion term  2 2/u y    must have an order of magnitude of (1)O , we see 

that 

                                                  
1
2

1/2

Re 1,
l

O O l
U








 
  

 
 (1.38)                                 

where Reynolds number Re 1.
U l


  Hence, Equation (1.32)  now becomes 

 

2

2

1 u

y

u u p
u v

x y x








  
   

  
, (1.39) 

in the limit R . 

 

 Similarly, postponing the discussion on body force yf , the order of magnitude for 

Equation (1.33) is;  

2 2

2 2 2

2 2

2 2
        ,

1
      , = , ,     

1
                  

1U U U U U
O U O O O O

l l l l

v v p v v
u v

x y y x y

    

  




 


    


 
 
 

          
                    

    
    

    

 

Multiply by 2U




, 
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 
2 2 2

2 2 2
          , = 1 , ,       O O O O O

l l U l U l

   

 

      
      

       
 (1.40) 

From the Equation (1.40), we see that only the terms 
1 p

y





 has (1)O  whilst the rest 

tends to 0  as  0 or .R    Therefore, we are left with 

 
1

0
p

y


 


. (1.41) 

The equation 0p y   is important; it implies that the pressure is constant across the 

boundary layer. Hence the pressure p  is only varying in the x -direction, that is ( )p p x .  

 

 The same argument can be used for energy equation (1.31), yielding 

 

2

2

T

y

T T
u v

x y





 
 

 
 (1.42) 

For comprehensive derivation of the boundary layer equations, please refer to the books of 

Schlichting (1979) and Acheson (1990). 

 

 The system of differential equations (1.39), (1.41) and (1.42) must be 

supplemented by a set of appropriate boundary conditions. For example, the appropriate 

boundary conditions for the above flat plate flow and heat transfer can be given by  

 ( ),   0,       when   0 , 0 ,wu U x v T T y x l       (1.43) 

 ,   0 ,     at    ,  0 .u U v T T y x l        (1.44) 
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 Now we can relate the pressure to the free stream velocity as follows. Using the 

boundary conditions at y   and substituting Equations (1.44) into (1.39), we have 

 
1

U
dU p

dx x





 


 (1.45) 

Then, replacing the pressure field of (1.45) into (1.39), we obtain 

 

2

2

dU u
U

dx y

u u
u v

x y








 
  

 
. (1.46) 

 Under these simplifying assumptions, the appropriate equations for the boundary 

layer are:  

                               0
u v

x y

 
 

 
, (1.5) 

                               
2

2

dU u
U

dx y

u u
u v

x y








 
  

 
, (1.46)

 

                                          

2

2

T

y

T T
u v

x y





 
 

 
, (1.42) 

with boundary conditions  

                           

 ,   0 ,   ( )   when   0,  0 ,

 ,          as     ,  0 .

wu u v T T x y x l

u U T T y x l 

     

    

 
(1.47)

 

The solution of Equations (1.5), (1.42) and (1.46) subject to the boundary conditions (1.47) 

yields the velocity and temperature profiles of the boundary layer. However, our other 
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main objective of this study is to compute the local skin friction ( fC ) and the local 

Nusselt number ( xNu ) which is related to heat transfer rate at the surface. These are given 

by 

 
2

 
/ 2

w
fC

U



 

 , (1.48) 

and 

 
( )

w
x

w

xq
Nu

k T T




, (1.49) 

where the surface shear stress w  and the temperature gradient at the wall wq are given by 

 

0 0

    and    w w

y y

u T
q k

y y
 

 

    
     

    
, (1.50) 

where w  denote the values of  and q  at the wall.  

 

1.4  Similarity Transformation 

In this thesis a similarity transformation is used to simplify the system of equation 

(1.5), (1.42), and (1.46) subject to the boundary conditions (1.47). We use the similarity 

variables introduced by the previous researchers (see Magyari & Keller 1999; Ishak 2009) 

to reduce the number of independent variables from two to one. By using these similarity 

variables, the system of partial differential equations (1.46) and (1.42) will be reduced to 

nonlinear ordinary differential equation. Similar ideas also apply to the boundary 

conditions in (1.47). The specific similarity variables will be discussed in each of the 

following chapters, depending on the problem. 
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1.5 Numerical Implementations 

In this research, we have used an efficient and accurate finite difference scheme, 

Keller-box method, to solve the system of nonlinear ODEs subject to the appropriate 

boundary conditions. This method was first suggested by Keller (1970). Its 

implementation is described in Keller and Cebeci (1971, 1972). An interesting feature of 

this method is that it is unconditionally stable and is second order accurate. Several 

authors for instance Ishak et al. (2007, 2009a), Ali et al. (2011), Saha et al. (2007) and Yih 

(1998) have successfully used this method to solve various fluid flow and heat transfer 

problems.  

 

The basic idea of the Keller-box method is:  

(i) First, introduce new dependent variables and reduce the system of nonlinear ODE 

to a first-order system of ODEs. 

(ii) Replace the derivatives of the first order system of ODEs by central differences. 

(iii) Linearize the resulting algebraic equations by Newton’s method, and write them in 

matrix-vector form. 

(iv) The linearized difference equations are solved by the block tridiagonal elimination 

technique (Thomas method). 

In our calculations, we have used step size   = 0.001 with a convergence 

criterion of error less than 10
-6

. The location of the edge of the boundary layer   has 

been adjusted appropriately for different values of parameters to maintain the necessary 

accuracy. For all the problems discussed, MATLAB has been used for coding.  
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1.6  Layout of the Thesis 

In Chapter 2, 3, and 4 we are going to discuss specific boundary layer problems. 

The relevant conclusions will be presented at the end of each chapter. These are part of 

published and unpublished results. 

 

In Chapter 2, we consider the two- dimensional stagnation point flow past a 

vertical sheet. The sheet is stretched non-linearly; with the velocity and prescribed surface 

heat flux in power law form. We give a lot of consideration to the effect of buoyancy force 

and velocity ratio toward the boundary layer problems. Both assisting and opposing 

buoyant flows are considered. Our results show that assisting buoyant flow has unique 

solution whilst an increase in velocity ratio leads to an increase in the solution range.  

 

In Chapter 3 the two-dimensional stagnation-point flow due to shrinking or 

stretching sheet is studied. Here, the shrinking or stretching velocity, the free stream 

velocity and the surface temperature are in an exponential form, which is different from 

those in Chapter 2. We investigate the existence and (non)uniqueness of solutions, for 

both shrinking and stretching sheet. Our results indicate that the solutions in shrinking 

sheet are not unique.   

 

In Chapter 4, we extend the problem of Chapter 3 by the inclusion of mass transfer 

and viscous forces. Therefore in this chapter we discuss the two-dimensional stagnation-

point flow over an exponentially stretching or shrinking permeable sheet with the 

additional effects of viscous forces and mass transfer. Our numerical results show that in 

shrinking boundary layer with wall injection no solution will exist. 
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In our last chapter, Chapter 5, we present the summary of our research. The 

conclusions, suggestions or recommendations are discussed in this chapter. 
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CHAPTER 2 

 

BUOYANCY FORCE ON STAGNATION-POINT FLOW TOWARDS A 

VERTICAL, NON-LINEARLY STRETCHING SHEET WITH PRESCRIBED 

SURFACE HEAT FLUX 

 

2.1  Introduction 

  The study of stagnation point fluid flow and heat transfer due to a nonlinearly 

stretching surface has significant application in the industrial processes. For example hot 

metal plate in a cooling bath, production of metal or polymer sheet and manufacturing of 

glass fiber. The quality of the final product greatly depends on the heat transfer at the 

stretching surface as explained by Karwe and Jaluria (1988, 1991). 

  

Our objective is to discuss the flow and heat transfer characteristics that are 

brought about by buoyancy force towards a vertical stretching sheet. Several works that 

have been reported in this type of flow field (Gupta & Gupta 1977; Nazar et al. 2004; 

Chen 1998). Ramachandran et al. (1988) studied the effect of buoyancy force on the 

stagnation point flows past a vertically heated surface at rest and found that dual solutions 

exist in the buoyancy opposing flow region. Ishak et al. (2008a) extended the idea of 

Ramachandran (1988) to the fluid induced by the velocity ratio parameter. Ishak et al. 

(2009a) also considered unsteady flow along stretching sheet and showed that 

unsteadiness parameter increases the solution range. Moreover, Ishak et al. (2008b, 2008c) 

have numerically studied the flow induced by stretching vertical sheet in micropolar fluid 

and MHD fluid. 
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Motivated by the above investigations, in this research we study the stagnation-

point flow towards a nonlinearly stretching sheet with prescribed surface heat flux. The 

stretching velocity, the free stream velocity and the surface heat flux are assumed to vary 

in the power-law form.  

 

2.2    Problem Formulation 

Consider a mixed convection stagnation-point flow towards a vertical nonlinearly 

stretching sheet immersed in an incompressible viscous fluid, as shown in Figure 2.1. The 

Cartesian coordinates ( yx, ) are taken such that the x axis is measured along the sheet 

oriented in the upwards or downwards direction and the y  axis is normal to it. 

 

 

Figure 2.1 Physical model and coordinate system 

 

It is assumed that the wall stretching velocity is given by 
m

wU ax  and the far field 

inviscid velocity distribution in the neighborhood of the stagnation point (0,0)  is given 

by ( ) mU x bx  , ( ) mV y by   . The surface heat flux is in the form of 
(5 3)/2( ) m

wq x cx   

(see Merkin & Mahmood, 1989), where a, b, c, and m are constants. This ( )wq x  ensured 
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          (a) Assisting flow ( 0  )           (b) Opposing flow ( 0  ) 
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the buoyancy parameter is independent of x. For assisting flow, in Figure 2.1(a) the 

x axis points upwards in the same direction of the stretching surface such that the 

external flow and the stretching surface will induce flow and heat transfer in the velocity 

and thermal boundary layers respectively. On the other hand, for opposing flow in Figure 

2.1(b), the x axis points vertically downwards in the same direction of the stretching 

surface such that the external flow and the stretching surface will also induce flow and 

heat transfer respectively in the velocity and thermal boundary layers. The steady 

boundary layer equations, with Boussinesq approximation, are 

 

                        
0

u v

x y

 
 

 
,                                                                                            (2.1) 

                       

2

2
( )

dUu u u
u v U g T T

x y dx y
 

 

  
    

  
,                                       (2.2) 

             

2

2

T T T
u v

x y y


  
 

  
,            (2.3)

  

subject to the boundary conditions 

 

              
( )wu U x ,    0v  ,    wqT

y k


 


 at 0y  , 

  ( )u U x ,   T T    as   y  ,           (2.4) 

 

where vu and  are the velocity components along the  yx and  axes, respectively, g  

is the acceleration due to gravity,   is the thermal diffusivity of the fluid,   is the 
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kinematic viscosity,   is the coefficient of thermal expansion and   is the fluid density. 

T  is the far field ambient constant temperature.   

 

The continuity equation (2.1) can be satisfied automatically by introducing a 

stream function   such that /u y    and /v x   . The momentum and energy 

equations are transformed by the similarity variables 

 

 

1/ 2
U

y
x




 
  
 

,      
1/ 2

( )xU f   ,     

1/2
( )

( )
w

k T T U

q x
 


   

  
 

            (2.5)  

 

into the following nonlinear ordinary differential equations: 

 

   21
1 0

2

m
f ff m f 


       ,            (2.6) 

  
1 1

(2 1) 0
Pr 2

m
f m f  


      .          (2.7) 

 

Here primes denote differentiation with respect to  , 
5/2/ Rex xGr    is the buoyancy or 

mixed convection parameter, Pr /   is the Prandtl number, 
4 2/ ( )x wGr g q x k   is the 

local Grashof number and Re /x U x   is the local Reynolds number. We note that   is 

a constant, with 0  corresponds to assisting flow and 0  denote opposing flow 

whilst 0  is for forced convective flow.  
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The transformed boundary conditions are 

 

                         (0) 0f  ,       (0)f   ,      (0) 1   , 

  ( ) 1f   ,    ( ) 0     as     ,          (2.8) 

 

where /a b  . 

 

The physical quantities of interest are the skin friction coefficient fC  and the local 

Nusselt number 
xNu , which are defined as 

 

  
2

,
/ 2

w
fC

U



 

     
( )

w
x

w

xq
Nu

k T T




               (2.9) 

 

respectively, where the surface shear stress 
w  and the surface heat flux 

wq  are given by 

 

  
0

,w

y

u

y
 



 
  

 
      

0

w

y

T
q k

y


 
   

 
                            (2.10)

  

with   and k  being the dynamic viscosity and thermal conductivity, respectively. Using 

the non-dimensional variables (2.5), we obtain 

 

  1/21
Re (0),

2
f xC f      

1/2

1

Re (0)

x

x

Nu


  .                        (2.11)
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2.3  Results and Discussion 

Equations (2.6) and (2.7) subject to the boundary conditions (2.8) are integrated 

numerically using a finite difference scheme known as the Keller box method (Keller 

1970). Numerical results are presented for different physical parameters. To conserve 

space, we consider Prandtl number unity throughout this paper. The results presented here, 

whenever it is comparable, agree very well with those of  Ramachandran et al. (1988).  

    

Figures 2.2 and 2.3 show the skin friction coefficient (0)f   against buoyancy 

parameter   for some values of velocity exponent parameter m  for velocity ratio 

parameter 0.5   and 1  . Two branches of solutions are found. The solid lines are the 

upper branch solutions and the dash lines are the lower branch solutions. With increasing 

m , the dual solutions’ range increases. Also from both figures of the upper branch 

solutions, the skin friction is higher for assisting buoyancy flow ( 0  ) compared to the 

opposing flow ( 0  ). This implies that increasing buoyancy convection parameter   

increases the skin friction coefficient (0)f  . Whilst for 1   the values of (0)f   in 

Figure 2.3 are positive for 0   and negative for 0  . Physically, this means positive 

(0)f   implies the fluid exerts a drag force on the sheet and negative implies the reverse. 

Similarly this also happens for 0.5   but at different values of  . 
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Figure 2.2 Variation of the skin friction coefficient (0)f   with   for various values of m 

when 0.5   

 

 

 

 

Figure 2.3 Variation of the skin friction coefficient (0)f   with  for various values of m 

when 1   
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As seen in Figures 2.2 and 2.3, there exist a critical value of buoyancy
c
  such that 

for 
c

   there will be no solutions, for 0
c
    there will be dual solutions, and when 

0   the solution is unique. Our numerical calculations in Figure 2.2 shows that for 

velocity ratio 0.5   
c
  -8.331, -2.677 and -0.7411 for m  2, 1 and 0.5  respectively,  

while in Figure 2.3 for velocity ratio 1  , 
c
  -14.98, -4.764 and -1.301 for m  2, 1 and 

0.5  respectively. The dual solutions exhibit the normal forward flow behavior and also the 

reverse flow where ( ) 0f   . From these two results, it seems that an increase in velocity 

ratio parameter   leads to an increase of the critical values of | |c . This increases the dual 

solutions range of Equations (2.6)-(2.8). 

    

Figures 2.4 and 2.5 display the variations of the local Nusselt number 1/ (0)  

against buoyant parameter  , for some values of m  when velocity ratio 0.5   and 1   

respectively. Both figures clearly show that the local Nusselt number increases as 

m increases for the upper branch solutions. For the lower branch solutions, the local 

Nusselt number becomes unbounded as 0  . Positive values of  1/ (0)  denote that 

heat is being transferred from the sheet to the fluid, and vice versa.  
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Figure 2.4 Variation of the local Nusselt number 1/ (0)  with   for various values of m 

when 0.5   

 

 

 

 

Figure 2.5 Variation of the local Nusselt number 1/ (0)  with   for various values of m 

when 1   

 



 

32 

 

2.4   Conclusions 

The problem of mixed convective stagnation-point flow towards a nonlinearly 

stretching vertical sheet immersed in an incompressible viscous fluid was investigated 

numerically. The effects of the governing parameters m,   and   on the fluid flow and 

heat transfer characteristics were discussed. It was found that for assisting flow, the 

solution is unique, while dual solutions were found to exist for opposing flow up to a 

certain critical value 
c . Moreover increasing the velocity exponent parameter m, the 

solution range of Equations (2.6) –(2.8) increases.  
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CHAPTER 3 

 

STAGNATION-POINT FLOW OVER AN EXPONENTIALLY 

SHRINKING/STRETCHING SHEET 

 

3.1  Introduction 

Started from early of the last century, there have been numerous sophisticated 

studies on boundary layer flow. The effects of viscosity and thermal conductivity are 

important in this layer. Thus, this leads to an urge to understand the underlying physical, 

mathematical and modeling concepts inherent in boundary layer. In reality, a majority of 

the applications for the industrial manufacturing processes have to deal with fluid flow 

and heat transfer behaviors. Examples include the polymer sheet extrusion from a dye, 

gaseous diffusion, heat pipes, drawing of plastic film and etc. Such processes play an 

important role to determine the quality of the final products as described by Karwe and 

Jaluria (1988, 1991). 

 

Crane (1970) was the first person who initiated the study of two-dimensional 

steady flow of an incompressible viscous fluid induced by a linearly stretching plate. The 

boundary layer equations were simplified using a similarity transformation, which 

transformed the governing partial differential equations to a single ordinary differential 

equation. Since then, there were similar flows that have been considered by several 

researchers (Andersson et al.  1992; Gupta & Gupta 1977; Nazar et al. 2004; Hossain & 

Takhar 1996; Ishak et al. 2006a). Such similar flows have been studied extensively in 

various forms, for example flows with suction/injection, stretching, MHD effect, radiation 

or non-Newtonian fluids. Magyari and Keller (1999) reported the similarity solutions 
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describing the steady plane (flow and thermal) boundary layers on an exponentially 

stretching continuous surface with an exponential temperature distribution. This problem 

was then extended by Bidin and Nazar (2009), Sajid and Hayat (2008) and Nadeem et al. 

(2010a, 2010b) to include the effect of thermal radiation, while Pal (2010) and Ishak 

(2011) studied the similar problem but in the presence of magnetic field. Sanjayanand and 

Khan (2006) studied the heat and mass transfer in a viscoelastic boundary layer flow over 

an exponentially stretching sheet. The mixed convection flow of a micropolar fluid over 

an exponentially stretching sheet was considered by El-Aziz (2009). The problems in non-

Newtonian fluids considered in Sanjayanand and Khan (2006) and El-Aziz (2009) do not 

admit similarity solutions, and thus the authors reported local similarity solutions with 

certain assumptions.  

 

Recently, the shrinking aspect has become a brand new topic. The abnormal 

behavior in the fluid flow due to a shrinking sheet has gained attention from several 

researchers. However, the work on it is relatively little. The flow induced by a shrinking 

sheet was first discussed by Miklavčič and Wang (2006), where the existence and 

(non)uniqueness of solutions in both numerical and exact solutions were proven. 

Extension to that, Fang (2008) carried out the shrinking problem to power law surface 

velocity with mass transfer. It was shown that the solution only exist with mass suction for 

the rapidly shrinking sheet problem. Furthermore, Wang (2008) has investigated that the 

shrinking sheet problem has many unique characteristics. Later on, Sajid et al. (2008) 

studied the MHD rotating flow over a shrinking surface. It was found that the results in the 

case of hydrodynamic flow are not stable for the shrinking surface and only meaningful in 

the presence of magnetic field. The flow over a shrinking sheet in a porous medium was 

studied by Nadeem and Awais (2008). On the other hand, Ishak et al. (2010a) solved 
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numerically micropolar fluid flow over a linearly shrinking sheet, and found that the 

solutions are not unique in shrinking sheet. Very recently, Nadeem et al. (2009, 2010a, 

2010b) studied the stagnation point flow over a shrinking sheet in non-Newtonian fluids. 

 

Motivated by the above investigations, here we study the steady two dimensional 

stagnation point flow over an exponentially shrinking/stretching sheet. The shrinking/ 

stretching velocity, the free stream velocity and the surface temperature are assumed to 

vary in an exponential form with the distance from the stagnation point. The skin friction 

coefficient and the local Nusselt number are determined for the understanding of the flow 

and heat transfer characteristics. The practical applications include the cooling of extruded 

materials in industrial processes using an inward directed fan or conical liquid jets. 

 

3.2  Problem Formulation 

Consider a stagnation-point flow over an exponentially shrinking/stretching sheet 

immersed in an incompressible viscous fluid as shown in Figure 3.1. The Cartesian 

coordinates ( yx, ) are taken such that the x axis is measured along the sheet, while the 

y axis is normal to it.  

 

Figure 3.1 Physical model and coordinate system 
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It is assumed that the free stream velocity, the shrinking/stretching velocity and the 

surface temperature are given by 
/x LU ae  , 

/x L

wU be  and 
/x L

wT T ce  , respectively, 

where a, b and c are constants and L is the reference length. The boundary layer equations 

are (Magyari and Keller 1999; Ishak et al. 2009b; Bhattacharya & Layek 2011) 

 

  0
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,             (3.1)
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2

2
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u v

x y y


  
 

  
,            (3.3)

  

subject to the boundary conditions 

 

                wu U , 0v  , wT T

 

 at 0y  , 

  

                u U , T T  as y  ,           (3.4)

  

where vu and  are the velocity components along the  yx and  axes, respectively,   

is the thermal diffusivity of the fluid and   is the kinematic viscosity.  

 

Introducing the following similarity transformation (see Magyari & Keller 1999), 
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                ( )
w

T T

T T
  







,                                   (3.5) 

the continuity equation (3.1) is automatically satisfied, and Equations (3.2) and (3.3) are 

reduced to 

 

  
22 2 0f ff f      ,           (3.6)

  
1

2 0
Pr

f f       ,           (3.7)

  

where primes denote differentiation with respect to   and Pr /   is the Prandtl number.  

 

The transformed boundary conditions are 

 

                         (0) 0f  , (0)f   , (0) 1  , 

  ( ) 1f   , ( ) 0    as   ,          (3.8) 

 

with /b a   being the shrinking/stretching parameter. We note that 0   is for 

shrinking, 0   for stretching and 0   corresponds to a fixed sheet.  

 

The main physical quantities of interest are the skin friction coefficient and the 

local Nusselt number, which are proportional to the quantities (0)f   and (0) , 

respectively. Thus, our aim is to investigate how the values of (0)f   and (0)  vary 

with the shrinking or stretching parameter   and the Prandtl number Pr.  
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3.3  Results and Discussion 

Graphical results are presented for different physical parameters appearing in the 

present model. We note that Equations (3.6) and (3.7) are decoupled, and thus the flow 

field is not affected by the thermal field.  

 

Figure 3.2 shows the variations of the skin friction coefficient (0)f   against 

shrinking/ stretching parameter  , while the respective local Nusselt number (0)  are 

presented in Figure 3.3. Two branches of solutions are found to exist within the range 

1c    , while for 1   , the solution is unique. It is seen that for negative values of 

  (shrinking case), there is a critical value  c  
where the upper branch meets the lower 

branch. Based on our computation, 1.4872c   . Beyond this critical value, no solution 

exists. In these figures, the solid lines denote the upper branch, while the dash lines denote 

the lower branch solutions. It is also evident from these figures that, the range of   for 

which the solution exists is very small for the shrinking case. This is due to the vorticity 

that almost cannot be confined in the boundary layer. It is observed in Figure 3.3 that the 

lower branch solutions show discontinuity at   -1.145, -1.255 and -1.375 for Pr= 0.72, 

1.0 and 1.5 respectively. This phenomenon has been observed by other researchers in the 

literature, for different problems, for example Ridha (1996) and Ishak et al. (2008d, 

2010b). Further, it is found that when 1   (stretching case), the value of the skin friction 

coefficient (0)f   is zero. This is because when 1  , the stretching velocity is equal to 

the external velocity, and thus there is no friction between the fluid and the solid surface. 

Furthermore, when 1  , the exact solution of Equation (3.6) subject to the boundary 

condition (3.8) can be obtained, and is given by ( )f   , which then implies ( ) 0f    
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for all  . The present numerical result agreed with this exact solution. It is also observed 

that for the upper branch solution, (0) 0f    when 1   and (0) 0f    when 1  . 

Physically, positive value of (0)f   means the fluid exerts a drag force on the sheet, and 

negative value means the opposite. On the other hand, the negative value of (0)f   for the 

lower branch solution as shown in Figure 3.2 is due to the back flow, see Figure 3.4. The 

velocity gradient at the surface is negative for 1    and 1.2   , but is positive for 

1.45   , which is in agreement with the results presented in Figure 3.2.   

 

 

 

Figure 3.2 Variation of the skin friction coefficient (0)f  with   
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Figure 3.3 Variation of the local Nusselt number (0)  with   for various values of Pr 

 

 

 

 

 

Figure 3.4 Velocity profile ( )f   for various values of 0   
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Figure 3.5 shows the effects of 0   (shrinking) on the temperature profiles when 

Pr= 1. For the upper branch solution, with increasing negative values of   , the 

temperature gradient at the surface increases, resulting in an increase of the local Nusselt 

number. The opposite trend is observed for the lower branch solution, increasing   (in 

absolute sense) is to decrease the temperature gradient at the surface. 

 

The temperature profiles for different values of Pr when 1.45    are presented 

in Figure 3.6. It is seen that the temperature gradient at the surface increases as Pr 

increases. Thus, the local Nusselt number (0) , which represents the heat transfer rate at 

the surface increases (in absolute sense) as the Prandtl number Pr increases.  

 

 

Figure 3.5 Temperature profile ( )   for various values of 0   when Pr = 1 
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Figure 3.6 Temperature profile ( )  for various values of Pr when 1.45    

 

The temperature overshoot shown in Figures 3.5 and 3.6 stems from the balancing 

act between the heat transfer from the solid boundary and its diffusion into the boundary 

layer and convection from the moving flows. It is dependent upon the Prandtl number Pr 

and the stretching/shrinking parameter  . If the production of heat (heat transfer and 

diffusion) is greater than the convection term, then there will be accumulation of heat and 

thus the increase of temperature. For the stretching case, there is no temperature overshoot, 

as shown in Figures 3.7 and 3.8. Both Figures 3.7 and 3.8 show that increasing Pr or   is 

to decrease the thermal boundary layer thickness, and in consequence increases the local 

Nusselt number (0) . Thus, the heat transfer rate at the surface increases as Pr or   

increases. 
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Figure 3.7 Temperature profile ( )  for various values of Pr when 0.5   

 

 

 

 

 

Figure 3.8 Temperature profile ( )   for various values of   when Pr = 1 
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The velocity profiles for selected values of ( 0)   are presented in Figure 3.9. 

This figure shows that the velocity gradient at the surface is zero when 1  , positive 

when 1  , and negative when 1  . This observation is in agreement with the results 

presented in Figure 3.2. We also note that the velocity boundary layer thickness decreases 

as   increases. Finally, the velocity and temperature profiles for selected values of 

parameters presented in Figures 3.4-3.9 show that the far field boundary conditions (3.8) 

are satisfied asymptotically, thus supporting the validity of the numerical results obtained, 

besides supporting the dual nature of the solutions to the boundary value problem (3.6)-

(3.8).  

 

 

Figure 3.9 Velocity profile ( )f   for various values of   
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3.4  Conclusions 

The problem of stagnation-point flow over an exponentially shrinking/stretching 

sheet immersed in an incompressible viscous fluid was investigated numerically. 

Similarity solutions were obtained, and the effects of the governing parameters, namely 

the shrinking/stretching parameter   and the Prandtl number Pr on the fluid flow and heat 

transfer characteristics were discussed. It was found that dual solutions exist for the 

shrinking case, while for the stretching case, the solution is unique. Moreover, it was 

found that increasing the Prandtl number is to increase the heat transfer rate at the surface.  
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CHAPTER 4 

 

BOUNDARY LAYER FLOW AND HEAT TRANSFER OVER AN 

EXPONENTIALLY STRETCHING/SHRINKING PERMEABLE SHEET WITH 

VISCOUS DISSIPATION 

 

4.1  Introduction 

The study of fluid flow over a stretching/shrinking sheet has diverse technological 

applications in industrial processes. Many of the industrial manufacturing processes 

involve material sheeting production in metal or polymer sheet (Altan et al. 1983; Fisher 

1976). For instance, manufacturing of glass fiber, drawing of plastic sheets, polymer melts, 

metallic plate in a cooling bath, and the cooling and drying of papers. The quality of the 

final products depends heavily on the rate of heat transfer at the stretching or shrinking 

surface (Karwe & Jaluria 1988).  

  

For these applications, Crane (1970) was one of the earlier pioneers to discuss two-

dimensional steady flow of an incompressible viscous fluid over a stretching sheet. He 

gave a closed form solution for the boundary layer flow on a moving plate. Chen (1998) 

analyzed the effect of thermal buoyancy forces on mixed convection boundary layer flow 

pass a stretching sheet, where the temperature varies in a power law form. He reported that 

the buoyancy force parameter induced the surface heat transfer rate. Similar fluid flows 

induced by stretching sheet have been considered by several researchers in various aspects 

(see Ishak et al. 2006b, 2007; Ishak 2009; Bataller 2008a, 2008b; Weidman & Ali 2011).  
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Besides the flow due to a stretching sheet as discussed, our objective is also to 

discuss the flow and heat transfer characteristics that are brought about by the shrinking 

sheet. This type of flows has been considered by several authors. One of the earlier fluid 

flows of this nature was first discussed by Miklavčič and Wang (2006). Their numerical 

solution becomes non-unique after some critical mass suction s . For stretching sheet, 

previous studies (Gupta & Gupta 1977) show that the solutions are unique for all suction 

rates. Later, Wang (2008) studied the effects of axisymmetric stagnation point flow over a 

shrinking/stretching sheet in power-law form. The axisymmetric case shows that for 

shrinking with suction rate 1.2465s   , no solution exists.   

 

However, there are other various interesting studies in stretching or shrinking cases. 

Van Gorder and Vajravelu (2011) studied second grade fluid flows over an exponentially 

stretching or shrinking surface which admits an explicit exact solution. Van Gorder (2010) 

also investigated the nonlinear boundary value problems inclusive of mass transfer with 

exponentially decaying solution and provided the criterion for the existence of single and 

multiple solutions. Fang and Zhang (2009) obtained exact solution for MHD flow over a 

linear shrinking sheet with suction and injection. Multiple solution branches were 

observed for certain mass suction parameter. Later, Fang et al. (2009) considered unsteady 

flow through shrinking sheet in porous medium. They showed that for mass suction 2s  , 

the solution exists. Recently, researchers such as Cortell (2010), Noor et al. (2010), Fang 

et al. (2010), Merkin and Kumaran (2010) and Ishak et al. (2010a) have numerically 

studied the flow induced by a shrinking sheet with diversely different features, for 

example micropolar fluid, unsteady state, MHD and second order slip flows.  
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Motivated by the above investigations, we study the boundary layer flow and heat 

transfer over an exponentially stretching/shrinking permeable sheet with viscous 

dissipation. The skin friction coefficient and the local Nusselt number are determined for 

the flow field and the thermal field, respectively.  

 

4.2  Problem Formulation 

Consider a steady two-dimensional boundary layer flow and heat transfer of a 

viscous and incompressible fluid over an exponentially stretching/shrinking permeable 

sheet as shown in Figure 4.1. The Cartesian coordinates ( yx, ) are taken such that the 

x axis is measured along the sheet oriented in the horizontal direction and the y  axis is 

perpendicular to it.  

 

 

Figure 4.1 Physical model and coordinate system 

 

It is assumed that the velocity of the stretching/shrinking sheet is ( ) exp( / )w wxu U x L , 

the surface temperature is 0( ) exp(2 / )w xT T T x L   and the ambient uniform 

temperature is T , where L is the reference length and 0 0T  . Under the boundary layer 

approximations, the governing equations of continuity, momentum and energy are  
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,         (4.3)

  

subject to the boundary conditions 

 

             
 ( )wu u x  , ( )wv v x , ( )wT T x  at 0y  , 

 0u  , T T  as y  ,                       (4.4)

  

where + and – signs correspond to a stretching and a shrinking sheet, respectively,   is the 

kinematic viscosity,   the fluid density, pC  the specific heat at constant pressure, k  the 

thermal conductivity and   is the dynamic viscosity. 

 

To obtain similarity solution, we introduce the following similarity variables: 
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                            (4.5)       

 

where   is the stream function defined as /u y    and /v x   , which identically 

satisfies Equation (4.1). By this definition, we obtain 
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 exp ( ), exp ( ) ( )
2 2

w
w

Ux x
u U f v f f

L L L


   

  
      

   
                              (4.6) 

where prime denotes differentiation with respect to  . Further, to obtain similarity 

solution, we take 

 

                     

( ) exp
2 2

w
w

U x
v x s

L L

  
   

 
                                                                  (4.7) 

 

where (0)s f is a constant: 0s   corresponds to suction, 0s  corresponds to injection 

or blowing , 0s   corresponds to an impermeable surface. 

 

Substituting (4.5) and (4.6) into Equations (4.2) and (4.3), we obtain the following 

system of nonlinear ordinary differential equations: 

 

                        
22 0f ff f     ,                                             (4.8)

  21
4 Ec 0

Pr
f f f         .          (4.9) 

 

The boundary conditions (4.4) then become 

 

                        (0)f s ,          (0)f   ,          (0) 1  , 

            ( ) 0f   ,         ( ) 0             as   ,                  (4.10) 
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where 1  is the stretching/shrinking parameter, Pr  is the Prandtl number and Ec  is 

the Eckert number, which are defined as 

 

                            

2

0

Pr  ,          Ec .
p w

p

C U

k T C


                                                              (4.11) 

Here 1   denotes stretching sheet whilst 1    is a shrinking sheet. 

 

The main physical characteristics of interest in the present problem are the skin 

friction coefficient fC  and the local Nusselt number xNu , which are defined as 

 

  
2

  ,        
( )

w w
f x

w w

xq
C Nu

u k T T



 

 


,                                       (4.12) 

     

respectively, where the surface shear stress w  and the surface heat flux wq  are given by 

 

  
0 0

,         .w w

y y

u T
q k

y y
 

 

    
     

    
                                  (4.13) 

 

Substituting (4.5) into Equations (4.12) give  

 

  

1 1

2 2
1/2 1/22 2

Re (0)  ,         Re (0)f x x x

L L
C f Nu

x x
   

      
   

             (4.14) 

 

where Re /x wu x 
 
is the local Reynolds number.  



 

52 

 

4.3  Results and Discussion 

Numerical results are presented for different physical parameters. Since the flow 

problem is uncoupled from the thermal problem, changes in the values of Pr and Ec will 

not affect the fluid velocity. Therefore, Pr and Ec are considered unity throughout this 

chapter except where stated in the graph. Typical dimensionless stream function and the 

streamlines for 1   (stretching) are shown in Figures 4.2a and 4.2b, respectively. 

 
Figure 4.2a Dimensionless stream function ( )f   for various values of s  when 1    

 

 

 
Figure 4.2b Streamlines for 0s   and 1    
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4.3.1  Stretching Case, 1   

Figure 4.3 shows the skin friction coefficient (0)f   against suction/injection 

parameter s . We see that increasing the suction ( 0s  ) increases the magnitude of the 

skin friction coefficient, while injection acts in the opposite manner. Thus, the drag force 

is larger for suction compared to injection.  

 

Figure 4.3 Variation of the skin friction coefficient (0)f   with s  when 1   
 

Figures 4.4 and 4.5 display the variations of the local Nusselt number (0)  with 

s  for some values of Prandtl number Pr and Eckert number Ec, respectively. Both figures 

clearly show the significant effects of Pr and Ec toward Nusselt number respectively as s 

increases. In Figure 4.4 the local Nusselt number, which represents the heat transfer rate at 

the surface, increases with increasing Pr. Note that as s , (0) 0.0513  . 

However, in Figure 4.5 the heat transfer rate at the surface decreases to a minimum value 

when Ec  is increasing; in fact as s , (0) → 0.06975 for all Ec number 

considered. This is due to viscous dissipation. 



 

54 

 

 

Figure 4.4 Variation of the local Nusselt number (0)  with s for various values of Pr 

when 1  and Ec = 1 

 

 

Figure 4.5 Variation of the local Nusselt number (0)  with s for various values of Ec  

when 1  and Pr = 1 
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Further, Figure 4.6 illustrates the velocity profile ( )f   for various values of s . At 

any fixed  , it is found that when s  increases the velocity ( )f   decreases. This implies 

that the boundary layer thickness decreases as s  increases. Figure 4.7 shows the 

temperature profiles ( )   for various values of s . It can be seen that as s  increases the 

thermal boundary layer thickness becomes thinner. This implies the temperature gradient 

at the surface increases as s  increases. Thus the heat transfer rate at the surface increases 

as s increases, which is consistent with the result presented in Figure 4.4.  

 

 

Figure 4.6 Velocity profile ( )f   for various values of s  when 1   
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Figure 4.7 Temperature profile ( )   for various values of s  when 1,Pr 1 and Ec 1     

 

4.3.2  Shrinking Case, 1    

For shrinking boundary, the behaviors of the graphical results are dramatically 

different from the stretching boundary. Figure 4.8 shows the profile for the skin friction 

coefficient (0)f   when s  is positive (suction). In this figure, we note that two branches of 

solutions are found. The solid lines are the upper branch solutions and the dash lines are 

the lower branch solutions. We define the upper branch solutions by how they appear in 

Figure 4.8, i.e. the upper branch solution has a higher value of (0)f   for a given s than the 

lower branch solution. As can be seen in Figure 4.8, there exist a critical value cs s
 
such 

that for cs s there will be no solution, while dual solutions exist for cs s . Our numerical 

results show that 2.1278cs  . The solutions bifurcate at 0
c

s s    and form upper and 

lower branches. For the upper branch, solution exists for larger values of s than shown in 

Figure 4.8, whereas for the lower branch, solution exists up to 5.7024s  . It is worth 

mentioning that the computations have been performed until the solution does not 
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converge, and was terminated at that point. The dual solutions exhibit the normal forward 

flow behavior and the other is reversed flow where ( ) 0f   . It is observed that solutions 

only exist for certain wall suction value; no solution exists with wall injection. Therefore, 

suction plays an important role to maintain the existence of solution of fluid flow in 

shrinking boundary.  

 

 

Figure 4.8 Variation of the skin friction coefficient (0)f   with s  when 1    

 

Figures 4.9-4.10 display the variations of the local Nusselt number (0)  with s  

for various values of Pr and Ec , respectively. In these figures, for the lower branch 

solutions, it is clear that the heat transfer rate at the surface tends to   as it approaches 

2.33s   from the left, and tends to   from the right. Thus, we expect that the lower 

branch solution is not physically relevant. Figure 4.9 shows that for the upper branch 

solutions, the heat transfer rate at the surface increases as Pr increases when 2.5s  . It is 

noted that positive value of (0)  denotes the heat is transferred from the sheet to the 
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fluid and vice versa. On the other hand, in Figure 4.10 for the upper branch solution it can 

be seen that at any chosen   the value of (0)  decreases as Eckert number increases. 

The bifurcation points ( , (0))cs   for Figures 4.9 and 4.10 are given in Table 4.1. It is 

worth mentioning to this end that as in similar physical situations, we postulate that the 

upper branch solutions are physically stable and occur in practice, whilst the lower branch 

solutions are not physically realizable. This postulate can be verified by performing a 

stability analysis but this is beyond the scope of the present study. However, the interested 

reader can find the procedure for showing this in the papers by Merkin (1985), Weidman 

et al. (2006), Harris et al. (2009), Mahapatra et al. (2011) and Postelnicu and Pop (2011). 

A snapshot of the ( )  variation for various values of Pr and Ecwhen 2.3s   can be seen 

in Figures 4.11 and 4.12 respectively. 

 

 

Figure 4.9 Variation of the local Nusselt number (0)  with s  for various values of Pr 

when 1    and Ec 1  
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Figure 4.10 Variation of the local Nusselt number (0)  with s  for various values of 

Ecwhen 1   and Pr = 1 

 

 

 

 

Table 4.1 Values of (0)  for bifurcation points in Figures 4.9 and 4.10 

Ec Pr s (0)  

1 0.72 2.1278 -2.3153 

 1.0 2.1278 -4.9595 

 1.2 2.1278 -7.7316 

    

0 1 2.1278 -2.9139 

0.2  2.1278 -3.3230 

0.5  2.1278 -3.9367 

1.0  2.1278 -4.9595 
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Figure 4.11 Temperature ( )   variation, with 2.3s   and Ec 1 , for various values of 

Pr when 1   . 

 

 

 

 

 

Figure 4.12 Temperature ( )   variation, with 2.3s   and Pr 1 ,  for various values of 

Ec  when 1   . 
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We now consider the characteristics of dimensionless velocity and temperature 

profiles in shrinking boundary layer as shown in Figures 4.13 and 4.14, respectively. In 

Figure 4.13 it is clear that the upper branch solutions have a positive velocity gradient in 

the neighbourhood of the surface, whereas for the lower branch solutions the velocity 

gradient is negative when 2.619s  . This implies that above the sheet there exist a region 

of reversed flow. This result agrees well with the existence of dual solutions in Figure 4.8. 

In Figure 4.14, for any fixed station   the upper branch temperature profile decreases as s  

increases, whilst for the lower branch solutions there exist a minimum negative value of 

temperature ( )   for the respective s . Since the temperature ( )  is always positive by 

definition, see Equation (4.5), the lower branch temperature solution is physically 

unrealistic. Thus for realistic boundary layer and temperature solutions, these lower 

branch solutions must be disregarded. Although such solutions are deprived of physical 

significant, they are nevertheless of interest as far as differential equations are concerned 

(Rhida 1996).  

 

Figure 4.13 Velocity profile ( )f   for various values of s  when 1    
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Figure 4.14 Temperature profile ( )   for various values of s  when 

1,Pr 1,  and 1Ec      

 

The velocity and temperature profiles for 3.5s   when 1    are presented in 

Figures 4.15 and 4.16, respectively. Both profiles show existence of dual solutions for the 

boundary layer induced by a shrinking sheet. It can be seen that all of these solutions 

profiles approach the far field boundary condition (4.10) asymptotically; thus supporting 

the numerical results obtained.  
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Figure 4.15 Velocity profile ( )f    when 3.5s   for 1   

 

 

 

 

Figure 4.16 Temperature profile ( )   for 1  when 3.5,Pr 1, 1s Ec    
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4.4  Conclusions 

The problem of boundary layer flow and heat transfer over an exponentially 

stretching/shrinking permeable sheet with viscous dissipation was investigated 

numerically. Similarity equations were obtained and solved numerically, and the effects of 

the governing parameters on the fluid flow and heat transfer characteristics were 

discussed. It was found that dual solutions exist for the shrinking boundary, while for the 

stretching boundary, the solution is always unique. Moreover, it was found that suction 

increases both the skin friction coefficient and the heat transfer rate at the surface.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

In this thesis, we have studied the viscous fluid flows and heat transfer boundary 

layer problems over a stretching or shrinking sheet. We have derived the general equations 

for fluid motion and heat transfer from the laws of conservation of mass, linear and 

angular momentum and energy in Chapter 1. Under the assumption of Prandtl’s boundary 

layer theory and order of magnitude analysis, as well as focusing on steady state and two 

dimensional problems, the set of nonlinear PDE Navier-Stokes equations are reduced to 

steady, two-dimensional incompressible boundary layer fluid flows and heat transfer 

equations. Later, we have made use of the similarity transformation to reduce the 

governing boundary layer partial differential equations to a system of nonlinear ordinary 

differential equations. Therefore these resulting nonlinear systems of ODEs are now 

amenable to be solved numerically.  In this thesis our objective is to study flows and heat 

transfer rates in the vicinity of stagnation point. At this point the flow velocity is at its 

minimum whilst the heat transfer rate is at its maximum.  

 

We used the Keller-box method, originally suggested by Keller (1970), to solve 

the reduced governing nonlinear ordinary differential equations. The method is second 

order and unconditionally stable. Central differences techniques are constructed to replace 

the derivatives and the resulting non-linear difference equations are linearised by 

Newton’s method. Then the linearised equations are solved by the block tridiagonal 

elimination method. The Keller box method has been applied to the three different 

problems respectively in Chapter 2-4.  
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In Chapter 2, we studied the effect of buoyancy forces towards a stretching vertical 

sheet immersed in viscous fluid, with the sheet velocity given in power form. The far field 

velocity is also of the power form. The buoyancy forces are either of assisting or opposing 

the fluid motion in the boundary layer. From our calculations, for assisting buoyancy force, 

all solutions are unique. In the case of opposing buoyancy force, dual solutions are 

obtained up to a certain critical value c . This critical value c  depends on the values of 

velocity exponent parameter m and the velocity ratio parameter  . The higher the velocity 

exponent parameter m , the higher is this critical value c . The value of c  also increases 

when the velocity ratio parameter   increases. 

 

In Chapter 3, we discussed the stagnation point flow over a stretching or shrinking 

sheet immersed in viscous fluid, with the sheet in the horizontal direction. The deduced 

boundary layer equations are decoupled. The sheet velocity, far field fluid velocity and 

surface temperature are given in exponential form. The stretching or shrinking parameter 

is given by  , with 0   denoting stretching and 0   shrinking. Our results show that 

all solutions are unique for 1   , that is for all stretching and shrinking cases.  For the 

shrinking case, dual solutions are obtained from 1    up to a critical value 

1.4872c   . This agrees very well with the results of Bhattacharyya and Vajravelu 

(2011). For heat transfer rate our results show that for stretching rate 1  , the heat 

transfer rate increases as Prandtl Pr increases. This is also true for any other 0  . When 

1  , the exact solution for the fluid velocity field is ( )f   .  
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In Chapter 4, the above problem in Chapter 3 is extended to include the effects of 

mass transfer and viscous dissipation. The suction or injection parameter is given by s, 

with 0s   denoting suction and 0s   injection. From our calculation, for the stretching 

case, all solutions are unique for either suction or injection. However, in the shrinking case, 

dual solutions are obtained from 5.7024s   down to a critical value 2.1278cs  . No 

solution exists smaller than this critical value cs , that is no solution exists for cs s
 
for 

injection case. This agrees very well with the results of Bhattacharyya (2011). For heat 

transfer rate, our calculations show that for stretching case, the heat transfer rate increases 

as Prandtl Pr increases. Whilst the heat transfer rate increases when Eckert Ec decreases. 

 

Looking ahead, in this thesis we have successfully analyzed exponentially form 

forced convection boundary layer problem in Chapter 3 and also a similar problem in 

Chapter 4 but with mass transfer through the sheet. We can extend this idea of exponential 

form to the body temperature or temperature heat flux and then letting the created motion 

to settle down. This is free convection. But most problems of this nature are mixed 

convection. Thus free and mixed convection studies can be made in future investigation. 

The effects of magnetic field, porous medium, heat flux, slip condition, non-Newtonian 

fluids such as micropolar fluids can also be considered. However the current algorithms 

developed for solving the system of nonlinear ODEs in this study are second order 

accurate and the accuracy is found wanting. Apart from that, a systematics method not 

only to relate   and computational accuracy but also searching multisolutions and higher 

convergence should be looked into seriously. Therefore, a higher order accuracy algorithm 

and a more robust and stable scheme is needed to study these more delicate free and 

mixed convection problems.  
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