ABSTRACT

The reactivity of $[CpM(CO)_3]_2$ (M=Cr(1), Mo(3)) together with their congener, [CpM(CO)_2]_2 (M=Cr(2), Mo(4)) towards aryl disulfide ligands have been studied. The organic ligands include: (i) dicyclohexyl disulfide (ii) thienyl disulfide. Reactions that involve 1 occurred under mild condition *via* the highly reactive radical CpCr(CO)₃•. However, the reaction conditions with 2 and 4 are at elevated temperature.

All the products have been characterized spectroscopically and structually *via* IR, ¹H, ¹³C and ³¹P NMR, LCMS, elemental analyses, single crystal x-ray diffraction and cyclic voltammetry. Works are summarized below.

(i) The reaction of **1** with dicyclohexyl disulfide at 60 °C for 60 h has led to the isolation of primary product $[CpCr(CO)_2]_2 S$ (**5**) followed by a total decarbonylation of $[CpCr(SC_6H_{11})]_2S$ (**6**). After prolonged thermolysis, **6** was fully converted to a cubane-like cluster $Cp_4Cr_4S_4$ (**7**). Reaction of **4** with Dicyclohexyl Disulfide at elevated temperature had led to the isolation of a pair of isomeric products *trans-syn* and *trans-anti* $[CpMo(CO)(SC_6H_{11})]_2(8)$, $[Cp_2Mo_2(CO)(O)(SC_6H_{11})_2]$ (**9**) and $[Cp_3Mo_3(CO)_4(\mu_3-O)(SC_6H_{11})]$ (**10**) as main products. Thermolytic studies followed by ¹H NMR indicated that **8** underwent stepwise decarbonylation and oxidation to afford **9** and **10**.

(ii) The facile reaction of $[CpCr(CO)_3]_2$ (1) with Thienyl Disulfide at ambient temperature had led to the isolation of CpCr(CO)₃H (11) as the primary products and The reaction involves $[CpCr(CO)_2]_2S$ (5) respectively. the 17e radicals CpCr(CO)₃· from the facile thermal dissociation of the Cr-Cr bond. At elevated temperature, $[CpCr(CO)_2]_2S$ (5) and $[CpCr(S_2C_4H_3)]_2S$ (12) were isolated as produts. Thermal degradation had led to a total decarbonylation of $[CpCr(S_2C_4H_3)]_2S$ (12). Prolong thermolysis of 12 was completely converted to Cp₄Cr₄S₄, as final thermolytic product. The reaction of 4 with one equimolar of Thienyl Disulfide at ambient and elevated temperature had led to a pair of isomeric products, trans-syn
$$\label{eq:cond} \begin{split} [CpMo(CO)(C_4H_3S_2)]_2 \quad \textbf{(13a)} \quad , \quad \textit{trans-anti} \quad [CpMo(CO)(C_4H_3S_2)]_2 \quad \textbf{(13b)} \quad dan \\ [CpMo(O)(C_4H_3S_2)]_2O \quad \textbf{(14)}. \end{split}$$

ABSTRAK

Kereaktifan dari $[CpM(CO)_3]_2$ (M=Cr(1), Mo(3)) bersama dengan kongener mereka $[CpM(CO)_2]_2$ (M=Cr(2), Mo(4)) telah diselidik terhadap aril sulfida seperti (i): dicyclohexyl dilsulfide (ii) thienyl disulfide. Tindak balas yang menglibatkan 1 terjadi pada suhu bilik melalui monomer radikal, CpCr(CO)₃• yang sangat reaktif. Tetapi, bagi tindak balas yang menglibatkan 2 dan 4 telah dilakukan pada suhu bilik yang lebih tinggi.

Semua produk telah dikenalpasti dengan menggunakan IR, ¹H, ¹³C dan ³¹P NMR, LCMS, analisa elemental, Kristal tunggal x-ray diraksi dan voltammetri berkitar. Hasil penyelikan telah dihuraikan seperti yang berikut :

(i) Tindak balas **1** dengan dicyclohexyl disulfide pada suhu 60 °C selama 60 jam telah menghasilkan produk utama iaitu $[CpCr(CO)_2]_2$ S (**5**) diikuti dengan produk $[CpCr(SC_6H_{11})]_2$ S (**6**) yang kehilangan semua karbon dioksida. Selepas pemanasan **6** telah ditukar menjadi $Cp_4Cr_4S_4$ (**7**) sebagai hasil kehilangan karbon dioksida yang lengkap. Tindak balas yang menglibatkan **4** pada suhu yang lebih tinggi dengan dicyclohexyl disulfide telah memberi hasil isomerik *trans-syn* dan *trans-anti* $[CpMo(CO)(SC_6H_{11})]_2$ (**8**), $[Cp_2Mo_2(CO)(O)(SC_6H_{11})_2]$ (**9**) dan $[Cp_3Mo_3(CO)_4(\mu_3-O)(SC_6H_{11})]$ (**10**) sebagai hasil utama. Kajian thermolitic diikuti dengan ¹H NMR membuktikan **8** mengalami proses kehilangan karbon dioksida dan pengoksidaan untuk hasil **9** dan **10**.

(ii) Tindak balas yang mudah iaitu antara $[CpCr(CO)_3]_2$ (1) dengan Thienyl Disulfide pada suhu bilik telah menghasilkan $CpCr(CO)_3H$ (11) dan $[CpCr(CO)_2]_2S$ (5) sebagai hasil produk utama. Tindak balas ini menglibatkan radikal monomer $CpCr(CO)_3$ · daripada terma belahan ikatan antara Cr-Cr. Pada suhu tinggi, produk $[CpCr(CO)_2]_2S$ (5) and $[CpCr(S_2C_4H_3)]_2S$ (12) telah dihasilkan. Proses degradasi telah memberi $[CpCr(S_2C_4H_3)]_2S$ (12) sebagai hasil kehilangan karbon dioksida yang lengkap. Reaksi thermolitic yang sepenuhnya telah menukar 12 to Cp₄Cr₄S₄ sebagai produk thermolytic. Tindak balas antara 4 dengan setara molar Thienyl Disulfide pada suhu bilik dan suhu tinggi menghasilkan produk isomerik iaitu trans-syn $[CpMo(CO)(C_4H_3S_2)]_2$ $[CpMo(CO)(C_4H_3S_2)]_{2}$ (**13a**) , trans-anti dan [CpMo(O)(C₄H₃S₂)]₂O (**14**).

ACKNOWLEDGEMENTS

In the course of completing this thesis, I have received much assistance from many sources. First, I would like to express my sincere appreciation to my supervisor, Assoc. Prof. Dr. Richard Wong Chee Seng for his guidance and helpful suggestions throughout this project.

My appreciation goes out to Universiti Malaya for granting a tutorship and the IPPP grant, without which I would not have the financial means to complete this work. I am also grateful to Prof. Dr. Ng Seik Weng and Mr. Low Yun Yee for X- ray diffraction analyses, Miss Norzalida Zakaria and Mr. Siew Yao Loo for their technical support.

Special thanks to my seniors Miss Ooi Mei Lee, Miss Elizabeth Fong Yew Mei; my colleague Mr. Ngan Ngui Khiong for their advice and support during my study. I would like to thank Miss Casey Chew Soo Hoon and Miss Tan Wen Ling for helping me to download some research papers from their university libraries.

Last but not least, I am very indebted to my parents who are always there to support me in prayer with love and care.

TABLE OF CONTENTS

	Page
ABSTRACT	i
ABSTRAK	iii
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF FIGURES	xii
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	XV

CHAPTER 1 INTRODUCTION

1.1	Reaction or n =	vity of $[CpMo(CO)_n]_2 [M = Cr, n = 3(1) 2(2); M=Mo, n=3(3) or n = 2(4)]$	
	1.1.1	Biscylopentadienyldichromiumhexacarbonyl, [CpCr(CO) ₃] ₂ (1)	1
	1.1.2	Biscyclopentadienyldichromiumtetracarbonyl, [CpCr(CO) ₂] ₂ (2)	2
	1.1.3	Biscyclopentadienyldimolybdenumhexacarbonyl, [CpMo(CO) ₃] ₂ (3)	3
	1.1.4	Biscyclopentadienyldimolybdenumtetracarbonyl, [CpMo(CO) ₂] ₂ (4)	3
1.2	A revie with or	ew on the synthesis and reactivity of molybdenum and chromium ganochalcogenide ligands	
	1.2.1	Organochalcogenide derivatives of chromium complexes	4
	1.2.2	Organochalcogenide derivatives of molybdenum complexes	9
1.3	Object	ives	22

CHAPTER II

RESULTS AND DISCUSSION

2.1	Studie	es of $[CpCr(CO)_3]_2(1)$ with Dicyclohexyl Disulfide	
	2.1.1	Reaction of $[CpCr(CO)_3]_2(1)$ with an equimolar amount of Dicyclohexyl Disulfide	23
	2.1.2	Reaction of $[CpCr(CO)_2]_2$ (2) with an equimolar amount of Dicyclohexyl Disulfide	23
	2.1.3	Reaction of $[CpCr(CO)_2]_2 S(5)$ with an equimolar amount of Dicyclohexyl Disulfide	23
	2.1.4	Synthetic and Mechanistic pathways :	
		2.1.4.1 Formation of $[CpCr(SC_6H_{11})]_2S$ (6)	23
	2.1.5	Physical Properties of $[CpCr(SC_6H_{11})]_2S(6)$	25
	2.1.6	Spectra Characteristics	
		2.1.6.1 I.R. Spectrum	25
		2.1.6.2 NMR spectra	25
		2.1.6.3 Mass spectra	25
		2.1.6.4 Molecular Structures	26
2.2	Studie	es of [CpMo(CO) ₂] ₂ (4) with Dicyclohexyl Disulfide	
	2.2.1	Reaction of [CpMo(CO) ₂] ₂ (4) with equimolar of Dicyclohexyl Disulfide	28
	2.2.2	Synthetic and Mechanistic Pathways :	
		2.2.2.1 Formation of doubly bonded isomers <i>trans-syn/trans-anti</i> $[CpMo(CO)(SC_6H_{11})]_2 (8), [Cp_2Mo_2(CO)(O)(SC_6H_{11})_2] (9)$ and $[Cp_3Mo_3(CO)_4(\mu_3-O)(SC_6H_{11})] (10)$	29)
	2.2.3	Physical Properties	31
	2.2.4	Spectra Properties	
		2.2.4.1 I.R. Spectra	32
		2.2.4.2 NMR spectrum	33
		2.2.4.3 Mass spectra	34
		2.2.4.4 Molecular Structures	36

2.3	Studie	es of $[CpCr(CO)_3]_2(1)$ with Thienyl Disulfide	
	2.3.1	Reaction of $[CpCr(CO)_3]_2(1)$ with an equimolar of Thienyl Disulfide	42
	2.3.2	Reaction of $[CpCr(CO)_2]_2(2)$ with an equimolar of Thienyl Disulfide	42
	2.3.3	Reaction of $[CpCr(CO)_2]_2 S(5)$ with an equimolar of Thienyl Disulfide	42
	2.3.4	Synthetic and Mechanistic Pathways:	
		2.3.4.1 Formation of $[CpCr(S_2C_4H_3)]_2S$ (12)	43
	2.3.5	Physical Properties	45
	2.3.6	Spectra Properties	
		2.3.6.1 I.R. Spectrum	45
		2.3.6.2 NMR Spectrum	45
		2.3.6.3 Mass Spectra	46
		2.3.6.4 Molecular Structures	46
2.4	Studie	es of $[CpMo(CO)_2]_2$ (4) with Thienyl Disulfide	
	2.4.1	Reaction of $[CpMo(CO)_2]_2$ (4) with one mole equivalent of Thienyl Disulfide	48
	2.4.2	Synthetic and Mechanistic Pathways :	
	49	2.4.2.1 Formation of <i>trans-syn/trans-anti</i> $[CpMo(CO)(C_4H_3S_and [CpMo(O)(C_4H_3S_2)]_2O$ (14)	5 ₂)] ₂ (13)
	2.4.3	Physical Properties	51
	2.4.4	Spectra Properties	
		2441IR Spectra	51
		2.4.4.2 NMR Spectra	52
	244	3 Mass Spectra	53
	2.7.7.	4 Molecular Structures	55
	∠.+.+.'		

2.5	Coordination of the (μ -S) ligand to Fe(CO) ₃ fragments from Fe(CO) ₉		
	2.5.1	The reaction of $[CpCr(S_2C_4H_3)]_2S$ (12) with 2 mole equivalent of Fe(CO) ₉	57
	2.5.2	Physical Properties of $[Cp_2Cr_2(S_2C_4H_3)]S_2[Fe(CO)_3]$ (15)	57
	2.5.3	Spectra Characteristics of $[Cp_2Cr_2(S_2C_4H_3)]S_2[Fe(CO)_3]$ (15)	58
		2.5.3.1 I.R.spectra	58
		2.5.3.2 NMR spectra	58
		2.5.3.3 Molecular structures	58
2.6	Electr	rochemical Studies	61
2.7	Concl	usion	66

CHAPTER III EXPERIMENTAL

3.1	Genera	al Procedures	
	3.1.1	Physical Measurements	67
	3.1.2	Solvents and reagents	68
3.2	Prepar	ation of starting complexes	
	3.2.1	Preparation of Dicyclopentadienylhexacarbonyldichromium and Dicyclopentadienylhexacarbonyldimolybdenum, [CpM(CO) ₃] ₂ [M=Cr(1), Mo(2)]	68
	3.2.2	Preparation of Dicyclopentadienylhexacarbonyldichromium, $[CpCr(CO)_2]_2$	69
	3.2.3	Preparation of Dicyclopentadienylhexacarbonyldimolybdenum, [CpMo(CO) ₂] ₂	69
	3.2.4	Preparation of Diiron Enneacarbonyl, Fe ₂ (CO) ₉	70
3.3	Reacti	on of $[CpCr(CO)_3]_2$ (1) with Dicyclohexyl Disulfide	
	3.3.1	At 60°C	70
	3.3.2	Thermolysis reaction	
		(i) Thermolysis of $[CpCr(SC_6H_{11})]_2S$ (6)	71

	3.3.3	Reactivity studies of $[CpCr(CO)_2]_2$ (2) with Dicyclohexyl Disulfide	71
	3.3.4	Reactivity studies of $[CpCr(CO)_2]_2 S(5)$ with Dicyclohexyl Disulfide	72
3.4	React	ion of $[CpMo(CO)_2]_2(4)$ with Dicyclohexyl Disulfide	
	3.4.1	At 70°C	72
	3.4.2	At 110 °C	74
	3.4.3	Thermolysis reactions	
		(i) trans-anti $[CpMo(CO)(SC_6H_{11})]_2$ (8b)	76
		(ii) $[Cp_2Mo_2(CO)(O)(SC_6H_{11})_2]$ (9)	76
		(iii) $[Cp_3Mo_3(CO)_4(\mu_3-O)(SC_6H_{11})]$ (10)	76
3.5	React	ion of $[CpCr(CO)_3]_2(1)$ with Thienyl Disulfide	
	3.5.1	At room temperature	77
	3.5.2	At 60°C	77
	3.5.3	Thermolysis reactions	
		(i) $[CpCr(S_2C_4H_3)]_2S$ (12)	78
	3.5.4	Reactivity studies of $[CpCr(CO)_2]_2(2)$ with Thienyl Disulfide	78
	3.5.5	Reactivity studies of $[CpCr(CO)_2]_2 S(5)$ with Thienyl Disulfide	78
3.6	React	ion of $[CpMo(CO)_2]_2$ (4) with Thienyl Disulfide	
	3.6.1	At 70 °C	80
	3.6.2	At 110 °C	81
	3.6.3	Thermolysis reactions	
		(i) $trans-anti [CpMo(CO)(C_4H_3S_2)]_2 (13b)$	82
		((ii) $[CpMo(O)(C_4H_3S_2)]_2O$ (14)	83
3.7	Forma [CpCi	ation of specific transition metal carbonyl fragments adduct of $r(S_2C_4H_3)]_2S$	
	3.7.1	Reaction of $[CpCr(S_2C_4H_3)]_2S(12)$ with 2 mole equivalent of $Fe_2(CO)_9$ at room temperature	84

3.8.1	Structure determination of $[CpCr(SC_6H_{11})]_2S$ (6) and $[CpCr(S_2C_4H_3)]_2S$ (12)	85
3.8.2	$ \begin{array}{l} Structure \ determination \ of \ [CpMo(CO)(SC_6H_{11})]_2 \ (\textbf{8b}) \ , \\ [(CpMoSC_6H_{11})_2CO(O)] \ (\textbf{9}) \ and \ [Cp_3Mo_3(CO)_4(O)(SC_6H_{11})] \ (\textbf{10}) \end{array} $	86
3.8.3	Structure determination of $[CpMo(CO)(C_4H_3S_2)]_2$ (13) and $[CpMo(O)(C_4H_3S_2)]_2O$ (14)	86
3.8.4	Structure determination of $[Cp_2Cr_2(S_2C_4H_3)]S_2[Fe(CO)_3]$ (15)	87
REFERENCES		96
APPENDIX	[.	100

LIST OF FIGURES

Figure 1. Molecular structure of [CpMo(CO) ₂ (SPh)] ₂	13
Figure 2. Molecular structure of $[CpMo(CO)(\mu-SBu^t)]_2$	14
Figure 3. Molecular structure of $[CpMo(CO)_2(\mu-SePh)]_2$	15
Figure 4. Molecular structure of $[CpMo(\mu-Se)(\mu-SePh)]$	15
Figure 5. Molecular structure of <i>trans/anti</i> - $[(\eta^5-MeCOC_5H_4)Mo(CO)(\mu-SPh)]_2$	17
Figure 6. Molecular structure of <i>trans/syn</i> -[$(\eta^5$ -MeCOC ₅ H ₄)Mo(CO)(μ -SPh)] ₂	18
Figure 7. Molecular structure of $[CpCr(SC_6H_{11})]_2S(6)$	26
Figure 8. Molecular structure of <i>trans-anti</i> $[CpMo(CO)(SC_6H_{11})]_2$ (8b)	36
Figure 9. Molecular structure of $[Cp_2Mo_2(CO)(O)(SC_6H_{11})_2]$ (9)	38
Figure 10. Molecular structure of $[Cp_3Mo_3(CO)_4(\mu_3-O)(SC_6H_{11})]$ (10)	39
Figure 11. Molecular structure of $[CpCr(S_2C_4H_3)]_2S$ (12)	46
Figure 12. Molecular structure of $[CpMo(CO)(C_4H_3S_2)]_2$ (13b)	54
Figure 13. Molecular structure of $[CpMo(O)(C_4H_3S_2)]_2O$ (14)	55
Figure 14. Molecular structure of $[Cp_2Cr_2(S_2C_4H_3)]S_2[Fe(CO)_3]$ (15)	58
Figure 15. Cyclic voltammograms of 0.5mM substrates recorded at Pt electrode in CH ₃ CN with 0.25 M Bu ₄ NPF ₆ at a scan rate of 100 mV s ⁻¹ ; (a) 6 , (b) 12	62
 Figure 16. Cyclic voltammograms of 0.5mM substrates recorded at Pt electrode in CH₃CN with 0.25 M Bu₄NPF₆ at a scan rate of 100 mV s⁻¹; (c) 8a, (d) 8b, (e) 9, (f) 10 	63

Figure 17. Cyclic voltammograms of 0.5mM substrates recorded at Pt electrode in...65 CH_3CN with 0.25 M Bu₄NPF₆ at a scan rate of 100 mV s⁻¹; (g) **13a**, (h) **13b**

LIST OF TABLES

Table 1. Electrospray ionization mass spectrum of $[CpCr(SC_6H_{11})]_2S$ (6)	26
Table 2. Bond lengths [Å] and angles [°] for $[CpCr(SC_6H_{11})]_2S$ (6)	27
Table 3. Electrospray ionization mass spectrum of $[CpMo(CO)(SC_6H_{11})]_2$ (8b)	34
Table 4. Electrospray ionization mass spectrum of $[Cp_2Mo_2(CO)(O)(SC_6H_{11})_2]$ (9))35
Table 5. Electrospray ionization mass spectrum of [Cp ₃ Mo ₃ (CO) ₄ (O)(SC ₆ H ₁₁)] (1	0) 35
Table 6. Bond lengths [Å] and angles [°] for $[CpMo(CO)(SC_6H_{11})]_2$ (8b)	37
Table 7. Bond lengths [Å] and angles [°] for $[Cp_2Mo_2(CO)(O)(SC_6H_{11})_2]$ (9)	39
Table 8. Bond lengths [Å] and angles [°] for $[Cp_3Mo_3(CO)_4(\mu_3-O)(SC_6H_{11})]$ (10)	40
Table 9. Electrospray ionization mass spectrum of $[CpCr(S_2C_4H_3)]_2S$ (12)	46
Table 10. Bond lengths [Å] and angles [°] for $[CpCr(S_2C_4H_3)]_2S$ (12)	47
Table 11. Electrospray ionization mass spectrum of $[CpMo(CO)(C_4H_3S_2)]_2$ (13b)	53
Table 12. Electrospray ionization mass spectrum of $[CpMo(O)(C_4H_3S_2)]_2O(14)$	54
Table 13. Bond lengths [Å] and angles [°] for $[CpMo(CO)(C_4H_3S_2)]_2(13b)$	55
Table 14. Bond lengths [Å] and angles [°] for $[CpMo(O)(C_4H_3S_2)]_2O$ (14)	56
Table 15. Bond lengths [Å] and angles [°] for $[Cp_2Cr_2(S_2C_4H_3)]S_2[Fe(CO)_3]$ (15)	59
Table 16. Cyclic Voltammetric Data Obtained using a Scan Rate of 0.1 Vs ⁻¹ at Pt Electrodes in CH ₃ CN with 0.2 M Bu ₄ NPF ₆ as the Supporting Electrolyt	61 e
Table 17. Crystal data and processing parameters of $[CpCr(SC_6H_{11})]_2S$ (6)	88
Table 18. Crystal data and processing parameters of $[CpCr(S_2C_4H_3)]_2S$ (12)	89
Table 19. Crystal data and processing parameters of $[CpMo(CO)(SC_6H_{11})]_2$ (8b)	90
Table 20. Crystal data and structure refinement for $[(CpMoSC_6H_{11})_2CO(O)]$ (9)	91
Table 21. Crystal data and structure refinement for $[Cp_3Mo_3(CO)_4(O)(SC_6H_{11})]$ (3)	10) 92
Table 22. Crystal data and structure refinement for $[CpMo(CO)(C_4H_3S_2)]_2(13b)$	93

Table 23. Crystal data and structure refinement for $[CpMo(O)(C_4H_3S_2)]_2O(14)$...94

Table 24. Crystal data and structure refinement for $[Cp_2Cr_2(S_2C_4H_3)]S_2[Fe(CO)_3]$ (15) $\dots 95$

LIST OF ABBREVIATIONS

- e Electron
- σ Sigma
- π Pi
- δ ΡΡΜ
- Cp Cyclopentadienyl
- C₆D₆ Deuterated benzene-d₆
- Eqn Equation
- ESI Electrospray ionization
- h Hour
- I.R. Infrared spectroscopy
- LCMS Liquid chromatography mass spectrometry
- THF Tetrahydrofuran
- TLC Thin layer chromatography