ABSTRACT

Panus giganteus, a culinary and medicinal mushroom consumed by selected indigenous communities in Malaysia is currently being considered for large scale cultivation. This study was performed to investigate the medicinal potential of *P*. *giganteus* fruiting bodies and wheat grains fermented by *P*. *giganteus* including antioxidant, genoprotective and hepatoprotective properties.

Ethanol extracts of *P. giganteus* fruiting bodies, wheat grains fermented by *P. giganteus* and unfermented wheat grains exhibited moderate antioxidant properties by virtue of DPPH free radical scavenging activity, reducing power, antioxidant capacity and inhibition of lipid peroxidation. The extracts also contained moderate amounts of phenolic compounds. Fruiting bodies were more potent than fermented and unfermented wheat grains in protecting DNA of peripheral blood mononuclear cell (PBMC) against hydrogen-peroxide (H₂O₂)-induced damage. However, all the extracts had comparable activities to repair DNA damaged by H_2O_2 .

Hepatoprotection studies indicated that *P. giganteus* fruiting bodies were able to prevent and treat liver injury induced by thioacetamide (TAA). Administration of *P. giganteus* lowered the elevated liver body weight ratio, also restored the levels of serum liver biomarkers and oxidative stress parameters comparable to the standard drug silymarin. Gross necropsy and histopathological examination further confirmed the hepatoprotective effects of *P. giganteus*.

This is the first report on the medicinal properties of locally grown *P. giganteus*. Overall, consumption of *P. giganteus* fruiting bodies or wheat grains fermented by *P. giganteus* have genoprotective and hepatoprotective effects against injury induced by oxidative stress.

ABSTRAK

Panus giganteus merupakan cendawan yang digunakan dalam masakan dan untuk tujuan perubatan. Ia digunakan oleh masyarakat asli di Malaysia dan sedang dipertimbangkan untuk penanaman secara besar-besaran. Kajian ini telah dijalankan untuk mengkaji nilai-nilai perubatan *P. giganteus* termasuk antioksidan, potensi untuk melindungi DNA dan hati.

Ekstrak etanol dari cendawan *P. giganteus*, bijirin gandum yang ditapaikan oleh *P. giganteus* dan bijirin gandum yang tidak ditapaikan mempunyai nilai antioksidan yang sederhana. Mereka berupaya untuk menghapuskan radikal bebas DPPH, mempunyai kuasa penurunan, menunjukkan kapasiti pengoksidaan serta dapat merencatkan oxidasi lipid. Semua ekstrak juga mempunyai jumlah sebatian phenol yang sederhana. Ekstrak etanol dari cendawan lebih berpotensi daripada ekstrak lain dalam perlindungan DNA. Walaubagaimanapun, semua ekstrak adalah setanding dalam pemulihan DNA selepas dicederakan oleh H₂O₂.

Panus giganteus juga menunjukkan keupayaan untuk mencegah dan merawat kecederaan hati yang diinduksikan oleh thioacetamide (TAA). Penggunaan *P. giganteus* bukan sahaja menurunkan nisbah berat badan dengan hati, malah ia memulihkan tahap penanda biologi hati di serum dan parameter tekanan oksidasi ke paras yang setanding dengan silymarin. Ini seterusnya disahkan oleh ujian nekropsi kasar dan pemeriksaan histopatologikal.

Laporan ini merupakan kajian pertama ke atas nilai-nilai perubatan *P. giganteus* yang ditanam di Malaysia. Secara keseluruhannya, penggunaan cendawan *P. giganteus* atau bijirin gandum yang ditapai oleh *P. giganteus* berpotensi untuk melindungi DNA dan hati daripada kecederaan yang diinduksi oleh tekanan oksidasi.

ACKNOWLEDGEMENTS

I would like to express my utmost gratefulness and gratitude to my supervisors, Professor Dr. Vikineswary Sabaratnam, Professor Dr. Mahmood Ameen Abdulla and Associate Professor Dr. Chua Kek Heng for their inspirational suggestions, invaluable guidance, giving me motivations throughout my research.

I gratefully acknowledged Professor Dr. Umah Rani Kuppusamy of the Faculty of Medicine for her excellent intellectual support, stimulating ideas and generosity. Further, great appreciations go to Gowriette Kanaga of Biochemistry Laboratory, Faculty of Medicine and Pouya Hassandarvish of Immunology Laboratory, Faculty of Medicine for their crucial indispensable aids and knowledge support. I am glad to work with them.

Not forget to thank Professor Wen Hua-an from Key Laboratory of Systematic Mycology and Lichenology, Institute of Microbiology Chinese Academy of Sciences, China, for identification of the species and NAS Agrofarm Sdn. Bhd. for the mushroom samples. Their support truly helps the progression and smoothness of my research. The co-operation is much indeed appreciated.

I would also like to thank all the lab members of Mushroom Research Centre and Mycology and Plant Pathology Laboratory at Institute of Postgraduate Studies for their assistance and moral support. Special thanks to Madam Chang May Hing who continuously provides me technical assistance and Tan Wee Cheat for teaching me method of comet assay and giving me good advice to my research.

vi

Last but not least, I am forever indebted to my parents Mr. Wong Leong Chow and Madam Lee Yen Fen and other family members for their understanding, care and encouragements to me.

Thank you.

Wong Wei Lun

CONTENTS

			PAGE	
ABS	TRACT	·	ii	
ABS	TRAK		iv	
ACK	NOWL	EDGEMENTS	vi	
CON	TENTS	5	viii	
LIST	OF FI	GURES	xiii	
LIST	T OF TA	ABLES	xiv	
LIST	T OF PL	ATES	xv	
LIST	T OF SY	MBOLS AND ABBREVIATIONS	xvi	
	CHAPTER ONE: INTRODUCTION1Objectives5			
СНА	PTER	FWO: LITERATURE REVIEW	6	
2.1	2.1 Mushroom			
2.2	Panus	s giganteus (Berk.) Corner	9	
2.3	Antio	xidant	12	
	2.3.1	Free radicals and oxidative damage	12	
	2.3.2	Synthetic antioxidants	13	
	2.3.3	Mushroom as source of antioxidants	14	
	2.3.4	In vitro antioxidant assays	15	
2.4	Genop	protection	17	
	2.4.1	DNA damage and mushroom as genoprotective agent	17	
	2.4.2	Comet assay	18	

2.5	Liver		21
	2.5.1	Liver diseases	21
	2.5.2	Treatment of liver diseases	24
	2.5.3	Mushroom as hepatoprotective agent	27
CHAI	PTER 1	FHREE: MATERIALS AND METHODS	29
3.1	Fungu	IS	29
3.2	Mush	room	29
3.3	Solid	substrate fermentation	29
3.4	Nutrit	ional composition	30
3.5	Ethan	ol extraction	30
3.6	Asses	sment of antioxidant properties and total phenolic content	31
	3.6.1	Chemicals	31
	3.6.2	Scavenging effects on 1,1-diphenyl-2-picrylhydrazyl (DPPH)	31
	3.6.3	Ferric reducing antioxidant power (FRAP)	32
	3.6.4	Trolox equivalent antioxidant capacity (TEAC)	32
	3.6.5	Inhibition of lipid peroxidation	33
	3.6.6	Total phenolic content	33
3.7	Genop	protection studies	34
	3.7.1	Chemicals	34
	3.7.2	Isolation of peripheral blood mononuclear cell (PBMC)	35
	3.7.3	Quantification of peripheral blood mononuclear cell (PBMC)	35
	3.7.4	EC ₅₀ determination of genotoxin H ₂ O ₂	36
	3.7.5	Effects of ethanol extracts to prevent DNA damage in PBMC	37
		induced by H ₂ 0 ₂	
	3.7.6	Effects of ethanol extracts to repair DNA of PBMC after	39
		H ₂ O ₂ - induced damage	

	3.7.7	Slides preparation	40
	3.7.8	Electrophoresis	42
	3.7.9	Evaluation of DNA damage	43
3.8	Comp	arison of antioxidant and genoprotective activities between the	43
	extrac	ets	
3.9	Anima	al studies	44
	3.9.1	Mushroom samples and chemicals	44
	3.9.2	Experimental animals	44
	3.9.3	Acute toxicity assay	45
	3.9.4	Effects of <i>P. giganteus</i> in the prevention of TAA-induced	46
		hepatotoxicity in rats	
	3.9.5	Effects of <i>P. giganteus</i> in the treatment of TAA-induced	47
		hepatotoxicity in rats	
	3.9.6	Assessment of biochemical parameters	49
	3.9.7	Gross necropsy and histopathological examination	50
3.10	Statist	ical analysis	50
CHA	PTER I	FOUR: RESULTS AND DISCUSSION	51
4.1	Nutrit	ional composition	51
4.2	Extrac	ction yield	54
4.3	Assess	sment of antioxidant properties and total phenolic content	55
	4.3.1	Scavenging effects on 1,1-diphenyl-2-picrylhydrazyl (DPPH)	55
	4.3.2	Ferric reducing antioxidant power (FRAP)	58
	4.3.3	Trolox equivalents antioxidant capacity (TEAC)	58
	4.3.4	Inhibition of lipid peroxidation	59
	4.3.5	Total phenolic content	59

4.4	Genop	protection	studies	61
	4.4.1	EC ₅₀ de	termination of genotoxin H ₂ O ₂	61
	4.4.2	Effects	of ethanol extracts to prevent DNA damage in PBMC	63
		induced	by H ₂ 0 ₂	
	4.4.3	Effects	of ethanol extracts to repair DNA of PBMC after	66
		H ₂ O ₂ -ir	nduced damage	
4.5	Anim	al Studies		68
	4.5.1	Acute to	exicity assay	68
	4.5.2	Effects of	of P. giganteus in the prevention of TAA-induced	72
		liver inj	ury	
		4.5.2.1	Effects of different treatments on body and	72
			liver weights of experimental rats	
		4.5.2.2	Effects of different treatments on biochemical	73
			parameters related to hepatoprotection	
		4.5.2.3	Gross necropsy and histopathological examination	76
	4.5.3	Effects of	of <i>P. giganteus</i> in the treatment of TAA-induced	80
		liver inj	ury	
		4.5.3.1	Effects of different treatments on body and	80
			liver weights of experimental rats	
		4.5.3.2	Effects of different treatments on biochemical	81
			parameters related to treatment of TAA-induced	
			liver injury	
		4.5.3.3	Gross necropsy and histopathological examination	84
СНА	PTER	FIVE: G	ENERAL DISCUSSION,	87
CHE			ECOMMENDATIONS FOR FUTURE STUDIES	07
		A		

AND CONCLUSIONS

REFERENCES

APPENDIX		112
Appendix A	Analytical techniques	112
Appendix B	Media, buffer and positive control	122
Appendix C	Data and statistical tables	123

92

LIST OF FIGURES

Figures		Page
3.1	The process flow for solid substrate fermentation	30
3.2	The process flow for comet assay	34
3.3	The process flow for the isolation of peripheral blood mononuclear cell (PBMC)	36
3.4	The process flow for the determination of EC_{50}	37
3.5	Schematic diagram of procedures to study the effects of ethanol extracts in prevention of DNA damage of PBMC induced by H_2O_2	38
3.6	Schematic diagram of procedures to study the effects of ethanol extracts in repair of DNA damage of PBMC induced by H_2O_2	39- 40
3.7	The process flow for the slides preparation of comet assay	41
3.8	The process flow for the electrophoresis of comet assay	42
3.9	Experimental design of acute toxicity assay	45
3.10	Experimental design to investigate the effects of <i>P. giganteus</i> in the prevention of TAA-induced hepatotoxicity in rats	47
3.11	Experimental design to investigate the effects of <i>P. giganteus</i> in the treatment of TAA-induced hepatotoxicity in rats	49
4.1	DPPH scavenging activities of ethanol extracts of <i>P. giganteus</i> fruiting bodies, fermented and unfermented wheat grains	57
4.2	Percentage of tail DNA of PBMC (%) exposed to various concentrations of H_2O_2	62
4.3	Percentages of tail DNA of PBMC (%) treated with various concentrations of extracts in prevention of DNA damage of PBMC induced by H_2O_2	64
4.4	Percentages of tail DNA of PBMC (%) treated with various concentrations of extracts in repair of DNA damage of PBMC induced by H_2O_2	67

LIST OF TABLES

Tables		Page
3.1	Treatments of the rats in different groups during the two-month study	46
3.2	Treatments of the rats in different groups during the three-month study	48
4.1	Nutritional composition of <i>P. giganteus</i> fruiting bodies, fermented and unfermented wheat grains	52
4.2	Fat composition of <i>P. giganteus</i> fruiting bodies, fermented and unfermented wheat grains	52
4.3	Mineral composition of <i>P. giganteus</i> fruiting bodies, fermented and unfermented wheat grains	52
4.4	Antioxidant properties of various ethanol extracts	56
4.5	Effects of <i>P.giganteus</i> on haematological parameters of female rats in acute toxicity assay	69
4.6	Effects of <i>P.giganteus</i> on haematological parameters of male rats in acute toxicity assay	69
4.7	Effects of <i>P.giganteus</i> on liver function parameters of female rats in acute toxicity assay	69
4.8	Effects of <i>P.giganteus</i> on liver function parameters of male rats in acute toxicity assay	70
4.9	Effects of <i>P.giganteus</i> on renal function parameters of female rats in acute toxicity assay	70
4.10	Effects of <i>P.giganteus</i> on renal function parameters of male rats in acute toxicity assay	70
4.11	Effects of different treatments on body and liver weights of experimental rats in the hepatotoxicity prevention study	73
4.12	Effects of different treatments on serum liver biomarkers of experimental rats in the hepatotoxicity prevention study	74
4.13	Effects of different treatments on serum MDA and urinary 8-OH-dG content of experimental rat in the hepatotoxicity prevention study	74
4.14	Effects of different treatments on body and liver weights of experimental rats in the hepatotoxicity treatment study	80
4.15	Effects of different treatments on serum liver biomarkers of experimental rats in the hepatotoxicity treatment study	82

xiv

4.16 Effects of different treatments on serum MDA and urinary 8-OH-dG 82 content of experimental rats in the hepatotoxicity treatment study

LIST OF PLATES

Plates		Page
4.1	Representative comet images showing cell damage induced by H_2O_2	62
4.2	Representative comet images showing various degrees of damages in the study of the genoprotective effects of extracts against H_2O_2 -induced DNA damage	64
4.3	Representative comet images showing various degrees of damages in the study of the effects of extracts to repair DNA after H_2O_2 -induced DNA damage	67
4.4	The photomicrography of liver and kidney sections of rats administered with <i>P. giganteus</i> at doses of 2g/kg, 5g/kg and dH ₂ O	71
4.5	The gross liver morphology (A1-F1) and photomicrography of liver sections (A2-F2) of rats in the prevention of TAA-induced hepatotoxicity in rats	77
4.6	The gross liver morphology (A1-F1) and photomicrography (A2-F2) of the rats in the treatment of TAA-induced hepatotoxicity in rats	85

A _{blank}	Absorbance of blank
A _{sample}	Absorbance of sample
-	-
ABTS ^{•*}	2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid)
ANOVA	Analysis of variance
AOAC	Association of Analytical Communities
ВНТ	Butylated hydroxytoluene
C	Degree Celcius
$C_2H_3NaO_2\bullet 3H_2O$	Sodium acetate trihydrate salt
cm	Centimetre
dH ₂ O	Distilled water
DMSO	Dimethyl sulfoxide
DPPH	1,1-diphenyl-2-picrylhydrazyl
EC ₅₀	50% effective concentration
EtBr	Ethidium bromide
Fe ²⁺	Ferrous
Fe ³⁺	Ferric
FeCl ₃ .6H ₂ O	Ferric trichloride hexahydrate
FeSO ₄ .7H ₂ O	Ferrous sulfate heptahydrate
FRAP	Ferric reducing antioxidant power
g	Gram
GAEs	Gallic acid equivalents
GYMP	Glucose-Yeast-Malt-Peptone
HCl	Hydrochloric acid
H ₂ O ₂	Hydrogen peroxide

Tris(hydroxymethyl)aminomethane

(HOCH₂)₃CNH₂

LIST OF SYMBOLS AND ABBREVIATIONS

IC ₅₀	Concentration to scavenge 50% free radicals
i.p	Intraperitoneal injection
KH ₂ PO ₄	Potassium dihydrogen phosphate
K ₂ HPO ₄	Dipotassium phosphate
$K_2O_8S_2$	Potasium persulfate
mA	Milliampere
MDA	Malondialdehyde
mg	Milligram
mg/kg	Milligram per kilogram
mg/ml	Milligram per millilitre
mg of GAEs/g	Milligram of gallic acid equivalents per gram
MgSO ₄ .7H ₂ O	Magnesium sulfate heptahydrate
min	Minute
ml	Millilitre
mM	Millimolar
NaCl	Sodium chloride
Na ₂ CO ₃	Sodium carbonate
Na ₂ EDTA.2H ₂ O	disodium EDTA titriplex
NaHPO ₄	Sodium hydrogen phosphate
NaOH	Sodium hydroxide
NH ₄ Cl	Ammonium chloride
nm	Nanometre
O2	Superoxide radical
PBS	Phosphate buffered saline
PDA	Potato dextrose agar
ро	Oral feeding

Pound per square inch
R-squared
Recommended daily allowance
Rotation per minute
sodium dodecyl sulfate
Standard error of mean
Thioacetamide
Thiobarbituric acid
Thiobarbituric Acid Reactive Substances
Trichloroacetic acid
1,1,3,3,-tetraethoxypropane
2,4,6-tripyridyl-s-triazine
6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid
Micro
Microgram
Microgram per millilitre
Microlitre
Micromolar
Micromole of ferric reducing antioxidant power equivalents per gram
Voltage
Volume per volume
Weight per volume
Plus-minus
8-hydroxy-2'-deoxyguanosine
Percent