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Abstract 

 

Dusty plasma typically consists of electrons and ions with micron-size charged dust 

particles. Due to complex inter-species interactions, the system accommodates rich 

phenomena such as formation of strongly-coupled states, structural phase transition, 

formation of linear and non-linear waves, and anomalous diffusion behavior that 

violates the Fick’s law. Particles motion in dusty plasma can be modeled using 

Brownian motion, but this model is inadequate to fully capture the detailed dynamics. In 

this study, charged dust particle dynamics is investigated using stochastic process with 

fractal characteristics based on the fractional calculus. Dusty plasma is generated using 

a capacitively coupled 13.56 MHz radio frequency (rf) gas discharge system and 

different particle states are observed by varying the neutral gas pressure. Particle motion 

are probed by monitoring the intensity fluctuation of scattered light in dynamic light 

scattering (DLS) experiment and particle trajectories obtained from particle tracking 

using digital video camera. In DLS experiment, particle transport mechanisms are 

deduced by fitting empirical intensity correlation functions using different transport 

models, which include purely ballistic, purely diffusive, and hybrid ballistic-diffusive 

transport model with the assumption of monodisperse particles. The hybrid model is 

found to be most accurate in describing the particle transport. A new correlation model 

based on a non-standard fractional Langevin equation is introduced to model 

polydisperse dust particles dynamics.  In particle tracking experiment, time-dependent 

scaling behavior in particles’ mean-square-displacement (MSD) is observed. This is 

consistent with the results from DLS experiment that shows dust particles undergo fast 

ballistic transport at short time scale and slow dynamic at longer time duration.  

Transient anomalous diffusion is described using a simple generalization of Riemann-

Liouville fractional Brownian motion. The study is concluded with a brief discussion on 

how the DLS and MSD approaches can be corroborated to give useful insights into 

complex particle transport in dusty plasmas. 
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Abstrak 

Plasma berdebu biasanya terdiri daripada electron, ion dan zarah debu yang bersaiz 

mikron. Interaksi antara spesies-spesies dalam plasma berdebu membentuk pelbagai 

fenomena yang menarik seperti pembentukan fasa terganding tinggi, peralihan fasa, 

pembentukan gelombang linear dan bukan linear, dan resapan anomali yang 

bertentangan dengan hukum Fick. Gerakan zarah dalam plasma berdebu boleh 

dimodelkan dengan menggunakan gerakan Brown, tetapi model ini tidak mencukupi 

untuk memgambarkan dinamik zarah dengan terperinci. Dalam kajian ini, dinamik 

zarah debu dikaji menggunakan proses stokastik dengan ciri-ciri fraktal berdasarkan 

kalkulus pecahan. Sistem plasma berdebu ini menggunakan sistem radio frekuensi 

13.56 MHz terganding kapasitif. Plasma berdebu yang berlainan fasa telah diperhatikan 

apabila tekanan gas neutral diubah. Gerakan zarah diamati dengan menganalisis 

fluktuasi keamatan cahaya yang diserakan oleh zarah-zarah debu dalam eksperimen 

penyerakan cahaya dinamik. Selain itu, gerakan zarah juga dikaji melalui trajektori 

zarah yang diperolehi dari penjejakan zarah menggunakan kamera video digital. Dalam 

eksperimen penyerakan cahaya dinamik, jenis dinamik zarah ditentukan oleh mengkaji 

korelasi keamatan cahaya menggunakan model dinamik yang berlainan yang termasuk 

balistik, resapan, hibrid balistik-resapan dengan andaian zarah bersaiz sama. Antara 

model-model ini, model hibrid didapati paling tepat dalam menerangkan dinamik zarah. 

Satu model korelasi baru berdasarkan persamaan non-standard fractional Langevin 

diperkenalkan untuk model dinamik zarah yang berlainan saiz. Dalam eksperimen 

penjejakan zarah debu, sifat penskalaan dalam sesaran purata kuasa dua yang 

bergantung kepada masa telah diperhatikan. Ini adalah selaras dengan keputusan dari 

eksperimen penyerakan cahaya dinamik yang menunjukkan zarah debu menjalani 

gerakan balistik pada skala masa yang singkat dan dinamik perlahan pada tempoh masa 

yang lebih panjang. Resapan anomali ini boleh dimodel oleh model Riemann-Liouville 

fractional Brownian motion. Kajian ini diakhiri dengan perbincangan ringkas mengenai 

bagaimana pendekatan penyerakan cahaya dinamik dan sesaran purata kuasa dua boleh 

memberikan pandangan yang berguna kepada dinamik zarah dalam sistem plasma 

berdebu yang kompleks. 
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Chapter 1  

Introduction 

 

1.1 Dusty plasma 

Dusty plasma is loosely defined as normal electron-ion plasma with additional highly 

charged (10
3
-10

5
 elementary charges) components of micron-or submicron-sized 

particulates (10
10

-10
12

 ion masses) (Shukla & Mamun, 2002). Figure 1.1 shows a 

depiction of negatively charged dust in plasma environment. The large particle size and 

slow time-scale of particle motion (in a fraction of a second) enable direct observation 

at the kinetic level by using simple fast video camera.  

In most naturally occurring and some artificial cases, dust particles coexist in the 

plasma. These dust particles can be charged either negatively or positively depending on 

their surrounding plasma environment and the charging mechanisms. The physics of 

dusty plasmas received its first major boost in the early 80s when Voyager space probes 

identified nearly radial ‘spokes’ around outer portion of Saturn’s B ring which was later 

explained by the presence of fine dust (Smith et al., 1982).  

 

Figure 1.1 Negatively charged dust particles in plasma environment consist of ions and 

neutrals. 



2 

 

The second major advancement occurred in late 80s in the semiconductor industries 

where issues of particle contamination caused problem in semiconductor industries 

wafer production. Through laser scattering experiments, it was found that particles are 

formed and growing in the gas phase before falling onto the wafer. The inclusion of 

nano- or micrometer-sized particle in a controlled industrial/ laboratory processes have 

opened a wide range of new applications, such as flat-panel displays, thin film 

transistors, solar cells, charged aerosols and particulate powders used for material 

synthesis (Boufendi & Bouchoule, 2002). 

 

1.2 Complex physical phenomena in dusty plasmas 

The interaction between charged particles and the ambient environment is a many-body 

problem. The forces acting on one single dust particle include neutral drag force, 

gravitational force, ion drag force, thermophoresis force, and photophoresis force. Due 

to the highly charged nature, the electrostatic coupling between particles is strong 

enough to enable the formation of strongly coupled, ordered (crystalline and liquid) 

plasma phases. When the dusty plasma system’s thermal energy is increased, one can 

get disordered liquid state and gaseous state dominated by binary collision will form at 

higher temperature. The real plasma is never in a quiescent state due to the long-range 

interaction, thus the collective nature of the plasma dominates its behavior. The particles 

act synchronously by organizing themselves as waves, modes, vortices or streamers, 

which may interact among themselves or with individual particles. The presence of 

charged dust in plasma not only changes the existing plasma wave’s characteristics, but 

also introduces a number of new modes such as dust acoustic waves, dust ion acoustic 

waves, and dust lattice waves (Rao, Shukla, & Yu, 1990; Verheest, 2000).  
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1.3 Motivation of study 

The rich dynamical process in dusty plasma can be described using the Yukawa model 

(Hou, Piel, & Shukla, 2009; Ott & Bonitz, 2009). The model considers charged particles 

levitated in a confinement potential well and interact with each other via isotropic 

screened Coulomb potential (or Yukawa / Debye-Huckel potential). Particles are 

coupled to the background neutrals through frictional force and stochastic momentum 

gain that follow white Gaussian noise. Such model predicts transient anomalous 

diffusive behavior that violates the Fick’s law (Bouchaud & Georges, 1990). At longer 

time scales, the transport behavior converges to normal diffusion. However, the model 

does not fully consider the complexity of dusty plasma system such as the attractive 

inter-particle potential  due to shadowing and focusing effects (Trottenberg, Melter, & 

Piel, 1995), anisotropy plasma environment near the sheath region (Hutchinson, 2005) 

and etc. In this study, the particle dynamics is investigated using stochastic process with 

fractal characteristics based on the framework of fractional calculus (Miller & Ross, 

1993). One of the distinctive features of the stochastic process introduced in this work is 

its long-range correlation property that does not exist in the traditional diffusion model 

based on Brownian motion. The application of fractional calculus based approaches for 

studying complex dynamics in dusty plasma is relatively new in spite of its extensive 

use in many other areas (Miller & Ross, 1993).  
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1.4 Objectives 

The aims of this work can be summarized as following: 

 To setup the optical diagnostic technique for studying particle dynamics in dusty 

plasma,  

 To investigate temporal fluctuation of light scattering signal, 

 To determine the particle transport dynamics based on visualization technique. 

 

1.5 Thesis layout 

Following this chapter, the introduction to dusty plasma and related physical 

phenomena with emphasis on transport behavior are given in Chapter 2. Previous 

studies on anomalous diffusion processes in dusty plasma are also reviewed. The 

chapter also includes brief descriptions of the two most common diagnostic methods in 

dusty plasma, namely dynamic light scattering and particle visualization technique. 

Theoretical concepts on relevant stochastic processes and fractional calculus are given 

in this chapter, which will serve as the tools for modeling fluctuation as well as 

transport phenomena. Chapter 3 contains the experimental setup of the radio-frequency 

capacitively coupled dusty plasma system and the optical diagnostic system: dynamic 

light scattering and particle visualization technique. The image processing routines and 

particle location identification algorithm are described here. The main findings of this 

study are presented in Chapter 4 with two main sections on particle diagnosis, one 

focusing on the dynamic light scattering experiment and the other on the particle 

tracking analysis for particle transport characterization. The results are also discussed in 

the same chapter with a perspective towards providing a coherent interpretation of the 

transport behavior in disordered gas and liquid state as observed and analyzed using 
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DLS and particle tracking analysis. The study is concluded in Chapter 5 with a brief 

remark on stochastic modeling of DLS signal and anomalous diffusion plus some 

potential avenues for further investigation. 
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Chapter 2  

Literature review 

Some fundamental concepts in dusty plasmas such as particle charging process, particle 

mechanics, phase transition and collective behaviors are briefly discussed at the 

beginning of this chapter. One type of collective behaviors that have received great 

attention in recent years is the particle transport phenomena, particularly the anomalous 

diffusion process. In order to study particle dynamics in dusty plasma, two most 

common diagnostic methods used to study particle dynamics in dusty plasmas, namely 

the dynamic light scattering and particle visualization technique are used. The observed 

transport process and associated fluctuation behavior are analyzed and modeled using 

stochastic model formulated using fractional calculus. 

2.1 Dusty plasma 

Dusty plasma is a collection of electrons, ions, neutrals, and macroscopic dust particle 

of nano to micrometer size. Depending on the charging mechanism, the dust particle can 

be positively or negatively charged. However, in a laboratory environment, dust particle 

charged by inflow of electrons and ions will acquire a net negative charge due to the 

higher mobility of electrons. Typical dust charge can get up to the order of 10
3
-10

5
 

elementary charges, resulting in strong coupling in dust particles than the background 

plasma. The negatively charged dust grain attracts the plasma species, forming a Debye 

layer which shields the grain potential as depicted in Figure 2.1. 

 

Figure 2.1 Shielding of dust grain Coulomb potential. 
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In laboratory plasma system, micron-sized dust grains can be confined in a 

capacitively coupled radio frequency (rf) discharge by the balance between external 

forces acting on the dust, which includes gravity, ion drag force and the electric force in 

the plasma sheath of the lower electrode. Dust grain in plasma undergoes anomalous 

heating due to ion focusing, stochastic fluctuations and spatial variations of particle 

charge and ion streaming instabilities (Fortov, Ivlev, Khrapak, Khrapak, & Morfill, 

2005). The thermal motion is damped by background gas by friction and when the 

electrostatic interaction energy of the dust grains exceeds their thermal energy, a 

strongly coupled state would be formed. When particles are close to each other, they 

interact through screened Coulomb potential or the Debye-Huckel (Yukawa) potential 

in the form of V= Qd exp(−Δ/λD) / Δ, where Qd is the charge of dust grain, λD is the 

Debye screening length and Δ is the inter-particle distance. 

 

2.2 Physical phenomena  

2.2.1 Particle charging  

Strong coupling of dust particles is one of the key features in dusty plasma systems. To 

understand the origin of strong coupling, it is important to comprehend the charging 

mechanism of dust particle first. The charging mechanism on an isolated dust grain is 

similar to a probe immersed in plasma. Fluxes of electrons and ions flow onto the grain 

surface determine the charging provided the electron emission processes are negligible. 

Since in low temperature rf plasma electrons have higher velocity, hence the dust grain 

will get negatively charged. The increasing negative charge of dust will repel electrons 

and attracts positive ions, until a balance between electron and ions fluxes Φe and Φi is 

reached (Goree, 1994).  The variation of charge in an equilibrium state can be expressed 

as  
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 Φ  Φ     

 

 

(2.1) 

 

The electron and ions fluxes are calculated with the assumption of electrons and 

ions inside the grain potential follow orbital-type motion with Maxwellian energy 

distributions. This approach is termed Orbital Motion Limited (OML) theory. 

According to the OML theory, the first approximation of the fluxes can be written as 

(Allen, 1992) 
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(2.3) 

 

where ne and ni are the electron and ion densities, Te and Ti are the electron and ion 

temperatures, me and mi are the electron and ion mass respectively, e is the elementary 

charge, kB is the Boltzmann constant, V is the dust surface potential and rd is the particle 

radius. By equating the particle fluxes Φe = − Φi, one gets 

 

  
  

    
  

    
    

  
  
     

  

    
  

 

 

(2.4) 

 

and the grain potential V is then solved numerically (Goree, 1994). For a spherical dust 

particle with radius rd, the grain charge is Qd=Zde=CdV, where Zd is the number of 

charges on dust grain and Cd=4 π ε0 rd (1+ rd /λD) is the capacitance of a spherical 

conductor (Fortov, Ivlev, Khrapak, Khrapak, & Morfill, 2005). By considering an 

isolated charged grain, which implies λD >> rd, one can obtain Qd= 4 π ε0 rd V. 

 Orbital Motion Limited charging model is only applicable in the most idealized 

scenario. In real experimental condition, there are some other factors that need to be 

considered as well. For a certain type of grain potential, the potential barrier reflects 
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ions that are supposed to be collected according to the OML theory. This contributes to 

the reduction of ion current collected by the negatively charged dust grain (Fortov et al., 

2005). The other factor that OML theory has neglected is the ion-neutral collision. Ion 

loses energy from the collision with neutral atom as it travels toward the dust grain. 

Because of that, these ions are more likely to be captured by the grain attraction, and 

that increases the ion fluxes into the dust grain (Lampe et al., 2003).  

In the presence of many dust particles, consideration of an isolated dust grain is 

not a realistic assumption. In such condition, inter-particle distance can be smaller than 

Debye length, which means that the trajectories of ions and electrons flowing toward a 

dust grain will be affected by neighboring particles. The large number of dust grains 

will also deplete the plasma species and hence affecting the local plasma potential 

(Barkan, Dangelo, & Merlino, 1994). This causes a reduction of potential difference 

between local plasma and grain surface, thus grain potential becomes more positive 

(Goertz, 1989).  

In rf experimental setup, dust particles are levitated in the plasma sheath region 

where the plasma is not isotropic, thus they do not follow the Maxwell-Boltzmann 

velocity distribution. In the sheath region with parabolic confinement potential, ions 

travel at Bohm velocity vB= (kBTe/mi)
1/2

 and are further accelerated (Tomme, Law, 

Annaratone, & Allen, 2000). As the ion streaming velocity exceeds that of thermal 

velocity of ions, the charge of dust grain will rise.  

 It is worth mention here that the charge of a dust grain is not a constant 

parameter but a time-varying stochastic variable itself. However, the typical charging 

time of a dust grain is in the order of microsecond, faster than the time scale of 

macroscopic particle movement. Therefore, it is reasonable to assume the particle 

charge to be constant as it responds to new plasma conditions almost instantaneously.  
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2.2.2 Particle mechanics 

In a plasma discharge, ions and electrons stream due to either the influence of electric 

field in plasma sheath or the ambipolar diffusion in plasma bulk. Having a relatively 

larger mass, ions flow causes dragging effect on a dust grain. The force exerted by the 

ion streams on dust particle comes in two forms, one is by ion scattering (Coulomb 

force) and another is by direct impact on the dust surface (collection force). Ion drag 

force is associated with the void formation (Goree, Morfill, Tsytovich, & Vladimirov, 

1999), wave phenomena and it also influences the stability of the dust structure (Fortov 

et al., 2005). Figure 2.2 shows a void formation in dusty plasma where there is an 

absence of dust grains at the center of the dust cloud. 

 

Figure 2.2 Void formation in polystyrene dust cloud. 

 

Another type of important forces acting on a dust grain typically in ground based 

experiment is the gravitational force. For a dust grain with radius rd, it experiences the 

gravitational force expressed as 

 
       

 

 
   

      

 

 

 

(2.5) 

 

where g is the acceleration of gravity and ρd is the density of the grain material. 

Gravitational force is very dependent on the size of dust particle. It is significant for a 

micron-sized particle but less dominant for a nano-sized dust grain. 
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Electrostatic force plays an important role in dust particle confinement. The 

parabolic potential of confinement in the plasma sheath region exerted a horizontally 

inward and vertically upward directed electrostatic force on the dust grain. The 

electrostatic force balances the ion drag and gravitational force, consequently enables 

the dust grain to levitate above the confinement electrode. In uniform plasma, the 

electrostatic force is given by 

             ,  

(2.6) 

 

where E denotes electric field.  

Another significant force acting on dust grain is the neutral drag force which 

originates from the friction between neutral gas atoms and dust grains. Neutral gas 

atoms damp the dust grain, thereby lead to the dust cooling and contribute to the 

formation of ordered dusty plasma structures. Meanwhile, a streaming neutral gas will 

generate shear flows on the dust grains (Morfill & Ivlev, 2009). The neutral drag force 

is expressed as (Epstein, 1924) 

 
      

 

 
   

                 

 

 

 

(2.7) 

 

in the limit of large Knudsen numbers Kn =λn /rd with λn as the mean free path for dust-

neutral collisions, mn, nn, and vTn are the mass, number density, and thermal velocity of 

the neutrals, and vd−vn is the relative velocity between dust component and neutrals. 

Parameter δ depends on the way neutral atoms are reflected by dust grain. For specular 

reflection (angle of incidence equals the angle of reflection), δ is equal to one.  

Thermophoretic force originates from the temperature gradient presents in 

background gas in which the momentum transfers from the hotter to colder side. It is 

expressed by (Jellum, Daugherty, & Graves, 1991) 
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(2.8) 

 

where    and Tn are the thermal conductivity and the temperature of the gas. 

Thermophoretic has been manipulated to sustain micron-sized particle levitation and 

even forming three-dimensional dust structures (Arp, Block, Piel, & Melzer, 2004). 

Dust grain also interacts with light that has high intensity such as a laser. There 

are two types of interactions between laser and dust grain. The first type is due to the 

radiation pressure of laser that pushes the dust grains along the beam direction (Ashkin, 

1970). The magnitude of such force is expressed as 

 
    

      
 

   
   

 

 

 

(2.9) 

 

where Ilaser is the laser intensity and ϒ is a coefficient describes the interaction of the 

photon with the grain surface (ϒ =1 for pure absorption and ϒ =2 for reflection). The 

second type of force is similar to thermophoretic force in which the laser heats the dust 

grain. When the dust grain is heated, neutral particles reflected on the hot side of the 

grain travel with higher velocity than on the cold side. Therefore, a net force is exerted 

on the particle along the beam direction.  

So far, the external forces acting on the dust particle are briefly described; 

however, it is also important to mention the interactions between dust particles 

themselves. In isotropic plasma, dust particle shielded by the ambient plasma interacts 

with other dust particles through Debye-Huckel or Yukawa type potential 

 
  Δ  

  
Δ
     

Δ

  
   

 

(2.10) 

 

where Δ is inter-particle distance and λ is Debye screening length. However, in an 

anisotropic plasma environment where a strong electric field is present and direct ion 

flow toward the electrode prevails, the geometry of grain potential is not symmetrical 
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anymore but showing an oscillating wake field with area of enhanced ion density 

downstream to the dust grain. It means that the shielding cloud around the dust grain is 

distorted downwards due to the ion streaming motion. Dust particles located lower in 

the sheath experience an attractive force by the upper layer particles, but the upper 

particles only experience a repulsive force from the lower. The manifestation of this 

effect is the vertical chain phenomena (see Figure 2.3) which is not a minimum energy 

configuration for purely repulsive particle interaction (Trottenberg, Melter, & Piel, 

1995). 

 

Figure 2.3 Vertical chains across several dusty plasma layers. 

 

2.2.3 Collective behaviors   

(a) Phases  

Phase state of a system of particles interacting via the Yukawa potential is characterized 

by the coupling and screening parameter. Coupling parameter is defined as the ratio of 

the potential energy between two particles to the average thermal energy 

 
  

  
 

    Δ    
  

 

 

 

(2.11) 

 

where Δ is the average inter-particle distance. When the electrostatic interaction 

exceeded the thermal energy, i.e.   > 1, the system is said to be strongly coupled. The 
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screening parameter is defined as the ratio of inter-particle distance Δ and screening 

length λD 

 
  

Δ

  
  

 

 

(2.12) 

 

For a three-dimensional Yukawa system, the phase diagram in the  , κ plane has 

been found using numerical simulations as shown in Figure 2.4 (Hamaguchi, Farouki, & 

Dubin, 1997). The system exhibit body centered cubic and face centered cubic 

structures at strongly coupled solid phase. Meanwhile in weakly coupled system, fluid 

phase is observed. In dusty plasma experiment, hexagonal crystal structure of many 

layers is commonly found compared to other crystal structures.    

 

 

Figure 2.4 Phase diagram of Yukawa system in the ( ,κ) plane, after (Hamaguchi et al., 

1997). 
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Figure 2.5 Dust particle trajectories at different structural states: (a) crystal, (b) melting, 

(c) disordered gas (Lai & I, 2002). 

 

Figure 2.5 (a) shows the top view of a hexagonal dusty plasma crystal while the 

vertically particles are on top of each other due to ion wake effect. When heated, the 

crystal would be first melted into liquid state where particles oscillate and flow in the 

horizontal plane as depicted in Figure 2.5 (b). If the thermal energy of particles is 

further increased, particles move very fast in three-dimension and become disorder as 

shown in Figure 2.5 (c). 

 

(b) Waves  

Another collective behavior which can be observed in dusty plasmas is wave’s 

excitation and propagation. Two types of wave which are commonly reported in dusty 

plasma experiments are the dust-acoustic wave (Rao, Shukla, & Yu, 1990) and dust 

lattice wave (Verheest, 2000). The dust-acoustic wave, driven by the electrons and ion 

pressure, travel with frequency lower than both ion and electron plasma frequency. On 

the other hand, dust lattice wave can be seen in crystal state and have different kind of 

modes that include compressional mode, shear mode or transverse mode depending on 

the particle motion relative to the wave motion (Verheest, 2000). 
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(c) Diffusion  

Diffusion is one of the transport processes occurs in nature. It is used to describe the 

transfer of mass, momentum or heat in a physical system due to differences in 

concentration, energy or temperature. From an atomistic view point, diffusion is a result 

of random walk of diffusing particle. In 1827, Robert Brown observed random walk of 

small particles (pollen) in suspension in fluid and the phenomena was named Brownian 

motion.  

Later in 1905, Einstein described the macroscopic transport in diffusive media 

using microscopic principles (Einstein, 2006). He assumed that in Brownian motion, 

each single particle motion is not influenced by the motion of other particles and its own 

motion at any previous time. With such assumption, Einstein found the Einstein relation, 

which stated that the mean of the squared displacement of a particle at a long time 

follows    
                     

        , where ri(t) is the position of the i-th 

particle at time t and the angular bracket denotes ensemble average. Diffusion process 

that follows the Einstein relation is termed normal diffusion. However, there are 

diffusive processes in nature that do not obey the standard laws of diffusion. Such type 

of process is called anomalous diffusion as indicated by the nonlinear scaling of mean-

square-displacement (MSD) by time,          , where   is not equal to one. For α>1, 

the process is called superdiffusive and α<1 marks the subdiffusive behavior. Normal 

diffusion will have α equals to one while α=2 corresponds to ballistic motion and is 

described by the Newtonian kinematics equation. 

 Particle transport especially diffusion process in particularly, strongly coupled 

quasi-two dimensional dusty plasma state, is well-studied both experimentally and 

theoretically (Juan, Chen, & I, 2001; Juan & I, 1998; Lai & I, 2002; Ratynskaia, Knapek, 

Rypdal, Khrapak, & Morfill, 2005; Woon & I, 2004). These systems consist of several 
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layers of dust particles where the particles’ motion are restricted horizontally, which is 

the reason why it is called quasi two-dimensional.  In such system, it has been shown 

that anomalous diffusion occurs at a specific time scale and plasma environment. For 

example, subdiffusion is commonly observed at the small time scale in frozen dusty 

plasma state, where the dust particles in the lattice are bound due to the caging effect of 

neighbors (Juan & I, 1998; Nunomura, Samsonov, Zhdanov, & Morfill, 2006; R. Quinn 

& Goree, 2002). In melting and liquid state, Juan and I reported particles’ correlated 

motion at small-time scale (MSD < (0.2Δ)
2
) (Juan & I, 1998).  

On the other hand, superdiffusion is seen in melting state from short time scales 

up to 10-20s. The fast motion is related to the collective motion (vortex) and commence 

when the mean-square-displacement of a single particle exceeded (0.2Δ)
2
, where Δ is 

mean nearest particle separation (Juan & I, 1998). Besides that, cooperative fast particle 

cluster excitations (Lai & I, 2002) contribute to the superdiffusive motion as well. 

Ratynskaya et al. (Ratynskaia et al., 2005) have also reported superdiffusive particle 

transport at time scales in which the particle diffuses several inter-particle distances. 

The corresponded position increments were shown to be long-range dependent and 

follow Gaussian distribution, while the position distribution itself exhibited non-

Gaussianity with exponential tails. Anomalous diffusion is thought to be a transient 

effect as at longer time scale, the process returns to normal diffusion. The transition 

occurs when the standard deviation of particle displacement approaches the mean inter-

particle distance.  

Along with experimental observations, extensive theoretical and simulation 

works have been conducted as well (Hou et al., 2009; Ott & Bonitz, 2009). The crucial 

factors that determine anomalous diffusion can be summarized as a function of 

background friction, coupling strength, and time of measurement (Ott & Bonitz, 2009). 

Among them, coupling shows great influence on the strength of superdiffusion. 
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Superdiffusion shows the strongest sign in medium coupling state where collective 

motions of particles contribute to the overall particles’ motion. At higher coupling state, 

entrapment of particles in local minima hinders superdiffusion. At very low coupling 

state, particles’ motion is dominated by binary collision. The lack of collective motion 

in such state results in non-superdiffusive behavior. On the other hand, by using 

simulation study, Ott et al. have shown that the anomalous-diffusion transition greatly 

depends on the type of particle confinement and also the formation of dust layers (Ott, 

Bonitz, Donkó, & Hartmann, 2008). 

 

2.3 Diagnostic methods  

There are various diagnostic techniques based on different physical principles 

used in dusty plasma research, such as probe measurement, emissive/absorptive 

spectroscopy, laser light scattering etc. Among them, laser light scattering is the most 

common technique due to its non-intrusive nature. There are four types of laser light 

scattering diagnostic (Garscadden, Ganguly, Haaland, & Williams, 1994): (1) 

visualization technique, in which the dusts are detected from its Mie scattering using 

broad area beam, (2) scattering depolarization using a polarized laser beam, (3) angular 

dependence of scattered light intensity, and (4) dynamic light scattering technique that 

measure temporal fluctuation of scattered light intensity. These optical diagnostic 

techniques are only valid for dust particles whose size is comparable with the incident 

wavelength range. In this work, direct visualization and dynamic light scattering 

techniques are used. In the following subsection, fundamental concepts of the used 

diagnostic technique are presented. Experimental details of the techniques are presented 

in the next chapter.  
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2.3.1 Dynamic light scattering  

The basic geometry of a light scattering setup is shown in Figure 2.6. A coherent 

polarized light source enters a scattering medium is scattered in all directions.  

 

Figure 2.6 light scattering diagram. 

 

The incident light is represented by its electric field component in the form of 

monochromatic plane wave, 

  

                               
 

 

 

(2.13) 

 

where    is the polarization vector of the electric field, E0 is the amplitude of the field, 

ω0 is the angular frequency and ki is the incident wavevector with magnitude      
    

 
 

pointing at direction of wave propagation. By getting the difference between the 

incident and the scattered light wavevector, the scattering wavevector,             is 

obtained. In the case of quasi-elastic light scattering where little energy of incident light 

is absorbed or lost, one can use conservation of momentum and the law of cosines to 

find the magnitude of scattering wavevector which will be written as, 
    

 
     

 

 
 . 



20 

 

Now assume there are N scatterers with identical size and geometry, the 

instantaneous scattered field detected at an angle of θ from direction of transmitted light 

beam is equal to the sum of the individual field strength of i-th particle with position 

ri(t), field strength Ei and phase factor of exp[iq∙ri(t)]. Neglecting the scattering of fluid 

medium, the instantaneous scattered field is 

 

                       

 

   

 

 

 

 

(2.14) 

 

Considering that the field is a function of particles’ position, it indicates particles’ 

movement in the scattering volume will alter the phase of the scattered wave. Therefore, 

a time varying random interference pattern is detected and resulted in a random 

fluctuation of scattered light intensity. To characterize the fluctuation’s behavior, it’s 

useful to measure the similarity of the fluctuation at different times. This can be done by 

calculating the correlation function of the fluctuation with itself, which is also called 

auto-correlation.  

Let I(t) be the scattered light intensity measured at scattering angle θ at 

instantaneous time t. The intensity auto-correlation function with lag time τ is calculated 

taking the product of I(t) and I(t+ τ) and then average it over many such products that is 

 
                      

   

 

 
             
 

 

  

 

 

 

(2.15) 

 

CI (τ) is independent of the starting time t and depends only on the lag time τ, given that 

I(t) is stationary.  

In discrete case, auto-correlation function is expressed as a function of lag time 

τ=jΔt, that is 
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(2.16) 

 

where j is a positive integer, and Δt is the time interval determined from the sampling 

time. The auto-correlation of a time series I with length N is obtained by averaging all 

products Ii Ii+j from I1I1+j to IN-j IN. In data analysis, the intensity fluctuation is commonly 

demean and normalized by its own standard deviation so that the auto-correlation 

function decay from one to zero. 

The scattered-field time auto-correlation function CE(t) ≡ <E(t)E(t+τ)> is related 

to the intensity auto-correlation function via the relation (Hurd & Ho, 1989) 

  

        
          

   
 

 

 

(2.17) 

 

where I0 is a constant background and χ is a detector dependent constant. Using 

equation (2.14), the auto-correlation function of scattered field can be expressed as 

 
                   

                          

 

   

   

 

 

 

(2.18) 

 

Assume all the scatterers are statistically independent and identical, the resulting sum 

over i is <N> times the ensemble average of the phase factor difference for a single 

particle 

  

                    
                              

 

 

 

(2.19) 

 

From that it can be seen that the field correlation function depends on three factors: (1) 

the mean number of scatterers in the scattering volume, (2) the amplitude of scattered 

field by each particle, Ei (which depend on the polarizability of the scatterer), and (3) 
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the positions of the particles. The ensemble average of the exponential term represents 

the integral of             over the conditional probability distribution P(Δr ,τ | 0 ,0)  

                                       

                         
 

  

    

 

 

 

(2.20) 

 

The conditional probability distribution describe the probability of a particle located at 

position r at time zero will be found at position r+Δr at time τ later. 

 

(a) Diffusive correlation model 

For a Brownian particle undergoing random walk, the conditional probability 

distribution is a Gaussian function (Wang & Uhlenbeck, 1945) 

 
            

 
       

  

   
   

 

 

 

(2.21) 

 

with diffusion coefficient, D. On substituting equation (2.21) into equation (2.19), the 

field auto-correlation function of scatterers undergo diffusive transport is obtained, 

  

                    
             

 

 

 

(2.22) 

 

The characteristic time, τD~ (q
2
D)

-1
, denotes the time elapsed for any superposition of 

the phase changes into a new uncorrelated phase.  
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(b) Ballistic correlation model 

For a particle undergoing ballistic motion, the mean free path Δr is proportional to   τ, 

where    is the mean velocity of particle. In this case the field correlation function can 

be calculated using Maxwell-Boltzmann velocity distribution P(vp) = [m/2πkBT]
3/2

exp[-

mvp
2
/2kBT] which will yield a Gaussian function (Chandrasekhar, 1943) 

 
                 

              

 

   

    
                

                  
       

 

 

               

                               
       

 

 
      

                       
      

 

 

(2.23) 

 

where <vp
2
>=kBT/m is the mean square value of the velocity component along q, and  

τB=[q< vp
2
>

1/2
]

-1
 is the characteristic time. 

 

(c) Ballistic-diffusive correlation model 

In the work of (Hurd & Ho, 1989), correlation function with crossover between kinetic 

and hydrodynamic behavior is obtained using standard Langevin equation for the 

motion of a particle in the presence of friction force      and rapidly fluctuating force 

      

  

             , 
 

 

 

(2.24) 

 

where    is the velocity field. To solve the stochastic differential equation, 

Chandrasekhar (Chandrasekhar, 1943) first derived the probability P(r, t | r0, v0) that a 
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particle is at position r at time t given an initial position r0 and velocity v0 to be in the 

form of 

  

                      
    

   
 

 

 

(2.25) 

 

where 

 
  
  

    

   
                             

                         
  , and            

 

 

(2.26) 

 

with                 . Considering r0 and v0 to be a constant, the phase factor 

<exp[iq∙Δr]> averaged over P(r) is just                  
   

     independent of r0. 

Assuming Maxwellian velocity distribution, the field correlation function with kinetic-

hydrodynamic crossover is 

  

  
              

            

 

 

 

(2.27) 

 

where φ(x)=-1+x+exp[-x]. One can easily note that φ(x)~x for    , and φ(x)~x
2
 for 

   . Hence, the correlation   
      converges to   

    (ballistic) and   
     

(diffusive) for time shorter and longer compared to persistence time β
-1

, respectively. 

The mean-square-displacement <Δr
2
> can be obtained by averaging |r-r0|

2 
over P(r), 

and is equal to  <vd
2
>t

2
 for t 1 and 6Dt for t 1 (Chandrasekhar, 1943). 

 

(d) Polydispersity 

The above mentioned correlation model assumes that the particles follow a uniform 

mass distribution and thus is not valid for particle with different sizes. By considering 

poly-disperse particle size, Hurd and Ho (Hurd & Ho, 1989) explored a model with 
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particles having mass distribution of mixed power-law and exponential distribution,  

N(m)~m
-σ

exp[-m/m0] where m0 is the cutoff mass and σ is a scaling exponent. They have 

shown that the electric field correlation function in the kinetic limit is given by 

 
       

    
 

  
 
   

     
 

  
   

 

 

 

(2.28) 

 

where Kυ(z) is the υ-th order modified Bessel function of second kind and t0=m0/q
2
kBT. 

The correlation function which encompass both kinetic and hydrodynamical transport 

mechanisms for poly-disperse dust can be derived as 

 
  
         

       
 

 

      
 

  
        

  

 
  

   

  
       

                   

                
                                          

               
                                        

 

 

 

(2.29) 

 

It can easily be shown that equation (2.29) reduces to the purely kinetic case in equation 

(2.23) when t 1. 

 

(e) Dynamic light scattering studies in dusty plasma 

Hurd and Ho (Hurd & Ho, 1989) have studied Brownian particles of polydisperse size 

in rarefied environment of a glow discharge system using DLS. Using correlation 

analysis, they have tried different dynamical models that include the mono-disperse 

fully kinetic model, poly-disperse fully kinetic model and mono-disperse with kinetic-

hydrodynamical model. The particles in the system are shown to be in kinetic-

hydrodynamic cross over regime. Despite that, the mono-disperse model fits the data 

equally well which may be due to the striation of dusty plasma. DLS is also used by 
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Anderson and Radovanov (Anderson & Radovanov, 1995) to study nano-scaled particle 

generation and they have observed oscillation of 120-130 Hz in the auto-correlation 

function during liquid to crystal phase transition. The cause of that is speculated to be 

originated from the charge-density-wave motion (Hansen, Levesque, & Weis, 1979).  

 

2.3.2 Visualization and particle tracking  

Apart from the DLS method, another more direct diagnostic method used in dusty 

plasma system is the direct visualization of dust grains through the help of laser 

illumination. Typically, a flat laser sheet (of thickness of 100-300 μm) in visible 

wavelength generated using a cylindrical lens is used to illuminate the dust particles’ 

ensemble. The scattered light by dust grains is then recorded using a CCD video camera. 

To get more accurate results, high-spatial-resolution lens and high-frame-rate camera is 

normally used. The recorded image sequences are then processed in order to obtain 

individual particles’ position. From the particles coordinates for consecutive time, one 

can track the particles and obtain the trajectories provided the particles remained in the 

illuminated laser sheet throughout the video recording. Starting from the particle 

coordinates, tracking algorithm will search for the most probable particle location in the 

consecutive image frame based on the closest inter-particle distance. In the end, a time 

series of particles’ trajectories in two-dimension are obtained.  

Once the particle trajectory is determined, the velocity of each particle can be 

calculated. From the distribution function of velocity, kinetic temperature of dust 

particle can be determined using the equipartition theorem. To measure the average 

distance traveled by a randomly moving particle, the mean-square-displacement (MSD) 

generally defined as                     
   is used. Here, ri(t)-ri(0) is the distance 
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travelled by particle i over some time interval of length t, and the square of that distance 

is averaged over many such time intervals or over all particles in the system.  

 

2.3.3 Spatial correlation function 

From the visualization technique, the two-dimensional image provides useful 

information regarding the spatial arrangement or orderliness of different dusty plasma 

states. One simple way to measure the degree of spatial orderliness is by using the 

Voronoi diagram. In two dimensions, Voronoi diagram is constructed by dividing any 

single plane of dust particles into a series of cells, of which the boundary is equidistance 

from two or more particles (Smith et al., 2004). From the Voronoi diagram, the average 

number of neighbors a cell has can serve as an indication of the overall orderliness in 

the system. For example, in a perfect hexagonal lattice, each hexagonal cell has six 

nearest neighbors.  

For a more quantitative analysis of orderliness in dusty plasma system, three 

commonly used methods are the pair correlation function, the bond-orientational 

correlation function and the structure factor (Quinn, Cui, Goree, Pieper, Thomas, & 

Morfill, 1996). The pair correlation function g(r) measures the translational order of the 

particle ensemble and its value represents the probability of finding two particles that 

are separated by a distance r.  

While g(r) is good in differentiating particle arrangement with different degree 

of orderliness, it performs poorly in determining different types of crystalline structures. 

For measuring orientational order like in crystal lattice, bond-orientational correlation 

function g6(r) is preferred. It is defined as                               where θ 

is the nearest-neighbor bond angles and the average is taken over the entire particle 
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ensemble. For a perfect crystal at zero temperature, g6(r) is equal to unity while for 

other phases, it decays with increasing r. Another orderliness measure is the structure 

factor, usually obtained by light scattering experiment. Structure factor is the Fourier 

transform of the pair correlation function                                , 

where k is the scattering wave vector.  

 

2.4 Stochastic models  

One of the main purposes of this work is to model the particle dynamic including the 

anomalous diffusion process and DLS fluctuation signal using fractional stochastic 

process. Before introducing the fractional model, a brief description of stochastic 

process is given here. A stochastic process is a family of random variables 

           defined on a given probability space, indexed by the time variable t, where 

t varies over an index set T (Trivedi, 1982).  In the probability theory, diffusion process 

is considered to be a stochastic process because of its random nature. If all finite 

collections of a random process are jointly Gaussian random variable, it’s called a 

Gaussian process. A Gaussian random process can be described by its statistical 

properties such as mean, correlation, variance, etc. If the mean and variance of a process 

is a constant throughout the entire process, the process is termed stationary. In a more 

accurate definition, stationarity requires all moments to remain constant. In other words, 

the distribution density of the values does not change with time.  

Elements of a random process can be uncorrelated or correlated to each other. 

For example, the increments of Brownian motion (a White noise) are completely 

uncorrelated to each other (the present value is not influenced by the past values). To 

measure the statistical dependence of a stationary stochastic process X(t), auto-

covariance function                    is normally used. By dividing the auto-
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covariance by the variance <X(t)
2
>, one get the auto-correlation function. Both 

quantities are identical if the data are demeaned and normalized by unit variance. For an 

uncorrelated process X(t) such as white noise where every elements are independent of 

each other, C(s) is equals to zero for s>0. For short-range correlated process, C(s) 

declines exponentially                 with a characteristic decay time d. While for 

long-range correlated process, C(s) decays slower and typically showing a power law 

behavior. Besides auto-correlation, there is another independent way to determine the 

correlation of a stochastic process that is by spectral analysis. The power spectrum S(f) 

of a stationary process is related to the correlation function by Fourier Transform 

(Wiener-Kinchin theorem). The flat power spectrum indicates uncorrelated or short-

range correlated process. In contrast, long-range correlated process is characterized by 

the power-law like spectrum          
where 0<β<2. S(f) with β=0 corresponds to 

white noise, β=1 corresponds to 1/f noise and β=2 indicates Wiener process, which is 

the integration of white noise. Note that for a long-range correlated process, correlation 

function and power spectrum both have power law type relation with the scale 

parameter (time scale and frequency). This type of scaling law is the main feature of 

fractal process, a process that is self-similar (magnification of a small part is statistically 

equivalent to the whole).  

One subclass of stochastic processes that does not have any memory present is 

the Markov process. Its joint density function only depends on the most recent condition, 

for example, given the current state         , any knowledge of any values of the 

process earlier than tˊ does not enhance the prediction of X(t) for any t > tˊ.  
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2.4.1 Fractional calculus 

One characteristic of the stochastic process is its non-differentiability property; 

therefore it requires some special branch of calculus to formulate the differential 

equation describing the process. In this work, the stochastic model is formulated using 

the frame work of fractional differential equation which is a generalization of 

differential equation.  

 Fractional calculus is first addressed in 1695 when L’Hopital wrote to Leibniz 

asking him about a particular notation he had used in his publications for the nth-

derivative of the linear function f (x) = x,  
   

   
 (Ross, 1977). The question posed by 

L’Hopital is what would be the result if the order of derivative is a fraction, for example 

n=1/2. The response from Leibniz’s was: “An apparent paradox, from which one day 

useful consequences will be drawn.” This is true as in the second half of twentieth 

century, fractional calculus has found its way in engineering and scientific application. 

Such application involves study of viscoelasticity (Bagley & Torvik, 1986), signal 

processing (Sabatier, Agrawal, & Machado, 2007), fluid mechanics (Kulish & Lage, 

2002), bioengineering (Magin, 2004) and anomalous diffusion phenomena (Metzler & 

Klafter, 2000). After the first inquisition by L’Hopital and Liebniz, fractional calculus is 

further explored by Fourier, Euler, and Laplace (Podlubny, 1999b). Nowadays, the most 

popularized definitions of fractional calculus are the Riemann-Liouville and Grunwald-

Letnikov definition. In this work, the Riemann-Liouville formalism is used to develop 

the stochastic model.  

In fractional derivative, an nth time derivative is equivalent to the inverse 

operation of n-fold repeated integration 

 
              

    

  

       
 

      
                
 

  

  

  

 

  

 
 

(2.30) 
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By induction, fractional integral of arbitrary order α>0 of a function f(t) is defined 

(Miller & Ross, 1993; Samko, Kilbas, & Marichev, 1993) as  

 
    

      
 

    
                

 

  

  

 

 

 

(2.31) 

 

where Γ() is the Gamma function. Generally, fractional derivative has the form of  

 
    

      
 

      
 
 

  
 
 

                  
 

  

          

 

 

 

(2.32) 

 

If the lower limit of the integral is     
     , it’s known as Weyl’s fractional derivative 

       
      is known as Riemann-Liouville fractional derivative (Miller & Ross, 1993; 

Samko et al., 1993). The shifted fractional derivative denoted by      
      with real 

parameter a > 0 can be expressed in infinite series using binomial expression (Lim, Li, 

& Teo, 2008)  

 
     

            
 
 
 

 

   

      
      

      

               
 

 

 

(2.33) 

 

In this work, α is set to one, thus the fractional dynamics is characterized by the 

fractional index β >0 which is connected to the fractional derivative through binomial 

expansion.      

 

2.4.2 Ornstein-Uhlenbeck and fractional Ornstein-Uhlenbeck process  

One of the stochastic processes used to model Brownian motion of a free particle in a 

fluid is the Ornstein-Uhlenbeck process, XOU (t) (Uhlenbeck & Ornstein, 1930). XOU (t) 
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can be defined as a stationary solution of the Langevin equation (Coffey, Kalmykov, & 

Waldron, 2004; Uhlenbeck & Ornstein, 1930) 

  

     
                 

 

 

 

(2.34) 

 

where η is the standard Gaussian white noise with zero mean and delta function as 

correlation function, i.e.,                   and a > 0 is a coefficient. The 

stationary solution can be written as 

 
                            

 

  

 

 

 

 

(2.35) 

 

with correlation function given by                             
    

  
 . It 

follows from this second-order property that the Ornstein-Uhlenbeck process is a 

Markovian process with short-range memory. Its spectral density takes the Lorentzian 

form,                    

 One can generalize the ordinary Langevin equation using the fractional calculus 

as shown below (Lim & Muniandy, 2003), 

  

     
                 

 

 

 

(2.36) 

 

where β is the positive fractional index. The so-called nonstandard ‘fractional Langevin 

equation’ can be solved using the Green’s function technique. First, let gβ(t) be the 

impulse response function 

 

      
      

        
        

         

  

 

 

 

(2.37) 

 

Hence we can write 
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(2.38) 

 

By applying Fourier transform on both sides of equation (2.38), and noting the property 

of Fourier transform of fractional derivative (Podlubny, 1999a), namely, 

      
                     and the corresponding shift theorem, we obtain (Li & 

Scalia, 2010; Lim & Muniandy, 2003)  

 
                

 

       
 

 

 

 

(2.39) 

 

where F[] denotes the Fourier transform and F[δ(t)]=1. Taking the inverse Fourier 

transform of equation (2.37), will give the response function for the fractional Ornstein-

Uhlenbeck process Xβ(t),  

 

       

        

    
        

         

  

 

 

 

(2.40) 

 

where Xβ(t)=gβ(t)*η(t). Lim et al (Lim et al., 2008) have shown that the solution of 

equation (2.36) permits a Fourier spectral representation for β>1/2. Note that when β=1, 

Xβ(t) reduces to the standard Ornstein-Uhlenbeck process,  XOU(t). The solution of 

equation (2.36) can be written explicitly as  

 
                           

 

  

 

 

 

 

(2.41) 

 

with c(a, β) as an arbitrary constant which can be determined by choosing β=1. The 

correlation function of Xβ(t) is calculated as 
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(2.42) 

 

with         and    is the modified Bessel function of the second kind (Erdelyi, 

Magnus, Oberhettinger, & Tricomi, 1995). It is interesting to note that the correlation 

function of fOU process shares the same form with the correlation function based on 

polydisperse mass distribution with kinetic transport as shown in equation (2.28). 

 The power-spectral density of Xβ(t) is given by                
 
     

       Moreover, the increments of fOU process satisfy the locally self-similarity 

property, namely,                 
 
        . It is interesting to note that based on 

this local self-similarity property and the power-spectral density at high frequency limit 

(i.e.,    ), the fractional Ornstein-Uhlenbeck process and its increments converge to 

the well-known Hurst, H (=ν)-indexed fractional Brownian motion and fractional 

Gaussian noise, respectively (Lim & Sithi, 1995; Mandelbrot & Van Ness, 1968). Both 

fractional Brownian motion and fractional Gaussian noise will be discussed shortly in 

the next section. By having a second-order stationary property, fOU process is able to 

support memory. In fact, fOU process can be shown to be a non-Markovian process 

simply by verifying that                                         

   with short-memory, namely     decays slower than the standard exponential form of 

OU process.  
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2.4.3 Fractional Brownian motion  

Standard diffusion theory is based on the finite value of velocity auto-correlation 

function,                
 

 
. However, this excludes an important class of processes 

called fractional Gaussian noises, which leads to particle trajectories classified as 

fractional Brownian motion (Beran, 1994; Mandelbrot & Van Ness, 1968). A feature of 

this process is that the mean-square-displacement scales power law to time,       

where H is called Hurst exponent (Mandelbrot & Van Ness, 1968). The Hurst exponent 

represents the type of the diffusion, for example H=1/2 is normal diffusion, H=1 is 

ballistic transport, H<1/2 is subdiffusive, and H>1/2 is superdiffusive (Barkan et al., 

1994; Beran, 1994). Standard diffusion theory fails when the velocity probability 

distribution function is non-Gaussian but has algebraic tails and diverging variance 

<v(t)
2
> (Lutz, 2001a, 2001b; Paul & Baschnagel, 1999). On the other hand, a 

Markovian velocity process is superdiffusive when very large velocities (Levy flight) 

are present.  

Fractional Brownian motion (FBM) can be regarded as a natural generalization 

of Brownian motion from the perspective of the Langevin equation. Langevin equation 

with the following form 

      

  
                

 

 

 

(2.43) 

 

has Brownian motion as the solution,  

 
             

 

 

 

 

 

 

(2.44) 

 

provided that the external force is absent which means [F(X,t)=0]. Consider the 

fractional Langevin equation for a free particle, 
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(2.45) 

 

where the fractional derivative can be defined in terms of the fractional             
 

 

(Samko, Kilbas, & Marichev, 1993), 

 
   

 
     

 

    
                           
 

 

 

 

 

 

(2.46) 

 

For       , the fractional               
 

 is defined as a fractional integral of 

order     (with        ) and an ordinary derivative of order n: 

 
   

 
      

 

  
 
 

   
   

     

 

 

 

(2.47) 

 

For a=0, (2.46) and (2.47) are known, respectively, as the fractional integral and the 

fractional derivative of the Riemann-Liouville type; when a=-∞, they are known as the 

Weyl type. FBM defined by the Weyl fractional integral alone is divergent and can be 

regarded as the sum of two independent Gaussian process: a process that represents a 

history of infinite past and a part that begins at time t=0 with no memory of the past. 

The second part can be defined using Riemann-Liouville type fractional derivative and 

inverting equation (2.45), we will obtain the Riemann-Liouville type fractional 

Brownian motion (RL-FBM) (Barnes & Allan, 1966): 

 
      

 

    
 
  

        
 
       

 

 

 

 

 

 

(2.48) 
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RL-FBM is a self-similar Gaussian process with zero starting point, zero mean, 

and a rather complicated correlation function that is   

 

       
   

 
    

 
 

   
 
      

 
  

     
 

 
       

 

 
 
 

 
  

 

 

 

(2.49) 

 

where s > t and 2F1 denotes the Gauss hypergeometric function. The variance is given 

by         where C = (2H (H+1/2)
2
)
1

. This important feature allows RL-FBM to 

model anomalous diffusion process. However, due to the fact that the process starts 

from the origin, RL-FBM does not have stationary increments for transient time. 

However, at large time limit, this desired property is recovered, and hence one can still 

define the power-law type power spectral density. On the other hand, RL-FBM does not 

satisfy the Markov property.  
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Chapter 3  

Experiments 
 

In order to investigate the particle dynamic in dusty plasma system, a capacitively 

coupled radio frequency plasma system with dust dispenser and dust confinement is 

setup. Two types of optical diagnostic system: 1) dynamic light scattering (DLS) and 2) 

particle visualization technique (using video CCD camera) are installed after the plasma 

system is established. Signal acquired from DLS experiment is processed using Matlab 

before the correlation analysis. Similarly, image sequences captured by CCD camera are 

processed and enhanced before pair correlation and particle tracking analysis are 

performed.  

 

3.1 Capacitively coupled radio frequency plasma system  

(a) Plasma chamber   

The dusty plasma experiment is carried out in a ready build capacitively coupled radio-

frequency gas discharge system as shown in Figure 3.1 and Figure 3.2. The chamber [1] 

is a cylindrical stainless steel vacuum chamber (inner diameter=355 mm, inner height 

=153 mm) with six ports installed on the wall each separated by 60 degrees apart as 

shown in Figure 3.3. Three of the ports are mounted with quartz window, another two 

with electrical feed-through and one connected to the pumping arm.  A brass plate [2] 

with a circular opening at the center is used as the top cover. The circular opening is 

sealed with a Perspex glass [3] and allows a top view of the chamber. Inside the 

chamber, a pair of circular brass plates is used as electrodes. 
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Figure 3.1 Schematic diagram of capacitively coupled radio frequency plasma system. 

 

 

Figure 3.2 Photo of the capacitively coupled radio frequency plasma system 
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Figure 3.3 (a) Sketch schematic diagram of a cross-sectional top view of plasma 

chamber and (b) its photo. 

 

The top electrode [4] which is mounted on the grounded top plate has a diameter of 130 

mm and a circular opening at the center as seen in Figure 3.4. While the 100 mm-long 

bottom electrode [5] is insulated from the chamber wall, the bottom electrode plate is 

connected to a matching unit [6] located outside the chamber through an electrical feed-

through. The cable that connects the bottom electrode and electrical feed-through is 

shielded by a hollow glass tube and PVC tube for isolation from the chamber’s wall.  

 

Figure 3.4 Vacuum chamber covered by top plate with viewing window at the center. 

 

(a)                                                        (b) 
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(b) Pumping system  

The pumping system consists of a rotary pump [14], a gas inlet (Argon gas) [10], two 

pressure gauge [9, 13], three valves [11, 12, 15] and several fittings. The Leybold trivac 

D16E rotary vane pump is capable of evacuating the chamber up to 1x10
-2

 mbar. Argon 

gas is used for gas discharge and is injected into the chamber through a needle valve 

controller located at [10]. A pressure transducer [9] (MKS 622 Baratron
®
 Absolute 

Capacitance Manometers) and a Pirani gauge [13] are used to monitor the chamber 

pressure. In each experiment, the chamber is first pumped down to 0.06 mbar followed 

by the closing of valve [11]. Valve [12] is kept opened throughout the experiment. The 

gas is then injected into the chamber until the required dynamical balanced pressure is 

achieved.   
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(c) Power supply  

The power-supply unit consists of a signal generator [8], a RF amplifier [7] and a 

matching unit [6]. The signal generator (Hewlett-Packard 8647A) can generate 

sinusoidal signal ranged from 250 kHz to 1000 MHz with peak-to-peak voltage up to 

one Volt. The signal generated is amplified using a wide-band RF amplifier (RLA500V) 

which has a maximum output of 500W within 10 to 100 MHz. During the experiment, 

13.56 MHz signal with amplitude of 600 mV is fed to the RF amplifier. The maximum 

forward output power from the amplifier is about 100W with reflected power 41W. The 

amplified current is injected to the matching unit consisting of capacitors and inductor 

as shown in Figure 3.5. The inductance of the inductor, LM is 4.5 µH. Three 4.7 µF 

capacitors are connected in parallel and have a total capacitance, CM of 14.1 µF. RT is 

the resistance of the power-line cable while Cp and Rp represent the capacitance and 

resistance of the plasma respectively. 

 

 

 

Figure 3.5 Circuit of matching network. 
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(d) Dust dispenser  

Dust particles are introduced into the inter-electrode gap using a mechanical dust 

dispenser system located above the top electrode as shown in Figure 3.6. The dust 

powder is stored inside a small container that has a number of milimetre-sized openings 

at the bottom side. The container is attached onto a rotatable aluminum plate controlled 

by a DC motor as shown in Figure 3.6. Once the dust dispenser system is turned on, the 

aluminum plate will rotate towards the opening of the top electrode until it is stopped by 

a vibrator that will shake the whole aluminum plate and sprinkle down the dust particles. 

After sprinkling the dust, the polarity of the DC motor is reversed. That will move the 

aluminum plate away from the electrode opening, leaving an unobstructed view from 

the top window of the chamber plate.   

 

 

Figure 3.6 (a) Side view and (b) top view of dust dispenser system 
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(e) Dust particles 

Poly-disperse titanium dioxide particles with mean size smaller than 1 μm are used in 

this work (see Figure 3.7).  

    

Figure 3.7 SEM images of poly-disperse titanium dioxide particles. 
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(f) Confinement electrode 

On the surface of the bottom electrode, there is a 0.35 mm deep and 3 cm wide 

cylindrical depression designed for particle confinement as seen in Figure 3.8. The 

depression creates a parabolic shape electrical potential well which traps the charged 

dust particles inside. Depending on the charge and weight, dust grains introduced into 

the plasma levitate at various heights as shown in Figure 3.9. 

 

Figure 3.8 Cylindrical depression on the bottom electrode. 

 

 

 

Figure 3.9 (a) Side view of the bottom electrode with dust particles levitating at the 

sheath region, (b) Position of levitating dust particles in plasma.  

  

(a)                                           (b) 



46 

 

3.2  Visualization system  

3.2.1  Experiment setup 

The visualization system is basically a means to illuminate the dust particles levitating 

inside the plasma chamber using a laser. A thin laser sheet with thickness approximately 

1mm is generated using a continuous 1.5 mW 635 nm He-Ne laser diode attached with 

a cylindrical lens. The laser sheet which is transmitted in a parallel manner to the 

electrode and through the quartz window illuminated the dust cloud as shown in Figure 

3.10. Illuminated dust particles are viewed from the top of the chamber using an EoSens 

CL high-speed-CMOS video camera that operates at 100 frames per second and is 

equipped with a macro lens. A narrow band-pass interference filter (636±10 nm) that 

selects only the laser wavelength is placed before the camera to increase the image 

contrast. To obtain the ratio of image’s pixel to real length, the real and pixel 

dimensions of the cylindrical depression on the bottom electrode are calculated.  

 

  

Figure 3.10 (a) A schematic diagram and (b) photo of the particle visualization setup.                

 

 

 

video camera 

Laser diode 

(a)                                                 (b) 
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3.2.2  Image processing 

Raw video captured from the experiment contained an abundance of information as well 

as noises. Therefore the image sequences are processed and enhanced before further 

analysis is carried out. The image processing in this work is carried out mostly in 

Virtualdub and Matlab (see appendix B2). First, the raw video saved in the MPEG-2 

format is cropped and deinterlaced. Subsequently, the video is converted into binary 

image sequence and saved in .bmp format with fixed aspect ratio. Following that, the 

image sequence is band-pass filtered to suppress pixel noise and long-wavelength image 

variations while retaining information of particle size. The band-pass filtering is 

performed based on an algorithm developed by J. C. Crocker and D. G. Grier (Crocker 

& Grier, 1996) and was translated into mfile (Matlab) by Daniel Blair and Eric 

Dufresne (Blair & Dufresne). From the processed images, the positions of each particle 

are determined by using the pkfnd.m algorithm (Blair & Dufresne). Before the 

pkdfnd.m algorithm is executed, parameters that include particle diameter and the 

minimum brightness of a pixel (that might be the local maximum) are defined. From the 

estimated particle position and window diameter, cntrd.m (Blair & Dufresne) is used to 

calculate the centroid of the bright spot up to sub pixel accuracy. The centroids are used 

to represent the position of each dust particle. 
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3.2.3  Pair correlation 

Pair correlation function g(r) as described earlier in section 2.3.3 is often used as a 

measure of orderliness in dusty plasma. The algorithm used in this work starts by 

measuring the distances r between one particular particle and other particles. Next, the 

number of particles with inter-particle distance that falls between r to r+Δr is calculated. 

The calculation is repeated for every particle to obtain an average value of g(r). After 

that, the average number of particles is normalized by dividing the annular area between 

r and r+Δr, and a factor that enables the asymptotic value of g(r) to converge to one 

(Quinn et al., 1996). Note that in the g(r) plot, the x-axis represents the inter-particle 

distance divided by the closest inter-particle distance, r/IPD.  Theoretically, the g(r) of a 

perfect crystal consists of a series of peaks whose position and height depend on the 

type of crystal structure. In a liquid-like state, the g(r) is characterized by a primary 

peak followed by shorter second or third peak. While in the gas-like state, the 

uncorrelated particle arrangement gives rise to g(r) that equals to one with no distinctive 

peaks. 

Before the pair correlation algorithm (see section 2.3.3) is implemented, it is 

benchmarked using three different images that represent different orderliness of dusty 

plasma: 1) ordered hexagonal crystal lattice (Figure 3.11(a)), 2) ordered dusty plasma 

liquid (Figure 3.12(a)) and 3) disordered gas state (Figure 3.13(a)).  In the crystal state, 

g(r) is a series of delta functions as shown in Figure 3.11(b). Whereas in liquid state, g(r) 

is characterized by a primary peak followed by smaller second or third peak as shown in 

Figure 3.12(b). For disordered gas state, an image of randomly distributed dots is used 

to simulate uncorrelated spatial distribution. It is found that g(r) is equals to one with no 

distinctive peaks as examined in Figure 3.13(b).  
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Figure 3.11(a) Two-dimensional hexagonal crystal lattice (Pieper, Goree, & Quinn, 

1996) and (b) its estimated pair correlation function. 

 

Figure 3.12 (a) Dusty plasma ordered liquid (Boesse, 2005) and (b) its estimated pair 

correlation function. 

 

 

Figure 3.13 (a) Randomly distributed dots and (b) its estimated pair correlation function. 

 

 

 
(a)                                                 (b) 

 
(a)                                                 (b) 

 
(a)                                                 (b) 
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3.2.4  Particle tracking 

In particle tracking analysis, the algorithm track.m developed by (Blair & Dufresne) 

which constructs a 2-D trajectory from a scrambled list of particle coordinates is used. 

The trajectory is a list of particle’s position in successive time frame sorted according to 

individual particle with specific ID. From the trajectories, squared displacement in both 

x and y component started from different time origins are calculated according 

to                         and                        , where τ is a 

positive integer range from one to predefined value   . The total squared displacement 

is equal to                            and is averaged for every τ to give the 

time averaged mean-square-displacement         
 

  
         
  
   . The same 

calculation is performed on all the trajectories and is then averaged to give the ensemble 

mean-square-displacement       
 

 
          

  
   , where N is the number of 

particles. Finally, the scaling exponent α is determined from the slope of MSD versus 

time plot in log-log scale.  
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3.3  Dynamic light scattering system  

3.3.1  Experiment setup  

The same He-Ne polarized laser beam as used in the particle visualization system is 

transmitted through the dusty plasma cloud via the side quartz windows as shown in the 

schematic diagram in Figure 3.14. The polarization direction of the laser is 

perpendicular to the bottom electrode. Due to the limitation of chamber construction, 

the measurement of scattered light could only be done at an angle of 60° from the 

primary beam axis. The scattered light passed through a band-pass interference filter 

(636±5nm) and is focused using an aspherical lens (f=26.2mm) onto a photodetector. 

The registered current signal is recorded using a Newport 1936-C single channel optical 

power meter at a data sampling rate of 10 kHz. 

 

   

Figure 3.14 (a) The schematic diagram and (b) photo of dynamic light scattering setup. 

 

 

  

Laser diode 
Photodetector 

(a)                                                  (b) 
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3.3.2  Signal processing  

In order to remove the contamination of deterministic (caused by power-line 

interference) and random thermal noise in the raw signal, band-stop filter is applied. On 

the other hand, the high-frequency white noise-like fluctuation is removed by applying a 

low-pass filter. To obtain zero-mean intensity fluctuation, the intensity time series is 

subtracted with its mean value. The time series is then normalized by dividing it with its 

standard deviation. Intensity data preprocessing procedures are performed using the 

signal processing toolbox in MATLAB (see appendix B1).  

 

3.3.3  Correlation models 

Correlation analysis is carried out once the intensity signals are preprocessed. The 

intensity auto-correlation function by definition is                     

      
 

 
       
 
    with positive integer k and  . The correlation at each lag time is 

obtained by taking the average of all products from I1I1+  to IN-τ IN, with N is the data 

length. In the signal preprocessing step, the intensity fluctuation is demeaned and 

normalized by its own standard deviation thus the auto-correlation function will decay 

from one to zero. The empirical intensity correlation function is then fitted by the four 

theoretical models as mentioned in chapter two. Note that the intensity correlation is 

related to electric field correlation function through               
 , hence from the 

equations (2.22), (2.23), (2.27) and (2.42) we obtain   
             

    
   for 

ballistic transport,   
                    for diffusive transport,   

      

                            for hybrid ballistic-diffusion transport, and the 

fractional dynamic correlation function based on fractional Ornstein-Uhlenbeck process, 

  
                             

 . Note that   
           with        . All 

the correlation models are normalized such that         , thus c1=c2=c3=1. The fitting 
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of empirical correlation function with theoretical model is done using nonlinear 

regression technique of curve fitting toolbox in Matlab (see appendix B1).  
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Chapter 4  

Results and Discussions 

This chapter presents the experimental and modeling results of the two diagnostic 

methods used: 1) dynamic light scattering and 2) particle tracking. First, the dusty 

plasma phases being investigated are described using the pair correlation function and 

particles’ speed distribution. Following that the time series of DLS experiment and the 

calculated empirical auto-correlation functions fitted by theoretical models are shown. 

Finally, the results of particle tracking and MSD analysis are presented and a discussion 

of the type of transport present is also embedded. 

 

4.1 Structural states of dusty plasma 

In the experiment, dusty plasma of distinct physical states is observed when the neutral 

gas pressure is changed. Figure 4.1 shows three snapshots of different physical states 

taken at 0.1, 0.3 and 0.5 mbar with fixed power. At 0.5 mbar, several layers of dust 

particles can be seen levitating above the electrode. In each of these layers, dust 

particles are separated in a uniform manner. Particles’ motion in these layers is 

restricted to the plane that is without any vertical migration. In contrast, particles at 0.1 

and 0.3 mbar move freely in both vertical and horizontal directions.  

 

Figure 4.1 Snapshots of dusty plasma at different neutral gas pressures: (a) 0.1 mbar, (b) 

0.3 mbar, and (c) 0.5 mbar. 
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As a measure of translational ordering in the particles’ arrangement, pair correlation 

function g(r) is calculated and is presented in Figure 4.2. It is obvious that at 0.1 and 0.3 

mbar, there is no distinctive feature in the pair correlation plot which suggests the 

presence of dusty plasma gaseous state at 0.1 and 0.3 mbar. While at 0.5 mbar, there is a 

peak at the closest neighbor distance, r/ipd=1, which is a sign of short-range orderliness 

that indicates the formation of dusty plasma disordered liquid state at 0.5 mbar.  

 

 

Figure 4.2 Pair correlation functions of dusty plasma at different pressures. Radial 

distance is normalized by nearest inter-particle distance. 

 

 



56 

 

 

Figure 4.3 Distributions of particles’ speed at different pressures. 

 

To get a sense of particles’ kinetic energy, one can notice the length difference 

of the light streaks as shown previously in Figure 4.1 . Particles that move faster than 

the camera frame rate (such as at the low-pressure state) will be captured as a line of 

dots/ streak. From the particle trajectories, the particle speed distribution is calculated 

and is shown in Figure 4.3. Dust particles at 0.1 mbar have the highest mode speed that 

is 13 mm/s, followed by 5 mm/s at 0.3 mbar and 2mm/s at 0.5 mbar respectively.  

In short, two different physical states of dusty plasma are observed as the neutral 

gas pressure is changed. At low pressure (0.1 and 0.3 mbar), disordered gaseous state as 

indicated by the random-liked pair correlation function and high particle speed is 

observed. While at higher pressure (0.5 mbar), particles’ speed is slowed down and 

spatial arrangement shows short range ordering, which is a feature of dusty plasma 

disordered liquid. The balance between electrostatic potential and thermal energy of 

dust particle is responsible for the phase transition with varying pressures. At a higher 

pressure, the formation of ordered structure due to ion wake effect (Trottenberg et al., 
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1995) is relatively stable because the energy transfer from ion flow to particles is 

effectively dissipated through friction with neutral gas. As the neutral gas density 

decreases, the energy of dust particle cannot be dissipated totally, and that has led to the 

onset of characteristic horizontal oscillation of dust particles (Schweigert, Schweigert, 

Melzer, Homann, & Piel, 1998). At the same time, electron temperature in plasma will 

reduce (Godyak & Piejak, 1990) and results in a lower dust charge. As a result, the ratio 

of electrostatic potential to thermal energy has reduced, and hence the transition from 

ordered to disordered state. 

 

4.2 Dynamic light scattering experiment 

4.2.1 Intensity fluctuation at different pressures 

The intensity fluctuation signals at different gas pressures recorded in the dynamic light 

scattering experiment are shown in Figure 4.4. The signals are acquired at 10 kHz for 13 

s. As a reference signal, the intensity signal without the presence of dust particles (dust 

off) is shown at the bottom of the figure as well.  

 

Figure 4.4 Intensity fluctuations of dynamic light scattering signal at different gas 

pressures and absence of dust. 
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4.2.2 Correlation analysis and model fitting 

From the intensity fluctuations, the empirical auto-correlation function is calculated and 

is shown in Figure 4.5. It is apparent that the correlation function at 0.5 mbar decays 

fastest to zero as compared with others. In other words, it decorrelates faster. The 

decaying part of the correlation function is then fitted by the four correlation models, 

namely, 

Ballistic model,   
             

    
      

Diffusive model,   
                   ,  

Ballistic-diffusive model,    
                                    and  

Fractional Ornstein-Uhlenbeck  model,    
                             

 .  

Note that the bumps at the decaying tail due to non-stationary (see Figure 4.5 (a) and (b)) 

are excluded in the model fitting.  
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Figure 4.5 Empirical auto-correlation functions of intensity fluctuation at (a) 0.1 mbar, 

(b) 0.3 mbar, and (c) 0.5 mbar fitted with ballistic, diffusive, ballistic-diffusive and 

fractional dynamical model.  

(b) 0.3 mbar 

(c)  0.5 mbar 

(a) 0.1 mbar 
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The fitting parameters and fitting errors of different correlation models are 

summarized in Table 4.1. Among the existing models, the ballistic-diffusive model 

provides the best fit with the smallest root-mean-square (rms) fitting error than the other 

two. It is observed that the persistence time ξ
-1

 increases as the pressure increases. On 

the other hand, the new model based on fractional dynamic has fitted the empirical data 

equally well with comparable rms error. Parameter a, which is analogous to friction 

coefficient ξ in the standard Langevin equation for the velocity field, shows a sudden 

increase at 0.5 mbar. The other fractional parameter, ν rises with increasing pressure as 

well.  

In summary, correlation model based on ballistic-diffusive transport provides a 

better fit than the purely ballistic and purely diffusive model. This agrees with previous 

work done by (Hurd & Ho, 1989) and suggests that particles in the gaseous and 

disordered liquid state of dusty plasma follow the ballistic type motion at short time 

scale and transit to diffusive behavior for longer time scale. The ballistic-diffusive 

transition time, namely the persistence time ξ
-1

, shows an increasing trend with 

increasing pressure.  

 

Table 4.1 Fitting parameters of ballistic, diffusive, ballistic and fractional Ornstein-

Uhlenbeck correlation model. 

Correlation 

\Pressure 

(mbar) 

  
           (s) 

(rms error) 

  
           (s) 

(rms error) 

  
         , ξ (s

-1
) 

(rms error) 

  
        a (s

-1
), ν 

(rms error) 

0.1 0.626±0.003 

 

(0.062) 

0.754±0.001 

 

(0.008) 

0.1410±0.0004 

19.78±0.04 

(0.001) 

1.568±0.005 

0.609±0.002 

(0.006) 

0.3 0.704±0.002 

 

(0.037) 

1.055±0.003 

 

(0.014) 

0.1933±0.0003 

11.26±0.02 

(0.001) 

1.470±0.001 

0.759±0.001 

(0.001) 

0.5 0.653±0.001 

 

(0.098) 

0.646±0.002 

 

(0.036) 

0.536±0.014 

7.24±0.14 

(0.022) 

2.521±0.018 

0.960±0.009 

(0.018) 
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This suggests that at low pressure, the friction coefficient ξ is much higher than at high 

pressure. That is because at low pressure, diffusion is strongly suppressed due to the 

small number of neutral gas atoms. Strong interactions between particles such as dust-

dust collision have increased the friction resistance, thus the friction coefficient is large. 

The friction reduces as the pressure increases, as there is a sufficient amount of neutral 

species that enhance the particle diffusion (Petrov, Nefedov, & Fortov, 2001; Vaulina & 

Vladimirov, 2002).  

The fOU model that describes the experimental data equally well shows an 

increasing trend in the fractional parameter ν as the pressure increases. As mentioned in 

chapter two, parameter ν is related to the polydispersity of the power-law mass 

distribution N(m)~m
-σ

 through ν=3-σ. From that, small value of ν will have a larger σ 

exponent, corresponding to a faster decay in particle mass distribution. In other words, 

the model suggests that at low neutral gas pressure (in which the ν values from model 

fitting show the smallest value) the particles size distribution would be less polydisperse. 

The other fractional parameter, a shows a sharp rise between the transition from liquid 

state (0.5 mbar) to gaseous state (0.3 mbar).  However, its physical interpretation is still 

unclear. 
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4.3 Particle tracking analysis 

4.3.1 Particle trajectories 

In particle tracking analysis, tracking duration and frame rate differ at different 

pressures due to different dynamical behaviors involved. At 0.1 mbar, the fast-moving 

particles are tracked at 100 Hz for 0.59 s before the particles disappeared from the laser 

sheet. At 0.3 mbar, tracking is done at 100 Hz for 2.5 s, while at 0.5 mbar, 56 Hz is used 

to track the relatively slower moving particles for 7 s. For illustration purpose, particle 

trajectories with equal tracking duration (0.6 s) are plotted in Figure 4.6 with the same 

spatial scale.  

 

 

 

Figure 4.6 Selected particle trajectories at (a) 0.1 mbar, (b) 0.3 mbar, and (c) 0.5 mbar 

with the same time duration (0.6 s) and spatial scale, (d) magnified single particle 

trajectory at 0.5 mbar with duration of 0.6 s. 
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Particle trajectories in gaseous state at 0.1 and 0.3 mbar show similar behavior in 

which the particles travel linearly for long distance before changing their direction. 

However, at 0.3 mbar, such straight path is shorter. This trend persists until 0.5 mbar 

(disordered liquid state) where particles reverse their direction in much shorter length 

scale and tend to diffuse around their initial position as can be seen in Figure 4.6 (c). 

Figure 4.6 (d) shows a single particle trajectory at 0.5 mbar moving in a zigzag manner.  

 

4.3.2 Mean-square-displacement (MSD) 

In order to determine the type of transport followed by the dust particles, MSD 

calculation using the algorithm described in chapter three is performed. The time and 

ensemble averaged mean-square-displacement is calculated from few particle 

trajectories of different gas pressures. At 0.1 mbar, 52 trajectories are calculated and 

maximum lag time of MSD is    =10. At 0.3 mbar, 43 trajectories are calculated with 

   =100. At 0.8 mbar, 32 trajectories are calculated with    =100. The MSD scaling 

exponent α is obtained from the slope of log-log plot of MSD versus time (Figure 4.7) 

using linear least square fitting. The scaling exponents of different time regimes are 

tabulated in Table 4.2. 

 

Figure 4.7 Particles’ mean-square-displacement at different pressures. 
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Table 4.2 Scaling exponents of mean-square-displacement at different pressures and 

time regimes. 

Pressure (mbar) MSD scaling exponent, α  

 Regime I  

(0.01-0.13s) 

Regime II  

(0.13-1.63s) 

Regime III 

(1.63-5s) 

0.1 1.864±0.020 0.668±0.019 - 

0.3 1.852±0.025 0.727±0.002  - 

0.5 1.515±0.049 0.979±0.003  1.175±0.003  

 

Generally, it is found that the magnitude of MSD at the lower pressure is larger 

than those at the higher pressure. The greater magnitude of displacement at the low 

pressure is found to be consistent with the longer straight trajectories as seen in previous 

section. It is also observed that the type of particle transport is changing throughout the 

whole duration. At times shorter than 0.13 s, the scaling exponents of MSD at all 

pressures are close to two, a sign of ballistic transport. After 0.13 s, MSD exponent of 

gaseous state has changed to ~0.7, a value that indicates subdiffusion transport. Further 

investigation suggests that the MSD scaling behaviour in gaseous state at that time 

regime is better described by the logarithmic function of time, log (t), which turns out to 

be the characteristic of binary uncorrelated transport (Pöschel & Luding, 2001; 

Schofield, Marcus, & Rice, 1996). On the other hand, at 0.5 mbar, normal diffusion 

(α=1) occurs at the intermediate time regime. The higher concentration of neutral 

particles might be the reason that hinders the binary uncorrelated collision. As a result, 

dust particles’ motion is damped and diffuses normally as depicted by the zigzag 

trajectory in Figure 4.6 (d).  

For a much longer time scale (regime III), the normal diffusion has ceased and 

transits to superdiffusion as indicated by α>1. To investigate the cause of superdiffusion, 

the increments of particle trajectories are computed and subjected to correlation analysis. 

Figure 4.8 shows the results of auto-correlation function calculated at three different 

pressures. It is interesting that both auto-correlation functions at 0.1 and 0.3 mbar decay 
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quickly to zero while the auto-correlation at 0.5 mbar has the longest decay time. This is 

a sign of long memory effect, which is present in the particle trajectory from 0.5 mbar 

and that contributes to the superdiffusive behavior observed. This finding is similar to 

the work of Ratynskaia et al., (2005), in which they have found long-range dependence 

in particle position increments that are responsible to the observed superdiffusive 

particle transport. The non-linear MSD scaling behavior and long-range dependence 

displayed in the particle trajectory can be modeled using the Riemann-Liouville 

fractional Brownian motion (RL-FBM) with time scaling Hurst exponent larger than 0.5.  

 

Figure 4.8 Auto-correlation function of trajectories' increments at different pressures. 
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Chapter 5  

Conclusions 

In this work, two types of optical diagnostic techniques based on dynamic light 

scattering (DLS) and particle visualization are setup to study the particle dynamics in 

dusty plasma system. Scattered laser intensity fluctuation in dusty plasma has been 

investigated using different stationary correlation models that are derived based on 

purely ballistic, purely diffusive, and hybrid ballistic-diffusive transport mechanisms 

with the assumption of monodisperse particles. It is found that the empirical correlation 

function is best fitted by the hybrid ballistic-diffusive transport model instead of the 

purely ballistic or purely diffusive model. It is worth to mention that the persistence 

time parameter in the DLS hybrid correlation model shows a high value at the 

disordered liquid state, indicating persistence behavior in the particle movement. This 

persistence behavior in particle motion is confirmed later in the particle tracking 

experiment. While the existing hybrid correlation model provides a good fit on the 

experimental data, the proposed fractional dynamical model fitted the data equally well. 

In addition, the fractional dynamical model derived from the fractional Langevin 

equation with shifted fractional derivative operator is shown to have the same form of 

correlation model as the purely ballistic model for particle with polydisperse size 

proposed by Hurd and Ho (Hurd & Ho, 1989). The solution of the fractional stochastic 

differential equation is the fractional Ornstein-Uhlenbeck process, which have a 

stationary correlation function parameterized by a generalized friction coefficient a and 

fractional index β. The empirical fractional index β in the fractional dynamical model 

suggests that, in the disordered liquid state, dust particles are more polydisperse than it 

is in the disordered gas state. The issue whether the empirical particle size distribution 

follows the polydispersity as predicted by the fractional Ornstein-Uhlenbeck model is 

not yet confirmed experimentally and requires further investigations.  
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In particle visualization and tracking experiment, time dependent scaling in 

particles mean-square-displacement with time is observed. This is consistent with the 

result in DLS experiment that shows dust particles undergo fast ballistic transport at 

short time scale and slow dynamic at later time duration. Interestingly, the slower 

dynamic varies with the state of dusty plasma. For example, in a disordered gas state, 

particle transport is dominated by uncorrelated binary collision at longer time scale. 

While in the disordered liquid state, ballistic transport at early time scale has eventually 

changed to normal diffusion. However, the normal diffusion does not last long, as the 

sign of anomalous diffusion is observed for much longer observation time. The 

anomalous diffusion observed in the disordered liquid state is found to possess long-

range correlated increments. Such long-range correlation property does not exist in the 

traditional diffusion model based on Brownian motion. Hence, a Gaussian model 

formulated using fractional calculus, Riemann-Liouville fractional Brownian motion 

(RL-FBM) with time scaling exponent is proposed as a candidate model for the 

observed anomalous transport.  

As for future study, it would be interesting to determine if there is a theoretical 

connection between the RL-FBM (describes individual particle motion) and the fOU 

model (describes the scattered light intensity fluctuation). In addition, one maybe 

investigate the anomalous transport behavior of charged Brownian particles using other 

fractional dynamical frameworks such as the fractional diffusion equation or the 

fractional Langevin equation with dynamic memory function (del-Castillo-Negrete, 

Carreras, & Lynch, 2004). Apart from that, the assumption that dust particles only 

interact with other particles from the same plane is weak. It is because the inter-particle 

interaction is not only limited to particles in the same layer but also involves coupling of 

other particles located above or below such layer through the ion wakes effect. 

Therefore, it would be interesting to study such particles systems with inter-layer 
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coupling and explore other fractional dynamical models such as fractional Langevin 

equation. This work here also leads to a new research direction, which is the study of 

anomalous diffusion in one dimensional charged particle system such as a dusty plasma 

ring (see the proceeding paper in appendix A1).  
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Fractional dynamics in the light scattering intensity fluctuation
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Light scattering intensity fluctuation in dusty plasma system is studied. The scattered electric field
of the laser light is treated as a stationary stochastic process. A nonstandard form of fractional
Langevin equation is solved using Green’s function approach to obtain the so-called fractional
Ornstein–Uhlenbeck process. The empirical correlation function of light intensity fluctuation is
fitted with four model correlation functions which are representative of different mechanisms for
monodisperse particle transport, namely, the kinetic �ballistic� model, the hydrodynamical
�diffusive� model, the hybrid kinetic-hydrodynamic model, and the fractional kinetic model for
polydisperse particles. The shifted fractional derivative index is found to be related to power-law
exponent of polydisperse dust mass distribution. It is shown that the correlation model based on
fractional Ornstein–Uhlenbeck process may provide a novel insight into the complex transport
behaviors in dusty plasma. © 2011 American Institute of Physics. �doi:10.1063/1.3533905�

I. INTRODUCTION

Dusty plasma can be considered as a complex colloidal
system composed of massive charged dust immersed in
electron-ion plasma.1,2 These dust particles can be charged
either negatively or positively depending on their surround-
ing plasma environment and the charging mechanisms.
Dusty plasmas are known to support diverse phenomena
such as stochastic charge fluctuation, anomalous diffusion,
linear and nonlinear waves, and structural phase transition
from disordered gas phase to ordered plasma crystals.3,4

There are various techniques to measure the space and
time variation of plasma and dust parameters based on dif-
ferent physical principles.3 Light scattering has been one of
the most commonly used techniques for detecting particles in
gases and liquids.5 Moreover, dynamics light scattering from
particulate suspensions is a powerful way to probe of the
dynamics of neutral or charged particles based on Brownian
motion framework. Light scattering experiments in plasma
essentially examine the spatiotemporal variation of the laser
light intensity �usually of visible range� that is directed at the
plasma/sheath interface region, in sheet ray form parallel to
the electrode. Forward directed elastic scattering or the Mie
scattering often occurs when laser light incident on particles
of size is comparable to the wavelength of the light. In fact,
Mie scattering has a complicated dependence on the particle
size, number density, and refractive index of particles. It is
also strongly angular dependent.5 For particles of smaller
sizes, a more isotropic scattering occurs, also known as the
Rayleigh scattering.

Laser light scattering technique was used to demonstrate
the role of dust contaminant in plasma processing6 which
also served as the impetus for the increasing number of stud-
ies on charged particle dynamics in dusty plasmas. In situ
light scattering studies of particle synthesis, particle aggre-

gation, size effect, and particle dynamics have been reported
by many authors.7–9 Among the interesting charged particle
dynamics in dusty plasmas are the formation of spatially
ordered structures similar to those existing in liquids and
solids,10–13 wave motion,14,15 and collective particle trans-
ports.16,17 Phase transitions in dusty plasmas have also been
the subject of intense study over the past decade. If the ratio
of the interparticle potential energy to the average kinetic
energy is high enough, the particle will form either a “liquid”
structure with short-range ordering or a crystalline structure
with long-range ordering. Optical diagnostics of particle dy-
namics in dusty plasma may utilize digital imaging tech-
niques for particle tracking and trajectory analysis or the di-
rect light scattering data. In this study, we consider the
dynamic light scattering technique based on correlation func-
tion approach. The temporal variation of fluctuation of the
scattered intensity contains useful information regarding the
particle dynamics.7,18,19 The particles are treated as charged
Brownian particles and we investigate the transport mecha-
nism based the correlation functions. The main contribution
of this study is the introduction of the fractional Ornstein–
Uhlenbeck �fOU� process20 using nonstandard generalization
of the Langevin equation21,22 using fractional calculus23–25

for studying charged Brownian motion in dusty plasma. We
show that the scattered electric-field correlation model based
on fractional Ornstein–Uhlenbeck process reproduces the
qualitative features of the purely kinetic �ballistic� transport
model proposed by Hurd and Ho18 for polydisperse particles.

In fact, this study demonstrates for the first time the
direct link between power-law exponent of the dust particle
mass distribution and the fractional derivative index. The
performance of our correlation model is compared with the
correlation functions corresponding to diffusive, ballistic
�Gaussian�, hybrid kinetic—hydrodynamics models using
light scattering data from capacitively coupled radio-
frequency dusty plasma system.
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II. INTENSITY FLUCTUATION CORRELATION
FUNCTION FOR KINETIC AND HYDRODYNAMICS
TRANSPORT MECHANISMS

Consider the scattered intensity I�t� measured at a given
scattering angle � as a stationary stochastic process with cor-
relation function

CI�t� � �I�0�I�t�� = 	
0

t

I�t��I�t� + t�dt�. �1�

The intensity fluctuation correlation function in Eq. �1� is
related to that of the scattered electric field CE�t�
= �E�0�E�t�� through the relation CI�t�= Io

2+��CE�t��2, where
Io is the constant background and � is detector dependent
constant.18 Assuming there are N scatterers, the instanta-
neous scattered electric field E� �t� is the sum of the individual
strength of the scattering from jth particle located at position
r� j�t� with a phase factor, exp�iq� ·r� j�t��. The scattering
wavevector in the unit direction n̂ is q� = �4� /��sin�� /2�n̂
with � as wavelength of the incident light. Fluctuation in the
intensity is due to temporal variation in the interference con-
dition as a result of particle movements. Hence, useful infor-
mation regarding the particle dynamics can be deduced
from the intensity fluctuation analysis. If the mean intensity
is subtracted from the scattered intensity fluctuation, then
CI�t�� �CE�t��2.

Calculation of the correlation function of the electric-
field fluctuation CE�t� depends on the assumptions regarding
the size/mass distribution of the particles �whether monodis-
persed or polydispersed� and the nature of the transport
mechanisms, namely, whether it is diffusive �hydrodynam-
ics� or ballistic �kinetic�.18 In this section, we recall some
results on the correlation properties of the scattering intensity
for monodisperse and polydisperse particles �see Refs. 7 and
18 for the details�. Consider the correlation function of the
electric field as

CE�t� � �E�0�E�t�� = Eo
2
�

j=1

N

exp�iq� · �r� j�� , �2�

where �r� j�t� is the displacement vector of the jth particle. If
the particle is diffusive, the characteristic time 	D�r2 /D,
where D is the diffusion constant. On the other hand, for
ballistic motion, the characteristic time 	B�r /u, where u is
the mean velocity of the particles. For the case of ballistic
motion, CE�t� has been calculated using the Maxwell veloc-
ity distribution,26 P�u�= �m /2�kBT�3/2exp�−mu2 /2kBT�.
This results in the Gaussian type correlation function
CE

B�t��exp�−t2 / �2	B
2�� in contrast to the exponentially de-

caying correlation CE
D�t��exp�−t / �2	D�� for diffusive dy-

namics. The superscripts B and D refer to ballistic and dif-
fusive dynamics, respectively. The cross-over between the
hydrodynamics and kinetic behaviors has been described in
Ref. 18 using the standard Langevin equation, namely,
u�̇ +
u� =�� �t�, where u� is the velocity field, 
 is the friction
coefficient, and �� �t� is the rapidly fluctuating force. The cor-
responding electric-field correlation with the Maxwellian as-
sumption for velocity distribution is shown to be CE

BD�t�
�exp�−q2�uz

2�
−2��
t��, where �uz
2� is the mean square value

of velocity component in the direction of q� and ��x�=−1
+x+exp�−x�. One can easily note that ��x��x for x1, and
��x��x2 for x�1. Hence, the correlation CE

BD�t� converges
to CE

B�t� �ballistic� and CE
D�t� �diffusive� for short time and

long time, respectively. The mean square displacements for
ballistic transport are ��r2�= �uz

2�t2 for t�
−1 and for diffu-
sive transport are ��r2�=6Dst for t
−1 and Ds is self-
diffusion coefficient.

The above derivation of the correlation function can be
described more intuitively using the Van Hove autocorrela-
tion function27,28 Gs�r� , t�= �n�0,0�n�r� , t��V,�, which measures
the probability of finding a given scattering particle at posi-
tion r� at time t given it was at position 0� at time t=0. The
particle density at position r� and time t is denoted by n�r� , t�
and the average � � is taken both over the whole scattering
volume V and the total measurement time �. The Van Hove
autocorrelation function is related to dynamic structure factor
Fs�q� , t� through the three dimensional Fourier transform

Fs�q� ,t� = 	
V

Gs�r�,t�eiq� ·r�dr� . �3�

The dynamic structure factor in turn is related to the corre-
lation function of electric-field fluctuation through the
Siegert relation,29 namely, Fs�q� ,	�= �E�q� , t�E�q� , t+	��. Using
the Gaussian approximation initially proposed by Vineyard30

for nearly classical fluids model, the dynamic structure factor
takes the form F�q� , t�=exp�−q2��t� /6� with the so-called
time-dependent width function ��t� analogous to the one de-
fined above. Hence, the Van Hove autocorrelation function
now takes the familiar Gaussian form

Gs�r,t� = �2

3
���t��−3/2

exp�−
3

2

r2

��t�
� , �4�

where the time-dependent width function ��t� is actually
proportional to the variance or the mean square displacement
of a Gaussian process, namely,

��t� � ��r2� = 	
R3

r2Gs�r�,t�d3r . �5�

One can now write explicitly the expression for ��t� earlier
in this section as ��t�= �6kBT / �
2m���
t−1+exp�−
t�� for t
�0 and deduce the two limits of ballistic transport �t�
−1�
and diffusive transport �t
−1�. It is interesting to see how
the Van Hove autocorrelation function or the dynamic struc-
ture factor would change if one is to consider anomalous
diffusion transport with mean square displacement law satis-
fying a power-law such as �H�t����r2�� t�, where the scal-
ing exponent 0���2. If we set �=2H, where 0�H�1 is
the Hurst exponent, then the two limiting cases described
above are obtained, namely, the standard diffusion process
�i.e., Brownian motion� when H=1 /2 and the ballistic trans-
port when H=1. The fractional Brownian motion31,32 is an
example of a fractal Gaussian stochastic process which
has the similar mean square displacement �or variance�,
but lacks time-shift invariance. Another example is the
stationary Gaussian stochastic process characterized by cor-
relation function in the form of stretched exponent
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C�t��exp�−�t /	���, where 	 is the characteristic time.20 For
both examples, concrete dynamical equations in the form of
stochastic differential equations are not available.

So far, we have assumed that the particles’ mass is uni-
form. For polydisperse samples with size distribution p�R�
with corresponding self-diffusion p�Ds�, the dynamic struc-
ture factor is not a simple monotonically decaying exponen-
tial function, but a superposition of several exponential func-
tions implicitly dependent on Ds, given by33

Fs�q� ,	� = 	
0

�

p�Ds�e−q2��	�/6dDs. �6�

The determination of the p�Ds� is a challenging task and a
practical way to estimate the calculate dynamic structure fac-
tor for polydisperse particles is to use cumulant analysis34 in
which Fs�q� , t� is expanded as

ln Fs�q,	�  − �1	 +
1

2!
�2	2 −

1

3
�3	3 + ¯ , �7�

where the first cumulant �1= D̄q2 yields the average diffusion

coefficient D̄ and the second cumulant �2= �D2− �D̄�2�q4,
which measures the polydispersity of the diffusion coeffi-
cient via �D= ��2 /�1�1/2. It should be mentioned that the cu-
mulant expansion is only strictly valid for small size poly-
dispersities ��20%�. Accurate estimation of the dynamic
structure factor is further complicated by detailed knowledge
of particle topology and form factor, particle concentration,
and q-dependence.34

Here, we adopt the generalization to the case of polydis-
perse mass distribution based on the study by Hurd and Ho.18

Assuming a mixed power-law and exponential distribution
for particle mass in the form of N�m��m−� exp�−m /mo�,
with a cutoff mass mo and scaling exponent �, they showed
that the electric-field correlation function in the kinetic limit
is given by

CE�t� � 2�−2� t

to
�3−�

K3−�� t

to
� , �8�

where K��z� is the �th order modified Bessel function of
second kind and to=mo /q2kBT. The correlation function
which encompass both kinetic and hydrodynamical transport
mechanisms for polydisperse dust can be derived as

CE
BD��t� = Eo�

2	
0

�

m2−�e−m/moe−�q2/2��kBT/2m��−1+
t+e−
t�
−2
dm ,

=2�−2�mo
2q2kBTe−
t�1 + e
t�
t − 1����3−��/2

� K3−���mo
2q2kBTe−
t�1 + e
t�
t − 1���1/2� . �9�

It can easily be shown that Eq. �9� reduces to the purely
kinetic case equation �8� when t�1.

In Sec. III, we introduce a generalization of the Lange-
vin equation to a nonstandard form using fractional
calculus.23,24 The resulting process denoted by X��t� is called
the fractional Ornstein–Uhlenbeck process. Our generaliza-
tion preserves the stationary property of the original
Ornstein–Uhlenbeck process,21 which is crucial for a time-

translational invariance property of the correlation function
used to model the light scattering intensity fluctuation.

III. FRACTIONAL ORNSTEIN–UHLENBECK PROCESS

An intuitive way of introducing the fractional derivative
is by noting that the nth derivative is basically an operation
inverse to n-fold repeated integration,

	
to

t 	
to

s1

¯	
to

sn−1

f�sn�dsn ¯ ds1

=
1

�n − 1�!	to

t

�t − s�n−1f�s�ds . �10�

By induction, fractional integral of arbitrary order ��0 of a
function f�t� is defined as23,24

to
It

�f�t� =
1

����	to

t

�t − s��−1f�s�ds . �11�

A version of fractional derivative denoted as to
Dt

�f�t� is de-
fined as

to
Dt

�f�t� =
1

��n − ��
� d

dt
�n

�	
to

t

�t − s�n−�−1f�s�ds, n − 1 � � � n . �12�

Depending on the lower limit of the integral, −�Dt
�f�t� is

known as Weyl’s fractional derivative and 0Dt
�f�t� is known

as Riemann–Liouville fractional derivative.23,24 The shifted
fractional derivative denoted by �to

Dt
�+a�� with real param-

eter a�0 can be expressed in infinite series using binomial
expression35

�to
Dt

� + a��f�t� = �
j=0

� ��

j
�aj

to
Dt

���−j�f�t�,

�13�
n − 1 � � � n; � � 0.

In this study, we let �=1 but the fractional dynamics is char-
acterized by the fractional index ��0 which connected to
the fractional derivative through binomial expansion. The
general definition of the shifted fractional derivative with
dual �� ,�� fractional indices has been investigated by Lim
et al.35 A direct application of the Riemann–Liouville frac-
tional integral to a Gaussian white noise would realize a
fractional filtered process known in the literature as the one-
sided fractional Brownian motion or the Levy-type fractional
Brownian motion, defined as31,32

BH�t� � 0It
H+1/2��t�

=
1

��H + 1/2�	0

t

�t − s�H−1/2��s�ds

= gBH
�t� � ��t� , �14�

where � denotes convolution of the white noise ��t� with a
fractional response function
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gBH
�t� = � tH−1/2

��H + 1/2�
for t � 0

0 for t � 0.
� �15�

The inverse operation of the fractional filtering of the white
noise is the fractional derivative of fractional Brownian mo-
tion denoted by 0Dt

−�H+1/2�BH�t�=��t�. This form of fractional
differential equation can be solved using the Green’s func-
tion method.

The ordinary Ornstein–Uhlenbeck process XOU�t� is the
stationary solution of the Langevin equation21,22

�−�Dt
1 + a�XOU�t� = ��t� , �16�

where �� · � is the standard Gaussian white noise with mean
zero and delta function as correlation function, i.e.,
���t���s��=��t−s� and a�0 is a coefficient. The stationary
solution can be written as

XOU�t� = 	
−�

t

e−a�t−u���u�du , �17�

with correlation function given by C�	�= �XOU�t�XOU�t+	��
=exp�−a�	�� / �2a�. It follows from this second-order property
that the Ornstein–Uhlenbeck process is a Markovian process
with short-range memory. Its spectral density takes the
Lorentzian form, SOU���= �a2+�2�−2. Next, we describe the
main result of the study by introducing a nonstandard gener-
alization of the ordinary Langevin equation using the frac-
tional calculus as shown below,20

�−�Dt
1 + a��X��t� = ��t� , �18�

with fractional index ��0. As we will see later, the frac-
tional index can be related to the scaling exponent of the
power-law mass distribution of the dust particles. The so-
called nonstandard “fractional Langevin equation” can be
solved using Green’s function technique. Let g��t� be the
impulse response function of the system described in Eq.
�18�, hence we write

�−�Dt
1 + a��g��t� = ��t� . �19�

By applying Fourier transform on both sides of Eq. �19�, and
noting the property of Fourier transform of fractional

derivative,25 namely, F�−�Dt
�g��t��= �−i���G̃���� and the

corresponding shift theorem, we obtain20,36

G̃���� = F�g��t�� =
1

�a − i��� , �20�

where F� � denotes the Fourier transform and F���t��=1.
Taking the inverse Fourier transform of Eq. �15� gives the
response function for the fractional Ornstein–Uhlenbeck pro-
cesses X��t�, namely,

g��t� = � t�−1e−at

����
for t � 0

0 for t � 0,
� �21�

where X��t�=g��t����t�. Lim et al.35 showed that that the

solution of Eq. �18� permits a Fourier spectral representation
for ��1 /2. Note that when �=1, X��t� reduces to the stan-
dard Ornstein–Uhlenbeck process, XOU�t�. The solution of
Eq. �18� can be written explicitly as

X��t� = c�a,��	
−�

t

g��t − u���u�du , �22�

with c�a ,�� as an arbitrary constant which can be deter-
mined by choosing �=1. The correlation function of X��t� is
calculated as

C��	� = �X��t�X��t + 	�� ,

=c��a,��	
−�

t 	
−�

t+	

g��t − u�g��t + 	 − v�

����u���v��dudv ,

=
a−2�

2������ + 1/2�
�a	��K���a	�� , �23�

with �=�−1 /2 and K� is the modified Bessel function of the
second kind.37 The power-spectral density of X��t� is given

by SX�
���= �G̃�����2��a2+�2�−�. Moreover, the increments

of fOU process also satisfy the locally self-similarity prop-
erty, namely, ��X��t+	�−X��t��2���a	�2�. It is interesting to
note that based on this local self-similarity property and the
power-spectral density at high frequency limit �i.e., �a�,
the fractional Ornstein–Uhlenbeck process and its incre-
ments converge to the well-known Hurst, H �=��-indexed
fractional Brownian motion and fractional Gaussian noise,
respectively.31,32 Another advantage of fOU process having
second-order stationary property is the possibility of describ-
ing the memory of the process through

� = 	
0

�

C�t�dt . �24�

A process is said to have a short-memory if � is finite and
long-memory if � diverges. The fractional Ornstein–
Uhlenbeck process can be shown to be a non-Markovian
process simply by verifying that CX�

�t3− t1��CX�
�t2− t1�

�CX�
�t3− t2�, t1� t2� t3 with short-memory, namely, CX�

�t�
decays slower than the standard exponential form of
Ornstein–Uhlenbeck process. There are a number of gener-
alizations of the standard Langevin equation using fractional
calculus approach.38–46 Here, we mention one common form
that may be considered as the standard fractional Langevin
equation as given below,20

to
Dt

�Y�t� + aY�t� = ��t�, � � 0. �25�

Equation �25� can be solved using the method of Laplace
transform to give the general solution,
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Y�t� = �
j=1

n

Y j−1
0 tj−1E�,j�− at��

+ 	
0

t

�t − u��−1E�,��− a�t − u�����u�du , �26�

where E�,� is the generalized Mittag–Leffler function37 and
the boundary conditions Y j

0, j=0,1 , . . . ,n with n−1���n
are assumed. Moreover, it has been shown that the correla-
tion function of the process shown in Eq. �26� does not pos-
sess second-order stationarity,20

CY�t1,t2� = �
j,k=1

�
�− a� j+k−2

���j + 1����k�
t1
�jt2

�k−1

�2F1�1,1 − �k,1 + �j,t1/t2� ,

� f�t1 − t2� , �27�

where 2F1� · � is the Gauss hypergeometric function. Despite
its wide usage for modeling fractional dynamics in anoma-
lous diffusion,45–47 the solution of the standard fractional
Langevin equation lacks the key properties needed for mod-
eling of the light intensity scattering fluctuation.

IV. LIGHT SCATTERING EXPERIMENT AND RESULTS

The light scattering experiment is conducted using a ca-
pacitively coupled 13.56 MHz radio-frequency �rf� plasma
generator with argon gas operated at three different pres-
sures, namely, 0.1, 0.5, and 0.8 mbar. First, the vacuum
chamber is thoroughly cleaned and pumped to a pressure
about 0.09 mbar. Argon gas is then injected into the chamber
to a pressure not exceeding 1 mbar and then pumped down to
the desired pressure and maintained at a constant value by
adjusting the gas flow control valve. The gas is discharged
with 100 W forward rf power and the plasma is generated.
Light scattering measurement is carried out first without the
presence of dust. Dusty plasma is then created by dispensing
small amount of titanium dioxide dust particles into the

chamber using a mechanical sprinkler system. As the dust
particles acquire charges by mainly capturing electrons from
the plasma, a cloud of suspended charged dust is formed
above the lower electrode. By placing a copper ring on the
lower electrode, the dust particles are confined to a finite
region. Figure 1 shows the scanning electron micrograph
�SEM� of the titanium dioxide dust particles used for
this experiment. It is obvious that the particle size, hence
the mass, is not monodisperse as indirectly verified by the
particle area distribution shown in Fig. 2. If one chooses
the particle area distribution p�A� in the form of p�A�
=cA−�� exp�−A /Ao�, where A denotes areas, Ao is the cut-off
area, c is a constant, �� is scaling exponent analogous to the
mass distribution defined above for polydisperse particles,
then the use of correlation model given by Eq. �23� is justi-
fied with respect to kinetic transport described by Eq. �8�.
The empirical fitting parameter estimates are c=132�24,
��=0.46�0.11, and Ao=76.92�29 pixel2. The value of ��
obtained from particle analysis based on two-dimensional

FIG. 1. Scanning electron micrograph of titanium dioxide dust particles
used in dynamic light scattering experiment.
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FIG. 3. Experimental setup for laser light scattering measurement in dusty
plasma system.
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SEM micrograph is only indirectly related to the power-law
exponent for mass distribution since the real mass would be
very difficult to calculate.

The He–Ne laser beam with wavelength �=636.5 nm is
converted to a sheet beam using a cylindrical lens and trans-
mitted through the plasma via the quartz windows, parallel to
the electrodes. The schematic diagram of the experimental
setup is shown in Fig. 3. Due to the construction limitation of
the viewing windows of the discharge chamber, the measure-
ment could only be done at an angle of 30° from the primary
beam axis. The scattered light intensity is recorded using
Newport 1936-C single channel optical power meter at data
sampling rate of 10 kHz. The light intensity fluctuations in
the absence of dust and with an argon gas pressure of 0.1,
0.5, and 0.8 mbar are shown in Fig. 4. High-frequency fluc-
tuation that originates from the background plasma scattering
is removed by applying a low-pass filter on the intensity time
series. By subtracting the intensity time series with its mean
value, one obtains the mean-zero intensity fluctuation. The
time series is then normalized by dividing it with its standard
deviation. These procedures form the intensity data prepro-
cessing done using signal processing toolbox in MATLAB.

The empirical correlation of a discrete sequence of
length N is calculated using

CX�t� =
1

N
�
s=1

N−t

X�s�X�s + t�, t = 0,1,2, . . . ,N − 1. �23��

The empirical correlation for the light intensity scattering
fluctuation in dusty plasma at three aforementioned pressures
will be fitted with four intensity correlation models based on
different transport mechanisms. By noting that CI�t�
� �CE�t��2, we use CI

B�t�=c2 exp�−2t2 /	B
2� for ballistic trans-

port, CI
D�t�=c1 exp�−2t /	D� for diffusive transport, CI

BD�t�
=c3 exp�−c�−1+
t+e−
t�� for hybrid ballistic-diffusion
transport, and our fractional dynamics correlation function

based on fractional Ornstein–Uhlenbeck process, CI
F�t�

= �21−��at��K���at�� /�����2. Note that CE
F�t��C��t� with �

=�−1 /2. All the model correlation functions are normalized
such that CI�0�=1, so we can set c1=c2=c3=1.

The results of the correlation model fitting on the em-
pirical correlation using nonlinear regression technique are
shown in Figs. 5�a�–5�c� for three different argon gas pres-
sures. The best fit model parameters for correlation functions
CI

B�t�, CI
D�t�, CI

BD�t�, and CI
F�t� are summarized in Table I

with their respective root mean square error �RMSE�.

V. DISCUSSIONS

Our correlation model based fOU process produced the
best fit of the experimental data with the least error for pres-
sure 0.1 and 0.8 mbar. For 0.5 mbar, the fit accuracy of fOU
process is comparable with that of the hybrid kinetic-
hydrodynamics model. The advantage of the fOU based cor-
relation model may rest on the phenomenological origin of
the fitting parameters a and � �or �=�+1 /2�. Parameter a is
analogous to the friction coefficient 
 in the standard Lange-
vin equation for the velocity field, hence a−1 may be seen as
the persistence time or braking time of the fluctuations. Pa-
rameter � is related to the polydispersity of the power-law
mass distribution with exponent � through �=3−� �or terms
of shifted fractional derivative index �=7 /2−��. As noted
earlier, the function ��x�=−1+x+exp�−x� which was intro-
duced in an ad hoc manner to describe the cross-over be-
tween kinetic and hydrodynamical regimes in two opposite
time limits does not seem to give a clear physical justifica-
tion. Better insight into the relationship between the temporal
variations of the scattered electric field and particle dynamics
is obtained by considering the Van Hove autocorrelation
function27 together with the Vineyard’s Gaussian approx-
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imation30 for the dynamic structure factor. Hence, one could
identify the role of the mean square displacement �or the
variance of particle position� in determining the types of
transport mechanisms. We have also reasoned why the
Gaussian models such as the fractional Brownian motion that
is widely used for describing anomalous diffusion character-
ized by ��r2�� t2H would not serve as a plausible covariance
model, despite encompassing both limiting cases for H=1
�ballistic� and H=1 /2 �diffusive�. Moreover, the dynamic
structure factor for polydisperse particles is rather difficult to
estimate using the Gaussian approximation and distribution
for diffusion coefficients p�Ds�. Thus, we chose the non-
standard fractional Langevin equation as the phenomenologi-
cal model that gave a correlation function analogous to the
result obtained by Hurd and Ho18 for polydisperse particles.
In this respect, the fractional calculus approach gives one
possible interpretation of the complex scaling behavior of the
light intensity correlation function.

Overall, the correlation function based on purely ballistic
transport mechanism does not seem to fit the experimental
data for all three argon gas pressures. The RMSE for the data
fitting is the largest among the four models considered here.
At pressure 0.1 mbar, the dust particles were seen to be mov-
ing more erratically. The hybrid and the fractional correlation
models seem to describe the empirical correlation data well.
All models except the Gaussian type correlation model rep-
resent the empirical correlation data well for pressure
0.5 mbar. Finally, for the case of 0.8 mbar, only the hybrid
correlation model and the fractional correlation model give
satisfactory results. The persistence time �
−1� is found to
increase as the chamber pressure is increased from 0.1 to 0.8
mbar. On the other hand, we notice that the fractional index
� shows intricate dependence on the pressure with compen-
sation coming from parameter a as well. Further study is
needed to relate the fractional index � �or �� to fractional
oscillator characteristic of the charged dust particles. It is
also remarked that all the correlation models are presumably
associated to different Gaussian stochastic processes. The
Gaussian nature of the intensity fluctuation is verified by
plotting the empirical probability density function �pdf� as
shown in Fig. 6.

VI. CONCLUSIONS

Dynamical laser intensity scattering in dusty plasma has
been investigated using different stationary correlation mod-
els that are derived based on purely ballistic, purely diffu-
sive, and hybrid ballistic-diffusive transport mechanisms
with the assumption of monodisperse particles. Our main
result is concerned about polydispersity of the dust mass
distribution in which the original correlation model proposed
by Hurd and Ho18 is reproduced using a completely different
route, namely, the fractional Langevin equation with shifted
fractional derivative operator. The solution of this fractional
stochastic differential equation is the fractional Ornstein–
Uhlenbeck process. It has a stationary correlation function
parametrized by generalized friction coefficient a and frac-
tional index �. In addition, the study also described for the
first time a phenomenological link between power-law be-
havior in the particle polydispersity characterized by � with
fractional index � of dynamic light scattering fluctuation.
Yet, more studies are needed to understand the origin of frac-
tional dynamics from first principles. It would be interesting
to investigate the anomalous transport properties of charged
Brownian particles using the fractional diffusion equation48

or the fractional Langevin equation with dynamic memory

TABLE I. Summary of best fit model parameters for different correlation functions.

Correlation\Pressure
�mbar�

CI
B�t� 	B �s�

�rms error�
CI

D�t� 	D �s�
�rms error�

CI
BD�t� c, 
 �s−1�
�rms error�

CI
F�t� a �s−1�, �
�rms error�

0.1 0.465�0.002 0.638�0.002 0.125�0.03, 2.246�0.010,

28.49�0.75 0.701�0.003

�0.079� �0.035� �0.022� �0.016�
0.5 2.315�0.007 3.876�0.003 0.138�0.001 0.251�0.001

4.50�0.12 0.480�0.001

�0.116� �0.023� �0.048� �0.026�
0.8 2.312�0.004 3.690�0.007 0.301�0.002 0.479�0.001

2.40�0.02 0.861�0.002

�0.053� �0.050� �0.017� �0.015�
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FIG. 6. Normalized empirical probability density function of the light in-
tensity fluctuation fitted with normalized Gaussian probability density
function.
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Diffusion Dynamics of Charged Dust Particles in 
Capacitively Coupled RF Discharge System

W.X. Chew, S.V. Muniandy, C.S. Wong, S.L. Yap, and K.S. Tan
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50603 Kuala Lumpur, Malaysia

Abstract. Dusty plasma is loosely defined as electron-ion plasma with additional charged components of micron-sized 
dust particles. In this study, we developed a particle diagnostic technique based on light scattering and particle tracking 
velocimetry to investigate the dynamics of micron-sized titanium oxide particles in Argon gas capacitively coupled rf-
discharge. The particle trajectories are constructed from sequence of image frames and treated as sample paths of 
charged Brownian motion. At specific sets of plasma parameters, disordered liquid-like dust particle configuration are
observed. Mean-square-displacement of the particle trajectories are determined to characterize the transport dynamics. 
We showed that the dust particles in disordered liquid phase exhibit anomalous diffusion with different scaling 
exponents for short and large time scales, indicating the presence of slow and fast modes which can be related to caging 
effect and dispersive transport, respectively.

Keywords: dusty plasma, transport process, brownian motion
PACS: 52.27.Lw

INTRODUCTION

Dusty or complex plasma are plasma containing 
charged micron-sized dust particle [1]. Dusty plasma 
are found in interstellar clouds, tokamaks and plasma 
reactor [1]. The charged particles experience various 
types of forces which include electrostatic force, 
gravitational force, ion drag force, thermophoresis 
force, neutral drag force and radiation pressure force. 
The many-body interaction of charged particles with 
the surrounding electrons and ions have give rise to 
many interesting phenomena such as crystal structures,
ordered and disordered phases, linear and nonlinear 
waves, vortices, dust void, and Coulomb ball [1]. The 
dust-dust interaction in dusty plasma is described by 
Coulomb coupling parameter c, which is defined as 
the ratio of the electrostatic energy of neighboring 
particles and their thermal energy [2]. A system is said 
to be strongly coupled when the electrostatic 
interaction exceeds the thermal energy, i.e. when c

Kinetic description the dust particles in these 
disordered states have been investigated in a number 
of studies. Among the common framework used is the 
theory of Brownian motion that can model diverse 

diffusion phenomena [4]. Diffusion process is 
characterized by the mean square displacement (MSD) 
of the Brownian particle defined as 

>
1. By controlling the dust particle charge or dust 
temperature, highly-ordered crystal-like structure can 
be formed from a disordered gas-like or liquid-like
dust configuration of states [3].

22 |)0()(|)( ii rtrt . (1)

Here ri(t) is the position of the i-th particle at time t
and the angular bracket denotes ensemble average. For 
normal or Fickian diffusion process, the MSD scales 
linear with time, namely 2(t) ~ t and the diffusion 
coefficient D is determined through the Einstein 
relation, D = limt

2(t)/(4t). Anomalous diffusion 
refers to nonlinear behavior of MSD [5], i.e. 2(t) ~ t
with scaling exponent 1. The system is said to 
undergo slow or sub-diffusion when 0< <1, and fast 
or super-diffusion when 1 < <2. Normal diffusion or 
Brownian motion corresponds to =1, and =2 
characterizes ballistic transport. Anomalous diffusion 
can be modeled using a version of fractional Brownian 
motion defined using Riemann-Liouville (RL) 
fractional integral [6],

dt
H

tX
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H
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where is gamma function, ( ) is the Gaussian, 
delta-correlated white noise and H >0 is the Hurst 
exponent. The standard definition of FBM is based on 
modified Weyl fractional integral introduced by 
Mandelbrot and van Ness [7]. Here, the RL-FBM, 
XH

),,1,(
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),( 2
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2
1

122
2
1

2
1

2
1

2
1

s
t

HH

HHF
HH

ststR

(t) is the solution of the Langevin equation in which 
random force is the Riemann-Liouville derivative of 
Gaussian noise. RL-FBM is a Gaussian process 
characterized by zero starting point, zero mean,
correlation function [6]:

(3)

where s > t and 2F1 denotes the Gauss hypergeometric 
function, and the variance given by 2 = Ct2H, where C
= (2H (H+1/2)2) 1. It is clear that the variance (or the 
MSD) of RL-FBM satisfies the required power-law 
scaling with = 2H. Moreover, the RL-FBM is also a 
self-similar process, namely {XH(at)} {aHXH(t)}, for 
a >0 and the equivalence is in the statistical properties. 
However, due to the fact that the process starts from 
the origin, RL-FBM does not have stationary 
increments for transient time. However, at large time 
limit, this much desired property is recovered and 
hence one can define the power spectral density of 
power-law type and the fractal dimension is then given 
by DH = 2 H.

Anomalous diffusion of dust particles in strongly 
coupled quasi-2D and 2D ordered dusty plasma have 
been reported in a number of experiments. Sub-
diffusion was observed at small time scale in frozen 
dusty plasma state, where the dust particles experience
caging effect of neighboring particles [8-10].
Meanwhile super-diffusion have been observed on 
time scales up to 10 - 20 seconds due to collective 
(vortex) motion in melting state of quasi-2D dusty 
plasma [9,11] or due to cooperative fast particle 
excitations in cold quasi 2D dusty plasma [11].
Normal diffusion was observed at longer time scale in 
these experiments. Ratynskaia et al. [12] had reported 
non-Gaussian position distribution with exponential 
tails in super-diffusive particle transport. Liu et al. [13]
use laser power to heat the dust suspension to create a 
2D nonequilibrium driven-dissipative system. Non-
Gaussian statistics and super-diffusion were found in 
the experiment. To explain the wide range of diffusion 
scaling exponents reported in experimental data, 
several theoretical investigations using Langevin 
dynamics simulation have been carried [14,15]. From 
the numerical analysis, super-diffusion is observed in
weak neutral gas damping rate and weakly coupled 
system. Meanwhile, sub-diffusion occurred at large 
neutral gas damping rate and strongly coupled system.
Also, anomalous diffusion is shown to be a transient 
behavior, which converges into normal diffusion at 

long time limit. It is remarked that these models are 
only applicable to stationary equilibrium states. On the 
contrary, most reported cases of super-diffusion 
behavior are observed in systems that were not in 
equilibrium. This applies to the experiment of 
Ratynskaia et al. [12,16], where super-diffusion was 
observed in viscoelastic vertical dust fluid and to those 
of Liu and Goree [12], which was carried out in driven 
dissipative system.

FIGURE 1. 3D configuration of rf capacitively coupled 
dusty plasma system.

EXPERIMENT SETUP

The experiment is conducted in a cylindrical 
symmetric rf dusty plasma system as shown in Fig. 1.
It consists of a top grounded electrode, and a bottom 
electrode coupled to a 13.56 MHz rf power amplifier.
The system is vacuumed using a rotary pump and 
filled with Argon gas at 0.1-0.9 mbar. Plasma is 
generated using 100W forward power with 43W
reflected power. Polydispersed titanium oxide particles 
with mean size of 3 micron are introduced. The 
particles are negatively charged and thus suspended in 
the region of sheath boundary. The particles are 
confined using metallic confining ring placed on the 
lower electrode. A digital video recording system with 
25 frame rate is used to capture the dust particles 
motion with the help of illumination by a He-Ne laser.

DATA ANALYSIS AND DISCUSSION

We observed an ordered dust configuration at
pressure of 0.8 mbar compared to the disordered gas-
like structure at 0.1 mbar as shown in Fig. 2 (a) and 
Fig. 2(b), respectively. Due to the limited frame rate of 
video recorder and viewing angle, we choose to 
analyze the relatively slower dust dynamics at 0.8 
mbar. The spatial resolution of the video is 

-particle 
spacing is estimated to be around 0.855mm.
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FIGURE 2(a). Disordered dust configuration at pressure 0.1 
mbar, (b). Ordered structure at 0.8 mbar.

Trajectories of particles are calculated as follows. 
Video is digitized to yield the coordinates of all the 
particles in a single field. Trajectories of individual 
particle is found using a computer algorithm that link a 
particle in one field to the most probable closest 
particle in the next field with the distance travel less 
than inter-particle spacing. Figure 3 shows the particle 
trajectories as they evolve in time (as indicated by 
gray-scale time mapping). Particle displacements at 
time t from initial positions are calculated for an 
ensemble of similarly behaving particles. The MSD is 
then calculated using Eq.(1) and plotted versus time in 
log-log scale as shown in Fig. 4. The slope of log-log 
plot gives the scaling exponent of the diffusion
process. At small time scale (0.04 2 sec), the scaling 
exponent is close to one, indicating normal diffusion.
At later time (after 2 sec), a slight change in the slope 
which points towards sign of anomalous transport 
behavior is observed. This shows the presence of slow 
and fast modes which can be related to caging effect 
and dispersive transport, respectively.

FIGURE 3. Evolution of particle trajectories with grayscale 
time mapping.

CONCLUSION

Scaling behavior of the MSD is used to characterize 
the transport dynamics of charged particles in dusty 
plasma. It is found that dust particles in disordered 
liquid-like phase exhibit anomalous diffusion with 
different scaling exponents for short time and long 
time scales.

FIGURE 4. Log-log plot of MSD versus time showing slope 
~ 1 at short time (0.04 2 sec) and slope >1 after 2 sec.
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Abstract. Single file diffusion (SFD) refers to the constrained motion of particles in quasi-one-
dimensional channel such that the particles are unable to pass each other. Possible SFD of 
charged dust confined in biharmonic annular potential well with screened Coulomb interaction is 
investigated. Transition from normal diffusion to anomalous sub-diffusion behaviors is 
observed. Deviation from SFD's mean square displacement scaling behavior of 1/2-exponent 
may occur in strongly interacting systems. A phenomenological model based on fractional 
Langevin equation is proposed to account for the anomalous SFD behavior in dusty plasma ring. 

Keywords: Yukawa liquid. Dusty plasma ring. Anomalous diffusion. Fractional calculus. 
PACS: 52.27 .Lw; 52.25 Fi; 52.27 .Gr. 

ANOMALOUS DIFFUSION IN DUSTY PLASMAS 

Anomalous diffusion refers to nonlinear scaling of the mean square displacement 
(MSD) of the particles with respect to time, namely R2(t) ~ t�, where ��1 [1]. 
Subdiffusion occurs when 0< � <1 and super-diffusion when 1< � <2. Ordinary 
diffusion is seen when � = 1. Single file diffusion (SFD) is an interesting type of 
subdiffusive (� = 1/2) transport, in which the particles are constrained from passing 
each other in a narrow channel or potential confinement [2]. The possibility of 
observing SFD in dusty plasma ring was reported in [3,4]. Following a similar 
experimental setup as described in [4], we obtained the dusty plasma ring as shown in 
Figure 1(a) with samples of particle trajectories (Figure 1(b)). The MSD of an 
ensemble of almost identical particles is depicted in Figure 1(c) showing transition 
from diffusion to sub-diffusion and later to complicated scaling with oscillations. 

 

     
FIGURE 1. (a) Snapshot of strongly correlated dust particles in quasi-1D dusty plasma ring, (b) 

selected particles trajectories and (c) averaged mean square displacement.  

sample 
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FRACTIONAL LANGEVIN DYNAMICS 

The microscopic dynamics of a tagged dust particle (assuming unit mass) in a 
single file system can be modeled using generalized fractional Langevin equations [5]: 
 ,10),()(0 ��� �� tvtxDt  (1) 

 10),()()()()(
0

0 ����		 
 ���� tdssvsttvtvD
t

t  (2) 

where �
tD0  and �

tD0 are the Caputo fractional derivatives, �(t) = 2�(t)+ t��1/�(�) is 
the fractional kernel,  is the dissipation parameter and 0 � �<1. Here, we simplify the 
model by assuming �=�=1. The second term in �(t) is responsible for the correlated 
effect due to confinement [6]. Dust-plasma interaction is described via the correlated 
Gaussian noise �(t) term such that ��� = 0 and it satisfies the generalized fluctuation 
dissipation relation ��(t)�(0)�=kBT�(t), where kB is the Boltzmann constant, T is 
temperature. Using the method of Laplace transform, the particle position is given by 

 
 	�	�
t

tvdssstxtx
0

)()0()()()0()( ��� , (3) 

where �(t) is related to the mobility �(t), i.e. d�(t)/dt = �(t) and noting that 
112 )()(~ ��		� ��� ssss  is the inverse Laplace transform of �(t). The MSD of the 

tagged particle is given by  
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 , (4) 

with the long-time behavior ��12 ~)( ttR . Initial transient behavior of this system was 
shown to be ballistic with R2(t) ~ t2 before changing to normal diffusion (�=0) and 
later to SFD (with �=1/2) [6]. Our model is able to describe the anomalous SFD in 
dusty plasma ring with exponent � which may be different from 1/2. This may occur 
in strongly correlated Yukawa liquid, systems with inhomogeneous dust, internal 
degree of freedom such as particle rotation and complex dust-plasma interactions. 
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Abstract. Dynamic light scattering (DLS) technique is a simple and powerful technique for 

characterizing particle properties and dynamics in complex liquids and gases, including dusty plasmas. In 

this study, fractal characteristics of DLS time series are analyzed using wavelet scalogram approach. 

Wavelet based scale decomposition approach is used to separate non-scaling background noise (without 

dust) from scaling intensity fluctuation from dusty plasma. The Hurst exponents for light intensity 

fluctuation in dusty plasma at different neutral gas pressures are determined. At low pressures, weaker 

damping of dust motions via collisions with neutral gases result in stronger persistent behaviors in the 

fluctuation of DLS time series. The fractal scaling Hurst exponent is demonstrated to be useful for 

characterizing structural phases in complex disordered dusty plasma, especially when particle 

configuration or sizes are highly inhomogenous, making the standard pair-correlation function difficult to 

interpret. The results from fractal analysis are verified using an alternative interpretation of disorder based 

on approximate entropy. 

Keywords: Dynamic light scattering; Dusty plasmas; Fractal analysis 

PACS: 52.25.Os; 52.27.Lw; 64.60.al 
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Diffusion Dynamics of Charged Dust Particles in 

Capacitively Coupled RF Discharge System. 

W.X. Chew, S.V. Muniandy, C.S. Wong, S.L. Yap, and K.S. Tan 

Plasma Research Laboratory, Department of Physics, University of Malaya, 

50603 Kuala Lumpur, Malaysia 

Abstract.  Dusty plasma is loosely defined as electron-ion plasma with additional charged 

components of micron-sized dust particles. In this study, we developed a particle diagnostic 

technique based on light scattering and particle tracking velocimetry to investigate the dynamics of 

micron-sized titanium oxide particles in Argon gas capacitively coupled rf-discharge. The particle 

trajectories are constructed from sequence of image frames and treated as sample paths of charged 

Brownian motion. At specific sets of plasma parameters, disordered liquid-like dust particle 

configuration are observed. Mean-square-displacement of the particle trajectories are determined 

to characterize the transport dynamics. We showed that the dust particles in disordered liquid 

phase exhibit anomalous diffusion with different scaling exponents for short and large time scales, 

indicating the presence of slow and fast modes which can be related to caging effect and 

dispersive transport, respectively.  

Keywords: Dusty plasma, transport process, Brownian motion. 

PACS: 52.27.Lw  

 

 

  



 

The 6
th

 Mathematics and Physical Sciences Graduates Congress 

13 - 15th December 2010 

Faculty of Science, University of Malaya. 

 

 

 

 

 

 

 

Stochastic Dynamics of Charged Dust Particles in 

Capacitively Coupled RF Discharge System 

W.X. Chew, S.V. Muniandy and C.S. Wong 

Plasma Research Laboratory, Department of Physics, University of Malaya, 

50603 Kuala Lumpur, Malaysia 

Abstract.  Dusty plasma is loosely defined as electron-ion plasma with additional charged 

components of micron-sized dust particles. In this study, we developed a particle diagnostic 

technique based on particle tracking velocimetry to investigate the dynamics of micron-sized 

titanium oxide particles in Argon gas capacitively coupled rf-discharge. The particle trajectories 

are constructed from sequence of image frames and treated as sample paths of charged Brownian 

motion. At specific sets of plasma parameters, disordered liquid-like dust particle configuration 

are observed. Mean-square-displacement of the particle trajectories are determined to characterize 

the transport dynamics. We showed that the dust particles in disordered liquid phase exhibit 

anomalous diffusion with different scaling exponents for short and large time scales, indicating the 

presence of slow and fast modes which can be related to caging effect and dispersive transport, 

respectively. A Gaussian model with varying scaling exponent is proposed as candidate model for 

observed anomalous transport. 

Keywords: Dusty plasma, transport process, Brownian motion. 
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Abstract.  Dusty plasma is loosely defined as electron-ion plasma with additional charged 

components of micron-sized dust particles. In this study, we developed a particle diagnostic 

technique based on particle tracking velocimetry to investigate the dynamics of micron-sized 

titanium oxide particles in Argon gas capacitively coupled rf-discharge. The particle trajectories 

are constructed from sequence of image frames and treated as sample paths of charged Brownian 

motion. At specific sets of plasma parameters, disordered liquid-like dust particle configuration 

are observed. Mean-square-displacement of the particle trajectories are determined to characterize 

the transport dynamics. We showed that the dust particles in disordered liquid phase exhibit 

anomalous diffusion with different scaling exponents for short and large time scales, indicating the 

presence of slow and fast modes which can be related to caging effect and dispersive transport, 

respectively. A Gaussian model with varying scaling exponent is proposed as candidate model for 

observed anomalous transport. 
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Appendix B: Matlab scripts 

 

B1: Signal processing and correlation analysis in DLS experiment 

 
%there are five section in this correlation analysis of DLS signal:  

%(1)bandstop filtering, (2) wavelet detrend (3)empirical ACF 

%calculation, (4)ACF averaging, (5)ACF model fitting 

%--------------------------------------------------------------------------  

%(1) bandstop filtering 

%key in the names of input raw data, and click Ctrl+enter to run within 

%this cell. 

%three spectrum will appear, select the [Fp1,Fst1,Fst2,Fp2] for bandstop 

%filter.  

clear all,clc,close all 

name='09dona'   %---------------------------------------------------- 

A_bandstopFilter(name) 

clear all,clc%,close all 

name='09donb'   %---------------------------------------------------- 

A_bandstopFilter(name) 

clear all,clc%,close all 

name='09donc'   %---------------------------------------------------- 

A_bandstopFilter(name) 

%clear all,clc,close all 

%name='09donb' 

%A_bandstopFilter(name) 

%% 

%(2)wavelet detrending 

clear all,clc,close all 

name='09dona'   %---------------------------------------------------- 

B_waveletdetrend(name) 

clear all,clc 

name='09donb'   %---------------------------------------------------- 

B_waveletdetrend(name) 

clear all,clc 

name='09donc'   %---------------------------------------------------- 

B_waveletdetrend(name) 

%clear all,clc 

%name='09donb' 

%B_waveletdetrend(name) 

%% 

%(3) ACF calculation 

clear all,clc,close all 

name1='09dona'   %---------------------------------------------------- 

name2='09donb'   %---------------------------------------------------- 

name3='09donc'   %---------------------------------------------------- 

C_getACF(name2,8000) %specify the input data one by one with the lag time   %-----------------------------

----------------------- 

%% 

%(4) averaging the ACF data 

clear all,clc,close all 

name='09';   %---------------------------------------------------- 

c1=load('09dona_ac.dat');   %---------------------------------------------------- 

c2=load('09donb_ac.dat');   %---------------------------------------------------- 

c3=load('09donc_ac.dat');   %---------------------------------------------------- 

%change this to reduce or add number of data for averagin; default is 3 

%sets of data 

l=min([size(c1,2),size(c2,2),size(c3,2)]); %length of the shortest ACF   %---------------------------------------

------------- 

aveC=mean([ c1(2,1:l);c2(2,1:l);c3(2,1:l)]); %mean of three acf   %----------------------------------------------

------ 



 

lag=c2(1,1:l); 

plot(lag,aveC) 

acf=cat(1,lag,aveC); 

save([name 'meanACF.dat'],'acf','-ascii') 

%% 

%ACF fitting, remember to specify the exclusion region in D_fitACF function 

%first!! 

clear all,clc,close all 

[a s d f z x c v ]=D_fitACF('09meanACF')   %---------------------------------------------------- 

 

Main Functions 

function A_bandstopFilter(name) 

%this script uses Chebyshev II bandstop filter to remove power line interference present  

%in raw signal.  

%a raw spectrum will be shown for selecting the region to be filtered. 

%Once finish you can see the result signal and save the signal. 

% Load original 1D signal.      

x = load([name '.dat']); 

%sampling rate 

Fs=10000; %-------------------------------------------- 

%cut to closest dyadic length:       

dl=floor(log2(length(x)));      

xx=x(1:2^dl); 

%demean and normalize 

a=xx-mean(xx); 

aa=a./std(a); 

%check original power spectrum 

[ff,yy]=fftpsd(aa,Fs); 

title('raw power spectrum') 

xlim([30 80]) %shown only the first interference peak 

%-----------------------------------------------------------------------------  

%input parameters:Fp1,Fst1,Fst2,Fp2,Ap1,Ast,Ap2,Fs (F=freq,A=amplitude,p=pass,st=stop) 

[fff,ppp]=ginput(4); %select the [Fp1,Fst1,Fst2,Fp2] 

d1=fdesign.bandstop(fff(1),fff(2),fff(3),fff(4),2,10,2,Fs); 

hd1=cheby2(d1,'matchexactly','stopband'); 

yy1=filter(hd1,aa); 

y1=(yy1-mean(yy1))./std(yy1); 

clear yy1 

[fff,ppp]=ginput(4);%select the [Fp1,Fst1,Fst2,Fp2] for second time 

d2=fdesign.bandstop(fff(1),fff(2),fff(3),fff(4),5,20,5,Fs); 

hd2=cheby2(d2,'matchexactly','stopband'); 

yy2=filter(hd2,y1); 

y2=(yy2-mean(yy2))./std(yy2); 

clear yy2 

xlim([10^2 10^2.3]) %shown only the second interference peak 

[fff,ppp]=ginput(4);%select the [Fp1,Fst1,Fst2,Fp2] 

d3=fdesign.bandstop(fff(1),fff(2),fff(3),fff(4),5,20,5,Fs); 

hd3=cheby2(d3,'matchexactly','stopband'); 

yy3=filter(hd3,y2); 

y3=(yy3-mean(yy3))./std(yy3); 

clear yy3 y2 

out=y3; 

%plot the filtered spectrum 

fftpsd(out,Fs); 

title('bandstop filtered') 

%plot the raw and filtered signal 

figure 

subplot(211) 

plot(xx) 

title('raw signal') 



 

subplot(212) 

plot(out) 

title('bandstop filtered signal') 

%saving the filtered signal 

save([name '_bs.dat'],'out','-ascii') 

  

  

function B_waveletdetrend(name) 

%this decompose the signal using wavelet decomposition at scale j and reconstrut a 

%coarse scale signal at scale j-1 and subtracted it from the original 

%signal to give a detrended signal. 

%default wavelet is db4 

wvletdb=4;%wavelet type 

%input data 

x = load([name '_bs.dat']); 

% Perform decomposition at level j of s using db1.  

j=floor(log2(length(x))) 

[c,l] = wavedec(x,j,['db' num2str(wvletdb)]); 

 %reconstructed at scale  

k=j-1       

% Reconstruct signal from the level k approximation:                     

xa8 = wrcoef('a',c,l,['db' num2str(wvletdb)],k);   

detx=x-xa8; 

%plotting the figure 

figure 

subplot(311);plot(x);title('Original signal') % title ('original signal'); 

subplot(312);plot(xa8); title('reconstruted signal')% title ('signal recon. from ca5'); 

ylim([-5 5]) 

ubplot(313);plot(detx); title('detrended signal')% title ('signal recon. from cd2');%trend 

figure 

plot(detx) 

%saveing the detrended signal 

save([name '_wd.dat'],'detx','-ascii') 

  

function C_getACF(name,lag) 

%this script calculate the autocorrelation function(ACF) of input time series 

%until the specified lag time 

data= load([name '_wd.dat']); 

%sampling interval=1/10k  

nsi=1/10000;%0.0032;%-------------------------------- 

%autocorrelation calculation 

[c,lags]=xcorr(data,lag,'coeff'); 

%selecting the ACF with positive lag time 

plag=lags(lag+1:2*lag+1).*nsi;%in second 

pc=c(lag+1:2*lag+1)'; 

acorr=cat(1,plag,pc); %turn the ACF and lag time into a two column matrix 

save([name '_ac.dat'],'acorr','-ascii')% saving the two column matrix 

%plotting the ACF 

plot(data) 

figure 

plot(plag,pc) 

kk=find((pc<=0)) 

min(kk) %give the lag time where ACF turn right below zero. 

 

function [cB goodB cD goodD cBD goodBD cF goodF]=D_fitACF(name) 

%fit the empirical ACF with four different correlation model: ballistic, 

%diffusive, ballistic-diffusive and fractional ornstein-uhlenbeck model. 

%before fitting, specify which part of ACF to be excluded in the fitting 

%general exclusion rule: 

%(1)first point of ACF is one, but the next point 

%there's a sharp drop to below one, hence for better fitting, the first 

%point is excluded. 

%(2) excluded negative ACF  



 

%(3) excluded part with sudden bump when ACF is decaying, which is caused 

%by non-stationary effect. 

acf= load([name '.dat']); 

t=acf(1,:); 

c=acf(2,:); 

%exc=[] 

%exc=find( c<=0 | c==1 |t>=0.6);%exclusion rules for 0.1 

%exc=find( c<=0 | c==1 |t>=0.5);%exclusion rules for 0.3 

%exc=find(c<=0 | c==1 );%exclusion rules for 0.5 

%exc=find(c<=0 | c==1 );%exclusion rules for 0.8 

exc=find(c<=0 | c==1 | t>=0.65);%exclusion rules for 0.9 

inc=find(c<1 & c>0);% index of positive ACF region without first point 

x1=t(inc(1)); 

x2=t(inc(end)); 

figure%displaying excluded region 

plot(t,c) 

hold on 

plot(t(exc),c(exc),'o') 

xlim([x1 x2]) 

ylim([0 1]) 

title('marked points are region excluded in fitting') 

figure 

[cB,goodB]=createFitB(t,c,exc); 

xlim([x1 x2]) 

ylim([0 1]) 

figure 

[cD,goodD]=createFitD(t,c,exc); 

xlim([x1 x2]) 

ylim([0 1]) 

figure 

[cBD,goodBD]=createFitBD(t,c,exc); 

xlim([x1 x2]) 

ylim([0 1]) 

figure 

[cF,goodF]=createFitFOU(t,c,exc); 

xlim([x1 x2]) 

ylim([0 1]) 

 

 

 

B2: Image processing and particle tracking 

Image processing 
 

clear all 

close all 

clc 

%This code perform spatial denoise on input grayscale image, output as binary image 

%before you run, please do the following: 

%(1)specify the parameter in every setion specified with long dash  

%(2)create a output folder with the name of 'bi' 

mode=0  %--------------------------------------------------------------------- 

%0=test mode(show one result without saving) 

%1=(process all image frames and save data) 

%<spatial denoise>, ----------------------------------------------------- 

lnoise=1;  %lnoise=size of noise,  

lobject=3; %lobject=size of dust grain 

%loop for calling image file 

D = dir('proc\0100*.bmp')%---------------------------------------------- 

%star is the number sequences in your data name,  

%e.g. to import data01.bmp,data02.bmp,data03.bmp, type 'data0*.bmp' as the 

%filename. Note that D only have the numerical information. 



 

if mode==0 

sizze=1; 

else 

sizze=numel(D); 

end 

%create empty cell 

imcell = cell(1,sizze); 

for i = 1:sizze           

imcell = imread(['proc\' D(i).name]);%the name of directory your image is stored, same with D-------------

-------------- 

if mode==0 

figure(1) 

imshow(imcell) 

else 

end 

%transform image to 2D binary field 

bwcell=im2bw(imcell); 

clear imcell  

%fprintf('spatial denoising...');  

outcell=bpass(bwcell,lnoise,lobject); 

clear bwcell 

if mode==0 

figure(2) 

imshow(outcell) 

else  

end 

%saving the results in binary image format 

if mode==1 

imwrite(outcell,['bi\' D(i).name]); 

clear outcell 

else 

end 

end 

  

 

Particle location identification  

 
clear all,close all,clc 

%This code finds particle position  

%before you run, please do the following: 

%(1)specify the parameter in every setion specified with long dash  

pg=0  %--------------------------------------------------------------------- 

%0=test mode(show one result without saving) 

%1=(process all image frames and save data) 

%directories of binary images, cannot be grayscale!! 

D = dir('bi\0100*.bmp');%---------------------------------- 

if pg==0 

    sizze=1; 

else 

%number of frames 

sizze=numel(D); 

end 

imcell = cell(1,sizze); 

%position list 

poslst=0; 

%start loop for position estimation 

for i=1:sizze             

fprintf(num2str(i));  

fprintf('\n') 

%load the image file 

img=imread(['bi\' D(i).name]); 

%input variable 



 

%size to calculate centroid from lobject in bpass.m 

lobject=3; %------------------------------------------- 

szc=lobject+10; %------------------------------------------- 

%diamter of the window over which to average to calculate the centroid.   

%should be big enough to capture the whole particle but not so big that it captures others.  

szpk=lobject+10; %------------------------------------------- 

%if your data's noisy, (e.g. a single particle has multiple local 

% maxima), then set this optional keyword to a value slightly larger than the diameter of your particle.   

%pkfnd  

%maximum intensity in grayscale image 

maxth=max(max(max(img))); 

th=2;%-------------------------------------------------- 

%the minimum brightness of a pixel that might be local maxima. refer to the 

%value of maximum intensity, maxth 

%estimation of particles position 

pkcoor=pkfnd(img,th,szpk); 

%centroid calculation 

cent=cntrd(img,pkcoor,szc,0); 

%position list for tracking (x | y | frame) 

if poslst==0 

    %initial list 

    poslst=cent(:,1:2); 

    t=zeros(1,length(cent(:,1))); 

    poslst=cat(2,poslst,t'); 

else 

    %subsequent list 

    clear t 

    xy=cent(:,1:2); 

    t(1:length(cent(:,1)))=i-1; 

    t=t'; 

    xy=cat(2,xy,t); 

    poslst=cat(1,poslst,xy); 

end 

if pg==0 

%plot as particle estimated position%----------------------- 

figure(1), 

imshow(imread(['bi\' D(i).name])) 

figure(1),hold on 

pkx=pkcoor(:,1); 

pky=pkcoor(:,2); 

scatter(pkx,pky,'r') 

%plot centroid 

figure(2), 

imshow(img) 

figure(2),hold on 

scatter(cent(:,1),cent(:,2),'r+') 

else  

end 

clear cent 

clear pkcoor 

clear img 

end 

if pg==1 

save poslst.mat poslst %output filename 

else 

    save oneframeposlst.mat poslst %particle positions of the first image frame 

end 

 

 

 

 

 



 

Particle tracking  

 
clear all,close all,clc 

 %This code perform particle tracking and shows the particles trajectory 

%before you run, please do the following: 

%(1)specify the parameter in every setion specified with long dash  

%(2)if parameter 'newlist' return zero matrix, try minus 'mxt' with 1  

load('poslst.dat'); %output from Blocateparticle.m 

%one of the input image as backdrop------------------------------------------- 

filename='proc\010000.bmp'; 

svcom=0 %------------------------------------------------ 

%0=test mode(show one result without saving) 

%1=(process all image frames and save data) 

savefile='01mbar.mat'; %output name--------------------------------- 

%tracking variables 

%------------------------------------------------------------------------------  

maxdisp=12; %maximum distance in one frame 

param.good=2;%minimum travel length 

param.mem=0;%particle lost time 

param.quiet=1; %text display 

param.dim=2; %tracking dimension 

mxt=10; %track particles that last for this long 

%calling track.m 

res=track(poslst,maxdisp,param); 

save res.mat res 

clear res 

%plot the tracked particles trajectories and save the particles 

%position,time and ID 

figure(1) 

set(gca,'color',[0 0 0]) 

ipic=imread(filename); 

colormap('default') 

hold on 

load('res.mat') 

%empty newlist 

newlist=[]; 

%loop for filtering particle match the criteria 

for i=1:res(size(res,1),4) 

fprintf(num2str(i)) 

    fprintf('\n') 

%filter that choose only particle last from 0th frame til mxt-th frame 

%Q:is i-th data contain mxt-th time frame and started at time 0? if YES 

%then continue 

if find(res(:,4)==i & res(:,3)==mxt) & find(res(:,4)==i & res(:,3)==0)~=0 

%find the index of particles that matches above criteria. 

index=find(res(:,4)==i & res(:,3)<=mxt); 

%x,y,t,id of particles  

x=res(index,1); 

y=res(index,2); 

t=res(index,3); 

id=zeros(length(x),1); 

id(:,1)=i; 

xyt=cat(2,x,y,t,id); 

%create a new list 

newlist=cat(1,newlist,xyt); 

%plot line with rainbow color gradient,initial blue,later red 

rainbowplot(x,y) 

%mark of particle id by plotting a point on the graph 

xmarks=size(ipic,1); 

ymarks=size(ipic,2); 

hh=plot(xmarks,ymarks,'b'); 

legend(hh,num2str(i)); 



 

h=colorbar; 

ylabel(h,'time (frame)','fontsize',22) 

legend off 

clear x y t id index xyt 

else  

end 

end 

%save as  

if svcom==1 

save(savefile,'newlist'); 

else 

end 

%number of particle satisfy criteria 

fprintf('number of particle satisfy criteria') 

length(unique(newlist(:,4))) 

%plot particle with their id 

index=find(newlist(:,3)==0); 

x=newlist(index,1); 

y=newlist(index,2); 

id=newlist(index,4); 

clear newlist 

%marking of particle ID on figure 

figure(2) 

imshow(ipic); 

hold on 

plot(x,y,'or') 

for i=1:length(x) 

a=x(i)+5; 

b=y(i); 

c=id(i); 

h=text(a,b,num2str(c)) 

set(h,'Color','w') 

end 

 

 

Pair correlation  

 
clear all,clc,close all  %------------------------------------------------------------------------ 

% Calculate Pair Correlation Function of randomly distributed points 

%g(r) is like a histrogram with user defined 'bin size', which is like the 

%annular ring with thickness=bin size, r-distance away from one of the 

%particle. 

%input particle coordinates (x,y) 

%CM=load('gasCM.dat'); 

CM=load('liqCM.dat'); 

%CM=load('liqCM.dat'); 

[numP, junk] = size(CM); 

figure 

scatter(CM(:,1),CM(:,2))           

keynum=50;%determine the 'bin size'/annular ring size 

maxgr=5*keynum;%maximum of r,choose before edge effect appear (particle near picture's edge don't 

have symmetrical neighbors distribution) 

imgarea=max(CM(:,1))*max(CM(:,2)); %area of image(unit in pixel), approximated by the farther 

particle from origin. 

partdensty=numP/imgarea %particle density~number of particle/ area of image;  

IPD=1/sqrt(partdensty); %interparticle distance~1/sqrt(particle density) 

PCorr = []; 

for i = 1:maxgr; 

PCorr(i) = 0; % Initialize PCorr to all zeros 

end 

for i = 1:numP 

for j = i+1:numP 



 

dist = sqrt( ( CM(i,1) - CM(j,1) )^2 + ( CM(i,2) - CM(j,2) )^2 ); %distance between each pairs of particles 

d_int = round( keynum*dist/IPD );%grouping distances into categories. 

if d_int < maxgr 

PCorr(d_int) = PCorr(d_int) + 1; %count the frequency for different distance categories. 

end; 

end 

end; 

%plot(PCorr) 

for i = 3:maxgr 

      %normalized by the annular area and total number of particles 

nPCorr(i) = PCorr(i) / ( numP*pi*(( (i+0.5)*IPD/keynum )^2 - ( (i-0.5)*IPD/keynum)^2 )); 

end 

npPCorr=nPCorr./partdensty;%normalize by average particle density 

pPCorr=2.5.*npPCorr(1:end-1); %a correction factor for g(r) converge to one for large r 

RoverIPD=[1:maxgr-1]./keynum; %construct x-axis which is r normalized by interparticle distance 

figure 

plot(RoverIPD,pPCorr) 

xlabel('r / IPD') 

ylabel('g(r),a.u.') 

grid on 

 

 

Velocity histrogram  

 
clear all ,close all,clc 

%this code finds the particle speed distribution (2D) 

%information regards experiment setting 

%mm/pix ratio----------------------- 

pix=0.0233; 

%s/frame ratio---------------------- 

fr=0.01; 

%input:particle x,y positions (output of Ctrackparticle--------------------------------------------- 

list=load('addinlist.dat'); 

%number of bins in histrogram--------------------------------------- 

bin=15 

%particle id's 

id=unique(list(:,4)); 

%empty cells for x and y's increments 

cumvx=[]; 

cumvy=[]; 

cumv=[]; 

%loop calling every particle to calculate particle first increment and 

%velocity 

for i=1:length(id) 

    index=find(list(:,4)==id(i)); 

    x=list(index,1);%arbitary axis x  

    y=list(index,2); 

    l=length(x); 

    vx(i,1:l-1)=(x(2:end)-x(1:end-1)).*pix./fr; %velocity in x 

    vy(i,1:l-1)=(y(2:end)-y(1:end-1)).*pix./fr;  

    %cumvx=cat(2,cumvx,vx(i,:)); %ensemble averaged velocity    

    %cumvy=cat(2,cumvx,vy(i,:));  

    v=sqrt(vx(i,:).^2+vy(i,:).^2); %average of speed of both x y component  

    cumv=cat(2,cumv,v); 

    clear v 

end 

%unit is mm per s 

meanv=mean(cumv) 

varv=var(cumv) 

hist(cumv,bin) 

%title(['histrogram of v_y, var=' num2str(varvy) ]) 

xlabel('velocity, mm/s') 



 

save v01.dat cumv -ascii %--------------------------------- 

saveas(gcf,'result\hist.fig') 

saveas(gcf,'result\hist.jpg') 

 




