PHYTOREMEDIATION OF LANDFILL LEACHATE USING HIBISCUS CANNABINUS AND ACACIA MANGIUM

MEERA A/P MUNUSAMY

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2013

UNIVERSITY MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Meera a/p Munusamy (I.C. No: 820626-10-5730)

Registration / Matric No: SGR090002

Name of Degree: Master of Science

Title of Project Paper/ Research Report / Dissertation / Thesis: Phytoremediation of Landfill Leachate using *Hibiscus cannabinus* and *Acacia mangium*

Field of Study: Environmental Technology

I do solemnly and sincerely declare that:

- (1) I am the sole author / writer of this Work;
- (2) This Work is original;
- (3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
- (4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;
- (5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be the owner of the copy right in this Work and that any reproduction or use in any form or by any means what so ever is prohibited without the written consent of UM having been first had and obtained;
- (6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature	Date
Subscribed and solemnly declared before,	
Witness's Signature	Date
Name:	
Designation:	

ABSTRACT

Resource managers are challenged with waste disposal, leachate produced from its degradation and its impacts to the environment. Jeram landfill leachate contains high amount of Fe, As, CN and NH₃-N. Knowledge about the response of *Hibiscus cannabinus* (Kenaf) and *Acacia mangium* (Akasia) to landfill leachate irrigation is limited; therefore this study was initiated to investigate the effect of phytoremediation on Jeram landfill leachate.

During pot-culture research, Kenaf and Akasia were irrigated for a period of 120 days in a nursery. Also, hydroponic culture employing Kenaf and Akasia for uptake of pollutants from leachate was carried out in a constructed wetland for contaminant bioconcentration study. These results detail the extensive variation in treatments of leachate, plant responses to leachate irrigation, along with the need and efficacy of plant and growth medium selection to choose superior phytoremediator plant. Leachate which was pretreated with FeCl₃ (4g/L) recorded an optimum condition for highest phytoremediation rate at 25% (0.24% N-content) in Kenaf and Akasia in both the pot-culture and hydroponic-culture systems.

Evaluation consisted of testing for differences in plant growth and biomass of leaves, stems, and roots, along with total Fe, As, CN and NH₃-N concentration in control and harvest soil, wastewater and in leaf, stems and root tissue. Accumulation of Fe, As, CN and NH₃-N was assessed based on mathematical models: Bioconcentration Factor (BCF), Translocation Factor (TF) and Bioaccumulation Kinetics. Kenaf sequestered 0.1–0.7 mg As, 18.5-51.7 mg Fe, 0.1-0.6 mg CN and 2.4-10.5mg NH₃-N /g dry weight, which implies that Kenaf can be a bioavailable sink for toxic metals. Akasia, being a leguminous plant recorded higher BCF than Kenaf for Fe (9.1-14.3), NH₃-N (4.2-8.8), CN (1.1-4.3) and As (1.5-2.9). In hydroponic culture, Akasia marked a

24% increase in contaminant uptake efficiency compared to Kenaf through rhizofiltration mechanism.

The ability of Kenaf and Akasia to tolerate these metals and avoid phytotoxicity could be attributed to the phytostabilisation of the metals in the plant roots and hence reduction of toxic metal mobility (translocation factor < 1). During irrigation with leachate, Kenaf and Akasia were also found to have higher biomass compared to control plants. Kenaf and Akasia recorded 49% and 53% higher bioaccumulation capacity, respectively indicating its suitability for phytoextraction of leachate contaminated sites. The bioaccumulation rate constant of the contaminants in Kenaf and Akasia were in the range of 0.01-0.03 and 0.02–0.04/day, respectively. Half-life of contaminants in Kenaf and Akasia were 35-60 and 25-68 days, respectively.

Development of e-Phytoremediation Modeling System (e-PMS) marked an integration of biological and artificial intelligence knowledge, thus serves as Decision Support System (DSS) platform for future research directions in phytoremediation. The user-friendly interphase and models applied determines the potential and performance of phytoremediator plants.

Overall, these results documented successful uptake of nutrients without detrimental impacts to plant health, which validated the use of landfill leachate as an irrigation and fertilization source for Kenaf and Akasia. In addition, these data will serve as a basis for researchers and resource managers making decisions about future leachate remediation projects.

ABSTRAK

Pengurus-pengurus sumber tercabar oleh masalah pelupusan sisa, air larut resap yang terhasil daripada degradasi dan impak negatif kepada alam sekitar. Air larut resap dari tapak pelupusan sisa Jeram mengandungi Fe, As, CN dan NH₃-N pada kepekatan tinggi. Pengetahuan mengenai tindakbalas *Hibiscus cannabinus* (Kenaf) dan *Acacia mangium* (Akasia) terhadap air larut resap adalah terhad, walhal, kajian ini telah dilaksanakan untuk mengkaji kesan fitoremediasi terhadap rawatan air larut resap.

Kenaf dan Akasia telah difertigasi dengan air larut resap bagi tempoh 120 hari di tapak semaian dalam kajian kultur-pot. Selain itu, kultur hidroponik menggunakan Kenaf dan Akasia untuk penyerapan bahan pencemar daripada air larut resap dijalankan di tanah benceh buatan untuk kajian perbandingan bioakumulasi. Kajian ini memperincikan variasi yang luas dalam rawatan air larut resap, tindakbalas tumbuhan kepada rawatan air larut resap, termasuk keperluan dan keberkesanan tumbuhan dan pemilihan medium pertumbuhan dalam penentuan tumbuhan "phytoremediator" yang unggul. Air larut resap yang diprarawat dengan FeCl₃ (4g/L) mencatatkan keadaan optimum untuk fitoremediasi kadar tertinggi pada 25% (0.24% kandungan-N) bagi Kenaf dan Akasia dalam kultur-pot dan kultur hidroponik.

Kajian ini meliputi ujian pertumbuhan tumbuhan dan biomas daun, batang, dan akar. Kepekatan Fe, As, CN dan NH₃-N dalam set kawalan, tanah yang dituai, air kumbahan dan di dalam tisu daun, batang dan akar diselidik. Penyerapan Fe, As, CN dan NH₃-N dinilai berdasarkan model-model matematik: Faktor Bioakumulasi (BCF), Faktor Translokasi (TF) dan Kinetik Bioakumulasi. Kenaf menyerap 0.1-0.7 mg As, 18.5-51.7 mg Fe, 0.1-0.6 mg CN dan 2.4-10.5mg NH₃-N/g berat kering, menandakan potensi Kenaf sebagai takungan logam toksik. Akasia, sejenis tumbuhan kekacang mencatatkan BCF yang lebih tinggi daripada Kenaf bagi Fe (9.1-14.3), NH₃-N (4.2-8.8), CN (1.1-4.3) dan As (1.5-2.9). Dalam kultur hidroponik, Akasia mencatatkan

peningkatan sebanyak 24% dalam keberkesanan penyerapan beban pencemar berbanding Kenaf melalui mekanisme rizofiltrasi.

Keupayaan Kenaf dan Akasia untuk menyerap bahan pencemar dan mengelakkan "phytotoxicity" berkemungkinan disebabkan oleh fitostabilisasi logam dalam akar tumbuhan dan seterusnya pengurangan mobiliti logam toksik (Faktor Translokasi <1). Kenaf dan Akasia yang dirawat dengan air larut resap juga didapati mempunyai biomas yang lebih tinggi berbanding tumbuhan Kawalan. Kenaf dan Akasia mencatatkan 49% dan 53% keupayaan bioakumulasi yang tinggi, menunjukkan kesesuaian untuk "phytoextraction" tapak tercemar oleh bahan larut resap. Pemalar kadar bioakumulasi bebanan pencemar dalam Kenaf dan Akasia adalah dalam lingkungan 0.01-0.03 dan 0.02-0.04/hari, masing-masing. Separuh hayat bahan pencemar dalam Kenaf dan Akasia adalah 35-60 dan 25-68 hari.

Pembangunan e- Pemodelan Sistem Fitoremediasi (e-PMS) memperlihatkan integrasi pengetahuan biologi dan "artificial intelligence" dan justeru itu, berfungsi sebagai landasan Sistem Sokongan Keputusan (DSS) ke arah kemajuan halatuju penyelidikan dalam bidang teknologi persekitaran. Fasa mesra-pengguna dan modelmodel yang diaplikasi menentukan potensi dan prestasi tumbuhan "phytoremediator" yang dikaji.

Secara keseluruhannya, keputusan kajian ini mendokumenkan pengambilan nutrien yang berjaya tanpa kesan yang memudaratkan kesihatan tumbuhan kajian. Fenomena ini mengesahkan penggunaan air larut resap dari tapak pelupusan sisa sebagai sumber fertigasi untuk Kenaf dan Akasia. Di samping itu, data-data ini akan menjadi panduan bagi golongan penyelidik dan pengurus sumber yang berkecimpung dalam projek pemulihan dan rawatan bahan larut resap di masa akan datang.

ACKNOWLEDGEMENTS

In the process of meeting the requirements of the Master of Science degree, numerous individuals have been lending a helping hands and thoughts throughout the processes.

First and foremost thanks to God for His blessings upon completion of this Thesis. Next, I would like to express my thanks to my Supervisor, Prof. Dr. P. Agamuthu for his guidance and support in making this Thesis a reality and also collegues from Solid Waste Laboratory, Institute of Graduate Studies, University of Malaya for their assistance and advice.

I would also like to acknowledge National Hydraulics Research Institute of Malaysia and University of Malaya {IPPP /UPGP/Geran (RU/PPP)/2009B} for the financial assistance in carrying out the project.

Besides that, I would like to express gratitude to Water Quality Laboratory of National Hydraulics Research Institute of Malaysia for the laboratory facilities; Malaysian Tobacco Board and Forest Research Institute of Malaysia (FRIM) for providing the Kenaf and Akasia seeds used for the study.

Special thanks also to Worldwide Landfill Sdn. Bhd. to allow me to collect samples from Jeram Sanitary Landfill.

In addition, I would love to dedicate my sincere gratitude towards my parents, Mr. & Mrs. Munusamy and husband, Mr. A. Poovaneswaran for their continuous inspiration, moral energy and unwavering confidence.

Last but not least, I truly and sincerely appreciate those who have been helpful directly or indirectly in the process of accomplishing this Thesis.

TABLE OF CONTENTS

<u>Contents</u>		Page
ORIGINA	L LITERARY WORK DECLARATION	ii
ABSTRAC	ABSTRACT	
ABSTRAK		V
ACKNOW	LEDGEMENT	vii
TABLE O	TABLE OF CONTENTS	
LIST OF 1	TABLES	xiii
LIST OF F	TIGURES	xvii
LIST OF P	PLATES	xxi
LIST OF A	ABBREVIATIONS	xxiv
LIST OF A	APPENDICES	XXV
СНАРТЕБ	R 1: INTRODUCTION	
1.0	Background	1
1.1	Problem Statement	9
1.2	Research Objectives	10
1.3	Research Hypotheses	11
1.4	Dissertation Organization	12
СНАРТЕВ	R 2: LITERATURE REVIEW	
2.0	Literature Review	13
2.1	Solid Waste Definition and Classification	13
2.2	Definition of MSW	14
2.3	MSW generation in Malaysia	14
2.4	Malaysian MSW Composition	17
2.5	Solid Waste Disposal Technology	21
2.6	Definition of landfill	23
2.7	Jeram Sanitary Landfill	28
2.8	Composition of biomass in Jeram MSW	34

2.9 Leachate		35
landfill accord	acceptable Conditions for Discharge of leachate from ang to Malaysian Legislation	41
	.1 Acceptable conditions for discharge of leachate	41
2.10.	2 Monitoring of leachate discharge	43
2.10	.3 Methods of Analysis of Leachate: THIRD	43
	SCHEDULE (Regulation 15)	
2.10	4 Specification of Point of Disharge of Leachate: FOURTH SCHEDULE (Regulation 16)	44
2.11 Heavy metals	in landfills	44
2.12 Phytoremediat	ion	48
2.12	1 Definition of Phytoremediation	48
2.12	2 Uses of Phytoremediation	51
2.12	3 Advantages and limitations of phytoremediation	52
	2.12.3.1 Advantages of phytoremediation	52
	2.12.3.2 Limitations of phytoremediation	52
2.12	4 Mechanisms of Phytoremediation	53
	2.12.4.1 Phytoextraction	53
	2.12.4.2 Phytostabilization	55
	2.12.4.3 Phytodegradation	55
	2.12.4.4 Rhizofiltration/ Phytofiltration	56
	2.12.4.5 Phytovolatilization	57
	2.12.4.6 Phytostimulation	58
2.13 Plant Response	es to Pollutants	59
2.13	1 Plant responses to heavy metal toxicity	59
2.13	2 Plant responses to landfill leachate toxicity	60
2.14 Test Plants		64
2.14	1 Hibiscus cannabinus (Local Name: Kenaf)	65

2.14.2 Acacia mangium (Local Name: Akasia kuning)	69
2.15 Contaminant Uptake by Test Plants in Pilot Scale Constructed Wetland via Mechanism of Rhizofiltration	72
2.16 Development of a Decision Support System for Phytoremediation	77
2.16.1 Decision Support System for the Requalification of Contaminated Sites (DESYRE)	78
2.16.2 Rhizofiltration Greenhouse System (RGS)	80
2.16.3 Design of a Graphical User Inter-face (GUI) Decision Support System for a Vegetated Treatment System	80

CHAPTER 3: MATERIALS AND METHODOLOGY

3.0 Materials and	l Methodology	84
3.1 Description of	of Study site	84
3.2 Preparation of	of Test Plants	85
3.3 Test Media		90
3.4 Test Operation	ons and Sampling	94
3.5 Sample Prepa	aration for Heavy Metal Analysis: Acid Digestion	97
3.6 Sample Prepa	aration for Macronutrients (NH ₃ -N) analysis	99
3.7 Data Analysi	S	99
3.8 Plant Respon	se/ Growth	100
3.9 Determinatio	n of Biaoccumulation rate constant and Half-life	101
	Net-Pot, Non-Circulating Hydroponic Method	102
•	Assessment of Contaminant Uptake by Test Plants 0.1 Experimental setup	103
3.1	0.2 Design and fabrication of system	104
3.1	0.3 Test plant material for hydroponic culture	106
3.1	0.4 Preparation of stock solution	108
3.1	0.5 Leachate as Growth Media	109
3.1	0.6 Sampling Operations	110
3.1	0.7 Plant cultivation in hydroponic culture	111

3.10.8 Toxicity experiments and metal removal	113
3.11 Decision Support Software for Phytoremediation Systems	113
3.11.1 Process and Systems Model Integration	114
CHAPTER 4: RESULTS AND DISCUSSION	
4.0 Results & Discussion	116
4.1 Physicochemical properties of leachate waste used for phytoremediation	116
4.2 Response of Kenaf plants to the leachate treatments and Biomass of Kenaf	121
4.3 Bioaccumulation of Fe, As, CN and NH ₃ -N in Kenaf planted in soil contaminated with different treatments of leachate	125
4.4 Uptake of heavy metals by Kenaf	138
4.5 Response of Akasia plant to the leachate treatments and Biomass of Akasia	142
4.6 Bioaccumulation of Fe, As, CN and NH ₃ -N in Akasia from soil contaminated with different treatments of leachate	146
4.7 Uptake of heavy metals by Akasia	158
4.8 Comparative Study of RGR and Contaminant Bioaccumulation based on N-content of Treatments	162
4.9 Comparison Study of Control Soil and Soil Standard	164
4.10 Kinetics of metal uptake: Biaccumulation Rate Constant (k) and Half-Life (t _{1/2})	166
4.11 Comparative Study of Metal and Macronutrient Accumulation in	172
Test Plants via Hydroponic System 4.11.1 Bioaccumulation of Fe, As, CN and NH ₃ -N in hydroponically grown Kenaf from water contaminated with different concentrations of leachate	172
4.11.2 Uptake of heavy metals by hydroponically grown Kenaf	181
4.11.3 Bioaccumulation of Fe, As, CN and NH ₃ -N in hydroponically grown Akasia in different treatments of leachate	186

4.11.4 Uptake of heavy metals by hydroponically grown Akasia	194
4.12 Comparative Study of Contaminant Bioaccumulation based on N- content of Treatments in Hydroponic Culture	198
4.13 Comparative Study on Efficiency of Fe, As, CN and NH_3 -N	200
Uptake and Bioaccumulation between the Two Test Plants: Kenaf and Akasia	
4.13.1 Kenaf and Akasia grown in Pot culture system	200
4.13.2 Kenaf and Akasia grown in Hydroponic culture system	203
4.14 Comparative Study on Efficiency of Fe, As, CN and NH ₃ -N uptake and bioaccumulation between two different systems of plant growth: Pot-culture system and Hydroponic culture system	205
4.15 Development of Decision Support Software: e-PMS	210
4.16 Post-Harvest Processing of Test Plants	227
4.16.1 Akasia wood quality	227
4.16.2 Kenaf fibre quality	228
4.17 General Discussion	229
CHAPTER 5: CONCLUSION	238
5.1 Recommendations for Future Research	240
REFERENCES	242
APPENDICES	260

LIST OF TABLES

Table No.	Title	Pages
2.1	Waste generation in Peninsular Malaysia	15
2.2	Generation of MSW in major urban areas in Peninsular Malaysia (1970 – 2006)	16
2.3	Various data on the characteristic of Kuala Lumpur MSW	18
2.4	Average composition (weight percentage) of components in MSW generated by various sources in Kuala Lumpur	19
2.5	The composition of solid waste in Malaysia in 2005 (RMK9)	20
2.6	Methods of waste disposal in Malaysia	23
2.7	Landfill classification	24
2.8	Landfilling Methods	25
2.9	Level of sanitary landfill system	25
2.10	Number of landfills that were in operation or closed throughout Malaysia as at September 2009	27
2.11	Summary of Physical Characteristic of Jeram sanitary landfill	30
2.12	Waste composition (based on on-site segregation) in Jeram Sanitary Landfill (2010)	34
2.13	Components of landfill leachate	36
2.14	Physical and chemical characteristics of sanitary landfill leachate from two Malaysian landfills compared with leachate from other countries	37
2.15	Characteristics of leachate from MSW landfills of different age	38
2.16	Characteristics of Landfill Leachate	40
2.17	Impact on river pollution caused by leachate contamination	45
2.18	Average concentration of metal and non-metal elements in surface and deep soil from an ex-landfill	46
2.19	General advantages and limitations of phytoremediation (USEPA, 2000)	52

2.20	Phytoremediation overview	58
2.21	Scientific Classification of Kenaf	66
2.22	Scientific Classification of Akasia	69
2.23	Typical parameters associated with the simulation of a vegetated remediation treatment system	81
2.24	Input and output parameters of GUI	82
3.1	Experimental Design of Test Media	94
3.2	Preparation of Gibeaut's Nutrient Solution	108
3.3	Experimental Design of Leachate Nutrient Solution	109
4.1	Characteristics of untreated Jeram landfill leachate compared with Acceptable conditions for Discharge of Leachate Regulations 2009, Environmental Quality Act (EQA 1974), MALAYSIA	116-117
4.2	Characteristics of FeCl ₃ treated leachate of Jeram landfill compared with Acceptable conditions for Discharge of Leachate Regulations 2009, Environmental Quality Act (EQA 1974), MALAYSIA	120-121
4.3	Relative Growth Rate of <i>H. cannabinus</i> L. treated with different concentrations of leachate	124
4.4	<i>H. cannabinus</i> Plant Dry Matter (PDM) and Dried Soil Sample Mass at final harvest (week 16)	131
4.5	Significant difference (P) of As bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>H. cannabinus</i> according to the paired Student t test (t)	133
4.6	Significant difference (P) of Fe bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>H. cannabinus</i> according to the paired Student t test (t)	133
4.7	Significant difference (P) of CN bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>H. cannabinus</i> according to the paired Student t test (t)	134
4.8	Significant difference (P) of NH_3 -N bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>H</i> .	134
4.9	<i>cannabinus</i> according to the paired Student t test (t) Relative Growth Rate of <i>A. mangium</i> treated with different concentrations of leachate	144

4.10	A. mangium Plant Dry Matter (PDM in g) and Dried Soil Sample Mass (g) at final harvest (week 16)	151
4.11	Significant difference (P) of As bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>A. mangium</i> according to the paired Student t test (t)	152
4.12	Significant difference (P) of Fe bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>A. mangium</i> according to the paired Student t test (t)	153
4.13	Significant difference (P) of CN bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>A. mangium</i> according to the paired Student t test (t)	153
4.14	Significant difference (P) of NH_3 -N bioaccumulation between the root and stem, root and leaf, and stem and leaf in <i>A</i> . <i>mangium</i> according to the paired Student t test (t)	154
4.15	Concentration of contaminants in control soil at 120 days of treatments applied	164
4.16	USEPA Regulatory limits on heavy metals applied to soils	165
4.17	Bioaccumulation rate constant and half-life of Fe and As accumulation from leachate polluted soil planted with Kenaf	168
4.18	Bioaccumulation rate constant and half-life of CN and NH ₃ -N accumulation from leachate polluted soil planted with Kenaf	169
4.19	Bioaccumulation rate constant and half-life of Fe and As accumulation from leachate polluted soil planted with Akasia	170
4.20	Bioaccumulation rate constant and half-life of CN and NH_3 -N accumulation from leachate polluted soil planted with Akasia	171
4.21	Leaf length, Stem height and Root length of hydroponically grown Kenaf at week 5 of growth	174
4.22	<i>H. cannabinus</i> Plant Dry Matter (PDM in g) at final harvest (week 5)	184
4.23	Significant difference (P) of correlation between the root and stem, root and leaf, and stem and leaf of As, Fe, CN and NH_3 -N in <i>H. cannabinus</i> according to the Pearson correlation test (r)	185
4.24	Leaf length, Stem height and Root length growth measurement of hydroponically grown Akasia at week 5 of growth	188
4.25	<i>A. mangium</i> Plant Dry Matter (PDM in g) at final harvest (week 5)	197

4.26	Significant difference (P) of correlation between the root and stem, root and leaf, and stem and leaf of As, Fe, CN and NH ₃ -N in hydroponic culture of <i>A. mangium</i> according to the Pearson correlation test (r)	198
4.27	The geometric means and standard deviation ranges of the As concentrations waters (mg/L), as well as soils, sediments, aquatic and terrestrial plants (mg/kg dry weight) from the Taupo Volcanic Zone	201
4.28	Characteristics of Ampar Tenang and Jeram Sanitary Landfill (JSL) leachate	230
4.29	The growth traits of Populus and Salix treated with leachate	233

LIST OF FIGURES

Figure No.	Title	Page
2.1	Increasing trend in per-capita generation of municipal solid waste (MSW) from 1985 to 2007	17
2.2	Composition of solid waste in Malaysia (9th Malaysian Plan)	20
2.3	Features of a Sanitary Landfill	28
2.4	Google map of Jeram Sanitary Landfill	29
2.5	The route of NH ₃ –N removal	48
2.6	Model of Phytoremediation system	49
2.7	Phytoextraction	54
2.8	Phytostabilisation	55
2.9	Phytodegradation	56
2.10	Rhizofiltration	57
2.11	Phytovolatilisation	57
2.12	Phytostimulation	58
2.13	Interaction between plants and soil for metal ion acquisition and homeostasis	59
2.14	Schematic representation of the soil-plant bioreactor for the plant-soil based treatment of landfill leachate	61
2.15	Flowchart describing the interactions between the simulation model and the graphical user interface	82
3.1	Flow diagram of activities to be carried out for the hydroponics system studied in phytoremediation	102
3.2	Schematic diagram of hydroponic system	103
3.3	Flow Chart of Development of e-PMS Decision Support System	114-115
4.1	RGR of root (R), stem (S), leaves (L) and total Kenaf dry biomass (TP)	124
4.2	As concentration in root, stem and leaves of kenaf under different leachate treatments	126

4.3	Fe concentrations in root, stem and leaves of kenaf under different leachate treatments	127
4.4	CN concentrations in root, stem and leaves of kenaf under different leachate treatments	128
4.5	NH ₃ -N concentrations in root, stem and leaves of kenaf under different leachate treatments	129
4.6	As accumulation (%) in Kenaf at week 8, 12 and 16 of growth	135
4.7	Fe accumulation (%) in Kenaf at week 8, 12 and 16 of growth	136
4.8	CN accumulation (%) in Kenaf at week 8, 12 and 16 of growth	137
4.9	NH ₃ -N accumulation (%) in Kenaf at week 8, 12 and 16 of growth	138
4.10	Bioconcentration Factor (BCF) of As, Fe, CN and NH_3 -N in Kenaf under different leachate treatment. Bar indicates standard error (n=4)	139
4.11	Translocation Factor of Fe, As, CN and NH ₃ -N in kenaf under different leachate concentrations. Bar indicates standard error (n=4)	140
4.12	RGR of root, stem, leaves and total Akasia dry biomass	145
4.13	As concentration in root, stem and leave of akasia under different leachate treatments	147
4.14	Fe concentration in root, stem and leave of akasia under different leachate treatments	148
4.15	CN concentration in root, stem and leave of akasia under different leachate treatments	149
4.16	NH ₃ -N concentration in root, stem and leaves of akasia under different leachate treatments	150
4.17	As accumulation (%) in Akasia at week 8, 12 and 16 of growth	155
4.18	Fe accumulation (%) in Akasia at week 8, 12 and 16 of growth	156
4.19	CN accumulation (%) in Akasia at week 8, 12 and 16 of growth	156
4.20	NH_3 -N accumulation (%) in Akasia at week 8, 12 and 16 of growth	157
4.21	Bioconcentration Factor of As, Fe, CN and NH3-N in akasia	158

under different leachate treatment. Bar indicates standard error (n=4)

4.22	(n=4) Translocation Factor of As, Fe, CN and NH ₃ -N in Akasia under different leachate treatment. Bar indicates standard error (n=4)	160
4.23	Growth of hydroponic culture of Kenaf in the treatment of leachate wastewater at week 7	175
4.24	As concentration in root, stem and leaves of Kenaf grown in hydroponic culture under different leachate treatments	176
4.25	Fe concentration in root, stem and leaves of Kenaf grown in hydroponic culture under different leachate treatments	177
4.26	CN concentration in root, stem and leaves of Kenaf grown hydroponically under different leachate treatments	177
4.27	NH ₃ -N concentration in root, stem and leaves of Kenaf grown hydroponically under different leachate treatments	178
4.28	Bioconcentration factor (BCF) of As, Fe, CN and NH ₃ -N in hydroponically grown Kenaf under different leachate treatment. Bar indicates standard error (n=4)	182
4.29	Translocation factor (TF) of As, Fe, CN and NH ₃ -N in hydroponically grown Kenaf under different leachate treatment. Bar indicates standard error (n=4)	183
4.30	Growth of hydroponic culture of Akasia in the treatment of leachate wastewater at week 5	189
4.31	As concentration in root, stem and leaves of Akasia grown hydroponically under different leachate treatments (mean \pm s.e.)	190
4.32	Fe concentration in root, stem and leaves of Akasia grown hydroponically under different leachate treatments (mean \pm s.e.)	191
4.33	CN concentration in root, stem and leaves of Akasia grown hydroponically under different leachate treatments (mean \pm s.e.)	192
4.34	NH_3 -N concentration in root, stem and leaves of Akasia grown hydroponically under different leachate treatments (mean \pm s.e.)	192
4.35	Bioconcentration factor (BCF) of As, Fe, CN and NH ₃ -N in hydroponically grown Akasia under different leachate treatment. Bar indicates standard error (n=4)	195
4.36	Translocation factor (TF) of As, Fe, CN and NH ₃ -N in hydroponically grown Akasia under different leachate treatment. Bar indicates standard error (n=4)	196

4.37	e-Phytoremediation Modeling System title page. The 'Time of the Day' menu displays time. The user needs to click on the 'Explore' button to proceed to log on to the system	210
4.38	The Log In page. The user needs to click on the 'Log In' button to proceed to log on to the system	211
4.39A	Test Plant Input Interphase: Display for Kenaf	212
4.39B	Test Plant Input Interphase: Display for Akasia	212
4.40	Photograph of Kenaf plant	213
4.41	Form showing photograph of Kenaf flower	214
4.42	Display of Kenaf seed photograph	214
4.43	Photo of Akasia plant displayed when users click on the button 'Show Picture of Akasia Plant' on the Test Plant Input form	215
4.44	Window displaying photograph of Akasia flower	216
4.45	Window displaying photograph of Akasia seed	216
4.46	Window displaying list of e-PMS models and selection of type of wastewater	217
4.47	First Order Kinetics Model component window	218
4.48	Form of Relative Growth Rate model component window	219
4.49	Bioconcentration Factor (BCF) model component window	220
4.50	Translocation Factor (TF) model component window	221
4.51	Information summary window	222
4.52A	Form Question and Answer	223
4.52B	Example of Q and A form based on actual example	224
4.53	Display of Glossary Form	225
4.54	Example of glossary term – "Phytoextraction" and its definition	225
4.55	Example of glossary term –"Leachate" and its definition	226

LIST OF PLATES

Plate No.	Title	Page
2.1	Typical view at a landfill	24
2.2	Open dump in Selangor (municipal solid waste) – Level 0 Landfill	26
2.3	Waste Management Centre in Bukit Nenas, Negeri Sembilan (Scheduled waste) - Level IV Landfill	26
2.4	HDPE liner for the cells at Jeram Landfill	31
2.5	Equalisation Lagoon at Jeram landfill	32
2.6	Gas collection system at Jeram landfill	32
2.7	Weighing bridge	33
2.8	Compaction of waste	33
2.9	Leachate flowing into Sg. Kembong river system	39
2.10	Hibiscus cannabinus L. plant	65
2.11	Hibiscus cannabinus flower	66
2.12	Hibiscus cannabinus leaves	67
2.13	Acacia mangium plant	70
2.14	Acacia mangium flower	71
2.15	Acacia mangium leaves	71
2.16	Water lettuce	75
2.17	Water hyacinth	76
2.18	Water lily	76
2.19	Duckweed	77
3.1	Trays containing black soil prepared for seedling planting	84
3.2	Nursery setup	85
3.3	Kenaf seed	86

3.4	Akasia seed	87
3.5	Kenaf seedling of $10 - 12$ cm tall (7 days of growth)	87
3.6	Akasia seedling (2 weeks old)	88
3.7	Poly bag containing 5 kg of black soil	88
3.8	Kenaf seedlings after transplanted into polybag	89
3.9	Akasia seedlings before being transplanted measuring 10 cm (after 1 month of germination)	89
3.10	Leachate pond at Jeram Sanitary Landfill, Selangor	90
3.11	Equalization Lagoon	91
3.12	Leachate sampling	91
3.13	Harvested plants separated into leaves, stem and root	95
3.14	Akasia plant root measurement	96
3.15	Harvested Akasia placed on polystyrene for total plant height measurement	96
3.16	Apparatus used for the hydroponics system set up	104
3.17	Diagram of hydroponic tank used for phytoremediation study	105
3.18	Net-pot	105
3.19	Akasia seeds sown into thread media in a net-pot	107
3.20	Kenaf seeds planted hydroponically (4-5 seeds per pot)	107
3.21	Leachate treatment sampled in graduated square bottles	110
3.22	Stem height measurement of harvested hydroponic plants	112
3.23	Root length measurement of harvested hydroponic plants	112
4.1	Harvested Kenaf at week 8 of growth	122
4.2	Kenaf plants at 12 th week of growth	122
4.3	Harvested Kenaf plant at week 16 of growth	123
4.4	Akasia at week 8 th of growth	142
4.5	Akasia at week 12 th of growth	143

4.6	Harvested Akasia at week 16 th of growth	143
4.7	Kenaf seedling grown hydroponically after 1 week of growth	172
4.8	Kenaf plants at 4 th week of growth in hydroponic culture	173
4.9	Kenaf plants ready to be harvested at week 7 of growth in hydroponic culture	173
4.10	Kenaf plants dried up after 5 weeks of growth	180
4.11	Kenaf dried up – leaves turn yellow	180
4.12	Akasia seedling on growth bed in hydroponic culture	186
4.13	Akasia seedling after 2 weeks of growth in hydroponic culture	186
4.14	Akasia seedling after 3 weeks of growth in hydroponic culture	187
4.15	Harvested akasia plants at week 5 of growth in hydroponic culture	187
4.16	Akasia roots grown hydroponically attacked by White rot fungi	194

LIST OF ABBREVIATIONS

АРНА	American Public Health Association
As	Arsenic
BCF	Bioconcentration Factor
BOD	Biological Oxygen Demand
CN	Cyanide
COD	Chemical Oxygen Demand
dH2O	Distilled water
DO	Dissolved Oxygen
DoE	Department of Environment
DSS	Decision Support System
e-PMS	e-Phytoremediation Modeling System
FAO	Food and Agriculture Organization
Fe	Ferum
FRTR	Federal Remediation Technologies Roundtable
GNP	Gross National Product
ICP-OES	Inductively Coupled Plasma - Optical Emission
	Spectrometer
IF	Inorganic fertiliser
MSW	Municipal solid waste
NH ₃ -N	Ammoniacal-Nitrogen
PDM	Plant dry matter
RGR	Relative growth rate
RL	Raw leachate
TF	Translocation Factor
TL	Treated leachate
TSS	Total suspended solid
USEPA	United States Environmental Protection Agency
WHO	World Health Organization

LIST OF APPENDICES

Appendix No.	Title	Pages
APPENDIX A: Table A.1	Mean and standard deviation (SD) of As concentrations in <i>H. cannabinus</i> , soil sample and control soil (without plants) at final harvest (week 16)	261
Table A.2	Mean and standard deviation (SD) of Fe concentrations in <i>H. cannabinus</i> , soil sample and control soil (without plants) at final harvest (week 16)	261
Table A.3	Mean and standard deviation (SD) of CN concentrations in <i>H. cannabinus</i> , soil sample and control soil (without plants) at final harvest (week 16)	262
Table A.4	Mean and standard deviation (SD) of NH ₃ -N concentrations in <i>H. cannabinus</i> , soil sample and control soil (without plants) at final harvest (week 16)	262
Table A.5	Mean and standard deviation (SD) of As concentrations in <i>A. mangium</i> , soil sample and control soil (without plants) at final harvest (week 16)	263
Table A.6	Mean and standard deviation (SD) of Fe concentrations in <i>A. mangium</i> , soil sample and control soil (without plants) at final harvest (week 16)	263
Table A.7	Mean and standard deviation (SD) of CN concentrations in <i>A. mangium</i> , soil sample and control soil (without plants) at final harvest (week 16)	264
Table A.8	Mean and standard deviation (SD) of NH ₃ -N concentrations in <i>A. mangium</i> , soil sample and control soil (without plants) at final harvest (week 16)	264
APPENDIX B: Table B.1	Dutch Intervention Standard for surface and deep soil analysis	265
APPENDIX C: Table C.1	Mean and standard deviation (SD) of As concentration in <i>H. cannabinus</i> plant parts and leachate solution at final harvest (week 5)	269
Table C.2	Mean and standard deviation (SD) of Fe concentration in	269

H. cannabinus plant parts and leachate solution at final harvest (week 5)

Table C.3	Mean and standard deviation (SD) of CN concentration in <i>H. cannabinus</i> plant parts and leachate solution at final harvest (week 5)	270
Table C.4	Mean and standard deviation (SD) of NH ₃ -N concentration in <i>H. cannabinus</i> plant parts and leachate solution at final	270
Table C.5	harvest (week 5) Mean and standard deviation (SD) of As concentrations (mg g^{-1}) in <i>A.mangium</i> plant parts and leachate solution at final harvest (week 5)	271
Table C.6	Mean and standard deviation (SD) of Fe concentrations (mg g^{-1}) in <i>A.mangium</i> plant parts and leachate solution at final harvest (week 5)	271
Table C.7	Mean and standard deviation (SD) of CN concentrations (mg g^{-1}) in <i>A.mangium</i> plant parts and leachate solution at final harvest (week 5)	272
Table C.8	Mean and standard deviation (SD) of NH_3 -N concentrations (mg g ⁻¹) in <i>A.mangium</i> plant parts and leachate solution at final harvest (week 5)	272
APPENDIX D:	Compact Disc of e-PMS Decision Support System	273
APPENDIX E:	Research Paper published at International Journal of Phytoremediation	274