TABLE OF CONTENTS

		Page
TITI	LE PAGE	i
ORI	GINAL LITERARY WORK DECLARATION	ii
ABS	TRACT	iii
ABS	TRAK	v
ACK	NOWLEDGEMENTS	vii
TAB	LE OF CONTENTS	viii
LIST	T OF FIGURES	xiii
LIST	T OF TABLES	XV
ABB	REVIATIONS	xvii
СНА	PTER ONE: INTRODUCTION AND LITERATURE REVIEW	
1.1	Introduction	1
	1.1.1 Objective of this study	3
1.2 D	Dengue virus (DENVs)	5
	1.2.1 Geographic and Seasonal Distribution	7
	1.2.2 Taxonomy and Classification	9

1.2.3 Morphology of dengue virus	10
1.2.4 Strains of dengue virus	12
1.2.4.1 Structural proteins	14
1.2.4.2 Non-structural proteins	15
1.2.5 Immune Response	17
1.2.6 Prevention and Control of dengue	19
1.2.7 Dengue Virus Challenges	20
1.3 Plant under study	21
1.3.1 Quercus Infectoria	22
1.3.1.1 Distribution and Description	22
1.3.1.2 History	25
1.3.1.3 Chemical Composition	25
1.3.1.4 Action and Medicinal Uses	26
1.4 Natural products evolution	
1.4.1 Ellagic Acid	29
1.4.2 Gallic Acid	30
CHAPTER TWO: MATERIALS AND METHODS	
2.1 Materials	31
2.2 Chemical and Biological Agents	31

2.3 Escherichia coli	32
2.4 Media for Bacterial Cell Growth	32
2.5 Antibiotic and Solution for Bacterial Culture	33
2.6 Reagents and Buffers for SDS-PAGE	34
2.7 Buffers and Reagents for western Blot	37
2.8 Prestained SDS-PAGE Standards Protein Marker	38
2.9 Bradford Reagent for Protein Estimation (Bio-Rad)	38
2.10 Buffers for Protein Purification	38
2.11 Buffer for Protease Assay	39
2.12 Instruments	40
2.13 PHYTOCHEMICAL ANALYSIS WORK	40
2.13.1 Crude Plant Extract	41
2.13.2 Fractionation by Column Chromatography	41
2.13.3 Thin-Layer Chromatography (TLC)	42
2.13.4 High-performance liquid chromatography (HPLC)	42
2.13.5 Nuclear Magnetic Resonance (NMR)	43
2.14 Biological work	43
2.14.1 Transformation of E.coli	43
2.14.2 Expression and Purification of Recombinant Protein	44
2.14.3 Protein Estimation	45
2.14.3.1 Bovine serum albumin (BSA) standard curve	45

2.14.3.2 Protein Estimation Using Bradford Reagent	45
2.15 7-Amino-4-methylcoumarin (AMC) Standard plot for protein assay	46
2.16 One Dimension Sodium Dodecyl Sulphate – Polyacrylamide Gel	
Electrophoresis (SDS PAGE)	46
2.17 Western blot	48
2.18 Preparation of Fluorogenic Peptide Substrate	49
2.19 Expression and Purification of Dengue-2 complex	49
2.20 Determination of Optimum Activity of the Den2 NS2B/NS3 Protease and	
Substrate	50
2.21 Determination of Solvent Effect on Enzyme Activity (Methanol and DMSO)	51
2.22 Inhibition Assays Using Fluorogenic Peptide	51
2.23 Inhibition Assay by Using Tecan Infinite M200 Pro fluorescence	
spectrophotometer	51
2.24 Determination of NS2B/NS3 Protease Biochemical and Kinetic	
Properties	52
2.24.1 Analysis of Kinetics Parameter, K $_{m}$ and V $_{max}$	52
2.24.2 Determination of the Inhibition Constant, K _i	53
2.25 Calculation Methods	53
2.25.1 Calculation of R _f Values	53
2.25.2 Calculation of Inhibition Activity	54
2.26 Cytotoxicity assay	55

CHAPTER THREE: RESULTS

3.1 Expression and purification of DEN-2 complex	56
3.2 Western Blot	59
3.3 Determination of Enzyme Concentration	60
3.4 Determination of 7-amino-4-methylcoumarin (AMC) Released	62
3.5 Determination of Optimum Enzyme Concentration for Assay	64
3.6 Determination of Optimum Substrate Concentration for Assay	66
3.7 Biochemical and Kinetic Parameters of the DEN-2 Protease Complex	66
3.8 Effect of solvents on DEN-2 virus protease complex	68
3.9 Initial screening of <i>Quercus Infectoria</i> aqueous extract and partition fractions	
against DEN-2 NS2B/NS3 Protease complex	70
3.10 Quercus Infectoria	73
3.10.1 Fractionation and purification of Quercus Infectoria	73
3.10.2 Quercus Infectoria fractions activity towards NS2B/NS3 Protease	75
3.10.3 High-Performance Liquid Chromatography of Active Fractions	75
3.10.4 Nuclear Magnetic Resonance (NMR) of Purified compounds	83
3.10.5 Inhibition Assay of Purified compounds of Quercus Infectoria aqueo	ous
extract on DEN-2 NS2B/NS3 Protease Complexes	89
3.11 Kinetic Analysis to Determine Type of Inhibition	91
3.12 Purified compounds of <i>Quercus Infectoria</i>	91

3.13 Cytotoxicity assay	96
CHAPTER FOUR: DISCUSSION	
4.1 Discussion	100
CHAPTER FIVE:	
5.1 Conclusion	112

LIST OF FIGURES

REFERENCES

Figure 1.1 Mosquito Vectors of Dengue	1
Figure 1.2 The global distribution of the predominant vector for dengue and regions	
endemic with dengue activity (Adapted from World Health Organization, 2011)	8
Figure 1.3 Diagram of a Flavivirus Virion	11
Figure: 1.4 Diagram of the Flaviviral Genome	13
Figure 1.5 Quercus infectoria (Manjakani)	24
Figure 1.6 Structure of Ellagic Acid	29
Figure 1.7 Structure of Gallic Acid	30
Figure 3.1 Elution profile of protein purification of DEN-2 protease precursor frac	tion
on Nickle-column	57

113

Figure 3.2 SDS-PAGE of NS2B/NS3 before and after purification	58	
Figure 3.3 Western blot of NS2B/NS3 elution after SDS-PAGE electrophoresis		
apparatus	59	
Figure 3.4 Bovine serum Albumin (BSA) standard curve was used to determination	of	
concentration of the protein	61	
Figure 3.5 7-amino-4-methylcounarin (AMC) standard curve	63	
Figure 3.6 Graph of enzyme optimum by GraphPad Prism 5.0 software	65	
Figure 3.7 Graph of substrate optimum of NS2B/NS3 by Graphpad 5.0 software	67	
Figure 3.8 Chart of Inhibition assay with <i>Quercus Infectoria</i> and 5 fractions from		
column chromatography towards NS2B/NS3	72	
Figure 3.9 Thin layer chromatography of different fractions isolated by column		
chromatography	74	
Figure 3.10 The chromatogram of fraction 1	76	
Figure 3.11 The chromatogram of fraction 2	77	
Figure 3.12 The chromatogram of fraction 3	78	
Figure 3.13 The chromatogram of fraction 4	79	
Figure 3.14 The chromatogram of fraction 5	80	
Figure 3.15 Chromatogram of the active compound 1 (Ellagic acid)	81	
Figure 3.16 Chromatogram of the active compound 2 (Gallic acid)	82	
Figure 3.17 ¹ H NMR Spectrum of the active compound 1 of aqueous extract of <i>Quercus</i>		
Infectoria after silica gel chromatography	84	

Figure 3.18 ¹ H NMR Spectrum of the active compound 2 of aqueous extract of <i>Quer</i>	cus
Infectoria after silica gel chromatography	85
Figure 3.19 ¹³ C NMR Spectrum of the active compound 1 of aqueous extract of	
Quercus Infectoria after silica gel chromatography	86
Figure 3.20 ¹³ C NMR Spectrum of the active compound 2 of aqueous extract of	
Quercus Infectoria after silica gel chromatography	87
Figure 3.21 Chart of inhibition assay purified compounds on DEN 2 NS2B/NS3	
protease complex	90
Figure 3.22 Kinetic assay plot of ellagic acid from Quercus Infectoria	92
Figure 3.23 Kinetic assay plot of gallic acid from Quercus Infectoria	94
Figure 3.24 The cytotoxicity effect of <i>Quercus Infectoria</i> crude extract on MK2 cells.	97
Figure 3.25 The cytotoxicity effect of purified ellagic acid on MK2 cells	98
Figure 3.26 The cytotoxicity effect of purified gallic acid on MK2 cells	99
LIST OF TABLES	
Table 2.1 Preparation of 12% (w/v) polyacrylamide gel and 5% (w/v) stacking gel	47
Table 3.1 The optimum enzyme concentration V_{max} and Km by GraphPad Prism 5.0	
software	65
Table 3.2 Kinetic properties of NS2B/NS3 protease complex parameter by GraphPac	l
Prism 5.0 software	67

Table 3.3 Determination of inhibitory effect on the active enzyme and substrate again	nst
DMSO as solvent at different concentrations range from 0% to 50%	69
Table 3.4 Determination of inhibitory effect on the active enzyme and substrate again	nst
methanol as solvent at different concentrations range from 0% to 50%	69
Table 3.5 Inhibition assay with <i>Quercus Infectoria</i> and 5 fractions from column	
chromatography	71
Table 3.6 Table showing the retention time of the active fraction 1	76
Table 3.7 The table showed the retention time of the active fraction 2	77
Table 3.8 The table showed the retention time of the active fraction 3	78
Table 3.9 The table showed the retention time of the active fraction 4	79
Table 3.10 The table showed the retention time of the active fraction 5	80
Table 3.11 13C and 1H NMR spectral data of the Ellagic acid and Gallic acid	88
Table 3.12 Result of inhibition assay of purified plant extracts on DEN-2 NS2B/NS3	3
protease complex	89
Table 3.13 The values of Ki, Alpha, V_{max} and Km by GraphPad Prism 5.0 software	93
Table 3.14 The values of Ki, Alpha, V _{max} and Km by GraphPad Prism 5.0 software	95