ECOLOGY OF EGRETS (ARDEIDAE) AT THE PALM OIL MILL EFFLUENT PONDS IN CAREY ISLAND, SELANGOR, PENINSULAR MALAYSIA

ABDOUL BASET HASSEN ABOUSHIBA

THESIS SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILIOSPHY

INSTITUE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR 2013

ACKNOWLEDGEMENTS

I wish to express my gratitude and appreciation to my supervisors; Associate Prof. Dr. Rosli Ramli and Prof. Dato' Dr. Mohd Sofian Azirun for their supervision, assistance, encouragement, and valuable suggestions throughout the course of this work, and also for correcting and improving the previous drafts of this dissertation. I also would like to thank Head of Institute of Biological Sciences, Prof. Dr. Rosli Hashim for his great support and encouragement.

I would like to thank Sime Darby Plantation Berhad for allowing me to conduct this study in their estate. Field assistance from the staffs of Sime Darby Berhad and Institute of Biological Sciences is highly appreciated. This study is funded by research grants from Sime Darby Plantation Berhad and University of Malaya.

For making my four years stay at Kuala Lumpur become more alive and enjoyable, I would like to express many thanks to my friends. I also owe many thanks to my family for their continuous support and patience and there is nothing I can say except pray to God to bless you all.

DEDICATION

Specially dedicated to my beloved parents, brothers, sisters, and also to my wife and kids (Wafaa, Amani, Hassen and Saif Aleslam)

ABSTRACT

Egrets (Aves: Ardeidae) are gregarious and cosmopolitan wading birds, widely distributed throughout the world and associated with wetland habitat particularly with shallow water covered with short vegetation or without vegetation for foraging. A wetland habitats are facing overwhelming pressure due to anthropogenic activities such as urbanization and conversion into agricultural fields which causes habitat loss and degradation that ultimately affects the population of different egret species. Egrets employ different foraging behaviours to exploit the wide range of prey items for their survival and reproduction. Study on egrets' relative abundance, foraging strategies, food diversity, and its relationships to the quality of water of various Palm Oil Mill Effluent (POME) ponds in Carey Island, Selangor, Peninsular Malaysia was conducted from January 2008 to December 2008. Egret's abundance was recorded using binoculars and a digital video camera, availability of their food resources was sampled by scope net, and water quality parameters were measured using YSI hydro lab. A total of 14,077 sightings of egrets was recorded. These egrets belong to five species, i.e. Little Egret (Egretta garzetta), Great Egret (Casmerodius albus), Cattle Egret (Bubulcus cormorandus), Intermediate Egret (Mesophoyx intermedia) and Chinese Egret (Egretta eulophotes). The ANOVA and Tukey's test showed that the relative abundance of Cattle, Intermediate and Chinese Egrets were significantly different from Little and Great Egrets ($F_{4, 55} = 17.58$, P < 0.05). Results also indicated that Little Egrets had the highest probing activity (52 probes/minute) while Great Egrets had the lowest probing activity (5 probes/minute). It was observed that egrets employed different foraging strategies in obtaining aquatic invertebrates. Only Little Egret employs foot shuffling technique and only Cattle Egret glean the prey hidden

iv

under soft mud. A total of 119,126 invertebrate larvae (belong to twelve species) were sampled by scoop nets. Larvae were sampled from POME ponds No. 3 (51.40%) and No. 1 (48.60%) but none were recorded from ponds two and four. Mosquito (Aedes sp.) larva was abundantly recorded (40.71%) while water scavenger beetles (Hydrophilus sp.) were the rarest (2.52%). The highest invertebrate species diversity was recorded in POME pond No. 1 (Shannon's $N_1 = 2.21$) and POME pond No. 3 (N_1 = 2.17) while the highest species evenness was recorded in June 2009 (Pielou's E = 0.89 in pond No. 1 and E = 0.87 in pond No. 3). The highest relative abundance of egrets was recorded in January 2008 (14.00%) and the lowest was recorded in August 2008 (3.36%). It was also found that egrets were active (22.33%) during the morning (from 0900 to 1000 hours) and less active (5.72%) during mid-day (1300 to 1400 hours). Relative abundance of egrets in POME pond No. 2 and No. 4 was significantly different (F₃, $_{16} = 5.70$, P < 0.05). The highest egret's species diversity $(N_1 = 3.82)$ and evenness (E = 0.83) were recorded in pond No. 1 but the highest egret's species richness was recorded in pond number three ($R_1 = 0.46$). For water parameters, the highest water temperature $(35.36^{\circ}C)$, conductivity (5685 µs), and turbidity (89.6NTU) were recorded in pond No. 1 in January 2009 while the highest record for the dissolve oxygen (3.73mg/l), pH (8.97), and ammonium concentration (28.05mg/l) were recorded in February 2009. Pearson's Correlation Coefficient (PCC) test revealed that egret species have a weak relationship with water quality parameters, invertebrate abundance and a weak positive relationship between egret foraging activities. Based on the findings of this research, it is concluded that POME ponds one and three are highly important habitats and foraging sites for egrets. Food abundance and distribution are the most important factor in determining the quality of the feeding areas and habitat selection by egrets.

ABSTRAK

Kajian tentang kelimpahan relatif, strategi mencari makanan, kepelbagaian makanan dan hubungan burung bangau (Aves: Ardeidae) terhadap kualiti air di pelbagai kolam buangan kilang minyak sawit (POME) di Pulau Carey, Selangor, Semenanjung Malaysia telah dijalankan dari Januari 2008 hingga Disember 2008. Kelimpahan burung bangau direkodkan dengan menggunakan teropong dan kamera video digital, kewujudan sumber makanan mereka telah disampel dengan menggunakan penyodok jaring dan parameter kualiti air telah diukur menggunakan makmal hidro YSI. Sebanyak 14,077 pemerhatian bangau telah direkodkan. Bangau ini terbahagi kepada lima spesies iaitu Little Egret (*Egretta garzetta*), Great Egret (*Casmerodius albus*), Cattle Egret (Bubulcus cormorandus), Intermediate Egret (Mesophoyx intermedia) dan Egret Cina (Egretta eulophotes). Ujian ANOVA dan Tukey menunjukkan bahawa kelimpahan relatif di antara Cattle Egret, Intermediate Egret dan Egret Cina adalah berbeza secara bererti daripada Little Egret dan Great Egret (F_4 , $_{55} = 17.58$, P <0.05). Dapatan juga menunjukkan bahawa Little Egret mempunyai aktiviti pendugaan tertinggi (52 kali/minit) manakala Great Egret mempunyai aktiviti pendugaan terendah (5 kali/minit). Juga telah diperhatikan bahawa strategi bangau mencari invertebrata akuatik adalah berbeza. Hanya Little Egret menggunakan teknik mengocak kaki dan hanya Cattle Egret mengutip mangsa tersembunyi di bawah lumpur lembut. Sejumlah 119,126 larva invertebrata (tergolong kepada dua belas spesies) telah disampel dengan penyodok jaring. Larva telah disampel dari kolam POME nombor tiga (51.40%) dan nombor satu (48.60%), tetapi tidak direkodkan dari kolam nombor dua dan empat. Larva nyamuk (Aedes sp.) telah direkodkan dengan banyaknya (40.71%) manakala kumbang air pemakan bangkai (Hydrophilus sp.) amat jarang ditemui (2.52%). Jumlah tertinggi kepelbagaian spesies invertebrata telah direkodkan di kolam POME satu (Shannon $N_1 = 2.21$) dan kolam POME tiga ($N_1 =$ 2.17) manakala kesamaan spesies tertinggi telah direkodkan pada Jun 2009 (Pielou E = 0.89 dalam kolam satu dan E = 0.87 dalam kolam tiga). Jumlah kelimpahan relatif tertinggi bangau dicatatkan pada Januari 2008 (14.00%) dan jumlah terendah direkodkan pada Ogos 2008 (3.36%). Juga didapati bangau aktif (22.33%) pada waktu pagi (jam 09.00 - 10.00) dan kurang aktif (5.72%) pada waktu tengah hari (jam 13.00 - 14.00). Kelimpahan relatif bangau di kolam POME dua dan empat adalah berbeza secara bererti (F₃, $_{16}$ = 5.70, P <0.05). Kepelbagaian tertinggi spesies bangau $(N_1 = 3.82)$ dan kesamaan (E = 0.83) telah direkodkan di kolam satu tetapi kekayaan spesies bangau tertinggi dicatatkan di kolam tiga ($R_1 = 0.46$). Bagi parameter air, (35.36°C), konduktiviti (5685 µs), dan kekeruhan (89.6°) suhu tertinggi air direkodkan di kolam satu pada Januari 2009 manakala rekod tertinggi bagi kemasinan (2.1%), oksigen terlarut (3.73mg /l), pH (8.97) dan kepekatan ammonium (28.05mg/l) telah direkodkan pada Februari 2009. Ujian Hubungkait Pearson's Correlation Coefficient (PCC) mendedahkan spesies bangau menunjukkan hubungkait lemah dengan parameter kualiti air, kelimpahan invertebrata, dan hubungkait lemah dengan aktiviti pemakanan. Keputusan kajian ini menunjukkan kolam POME merupakan habitat penting dan medan mencari makanan bangau. Kelimpahan dan taburan makanan merupakan factor penting di dalam menentukan kualiti kawasan pemakanan dan pemilihan habitat oleh bangau.

TABLE OF CONTENTS

		Page
DECLARA	ATION	i
ACKNOW	LEDGEMENTS	ii
DEDICAT	ION	iii
ABSTRAC	CT	iv
TABLE O	F CONTENTS	viii
LIST OF T	CABLES	xvii
LIST OF F	IGURES	xvii
LIST OF A	APPENDICES	xxiv
CHAPTER	2	
1 INT	RODUCTION	1
1.1	General Background	1
1.2	Distribution and Habitat Selection by Egrets	1
1.3	Egrets' Diet	2
1.4	Species Descriptions	6
1.4.	1 Great Egret (<i>Casmerodius albus</i>)	6
1.4.2	2 Little Egret (<i>Egretta garzetta</i>)	7
1.4.	3 Intermediate Egret (<i>Mesophoyx intermedia</i>)	8
1.4.4	4 Cattle Egret (<i>Bubulcus cormorandus</i>)	9
1.4.:	5 Chinese Egret (<i>Egretta eulophotes</i>)	11
1.5	Palm Oil Mill Effluent (POME) Ponds	12
1.6	Poblem Statement	15
1.7	Objectives	16

	1.8	Null Hypothesis	17
	1.9	Why Egrets Were Selected For the Ecological Study?	18
	1.10	Research Framework	19
2	EGRET	'S ABUNDANCE AND DIVERSITY	21
	2.1	Introduction	21
	2.2	Objectives	23
	2.3.1	Study Site	24
	2.3.2	Egrets Surveys	29
	2.4.	Data Analysis	31
	2.4.1	Egret Relative Abundance	31
	2.4.2	Analysis of Variance	31
	2.4.3	Tukey's (HSD) Test	33
	2.4.4	Egret Species Diversity	34
	2.5	Results	35
	2.5.1	Species Composition	35
	2.5.2	Hourly Relative Abundance	36
	2.5.3	Monthly and Hourly Relative Abundance of Egrets	39
	2.5.3.1	Monthly and Hourly Relative Abundance of Little Egrets	39
	2.5.3.2	Monthly and Hourly Relative Abundance of Great Egrets	39
	2.5.3.3	Monthly and Hourly Relative Abundance of Cattle Egrets	42
	2.5.3.4	Monthly and Hourly Relative Abundance of Intermediate	44
		Egrets	44
	2.5.3.5	Monthly and Hourly Relative Abundance of Chinese Egrets	44
	2.5.4	Monthly Variation in Egrets Relative Abundance	47

2.5.5	Variation in Egrets Relative Abundance According to Ponds	47
2.5.5.1	Relative Abundance of Little Egret among Four POME	49
	Ponds for Twelve Consecutive Months	
2.5.5.2	Relative Abundance of Great Egret in Four POME Ponds for	51
	Twelve Consecutive Months	
2.5.5.3	Relative Abundance of Cattle Egret at Four POME Ponds for	51
	Twelve Consecutive Months	
2.5.5.4	Relative Abundance of Intermediate Egret at Four POME	54
	Ponds for Twelve Consecutive Months	
2.5.5.5	Relative Abundance of Chinese Egret at Four POME Ponds	54
2.6	Egrets Diversity	57
2.6.1	Egrets Diversity among Four POME ponds	57
2.6.2	Diversity of Little Egret in All Ponds	57
2.6.3	Diversity of Great Egret in All Ponds	60
2.6.4	Diversity of Intermediate Egret in All Ponds	60
2.6.5	Diversity of Cattle Egret in All Ponds	62
2.6.6	Diversity of Chinese Egret in All Ponds	62
2.7	Discussions	65
2.7.1	Species Abundance	65
2.7.2	Species Diversity	68
DIVER	SITY OF AQUATIC INSECTS AS FOOD RESOURCES	70
FOR EC	GRETS THAT UTILIZE POME PONDS	70
3.1	Introduction	70
3.2	Objectives	72

3

3.3	Materials and methods	72
3.3.1	Study Site	72
3.3.2	Sampling Food Resources	72
3.4	Data Analysis	73
3.4.1	Relative Abundance	73
3.4.2	Diversity Indices	75
3.4.3	Testing Significant Difference	75
3.4.4	Correlationship Between Egret and Aquatic Insect Relative	75
	Abundance	
3.5	Results	76
3.5.1	Aquatic Insect Species Composition and Relative	76
	Abundance	
	Mosquito (Aedes sp.) Larvae	77
	Hoverflies (Eristalis sp.)	78
	Water Beetles (Stenolopus sp.)	80
	Water Diving Beetle (Eretes sp.)	81
	Solitary Midges (Thaumalea sp.)	82
	Midge Fly (Chironomus sp.) Larvae	84
	Great Diving Beetles (Dytiscus sp.)	85
	Water Bugs (Sphaerodema sp.)	86
	Watersnipe Fly (Atherix sp.) Larvae	88
	Predaceous Diving Beetle (Cybister sp.)	89
	Horsefly (Tabanus sp.)	90
	Water Scavenger Beetle (Hydrophilus sp.)	91

3.5.2	Aquatic Insects Relative Abundance	92
3.5.3	Monthly Relative Abundance of Aquatic Insects in POME	94
	Pond Number One	
3.5.4	Monthly Relative Abundance of Aquatic Insect in POME	97
	Pond Number Three	
3.5.5	Diversity Indices of Aquatic Insects	100
3.5.5.1	Diversity of Aquatic Insects in POME Pond Number One	100
2550	Diversity of I Aquatic Insects in POME Pond Number	100
3.5.5.2	Three	100
3.5.6.1	Correlation between Little Egret's and Aquatic Insect's	102
	Relative Abundance in POME Pond Number One	
3.5.6.2	Correlation between Little Egret's Aquatic Insect's	103
	Relative Abundance in POME Pond Number Three	
3.5.6.3	Correlation between Great Egret's and Aquatic Insect's	104
	Relative Abundance in POME Pond Number One	
3.5.6.4	Correlation between Great Egret's and Aquatic Insect's	105
	Relative Abundance in POME Pond Number Three	
3.5.6.5	Correlation between Cattle Egret's and Aquatic Insect's	106
	Relative Abundance in POME Pond Number One	
3.5.6.6	Correlation between Cattle Egret's and Invertebrate's	107
	Relative abundance in POME pond number Three	
3.5.6.7	Correlation between Intermediate Egret's and Aquatic	108
	Insect's Relative Abundance in POME Pond Number One	
3.5.6.8	Correlation between Intermediate Egret's and Aquatic	109

Insect's Relative Abundance in POME Pond Number Three

3.5.6.9	Correlation between Chinese Egret's and Aquatic Insect's	110
	Relative Abundance in POME Pond Number One	
3.5.6.10	Correlation between Chinese Egret's and Aquatic Insect's	111
	Relative Abundance in POME Pond Number Three	
3.6	Discussion	112
FORAGI	ING STRATEGY OF EGRETS IN POME POND AREA	115
4.1	Introduction	115
4.2	Objectives	118
4.3	Materials and methods	118
4.3.1	Study Site	118
4.3.2	Observation of Foraging Behaviour	118
4.4	Data analysis	121
4.4.1	Relative Abundance	121
4.4.2	Analysis of Variance	122
4.4.3	Tukey's HSD Test	122
4.4.4	Correlation of Egret Probing and other Foraging Strategies	122
	with Aquatic Invertebrate Relative Abundance in POME	
	ponds	
4.5	Results	122
4.5.1	Probing Per Minutes	123
4.5.2	Other Foraging Strategies Employed by Egrets	126
4.5.3	Correlation of Egret Probing per Minute and Aquatic Insect	128

4

		Relative Abundance in POME pond Number one and pond	
		number three	
	4.5.4	Correlationship of Egret Foraging Strategies and Aquatic	128
		Insect Relative Abundance in POME pond Number one and	
		pond number three	
	4.6	Discussion	129
5	THE QU	JALITY OF WATER OF VARIOUS POME PONDS	136
	5.1	Introduction	136
	5.2	Objectives	141
	5.3	Materials and Methods	142
	5.3.1	Study Site	142
	5.3.2	Measurement of Water Quality Parameters	142
	5.4	Data Analysis	143
	5.4.1	Standard Deviation	143
	5.4.2	Correlation between Egret's Relative Abundance and Water	144
		Quality Parameters	
	5.5	Results	144
	5.5.1	Water Quality Parameters of POME Pond Number One	144
	5.5.2	Water Quality Parameters of POME Pond Number Two	146
	5.5.3	Water Quality Parameters of POME Pond Number Three	146
	5.5.4	Water Quality Parameters of POME Pond Number Four	149
	5.5.5	Mean Water Quality Parameters and Their Standard	149
		Deviation	
	5.6.1	Correlation between Little Egret Relative Abundance and	152

Water Quality Parameters in POME Pond Number One

5.6.2	Correlation between Little Egret Relative Abundance and	152
	Water Quality Parameters in POME Pond Number Three	

- 5.6.3Correlation between Great Egret Relative Abundance and153Water Quality Parameters in POME Pond Number One
- 5.6.4Correlation between Great Egret Relative Abundance and153Water Quality Parameters in POME Pond Number Three
- 5.6.5 Correlation between Cattle Egret Relative Abundance and 154 Water Quality Parameters in POME Pond Number One
- 5.6.6Correlation between Cattle Egret Relative Abundance and154Water Quality Parameters in POME Pond Number Three
- 5.6.7 Correlation between Intermediate Egret Relative
 Abundance and Water Quality Parameters in POME Pond
 Number One
- 5.6.8 Correlation between Intermediate Egret Relative 155
 Abundance and Water Quality Parameters in POME Pond
 Number Three
- 5.6.9 Correlation between Chinese Egret Relative Abundance and 156Water Quality Parameters in POME Pond Number One
- 5.6.10 Correlation between Chinese Egret Relative Abundance and 156Water Quality Parameters in POME Pond Number Three
- 5.6.11 Correlation between Aquatic Insects Relative Abundance 157
 and Water Quality Parameters in POME Pond Number One
 and Three

XV

	5.7 Discussion	157
6	General Discussion	164
	Conclusion	168
	Significance of Research	169
	Benefits of the Study	172
	Recommendations for Future Conservation and Management of POME Ponds of Carey Island, Peninsular Malaysia	173
7	References	174
8	Appendices	211

LIST OF TABLES

		Page
2.1	Comparison of four POME pond characteristics in Carey	25
	Island	
2.2	Bird surveys schedule	30
2.3	Relative abundance of egrets sighted in POME ponds from	36
	January to December, 2008	
2.4	Hourly and monthly relative abundance of all egret's species	37
	sighted at POME ponds in Carey Island	
2.5	Monthly relative abundance of resident and migrant egret's	38
	species sighted at POME ponds in Carey Island	
2.6	Monthly and hourly relative abundance of Little Egret	40
2.7	Monthly and hourly relative abundance of Great Egret	41
2.8	Monthly and hourly relative abundance of Cattle Egret	43
2.9	Monthly and hourly relative abundance of Intermediate	45
	Egret	
2.10	Monthly and hourly relative abundance of Chinese Egret	46
2.11	Monthly variation in egrets relative abundance at Carey	48
	Island	
2.12	Comparison of relative abundance of five egret species	49
	recorded at POME ponds of Carey Island	
2.13	Monthly relative abundance of Little Egret among four	50
	POME ponds of Carey Island in 2008	
2.14	Monthly relative abundance of Great Egret among four	52

POME ponds of Carey Island

2.15	Monthly relative abundance of Cattle Egret utilizing four	53
	POME ponds in Carey Island	
2.16	Monthly relative abundance of Intermediate Egret in four	55
	POME ponds	
2.17	Monthly relative abundance of Chinese Egret at four ponds	56
2.18	Diversity of egrets among four POME ponds in Carey Island	58
2.19	Diversity indices value of Little Egret utilizing four POME	59
	ponds in Carey Island	
2.20	Diversity of Great Egret in all POME ponds of Carey Island	61
2.21	Diversity of Intermediate Egret in all POME ponds of Carey	61
	Island	
2.22	Diversity of Cattle Egret in all POME ponds in Carey Island	63
2.23	Diversity of Chinese Egret in all POME ponds in Carey	64
	Island	
3.1	List of invertebrates species sampled from POME ponds	77
3.2	List of invertebrates species with relative abundance	93
	recorded from all POME ponds	
3.3	Monthly relative abundance of invertebrates recorded in	95
	POME pond number one from January to June 2010	
3.4	Comparison of relative abundance of invertebrates in POME	96
	pond number one at Carey Island, Peninsular Malaysia	
3.5	Monthly relative abundance of invertebrates inhabiting	98
	POME pond number three sampled from January to June	

2010

3.6	Comparison of invertebrates relative abundance in POME	99
	pond number three at Carey Island, Peninsular Malaysia	
3.7	Comparison of invertebrates diversity from January to June	101
	2010 in POME pond number one	
3.8	Comparison of invertebrates diversity from January to June	101
	2010 in POME pond number three	
3.9	Pearson's correlation coefficient between Little Egret	102
	relative abundance and invertebrate relative abundance in	
	POME pond number one	
3.10	Pearson's correlation coefficient between Little Egret	103
	relative abundance and invertebrate relative abundance in	
	POME pond number three	
3.11	Pearson's correlation coefficient between Great Egret	104
	relative abundance and invertebrate relative abundance in	
	POME pond number one	
3.12	Pearson's correlation coefficient between Great Egret	105
	relative abundance and invertebrate relative abundance in	
	POME pond number three	
3.13	Pearson's correlation coefficient between Cattle Egret	106
	relative abundance and invertebrate relative abundance in	
	POME pond number one	
3.14	Pearson's correlation coefficient between Cattle Egret	107
	relative abundance and invertebrate relative abundance in	

POME pond number three

3.15	Pearson's correlation coefficient between Intermediate Egret	108
	relative abundance and invertebrate relative abundance in	
	POME pond number one	
3.16	Pearson's correlation coefficient between Intermediate Egret	109
	relative abundance and invertebrate relative abundance in	
	POME pond number three	
3.17	Pearson's correlation coefficient between Chinese Egret	110
	relative abundance and invertebrate relative abundance in	
	POME pond number one	
3.18	Pearson's correlation coefficient between Chinese Egret	111
	relative abundance and invertebrate relative abundance in	
	POME pond number three	
4.1	Average daily sightings and mean probing activity (in	125
	parenthesis) of Egrets utilizing POME ponds at different	
	hours	
4.2	Comparison of probing activity per minute between five	126
	Egrets species at POME ponds in Carey Island, Selangor	
4.3	Frequency of foraging strategies employed by Egrets species	127
	in POME ponds of Carey Island, Peninsular Malaysia (n =	
	total number of sightings)	
5.1	The value of various water parameters sampled from POME	145
	pond number one in Carey Island	
5.2	The value of various water parameters sampled from POME	147

pond number two in Carey Island

5.3	The values of various water parameters sampled from	148
	POME pond number three in Carey Island	
5.4	The values of various water parameters sampled from	150
	POME pond number four in Carey Island	
5.5	Value of various water parameters sampled from POME	157
	ponds in Carey Island	

LIST OF FIGURES

		Page
1.1	Great Egret (Casmerodius albus)	7
1.2	Little Egret (<i>Egretta garzetta</i>)	8
1.3	Intermediate Egret (Mesophoyx intermedia)	9
1.4	Cattle Egret (Bubulcus cormorandus)	10
1.5	Chinese Egret (Egretta eulophotes)	12
2.1	Location of study site in Carey Island, Selangor, Peninsular	26
	Malaysia	
2.2	Location of POME ponds in Carey Island, Selangor, Peninsular	27
	Malaysia	
2.3	Condition of POME pond number one of Carey Island,	28
	Selangor, Peninsular Malaysia	
2.4	Condition of POME pond number two of Carey Island,	28
	Selangor, Peninsular Malaysia	
2.5	Condition of POME pond number three of Carey Island,	29
	Selangor, Peninsular Malaysia	
2.6	Condition of POME pond number four of Carey Island,	29
	Selangor, Peninsular Malaysia	
3.1	Scoop net and square metal container	74
3.2	Plastic containers that contain water samples of POME pond's	74
3.3	Larvae of Aedes sp.	78
3.4	Hoverfly (Eristalis sp.) larvae	79
3.5	Water beetle (Stenolophus sp.) larvae	81

3.6	Water diving beetle (Eretes sp.)	82
3.7	Solitary midges (Thaumalea sp.)	83
3.8	Midge fly (Chironomus sp.) larvae	85
3.9	Great diving beetles (Dytiscus sp.) larvae	86
3.10	Water bugs (Sphaerodema sp.)	87
3.11	Watersnipe flies (Atherix sp.) larvae	88
3.12	Predaceous Diving Beetle (Cybister sp.)	89
3.13	Housefly (Tabanus sp.) larvae	91
3.14	Water scavenger beetles (Hydrophilus sp.)	92
4.1	A tent was used as a hide during observation sessions	119
5.1	Number of mills, crushes and refineries in Malaysia	137
5.2	Water quality sampling using YSI 6600 Multi Parameters	142
5.3	YSI 6600 Multi Parameters	143

LIST OF APPENDICES

		Page
2.1	List of foraging behaviours employed by members of	211
	family Ardeidae	
3.1	Analysis variance of relative abundance of invertebrates	215
	in POME pond number one at Carey Island, Peninsular	
	Malaysia	
3.2	Analysis variance of relative abundance of invertebrates	215
	in POME pond number three at Carey Island, Peninsular	
	Malaysia	