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ABSTRACT 

 

The industrial application of the dielectric barrier discharge (DBD) has a long tradition. 

However, the lack of understanding of some of its fundamental issues, such as the 

stochastic behaviors, is still a challenge for DBD researchers. In this project, 

considerable efforts to understand the fundamental aspects of DBD have been made. 

The aim of this work is to study the electrical characteristics of DBD to determine a 

suitable condition for utilization of the device for applications. Several diagnostic tools 

such as high-voltage probe, resistive current, charge measurement, and high-speed 

camera imaging were employed for the investigation.  In order to study the electrical 

behaviors of DBD, the experimental work was carried out in two parts: current pulse 

amplitude statistical studies and the energy investigation. For the pulse amplitude 

statistical studies, the stochastic variation of the current pulse amplitude has been 

analyzed by the statistical method. The stochastic behavior of the discharge current 

amplitude has been compared with a proposed empirical equation of the distribution 

pulse height. This proposed statistical function is found to be in good agreement with 

the experimental discharge pulse amplitude variation for discharges with varying space 

gaps. This empirical equation successfully predicts the existence of two discharge 

regimes, which were observed from the experimental results. For the energy 

investigation, the DBD dissipation energy was studied experimentally and numerically. 

A dynamic circuit model constructed with Matlab Simulink accurately simulated the 

discharge energy of DBD. The surface resistance introduced in this electrical model 

represents the average effect that effectively accounts for the resistance encountered by 

the charges between the discharging and non-discharging regions on the dielectric. The 

expanded QV Lissajous can be reasonably explained by the fact that the total energy is 

summed by the energy of the DBD discharge and the energy consumed by the spreading 
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charges on the dielectric surface. By having the experimental results accurately fitted 

with the simulated results from the model, the efficiency of discharge can be obtained 

from the electrical modeling. The efficiency of the DBD has been found to be higher 

with a smooth surface compared to a rough surface. The efficiency is reduced when the 

applied voltage is increased. Based on the energy and current pulse amplitude 

distribution model, the DBD system can be designed according to the desired condition 

by controlling the required energy efficiency and pulse height distribution. 
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ABSTRAK 

Nyahcas penghalang dielektrik (DBD) telah lama diaplikasikan dalam bidang industri. 

Walau bagaimanapun, kekurangan pemahaman, seperti sifat stokastik, masih 

merupakan satu cabaran dalam DBD pengajian. Dalam projek ini, kerja yang penting 

untuk mendapatkan pemahaman yang lebih mendalam telah disumbangkan. Kerja yang 

kami hasilkan adalah mengaji ciri-ciri nyahcas penghalang dielektrik (DBD) untuk 

mendapatkan keadaan aplikasi yang lebih berkesan. Beberapa peralatan yang tradisional 

telah digunakan untuk menentukan sifat DBD seperti penduga voltan tinggi, 

pengukuran arus, pengukuran caj, dan pengimejan kamera kelajuan tinggi. Untuk 

mengaji sifat elektrik, pengajian ini dijalankan dengan dua bahagian yang berasingan:  

cara statistik untuk nadi yang tidak stabil and pengukuran tenaga dengan QV Lissajous. 

Bagi bahagian statistik untuk nadi yang tidak stabil, sifat stokastik DBD dikajikan 

dengan cara statistik. DBD yang dikaji telah dibandingkan dengan kaedah statistik yang 

dicadangkan. Kaedah statistik ini memberi keterangan yang baik dalam pembentukan 

nyahcas yang impulsif dengan jarak jurang ruang yang berbeza. Kaedah statistik ini 

berjaya meramalkan kewujudan dua rejim dalam statistik ketinggian nadi yang didapati 

daripada eksperimen. Selain itu, kaedah ini boleh meramalkan statistik dengan tepat, 

jadi menambahkan kebolehan kita dalam mengawali DBD. Bagi pengukuran tenaga 

DBD, tenaga yang dipakai oleh DBD telah dikaji secara eksperimen dan berangka.  Satu 

litar dinamic  yang dibina dengan “Matlab Simulink” meramalkan tenaga nyahcas 

dengan jitu. Rintangan yang dikenali dalam pemodelan elektrik ini adalah kesan yang 

menjumlahkan rintangan yang dihadapi oleh caj antara rantau tidak bernyahcas dan 

rantau bernyahcas pada permukaan dielektrik. Pengembangan QV Lissajous boleh 

menjelaskan bahawa jumlah tenaga yang dipakai  merangkumi tenaga DBD and tenaga 

yang dipakai untuk caj merebak di atas permukaan dielektrik. Dengan keputusan 

berangka yang berjaya menyamai keputusan eksperimen, kecekapan nyachas boleh 
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diperolehi daripada model elektrik ini. Kecekapan DBD yang didapati menunjukkan  

kecekapan yang lebih tinggi telah diperolehi dengan permukaan licin and kecekapan 

yang lebih rendah diperolehi dengan permukaan yang kasar. Kecekapan juga boleh 

dikurangkan dengan menaikkan bekalan voltan. Berdasarkan model elektrik dan kaedah 

statistik yang dicadangkan, sistem DBD boleh direka mengikut aplikasi yang 

dikehendaki dengan mengawal kecekapan tenaga dan pengedaran ketinggian nadi.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



V 

 

ACKNOWLEDGEMENTS 
 

 

I would like to thank my supervisor Professor Dr. Wong Chiow San and Dr. Yap 

Seong Ling for their guidance and advices throughout the entire project. This project 

would not be possible without their consistent guidance.  

 

I also would like to acknowledge my appreciation to Mr. Jasbir Singh for his 

technical expertise and experience support. I am also thankful to Mr Ching Leng Chu 

for his assistance on my work. 

 

I am very grateful for having wonderful friends during my life. I would like to 

address special thanks to the members of the Plasma Research Center, Li San, Siew 

Kien, Sang Huat, Yen Sian, Lian Kuang, Wei Xiang, Chee Yee, Farah, Yuen Sim, Sarah, 

Norhyati, Prasertsung, for their friendship, helpful and delightful discussions. 

 

Finally yet importantly, I would like to thank my parents for their moral support and 

encouragement enabled me to pursue my master degree.  

 

 

 

 

 

 

 

 



VI 

 

TABLE OF CONTENT 
 

 Page 

ABSTRACT 

ABSTRAK 

ACKNOWLEDGEMENTS 

TABLE OF CONTENTS 

LIST OF FIGURES 

LIST OF TABLE 

NOMENCLATURE 

 

I 

III 

V 

VI 

XI 

XV 

XVI 

Chapter 1: Introduction and Literature Review 

1.1   History and Introduction  

1.2   Applications of DBD 

1.2.1   The ozone generator 

1.2.2   Surface treatment 

1.2.3   Pollution control 

1.2.4   Extreme ultraviolet excimer, ultraviolet excimer and plasma 

fluorescent lamp  

1.2.5   Flow control 

1.2.6   Biomedical application 

1.3   Research and Development 

1.3.1   Introduction  

1.3.2   The DBD discharge modes 

1.3.3   Investigation of the filamentary current 

1.3.4   General investigation of the filamentary discharge  

1 

1 

3 

4 

4 

6 

7 

 

7 

8 

9 

9 

9 

12 

14 



VII 

 

1.3.5   The optical emission spectroscopy  

1.4   DBD Modeling 

1.4.1   Introduction of electrical modeling of DBD 

1.4.2   Basic concept of the DBD electrical modeling   

1.4.3   Lui and Neiger model  

1.4.4   Bhosle discrete volume model  

1.4.5   Barrientos model  

1.4.6   Pal single current model  

1.4.7   Summary of electrical models  

1.5   Objectives 

1.6   Dissertation Layout 

 

16 

20 

20 

21 

22 

24 

26 

28 

28 

30 

30 

Chapter 2: Experimental Setup and Methodology 

2.1   Experimental Setup  

2.1.1   The DBD reactor  

2.1.2   Power supply circuitry 

2.2   Diagnostic Techniques  

2.2.1   Introduction  

2.2.2   High voltage measurement  

2.2.3   Current measurement  

2.2.4   Charge measurement  

2.3   Basic Discharge Characteristics and Analysis Methods  

2.3.1   Typical discharge current and voltage profiles 

2.3.2   Measured current components 

2.3.3   Removal of displacement current and background noise  

2.3.4   The stochastic behaviors of time separation and pulse height  

31 

31 

31 

34 

35 

35 

36 

36 

37 

38 

38 

39 

41 

43 



VIII 

 

2.3.5   Temporal evolution of nanosecond pulse  

2.3.6   Correlation of the pulse height and charge transferred  

2.3.7   Distribution of current pulse  

2.3.8   The space gap capacitance and dielectric capacitance   

2.3.9   QV Lissajous figure under breakdown condition 

2.3.10 The time evolution of space gap voltage and dielectric voltage  

 

44 

45 

47 

48 

51 

52 

Chapter 3: Electrical Characteristic 

3.1   Introduction 

3.2   The Statistical Studies of Discharge Behavior of DBD  

3.2.1   The experimental current pulse distribution  

3.2.2   The time separation between consecutive current pulses  

3.2.3   The empirical distribution function  

3.2.4   Comparison of experimental results and proposed distribution 

function  

3.3   Discharge Energy Consideration  

3.3.1   Observation of experimental QV Lissajous figure 

3.3.2   The dynamic electrical circuit model  

3.3.3   Factor D determination 

3.3.4   Matlab Simulink code 

3.3.5   Results and discussions 

55 

55 

56 

56 

60 

67 

73 

 

77 

77 

80 

83 

86 

88 



IX 

 

Chapter 4: Conclusion and Suggestion for Future Work  

4.1   Conclusion 

4.2   Suggestion of Future Work 

4.2.1  High-speed imaging  

4.2.2  Optical emission spectroscopy  

4.2.3  Homogenous discharge 

 

100 

100 

103 

103 

104 

105 

References 

Appendix: Research outputs 

107 

118 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



X 

 

LIST OF FIGURES 

Figure 1.1:  

Figure 1.2:  

Figure 1.3:  

 

 

 

Figure 1.4:  

 

 

 

Figure 1.5:  

 

 

 

 

 

Figure 1.6:  

 

Figure 1.7:  

 

 

 

 

Figure 1.8:  

 

The collection of different typical configurations of DBD. 

Surface treatment and layer deposition by DBD (Wagner, et al., 2003). 

The comparison of the current measurement between the homogenous 

discharges in left hand side, labeled as (a) with the filamentary 

discharge in right hand side labeled as (b) (Gherardi & Massines, 

2001). 

(a) The mix-discharge mode where the discharge current is due to 

combination of homogeneous discharge current and filamentary current 

pulses. (b) The two components are shown separated (Jidenko, et al., 

2002). 

The existence of two regime in the discharge statistical pattern was 

observed by Siliprandi (Siliprandi, et al., 2008).        is the mean total 

charge transferred by the discharge current. Activity ration is the 

fraction of the current pulse duration to the total DBD “ON” time. The 

two regimes of discharge pattern are separated by 23.55 kV peak to 

peak applied voltage (regime transition voltage). 

(a) Schematic diagram of the voltage and current waveform versus 

time. (b) Schematic diagram of voltage to charge Lissajous figure. 

Emission spectra of N2 in the homogenous discharge (GDBD) and 

filamentary discharge (FDBD). The (ON2) emission intensity is 

representative of the N2(A
3
Σu

+
) metastable density. The (ON2) emission 

is only observed in homogenous discharge (Massines, Segur, Gherardi, 

Khamphan, & Ricard, 2003). 

The contour of the relative intensity shows the velocity of ion streamer 

increases with the distance from anode (Kozlov, Brandenburg, Wagner, 



XI 

 

 

Figure 1.9:  

 

Figure 1.10: 

 

Figure 1.11: 

 

Figure 1.12: 

 

Figure 1.13:  

 

Figure 1.14:  

Figure 2.1:  

Figure 2.2: 

Figure 2.3:  

Figure 2.4:  

Figure 2.5:   

Figure 2.6:   

Figure 2.7:  

Figure 2.8:   

 

Figure 2.9:  

Figure 2.10:  

Figure 2.11:  

 

Figure 2.12: 

Morozov, & Michel, 2005).   

The three different DBD arrangements studied by Hoder (Hoder, et al., 

2010). 

The single dielectric DBD reactor can be represented by the simplest 

equivalent electric circuit.  

The dynamic electric circuit of the DBD reactor in Lui and Neiger 

model (Liu & Neiger, 2001, 2003).  

The equivalent circuit for Nf filaments (Bhosle, Zissis, Damelincourt, & 

Dawson, 2004). 

Model implemented in Matlab Simulink software. (a) The general 

electrical circuit. (b) The coding block of MCB.  

The comparison of the proposed filamentary discharge electric models. 

Schematic diagram of the DBD arrangement. 

Schematic diagram of DBD experimental setup. 

Resistivity current measurement circuit. 

Charge measurement circuit. 

The typical filamentary discharge current pulse and applied voltage. 

Step of the filamentary discharge current pulse analysis. 

The diagram of the double stochastic DBD pulse. 

The detected impulsive current of DBD and the calculated current by 

Equation 2.10.  

The straight correlation between the charge and the pulse height.  

The typical distribution of pulse height. 

The total effective capacitance of DBD reactor before breakdown with 

negligible error.  

The typical QV Lissajous under breakdown condition.  



XII 

 

Figure 2.13: 

Figure 2.14: 

 

 

Figure 3.1: 

Figure 3.2: 

Figure 3.3:   

Figure 3.4:  

Figure 3.5:  

 

Figure 3.6:  

 

 

Figure 3.7:  

 

 

Figure 3.8:  

Figure 3.9: 

 

 

 

 

Figure 3.10:  

 

Figure 3.11: 

 

The space gap breakdown voltage versus the space gap distance. 

The typical voltage waveform of the applied voltage, dielectric voltage, 

and space gap voltage. The gray color background is ON mode period. 

The white color background is OFF mode period. 

The PDF of 0.5 mm space gap.  

The PDF of 1.0 mm space gap.  

The PDF of 1.5 mm space gap.  

The PDF of 2.0 mm space gap.  

Comparison of (a) the single point microdischarge with (b) multiple 

channels microdischarge.   

The gradient of applied voltage near to the zero voltage is determined 

and only the pulses occur in this range of dVT/dt are selected for 

analysis. 

The correlation between the average height of current pulses and the 

average time separation for dVT/dt of 2.629 GV/s, 3.396 GV/s and 

4.080 GV/s.  

The schematic diagram of the multiple microdischarge channels. 

The comparison of experimental regime transition voltage with 

simulated result for discharges with 1.0 mm space gap.  Vpp
t
 is the 

simulated regime transition voltage obtained by using Equation 3.20. 

The full line is simulated by using Equation 3.19 for each applied 

voltages. 

The comparison of the computational results and experimental results 

for PDF with different space gaps with 35 kV pk-pk applied voltage. 

The comparison between the experimental result (left) and the proposed 

density function of 2.0 mm space gap.   



XIII 

 

Figure 3.12: 

 

Figure 3.13:  

 

Figure 3.14:   

Figure 3.15: 

Figure 3.16: 

 

Figure 3.17:  

Figure 3.18:  

 

Figure 3.19:  

 

Figure 3.20: 

Figure 3.21:  

 

Figure 3.22:  

Figure 3.23:  

 

 

Figure 3.24:  

 

 

Figure 3.25:  

 

 

Comparison of the experimental current pulse amplitude with the 

simulated results.  

Comparison of the experimentally detected number of pulses with the 

simulated results.  

The experimental and theoretical QV Lissajous figure. 

The equivalent circuit for filamentary discharge with surface resistors. 

The electrical model of DBD and the dynamic currents in equivalent 

circuit. 

The image from top view of DBD discharge. 

The process to convert the image file to matrix format. The black color 

represents zero value and white color represents value 1. 

The variation of factor D for discharges with various space gaps 

distance. 

The interface of Matlab Simulink code. 

The Simulink codes of (a) discharge current block, and (b) 

measurement analysis block. 

The comparison between the experimental result and simulated result.  

Comparison of (a) simulated and (b) experimental waveforms of the 

dissipation power of space gap  and the total current for discharge with 

0.5 mm air gap and 30 kV pk-pk applied voltage. 

Comparison of (a) simulated and (b) experimental waveforms of the 

applied voltage VT, air gap voltage Vg, and dielectric voltage Vd for 

discharge with 0.5 mm air gap and 30 kV pk-pk applied voltage. 

QV Lissajous resulting from (a) simulation and (b) experiment for 0.2 

mm air gap and various applied voltages when factor D and surface 

resistance are 0.013 and 2.18 MΩ respectively. 



XIV 

 

Figure 3.26:  

 

 

Figure 3.27: 

 

 

Figure 3.28:  

 

 

Figure 3.26:  

 

 

 

Figure 4.1: 

 

 

 

Figure 4.2: 

QV Lissajous resulting from (a) simulation and (b) experiment for 1.0 

mm air gap and various applied voltages when factor D and surface 

resistance are 0.014 and 2.3 MΩ respectively. 

QV Lissajous resulting from (a) simulation and (b) experiment for 1.0 

mm air gap and rough dielectric surface when factor D and surface 

resistance are 0.017 and 4.5 MΩ respectively. 

The total energy dissipated versus the applied voltage for DBD with 

various air gaps. The lines represent the simulated results and the 

symbols represent the experimental results. 

The simulated total energy, discharge energy, surface energy, and 

efficiency versus the applied voltage for smooth dielectric with (a) 0.2 

mm air gap, (b) 0.5 mm air gap, and (c) 1.0 mm air gap.  For rough 

dielectric with 1.0 mm air gap the results are shown in (d). 

Image of the single negative current pulse in the 5 mm gap DBD 

captured by ICCD camera with gate width of 500 us. Three 

synchronous breakdowns were observed in a single negative discharge 

current pulse.  

The DBD optical emission spetra under atmospheric gas. 

 

 

 

 

 

 

 

 

 



XV 

 

LIST OF TABLE 

Table 1.1 

Table 3.1 

Table 3.2 

Nomenclature of electrical model. 

List of the parameters used in the PDF function equation. 

List of the simulation parameter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



XVI 

 

NOMENCLATURE 

 

Arabic    

Symbol Description  Unit 

   Charge monitor capacitance  [F] 

     Correction factor  [-] 

   Dielectric capacitance   [F] 

     Dielectric capacitance of discharge region  [F] 

     Dielectric capacitance of non-discharge region  [F] 

   Space gap capacitance  [F] 

     Space gap capacitance of discharge region  [F] 

     Space gap capacitance of non-discharge region  [F] 

     Dielectric capacitance of channel k  [F] 

   DBD capacitance  [F] 

   Total effective capacitance of DBD reactor  [F] 

  Distance of space gap  [m] 

D 

 

Ratio of the total area of the discharging regions to the total 

area of the electrodes 

 [-] 

     Energy of the DBD discharge in one cycle  [J] 

         Energy consumed by the surface resistance in one cycle  [J] 

       Total dissipation energy of DBD system in one cycle  [J] 

  Frequency of the applied voltage  [s
-1

] 

  Pulse height  [A] 

   Constants value depend on the gas used  [A] 

   Displacement current  [A] 

      Detected external DBD current in the equivalent circuit  [A] 



XVII 

 

     Discharge current  [A] 

       Minimum detected value   [A] 

   Constant value in the voltage controlled current source  [A] 

    Total effective current of the surface discharge  [A] 

      Total measured current  [A] 

  Imaginary value  [-] 

      Total number density of the pulses with current amplitude i  [A
-1

] 

      Total number density function of the pulses with channel 

breakdown voltage u 

 [V
-1

] 

      Total number density of channels with channel breakdown 

voltage u 

 [V
-1

] 

N Number of the detected pulses  [-] 

   Total number of channels  [-] 

     Charge transfer from a single discharge pulse of channel k  [C] 

     Total charge transfer  [C] 

   Total charge transfer  [C] 

   Current monitor resistance  [ ] 

   DBD resistance  [ ] 

       Resistance of high voltage probe  [ ] 

    Total effective resistance of the charge surface progresses  [ ] 

  Effective total electrode area   [m
2
] 

   Effective occupied area of individual channel k  [m
2
] 

  Time  [s] 

   Pulse starting time  [s] 

   Mean of the channel breakdown voltage  [V] 



XVIII 

 

     Space gap breakdown voltage of channel k  [V] 

   Peak to peak breakdown voltage of DBD system  [V] 

   Voltage across the charge monitor capacitance  [V] 

   Dielectric voltage  [V] 

     Dielectric voltage of discharge region  [V] 

     Dielectric voltage of non-discharge region  [V] 

   Space gap voltage  [V] 

     Space gap breakdown voltage  [V] 

     Space gap voltage of discharge region  [V] 

     Space gap voltage of non-discharge region  [V] 

      Voltage across the current monitor resistor  [V] 

    Breakdown voltage in the voltage controlled current source  [V] 

Vpp
t 

Regime transition voltage  [V] 

   Applied voltage  [V] 

     Peak voltage of applied voltage  [V] 

      Load impedance  [ ] 

        Total impedance of the source  [ ] 

    

Greek    

Symbol Description  Unit 

  Constants value depend on the gas used  [V
-1

] 

  Constant value in the voltage controlled current source   [-] 

γ 

 

Ratio of the amount of charge flowing to equivalent circuit 

to the total amount of DBD charge 

 [-] 

   Vacuum permittivity  [F.m
-1

] 



XIX 

 

   Relative permittivity  [-] 

  Calibration phase angle  [rad] 

  Standard deviation  [V] 

   Time constant  [s] 

  Angular velocity of power supply  [rad/s] 



1 
 

Chapter 1: Introduction and Literature Review 

1.1   History and Introduction 

Non-thermal plasma is commonly generated under low pressure feeding gas. This 

type of plasma contains high density of excited species that can be responsible for many 

chemical reactions.  However, it will be more convenient if the non-thermal plasma can 

be generated at atmospheric pressure. One of the successful approaches to generate non-

thermal plasma in atmospheric pressure is the utilization of dielectric barrier discharge 

(DBD). The DBD is also known as the silent discharge, atmospheric discharge, and 

barrier discharges.  

   

Werner Von Siemens developed the first DBD reactor for ozone generation in 1857. 

Initially, the DBD is mainly used for the ozone generator  (Kogelschatz, 1990). In 1932, 

Buss showed that the DBD discharge composed of a large number of bright filaments 

covering the narrow space gap by a photographic trace. A uniform discharge obtained in 

DBD was later reported by Okazaki and his collaborators in 1988 and 1993 (Kanazawa, 

Kogoma, Moriwaki, & Okazaki, 1988; Okazaki, Kogoma, Uehara, & Kimura, 1993). 

They called the type of discharge as the atmospheric pressure glow discharge (APGD). 

Besides that, Eliasson (Eliasson, Hirth, & Kogelschatz, 1987) also studied the different 

modes of DBD, namely homogenous and filamentary modes.  

 

The dielectric barrier discharges is commonly generated in the filamentary mode 

under atmospheric pressure. The numerous bright filament discharge may either 

regularly or randomly distributed over the discharge space gap (Kogelschatz, 2002).  

Even so, under a certain operating conditions, dielectric barrier discharges in a 

homogenous mode can be generated. The investigation of homogenous DBD was also 
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carried out by several other groups (Gherardi, Gouda, Gat, Ricard, & Massines, 2000; 

Roth, Rahel, Dai, & Sherman, 2005). 

 

A method to estimate the filamentary discharge energy was proposed by Manley in 

1943 (Manley, 1943). He used a voltage to charge Lissajous method, which is also 

known as QV Lissajous figure method to calculate the total dissipation energy of DBD.  

Besides, the DBD properties are experimentally studied by Eliasson (Eliasson, Egli, & 

Kogelschatz, 1994; Eliasson, et al., 1987).  The mechanism of the transition between the 

two discharge modes has been studied based on optical investigation and electric 

measurement (Massines, Gherardi, Naude, & Segur, 2009; Massines, et al., 2003). More 

reviews on the early work and the application of  DBD were presented by Kogelschatz 

(Kogelschatz, 2003; Kogelschatz, Eliasson, & Egli, 1997, 1999).  

 

A DBD can be produced when at least one of the electrodes is covered by a dielectric 

layer, such as glass, quartz or ceramics. An alternating voltage or a repetitively pulsed 

power source can be used to power the DBD reactor. The function of the dielectric layer 

between the electrodes is to prevent the formation of arc discharge and to limit the DBD 

current. A space gap ranging from 0.1 mm to few cm is commonly applied under 

atmospheric air condition.  In order to generate the DBD, the minimum peak to peak 

applied voltage must be higher than the breakdown voltage of the discharge.  According 

to Paschen law, the breakdown electric field is about 30 kVcm
-1

 under atmospheric air 

condition. 
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1.2   Applications of DBD 

In particular, DBD operated at the atmospheric air condition and 50 Hz power source 

is attractive because of its simplicity in configuration and power system. The affordable 

AC power supply can be used instead of the sophisticated pulsing circuits. The DBD 

reactor can also be scaled up in size or volume for industrial application. The flexibility 

of DBD configuration is also one of the advantages to be considered. The different 

geometric arrangements are shown in the Figure 1.1. 

 

The configurations shown are the parallel plate (A-C), multi needle (D), needle to 

plate (E), needle to needle (F), surface discharge (G), actuator (H), coplanar discharge 

(I), wire mesh (J), cylindrical (K), and DBD Jet (L). 

 

 

Figure 1.1: The collection of different typical configurations of DBD. 

 

The applications of the plasma technology based on the DBD are being considered in 

many industrial areas. The DBD based applications such as ozone synthesis, surface 

treatment, pollution control, excimer, flow control, and biomedical application will be 

discussed in the following sub sections. Other applications of DBD include high 

  

 
   

   

   

 

 

 

 

  

    A)                               B)                                C)                             D) 

    E)                               F)                                 G)                             H) 

    I)                                J)                                K)                             L) 
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intensity of CO2 laser, reforming of methane (Goujard, Tatibouet, & Batiot-Dupeyrat, 

2011), and dust removal (Atten, Pang, & Reboud, 2009). 

 

1.2.1   The ozone generator 

The DBD based ozonizer has a long history in the industry. The typical arrangement 

of the DBD based ozonizer is in cylindrical geometry (refer to Figure 1.1, labeled as K). 

The inner electrode is covered by a Pyrex glass tube and connected to a high-voltage 

supply.  Formation of ozone is due to the reaction between the oxygen radicals and 

oxygen molecules (Eliasson, et al., 1987; Kogelschatz, et al., 1999). One of the common 

applications of ozone is for the drinking water treatment (Siddiqui, Amy, & Murphy, 

1997). Recently, the ozone is extensively used in food industry and odor removal. The 

ozone generated from DBD reactor can also be used for color removal of a textile waste 

(Ramasamy, Rahman, & Wong, 2001). 

 

1.2.2   Surface treatment 

The DBD has also been used in the surface treatment of material (Wagner, et al., 

2003). The advantages of DBD in surface treatment are the flexibility of DBD 

geometrical and the ability to be operated under atmospheric pressure. Surface treatment 

by DBD includes the modification of the polymer surface (Esena, et al., 2005; Kwon, 

Myung, Lee, & Choi, 2006; Kwon, Tang, Myung, Lu, & Choi, 2005; Massines, Gouda, 

Gherardi, Duran, & Croquesel, 2001; Zhang, Shao, Long, et al., 2010) and cleaning 

(Kersten, Steffen, & Behnke, 1996: Yi, Lee, & Yeom, 2003).  
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Borcia studied the effect of various polymer films treated by DBD. The results 

showed that the surface hydrophilicity can be improved due to the surface oxidation. In 

further explanation, the molecular oxygen in the atmospheric air is excited by the DBD 

which can be rapidly reacted with the treated surface to increase the surface 

hydrophilicity (Borcia, Anderson, & Brown, 2004). 

 

Massines reported a comparison of the filamentary discharge and homogenous 

discharge for surface modification in 1998 (Massines & Gouda, 1998). Massines 

reported that both types of the discharge can enhance the hydrophilicity effect. However, 

the homogenous discharge brings a better result in the hydrophilicity effect. 

 

The DBD filaments are randomly distributed to cover the treated surface. Zhang 

investigated both the homogenous and filamentary DBD by a nanosecond unipolar 

pulse (Zhang, Shao, Long, et al., 2010). He reported that the surface energy is improved 

due to the physical etching and introduction of oxygen-containing polar functional 

groups. However, the surface energy improvement has the ageing effect. It is attributed 

to the reorientation of the polar chemical groups. 

 

A summary of surface treatment by DBD is given by Wagner as shown in Figure 1.2 

(Wagner, et al., 2003).  
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Figure 1.2: Surface treatment and layer deposition by DBD (Wagner, et al., 2003). 

 

The high hydrophilic effect enhances the wettability, printability, and adhesion on 

the polymer surface. Besides, the DBD treatment can also increase the hydrophobic 

effect on the treated Polypropylene film by using Helium/CF4 DBD as evidenced by an 

increased contact angle (De Geyter, et al., 2008).  

 

1.2.3   Pollution control 

In the DBD formation, electrons are accelerated and collided with molecules thus 

creating a large number of free radicals. The DBD reactor behaves like a chemical 

reactor, which contains of a large variety of reactions. The reaction inside the DBD 

involves the free radicals, molecular, ions and electrons. The removal of common 

gaseous pollutant such as nitrogen and sulfur oxides was studied by Hashim and Wong 

(Hashim, Wong, Abas, & Dahlan, 2007; Wong, Hashim, Abas, & Dahlan, 2010). 

Besides, Xia studied the removal of ammonia by the DBD. He reported the potential 

application of the DBD for removing odor causing gas from the gas streams (Xia, et al., 

2008). 



7 
 

Manojlovic compared the efficiency of ozonation and direct treatment of pollutants 

by DBD. The results showed that the direct DBD treatment had higher efficiency for 

removing arsenic (Manojlovic, et al., 2008). Furthermore, the decomposition of volatile 

organic compounds (VOCs), NH3, H2S and CO2 by DBD was reported by Kogelschatz 

in literature (Kogelschatz, et al., 1999). 

 

1.2.4   Extreme ultraviolet excimer, ultraviolet excimer and plasma fluorescent 

lamp 

The UV radiation can be emitted by a DBD operated with appropriate gas mixture 

such as Ar
2
*, Kr

2
*, Xe

2
*, ArCl*, KrCl*, and XeCl* (Kogelschatz, 1990).  The DBD 

operating with halogen gas, such as Cl and Br, is also an alternative method to produce 

UV radiation (Lomaev et al., 2006). A DBD based excimer can have the configuration 

in the form of wire mesh (Wang et al., 2006), coplanar electrodes or making use of the 

transparent indium-tin oxide (ITO) conductor as one of the electrodes.  On the other 

hand, the DBD based neon excimer lamp can be used for generating extreme ultraviolet 

(EUV) (Carman, Kane, & Ward, 2010). Moreover, mercury free fluorescent and the 

plasma display are based on the concept of the conversion of DBD’s UV emission to 

visible light by a phosphor layer.  

 

1.2.5   Flow control 

The potential of flow control by DBD had been studied by Enlo (Enloe, McHarg, & 

McLaughlin, 2008) and Lagmich (Lagmich, Callegari, Pitchford, & Boeuf, 2008). 

Commonly, the DBD flow controller is arranged in actuator configuration. The DBD 

flow controller is also referred as electrohydrodynamic (EHD) actuators. The 

advantages of this DBD actuator are the small size of the device, the absence of 



8 
 

mechanical parts, reduced drag, robustness, simplicity and low power consumption 

while allowing real time control (Moreau, 2007).  

 

The DBD actuator can generate the charge particles in the surrounding air. Due to the 

existing of electromagnetic force on the dielectric surface of the actuator, the charge 

particles can be accelerated to produce a zero net mass flux over the dielectric surface. 

The flow induced by the DBD actuator is known as ionic wind. The velocity of the ionic 

wind can reach a velocity of 8 ms
-1

 at 0.5 mm above the dielectric surface (Moreau, 

2007).  

 

1.2.6   Biomedical application 

During the last decade, plasma based biomedical application has been rapidly 

developed. Biomedical application such as skin diseases treatment (Fridman, et al., 

2007), blood coagulation (Fridman, et al., 2006), and sterilization (Tanino, Xilu, 

Takashima, Katsura, & Mizuno, 2007; Xu, et al., 2009) have been studied. The DBD 

configurations such as the plasma jets (Kolb, et al., 2008; Xu, et al., 2009), floating 

electrode (FE DBD) (Fridman, et al., 2006; Fridman, et al., 2007), and surface DBD 

(SDBD) (Weltmann, et al., 2010), can be used for generating the low temperature 

plasma for medical application. 

 

Treatment with low-temperature plasma enhances the speed of blood coagulates 

without any tissue damage while simulating tissue regeneration effect (Fridman, et al., 

2006). Possibility of infection of wound is also reduced with the treatment (Fridman, et 

al., 2006; Tanino, et al., 2007; Xu, et al., 2009).  
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Nevertheless, medical risk of plasma treatment like the toxicity of DBD treatment on 

endothelial cells was studied (Kalghatgi, Fridman, Fridman, Friedman, & Clyne, 

2008).  The author compared the difference of the duration of the DBD treatment. The 

report suggested that the short-duration DBD treatment results in non-toxic effect to the 

endothelial cell.  Short duration of DBD treatment for endothelial cells enhances the cell 

proliferation, which increases the tissue regeneration effect. However, the cytotoxic 

effect of the endothelial cell may occur after a long duration of the DBD treatment. 

 

 

1.3   Research and Development  

1.3.1   Introduction 

The DBD mechanism is developed based on the evidence of the experimental 

investigations. The plasma diagnostic techniques employed in the investigation of DBD 

discharges include electrical measurements (voltage, discharge current and charge flow), 

spectroscopy, and high speed imaging technique. In this section, the research and 

development on DBD in the literature is reviewed. 

 

1.3.2   The DBD discharge modes 

The homogenous mode and filamentary mode of DBD can be easy distinguished, 

where filamentary discharge is generated in a numerous filament form, and homogenous 

discharge is a uniform discharge covering the electrode.  These different discharge 

modes produce different current waveforms.  A homogenous discharge in nitrogen 

feeding gas is shown in the left-hand side of Figure 1.3, labeled as (a). This kind of 

discharge has been defined as homogenous discharge, or Townsend-like discharge 

(Massines, Gherardi, Naude, & Segur, 2005; Luo et al., 2007) where the current signal 
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is a single long duration non-impulsive current waveform in a range of few µs. In the 

case of filamentary discharge mode as shown in the right hand side of Figure 1.3, 

labeled as (b), the current waveform consists of a large number of extremely short 

current pulses each with a duration in the range of a few ns or shorter.  The amplitude of 

the impulsive current in filamentary discharge is higher than that in a homogenous 

discharge. Massines suggested that each discharge streamer was corresponding to a 

single current pulse.  

 

  
Figure 1.3: The comparison of the current measurement between the homogenous 

discharges in left hand side, labeled as (a) with the filamentary discharge in right hand 

side labeled as (b) (Gherardi & Massines, 2001). 

 

The third mode of discharge is the mix mode (Petit, Jidenko, Goldman, Goldman, & 

Borra, 2002). This type of discharge consists of both homogenous and filamentary mode, 

which is also termed as transient discharge or mix-discharge. 

 

 Petit investigated the electrical characterization of the mix-discharge using a 

numerical analysis by Matlab software. He observed a long-duration non-impulsive 

current (pseudocontinuous current) overlapping with the impulsive current as shown in 

Figure 1.4 (Petit, et al., 2002). The author believes that this current is not caused by the 

(a)                                                                            (b) 
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capacitive current, which is due to the variation of the voltage between the capacitor. 

Petit suggested that the non-impulsive is caused by the overlapping homogenous 

discharge in filamentary discharge.  

 

 

Figure 1.4: (a) The mix-discharge mode where the discharge current is due to 

combination of homogeneous discharge current and filamentary current pulses. (b) The 

two components are shown separated (Jidenko, et al., 2002). 

 

For the mix-discharge mode, the measured current consists of three components after 

eliminating the background noise (Petit, et al., 2002). The first component is the 

capacitive current caused by the alternating applied voltage on the DBD reactor. The 

second component is the impulsive current associated with the DBD. The third 

component is the non-impulsive current. The second and third components are present 

only when the DBD is ON. Beside Petit report, the non-impulsive current in filamentary 

discharge is also observed by Jidenko and Laurentie (Jidenko, Petit, & Borra, 2006; 

Laurentie, Jolibois, & Moreau, 2009).  

 

 

 

 

(a)                                                            (b) 
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1.3.3   Investigation of the filamentary current 

The impulsive current is highly unstable in the filamentary DBD discharge. Van 

Brunt developed a statistical analysis method for the data treatment of the impulsive 

current amplitude, charges per pulse, duration of pulse, time separation between 

consecutive pulses (Vanbrunt & Cernyar, 1991; Vanbrunt, Cernyar, & Vonglahn, 1993).  

It was believed that the memory effect played an important role in the pulse height 

distribution and the time separation between the pulses (Vanbrunt, Misakian, Kulkarni, 

& Lakdawala, 1991). The effect of discharge time on the pulse height distribution was 

later studied (Vanbrunt, Vonglahn, & Las, 1995). Vanbrunt also suggested that the 

dielectric surface properties strongly influenced the characteristic of the pulse height 

distribution (Vanbrunt, Vonglahn, & Las, 1995). Wang also suggested that the dielectric 

surface properties are modified by the discharge (Wang et al., 2006). 

 

In a separate study, Reichen reported on a detailed study of the influence of the gas 

velocity based on the pulse height distribution (Reichen, Sonnenfeld, & von Rohr, 

2010). 

 

Gulski analyzed the discharge statistical pattern for different DBD geometry by 

several statistical methods such as skewness, kurtosis and modified cross correlation 

(Gulski & Kreuger, 1990).  He observed that the DBD geometry affect the discharge 

statistical pattern.   

 

The calculation of the average amplitude of the impulsive current is one of analysis 

performed. From the investigation of the average impulsive current amplitude, Jidenko 

observed that there were two different regimes found in the impulsive discharge 

(Jidenko, et al., 2006). The regimes of the impulsive current are determined by the 
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applied voltage. In 2008, Siliprandi also observed the two different regimes in the 

discharge statistical pattern as shown in Figure 1.5. (Siliprandi, et al., 2008).  

 

 

Figure 1.5: The existence of two regime in the discharge statistical pattern was 

observed by Siliprandi (Siliprandi, et al., 2008).         is the mean total charge 

transferred by the discharge current. Activity ration is the fraction of the current pulse 

duration to the total DBD “ON” time. The two regimes of discharge pattern are 

separated by 23.55 kV peak to peak applied voltage (regime transition voltage). 

 

The average amplitude of impulsive current is increasing with the applied voltage 

until the applied voltage reaches the regime transition voltage. In regime 2, the average 

discharge current pulse is slowly increased with the applied voltage (Jidenko, et al., 

2006).  

 

The impulsive currents are fluctuating stochastically, both spatially and temporally.  

Hence the analysis of the stochastic nature of the impulsive currents is a time 

consuming process. Ficker simplified the impulsive current analysis process by a digital 

acquisition method (Ficker, Macur, Pazdera, Kliment, & Filip, 2001).  In his experiment, 

only the pulse amplitude and the pulse occurring time are recorded in the digital 



14 
 

acquisition. The charge transfer of each impulsive current can be estimated from the 

amplitude of the impulsive current.  This method is used to reduce the data analysis time 

and the size of the stored data.   

 

The probability density function of the amplitude of impulsive current was also 

investigated by Ficker experimentally (Ficker, 2003).  

 

1.3.4   General investigation of the filamentary discharge 

The technique of measuring the total charge transported via a capacitor connected in 

series with DBD reactor has been introduced in 1943 (Manley, 1943).  The total charge 

transfer was determined by dividing the measured voltage across the capacitor by its 

capacitance. The well-known Manley’s equation can be employed to estimate the 

energy dissipation in a uniformly distributed filamentary discharge of DBD. This 

equation can be obtained from the parallelogram in the QV Lissajous figure as shown in 

the right hand side of Figure 1.6, labeled as (b). (Falkenstein & Coogan, 1997; Wagner 

et al., 2003). 

 

 

Figure 1.6: (a) Schematic diagram of the voltage and current waveform versus time. (b)  

Schematic diagram of voltage to charge Lissajous figure. 

 

(a)                                                        (b) 

OFF   NO   OFF 
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The DBD operating period can be divided into DBD “ON” and DBD “OFF” modes. 

The DBD “ON” mode is the period from the first current pulse t1 until the last current 

pulse t2 in a single current burst. The DBD “OFF” mode indicates the period of zero 

DBD current pulse between two current bursts. In the DBD “OFF” mode, dQ/dVT is 

equal to the equivalent capacitance of the DBD reactor (CT), which is the slope obtained 

in Figure 1.6(b). After the discharge is ignited, a larger number of impulsive currents 

superposition with background displacement current is observed in the DBD “ON” 

period as shown in Figure 1.6(a). The effective capacitance of the DBD reactor is then 

changed to dielectric capacitance (Cd). 

 

The breakdown voltage (Vb) is the minimum required applied voltage for igniting the 

DBD. The voltage across the DBD reactor includes the voltage across the space gap and 

the dielectric. Therefore, the space gap breakdown voltage    can be expressed by: 

    
  

 
  

  

     
           (1.1) 

 

During DBD “ON” mode, the space gap voltage remained constant and equal to the 

breakdown voltage of the space gap. 

 

The energy dissipated per cycle can also be derived from the QV Lissajous figure, 

considering the area under the curve of QV Lissajous figure. 

                           (1.2) 

The estimated energy can also be expressed in a simplified form:  

                                  (1.3) 

   is the breakdown voltage measured from QV Lissajous as shown in Figure 1.6(a). 

VT,pp is the peak to peak voltage applied across the DBD reactor.  
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1.3.5  The optical emission spectroscopy 

The optical emission spectrum can be used for investigating the DBD discharge.  

From the discharge emission spectrum, the discharge species and metastable density can 

be deduced from their characteristic wavelength emission.  

 

Massines studied the DBD discharge by the optical investigation method ( Massines, 

et al., 2003; Massines, et al., 2009).  From their experimental result as shown in Figure 

1.7, they suggested that the DBD formation is affected by the density of the N2(A
3
Σu

+
) 

metastable molecules. The metastable molecules are mainly contributed by the penning 

ionization. The density of the N2(A
3
Σu

+
) metastable molecules in homogenous discharge 

was found to be much higher than that obtained with filament discharge.  

 

The ionization of the gas in DBD can occur in two different processes which are 

direct ionization and Penning ionization (Massines, et al., 2009). The Penning ionization 

is a two-step process:  

e + M → M* + e  

M* + M → M* + M
+
 + e.  

M is the molecules. M* is the metastable molecules. The ionization can be slowed down 

by the Penning ionization which results in lower ion density of Townsend discharges 

(Massines, et al., 2009).   Direct ionization is dominant in the filamentary discharge. 

This will produce higher density of the ions in filamentary discharge. 
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Figure 1.7: Emission spectra of N2 in the homogenous discharge (GDBD) and 

filamentary discharge (FDBD). The (ON2) emission intensity is representative of the 

N2(A
3
Σu

+
) metastable density. The (ON2) emission is only observed in homogenous 

discharge (Massines, et al., 2003). 

 

 

In the optical investigation studies of Kozlov, the author showed that the first light 

emission was detected at the anode at the beginning, which was caused by the pre-

breakdown phase. The pre-breakdown phase is due to small amount of electron 

progresses and accumulated near to the anode (Kozlov, et al., 2005).  In this report, the 

author showed that the cathode streamers are accelerated to the cathode with an 

exponentially increasing velocity. The relative intensity of light is shown in the Figure 

1.8. 
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Figure 1.8: The contour of the relative intensity shows the velocity of ion streamer 

increases with the distance from anode (Kozlov, et al., 2005).  

 

The author suggested that there were three different phases of the microdischarge 

formation (Kozlov, et al., 2001). The first phase is the pre-breakdown phase, which is 

the avalanche of the electrons to anode. The second phase is the propagation of the ions 

to cathode. In this second phase, the first maximum intensity light was observed near 

the cathode. The second maximum intensity light was then obtained near to the anode as 

shown in Figure 1.8. For the third decay phase, the charge accumulated on the dielectric 

surface, which reduced the local electric field, results in the decay of the discharge. 

 

In 2010, Hoder studied the spectroscopy of filamentary discharges in three different 

DBD arrangements (Hoder, et al., 2010).  The three different arrangements of DBD 

reactor are shown in Figure 1.9.  
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Figure 1.9: The three different DBD arrangements studied by Hoder (Hoder, et al., 

2010). 

 

In the report, the arrangement of the dielectric cathode (D-) and metal anode (M+) 

resulted in a shorter pre-breakdown Townsend phase. It is caused by the secondary 

emission of the dielectric cathode providing a sufficient electron density to enhance the 

filamentary discharge in shorter time. However, the arrangement of the metal cathode 

(M-) and dielectric anode (D+) gave a longer pre-breakdown phase, which allows 

sufficient electron density to build up for the formation of cathode directed ionizing 

wave. The ion velocity of the M-D+ arrangement is lowest and the time duration of the 

decay phase of the M+D- arrangement is the longest one. 
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1.4   DBD Modeling 

1.4.1 Introduction of electrical modeling of DBD 

DBD modeling can be classified into physical modeling and electrical modeling. 

Electrical modeling is the modeling by constructing an electrical circuit to characterize 

the overall discharge behavior of the DBD. The electrical modeling can be used to 

predict the external quantities such as external current and voltage.  On the other hand, 

the physical modeling is based on theoretical model such as the ionization and fluid 

models. The physical modeling is commonly used to predict the interaction phenomena 

between the electrons, ions and molecules in the discharge.  

 

In 2001, Lui and Neiger derived a set of the electrical dynamic equations for the 

DBD electrical modeling (Liu & Neiger, 2001). In fact, the Lui and Neiger dynamic 

equations can be employed in both filamentary and homogenous discharge. In 2004, 

Bhosle constructed another filamentary discharge electrical model, which took into 

consideration the discrete volume of the individual microdischarge channels (Bhosle, et 

al., 2004).  Bhosle suggested a varying conductance switch to replace the space gap 

circuit in the DBD modeling. Barrientos (Valdivia-Barrientos, Pacheco-Sotelo, 

Pacheco-Pacheco, Benitez-Read, & Lopez-Callejas, 2006) also proposed another 

filamentary discharge model in 2006 . For the Barrientos model, the DBD discharge 

behaves as an electrical circuit, which consists of a high frequency sinusoidal current 

source coupled with a resistor in parallel. Zhang reported that the Barrientos model can 

be used for simulating the overall dynamic behavior of filamentary discharge in 2010 

(Zhang, Shao, Yu, et al., 2010). Zhang’s report showed a good comparison with the 

experimental results under atmospheric air and 50 Hz power frequency. In 2009, Pal 

simulated the filamentary discharge by a resistor and a capacitor connected in series 
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(Pal, et al., 2009). The DBD “ON/OFF” is controlled by a virtual switch, which could 

be used to generate a single impulsive current waveform.  

 

For the homogenous discharge electrical modeling, the DBD current can be modelled 

as a non-linear function of the space gap voltage (Chen, 2003; Flores-Fuentes, et al., 

2009; Massines, et al., 2003; Naude, Cambronne, Gherardi, & Massines, 2005).   

 

1.4.2  Basic concept of the DBD electrical modeling 

To simulate the electrical dynamic of DBD reactor, the electrical circuit used to 

represent the DBD discharge in the reactor is as shown in Figure 1.10.  

 

 

 

Figure 1.10: The single dielectric DBD reactor can be represented by the simplest 

equivalent electric circuit. 

 

A case of single dielectric layer is used in this example. If the space gap voltage is 

smaller than the breakdown space gap voltage, the DBD is “OFF” and the DBD behaves 

like a combination of two capacitors connected in series. The total capacitance CT can 

be calculated by the combination of two capacitors. 
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If the applied voltage overcomes the breakdown voltage for DBD discharge, the 

DBD turns into DBD “ON” mode and the current will be transferred via every ignited 

microdischarge channel. The microdischarge is distributed to cover the DBD electrode 

uniformly (Eliasson, et al., 1987; Eliasson & Kogelschatz, 1991). If the space gap 

voltage overcomes the breakdown voltage, the space gap behaves like a conducting 

layer. The induced discharge current during DBD “ON” mode is measurable.  The DBD 

is turn to “OFF” mode when the applied voltage starts to decrease. The DBD is “ON” 

again when the space gap voltage overcomes the breakdown voltage in the next half 

cycle.  

 

However, the conductivity of the space gap during the DBD “ON” mode is difficult 

to estimate. Due to instability behavior of the filamentary discharge, the construction of 

the electrical model of filamentary discharges is much more difficult if compared to the 

homogenous discharge.  The review of different electric models for the filamentary 

discharge will be presented accordingly in the following sub-sections. 

 

1.4.3  Lui and Neiger model 

The detailed dynamic electric equation set was derived for the condition under a 

unipolar square pulses (Liu & Neiger, 2001) and an arbitrary excitation voltage (Liu & 

Neiger, 2003).  The dynamic electric equations show the general relation between the 

discharge current and the measured current. The measured current is also referred to as 

the external current.  Lui and Neiger assumed that the measured current is smaller than 

the true DBD current by a factor.  Besides, they also suggested that the space gap 

capacitance can be assumed to be constant during the DBD “ON” and DBD “OFF” 

mode.  
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Figure 1.11: The dynamic electric circuit of the DBD reactor in Lui and Neiger model 

(Liu & Neiger, 2001, 2003).  

The dynamic electric circuit as shown in Figure 1.11 represents the DBD reactor. The 

true discharge current in the discharge gap can be calculated from the measured current 

by using equation (1.4).  

       
   

  
 

     

  
          (1.4) 

 

VT is the applied voltage. Cd and Cg are the capacitance of the dielectric and space 

gap respectively. CT is the total equivalent capacitance of the DBD reactor. If the initial 

charge on Cd is Qd(0), the deposited charge from the previous discharge, then the 

dielectric voltage can be expressed as: 

      
 

  
        

 

 
 

     

  
              (1.5) 

The instantaneous power consumption of the DBD is obtained by this expression: 

                                  (1.6) 

where Vg is the space gap voltage. These equations can be used for determining other 

electrical quantities such as the space gap voltage, dielectric voltage, true discharge 

current, and DBD power consumption.    
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1.4.4  Bhosle discrete volume model 

Bhosle proposed a discrete electrical model for filamentary discharge in 2004 

(Bhosle, et al., 2004). This model considered the multidischarge channels in discrete 

volume. The non-discharge region of the DBD has also been taken into consideration. 

The number of the microdischarge channels is functioned and varied during the DBD 

“ON” mode. In Bhosle's model, the microdiscahrge channel is assumed to breakdown 

individually and not interacting with each other. 

 

Before combining all the microdiscahrge channels, the single microdischarge 

channel in DBD reactor was first considered. Bhosle suggested the individual 

microdischarge channel behaved as a time varying conductor with conductance G and 

the discharge fully occupying the small discrete volume. Then, each occupied volume of 

the microdischarge channel contributes to the capacitance for each channel. The 

capacitance of the single microdischarge was first determined based on the occupied 

area and the DBD geometry.  

 

For plate-to-plate geometry, the total equivalent capacitance of DBD reactor,    can be 

expressed as: 

   
      

       
          (1.7) 

where,    is the permittivity of vacuum, and    is the relative permittivity of the 

dielectric. 

The dielectric capacitance,      of the single microdischarge channel can be expressed 

as: 

       
  

  
          (1.8) 
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where,    is the area occupied by a single microdischarge channel.    is the total area of 

the electrode.    is the total dielectric capacitance.      is the total effective capacitance 

of single microdischarge. 

 

The conductance G is first estimated from the experimental result.  In the single channel 

electrical modeling, the Triac switch is triggered by the space gap voltage. After the 

ignition of the discharge, the conductance of the space gap is varied according to the 

experimental conductance G.      

 

The simplified Bhosle model, which combines all the microdischarge channels, is 

shown in Figure 1.12. The total effective conductance of overall DBD discharge is the 

product of the number of channels each with a single channel conductance G. The 

dynamic equivalent circuit is then varied according to the number of ignited channels 

during the DBD “ON” mode.  

 

 

Figure 1.12: The equivalent circuit for Nf filaments (Bhosle, et al., 2004). 

 



26 
 

   identical microdischarge channels are generated to cover the DBD reactor. The 

equivalent capacitance of the non-discharge region can be calculated by the following 

expression: 

                       (1.9) 

 

Bhosle suggested that the number of the ignited microdischarge channels during the 

DBD "ON" mode can be determined by a product of two functions expressed as: 

                      (1.10) 

      is the hysteresis phenomenon which is either 0 or 1.       is the number of the 

ignited channel which is a function of the space voltage,   .  

 

1.4.5: Barrientos model 

In 2006, Barrientos proposed another filamentary discharge model (Valdivia-

Barrientos, et al., 2006). This model considered the DBD reactor geometry and 

dielectric materials. Barrientos used a semi-empirical relation for predicting the 

breakdown voltage. The space gap breakdown voltage is given as a function of the 

applied voltage frequency,   as expressed below: 

     
    

  
  

 
 

     
          (1.11) 

 

The lower breakdown voltage for a high frequency discharge is attributed to the 

existence of memory voltage.  It was suggested that the frequency had significant effect 

on the memory voltage. The deposited memory voltage may reduce the breakdown 

voltage of the discharge.   
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Instead of using the varying resistor or conductor to characterize the microdischarge, 

Barrentos used a high frequency current generator to simulate the overall DBD 

discharge current.  The amplitude of the current is a linear function of the rate of change 

of the applied voltage, dv/dt. 

 

Figure 1.13: Barrientos' Model implemented in Matlab Simulink software. (a) The 

general electrical circuit. (b) The coding block of MCB.  

 

 

The “Sin” block in Figure 1.13 (b) is the sinusoidal waveform generator, which 

represents the overall DBD current waveform. The amplitude of the sinusoidal 

waveform current is a linear function of the rate of change of the applied voltage, dv/dt.  

Pulse 1 and pulse 2 are used for triggering the DBD “ON” mode for positive and 

negative cycle respectively. The possible variable space gap capacitance is taken into 

consideration. The variation of the space gap capacitance is due to the ionization of the 

operating gas. The switch Sw1 is used for controlling the variation of the space gap 

capacitance.  The switch Sw1 is closed during the DBD “OFF” mode.  The total 

effective space gap capacitance is equal to Cg1+ Cg2, when the Sw1 is closed.   When the 

DBD is ON, the Sw1 is triggered to be an open circuit. This will cause the total effective 

space gap capacitance to be reduced to only Cg1. Meanwhile, the switch Sw2 is used for 

triggering the DBD current. It is only closed when the DBD “ON” mode.  The 

frequency of the current generator is validated with the overall experimental discharge.  

(a)                                               (b) 
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In 2010, Zhang used the Barrentos model for simulating the electrical properties of 

DBD under atmospheric air and 50 Hz (Zhang, Shao, Yu, et al., 2010). The overall 

electrical properties of filamentary discharge were well simulated by this electrical 

circuit.  However, they presented the discharge current pulses superimposed on a high 

frequency sinusoidal waveform, which was not observed in the experimental 

filamentary discharge current.  

 

1.4.6  Pal single pulse model 

In 2009, Pal proposed another electrical model for filamentary discharges (Pal, et al., 

2009).  This model was constructed for simulating a single impulsive current. During 

the DBD “ON” mode, a plasma impedance circuit was introduced for characterizing the 

discharge space gap. The plasma impedance consisted of a resistor in series with a 

capacitor.  Since the capacitance and resistance were not measurable by experiment, 

their values were validated until a good match between the experimental and simulated 

results have been obtained.  This electrical model was also implemented in Matlab 

Simulink.  

 

1.4.7   Summary of electrical models 

The DBD electrical modeling is still under development. The representative of the 

electrical circuit for DBD has not been unified.  In summary, two approaches are 

commonly employed in the electrical modeling. One of the approaches is “ON/OFF” 

voltage dependent switch. Another approach is voltage control current source. The 

instability of current pulses, surface charge spreading and collection phenomena have 

not been taken into account by the electrical models proposed as reported in the 
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literature.  The comparison of the proposed filamentary discharge electric models is 

shown in Figure 1.14. The nomenclature used in Figure 1.14 is listed in Table 1.1. 

 
[Bhosle at al. (2004)]                [Pal at al. (2009)] 

 

 
[Barrientos at al. (2005)] 

Figure 1.14: The comparison of the proposed filamentary discharge electric models. 

 

Table 1.1: Nomenclature of electrical model 

Nomenclature Description 

Cg Space gap capacitance 

Cd Dielectric capacitance  

Cp DBD capacitance 

Cg,D Space gap capacitance of discharge region 

Cd,D Dielectric capacitance of discharge region 

Cg,N Space gap capacitance of non-discharge region 

Cd,N Dielectric capacitance of non-discharge region 

Rp DBD resistance 

CS Current source 

 

Rp Cg CS 

Cd 

Rp 
Cp 

Cg 

Cd 

Rp Cg,D 

Cd,D 

Cg,N 

Cd,N 
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1.5   Objectives 

The objectives of this work can be summarized as following: 

1. To design a dielectric barrier discharge system. 

2. To study electrical characteristics of the dielectric barrier discharge. 

 

1.6   Dissertation Layout 

In this chapter, the brief introduction and historical development of the DBD 

modeling are given.  The various DBD applications and literature review of DBD are 

also presented in the preceding section.  

 

Chapter 2 presents the experimental setup, diagnostic techniques, and the analysis 

methods.  

 

In chapter 3, experimental results are reported. The results consist of two main parts: 

the statistical studies of current pulse and the energy determination of the DBD. 

Explanation of the experimental results and a proposed probability function are 

described. The proposed electrical model based on the experimental observation will be 

presented. 

 

Finally, the conclusion and suggestion for future work are given in chapter 4. 
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Chapter 2: Experimental Setup and Methodology  

2.1   Experimental Setup  

2.1.1   The DBD reactor  

In this project, the DBD reactor consists of a pair of parallel plate electrodes, that the 

arrangement has been specifically designed to facilitate the variation of the space gap 

distance between the two electrodes. The schematics of the DBD reactor used is shown 

in Figure 2.1. It allows the space gap to be varied from 0.1 mm to 15.0 mm. The space 

gap can be fixed with the adjustable crew to be better than ± 0.1 mm error. The 

electrodes are two circular stainless steel plate with equal diameter 6.0 cm and thickness 

of 1.5 cm. Stainless steel is used for its resistance to oxidation and corrosion when 

exposed to ozone. The edge of the electrode is smoothened to prevent localize electric 

field at the edge of the electrodes. On the other hand, a silver spring had been inserted to 

stabilize the motion of the electrode. 

 

The dielectric layer is a Pyrex glass sheet with a dimension 10 cm × 10 cm and 

thickness of 2.0 mm. The dielectric sheet is mounted into position by using two position 

adjustable dielectric holders.  The electrodes system is housed in a Perspex chamber. 

The front window of the chamber is sealed with a glass window via a square Viton ring. 

Emission of the visible light can be observed through the glass windows. Although the 

quartz window is better in spectral transmittance than glass, glass has been conveniently 

obtained, as they are economically available. Two ports on the top cover of the chamber 

are used as the gas inlet and outlet. Gas is allowed to flow freely as the DBD is operated 

under atmospheric pressure.   
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For this DBD reactor circuitry, the bottom brass rod mounted with electrode is 

connected to a high-voltage wire. The high-voltage probe with impedance of 100 MΩ 

has been inserted at the end of wire together with power supply port via a ballast resistor 

of 8.8 MΩ. The power supply generates a sinusoidal AC power voltage, which can 

reach to 40 kV (pk-pk). Meanwhile, the upper electrode is connected to the ground port 

through the current and charge measurement circuit as shown in Figure 2.2. The 

equivalent current is monitored by a resistor in a range from 100Ω to 1 KΩ.  

 

The digital oscilloscope records the measured voltage of high voltage probe and 10 

times voltage probe simultaneously. In this project, two digital oscilloscopes were 

employed according to the required measurement. Yogokawa DL6104 oscilloscope in 

the bandwidth of 1 GHz was used for current measurement. Tektronix 2024B 

oscilloscope in the bandwidth 200 MHz was used for charge measurement.  
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1 Gas inlet port  6 Ground electrode 

2 Gas outlet port 7 High voltage electrode 

3 Electrical ground connection port 8 Dielectric holder 

4 High voltage connection port 9 Space gap adjustor  

5 Dielectric sheet   

 

Figure 2.1: Schematic of the DBD arrangement. 
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1 Transformer  6 Optical emission spectroscopy  

2 Ballast resistor 7 10 times voltage probe 

3 DBD reactor 8 High voltage probe 

4 Current measurement resistor 9 Digital oscilloscope 

5 Charge measurement capacitor 10 Computer interfacing  
 

Figure 2.2: Schematic diagram of DBD experimental setup. 

 

 

 

2.1.2   Power circuitry  

The DBD reactor is powered by a 50 Hz AC power supply via a ballast resistor of 

8.8 MΩ as shown in Figure 2.2. The power supply is made up of a step-up transformer 

immersed in oil and a potentiometer. The maximum voltage of this power supply is 

about 40 kV (pk-pk). In order to maximize the voltage across to the load, and minimize 

the current, the impedances bridging required,  

                      (2.1) 

        is the total impedance of the source which includes its internal impedance and 

ballast resistance. A ballast resistor is added to limit the current and to avoid 

overheating of the DBD reactor.  
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      is total effective impedance of the DBD reactor. The high voltage probe is 

placed across the DBD reactor, which reducing the total effective impedance of the 

DBD reactor.  For the load impedance calculation, the effect of the high-voltage probe 

in the total effective impedance of the DBD reactor is considered. The resistance of high 

voltage probe,        is about 100 MΩ. By ignoring the capacitance of high-voltage 

probe, the total effective impedance of the DBD reactor, which is in parallel with the 

high voltage probe, can be calculated by using Equation 2.2:  

       
 

      
        

 

      
 
 

      
  

  

       (2.2) 

      is load impedance. It can be calculated after obtaining the capacitance of DBD 

reactor.    is total effective capacitance of DBD reactor.   is angular velocity of the 

power supply.   is the imaginary value. The load impedance depends on the space gap 

of DBD reactor. For instance, when the space gap is 0.2 mm, the         is 41.3 MΩ.; 

while for space gaps 1.0 mm, it is 61.9 MΩ. In any case, we consider the effect of space 

gap and make sure the impedance bridging condition is fulfilled. 

 

2.2   Diagnostic Techniques  

2.2.1   Introduction 

In this project, three DBD diagnostic techniques have been used in the study of 

discharge characteristics. These DBD diagnostic techniques shown as following:  

a) High voltage measurement, 

b) Current measurement, and 

c) Charge measurement. 

The DBD diagnostic techniques are important processes to deduce the electrical 

information from the DBD. In this chapter, the typical measurement techniques for the 

current and total charge transfer will be discussed.  



36 

 

2.2.2   High voltage measurement 

The Tecktronix 6015 high-voltage probe is employed in this project for measuring 

the voltage across the two parallel plate electrodes. The input impedance of this high-

voltage probe is about 100 MΩ (±2%) in parallel with a capacitor of value in the range 

of 12 pF to 60 pF. The maximum detected voltage of this voltage probe is 40 kV (pk-

pk).  The live connector of the high-voltage probe is mounted at the high voltage 

electrode of DBD reactor, which is connected to the power supply as shown in the 

Figure 2.1.  

 

2.2.3   Current measurement  

  The difficulty in the current measurement is the extremely short duration of the 

DBD current pulse. Each of the DBD current pulse lasts for few nanoseconds. For the 

current measurement, the switch as shown in Figure 2.2 is switched to the left hand-side, 

which is connected to a current monitor resistor.  The current measurement circuit is 

shown in Figure 2.3. The voltage across the current monitor resistor is measured by a 10 

times voltage probe and recorded by digital Yogokawa DL6104 oscilloscope with a 

bandwidth of 1 GHz.  

 

 

 

 

 

Figure 2.3: Resistivity current measurement circuit. 

 

 

      

         V 
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The current profile can be calculated from the voltage measured by the 10 times 

voltage probe as the expression below.  

      
     

  
                  (2.3) 

 

In our case, a 1 kΩ high frequency (low inductance) resistor is used for current 

measurement.  The current signal is measured simultaneously with the voltage measured 

by high voltage probe. 

 

2.2.4   Charge measurement  

For the charge measurement, the switch as shown in Figure 2.2 is switched to the 

right hand-side, which is connected to a charge monitor capacitor, Cc. The 

experimentally measured charge transfer is a very important quantity, which can be 

used for the determination of the corresponding quantities. The corresponding quantities 

include total effective capacitance, dielectric capacitance, breakdown voltage, and total 

energy consumed. Generally, these quantities can be obtained from the charge versus 

voltage diagram. Due to the stochastic behaviors of the current waveform, the total 

charge transfer is measured by the charge monitor capacitor rather than the integration 

from the current waveform. The charge monitor capacitor is connected in series with 

DBD reactor as shown in Figure 2.2. The charge monitor capacitor, Cc has a value much 

higher than the total capacitance of the DBD reactor to minimize its effect on the 

electric circuit.  
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Figure 2.4:  Charge measurement circuit. 

 

The charge transfer is calculated from the voltage across the capacitor divided by that 

capacitance. 

     
     

  
                  (2.4) 

 

     is equal to charge transferred.       is equal to voltage across the charge monitor 

capacitor. Cc is equal to the capacitance (0.47 μF) of the charge monitor capacitor as 

shown in Figure 2.4. 

 

2.3 Basic Discharge Characteristics and Signal Analysis Methods 

2.3.1  Typical discharge current and voltage profiles 

By using the current measurement technique and the high voltage probe, the 

experimental current and voltage profile is shown in Figure 2.5.  The DBD “ON” and 

DBD “OFF” modes are observed in the current profile. The DBD “ON” mode is the 

duration from the time (t1) to time (t2). The time (t1) starts from the first DBD pulse in 

the half cycle. The time t2 is the last DBD pulse in the same half cycle. Meanwhile, the 

DBD “OFF” is the period without DBD Pulse. The minimum applied voltage can be 

determined from the voltage and current profile, which is indicated in Figure 2.5. 

      

         V 
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Figure 2.5:  The typical filamentary discharge current pulse and applied voltage. 

 

 

During the DBD “ON” mode, numerous current pulses are observed. Voltage 

distortion also occurs during the DBD “ON” mode. It is believed that the distortion is 

due to the decrease of the total effective impedance of the DBD reactor during the DBD 

“ON” mode. The effective capacitance of the reactor will be changed to the dielectric 

capacitance during the DBD “ON” mode (see section 2.3.9), which will reduce the total 

impedance of the DBD reactor, thus affecting the impedance bridging condition (see 

section 2.1.2). 

 

2.3.2  Measured current components 

The measured current,    is not equal to the DBD discharge current. The measured 

current consists of four components of the current which are overlapping together 

(Laurentie, Jolibois, & Moreau, 2009; Petit, et al., 2002). The four components are 

displacement current, background noise, impulsive current and non-impulsive current. 

The displacement current is due to the capacitance of the DBD electrodes when the 

applied voltage is time-varying.  This current will only be detected significantly in a 

DBD ON 

DBD OFF 

t1                 t2 
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smaller space gap (<0.5mm) since the capacitance of the electrodes in this case will be 

higher.  The background noise is picked up by the oscilloscope. Whereas, the non-

impulsive current refers to the DBD current, which has lower value and longer duration. 

Meanwhile, the impulsive current is the filamentary DBD current which has higher 

amplitude and very short time duration.  

 

The measured current consists of both impulsive and non-impulsive discharge 

currents as well as the capacitance displacement current, which can be represented by 

the following equation:  

                     (2.5) 

IT is the measured external total current, Ic is the displacement current, Idect is the 

detected external DBD current in the equivalent circuit. The external DBD current is the 

induced DBD current flowing in the external circuit and measurable by current 

diagnostic. This external DBD current is not equal to the true DBD current. Only a 

certain ratio of the DBD charge flow is deposited on the space gap.  

 

The detailed expression below describes the correlation between the external total 

current and the discharge current. The external total current composed of displacement 

current and DBD current as: (Liu & Neiger, 2001, 2003) 

     
   

  
 

  

     
            (2.6) 

VT is the applied voltage, Cd and Cg are the capacitances of the dielectric and space gap 

respectively, CT is the total equivalent capacitance of the DBD reactor. The first term on 

the right-hand side is the displacement current,   . The second term is the detected 

external discharge current,      .  
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2.3.3  Removal of the displacement current and background noise 

The measured current consists of the four components. However, only the discharge 

current is in focus in our study. The displacement current and white noise must be 

removed from the current waveform before further analysis for discharge current. There 

are three steps to remove the two components from the measured current. The blue 

color waveform in Figure 2.6, labeled as (a), is the typical current signal detected by the 

oscilloscope. 

 

 

Figure 2.6:  Step of the filamentary discharge current pulse analysis. 

 

The first step is to remove the displacement current from the measured current. The 

total capacitance of the smaller gap DBD reactor is higher than the case of larger space 

gap. Thus, the first step is required for removing the displacement current for the small 

space gap configuration (<0.5 mm). The capacitance of space gap can be considered as 

a constant magnitude during DBD “ON” mode. If the time evolution of applied voltage 

is assumed to be a sinusoidal waveform, the displacement current can be calculated as: 

a 

b 

c 
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                  (2.7) 

   is the applied voltage,      is the peak voltage of applied voltage,   is the frequency 

of the applied voltage,   is the calibration phase angle. 

 

The calculated displacement current is shown in Figure 2.6 (a) indicated as red color 

waveform. Before the subtraction of the displacement current, the phase angle θ is 

adjusted to be equal phase with the measured capacitance current. For the large space 

gap distance (>0.5mm), the displacement current is not significantly observed compared 

to the pulse height of DBD. After removing the displacement current, the detected DBD 

current          is obtained (Reichen, et al., 2010; Siliprandi, et al., 2008), which 

consists of the background noise as shown in Figure 2.6 (b).  

 

The second step is to remove the background noise (Reichen, et al., 2010; Siliprandi, 

et al., 2008). A minimum detected value is chosen to be slightly higher than the 

background noise level, thus filtering the noise by the expression below:  

              
                                      

                                

      (2.8) 

 

Last step is to calculate the true discharge current from the measured current. The 

measured discharge current is not equal to the true discharge current due to only certain 

amount of the discharge current flow into the external equivalent circuit. A factor γ 

introduced by Jidenko (Jidenko, et al., 2006) is the ratio of the amount of charge 

flowing to equivalent circuit to the total amount of DBD charge. The ratio   is 

suggested to be equal to 
  

     
 , by Liu as expressed in Equation 2.9. The true discharge 

current is expressed as: 

     
     

  
             (2.9) 
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2.3.4  The stochastic behaviors of time separation and pulse height  

After removing the displacement current and background noise, the stochastic behavior 

of the discharge pulse can be observed. The number of the discharge pulses can rise up 

to few hundred.  The separation time is defined as the time difference between the 

consecutive current pulse.  The double stochastic is observed in the non-uniform pulse 

height and the pulse time separation. This double stochastic of the DBD pulse is 

indicated diagrammatically in Figure 2.7. The pulse time separation and pulse height are 

marked with ∆t and   respectively.  

 

 

Figure 2.7: The diagram of the double stochastic DBD pulse.  

 

In general, the stochastic behavior of the DBD pulses is owing to the external 

random process. The external random process can be attributed to the self-excitation, 

which is caused by the secondary emission due to bombardment with the excited 

species, and the photoemission from the cathode due to UV radiation (Vanbrunt, et al., 

1991). The random breakdown voltage of different position is suggested as one of the 

stochastic characteristics and will be further discussed in the next chapter.  
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2.3.5   Temporal evolution of nanosecond pulse 

Beside the overall discharge characteristics as presented in the preceding sub-section, 

the temporal evolution of the nanosecond pulse is also an important study in this project. 

Some of the internal quantities of discharge can be obtained from the temporal 

evolution of the single discharge pulse such as the charge transfer of the single 

discharge pulse and the pulse time duration. In order to detect the temporal evolution of 

a single impulsive current, Yogokawa DL6104 oscilloscope with a bandwidth of 1 GHz 

is used. A typical detected temporal evolution of current pulse is shown in  Figure 2.8. 

 

Figure 2.8: The detected single discharge pulse of DBD and the calculated current by 

Equation 2.10.   

The shape of the single discharge pulse is similar to the exponential discharge pulse. 

The exponential discharge current pulse is composed of a sharp rising edge and a long 

decay tail, which can be represented by two exponential functions as following (Ficker, 

et al., 2001): 

        
  

    
  

   ,                       (2.10) 

τ1 is a constant parameter used for governing the long decay tail, τ2 is a parameter 

determining the pulse rise, and i is a temporal evolution of current pulse. 

Experimental  

Calculated 

Pulse 

Starting 

Point  



45 

 

2.3.6: Correlation of the pulse height and charge transfer 

A technique proposed by Ficker can be used to obtain the correlation between the pulse 

height and charge transfer (Ficker, et al., 2001). The total charge transfer in a single 

pulse, q is estimated by integrating the Equation 2.10 to infinity. The integration result 

is shown as: 

                    (2.11) 

However, the formula can be simplified to obtain the correlation between the pulse 

height and charge transfer as following:  

     
  

  
 

  
                       (2.12) 

By assuming τ1 and τ2 to be constant for all DBD pulses, the equation is expressed as: 

               (2.13) 

 

By utilizing Equation 2.13, the charge transfer can be calculated after obtaining the 

pulse height. This charge transfer determination from the pulse height requires the 

experimental time constant    from the current pulse integration.   

 

Before the integration of the current pulse, the zero level of the signal is calibrated 

until the pulse starting current is equal to zero, as shown in Figure 2.8. The time varying 

current is then corrected by Equation 2.9 to obtain the true discharge current. The 

discharge pulse height is defined by the maximum true discharge current. Therefore, the 

temporal evolution of discharge current is integrated from pulse starting time to 0.5 µs, 

which is much larger than the pulse duration to cover the total charge transfer.   

          
         

  
          (2.14) 
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This experiment is also repeated for different space gaps. A linear relation of the charge 

transfer and the pulse height is obtained in the plot of the charge transfer versus the 

pulse height as shown in Figure 2.9. 

 

 

Figure 2.9: The straight correlation between the charge and the pulse height.  

 

The time constant,    determined from the gradient of the plot is equal to 77 ± 2 ns.  

The time constants for different configurations are the same indicating that the time 

constant    is not affected by the DBD configuration and the pulse height.   

 

The correlation between the corresponding pulse height and the single pulse charge 

transfer is then analyzed by the correlation function. The correlation function analysis 

can be employed to determine the correlation of two quantities. The correlation 

coefficient is expressed as below: 

       
                

   

           
             

   

       (2.15) 
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   is the mean of the   , while    is the mean of the   .  If the two quantities are 

independent, then the correlation coefficient is equal to zero. If there is a strong 

correlation between the two quantities, the correlation coefficient is approximately one.  

 

A strong correlation coefficient of 0.975 between the charge transfer and the pulse 

height is obtained. In view of this high correlation coefficient magnitude, the charge 

transfer can be confidently determined from the pulse height under our experimental 

condition.  

 

2.3.7   Distribution of current pulses  

The pulse height distribution expressed as probability density function      can be 

determined by a histogram technique (Ficker, 1995) as below: 

     
  

   
          (2.16) 

N is equal to the total number of the detected pulses per half cycle. ∆N is equal to the 

number of pulses in the interval [   
  

 
    

  

 
].  An interval value of ∆ 

  can be selected to obtain a representative probability function. 

 

In this project, the pulse height distribution are analyzed by the unconditional 

probability function. The unconditional probability function is defined as a probability 

function derived by taking into account of all the detected pulses in the half cycle. 

 

The experimental pulse height distribution, which is shown in the Figure 2.10, is 

similar to the log normal distribution function. This similar distribution can also be 

obtained from other corona and DBD statistical studies (Vanbrunt, et al., 1991; 

Vanbrunt, et al., 1995). 



48 

 

 

Figure 2.10:  The typical pulse height distribution. 

 

2.3.8   The space gap capacitance and dielectric capacitance  

The total effective capacitance of the DBD reactor can be represented by a 

combination of two capacitors in series (see chapter 1). The existence of the capacitance 

behavior of DBD reactor is due to the charge polarization of the space gap layer and the 

dielectric layer. However, the electrical behavior is very sensitive to the space gap and 

dielectric capacitances. A small error occurring in the calculation of the space gap 

capacitance or dielectric capacitance will seriously affect the accuracy of the estimate of 

electrical quantities such as the space gap voltage, dielectric voltage, discharge current 

and power dissipation. Generally, the space gap and dielectric capacitances are two 

important parameters in electrical modeling.  

 

 

The total effective capacitance of the DBD reactor before the breakdown can be 

obtained by plotting the charge transfer versus the applied voltage. Only a straight line 

will be observed in the QV diagram before the DBD breakdown. The gradient of the 

straight line obtained from the QV diagram is equal to the total effective capacitance 
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(CT) of the DBD reactor. The total effective capacitance of the DBD reactor is plotted 

against the space gap distance for a DBD with glass dielectric layer of 2.0 mm as shown 

in Figure 2.11. 

 

 

Figure 2.11: The total effective capacitance of DBD reactor before breakdown with 

negligible error.  

 

From the theoretical calculation, the equivalent capacitance CT is a combination of two 

series capacitors based on this equation: 

   
    

     
             (2.17) 

The space gap capacitance can be calculated from the parallel capacitance expression: 

   
     

 
                     (2.18) 

where d is the distance of space gap,    is the relative permittivity, which is taken to be 

unity, and    is the vacuum permittivity.  

However, the effective area, S is not equal to the total area of the electrode due to the 

edge effect. The edge effect, which increases the total effective area, must be considered 

for electrode with large thickness (Kamchouchi & Zaky, 1975). The total effective area, 

S is referred to the summation of the actual electrode area and the edge effect area. The 
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edge capacitance is directly proportional to the perimeter of the electrode (Kamchouchi 

& Zaky, 1975).  

 

The experimental dielectric capacitance is obtained by using the QV Lissajous figure 

method, which will be presented in section 2.3.9. Based on the experimental dielectric 

capacitance, the total effective capacitance CT can be calculated by using Equations 2.17 

and 2.18, while, the total effective area, S is validated with the experimental total 

effective capacitance. The calculated and experimental CT are shown in Figure 2.11. For 

the best match between the calculated and the experimental CT, the total effective area, 

S is taken to be 0.00302 m
2
. The actual electrode area with a radius of 30 mm is 

approximated to be 0.00283 m
2
. Assuming the dielectric capacitance to be equal for the 

same dielectric layer, the average total effective radius for the different space gap is 

obtained as 31 mm.  After knowing the total effective area, S, the space gap capacitance 

for different space gap can be calculated by using Equation 2.18. 

 

 

2.3.9   QV Lissajous figure under breakdown condition. 

The simplest way to determine the dielectric capacitance, breakdown voltage, and the 

energy dissipation is by using the QV Lissajous method under breakdown condition. 

The typical QV Lissajous figure of DBD under the breakdown condition is shown in 

Figure 2.12: 
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Figure 2.12: The typical QV Lissajous figure under breakdown condition.  

 

The gradient of the line between point ‘A’ and point ‘D’, which is parallel with BC 

line as shown in Figure 2.12, is equal to the dielectric capacitance. The “AD” gradients 

of different applied voltages are equal. However, the expanded width of the QV 

Lissajous is observed to be dependence on the applied voltage. 

 

The breakdown voltage of the DBD reactor can be determined from the voltage 

between the point ‘A’ and point ‘B’, which is indicated as Vb in Figure 2.12. The 

breakdown voltage refers to the minimum total applied voltage, which is required for 

DBD ignition. To calculate the space gap breakdown voltage, Vg,b, the capacitive 

voltage divider equation can be employed: 

     
  

     
           (2.19) 

The space gap breakdown voltage, Vg,b is a function of the space gap distance. The 

average breakdown voltage with the varied applied voltage versus the space gap 

distance is plotted as shown in Figure 2.13 below. 



52 

 

 

Figure 2.13: The space gap breakdown voltage versus the space gap distance. 

 

The total energy dissipated in the DBD reactor can be calculated from the QV Lissajous 

according to the equation below: 

                       (2.20) 

The enclosed area of the QV Lissajous is exactly equal to the total energy dissipated in 

DBD reactor. If the QV Lissajous is a perfect parallelogram, the enclosed area can be 

simply calculated by the Manley’s equation, which is derived from the geometry of the 

QV Lissajous and electrical circuitry equation (see chapter 1).  

 

2.3.10   The time evolution of space gap voltage and dielectric voltage 

Particularly, the DBD (“ON/OFF”) mode is switched in the cycles of “ON” and 

“OFF” repeatedly, which is governed by the space gap voltage. The DBD is “ON” when 

the space gap voltage exceeds the space gap breakdown voltage. Whereas, the DBD is 

“OFF” if the space gap voltage is lower than the space gap breakdown voltage as shown 

in Figure 2.14. However, the space gap voltage and the dielectric voltage are not 

directly measurable from the experiment.    
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  ,    and    represent the temporal evolution of voltages between the space gap, the 

dielectric and the electrodes respectively. The values    can be directly determined by 

using the high-voltage probe. However, the dielectric voltage is calculated by the 

general equation: (Liu & Neiger, 2001, 2003; Pal, et al., 2009). 

            
 

  
      

 

 
               (2.21) 

Vd (0) can be obtained from the dielectric voltage during the initial time. The integrated 

current can be obtained from the total charge transfer, which is the measured voltage 

across the charge monitor capacitor Cc.  

      
 

 
   

     

  
         (2.22) 

The dielectric capacitance, used in Equation 2.21, is calculated from the QV Lissajous 

figure after breakdown (see section 2.3.9). The value of dielectric voltage,       is then 

utilized to calculate the space gap voltage. 

                          (2.23) 

Based on the experimental applied voltage and voltage of charge monitor capacitor, the 

calculated space gap voltage and dielectric voltage by using Equations 2.21, 2.22, and 

2.23 respectively are shown in the Figure 2.14. 
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Figure 2.14: The typical voltage waveform of the applied voltage, dielectric voltage, 

and space gap voltage. The gray color background is “ON” mode period. The white 

color background is “OFF” mode period. 

 

Vg,b either in positive or negative magnitude is indicated in Figure 2.14.  From the 

Figure 2.14, the space gap voltage is prior to the phase of the applied voltage.  It is 

attributed to the memory voltage on the dielectric. The memory voltage supports the 

space gap voltage and triggers the DBD “ON” mode in an earlier time.  

 

 

 

Vg,b 

DBD ON 

DBD OFF 
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Chapter 3: Electrical Characteristics  

3.1   Introduction   

In this chapter, we shall discuss the electrical characteristics of the DBD system. The 

electrical characteristics can be investigated by measuring the applied voltage, current, 

and charge transfer, which have been described in Chapter 2. In particular, the 

stochastic behavior of the current pulses generated by the filamentary discharge has 

been investigated.  

 

The investigation of the electrical characteristics has been separately carried out in 

two series of experiments. First, the stochastic behavior of the current pulses is 

investigated in order to determine the suitable condition for effective operation of the 

DBD. The energy dissipation during the discharge is then determined from the charge 

transfer. 

 

In the first part, the properties of the current pulse amplitude have been investigated 

to obtain the representative probability function. The correlation between the amplitude 

of the pulse and pulse separation time has also been determined. The results show that 

the pulse amplitude is related to the rate of rise of the applied voltage which can be 

predicted by Manley's formula. This is attributed to the fact that the total charge 

transported is essentially proportional to the rise of applied voltage during the DBD 

“ON” period. Based on the experimental results, a probability function expressed in 

terms of the applied voltage and random breakdown voltage has been derived. This 

probability function is successfully matched with experimental result. 
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For the second part, the charge transfer, Q is measured in order to determine the 

deposited energy during the discharge. From the charge transfer signal, the QV 

Lissajous figure can be plotted for the energy dissipation calculation. The enclosed area 

of the QV Lissajous figure is equal to the total energy dissipated by the DBD.  From the 

experimental observation, a significant expansion of the QV Lissajous figure indicates 

the occurrence of more energy dissipation in the DBD. This phenomenon can be 

explained by the surface resistance effect. Particularly, an unbalance potential is 

believed to be present on the dielectric surface during the discharge. Accordingly, the 

charges from microdischarge can spread on the dielectric surface due to the unbalance 

potential. The extra energy is being consumed during the charge spreading through the 

surface resistance. An electrical model taking into consideration of the dielectric surface 

resistance is formulated to simulate the expansion of the QV Lissajous figure. This 

electrical model also explains the increase of breakdown voltage with increasing applied 

voltage. The surface resistance model can be used to estimate the energy dissipation of 

the DBD and the surface charge spreading.   

 

3.2   The Statistical Studies of Discharge Behavior of DBD 

3.2.1   The experimental current pulse distribution 

The typical current pulse amplitude distribution obtained by using the common 

histogram technique is similar to a log-normal distribution as shown in Figures 3.1, 3.2, 

3.3, and 3.4. Commonly, a long tail can be observed at right hand side of the 

distribution peak. By increasing the applied voltage, the tail of the probability 

distribution is stretched to the right hand side and the mean of the current pulse 

amplitude increases with increasing applied voltage.  
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Figure 3.1: The PDF of 0.5 mm space gap. 

 

 

Figure 3.2: The PDF of 1.0 mm space gap. 
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Figure 3.3:  The PDF of 1.5 mm space gap.  

 

 
 

Figure 3.4:  The PDF of 2.0 mm space gap.  
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Further analyses of the current pulse distribution for the case of 1 mm space gap 

shows that there can be two regimes of average pulse amplitude as shown in the Figure 

3.2. The regime transition voltage, Vpp
t
, which had been observed by several researchers 

(Reichen, et al., 2010), is the minimum applied voltage to obtain the maximum average 

amplitude of current pulse.  In regime 1, the average pulse amplitude is increasing with 

the discharge voltage while in regime 2 the average pulse amplitude is constant.  In the 

case of 1 mm space gap,  Vpp
t
 = 25 kV.  However, for the case with 0.5 mm space gap, 

only regime 2 is observed in the range of discharge voltage from 10 to 35 kV, whereas 

in the case of 1.5 and 2.0 mm space gap, only regime 1 is observed.  For the cases of 2.0 

mm and 1.5 mm space gap, the tail of the distribution is found to extend further with the 

applied voltage. The regime transition voltage, Vpp
t
 is higher than the maximum applied 

voltage limited by the power supply available, which is 40 kV pk-pk in this case. 

 

According to the experimental observation, we suggest that the increase in the 

discharge current pulse amplitude can be attributed to the increase in the number of the 

current channel ignited at higher voltage. In the case of the narrow gap (<1.5 mm) with 

discharge voltage at or above the critical voltage, the discharge electrodes have been 

fully cover by current channels, thus further increases in applied voltage will not give 

rise to higher amplitude current pulse.  

 

The increase in the applied voltage will increase both number of the current pulses as 

well as the pulse height in regime 1. The number of pulses for smaller space gap is 

increasing more rapidly with the applied voltage if compared to the case of larger space 

gap. However, the average height of pulses remains the same with increase of the 

applied voltage in regime 2. For applications that require high pulse height, it is more 
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effective to operate the DBD with larger space gap rather than with higher applied 

voltage.  

 

On the other hand, in order to design a DBD to produce uniform pulses, the DBD 

reactor should be operated with small space gap (<1.0 mm).  Besides, the applied 

voltage should be higher than Vpp
t
 to ensure that the pulse height is not affected by the 

variation of applied voltage.  

 

3.2.2   The time separation between consecutive current pulses 

The time separation between consecutive current pulses can be affected by the residual 

charges generated during the previous pulse. The previous pulse creates a negative 

electric field which prevents the occurrence of the next pulse at the same position until 

the electric field builds up again by the rise of applied voltage in the same cycle. 

Therefore, the occurrence of discharge pulses at the same position is delayed by a time 

separation which is dependent on the rise of applied voltage and the charge transferred 

by the discharge pulses. This effect is more apparently observed in a single channel 

microdischarge as shown in Figure 3.5 (a). 

 

The total charge transfer in DBD is given by Manley's formula as: 

                      (3.1) 

Here    is the total charge transfer,    is the dielectric capacitance,    is the applied 

voltage and    is the breakdown voltage. This can be taken to confirm that the Manley 

equation’s validity for filamentary discharge.  
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By differentiating both sides of Equation 3.1: 

  

  
   

   

  
          (3.2) 

 

In fact, the amplitude of the DBD pulse is weakly dependent on the applied voltage 

after the transition voltage in regime 2 as determined in Section 3.2.1 earlier.  If the 

average charges transferred per pulse by the current pulses is assumed constant, the 

charge transferred per second is approximated to be the charges transferred by a single 

pulse divided by the time separation between two consecutive pulses, i.e.: 

  

  
 

   

    
             (3.3)

  

    is the average charge transferred by a single current pulse, while      is the average 

time separation between two consecutive pulses.  

 

Then Equation 3.2 can be written as: 

   

    
   

   

  
          (3.4) 

and,  

                
   

  
                             (3.5) 

From this simple expression, it can be seen that the time separation is directly 

proportional to the charge transferred per pulse.  This equation will give a very accurate 

estimate of the time separation for a single microdischarge channel. According to 

Equation 3.5, the time separation is correlated to the charge transferred by the discharge 

and gives a uniform time separation of pulses if the charge transfer per pulse is uniform.  
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In order to demonstrate the concept of Equation 3.5 for the correlation of the pulse 

height and time separation of a single channel, the electrode geometry has been 

modified. A short length of copper wire with diameter of 1 mm and length of 2 mm is 

attached to the centre of the electrode which is not covered by dielectric. The applied 

voltage is slowly increased until only one microdischarge channel is ignited at the 

needle. Multiple microdischarge pulses are ignited to occur at fixed frequency from the 

needle to the surface of the dielectric. Figure 3.5 (a) shows the train of current pulses 

obtained. For the case of single microchannel, the discharge current occurs in a more 

regular time separation and uniform pulse amplitude. 

 

However, the actual geometry of the DBD is a parallel plate geometry.  The DBD 

discharge consists of many filamentary structures in which each filament is considered 

to be a microdischarge channel. All the microdischarges are separated by interleaved 

non-discharging regions. The filamentary discharge channels are randomly distributed 

both spatially and temporally. Hence, the current signal pattern is stochastic in nature 

and all the microchannels are overlapping together resulting in discharge current signal 

as shown in Figure 3.5 (b). 
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Figure 3.5: Comparison of (a) the single point microdischarge with (b) multiple 

channels microdischarge.  

 

 

 

 

 

(a) 

(b) 
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An attempt has been made to analyse the correlation between the pulse separations 

and the pulse amplitude in parallel plate geometry. Generally, the average time 

separation is dependent on the total number of pulses ignited per cycle. A larger number 

of the pulses generated in the same cycle will give rise to shorter time separation. From 

the experimental results as shown in Section 3.2.1, the number of pulses is proportional 

to the difference between the applied voltage and the breakdown voltage. It is believed 

to be attributed to the increase in the total charge transfer for discharge with higher 

applied voltage as predicted by Equation 3.1.  

 

For the parallel plate geometry, the DBD is generated in a large number of channels 

resulting in the stochastic behavior of the time separation between pulses. Therefore, a 

series of the data analyses of the time separation dependent on the charge transfer have 

been carried out.  

 

The validity of the modified Manley's formula as given by Equation 3.5 will be 

verified by experimental results as illustrated in the following discussion. Three variable 

parameters,    ,     , and dVT/dt are required in Equation 3.5. The change of the 

applied voltage with time (dVT/dt) has to be obtained first.  For this purpose, the current 

pulses within a time interval where the dVT/dt is approximately linear are chosen as 

shown in Figure 3.6.  
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Figure 3.6: The gradient of applied voltage near to the zero voltage is determined and 

only the pulses occur in this range of dVT/dt are selected for analysis. 

 

     had been shown in Section 2.3.6 to be directly proportional to the average 

current pulse height    .  The cases with space gap of 1.0 mm and applied voltage larger 

of 25, 30 and 35 kV where the distribution of current pulses is in regime 2 (and hence 

the applied voltage does not affect the total average pulse height) are selected for this 

analysis. From the experimental results, the average current pulse height     and hence 

the charge transferred     is linearly proportional to the time separation between 

consecutive pulses as shown in Figure 3.7. 
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Figure 3.7: The correlation between the average height of current pulses and the 

average time separation for dVT/dt of 2.629 GV/s, 3.396 GV/s and 4.080 GV/s.  

 

Figure 3.7 shows that the higher charge transferred by a single pulse, the longer is the 

time separation of the next pulse for DBD discharge with constant dVT/dt, which is in 

agreement with Equation 3.5. However, it can be observed that the intercept of the plot 

in Figure 3.7 does not pass through the origin, and the gradient does not agree with that 

predicted by Equation 3.5. This is suggested to be caused by the effect of multiple 

channels, and the non-impulsive current.  

 

For the case of multiple channels, the detected pulses are a superposition of current 

pulses from difference channels. The time separation between consecutive pulses of a 

single channel is affected by the superposition of current pulses generated through other 

discharge channel. However, the overall effect of increasing pulse height with time 

separation has been observed in our experiments. The gradient of the line in Figure 3.7 

is dependent on the dVT/dt.  Larger gradient is expected for larger dVT/dt as predicted by 

Equation 3.5 
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A correction factor is required to be introduced in Equation 3.1 to estimate the total 

number of pulses occurring in a cycle and the total charge transfer of all channels. The 

total charge transfer calculated from the Manley's formula includes the impulsive 

current and non-impulsive current (see chapter 1 and chapter 2). However, the charge 

transfer by non-impulsive charges is not measured in this experiment. Therefore, the 

correction factor ccor is believed to be the ratio of the charge transferred by impulsive 

current to the total charge transferred by DBD. 

 

The results suggest that the concept of Manley’s formula is valid for predicting the 

number of pulses in each channel. Hence, the corrected Manley’s formula can be used 

in the distribution function modelling to be presented in Section 3.2.3.   

 

 

3.2.3   The empirical distribution function 

Based on the experimental results on the time separation and pulse height 

distribution obtained earlier, a statistical function governing the current pulse 

distribution has been constructed with consideration of the charge transfer equation. The 

proposed probability function is a function of some important experimental parameters 

such as applied voltage, dielectric capacitance, space gap capacitance, and space gap 

distance.  

 

The basic concepts of the DBD in filamentary mode have been considered in the 

derivation of the proposed probability density distribution. When the applied voltage 

reaches the breakdown voltage, a discharge filament is generated, and the charges will 

be transported to the dielectric surface in a few nanoseconds. An inverting local electric 

field will be developed across the discharge gap at the breakdown location due to the 
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charge accumulation on the dielectric surface until the discharge is quenched. The next 

ignition of DBD discharge located at the same channel will occur after sufficient local 

electric field has been recovered by the applied voltage again. The ignition and 

quenching processes of the discharge at local channels are repeated at the same half 

cycle before the change of voltage polarity.  

 

An important feature of the filamentary discharge in parallel plate geometry is the 

existence of multiple channels as shown in Figure 3.5. It is well illustrated by many 

experimental observations that there exist fixed discharging regions on the electrode 

where repetitive discharge ignitions occurring at the same locations during consecutive 

discharge cycles (Chirokov, et al., 2006). The lifetime of one microdischarge is only a 

few nanoseconds, but repetitive occurrence of multiple microdischarges at the same 

location make them appear as continuous. 

 

Based on this concept, our model is developed by representing the microdischarge by 

small discrete regions as shown in Figure 3.8. The individual channel is occupying a 

small effective area due to charge diffusion and repulsion force between channels. This 

small effective occupied area determines the capacitance magnitude, breakdown voltage 

and discharge charge transfer for that channel. The total occupied area of a single 

channel on the dielectric surface strongly affects the total charge transfer through that 

channel. It is further determining the number of the pulses generated through that 

channel by Manley’s formula as presented in Section 3.2.2. 

 

In our work, the different breakdown voltage of channels at different location has 

been considered. Nevertheless, the current pulse generated by the individual channel at 

the same location may also follow a certain random function.  
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Figure 3.8: The schematic diagram of the multiple microdischarge channels. 

 

In Figure 3.8, the area Sk is the area occupied by the channel k, the u(k) is the 

breakdown voltage of that channel, and the q(k) is the charge transfer from a single 

discharge pulse if the current pulse is generated. 

 

If the function of breakdown voltage,   is directly corresponding to discharge pulse, 

the number density function of current pulses with amplitude in the range of i to i + Δi is 

expressed as: 

        
    

 
         

    

 
       (3.6) 

     is the total number density of the pulses with current amplitude i, 

     is the total number density function of the pulses with breakdown voltage u. 

 

The total charge transfer can be estimated by using the breakdown voltage, and the 

total number of pulses can be obtained from the total charge transfer divided by charge 

transfer per single pulse. This is the simplest expression used to start a derivation from 

the function in term of breakdown voltage       instead of from the function expressed 

in term of current pulse,      . The probability function in term of breakdown voltage, 

      is introduced based on several assumptions. First, the discharge channels are 

Sk Sk+1 Sk+2 Sk-1 Sk-2 

qk qk+1 qk+2 qk-1 qk-2 
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assumed to be generated with random breakdown voltage due to the non-uniform 

surface of the dielectric and electrodes. In our case, the probability function of random 

breakdown voltage is considered to be following normal distribution function with a 

standard deviation value, σ. 

     
 

     
 

 
       

           (3.7) 

 

The charge transferred by a single current pulse is given by a simplified exponential 

function expressed in the term of breakdown voltage, which is determined from the 

experimental results given by:  

          
              (3.8) 

Here,    is the time constant of the discharge pulse which can be obtained from 

Equation 2.13 in chapter 2 and is estimated as 77 ± 2 ns. u(k) is the space gap 

breakdown voltage of the channel k,    and   are constants whose values depend on the 

gas used. The parameter   is similar to the first discharge coefficient from Townsend’s 

discharge theory (Ficker, 2003). For the computation,    is taken as 0.21 mA and   is 

taken as 0.612 mV
-1

, which have been determined from the experimental results. 

 

In our consideration, the charge distribution at different locations on the electrode 

surface is introduced. The effective occupied area    of individual channel k is directly 

proportional to the dielectric capacitance of that channel. This can be expressed by the 

equation:  

       
  

 
          (3.9) 

where S is equal to the total area of electrode.    is the total dielectric capacitance 

measured from QV Lissajous figure. The number of discharge pulses can be calculated 

from the total charge transfer through a single channel. Here, the total charge transferred 

by DBD in a half cycle is estimated by the modified Manley’s equation (Manley, 1943). 
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The total charge transferred consists of the charges from impulsive discharge and non-

impulsive discharge. Therefore, a factor, ccor is introduced to the modified Manley's 

equation.  The factor ccor is the ratio of the charge transferred by impulsive current to 

the total charge transferred by DBD. 

             
        

  
          (3.10) 

In our case, the discharge current is divided into channels that are assumed to be not 

interacting with each other. 

                  
        

  
            (3.11) 

Here,       is the total charge transferred by an individual channel k in half cycle,      

is the effective dielectric capacitance associated with individual channel k. By using the 

total charge transferred and the charges carried by a single current channel, the total 

number of pulses associated with a single channel k can be estimated: 

        
     

    
         (3.12) 

       is the total number of pulses generated in the single channel k. 

 

For the large number of channels, some of the channels are generating similar 

discharge pulses due to similar breakdown voltage.  The number density of channels 

with equal discharge pulses and breakdown voltage, u is represented by      . 

Therefore, the total number density of similar discharge pulses with similar breakdown 

voltage, u is equal to number of pulses carried by a single channel multiplied by the 

number of channels with breakdown u, i.e. 

      
          

    
         (3.13) 

      is the total charge transferred by the channel with breakdown voltage  .      is 

the charge transferred by a single current pulse with breakdown voltage  . Substituting 

Equation 3.11 into Equation 3.13: 
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          (3.14) 

If the area occupied by every channel is assumed to be equal, then, the dielectric 

capacitance of a single channel can be estimated as  

     
  

  
         (3.15) 

where    is the total number of channels.  Hence, 

          
     

  

      
        

  
  

    
       (3.16) 

If the number of channels is sufficiently large, 
     

  
 is the approximate probability 

density of breakdown voltage as a function of   given by Equation 3.7.  Therefore, 

        
    

 
      

 

     
 

 
       

   
      

        

  
  

       

    

 
     (3.17) 

 

We are interested to obtain the distribution function with discharge pulses. Hence, 

the number density distribution       as a function of i is transformed from the density 

distribution       in the function with u. This procedure is performed by changing the 

variable to i by the integration method, we obtain: 

        
    

 
      

 

     
 

 
 
 
 
    

 
  

     
 

   
      

        

  

 

 
    

 

  
  

     

  

  
    (3.18) 

By comparing Equation 3.18 with Equation 3.6, a general solution of this model is 

obtained: 

          

             
 

 
    

 

  
 

          
 

 
 
 
 
    

 
  

     
 

        (3.19) 

Equation 3.19 is an empirical distribution function, which can be used for predicting the 

pulse distribution. The correction factor,     in Equation 3.19 is validated by the 

experimental results to be presented in Section 3.2.4. 
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3.2.4   Comparison of experimental results and proposed distribution function 

The minimum breakdown voltage, time constant, dielectric capacitance and space 

gap capacitance used in Equation 3.19 had been determined in Chapter 2 earlier. The 

standard deviation of breakdown voltage and the correction factor,      in Equation 3.19 

are validated by the experimental distribution. The parameters are listed in Table 3.1. 

The mean space gap breakdown voltage,    is the summation of minimum breakdown 

voltage and three times standard deviation voltage. 

 

Table3.1: List of the parameters used in the PDF function equation. 

Space gap 

distance/mm 

Minimum 

Vg,b/V 

Standard 

deviation,   

/ V 

Cd /nF Cg/pF Correction 

factor, Ccor 

0.5 mm 2930 700 0.137 57.0 0.126571 

1.0 mm 4540 800 0.137 28.5 0.245669 

1.5 mm 6580 1000 0.137 19.0 0.333766 

2.0 mm 8180 820 0.137 14.2 0.403303 

 

The parameters used in Equation 3.19 are independent of applied voltages. It allows 

us to predict the pulse distribution by using this equation without limitation of 

experiment. Equation 3.19 can also be used to predict the pulse distribution in the two 

discharge regimes. For applied voltage before the regime transition voltage, Vpp
t
, the 

average discharge current amplitude rapidly increases with applied voltage (regime 1).  

For applied voltage higher than Vpp
t
, the average discharge current amplitude reaches a 

saturation value (regime 2). From the prediction using our model, the increasing number 

of channels at higher applied voltage resulting in the amplitudes of pulses to increase in 

regime 1. For regime 2, all the possible breakdown channels have been ignited. Further 
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increase of the applied voltage will not generate additional breakdown channel. 

Therefore, the average amplitude of the discharge pulses will reach a saturation value.  

In the current experiment, the space gap transition voltage is approximately equal to 

summation of three times standard deviation voltage and the mean of the breakdown 

voltage.  Hence, the equivalent transition voltage, Vpp
t
 can be estimated as: 

   
  

        

  
               (3.20) 

 

For our experimental results, the pulse distribution for discharge with space gap 

distance of 1.0 mm is clearly observed to consist of two discharge regimes. According 

to the empirical Equation 3.19, almost all the channels are ignited after the applied 

voltage reaches  22.6 kV, which can be considered to be the actual regime transition 

voltage, Vpp
t
. The comparison of experimental regime transition voltage with the 

simulated result is shown in Figure 3.9. 

 

 

Figure 3.9:  The comparison of experimental regime transition voltage with simulated 

result for discharges with 1.0 mm space gap.  Vpp
t
 is the simulated regime transition 

voltage obtained by using Equation 3.20. The full line is simulated by using Equation 

3.19 for each applied voltages. 
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Figure 3.10 shows that the experimental results are in good agreement with the 

simulated PDF for discharges with various space gaps.  The factor ccor is due to the 

combined effect of the ratio of the impulsive charges to total charge transferred by DBD 

in half cycle. The number of pulses and the average pulse amplitude at different 

discharge voltages and different space gaps can be predictable by using Equation 3.19 

with constant factor ccor as shown in Figure 3.12 and Figure 3.13 respectively. It is 

demonstrated that the value of the factor ccor is not influenced by the applied voltage at 

50 Hz.  

 

 

Figure 3.10: The comparison of the computational results and experimental results for 

PDF with different space gaps with 35 kV pk-pk applied voltage. 
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Figure 3.11: The comparison between the experimental results (left) and the simulated 

pulse distributions for discharges with 2.0 mm space gap.   

 

 

 

 

Figure 3.12:  Comparison of the experimental current pulse amplitude with the 

simulated results.  
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Figure 3.13:  Comparison of the experimentally detected number of pulses with the 

simulated results.  

 

In conclusion, it has been shown that the proposed empirical distribution function is 

able to predict the experimental distribution function for the current pulse amplitudes 

and the occurrence of the transition regime of the pulse distribution.  Besides, this 

model improves our understanding of the stochastic behaviors of DBD.  This will also 

improve our ability to design the DBD discharge for effective operation and 

applications.  

 

3.3   Discharge Energy Consideration 

3.3.1   Observation of experimental QV Lissajous 

For the study of the DBD electrical characteristic, the dissipation power is a very 

important parameter. However, the energy dissipation of individual filament cannot be 

directly measured from current and voltage signals because the time duration of the 

individual filamentary pulse is extremely short. Hence, the simplest method to 
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investigate dissipation power in DBD is the QV Lissajous method, which has been 

described in Chapter 2.    

 

By plotting the charge versus applied voltage, a typical QV Lissajous has been 

obtained as shown in Figure 3.14. According to Manley's theory (Manley, 1943), the 

QV Lissajous obtained for filamentary mode DBD discharge has a parallelogram 

structure as shown in Figure 3.14 (dotted line).  However, the experimental QV 

Lissajous obtained in our experiment is not following the parallelogram structure and a 

significant width expansion has been observed.  

 

 

Figure 3.14:  The experimental and theoretical QV Lissajous figure. 

 

 

According to Manley's theory, the breakdown voltage across the air gap is considered 

constant and it does not depend on the applied voltage waveform. Possible leakage of 

current at the surface of the DBD was not considered. In our case, we assume that the 

dielectric surface has high surface resistance.  

 

Experiment 

Theory (Manley) 
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Kriegseis et. al. has compared the QV Lissajous of volume discharge with that of 

surface discharge (Kriegseis et. al. 2011). They found that the energy consumed is sum 

of the volume discharge and surface discharge. The parallelogram QV Lissajous is 

mainly caused by volume discharge and can be accurately predicted by Manley’s theory 

(Manley, 1943), whereas the distorted slope of the QV Lissajous during the discharge 

‘ON’ mode is caused by the surface discharge. Hence, we are suggesting that the width 

expansion of the QV Lissajous is attributed to the surface resistance effect on the 

dielectric surface.  The existence of the surface resistance on the dielectric is resulting in 

the non-uniform charge distributed on the dielectric surface. It gives rise to a potential 

difference between the discharge region and the non-discharge region.  

 

During the discharge “ON” mode, the voltage across the gap at the discharge region 

can be considered constant.  However, the voltage across the gap at the non-discharge 

region is increasing and is corresponding to the applied voltage.  The rise of the average 

gap voltage is mainly due to the rise of gap voltage at the non-discharge region.  

 

The breakdown voltage Vb, which is determined from the experimental QV Lissajous, 

is found to be dependent on the external applied voltage. According to the surface 

resistance model, the rise of breakdown voltage determined from QV Lissajous can 

actually be attributed to the leakage of memory charge from the discharge region to the 

non-discharge region.  Higher applied voltage leads to more leakage of memory charge. 

Therefore, higher applied voltage is required for the DBD ignition during the next half 

cycle. 
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The width expansion of the QV Lissajous has can be correlated to the applied 

voltage. However, the average gradient of the QV Lissajous determined during the 

“ON” period still corresponds to the dielectric capacitance.  

 

 

3.3.2   The dynamic electrical circuit model 

 

The dynamic circuit model developed to simulate the DBD discharge consists of 

active circuit elements as shown in Figure 3.15.  Each of the microchannels in the space 

gap is modeled by a voltage-control current source and a capacitor connected in parallel, 

while the non-discharge region is represented by a single capacitive current. These 

microchannels when met on the dielectric surface are connected via a resistor 

representing the surface resistance rsf.  

 

 

Figure 3.15: The equivalent circuit for filamentary discharge with surface resistors. 

 

 

This electrical circuit can be simplified by combining all the microchannels in the 

discharge region and the non-discharge region separately as shown in Figure 3.16. The 

discharge region is modeled by a resistive current and a capacitor connected in parallel 

to represent the whole discharge region, while the whole non-discharge region is 

represented by a single capacitive current. A resistor on the dielectric surface 
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representing the surface resistance Rsf is inserted to separate the two regions. The 

surface resistance introduced here represents a lump circuit element that accounts for 

the trapping energy (Bartnikas, Radu, & Wertheimer, 2007; Li, Li, Zhan, Xu, & Wang, 

2008; Somerville & Vidaud, 1985) that resists the flow of charges on the surface and 

also the conductivity attributed to memory charge on the dielectric surface.  The surface 

resistance is also related to the ratio of the area of discharging regions to the total area.  

 

 

 

 

 

 

 

 

 

 

Figure 3.16: The electrical model of DBD and the dynamic currents in equivalent 

circuit. 

 

The ratio of the total area of the discharging regions to the total area of the electrodes 

is written as, D, which is given by: 

  
   

 
          (3.21) 

where S is the total area of the electrode, ∑Sk is the total area occupied by all the 

microdischarges. Factor D was obtained experimentally by imaging the discharge 

through a transparent indium-tin oxide (ITO) electrode. Meanwhile, the surface 

resistance can be determined by simulation.  
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 The discharge current is strongly dependent on the space voltage of the discharge 

region. Representing the DBD discharge as a voltage controlled current source (Naude, 

et al., 2005) , the average current can be expressed by: 

           
       

   
 
 

        (3.22) 

where     is the breakdown voltage and it is a constant value. The values of   and    

are dependent on the operating condition.  This approach has been used by Flores-

Fuentes et al (Flores-Fuentes, et al., 2009) in their electrical model.  This equation is 

only used as a DBD “ON” and “OFF” switch of the reactor in order to simplify the 

electrical circuit modeling. 

 

The generated discharge current is flowed into the discharge region.  The deposited 

charge on the dielectric surface creates an unbalanced voltage between the discharge 

region and non-discharge region on the dielectric surface. The voltage difference 

between the discharge region and the non-discharge region gives rise to a resistive 

current on the surface (Somerville & Vidaud, 1985).  

 

The distribution of charges in a DBD essentially extends from the discharge channel 

to the surface of the dielectric. This effect is more apparent in low frequency discharge 

such as 50 Hz as there will be sufficient time for the charges to spread on the dielectric 

surface. This effect has investigated by Akishev (Akishev et al., 2011), where a 

microdischarge channel was singled out in the modeling.  Akishev defined the surface 

discharge as surface plasma progresses as a surface resistance (Akishev et al., 2011).  

The current is dependent on the voltage difference between the discharge region and the 

non-discharge region.  In the present model, we fit the surface discharge resistance in 

the current equation as:  
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        (3.23) 

where     is equal to the total effective resistance of the charge surface progresses. The 

total equivalent current obtained by numerical method multiplies the total voltage 

calculated from voltage distortion equation is integrated to give the dissipation energy. 

The total dissipation energy of DBD system in one cycle is written as: 

                  
 

 
          (3.24) 

The energy consumed by the surface resistance in one cycle is: 

          
                 

 

   

 

 
         (3.25) 

and the energy of the DBD discharge in one cycle is: 

                             (3.26) 

The total energy (      ) calculated from the experimentally measured QV Lissajous is 

equal to the sum of energy of the surface resistance (Esurface) and the DBD discharge 

(EDBD). 

 

 

3.3.3   Factor D determination 

The DBD reactor has been modified for the experiment to capture the image of the 

discharge from the top view of the DBD reactor. An ITO layer mounted with a ring 

shape electrode replaced one of the original electrodes. The exposure time of the camera 

was adjusted to 5 seconds. The captured image was the superposition of five images to 

obtain a good ratio of filament emission to background noise.  
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0.2 mm space gap 

 

 
0.5 mm space gap 

 

 
1.0 mm space gap 

 
1.5 mm space gap 

Figure 3.17: The image from top view of DBD discharge. 

 

Based on the intensity of the filamentary discharge emission, the factor D is obtained by 

adjusting the contrast level and the image is analyzed by using the Matlab image 

processing function within the Matlab code. In this method, the image is converted to a 

matrix corresponding to the pixels. The higher intensity pixel is represented by value 1 

in the matrix, while lower intensity pixel is represented by value of 0. The ratio factor D 

can be obtained by summation of the value in the matrix divided the total number of 

pixels occupied by the electrode area. 
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Figure 3.18: The process to convert the image file to matrix format. The black color 

represents zero value and white color represents value 1. 

 

The factor D can be expressed as below: 

  
                                         

                                           
      (3 .27) 

 

 

Figure 3.19: The variation of factor D for discharges with various space gaps distance. 
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The factor D is found to be increasing with the space gap.  This is because the size of 

the individual filament is also increasing with increase of space gap.  However, the 

number of the microchannels decreases with the space gap. The error of factor D 

determination may be due to the low intensity of the light emission of the microchannel. 

The size and the number of filaments can be larger than the calculated value due to the 

lower light emission from the filaments and the number of filaments captured by the 

camera can be less than the actual number. 

 

3.3.4   Matlab Simulink code 

The dynamic circuit model is implemented by using Matlab Simulink.  The 

arrangement of the circuit elements in Simulink code is shown in Figure 3.20. The 

discharge current and voltage used for the simulation are registered. An AC voltage 

source at 50 Hz is employed as the power source, where the inductance of the power 

transformer is ignored.  

 

The surface current is simulated according to Equation 3.23 and the simulation code 

is shown in Figure 3.20. Meanwhile, the discharge current signal is registered according 

to Equation 3.22 and the simulation code is shown in Figure 3.21 (a). The voltage 

registered between the IN and OUT of the voltage measurement block represents the 

space gap voltage of the discharge region, Vg,D. The signal from this voltage 

measurement block is sent to the analysis block. 

 

The voltage across the DBD reactor and the equivalent current measured 

experimentally can be compared with the simulated output. Other measurable and 

simulated quantities compared include the dissipated power, voltage across the space 

gap and dielectric. Hence, in order to compare with experiment results, the current and 
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voltage registered in Simulink are sent to the analysis block via input IN1 and IN2 

respectively. The analysis code is shown in Figure 3.21 (b). By employing the 

Equations 3.24, 3.25, and 3.26, the simulated energy is compared with experimental 

results.  

 

 

 

 

 

 

 

 

 

Figure 3.20: The interface of Matlab Simulink code. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: The Simulink codes of (a) discharge current block, and (b) measurement 

analysis block. 

 

 

 

 

a) 

b) 
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3.3.5   Results and discussions 

A typical set of experimental results and simulated results are presented in Figure 

3.22 for DBD with 0.5 mm air gap and 30 kV applied voltage.  The simulated results are 

in good agreement with the experimental results.  

 

 

Figure 3.22: The comparison between the experimental result and simulated result.  

 

The rate of change of the charge transfer measured across the charge measurement 

capacitor as shown in Chapter 2, Figure 2.2 gives the average total currents, while the 

instantaneous power dissipated by the discharge across the air gap can be obtained by 

multiplying the total current by the voltage of the air gap. Figure 3.23 shows the 

comparison of simulated and experimental values of the dissipated power and the total 

current for a discharge with 0.5 mm air gap and 30 kV pk-pk applied voltage. The 

simulated results are used to plot the QV Lissajous and compared to that obtained 

experimentally. The Factor D was determined based on experimental imaging as 

described earlier. In order to fit the QV Lissajous plotted from the experimental results, 

a suitable value of surface resistance Rsf  is introduced. The resistor representing the 
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surface resistance Rsf  is determined by fitting the computed QV Lissajous from the 

simulation output with the experimentally obtained QV Lissajous.   

 

 

 

 

Figure 3.23: Comparison of (a) simulated and (b) experimental waveforms of the 

dissipation power of space gap  and the total current for discharge with 0.5 mm air gap 

and 30 kV pk-pk applied voltage. 

 

a) 

b) 
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Figure 3.24: Comparison of (a) simulated and (b) experimental waveforms of the 

applied voltage VT, air gap voltage Vg, and dielectric voltage Vd for discharge with 0.5 

mm air gap and 30 kV pk-pk applied voltage. 

 

 

 

 

a) 

b) 
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These procedures are repeated for DBD with applied voltages of 10 kV to 35 kV, and 

space gaps of 0.2 mm, 0.5 mm, and 1.0 mm. The effect of the surface resistance is 

correlated to the surface roughness of the dielectric layer. Two types of dielectric layers 

(glass plates), one of rough surface and one of smooth surface, have been studied.  

 

For DBD with 0.2 mm air gap, with the smooth glass as the dielectric layer, the 

suitable value of surface resistance is found to be 2.1 MΩ for all the applied voltages. 

The QV Lissajous obtained from the simulated results with this value of the surface 

resistance show almost perfect match with the QV Lissajous obtained experimentally. 

The QV Lissajous plotted with applied voltages of 10 kV to 35 kV are shown in Figure 

3.25.  When the space gap is increased to 0.5 mm and 1.0 mm, the effective surface 

resistance required to give the observed QV Lissajous is found to be 2.3 MΩ and 1.0 

MΩ respectively. The results for 1.0 mm air gap are shown in Figure 3.26.  The results 

suggest that the effective surface resistance is also affected by the thickness of the air 

gap.  This is due to the fact that in a very thin gap, the microdischarges are regularly 

distributed on the dielectric surface due to repulsion between the nearby microdischarge 

channels and the repulsive force limits the mobility of the deposited charges on the 

dielectric surface. Particularly, the density of the deposited memory charge on the 

dielectric surface is inversely proportional to the dielectric surface resistivity. The total 

memory charge deposited by one microdischarge is relatively low for smaller air gap as 

compared to that for larger air gap.  Hence, the effective surface resistance Rsf obtained 

for smaller air gap is higher than that of larger air gap. 
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The QV Lissajous also shows significant expansion when the applied voltage is 

increased from 10 kV to 35 kV.  The energy dissipated, which is indicated by the area 

of the respective QV Lissajous is observed to increase with the applied voltage.  The 

higher energy dissipation is beyond what is given by Manley’s equation, but can be 

accurately determined with our model. The additional energy dissipated is closely 

related to the surface resistance as energy is consumed during charge transfer from the 

discharge region to the non-discharge region through the surface resistance.  

 

The results obtained with smooth dielectric surface can be compared with the rough 

dielectric surface.  The experiment with space gap of 1.0 mm is repeated but with a 

rough dielectric surface for applied voltage of 10 kV to 35 kV. The surface resistances 

obtained for rough dielectric surfaces are significantly higher. The effective surface 

resistance of the rough dielectric surface is determined as 4.5 MΩ, compared to that 

obtained with the smooth dielectric surface which is 1.0 MΩ.  Figure 3.27 shows the 

QV Lissajous obtained from simulation with surface resistance of 4.5 MΩ which 

matches well with the experimentally obtained QV Lissajous for air gap of 1.0 mm. 

 

 

 

 

 

 

 

 

 



93 

 

 

Figure 3.25: QV Lissajous resulting from (a) simulation and (b) experiment for 0.2 mm 

air gap and various applied voltages when factor D and surface resistance are 0.013 and 

2.18 MΩ respectively. 
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Figure 3.26: QV Lissajous resulting from (a) simulation and (b) experiment for 1.0 mm 

air gap and various applied voltages when factor D and surface resistance are 0.014 and 

2.3 MΩ respectively. 
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Figure 3.27: QV Lissajous resulting from (a) simulation and (b) experiment for 1.0 mm 

air gap and rough dielectric surface when factor D and surface resistance are 0.017 and 

4.5 MΩ respectively. 
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The total energy consumed in the DBD for one complete cycle can be calculated 

based on Equation 3.24 or determined from the area under the QV Lissajous. The values 

obtained from the QV Lissajous based on experimental data are plotted as points in 

Figure 3.28 for all the applied voltages and discharge gaps. Calculated values are 

plotted in the same figure for comparison. The experimental points are found to be in 

good agreement with the calculated curves.  The results obtained from our model for all 

the experimental parameters are summarized in Table 3.2.  The value of factor D used is 

estimated as discussed earlier. 

 

 

 

Figure 3.28: The total energy dissipated versus the applied voltage for DBD with 

various air gaps. The lines represent the simulated results and the symbols represent the 

experimental results. 

 

 

 

 

 



97 

 

Table 3.2.  List of the parameters used in the simulation. 

Glass plate Space gap 

distance/ mm 

Factor, 

D 

Surface 

resistance, 

Rsf/MΩ 

Dielectric 

capacitance, 

Cd/F 

Space gap 

capacitance, 

Cg/F 

Smooth 

surface  

0.2 0.013 2.1 1.39E-10 1.42E-10 

0.5 0.014 2.3 1.39E-10 5.70E-11 

1.0 0.017 1.0 1.39E-10 2.85E-11 

 

Rough 

surface 

1.0 0.017 4.5 1.48E-10 2.85E-11 

 

The total capacitance as measured from the gradient of the QV Lissajous remains 

about the same with different applied voltages at consecutive cycles. This indicates that 

during the DBD OFF period, charges remain on the dielectric surface and contribute to 

the memory effect. Otherwise, if the remaining charges recombine on the dielectric 

surface during the DBD OFF period, the QV Lissajous will reflect the change in total 

capacitance in the gradient of QV Lissajous.  

 

By having the experimental results accurately fitted with the simulated results from 

the model, we can calculate the efficiency of the discharge in term of the power 

dissipation at the DBD.  The total energy represents the sum of the energy consumed by 

the discharge and the energy dissipated on the surface of the dielectric. Thus, the energy 

efficiency is high for smooth surface, which has low effective surface resistance.  The 

efficiency of the discharge with air gap 0.2 mm, 0.5 mm and 1.0 mm at applied voltage 

of 10 kV to 35 kV are plotted in Figure 3.29 (a,b,c,d).  The efficiency for discharge with 

0.5 mm air gap, for example, at applied voltage of 10 kV is 94.6% but it is reduced to 
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70.1% for 35 kV discharge.  Similar trend is shown for 0.2 mm and 1.0 mm air gap. The 

reduction at higher applied voltage can be explained by the fact that more energy is 

dissipated in the charge spreading process on the dielectric surface when the applied 

voltage is much higher than the breakdown voltage. 

 

 

 

 

 

 

 

Figure 3.29: The simulated total energy, discharge energy, surface energy, and 

efficiency versus the applied voltage for smooth dielectric with (a) 0.2 mm air gap, (b) 

0.5 mm air gap, and (c) 1.0 mm air gap.  For rough dielectric with 1.0 mm air gap the 

results are shown in (d). 

 

 

Total energy  

Discharge energy 

 

Surface energy  

Efficiency  

 

a) 

c) 

b) 

d) 



99 

 

The dynamic circuit model constructed with Matlab Simulink has been shown to be 

able to accurately simulate the discharge energy of a 50 Hz filamentary discharge. This 

electrical model can be used to determine the optimum condition for DBD.  According 

to this model, the efficiency of the DBD has been found to be higher with a smooth 

surface and low effective surface resistance compared to a rough surface.  The 

efficiency reduces when the applied voltage is increased.  
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Chapter 4: Conclusion and Suggestion for Future 

Work  

4.1   Conclusion  

The DBD can be used for generating non-equilibrium plasma under atmospheric air.  As 

compared to the other types of gas discharge, the simplicity in the configuration and 

absence of the vacuum system of the DBD are obvious advantages for consideration of 

industrial applications. Hence, the DBD has attracted growing interest from many 

researchers for various potential applications in industry such as ozone synthesis, 

surface treatment, pollution control, production of excimer, flow control, and 

biomedical applications (see Chapter 1). Despite the industrial application of the DBD 

has a long tradition, many fundamental understanding of the device are still lacking.  

The problem of the stochastic behavior which may affect the usefulness the DBD, for 

example, is one of the challenges facing the researcher. In this project, we have put in 

considerable efforts to study this fundamental phenomenon. 

 

According to the experimental results, the non-uniform breakdown voltage on the 

dielectric surface is suggested to be one of the stochastic factors. Theoretically, the 

higher breakdown voltage, the higher discharge pulse can be generated.  The local 

breakdown voltage is determined by the distance of the space gap and the local 

properties of the electrode surface. Therefore, the breakdown voltage of each channel is 

randomly varied according to the local electrode surface properties, thus generating a 

discharge pulse with certain pulse height, which is different from other channels. 
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Based on the theoretical calculation of the local total charge transfer for the discrete 

volume, the number of the pulses generated in the local channel can be predicted (see 

chapter 3). By combining all the channels, we propose the empirical equation for the 

pulse height distribution.   

 

This empirical equation can successfully predict the existence of two discharge 

regimes, which has been observed from the experimental results.  By using the proposed 

empirical equation, the ratio of the impulsive current and non-impulsive current can be 

validated from the experimental results. The increase in the ratio of charge transported 

by the impulsive discharge for discharge with larger air gap is believed to be caused by 

the increase of the impulsive discharge in larger air gap. 

 

Besides, this distribution function obtained will allow us to predict the distribution of 

the current pulses of the discharge, thus improving our ability to control the DBD 

discharge. The increase in the applied voltage will increase both the number of the 

current pulses and the current pulse amplitude in regime 1.  However, the amplitude of 

the current pulse is found to be saturated when the applied voltage is increased in 

regime 2 (see Chapter 3).  This empirical equation can be used in the design of the DBD 

system.  For the production of higher pulse amplitude, the DBD is suggested to have a 

larger space gap rather than a higher applied voltage.   

   

For the energy investigation, the dynamic circuit model constructed with Matlab 

Simulink has been found to be able to accurately simulate the energy dissipated by a 50 

Hz filamentary discharge. The surface resistance introduced in this electrical model 

represents the average effect that effectively accounts for the resistance encountered by 

the charges that flow between the discharging and non-discharging regions on the 
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dielectric. The surface resistance is believed to be contributed by the surface roughness 

of the dielectric layer, the trapping energy and the memory effect. The factor D was 

obtained experimentally before the determination of the surface resistance. The values 

of surface resistance are found to be dependent on the width of the air gap. In any case, 

the expanded QV Lissajous can be reasonably explained by the fact that the total energy 

is the sum of the of the DBD discharge energy and the energy consumed by the 

spreading of charges on the dielectric surface. 

 

The efficiency of the DBD can be defined as the percentage of the energy consumed by 

the space gap to the total dissipation energy. By having the experimental results 

accurately fitted with the simulated results from the model, the efficiency of discharge 

can be obtained from the electrical modeling. The efficiency of the DBD has found to 

be higher with a smooth surface and low effective surface resistance compared to a 

rough surface. The efficiency reduces when the applied voltage is increased.  This is 

because at higher applied voltage, more energy is dissipated in the charge transferred 

process on the dielectric surface as in this case the excess voltage is expected to be 

higher. 
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4.2   Suggestion of Future Work 

4.2.1   High-speed imaging 

The single DBD pulse lasted for only a few nanoseconds.  By using a high-speed 

camera, the formation mechanism of a filamentary discharge can be investigated.  One 

of the DBD behaviors of interest is the collective effect.  The collective effect of DBD 

have been observed by Allegraud et al. (Allegraud, Guaitella & Rousseau, 2007), where 

more than one filamentary discharge can be generated in a single current pulse.   

 

The high-speed intensified charge-coupled device (iCCD) camera can be used to 

investigate the collective effect of the filamentary discharge.  The image of the 

synchronous breakdown across the discharge gap under the different configurations can 

be captured by the iCCD camera.  The role of the memory charges in the formation of 

filamentary mode dielectric barrier discharge (DBD) can also be visualized.  The 

mechanism of the electron avalanche happened in the direction from the dielectric 

surface towards the opposite electrode is believed to be different from that in the reverse 

direction. This can be explained by the existence of the memory charge on the dielectric 

surface, which supports the secondary emission effect on the dielectric surface.  From 

the preliminary result, the synchronous breakdown in the discharge gap resulting in the 

capturing of three pulses corresponding to a single current pulse was observed as shown 

in the Figure 4.1.  Further experiments can be carried out to investigate the phenomenon. 
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Figure 4.1: Image of the single negative current pulse in the 5 mm gap DBD captured 

by ICCD camera with gate width of 500 μs. Three synchronous breakdowns were 

observed in a single negative discharge current pulse.  

 

4.2.2   Optical emission spectroscopy 

 
The kinetics of the chemical reactions in the plasma is strongly dependent on the 

discharge temperature. The optical emission spectroscopy (OES) is a traditional 

diagnostic tool for the plasma temperature investigations. Particularly, this technique 

can be used for determining the energy of the gas particles from the plasma emission.  

The composition of the metastable and the discharge species can also be determined 

from the spectra.  For the DBD operated under the atmospheric air, several band system 

of nitrogen can be observed as shown in Figure 4.2.   

 

Figure 4.2: The DBD optical emission spetra under atmospheric gas. 
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In general, the DBD is not in local thermodynamic equilibrium. Therefore, the 

vibrational, rotational and translational temperatures may differ from each other.  Since 

the vibrational mode exchanges energy with the electrons faster than the rotational and 

translational mode (Williamson & Dejoseph, 2003) the vibrational temperature is higher 

than the rotational and translational temperature.   

 

 The Boltzman plot method can be used for determining the vibrational and rotational 

temperature (Herzberg, 1957).  The Franck-condon factor, which is related to the 

transition probility, is required for calculating the vibrational temeprature. Lofthus and 

Krupenir (Lofthus, & Krupenir, 1977) had summarized the Franck-condon factor of 

nitrogen metastbles thus allowing the caluculation of the vibrational temperature and 

rotational temperature. Therefore, further study for the vibrational temperature and 

rotational temperature can be carried up for improving the understanding of kinetics of 

the chemical reaction in DBD.  

 

4.2.3   Homogenous discharge  

Under certain condition, the homogenous discharge can be generated in the 

atmospheric air (Massines, et al., 2009; Massines, et al., 2003). The homogenous 

discharge has drawn attention of many researchers as this type of discharge may be 

preferred for various applications (Zhang, Shao, Long, et al., 2010). A possible direction 

of future work can be the development of the homogenous DBD. However, there are 

still many challenges that need to be addressed. One of the important challenges is to 

improve the understanding of the transition between the homogenous discharge and 

filamentary discharge. Currently, the researchers still question the required condition 

and formation mechanism of the homogenous discharge. The study for the condition of 
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the transition from the filamentary discharge to homogenous discharge under 

atmospheric air can be a great interest for further study.  

 

The transition from the filamentary discharge to homogenous discharge is affected 

by the frequency of the applied voltage or the voltage rise time. Therefore, either a 

frequency variable power supply or a nanosecond pulse generator can be constructed for 

developing a homogenous DBD system. The comparison of the filamentary discharge 

and the homogenous discharge for the application, such as surface treatment, can be 

conducted experimentally.  
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Abstract 

The electrical characteristics of a filamentary dielectric barrier discharge (DBD) are 

studied experimentally and numerically.  The DBD system has a parallel plate 

electrodes geometry is powered by a 50 Hz power supply and operated at atmospheric 

air.  A dynamic electric circuit model considering the discharge region and the non-

discharge region being connected by a surface resistance is proposed. Simulation using 

this model is shown to fit the experimentally measured QV diagram satisfactorily.  The 

effects of the air gap distance and the dielectric surface on the discharge behavior are 

then investigated.  It is found that the surface resistivity of the dielectric is one of the 

important parameters governing the discharge behavior.  

Keywords: Dielectric Barrier Discharge, Filamentary Discharge, Electrical 

characteristics, Electrical Modeling. 

Abstrak 

Ciri-ciri nyahcas dielecktrik berpenghadang (DBD) telah dikaji secara eksperimen dan 

berangka. Sistem DBD yang mengandungi dua elektrod plat yang selari dikuasakan 

dengan bekalan kuasa yang 50 Hz and difungsi dalam udara atmosfera. Satu model 

elektrik yang mengambil kira rantau tidak bernyahcas and rantau bernyahcas telah 

dicadangkan. Dalam model elektrik ini, rantau tidak bernyahcas and rantau bernyahcas 

disambungi dengan satu rintangan permukaan. Keputusan simulasi berjaya menyamai 

keputusan Lissajous QV yang didapati daripada eksperimen. Kesan jarak jurang ruang 

dan rintangan permukaan dielektrik dalam DBD juga dikaji dan didapati bahawa 

rintangan permukaan dielektrik adalah satu parameter yang penting untuk mengawal 

sifat nyahcas. 

Kata kunci: nyahcas dielecktrik berpenghadang, nyahcas filamen, ciri-ciri elecktrik, 

model elektrik. 
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Abstract of published paper in proceedings. 

National Conference on Physics (PERFIK2009) 

AIP conference proceedings 

 

The Electrical Characteristics of a Filamentary Dielectric Barrier 

Discharge 

W. H. Tay, S. L. Yap and C. S. Wong 

Plasma Research Laboratory, Physics Department, University of Malaya 

50603 Kuala Lumpur, Malaysia.  

Abstract. The electrical characteristics of a filamentary dielectric barrier 

discharge using parallel-plate electrodes geometry were statistically studied.  The 

dielectric barrier discharge (DBD) system was powered by a 50 Hz power supply 

and operated at atmospheric pressure.  The influence of the air gap and position of 

dielectric on the discharge had been investigated. It was found that the air gap 

distance and position of dielectric had significant influence on the discharge 

current pulse. The results showed that discharge with large distance between the 

high voltage electrode and the dielectric would generate higher current pulses 

during the positive cycle. The discharge energy of single pulse was also 

determined. 

Keywords: Dielectric Barrier Discharge, Filamentary Discharge, Atmospheric 

discharge. 
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Abstract of presentation 

The 6
th

 Mathematics and Physical Sciences Graduates Congress (MPSGC 2010) 

Faculty of Science, University of Malaya. 

The Statistical Characteristics of Dielectric Barrier Discharge Powered 

by 50 Hz in Atmospheric Air 

W.H. Tay, S. L. Yap, and C. S. Wong 

Plasma Research Center, Department of Physic, University of Malaya 

50603 Kuala Lumpur, Malaysia. 

Abstract. Applications of the plasma technologies based on the dielectric-barrier 

discharge (DBD) are numerous and involve many industries. A DBD operated at low 

frequency power supply of 50 Hz is used here because of its simplicity and effective. In 

this paper, a representative statistical analysis of the dielectric barrier discharge 

characteristics is studied. The effects due to different driven voltage and space gap 

distance on the maximum current pulse, amount of the charge, and breakdown voltage 

are investigated. A simple model is proposed to estimate the probability density 

distribution of current amplitude based on the experimental result.   

Keywords: Dielectric Barrier Discharge, Filamentary Discharge, Atmospheric 

discharge 

 

 

 

 

 

 

 

 


