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ABSTRACT

Wavelets have been applied successfully in image and signal processing. Many

attempts have been made in mathematics to use wavelet function as numerical

computational tool. In this study, an orthogonal wavelet function namely Haar

wavelet function is considered. We used the operational matrix based on Haar

basis to solve hyperbolic heat conduction equation problem and Laplace inversion.

It is remarkably known by many that one of the difficulties encountered in

numerical method for non-Fourier heat conduction problem is the numerical

oscillation within the vicinity of jump discontinuities at the wave front. We

propose a new method of solving non-Fourier heat conduction equation problem

which is also a hyperbolic partial differential equation. Our new method for

solving partial differential equation of hyperbolic heat conduction equation is a

hybrid of finite difference method and pseudo spectral method, where the former

for time discretization and the latter for spatial discretization. The time

discretization is performed prior to spatial discretization. In this sense, partial

differential equation is reduced to ordinary differential equation and solved

implicitly with Haar wavelet basis. For pseudo spectral method, Haar wavelet

expansion has been used considering its advantage of the absence of the Gibbs

phenomenon at the jump discontinuities. Furthermore, definition of Haar wavelet

basis in this work allows a pleasant way in computing inverse of Haar wavelet

matrix. We also derived generalized Haar wavelet operational matrix in the

interval of [0, X). The propose method have been applied into one physical

problem namely, thin surface layers. It is found that the proposed numerical
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results could suppress and eliminate the numerical oscillation in the jump

vicinity at a certain value of discretization.

We also present a numerical method for inversion of Laplace transform using

the method of Haar wavelet operational matrix. We prove the method for the

case of the transfer function using the extension of Riemann-Liouville fractional

integral. The proposed method extends the work of Wu et al. to cover the whole

of time domain as we used the generalized Haar wavelet operational matrix.

Moreover, this method gives an alternative numerical way to find the solution for

inversion of Laplace transform in a simple way. The use of numerical generalized

Haar operational matrix method is much simpler than the conventional contour

integration method and it can be easily coded. Examples in finding Laplace

inversion for rational, irrational and exponential transfer function are illustrated.

Furthermore, examples on solving differential equation by Laplace transform

method are also included.

Both of the proposed numerical methods are stable, convergent and easily

coded. Numerical results also demonstrate good performance of the method in

term of accuracy and competitiveness compared to other numerical methods.

Additionally, few benefits come from its great features such as faster computation

and attractiveness.
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ABSTRAK

Penggunaan gelombang kecil telah berjaya diaplikasikan dalam bidang

pemprosesan isyarat dan imej. Beberapa percubaan telah dilakukan untuk

menjadikan fungsi gelombang kecil ortogon sebagai alat pengiraan berangka.

Dalam kajian ini, fungsi gelombang kecil Haar yang juga merupakan fungsi

gelombang kecil ortogon dipertimbangkan.

Diketahui umum bahawa ayunan berangka yang dikesan di sekitar

ketakselanjaran lompatan di depan gelombang merupakan salah satu kesukaran

yang dihadapi dalam kaedah berangka bagi masalah pengaliran haba bukan

Fourier. Kami mencadangkan kaedah baharu bagi penyelesaian masalah

persamaan pengaliran haba bukan Fourier yang juga merupakan persamaan

pembezaan separa jenis hiperbolik. Kaedah baharu bagi penyelesaian persamaan

pembezaan separa untuk persamaan pengaliran haba hiperbolik adalah gabungan

kaedah perbezaan terhingga dan kaedah spektra pseudo. Antara kedua-dua

kaedah ini, yang pertama digunakan untuk pendiskretan masa dan yang kedua

digunakan untuk pendiskretan ruang. Pendiskretan masa dilakukan terlebih

dahulu berbanding pendiskretan ruang. Menerusi pendekatan ini, persamaan

pembezaan separa diturunkan kepada persamaan pembezaan biasa dan

diselesaikan secara tersirat menggunakan fungsi asas gelombang kecil Haar. Bagi

spektra pseudo, pengembangan fungsi gelombang kecil Haar digunakan setelah

mempertimbangkan kelebihannya iaitu ketakhadiran fenomena Gibbs sekitar

ketakselanjaran lompatan. Tambahan pula, takrifan fungsi asas gelombang kecil

Haar dalam kajian ini menyenangkan pengiraan songsangan matriks gelombang
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kecil Haar. Kami juga telah menerbitkan operasi matriks teritlak gelombang kecil

Haar untuk selang masa [0,X). Kaedah berangka ini diaplikasi ke dalam suatu

masalah fizikal iaitu lapisan permukaan nipis. Melalui keputusan kaedah

berangka, kami berjaya mengekang atau melenyapkan ayunan berangka pada

satu-satu nilai pendiskretan di sekitaran ketakselanjaran lompatan.

Kami juga menunjukkan kaedah berangka bagi mencari songsangan jelmaan

Laplace menggunakan kaedah operasi matriks gelombang kecil Haar. Kami

membuktikan kaedah ini dengan kes fungsi pindah tak nisbah menggunakan

perluasan kamiran pecahan Riemann-Liouville. Kaedah berangka ini merupakan

penerusan hasil kerja Wu dll bagi mencakupi keseluruhan domain masa dengan

menggunakan operasi matriks teritlak gelombang kecil Haar yang telah

diterbitkan. Tambahan lagi, kaedah berangka ini memberi pilihan mencari

penyelesaian jelmaan Laplace songsang dengan cepat. Kaedah ini juga lebih

mudah jika dibandingkan dengan kaedah kebiasaan pencarian songsangan

jelmaan Laplace serta senang diaturcara. Contoh mencari songsangan jelmaan

Laplace bagi fungsi pindah nisbah, tak nisbah dan eksponen ditunjukkan.

Seterusnya, contoh bagi penyelesaian persamaan pembezaan menggunakan

kaedah jelmaan Laplace juga disertakan. Kedua-dua kaedah berangka ini stabil,

menumpu dan mudah diatur cara.

Dapatan kaedah berangka menunjukkan pencapaian yang baik dari segi

kejituan dan setanding berbanding kaedah berangka yang lain. Di samping itu,

kaedah berangka ini juga menarik dan cepat.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Thesis

The technology advancement that we are experiencing today would never had

been at this level of achievement without continuous innovation efforts done by

previous generations. Mathematicians had thoroughly studied mathematical

equations as a tool for innovation in terms of computer aided programmes and

softwares. These equations which are familiarly known as partial differential

equations are becoming vital and play an important role in the field of science

and engineering. It has been proven to be the best tools to describe naturally

occurring physical phenomenon around us such as heat, sound, fluid flow,

electrodynamics, electrostatics and elasticity. For example, we have better

understanding on how heat propagates in a finite slab by computer simulation

which is made possible by solving the partial differential equations. This

understanding had helped IC chips designers in creating product prototype more

efficiently by reducing the failure rate. Size of IC chips had decreased

significantly in the last few decades, however the manufacturing process is facing

new challenge in terms of failure due to overheating. In order to optimize the

resources in designing the chip and to reduce failures due to overheating,

designers are using computer simulation to find the optimal design. This is one of

the many examples how computer simulation solving partial differential equation

had contributed to the advancement of modern day technologies.
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Partial differential equation is a differential equation with multiple variables

that contains unknown multi variable functions and their partial derivatives. In

the early history of solving partial differential equation, mathematicians were

focusing on finding analytical solution. Among known analytical methods used to

these days are separable variable method, integral transform method, method of

characteristic and change of variables method. Most of these methods are limited

to solve an ideal mathematical equation and if any attempts to solve a complex

mathematical equation, for example nonlinear and non-homogeneous partial

differential equations, very frequently will end up and involved with tedious

calculation. Therefore, as computer technology became prominent in life today,

numerical analysis of partial differential equation has received special attention

by many scholars.

Numerical method based on wavelet is relatively a new mathematical tools for

solving partial differential equations. Compared to other mathematical tools,

wavelet analysis has captured mathematicians’ attention due to its positive

results in the field of signal and image processing. The most interesting features

of wavelet is that their basis function localized in space or time came along with

localization in frequency. The basis functions are usually orthogonal and

compactly supported. These features resulting in sparse transformation in

wavelet domain for non-stationary signals that contribute to fast algorithms. In

numerical analysis these are some of a few desired properties of numerical

analysis.
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1.2 Scope of Research

The main focus on this work is to solve hyperbolic type partial differential

equation numerically using generalized Haar wavelet operational matrix method.

This partial differential equation comes from a non-Fourier heat conduction

problem in thin surface layers. We derived generalized Haar wavelet operational

matrix based on generalized block pulse function and Haar basis function.

Generalized Haar wavelet operational matrix method is used for spatial

discretization which is performed after reducing the partial differential equation

into ordinary differential equation using finite difference method. Two sets of

initial and boundary conditions are solved with this hybrid method.

We further our study utilizing our derivation of generalized Haar wavelet

operational matrix in finding Laplace inversion numerically because Laplace

transform method is usually opted for solvin partial differential equation.

Finding Laplace inversion often faced difficulties as the inversion table of Laplace

transform is limited and it involves Bromwich contour integral. We proved the

method for the case of transfer function using the extension of Riemann-Liouville

integral. A few examples of finding inversion of Laplace transform are illustrated,

not only rational transfer function but also the irrational and exponential

transfer function.

However, the numerical stability and error analysis of both propose numerical

methods are not being mathematically proven. To justify the accuracy of these

numerical results, a comparison with analytical solution given by others is being

employed. The difference between the proposed numerical method and exact
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solution is shown by absolute error.

1.3 Research Objectives

The objectives of this research are to :

1. establish generalized Haar wavelet operational matrix for integration.

2. establish numerical method of finite difference with generalized Haar

operational matrix for solving partial differential equation of hyperbolic

type with initial and boundary conditions.

3. solve non-Fourier heat conduction equation which is also a hyperbolic type

partial differential equation in thin surface layers.

4. establish numerical method for Laplace inversion with generalized Haar

wavelet operational matrix.

5. find Laplace inversion numerically for rational, irrational and exponential

transfer functions using established Laplace inversion with generalized Haar

wavelet operational matrix method.

1.4 Thesis Organization

This thesis consists of 6 chapters including this chapter and is organized as follows:

In Chapter 2, we present an overview of operational matrix in general. We list

a few well known orthogonal function that has been used to derive operational

matrix. Next, we narrow it down to a specific orthogonal function namely Haar

basis function. The selection of this orthogonal function will be justified by
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listing down a few of its advantageous compared to other orthogonal function. To

justify why we choose Haar wavelet function, we list down a few advantages of

this orthogonal function. We further review on our main problem of solving

partial differential equation of non-Fourier heat conduction equation. At the end

of this chapter, we look at numerical inversion of Laplace transform.

In Chapter 3, we show the basic mathematical background of Haar wavelet

which are needed to understand the concept followed in this thesis. Most of

literatures define Haar wavelet and its operational matrix within the interval

[0, 1). Therefore, we derive generalized Haar wavelet operational matrix which

could cater the Haar series expansion domain greater than one.

In Chapter 4, we establish a new numerical method to solve non-Fourier heat

conduction equation problem which is also a hyperbolic type partial differential

equation. This numerical method is a combination of finite difference method and

pseudo spectral method. The former is used for time discretization and the latter

is used for spatial discretization. In spatial discretization, generalized Haar wavelet

operational matrix is employed. Numerical solution for hyperbolic type equation

often encounters difficulties eliminating numerical oscillation surrounding its jump

discontinuities at wave front. It is found that from the numerical results, at a

certain value of discretization, numerical oscillation can be suppressed or totally

be eliminated.

In Chapter 5, we extend the work of Wu et al. (2001) in finding Laplace

inversion from a transfer function. We prove the case of transfer function using

the extension of Riemann-Liouville fractional integral. The usage of generalized

Haar wavelet operational matrix enable us in finding the inversion of Laplace

5



transform that covers the whole time domain.

Finally, Chapter 6 summarizes the overall works and contributions of the

study in numerical analysis of hyperbolic heat conduction equation in

non-Fourier heat conduction problem and Laplace transform inversion. We also

make some recommendation for future work.
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CHAPTER 2

LITERATURE REVIEW

Operational matrix method have received considerable attention by many

scholars in solving dynamical system analysis (Sinha and Butcher, 1997), system

identification, optimal control systems (Mohan and Kar, 2005; Endow, 1989;

Karimi, 2006) and numerical solution of integral and differential equations

(Lepik, 2005; Kilicman and Zhour, 2007). Casting a differential or integral

equation into a corresponding matrix system is the main characteristic of this

operational matrix method. The approach is based on replacing the underlying

differential equations into integral equations through integration operator and

approximating the functions involved in the equation by truncated orthogonal

series. An operation of integral operator is replaced by operational matrix.

To have a better view on operational matrix, let us consider the integral

property of function vector, Φ(x) in the following approximation:

∫ x

0

Φ(τ)dτ = QΦ(x), (2.1)

where

Φ(x) = [φ0(x) φ1(x) ∙ ∙ ∙ φm−1(x)]t (2.2)

in which the elements φ0(x), φ1(x), . . . , φm−1(x) are the orthogonal basis functions

in the Hilbert space L2(R). The operational matrix, Q is an m×m constant matrix

behaves as an integrator (Cheng and Tsay, 1977) and can be uniquely determined

on the basis of the particular orthogonal functions, φi(x). From Eqn. (2.1), it can

be observed that the problem of multiple integration is simplified by computing
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the multiplication of matrices instead of performing the integration operations

conventionally.

To date, there are hefty number of literatures deriving operational matrix

from different orthogonal functions. Among orthogonal basis functions that have

been given special attention are Walsh function (Chen and Hsiao, 1975),

cosine-sine and exponential function (Paraskevopoulos, 1987), block pulse

function (Chi-Hsu, 1983), normalized Bernstein polynomials (Singh et al., 2009),

linear Legendre mother wavelets (Khellat and Yousefi, 2006), Chebyshev wavelet

(Babolian and Fattahzadeh, 2007) and Haar wavelet (Gu and Jiang, 1996; Chen

and Hsiao, 1997).

Chen and Hsiao (1975) derived Walsh operational matrix for performing

integration and solving generalized state equations. Paraskevopoulos (1987)

shows the operational matrix relationship between Fourier sine-cosine series and

Fourier exponential series expansion. Babolian and Fattahzadeh (2007) have

obtained Chebyshev operational matrix for integration in general and applied

into solving continuous and discontinuous solution of Volterra type integral

equations. All of these numerical computations share a number of advantageous

in common. One of the advantage is the ability of finding the solution with only

matrices manipulation rather than performing integration or differentiation in a

conventional ways. Another advantage is that the ability of transforming the

matrices into a sparse matrix and small number of significant coefficients

(Hariharan and Kannan, 2011). This is the main factor that reduces computation

time. The advantage remains even if big matrix is involved whereby big matrix

usually requires large computer storage and a huge number of arithmetic
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operations (Lepik and Tamme, 2004).

In this study we are going to work with Haar wavelet basis function and its

operational matrix. Haar wavelet has a few numbers of advantages compared to

other wavelet. Haar wavelet is the simplest wavelet function and it is one

example of orthogonal function. Their bases are very compact support which

means that the wavelet vanishes outside of a finite interval. Among admired

properties of Haar wavelet orthogonal functions in numerical computation is that

the sparse representation for piecewise constant function, fast transformation and

the possibility of implementation of fast algorithm in matrix (Shahsavaran,

2011). Faster matrix transformation can be achieved with expansion of Haar

series rather than expansion of Walsh series for the same amount of terms

required for the computation, as the resolution order by Haar expansion is less

than Walsh expansion (Khuri, 1993). Haar wavelet operational matrix for the

integral of Haar wavelets is always positive definite, hence the existence of Haar

wavelet operational matrix inverses and its square root are never unavailable.

This factor nominates this method as computer oriented because no imaginary

numbers are involved in the computation (Chen and Hsiao, 1997). Apart from

that Haar wavelet is the only wavelet that does not exhibit Gibbs phenomenon

(Kelly, 1996; Jerri, 1998; Raeen, 2008). This factor gives an extra advantage to

proposed numerical method which will be covered in Chapter 4.

The first attempt that put Haar basis function into focus for solving

differential equation was by Chen and Hsiao (1997), who first derived the Haar

operational matrix for the integrals and brought the application of Haar analysis

into the dynamic systems. They applied the proposed method to solve lumped
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and distributed-parameter systems. It can be found that Lepik (2005, 2007a,b)

has established Haar wavelet method to solve ordinary and partial differential

equation and recently, solved PDE with two dimensional Haar wavelets (Lepik,

2011). Generalized Haar wavelet operational matrix is an extension work of Wu

et al. (2001) that covers the whole domain for Haar series expansion intervals.

We derived the Haar wavelet operational matrix based on Wu et al. (2001) works

but extending it using generalized block pulse function operational matrix for

integration done by Kilicman and Zhour (2007). It is expedient to do this way as

it will fit the expansion of Haar series in the interval 0 ≤ x < X .

The main problem to be solved in this work is the partial differential equation

problem of non-Fourier heat conduction in thin surface layers. Heat conduction

problem often arises in a variety of problems in various branches of science and

engineering. When the heat flux or the temperature involved in the heat transfer

process is not very high, or the phenomena occurring at a time scale smaller than

the thermal relaxation time of the material are not of interest, these problems are

best described and analyzed with the heat conduction equation based on Fourier’s

law. This equation implies a presumption of infinite thermal propagation speed.

Therefore, its prediction may underestimate the peak temperature during a rapid

transient heat process. When someone is interested in the transient problems in

an extremely short period of time, in very high flux, or for very low temperature,

the classical diffusion theories may break down (Liu and Chen, 2004). Under

these conditions, the theory with the finite propagation velocity of thermal wave

will become dominant. In this event, modification is necessary to deal with finite

propagation velocity of thermal wave for more precise heat flux model.
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The simplest approach to construct a non-Fourier heat equation is through

modified equation by Vernotte (1958) and Catteneo (1958) to the classical heat

diffusion equation, which includes a component recognising the finite speed of

heat signals that behave as wave propagation. Earlier successful applications of

hyperbolic heat equation were used to predict transient heat conduction process

in chemical and process engineering (Chan et al., 1971), in the process of laser

pulse heating (Hess et al., 1981), in IC chips (Guo and Xu, 1992) and in thin

surface layers (Kao, 1977; Chen, 2007). Table (2.1) below summarizes the

differences between Fourier hyperbolic heat conduction equation and non-Fourier

heat conduction equation (HCE).

Table 2.1: Comparison between Fourier and Non-Fourier heat conduction equation

(HCE).

Item Fourier HCE non-Fourier HCE

1) conservation energy same same

2) heat flux equation q = −kOT τ
∂q

∂t
+ q = −k

∂T

∂r

3) equation form parabolic hyperbolic

4) heat propagation infinite finite

5) temperature gradient moderate extreme

Over the last 20 years, wavelet transforms have been applied extensively for

applications in various fields like pattern recognition (Beylkin, 1993), data

compression and signal processing (Mallat, 2009). However application of wavelet
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transform to the solution of hyperbolic partial differential equation has been

limited (Holmström and Waldén, 1998). Wavelets with their highly localized

functions in spatial dimension, which are of varying scales, have the potential to

combine the advantages of both spectral and finite difference bases. Another

good feature of using wavelets is that there is a class of fast algorithm based on

the fast wavelet transform which may be used to speed up the numerical schemes

(Bindal et al., 2003). Historically, the wavelet transform was developed as an

extension of Fourier transform in order to decompose the frequency content of a

function in both spatial and frequency domain.

Numerous literatures are available for solving hyperbolic heat conduction

equation. The major difficulty encountered in the numerical solution of the

hyperbolic conduction is numerical oscillations in the vicinity of sharp

discontinuities. Tamma and Railkar (1989) had successfully overcome this

problem by introducing specially tailored transfinite-element formulations for the

hyperbolic heat conduction equation. Carey and Tsai (1982) applied the central

and backward difference schemes to examine numerical oscillation errors at the

reflected boundary. Chen and Lin (1993) employed a new powerful hybrid

technique based on the Laplace transform and control volume methods to solve

hyperbolic heat conduction equation and their numerical method provides

excellent results. They applied various examples of physical problems to verify

the accuracy of their method. Chen (2007) solved hyperbolic heat conduction

equation in thin surface layer using hybrid method combining Laplace transform,

weighing function scheme (Shong-Leih, 1989) and hyperbolic shape function.

Shen et al. (2010) present anti-diffusive solutions to the hyperbolic heat transfer
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equation using Bokanowski and Zidani’s second-order method (Bokanowski and

Zidani, 2007) and Xu and Shu’s fifth-order method (Zhengfu and Chi-Wang,

2005) in one and two dimensional. Analytical solution of one dimensional

hyperbolic heat conduction equation was given by Kao (1977), Baumeister and

Hamill (1969), Ozisik and Vick (1984) and Taitel (1984).

Focus in this research is on the pseudo spectral method for spatial

discretization, by using Haar wavelet expansion to implicitly solve hyperbolic

heat conduction in thin surface layers. As mentioned before, Haar wavelet is the

only orthogonal wavelet that does not exhibit numerical oscillation near the jump

discontinuity at any points (Raeen, 2008; Kelly, 1996). This is the utmost

concern when attempting to solve numerical hyperbolic type heat conduction

equation as the numerical solution will encounter oscillation in the vicinity of

jump discontinuity. It will be a great advantage for this method to suppress

oscillation that might appear, since finite difference is being used to discretize

time. To the best of our knowledge, the proposed method in this work is the first

time attempt to solve hyperbolic heat conduction equation. Analytical solution

for prescribed wall temperature conditions has been given by Kao (1977).

Apart from that we establish a method in finding inversion of Laplace transform

using generalized Haar wavelet operational matrix. This method is an extension

work of Wu et al. (2001) that covers the whole time domain in finding Laplace

inversion numerically. Laplace transforms is known to be an important tool in

solving mathematical equations that arise in engineering problem. Engineers often

opt for Laplace transform method to solve initial value problem which involves a

step input function which is typical of many control system problems, differential
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equations involving impulse and step functions and partial differential equation.

For example, through this approach the partial differential equation is transformed

into ordinary differential equation and lastly into an algebraic equation which is

normally easy to deal with. Since its discovery by a French mathematician, Pierre -

Simon Marquis De Laplace (1749-1827) (Kreyszig, 2006), it has been widely applied

and continuously researched by scholars from various fields. Those scholars had put

through enormous amount of efforts in finding its inverse function numerically and

analytically. This is because finding the inverse of Laplace transform is considered

to be a difficult task due to its limitation in the inversion table of inverse Laplace

transform, in the sense that it could not cater most of the engineering problems

which always associated with complexity of mathematical equation.

Before Haar wavelet operational matrix were used to find inversion of Laplace

transform numerically, there are other literatures that used other orthogonal

functions as well. Cheng and Tsay (1977) have been using Walsh operational

matrix for solving various distributed-parameters systems such as heat

conduction and percolation problem. Later, a more rigorous approach has been

taken by Chi-Hsu (1983) to derive generalized block pulse operational matrices.

According to Chi-Hsu (1983), Laplace inversion for rational and irrational

transfer function illustrated by using generalized block pulse operational matrices

is proven to be more accurate compare to previous work by Cheng and Tsay

(1977).
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CHAPTER 3

MATHEMATICAL BACKGROUND OF HAAR WAVELET

3.1 Introduction

The history of Haar wavelet dates back to the year of July 1909 which came from

the content of inaugural thesis written by Alfréd Haar, a Jewish Hungarian

mathematician. The title of the thesis ‘Zur Theorie der orthogonalen

Funktionensysteme ’ or in English means ‘On the Theory of Orthogonal Function

Systems’ was written for his doctorate study in University of Göttingen under

supervision of one of the most influential mathematician in that century, David

Hilbert (Haar and Zimmermann, 1911).

(a) Alfréd Haar (1885 -1933) (b) David Hilbert (1862 -1943)

Figure 3.1: Alfréd Haar and his Ph.D supervisor, David Hilbert (Chang, 2010)

However, the name of Haar wavelet and the study of wavelet was not

immediately recognized after he submitting the thesis until around the year 1975.

During this time the concept of wavelet was first pioneered and introduced by

Jean Morlet, a French geophysicist whom need to analyze the backscattered
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seismic signals which carry the information related to the geological layers

(Meyer, 2008). Later then, he collaborated with Alexander Grossmann, a

Croatian-French physicist to perform wavelet analysis and for the first time the

word wavelet emerged in the academic world. The equivalent word for wavelet in

French is ‘ondellete’ which means small wave.

Haar wavelet is a wavelet family or basis that form from a sequence of rescaled

square wave function series. In order to define Haar series, it is crucial to define the

fundamental square wave function. Then the subsequent Haar wavelet functions

are generated from fundamental square wave function with translation and dilation

process. Haar wavelet is the simplest and oldest wavelet. One property of the Haar

wavelet is that it has compact support, which means that it vanishes outside of

a finite interval. Unfortunately, Haar wavelets are not continuously differentiable

which somewhat limits its applications. The other known property is that Haar

wavelet is categorized as an orthogonal function.

In this chapter, a brief introduction to Haar wavelet function, its series

expansion, matrix form and operational matrix is given. Many literatures have

defined Haar wavelet operational matrix on the interval [0 , 1). Here we extend

the usual defined interval to [0, X) as actual problem does not necessarily hold

up to one only.
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3.2 Haar Wavelet Function

An analytic function f(x) can be expanded in a series as

f(x) =
∞∑

n=0

anψn(x) (3.1)

where ψn(x) is the basis in the Hilbert space L2(R) and an is coefficient of the

series. The coefficients can be obtained as follows,

an =

∫ ∞

−∞
f(x)ψn(x)dx (3.2)

For example, if we have a bases function ψn(x) = xn, we could expand the function,

f(x) using power series expansion such as Taylor series expansion. Same goes to

a function with sinusoidal bases, we could use Fourier series expansion for f(x).

In this work an orthogonal function namely Haar wavelet function is considered.

Haar wavelet functions are not continuous. The set of this function is a group of

square waves in interval of [0, X) and defined as below,

h0(x) =
1

m1/2
(0 ≤ x < X) (3.3)

h1(x) =
1

m1/2






1 0 ≤ x <
X

2

−1
X

2
≤ x < X

0 elsewhere

(3.4)

hi(x) =
1

m1/2






2
j
2

k − 1

2j
X ≤ x <

k − 1
2

2j
X

−2
j
2

k − 1
2

2j
X ≤ x <

k

2j
X

0 elsewhere

(3.5)

where i = 1, 2, ∙ ∙ ∙ ,m−1, m = 2J and the resolution J is a positive integer. While

j and k denote the integer decomposition of the index i, for example i = 2j +k−1

17



in which k = 1, 2, 3, ∙ ∙ ∙ , 2j . h0(x) is defined as a constant and is called Haar scaling

function, while h1(x) is called Haar mother wavelet function or fundamental square

wave function.

All the others subsequent Haar wavelet functions are generated from mother

wavelet function, h1(x) with translation and dilation process.

hi(x) = 2
j
2 h1(2

jx − k). (3.6)

Haar wavelet functions are also orthogonal functions, so that it holds the property

as below

(hp(x), hq(x)) =

∫ X

0

hp(x)hq(x)dt =






X

m
if p = q

0 if p 6= q

(3.7)

Eqn. (3.7) can be proven as below. If p = q, then we have

(hp(x), hq(x)) =

∫ X

0

hp(x)hq(x)dt

=

∫ X

0

h
2

n(x)dx

= ‖hn(x)‖2 (3.8)

=

∫ k− 1
2

2j X

k−1

2j X

2j

m
dx +

∫ k

2j X

k− 1
2

2j X

2j

m
dx

=
2j

m

[
k − 1

2

2j
X −

k − 1

2j
X

]

+
2j

m

[
k

2j
X −

k − 1
2

2j
X

]

=
2jX

m

[
1

2j

]

=
X

m
, (3.9)

and if p 6= q, then we have

∫ X

0

hp(x)hq(x)dt = 0, (3.10)
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as all integrals in Eqn. (3.10) are zero. The orthogonal set of the first four Haar

function (m = 4) and first eight Haar function (m = 8) in the interval of

(0 ≤ x < 1) can be shown in Figure 3.2 and Figure 3.3, respectively.
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(a) Haar function of h0(x)
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(b) Haar function of h1(x)
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(d) Haar function of h3(x)

Figure 3.2: First four Haar functions
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(h) Haar function of h7(x)

Figure 3.3: First eight Haar functions
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3.3 Haar Series Expansion

As for Haar series expansion, any function f(x) ∈ L2([0, X)) can be decomposed

into Haar series and can be written as

f(x) =
∞∑

i=0

cihi(x). (3.11)

If the function f(x) may be approximated as a piecewise constant, then the sum

in Eqn. (3.11) may be truncated after m terms, then it becomes

fm(x) ≈
m−1∑

i=0

cihi(x). (3.12)

Haar wavelet coefficient, ci can be easily determined. Suppose {hi(x)} is an

orthogonal set of functions on an interval [0, X). It is possible to determine a set

of coefficients ci, where i = 0, 1, 2, . . . , for which

f(x) = c0h0(x) + c1h1(x) + ∙ ∙ ∙ + cnhn(x) + ∙ ∙ ∙ (3.13)

the coefficient ci can be determined by utilizing the inner product in Eqn. (3.7).

Multiplying Eqn. (3.13) by hp(x) and integrating over the interval [0, X) gives

∫ X

0

f(x)hp(x)dx = c0

∫ X

0

h0(x)hp(x)dx + c1

∫ X

0

h1(x)hp(x)dx +

∙ ∙ ∙ + cn

∫ X

0

hn(x)hp(x)dx + ∙ ∙ ∙

= c0(h0, hp) + c1(h1, hp) + ∙ ∙ ∙ + cn(hn, hp) + ∙ ∙ ∙

(3.14)

By orthogonality, each term on the right-hand side of the last equation is zero

except when p = n. In this case we have

∫ X

0

f(x)hn(x)dx = cn

∫ X

0

h
2

n(x)dx. (3.15)
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It follows that the required coefficients are

cn =

∫ X

0
f(x)hn(x)dx
∫ X

0
h2

n(x)dx
, n = 0, 1, 2, . . . (3.16)

in other words, we can rewrite as

cn =

∫ X

0
f(x)hn(x)dx

‖hn(x)‖2
, n = 0, 1, 2, . . . (3.17)

where we know from Eqn. (3.9) that the norm, ‖hn(x)‖2 =
X

m
, therefore the Haar

wavelet coefficient become

cn =
m

X

∫ X

0

f(x)hn(x)dx, n = 0, 1, 2, . . . (3.18)

Thus, any function f(x) which is square integrable within interval 0 ≤ x < X , the

Haar wavelet coefficient in Eqn. (3.12) can be determined as

ci =
m

X

∫ X

0

fm(x)hi(x)dx. (3.19)

If f(x) and fm(x) in Eqn. (3.12) are the exact and approximate solution,

respectively, then the corresponding error is defined as follows

em(x) = f(x) − fm(x) (3.20)

According to Saeedi et al. (2011), they have shown that the square of the error

norm for Haar wavelet approximation has order of accuracy one, or in other words,

it is first-order accurate.

‖em(x)‖ = O

(
1

m

)

. (3.21)

From Eqn. (3.21), it is clear that the error is inversely proportional to the level

resolution of Haar wavelet function. This implies that Haar wavelet approximation

method will be convergent as m goes to infinity.
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3.4 Haar Wavelet Matrix, Hm

As per say Eqn. (3.12) can be expressed in matrix form as

fm(x) = ct
mhm(x) (3.22)

where Haar coefficient vector, ct
m and Haar function vector, hm(x) are defined as

ct
m =

[

c0 c1 ∙ ∙ ∙ cm−1

]

(3.23)

and

hm(x) =

[

h0(x) h1(x) ∙ ∙ ∙ hm−1(x)

]t

. (3.24)

The superscript t denotes the transpose and the subscript m denotes the dimension

of vectors and matrices. Taking the collocation points as following

xj =
2j − 1

2m
X, j = 1, 2, ∙ ∙ ∙ ,m (3.25)

and defined m square Haar wavelet matrix, Hm as

Hm = [Hij ] (3.26)

where Hij = hi (xj).

For instance, the fourth order Haar wavelet matrix, H4 in the interval of
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0 ≤ x < 8 can be represented in matrix form as below:

H4 =















h0

(
1
)

h0

(
3
)

h0

(
5
)

h0

(
7
)

h1

(
1
)

h1

(
3
)

h1

(
5
)

h1

(
7
)

h2

(
1
)

h3

(
3
)

h2

(
5
)

h2

(
7
)

h3

(
1
)

h3

(
3
)

h3

(
5
)

h3

(
7
)















(3.27)

=















1/2 1/2 1/2 1/2

1/2 1/2 −1/2 −1/2

1/
√

2 −1/
√

2 0 0

0 0 1/
√

2 −1/
√

2















(3.28)

While the eight order of Haar wavelet matrix in the same interval as above can be

written as below.

H8 =
































1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8 1/
√

8

1/
√

8 1/
√

8 1/
√

8 1/
√

8 -1/
√

8 -1/
√

8 -1/
√

8 -1/
√

8

1/2 1/2 -1/2 -1/2 0 0 0 0

0 0 0 0 1/2 1/2 -1/2 -1/2

1/
√

2 -1/
√

2 0 0 0 0 0 0

0 0 1/
√

2 -1/
√

2 0 0 0 0

0 0 0 0 1/
√

2 -1/
√

2 0 0

0 0 0 0 0 0 1/
√

2 -1/
√

2
































(3.29)

In general, it can be shown that Hm is an orthogonal matrix (Artisham, 2012).

That is the reason why the factor 1/
√

m is inserted in the Haar basis function,

Eqns. (3.3), (3.4) and (3.5). This relation implies that the inverse of Haar wavelet

matrix is equal to its transpose.

H−1
m = Ht

m. (3.30)
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This relationship makes the inverse of Haar wavelet matrix easy to be computed,

since computing transpose operation is much simpler than computing an inverse.

Particularly, in the hybrid numerical method in Chapter 4, a bigger Haar wavelet

matrix is needed. Additionally, H−1
m and Ht

m contains many zeros. As m value

increases, zeros element in the matrix also increases as can be seen in Eqn. (3.28)

and Eqn. (3.29). This factor leads to a faster computation and is one of the reason

for rapid convergence of the Haar wavelet series. Hsiao (2004) shows that number

of multiplications operation involves in Haar transform is much easier and faster

than fast Fourier transform and Walsh transform.

The relative connection between the Haar function vector and block pulse

function vector, bm(x) is given by Eqn. (3.31).

hm(x) = Hmbm(x) (3.31)

where bm(x) =

[

b0(x) b1(x) ∙ ∙ ∙ bm−1(x)

]t

. Block pulse function is given by

bi(x) =






1
(i − 1)

m
X ≤ x <

i

m
X,

0 elsewhere,

(3.32)

for i = 0, 1, 2, . . . ,m− 1 and similarly at collocation points as Eqn. (3.25). The m

square block pulse matrix, Bm is an identity matrix since bi(xj) = δij where δij is

a unit step function.

δij =






1 i = j,

0 i 6= j.

(3.33)
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For instance, the first four block pulse matrix (m = 4) is shown as below.

B4 =















1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1















(3.34)

Using the Haar wavelet matrix, the coefficient ct
m in Eqn. (3.23) can be easily

obtained as

ct
m = fm ∙ Ht

m (3.35)

where

fm =

[

f

(
X

2m

)

f

(
3X

2m

)

∙ ∙ ∙ f

(
(2m − 1)X

2m

) ]

. (3.36)

3.5 Integration of Haar Wavelet Function and Its Operational Matrix

Wu et al. (2001) has proposed a new unified method to derive operational matrix

of an orthogonal functions for integration within the interval of 0 ≤ x < 1. They

applied the method to find operational matrices of square wave group function

and sinusoidal group function. The former group includes block pulse function,

Walsh function and Haar wavelet function while the latter includes discrete Fourier

transform, discrete cosine transform and discrete Hartley transform (Wu, 2003).

In this work we derive Haar wavelet operational matrix based on Wu et al.

(2001) works but using generalized block pulse function operational matrix which

is derived by Kilicman and Zhour (2007). By doing this the Haar operational

matrix will be in the interval of 0 ≤ x < X instead of 0 ≤ x < 1. We name this

operational matrix as generalized Haar wavelet operational matrix.
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Let consider the integration of a Haar wavelet function, hm(x) given by

∫ x

0

hm(τ)dτ = Qmhm(x) (3.37)

where Qm is the Haar operational matrix for integration of Haar wavelet function,

hm(x). With Eqn. (3.31), integration of Haar wavelet function can also be written

as
∫ x

0

hm(τ)dτ =

∫ x

0

Hmbm(τ)dτ = Hm

∫ x

0

bm(τ)dτ (3.38)

It is known that the integration of block pulse function can be calculated as below

∫ x

0

bm(τ)dτ ∼= Fmbm(x) (3.39)

where Fm is taken from generalized block pulse operational matrix for integration

in the interval of (0 ≤ x < X) (Kilicman and Zhour, 2007) .

Fm =
X

2m















1 2 ∙ ∙ ∙ 2

0 1 ∙ ∙ ∙
...

... 0
. . . 2

0 ∙ ∙ ∙ 0 1















m×m

(3.40)

From Eqns. (3.37), (3.38) and (3.39), we obtain

Qmhm(x) = HmFmbm(x) (3.41)

Taking the collocation points as Eqn. (3.25) and the fact that Hm is an orthogonal

matrix and Bm is an identity matrix, we can write Eqn. (3.41) as

QmHm = HmFmBm (3.42)

Qm = HmFmHt
m (3.43)
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For example, the generalized Haar operational matrix when m = 4 and X = 8,

from Eqn. (3.43), we will have the matrix as below

Q4 = H4F4H
t
4

=
















4 −2 −
1
√

2
−

1
√

2

2 0 −
1
√

2

1
√

2
1
√

2

1
√

2
0 0

1
√

2
−

1
√

2
0 0
















(3.44)

Besides that the generalized Haar operational matrix for integration, Qm also

can be obtained from the recursive formula by Chen and Hsiao (1997) after some

modifications were made to cover the whole domain [0, X). The generalized Haar

operational matrix from recursive formula can be calculated by equation as below,

Qm =
1

2m







2mQm/2 −XHt
m/2

XHt
m/2 0m/2





 . (3.45)

The above recursive formula starts with

Q1 =

[
X

2

]

. (3.46)

For example, in order to find Q2, the steps are shown as below.

Q2 =
1

4







4Q1 −XH1

XHt
1 0





 (3.47)

=







Q1 −
X

4
H1

X

4
Ht

1 0





 (3.48)

=







X

2
−

X

4
X

4
0





 (3.49)
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Following the same steps, Q4 can be determined as shown below.

Q4 =
1

8







8Q2 −XH2

XHt
2 02





 (3.50)

=
















X

2
−

X

4
−

X

8
√

2
−

X

8
√

2
X

4
0 −

X

8
√

2

X

8
√

2
X

8
√

2

X

8
√

2
0 0

X

8
√

2
−

X

8
√

2
0 0
















(3.51)

The generalized Haar wavelet operational matrix, Q4 when X = 8 yields

Q4 =
















4 −2 −
1
√

2
−

1
√

2

2 0 −
1
√

2

1
√

2
1
√

2

1
√

2
0 0

1
√

2
−

1
√

2
0 0
















. (3.52)

The generalized Haar wavelet operational matrix, Q4 obtained by this recursive

formula gives the same matrix as calculated using combination work of Wu et al.

(2001) and Kilicman and Zhour (2007) as example shown before in Eqn. (3.44).

3.6 Repeated Integration of Haar Wavelet Function

A repeated integral is an integral taken multiple times over a single variable. It is

different from a multiple integral as it consists of a number of integrals taken with

respect to different variables. If we integrate the Haar wavelet function, hm(τ)
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twice in the interval (0, x), we have

∫ ∫
hm(τ)(dτ )2 =

∫ x

0

(∫ τ2

0

hm(τ1)dτ1

)

dτ2 (3.53)

'
∫ x

0

Qmhm(τ2)dτ2 (3.54)

' Q2
mhm(x). (3.55)

Now we can extend Eqn. (3.53) to the case of n times repeated integrations, so

then we have

∫ x

0

∫ τ3

0

. . .

∫ τ2

0︸ ︷︷ ︸
n times

hm(τ1)dτ1dτ2 . . . dτn ' Qn
mhm(x). (3.56)

In Eqn. (3.56), we can see that instead of performing integration on the left side

of equation, we could simply have the solution by matrix multiplication. Thus

making this method is more computer-friendly as in terms of easy to programme.
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CHAPTER 4

NUMERICAL ANALYSIS FOR SOLVING HYPERBOLIC HEAT

CONDUCTION EQUATION IN THIN SURFACE LAYERS

4.1 Introduction

In this chapter a new method to solve partial differential equation of hyperbolic

heat conduction in thin surface layers is introduced. Figure 4.1 illustrates the flow

involved in establishing the new numerical method.

Hyperbolic Heat Conduction Equation, PDE

Discretize time, t using Finite Difference Method

Reduced to ODE

Discretize spatial, x using

Pseudo Spectral Method

Solve the ODE

Solution in t domain

Figure 4.1: Flow of numerical analysis for solving partial differential equation of

hyperbolic heat conduction equation.

31



4.2 Mathematical Formulation in Thin Surface Layers

With recent technology advancement in engineering application, investigating heat

transfer under extreme conditions such as in extremely short period of time, in very

high flux and in very low temperature is becoming important. It has been shown

that under these circumstances, heat propagates with finite speed and non-Fourier

effect became significant. Almost in all cases, heat will always initially encounter a

thin surface layer near the solid surface when it is conducted. Therefore, for further

insight on what is happening at the surface curvature during heat conduction, it

is vital to establish the hyperbolic heat conduction equation together with thin

surface layer coordinate.

Figure 4.2 shows the coordinate system for this problem (Kao, 1977; Chen,

2007). The x − y plane forms a tangential plane at the surface point of interest.

The surface of the body can be described by an equation of the form z = f(x, y).

Figure 4.2: Coordinate system

The hyperbolic heat conduction equation is given by

O2T =
1

C2

∂2T

∂t2
+

1

α

∂T

∂t
(4.1)

where C is the propagation speed of the thermal wave and α is the thermal
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diffusivity. By introducing a new independent variable ς = z − f(x, y), and

neglecting terms of order

(
δ

R

)2

, where δ is the heat penetration length and R is

the average radius of curvature at x = 0 and y = 0, Eqn. (4.1) at x = 0, y = 0 is

given by

∂2T

∂ς2
+ γ

∂T

ς
=

1

C2

∂2T

∂t2
+

1

α

∂T

∂t
(4.2)

where

γ =

(
∂2ς

∂x2
+

∂2ς

∂y2

)

x=0,y=0

= −

(
1

R1

+
1

R2

)

(4.3)

For convenience purposes in subsequent numerical analysis, nondimensionalized

forms of the hyperbolic heat conduction equation were used, in which the following

dimensionless parameters are introduced:

ξ =
C2t

2α
(4.4)

η =
Cς

2α
(4.5)

θ(η, ξ) =
kC(T − T0)

αqr

(4.6)

Q(η, ξ) =
q

qr

(4.7)

where ξ is the dimensionless time, η is the dimensionless length, θ is the

dimensionless temperature, Q is the dimensionless heat flux and qr is the

reference heat flux. The resulting nondimensionalized hyperbolic heat conduction

equation becomes

∂2θ

∂ξ2
+ 2

∂θ

∂ξ
=

∂2θ

∂η2
+ ε

∂θ

∂η
(4.8)

where

ε =
2γα

C
. (4.9)

ε value gives indication whether the surface is convex or concave with value of −1
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and 1 respectively. In addition, if the value of ε is 0, it indicates that the surface

is being semi-infinite surface.

4.3 Numerical Analysis - Finite Difference and Haar Wavelet

Operational Matrix

Consider that we have a dimensionless hyperbolic heat conduction equation as

below

A
∂2θ

∂ξ2
+ B

∂θ

∂ξ
= C

∂2θ

∂η2
+ D

∂θ

∂η
(4.10)

with initial conditions

θ(x, 0) = g1(x) , θξ(x, 0) = g2(x) (4.11)

and boundary conditions

θ(0, t) = f1(t) , θ(X, t) = f2(t). (4.12)

Firstly we divide the dimensionless time interval, [0, τ ) into N equal parts of

length,

Δξ =
τ

N
(4.13)

and discretize the time as

ξn = nΔξ, n = 0, 1, 2, . . . , N. (4.14)

For solving the governing Eqn. (4.10), the dimensionless time derivatives are

approximated using backward finite differences as it will give stability to the

method (Chen and Lin, 1993). Thus we have

θξ
i+1 ≈

θi+1 − θi

Δξ
+ O(Δξ), (4.15)

θξξ
i+1 ≈

θi+1 − 2θi + θi−1

Δξ2 + O(Δξ2). (4.16)
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Substituting Eqns. (4.15) and (4.16) into Eqn. (4.10), we have

CΔξ2θi+1
ηη + DΔξ2θi+1

η + (−A − BΔξ)θi+1 = (−2A − BΔξ) θi + Aθi−1. (4.17)

The partial differential equation, Eqn. (4.10), now become an ordinary

differential equation. Let us consider this notation for the sake of simplicity,

θi+1(η) = U(η, i) ≡ U(η). Therefore, Eqn. (4.17) can be rewritten as

aU ′′(η) + bU ′(η) + cU(η) = k(η) (4.18)

where k(η) ≡ k(η, i) = dθi(η) + eθi−1(η) with coefficients, listed as below

a = CΔξ2, (4.19)

b = DΔξ2, (4.20)

c = (−A − BΔξ), (4.21)

d = (−2A − BΔξ) , (4.22)

e = A. (4.23)

Although Eqn. (4.17) is an implicit equation, it can however be solved quite

easily using generalized Haar wavelet operational matrix method (Chen and Hsiao,

1997). Additionally, implicit method usually enjoy better stability rather than

explicit method. For spatial discretization, the highest order term in Eqn. (4.18)

is assumed can be expanded in terms of Haar wavelet series expansion as Eqn.

(4.24).

U ′′(η) = cthm(η) (4.24)

By integrating Eqn. (4.24) with respect to η, we obtained U ′(η) and U(η) in

which are expressed in terms of Haar wavelet functions and the generalized Haar
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operational matrix as

U ′(η) = ctQmhm(η) + U ′(0)

= ctQmhm(η) +
√

mU ′(0)Θthm(η) (4.25)

and

U(η) = ctQ2
mhm(η) +

√
mU ′(0)ΘtQmhm(η) + U(0)

U(η) = ctQ2
mhm(η) +

√
mU ′(0)ΘtQmhm(η) +

√
mU(0)Θthm(η). (4.26)

The following formula which can be derived from Eqns. (3.37) and (3.53) will be

helpful for solving this boundary value problem.

Qmhm(X) =
X
√

m
Θm (4.27)

and

Q2
mhm(X) =

X
√

m
Λm (4.28)

where

Θt
m =

[
X, 0, 0, . . . , 0

]
, (4.29)

Λt
m =

[
X

2
,
X

22
,

X

27/2
, . . . , . . . , . . .

]

. (4.30)

In general Λt
m is same as the first column of generalized Haar wavelet operational

matrix, Qm. These terms Qmhm(η) and Q2
mhm(η) are appeared in Eqns. (4.25)

and (4.26).

U ′(0) appeared in Eqns. (4.25) and (4.26) can be determined using boundary

conditions in Eqns. (4.12). The boundary conditions with the new notation will

be as follows:

U(0) = f1(t) , U(X) = f2(t). (4.31)
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Substituting Eqn. (4.31) into Eqn. (4.26), yields

U(X) = ctQ2
mhm(X) +

√
mU ′(0)ΘtQmhm(X) +

√
mU(0)Θthm(X) (4.32)

f2(t) = ct X
√

m
Λm +

√
mU ′(0)Θt X

√
m

Θm + f1(t). (4.33)

By further simplification, we can determine U ′(0) as follows

U ′(0) =
1

X

(

f2(t) − f1(t) −
X
√

m
ctΛm

)

. (4.34)

We consider the collocation points as mentioned in Eqn. (3.25). Substituting

Eqns. (4.24), (4.25) and (4.26) with U ′(0) into Eqn. (4.18), we obtain

ct
[
aIm + bQm + cQ2

m

]
= kt −

√
m
[
bU ′(0)Θt + cU ′(0)ΘtQm +

√
mU(0)Θt

]
(4.35)

where Im is an identity matrix and kt can be obtained using Eqn. (3.35). The

calculation is started out by using initial condition information. From Eqn. (4.35),

Haar wavelet coefficients, ct can be calculated provided that the matrix, on the

left side of Eqn. (4.35),
[
aIm + bQm + cQ2

m] is non-singular. The final solution of

Eqn. (4.8) will be solved iteratively using Eqn. (4.17).

This method has been applied to solve general equation of one-dimensional wave

equation with initial and boundary conditions. Details can be seen in Appendix D.

4.4 Numerical Results and Discussion

In this section, we applied the proposed method to solve hyperbolic heat conduction

equation in thin surface layers problem. Eqn. (4.8) will be solved with given two

sets of boundary and initial conditions. All the computations were carried out

using MATLAB®.
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4.4.1 Example 1 - Prescribed Wall Temperature

For this case, the dimensionless boundary conditions is given by

θ(0, ξ) = 1 and θ(η → ∞, ξ) = 0. (4.36)

While the initial conditions is given by

θ(η, 0) = 0 and
∂θ

∂ξ
(η, 0) = 0. (4.37)

The new notation as Eqn. (4.31) for boundary conditions in this case are

U(0) = 1 and U(∞) = 0. (4.38)

First we solve Eqn. (4.18) with boundary conditions in Eqn. (4.38). U ′(0) in Eqn.

(4.35) in this case is unknown and can be found by utilizing the given boundary

condition in Eqn. (4.38). Let say X is the value in dimensionless length domain

that is sufficiently approaching ∞. Using Eqn. (4.26)

U(X) = ctQ2
mhm(X) +

√
mU ′(0)ΘtQmhm(X) +

√
mU(0)Θthm(X), (4.39)

we have U ′(0), as

U ′(0) = −
1

X
−

1
√

m
ctΛm. (4.40)

Substituting Eqn. (4.40) into Eqns. (4.24), (4.25) and (4.26), and and rearranging

Eqn. (4.18), we obtain

ct
[
aIm + bQm − bΛmΘt − cQ2

m − cΛmΘtQm

]
=

kt +

[

b

√
m

X
Θt + c

√
m

X
ΘtQm − c

√
mΘt

]

. (4.41)

The Haar wavelet coefficients, ct are calculated by solving Eqn. (4.41) provided

that matrix in the left side of the equation is non-singular. Finally, the solution
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for dimensionless temperature is given by

U(η) = ct
[
Q2

m − ΛmΘtQm

]
hm(η) −

√
m

X
ΘtQmhm(η). (4.42)

Analytic solution for this case is given by Kao (1977),

θ (η, ξ) = e−
η
2
ε

{

e−η +

(

1 −
ε2

4

) 1
2

η

∫ ξ

η

e−τ

I1

{[(

1 −
ε2

4

)

(τ 2 − η2)

] 1
2

}

(τ 2 − η2)
dτ

}

U(ξ − η). (4.43)

Figure 4.3 illustrates the dissipation behaviour for present numerical solution

with m = 29 for ε = 0 at various dimensionless time ξ = 0.5, 1.0, 1.5 and 2.0,

against analytical solution. From the figure we can clearly see that the solution

of present numerical results, dissipate before and after the wave front. However

there is no numerical oscillations propagate either in front or behind of wave front

as the virtue of backward finite difference scheme (Carey and Tsai, 1982).

This dissipative nature is contributed by the first order accuracy in the Eqn.

(4.15) which is dominant than the dissipation errors by second order accuracy in

Eqn. (4.16). If dissipation errors by second order accuracy become dominant, it

will always be associated with the dispersion behaviour and can be observed by

numerical oscillations in the resultant solution (Tannehill et al., 1997). Thus we

could only see the dissipative behaviour in these solutions.

Noted that ε = 0 will give the solution of the hyperbolic heat conduction

equation for a semi-infinite medium. This has been shown by Baumeister and

Hamill (1969) and reported by Chen and Lin (1993). Figure 4.3 is almost identical

with Figure 1 in (Chen and Lin, 1993) with 11 nodes. They further improve the
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accuracy by increasing the nodes up to 101 nodes and had shown that it could

produce better results.
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Figure 4.3: Present numerical solutions and analytical solutions when ε = 0 at

ξ = 0.5, ξ = 1.0, ξ = 1.5 and ξ = 2.0 with m = 29 and Δξ = 0.001

Table 4.1 shows the comparison of dimensionless temperature, θ for prescribed

wall temperature with m = 29 and Δξ = 0.001 at different dimensionless time,

ξ = 0.5 and ξ = 1.0 with three ε values, ε = −0.1, ε = 0 and ε = 0.1 between

present numerical solution obtained by Eqn. (4.42) and the analytical solution

given by Eqn. (4.43). It can be seen from Table 4.1 that absolute error are

small for all collocation points between numerical and exact solution except in the

vicinity of sharp

continuity, around η = 511/2m when ξ = 0.5 and η = 717/2m when ξ = 1.0.

Results obtained in the present numerical solution has a good agreement with

analytic solution except in the neighbourhood of jump discontinuity.

The results differences in the vicinity of jump continuities can be explained by

40



dissipative behaviour that is noticeable in Figure 4.3. This dissipative behaviour

is associated with the numerical dissipation resulted by truncation errors from

backward finite difference discretization for time domain used in the present

numerical method which originated from terms in Eqns. (4.15) and (4.16).

Table 4.1: Comparison between the present numerical solution and exact solution

for prescribed wall temperature with m = 29 and Δξ = 0.001

η(/2m) ε = −0.1 ε = 0 ε = 0.1

Haar Exact Error∗ Haar Exact Error∗ Haar Exact Error∗

ξ = 0.5

1 0.9993 0.9993 0.000 0.9992 0.9992 0.000 0.9992 0.9992 0.000

103 0.9240 0.9240 0.000 0.9194 0.9194 0.000 0.9148 0.9148 0.000

205 0.8484 0.8484 0.000 0.8400 0.8400 0.000 0.8316 0.8316 0.000

309 0.7712 0.7713 0.000 0.7597 0.7598 0.000 0.7483 0.7483 0.000

411 0.6959 0.6959 0.000 0.6821 0.6821 0.000 0.6685 0.6685 0.000

511 0.3234 0.6226 0.299 0.3154 0.6073 0.292 0.3076 0.5923 0.285

615 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

717 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

821 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

923 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

1023 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

ξ = 1.0

1 0.9991 0.9991 0.000 0.9990 0.9990 0.000 0.9989 0.9989 0.000

103 0.9052 0.9052 0.000 0.8985 0.8985 0.000 0.8916 0.8916 0.000

205 0.8108 0.8108 0.000 0.7988 0.7989 0.000 0.7868 0.7868 0.000

309 0.7148 0.7148 0.000 0.6990 0.6990 0.000 0.6832 0.6832 0.000

411 0.6219 0.6220 0.000 0.6036 0.6037 0.000 0.5856 0.5856 0.000

511 0.5328 0.5329 0.000 0.5134 0.5134 0.000 0.4944 0.4944 0.000

615 0.4426 0.4431 0.001 0.4232 0.4237 0.001 0.4045 0.4050 0.000

717 0.0198 0.0000 0.020 0.0188 0.0000 0.019 0.0178 0.0000 0.018

821 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

923 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000

1023 0.0000 0.0000 0.000 0.0000 0.0000 0.000 0.0000 0.0000 0.000
∗Absolute Error =| θexact − θnumerical |
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Figure 4.4: The dissipation and dispersion errors in the present numerical solution

when m = 29, ε = 0 with Δξ = 0.001 and Δξ = 0.0001 at ξ = 0.5, ξ = 1.0, ξ = 1.5

and ξ = 2.0

The dissipative and dispersive nature in the present numerical results are shown

in Figure 4.4 for prescribed wall temperature for Δξ = 0.001 and Δξ = 0.0001 when

m = 29 and ε = 0. Numerical results for Δξ = 0.0001 has less dissipation than

Δξ = 0.001, however numerical oscillations started propagating after the wave

front, similar to Gibbs-like phenomenon and converge to the analytic solution as

η increases. These numerical oscillations are only restricted in the neighborhood

after the sharp continuity. Apart from the wave front, the numerical solution is

approximately equal to the analytical solution. This ability of wavelet method

to keep numerical oscillations only in the vicinity of sharp continuities has been

observed by Avudainayagam and Vani (1999).

However, numerical result in Fig. 4.4 has caught our attention in which
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numerical oscillations are not supposed to appear when dealing with Haar

wavelet analysis. It has been theoretically proven that Haar wavelet basis does

not exhibit numerical oscillations near the jump discontinuity at any points

(Raeen, 2008; Kelly, 1996). From this knowledge, it affirms us that the numerical

oscillations we were experiencing is an outcome from the usage of finite difference

method for time discretization. Numerical oscillations occurred in the solution

are due to inadequate number of points within the range of sharp discontinuity

which is insufficient to precisely compute the large gradient that leads to

accumulated errors. This bring to a conclusion that in order to have better

numerical solution without numerical oscillation in the vicinity of sharp

continuities, we need to add more points in this area. Sufficient number of points

to avoid numerical oscillations can be achieved by decreasing Δξ value and

increasing Haar wavelet resolution, the m value.

Figure 4.5: Comparison between m = 29, Δξ = 0.001 and m = 210, Δξ = 0.0001

for ε = 0 at ξ = 0.5, ξ = 1.0, ξ = 1.5 and ξ = 2.0
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In Figure 4.5, it can be seen that the numerical oscillations at wave front is

suppressed with m = 210 and Δξ = 0.0001 as compared to m = 29 and

Δξ = 0.0001 in Figure 4.4 . We can see also that by changing Δξ value from

0.001 to 0.0001, the numerical solution is dissipate less and is much closer to

analytical solution especially in the vicinity of jump discontinuities. Although

numerical results with m = 210 and Δξ = 0.0001 are closer to analytical solution

around jump discontinuity neighbourhood, relatively small overshoots are still

exist at the wave front. We need to have more points here by increasing the

amount of Haar wavelet level, thus we proceed with m = 211.

Figure 4.6: Comparison between numerical solution with m = 211, Δξ = 0.0001

and analytical solution for ε = 0 at ξ = 0.5, ξ = 1.0, ξ = 1.5 and ξ = 2.0

In Figure 4.6 the numerical solutions at the wave front is totally eliminated

by increasing Haar wavelet resolution, m = 211 with Δξ = 0.0001. In addition,

the numerical results is dissipate less compared to numerical results with m = 29
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and Δξ = 0.001 (Figure 4.4). This means that numerical results gained by this

combination are nearer to the analytical solutions.
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Figure 4.7: The effect on the surface curvature of non-Fourier heat conduction

equation with prescribed wall temperature.

Figure 4.7 shows the influence of the surface curvature of a solid body on

non-Fourier heat conduction effect with a prescribed wall temperature. The

curvature will increase or decrease the dimensionless temperature of the wave

front, depending on whether the surface is either concave or convex. The present

numerical solution in Figure 4.7 is almost identical with solution obtained by

Chen (2007) which is presented in Figure 2 in the paper.

4.4.2 Example 2 - Prescribed in a Finite Slab

With prescribed in a finite slab, the boundary conditions is given by

θ(0, ξ) = 1 and
∂θ

∂ξ
(1, ξ) = 0, (4.44)
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and initial conditions is given by

θ(η, 0) = 0 and
∂θ

∂ξ
(η, 0) = 0. (4.45)

As in Example 1, U ′(0) in Eqn. (4.35) is unknown and can be found by using

information from the derivation boundary condition, U ′(1) = 0 and U(0) = 1.

Thus we have U ′(0) from Eqns. (4.25) and (4.26) as below

U ′(1) = ctQmhm(1) +
√

mU ′(0)Θthm(1),

U ′(0) = −ct 1
√

m
θm. (4.46)

Substituting Eqns. (4.25), (4.26) and (4.46) into Eq. (4.18), we obtain

ct
[
aIm + bQm − bΘmΘt + cQ2

m − cΘmΘtQm

]
= kt − c

√
mΘt. (4.47)

From Eqn. (4.47), the Haar wavelet coefficient can be calculated. Then the final

answer for this case is given by

U(η) = ct
[
Q2

m − ΘmΘtQm

]
hm(η) +

√
mΘthm(η). (4.48)

Figure 4.8 depicts the dimensionless temperature distribution at various

dimensionless time with prescribed in a finite slab for ε = 0 with m = 29 and

Δξ = 0.001. It shows that overshoot happened after the wave front, which was

predicted from experience solving previous example.
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Figure 4.8: Present numerical solution for prescribed finite slab case when ε = 0

with m = 29 and Δξ = 0.0001 at ξ = 0.2, ξ = 0.5, ξ = 1.2 and ξ = 1.5

Numerical oscillation could be suppressed by increasing m = 210 with

Δξ = 0.0001 as illustrates in Figure 4.9. Further increment in Haar wavelet level

to m = 211 have shown total elimination of numerical oscillation as can be seen in

Figure 4.10.
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Figure 4.9: Present numerical solution for prescribed finite slab case when ε = 0

with m = 210 and Δξ = 0.0001 at ξ = 0.2, ξ = 0.5, ξ = 1.2 and ξ = 1.5
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Figure 4.10: Present numerical solution for prescribed finite slab case when ε = 0

with m = 211 and Δξ = 0.0001 at ξ = 0.2, ξ = 0.5, ξ = 1.2 and ξ = 1.5

Figure 4.11 depicts the effect of the surface curvature of a finite slab body on

non-Fourier heat conduction problem with m = 210, Δξ = 0.0001 at various

dimensionless time. The present numerical solution in Figure 4.11 is almost

48



identical with solution obtained by Chen (2007) which is presented in Figure 4 in

the paper.
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Figure 4.11: The effect of the surface curvature of a finite slab on non Fourier heat

conduction problem with m = 211, Δξ = 0.0001 at ξ = 0.2, ξ = 0.5, ξ = 1.2 and

ξ = 1.5

4.5 Conclusion

The present numerical method solves the hyperbolic heat conduction in thin surface

layers with two set of initial and boundary conditions, that is for prescribed wall

temperature and prescribed in a finite slab. This new method is a combination

method of finite difference and pseudo spectral Haar wavelet where the former used

time discretization and the latter used spatial discretization. Results have shown

that solving the hyperbolic heat conduction equation implicitly using this method

could give encouraging results with m = 29, Δξ = 0.001 and m = 211, Δξ =

0.0001. Ideally the present numerical method will give more accurate results by

increasing Haar wavelet resolution, m. As finite difference is being utilized, the
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present numerical result has to be bounded with the effects of the Courant number

(Tannehill et al., 1997). However the relationship between m and dimensionless

time increment, Δξ is yet to be defined. This method has shown to be stable,

convergent and easily coded. The practical implication of this numerical analysis

is that when the non-Fourier effect is significant, the surface temperature can be

instantaneously modified by the surface curvature (Kao, 1977).
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CHAPTER 5

NUMERICAL ANALYSIS OF LAPLACE INVERSION WITH

GENERALIZED HAAR WAVELET OPERATIONAL MATRIX

5.1 Introduction

In this chapter, numerical analysis of inverse Laplace transform using generalized

Haar operational matrix is introduced. This chapter starts with the overview of

Laplace transform and its inversion. Before establishing the numerical analysis of

Laplace inversion using generalized Haar wavelet operational matrix, we will

explain the underlying concept that leads to operational matrix usage in this

work. We proved the method for the case of the transfer function using the

extension of Riemann-Liouville fractional integral. Since there is an involvement

of Riemann-Liouville fractional integral, we show the Riemann-Liouville

fractional integral of Haar wavelet function. From this derivation, it helps us in

dealing with expression that appear later in the upcoming section. Subsequently,

we will show the derivation of numerical analysis of Laplace inversion base on

generalized Haar wavelet operational matrix with transfer function. Numerical

results and discussions are shown at the end of this chapter.

5.2 Laplace Transform and Laplace Inversion

The Laplace transform of a function x(t) defined for t ≥ 0, denoted by X(s) is

defined by an integral function equation as below.

X(s) = L
{
x(t)

}
=

∫ ∞

0

e−stx(t)dt (5.1)
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In other occasion, we shall use tilde sign to indicate the Laplace transform, for

example

x̃(s) = L
{
x(t)

}
. (5.2)

X(s) is an integral transform,

X(s) =

∫ ∞

0

k(s, t)x(t)dt (5.3)

with k(s, t) = e−st as kernel. Furthermore, the given function x(t) is called the

inverse transform of X(s), so that we could write as

x(t) = L−1
{

X(s)
}

. (5.4)

In other words, we may say x(t) being the inverse transform of X(s).

5.3 Laplace Inversion and Operational Matrix

Let X(s) denotes the transform of a function x(t) which is piecewise continuous

for t ≥ 0, then the Laplace transform of integral can be obtained as below

L

{∫ t

0

x(τ)dτ

}

=
1

s
∙ X(s). (5.5)

Sufficient conditions for the validity of Eqn. (5.5) are that x(τ) be sectionally

continuous and of the order eαt, that s > α in Eqn. (5.5) and further that the

limit of
X(s)

s
exist as s → +0 (Churchill, 1958). We may represent Eqn. (5.5) as

∫ t

0

x(τ)dτ = L−1

{
1

s
∙ X(s)

}

. (5.6)

For division by sn in s domain, with sufficient conditions same as above, we may

express Laplace transform of n times repeated integration as

L






∫ t

0

. . .

∫ τ3

0

∫
2

0︸ ︷︷ ︸
n times

x(τ1)dτ1dτ2 . . . dτn





=

1

sn
∙ X(s) (5.7)

52



where n is a whole number. Following Eqn. (5.6), we could rewrite Eqn. (5.7) in

other way as below:

∫ t

0

. . .

∫ τ3

0

∫ τ2

0︸ ︷︷ ︸
n times

x(τ1)dτ1dτ2 . . . dτn = L−1

{
1

sn
∙ X(s)

}

(5.8)

We could summarize the above equation in a table as below:

Table 5.1: Laplace transform of integral

Item Functions (t domain) Laplace Transforms (s domain)

1

∫ t

0

x(τ)dτ
1

s
∙ X(s)

2

∫ t

0

. . .

∫ t3

0

∫ t2

0︸ ︷︷ ︸
n times

x (τ1) dτ1dτ2 . . . dτn
1

sn
∙ X(s)

Table 5.1 shows two functions which are in t domain and its Laplace transform

form in s domain. From Item 1 and Item 2, it is obvious that the integration

respected to time domain is equivalent to multiplication of 1/s and 1/sn in the s

domain respectively.

Table 5.2: Integration of Haar wavelet function

Item Functions Integration Results

1
∫ t

0
hm(τ)dτ Qmhm(t)

2

∫ t

0

∫ t

0

∙ ∙ ∙
∫ t

0︸ ︷︷ ︸
n times

hm(τ)(dτ )n Qn
mhm(t)

Table 5.2 shows the integration of Haar wavelet function that appeared in

Eqn. (3.37) and Eqn. (3.56). Looking at the integration of Haar wavelet function

in Table 5.2 and Laplace transform of integral in Table 5.1, it can be seen that
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the integration in time domain is comparable with substituting the term 1/s or

1/sn in s domain by the generalized Haar wavelet operational matrix, Qm or Qn
m

respectively in the corresponding matrix. In other words, the generalized Haar

wavelet operational matrix performs like an integrator in the time domain and 1/s

in s domain.

The computation of operational matrix, Qm and powers of Qm are easy

comparatively by performing repeated integration. This property is very helpful

for problems simplification.

5.4 Riemann-Liouville Fractional Integral and Haar Wavelet Function

Let us consider the below n times repeated integration of function f(t) with integral

operator I,

(Inf)(t) =

∫ ∫
. . .

∫

︸ ︷︷ ︸
n times

f(τ1)dτ1 . . . dτn. (5.9)

It is shown in Ross (1975) that the repeated integration with (n − 1) fold can be

written as a single integral. Below is the generalization form for natural order

integrals of function f(t).

(Inf)(t) =

∫ t

0

(t − tn)n−1

(n − 1)!
f(tn)dtn (5.10)

From the definition of repeated integration of Haar wavelet function, hm in

Eqn. (3.56) in Chapter 3 and generalization form for natural order integration in

Eqn. (5.10), we will have (n − 1) fold integral of Haar wavelet function as below.

(Inhm)(t) =
1

(n − 1)!

∫ t

0

(t − t1)
n−1hm(t1)dt1 ≈ Qn

mhm(t). (5.11)

Generalization can be made to deal with fractional integral by substituting (n−1)!
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with Gamma function, Γ(α) (Ross, 1975) , thus Eqn. (5.11) become

(Iαhm)(t) =
1

Γ(α)

∫ t

0

(t − t1)
α−1hm(t1)dt1 ≈ Qα

mhm(t). (5.12)

This is Riemann-Liouville fractional integral of Haar wavelet function, hm(t) with

integral order of α > 0.

Some modification is necessary to accommodate with expression in finding

inversion of Laplace transform later. Firstly we consider the fractional integral of

Haar wavelet scaling function, h0(x) of order α > 0 and Eqn. (5.12) is then

become

(Iαh0)(t) =
1

Γ(α)

∫ t

0

(t − t1)
α−1h0(t1)dt1

=
1

Γ(α)

1
√

m

∫ t

0

(t − t1)
α−1dt1

=
1

√
m

tα

Γ(α + 1)
. (5.13)

By cross multiplying the Eqn. (5.13), it then becomes

tα

Γ(α + 1)
=

√
m

Γ(α)

∫ t

0

(t − t1)
α−1h0(t1)dt1

=

√
m

Γ(α)

∫ t

0

(t − t1)
α−1
[
1 0 ∙ ∙ ∙ 0

]
hm(t1)dt1

= e
1

Γ(α)

∫ t

0

(t − t1)
α−1hm(t1) dt1 (5.14)

where e =
[√

m 0 ∙ ∙ ∙ 0
]
. Then, with Eqn. (5.12) and take collocation point

as

ti =
2i − 1

2m
T, i = 1, 2, ∙ ∙ ∙ ,m (5.15)

thus, Eqn. (5.14) is then becomes,

tα

Γ(α + 1)
= eQαhm(t). (5.16)

Expression in Eqn. (5.16) is very helpful during calculation to find inversion of

Laplace transform later in the transfer function expression.
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5.5 Laplace Inversion of Transfer Function with Generalized Haar

Wavelet Operational Matrix

Let X(s) be a transfer function that has a form as below:

X(s) =
a0s

n + a1s
n−1 + a2s

n−2 + ∙ ∙ ∙ + an

sα+1(b0sn + b1sn−1 + b2sn−2 + ∙ ∙ ∙ + bn)
(5.17)

where 0 ≤ α < 1, a and b are real numbers and is truncated to n (n ∈ Z+). By

dividing each terms in Eqn. (5.17) with sn, the equation can be expressed in terms

of 1/s. Eqn. (5.17) can be rewritten as

X (s) =
a0 +

a1

s
+

a2

s2
+ ∙ ∙ ∙ +

an

sn

sα+1

(

b0 +
b1

s
+

b2

s2
+ ∙ ∙ ∙ +

bn

sn

) (5.18)

or

X̂

(
1

s

)

=
1

sα+1

G1

(
1

s

)

G2

(
1

s

) (5.19)

where

G1

(
1

s

)

= a0 +
a1

s
+

a2

s2
+ ∙ ∙ ∙ +

an

sn
(5.20)

and

G2

(
1

s

)

= b0 +
b1

s
+

b2

s2
+ ∙ ∙ ∙ +

bn

sn
. (5.21)

By cross multiplying Eqn. (5.18), we have

(

b0 +
b1

s
+

b2

s2
+ ∙ ∙ ∙ +

bn

sn

)

X (s) =
1

sα+1

(
a0 +

a1

s
+

a2

s2
+ ∙ ∙ ∙ +

an

sn

)
. (5.22)

Taking Laplace inversion of Eqn. (5.22) at both sides yields

b0x(t) + b1

∫ t

0

x(τ)dτ + . . . + bn

∫ t

0

. . .

∫ τ3

0

∫ τ2

0︸ ︷︷ ︸
n times

x(τ1)dτ1dτ2 . . . dτn =

a0t
α

Γ(α + 1)
+

a1t
α+1

Γ(α + 2)
+

a2t
α+2

Γ(α + 3)
+ ∙ ∙ ∙ +

antα+n

Γ(α + n + 1)
. (5.23)
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Using Eqn. (5.16) and taking the collocation points as Eqn. (5.15) and factorize

ct
m, e and Hm, Eqn. (5.23) becomes

ct
m(b0Im + b1Qm + b2Q

2
m + ∙ ∙ ∙ + bnQ

n
m)Hm

= eQα
m(a0Im + a1Qm + a2Q

2
m + ∙ ∙ ∙ + anQ

n
m)Hm (5.24)

where e =
[√

m 0 ∙ ∙ ∙ 0
]
. Rewrite Eqn. (5.24) with

g1(Qm) = a0Im + a1Qm + a2Q
2
m + ∙ ∙ ∙ + anQ

n
m (5.25)

and

g2(Qm) = b0Im + b1Qm + b2Q
2
m + ∙ ∙ ∙ + bnQ

n
m, (5.26)

Eqn. (5.24) becomes

ct
mg2(Qm) = eQα

mg1(Qm). (5.27)

g1(Qm) and g2(Qm) are matrix functions yield by substituting 1/s terms with the

generalized Haar wavelet operational matrix in G1(1/s) and G2(1/s) defined in

Eqn. (5.20) and (5.21) respectively. Multiplying both sides with g−1
2 (Qm), the

vector coefficient, ct
m can be easily calculated by multiplication of matrices as

below.

ct
m = eQα

mg1(Qm)g−1
2 (Qm) (5.28)

Once the Haar wavelet coefficient, ct
m is known, the Laplace inversion of the transfer

function X(s) is given by

x(t) = ct
mHm(t). (5.29)

Substituting, the Haar coefficient, ct
m calculated in Eqn. (5.28) into Eqn. (5.29),

we have

x(t) = eQα
mg1(Qm)g2(Qm)−1Hm(t). (5.30)
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By introducing an identity matrix,

E = Q−1
m Hm(t)Ht

m(t)Qm (5.31)

and

X̂(Qm) = Qα+1g1(Qm)g2(Qm)−1 (5.32)

into Eqn. (5.30), we can rewrite as

x(t) = eQ−1
m Hm(t)Ht

m(t)X̂(Qm)Hm(t). (5.33)

Taking the collocation points as Eqn. (5.15) and use Eqn. (3.43), yields

x = eHmF−1
m Ht

mX̂(Qm)Hm (5.34)

where

F−1
m =

2m

τ










1 -2 ∙ ∙ ∙ -2

0 1 ∙ ∙ ∙ 2
... 0

. . . -2

0 ∙ ∙ ∙ 0 1










m×m

(5.35)

Multiplying eHmF−1
m in Eqn. (5.34), thus we have Laplace inversion as

x =

[
2m

τ
−

2m

τ
∙ ∙ ∙ −

2m

τ

]

Ht
mX̂(Qm)Hm (5.36)

where X̂(Qm) = Qα+1g1(Qm)g2(Qm)−1 is from Eqn. (5.19) by replacing 1/s with

the generalized Haar operational matrix, Qm.

From the derivation above, finding Laplace inversion for a transfer function, it

can be concluded that numerical Laplace inversion can be easily computed by the

following steps as figure below.
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Transfer function, X(s)

Express the transfer function X(s) in

terms of 1/s and denotes as X̂(1/s)

Substitute 1/s with the generalized

Haar wavelet operational matrix, Qm.

Calculate the Laplace inversion by

x =

[
2m

τ
−

2m

τ
∙ ∙ ∙ −

2m

τ

]

Ht
mX̂(Qm)Hm

Figure 5.1: Steps of finding Laplace inversion from irrational transfer function

using generalized Haar wavelet operational matrix method.

Through this method, there is no need to do integration operations. Laplace

inversion can be calculated by multiplication of matrices.

5.6 Numerical Results

In this section a few examples of transfer function is solved using this method.

Examples in the next section includes rational and irrational transfer function.

Examples start with rational transfer function followed by irrational transfer

function and exponential transfer function. Examples of initial value problem

and partial differential equation of heat equation are also illustrated to

demonstrate the simplicity and effectiveness of this method.
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5.6.1 Rational Transfer Function

5.6.1.1 Example 1

Find the Laplace inversion for rational transfer function

X(s) =
1

s2 + 1
. (5.37)

Expressing Eqn. (5.37) in terms of 1/s, we have

X̂

(
1

s

)

=
1

s2

1

1 +

(
1

s

)2 . (5.38)

Substituting 1/s terms with generalized Haar operational matrix, Qm, it becomes

X̂(Qm) = Q2
m(Im + Q2

m)−1. (5.39)

The inversion of Laplace transform with τ = 10 and m = 64 is given by

x =

[
128

10
−

128

10
∙ ∙ ∙ −

128

10

]

1×64

∙Ht
64 ∙ Q

2
64(I64 + Q2

64)
−1 ∙ H64. (5.40)

Analytical solution for Eqn. (5.37) is

L−1

(
1

s2 + 1

)

= sin t. (5.41)

The results is shown in Figure 5.3 for m = 25 and Figure 5.4 for m = 26. Table

5.3 presents the data for Figure 5.4.

60



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

x(
t)

m=16

 

 

Haar
Exact

m = 25

Figure 5.2: Comparison between numerical solution and analytical solution of

inverse Laplace transform for rational transfer function X(s) =
1

s2 + 1
with τ = 1

and m = 25.
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Figure 5.3: Comparison between numerical solution and analytical solution of

inverse Laplace transform for rational transfer function X(s) =
1

s2 + 1
with τ = 10

and m = 25.
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Figure 5.4: Comparison between numerical solution and analytical solution of

inverse Laplace transform for rational transfer function X(s) =
1

s2 + 1
with τ = 10

and m = 26.

Table 5.3: Data of Figure 5.4

x (×10/128) Numerical Analytic Absolute Relative

Solution Solution Error Error

1 0.077651 0.078046 0.000394 0.005048

9 0.643556 0.646605 0.003049 0.004715

17 0.967102 0.9707 0.003597 0.003706

25 0.926445 0.927798 0.001353 0.001458

33 0.536896 0.534121 0.002775 0.005195

41 -0.054844 -0.061494 0.006649 0.108124

49 -0.625931 -0.633859 0.007928 0.012508

65 -0.934645 -0.933861 0.000784 0.000840

73 -0.556013 -0.548074 0.007939 0.014485

81 0.032009 0.044925 0.012916 0.287501

89 0.607977 0.620939 0.012962 0.020875

97 0.954985 0.962192 0.007207 0.007490

113 0.574838 0.561877 0.012961 0.023067

121 -0.009157 -0.028343 0.019187 0.676957

127 -0.457708 -0.476876 0.019168 0.040195

62



5.6.1.2 Example 2

Find the Laplace inversion for rational transfer function

X(s) =
10

s + 3
. (5.42)

Express in terms of 1/s, yields

X̂

(
1

s

)

=
10/s

1 + 3/s
. (5.43)

Substitute the terms 1/s with generalized Haar wavelet operational matrix, Qm,

we have,

X̂ (Qm) = 10Qm(Im + 3Qm)−1. (5.44)

The inversion of Laplace transform with τ = 2 and m = 25 is given by

x = 10 ∙

[
32

2
−

32

2
∙ ∙ ∙ −

32

2

]

1×32

∙Ht
32 ∙ Q32 ∙ (I32 + 3Q32) ∙ H32. (5.45)

Analytical solution for Laplace inversion of Eqn. (5.42) is

L−1

(
10

s + 3

)

= 10e−3t. (5.46)

The result is shown in Figure 5.6 and its data in Table 5.4.
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Figure 5.5: Comparison between numerical solution and analytical solution of

inverse Laplace transform for rational transfer function X(s) =
10

s + 3
with m = 25

and τ = 2.
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Figure 5.6: Comparison between numerical solution and analytical solution of

inverse Laplace transform for rational transfer function X(s) =
10

s + 3
with m = 26

and τ = 2.
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Table 5.4: Data of Figure 5.6

x (×2/64) Numerical Analytic Absolute Relative

Solution Solution Error Error

1 9.142857 9.105104 0.037754 0.004146

5 6.276851 6.257840 0.019011 0.003038

9 4.309251 4.300946 0.008304 0.001931

13 2.958432 2.955994 0.002438 0.000825

17 2.031054 2.031623 0.000569 0.000280

21 1.394381 1.396313 0.001932 0.001384

25 0.957285 0.959671 0.002386 0.002486

29 0.657206 0.659571 0.002366 0.003587

33 0.451192 0.453316 0.002125 0.004688

37 0.309757 0.311560 0.001803 0.005787

41 0.212658 0.214132 0.001474 0.006884

45 0.145996 0.147170 0.001174 0.007977

49 0.100231 0.101149 0.000918 0.009076

53 0.068811 0.069518 0.000707 0.010170

57 0.047241 0.047779 0.000538 0.011260

61 0.032433 0.032838 0.000406 0.012364

63 0.026873 0.027224 0.000351 0.012893

5.6.2 Irrational Transfer Function

5.6.2.1 Example 1

Find the inversion of Laplace transform for irrational transfer function below

X(s) =
1

sn
√

s
. (5.47)

Express above equation in terms of 1/s, we have,

X̂

(
1

s

)

=

(
1

s

)n(
1

s

) 1
2

. (5.48)

Substitute 1/s terms with generalized Haar operational matrix, Qm, it becomes

X̂ (Qm) = Qn
mQ1/2

m . (5.49)
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Notice that square root of generalized Haar wavelet operational matrix, Q
1/2
m term

in Eqn. (5.49) is calculated using MATLAB® built-in command, sqrtm(Q) . Haar

wavelet operational matrix is always positive definite, hence the existence of Haar

wavelet operational matrix inverses and its square root are never unavailable (Chen

and Hsiao, 1997). The numerical Laplace inversion is given by

x =

[
2m

τ
−

2m

τ
∙ ∙ ∙ −

2m

τ

]

1×m

∙Ht
m ∙ Qn

m ∙ Q1/2
m ∙ Hm. (5.50)

Analytical solution of Laplace inversion for Eqn. (5.47) is

L−1

(
1

sn
√

s

)

=
4nn!

(2n)!
√

π
tn−1/2. (5.51)

The results is shown in Figure 5.7 and its data in Table 5.5 with n = 3, τ = 30

and m = 32.
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Figure 5.7: Comparison between numerical solution and analytical solution of

inverse Laplace transform for rational transfer function X(s) =
1

sn
√

s
with m = 25

and τ = 30.
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Table 5.5: Data of Figure 5.7

x (×30/64) Numerical Analytic Absolute Relative

Solution Solution Error Error

1 0.150436 0.045267 0.105170 2.323326

7 6.167896 5.868432 0.299464 0.051030

13 27.990590 27.582611 0.407979 0.014791

19 71.722949 71.229680 0.493268 0.006925

25 142.023656 141.457838 0.565818 0.004000

31 242.834029 242.203954 0.630076 0.002601

37 377.636235 376.947879 0.688357 0.001826

43 549.585080 548.843004 0.742076 0.001352

49 761.586360 760.794201 0.792160 0.001041

55 1016.348121 1015.508861 0.839260 0.000826

61 1316.416351 1315.532498 0.883854 0.000672

63 1426.927258 1426.029031 0.898227 0.000630

5.6.2.2 Example 2

Find the Laplace inversion for exponential transfer function

X(s) =
e−a

√
s

√
s

. (5.52)

Express above equation in terms of 1/s, we have,

X̂

(
1

s

)

=

(
1

s

) 1
2

e−a( 1
s)

− 1
2

. (5.53)

Substitute 1/s terms with generalized Haar operational matrix, Qm, it becomes

X̂ (Qm) = (Qm)
1
2 exp(−a (Qm)−

1
2 ). (5.54)

The Laplace inversion with a = 1, τ = 1 and m = 16 is given by

x =

[
32

1
−

32

1
∙ ∙ ∙ −

32

1

]

Ht
m (Qm)

1
2 e−(Qm)−

1
2 Hm. (5.55)

Notice that exponential matrix for generalized Haar wavelet operational matrix

term, e−(Qm)−
1
2 in Eqn. (5.55) can be calculated using MATLAB® built-in
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command expm(Q) . While, the analytical solution for Laplace inversion of Eqn.

(5.52) is given by

L−1

(
e−a

√
s

√
s

)

=
e−a2/4t

√
πt

. (5.56)

The results is shown in Figure 5.8 and its data in Table 5.6.
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Figure 5.8: Comparison between numerical solution and analytical solution of

inverse Laplace transform for irrational transfer function X(s) =
e−a

√
s

√
s

with a = 1,

m = 24 and τ = 1.
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Table 5.6: Data of Figure 5.8

x (×1/32) Numerical Analytic Absolute Relative

Solution Solution Error Error

3 0.111791 0.128033 0.016241 0.126850

5 0.270179 0.288167 0.017986 0.062415

7 0.391819 0.384693 0.007126 0.018524

9 0.439733 0.437360 0.002373 0.005426

11 0.465646 0.465000 0.000646 0.001389

13 0.480754 0.478377 0.002377 0.004969

15 0.483684 0.483427 0.000257 0.000532

17 0.484484 0.483506 0.000978 0.002023

19 0.480992 0.480576 0.000416 0.000866

21 0.476124 0.475822 0.000302 0.000635

23 0.470355 0.469978 0.000377 0.000802

25 0.463596 0.463506 0.000089 0.000192

27 0.456960 0.456707 0.000252 0.000552

29 0.449823 0.449775 0.000047 0.000104

31 0.442976 0.442836 0.000140 0.000316

5.6.2.3 Example 3

Find the Laplace inversion for transfer function

X(s) =
a

2
√

πs3/2
e−a2/4s. (5.57)

Express above equation in terms of 1/s, we have,

X

(
1

s

)

=
a

2
√

π

(
1

s

) 3
2

e
−a2

4s . (5.58)

Substitute 1/s terms with generalized Haar operational matrix, Qm, it becomes

X̂(Qm) =
a

2
√

π
(Qm)

3
2 e

−a2

4
Qm (5.59)

The inversion of Laplace transform with a = 1, τ = 5 and m = 32 is given by

x =
1

2
√

π
∙

[
64

5
−

64

5
∙ ∙ ∙ −

64

5

]

∙ Ht
32 ∙ (Q32)

3
2 ∙ e

−Q32
4 ∙ H32 (5.60)
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Analytical solution for Eqn. (5.57) is given by

L−1

(
a

2
√

πs3/2
e−a2/4s

)

=
sin a

√
t

π
. (5.61)

The results is shown in Figure (5.9) and its data in Table (5.7).
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Figure 5.9: Comparison between numerical solution and analytical solution of

inverse Laplace transform for irrational transfer function X(s) =
a

2
√

πs3/2
e−a2/4s

with a = 1, m = 25 and τ = 5.
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Table 5.7: Data of Figure 5.9

x (×5/64) Numerical Analytic Absolute Relative

Solution Solution Error Error

1 0.077323 0.087816 0.010494 0.119500

5 0.184305 0.186242 0.001937 0.010400

9 0.235848 0.236714 0.000866 0.003658

13 0.268667 0.269179 0.000511 0.001898

17 0.290515 0.290859 0.000344 0.001183

21 0.304777 0.305025 0.000248 0.000813

25 0.313357 0.313544 0.000187 0.000596

29 0.317480 0.317625 0.000146 0.000460

33 0.318001 0.318117 0.000115 0.000362

37 0.315557 0.315649 0.000093 0.000295

41 0.310637 0.310712 0.000075 0.000241

45 0.303634 0.303695 0.000061 0.000201

49 0.294869 0.294918 0.000049 0.000166

53 0.284607 0.284647 0.000040 0.000141

57 0.273076 0.273108 0.000032 0.000117

61 0.260469 0.260494 0.000025 0.000096

5.6.2.4 Example 4

Find the inversion of Laplace transform for below rational transfer

X(s) =
e

1
s

s
√

s
. (5.62)

Express Eqn. (5.62) above equation in terms of 1/s, we have,

X

(
1

s

)

=
1

s

(
1

s

) 1
2

e
1
s . (5.63)

Substitute 1/s terms with generalized Haar operational matrix, Qm, it becomes

X̂(Qm) = Qm(Qm)
1
2 eQm . (5.64)

The inversion of Laplace transform with τ = 10 and m = 16 is given by

x =

[
32

10
−

32

10
∙ ∙ ∙ −

32

10

]

Ht
16 ∙ Q16 ∙ (Q16)

1
2 ∙ eQ16 ∙ H16. (5.65)
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Analytical solution for Eqn. (5.62) is given by.

L−1

(
e

1
s

s
√

s

)

=
sinh 2

√
t

√
π

. (5.66)

The results is shown in Figure 5.10 and its data in Table 5.8.
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Figure 5.10: Comparison between numerical solution and analytical solution of

inverse Laplace transform for irrational transfer function X(s) =
e

1
s

s
√

s
with m = 24

and τ = 10.
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Table 5.8: Data of Figure 5.10

x (10/128) Numerical Analytic Absolute Relative

Solution Solution Error Error

1 0.302221 0.332077 0.029856 0.089907

7 1.181332 1.173735 0.007597 0.006473

13 2.082231 2.079523 0.002708 0.001302

19 3.207519 3.201149 0.006370 0.001990

25 4.605088 4.598966 0.006122 0.001331

31 6.336745 6.327982 0.008762 0.001385

37 8.456198 8.446414 0.009785 0.001158

43 11.030775 11.018246 0.012529 0.001137

49 14.129035 14.114571 0.014464 0.001025

55 17.832289 17.814598 0.017692 0.000993

61 22.227128 22.206584 0.020544 0.000925

67 27.413283 27.388771 0.024511 0.000895

73 33.498756 33.470356 0.028400 0.000849

79 40.605882 40.572531 0.033351 0.000822

85 48.868057 48.829593 0.038464 0.000788

91 58.434784 58.390125 0.044658 0.000765

97 69.469518 69.418281 0.051237 0.000738

103 82.154120 82.095149 0.058971 0.000718

109 96.687539 96.620228 0.067312 0.000697

115 113.289936 113.213008 0.076928 0.000679

121 132.202055 132.114670 0.087385 0.000661

127 153.689186 153.589904 0.099282 0.000646

5.6.3 Initial Value Problem

Consider the initial value problem

t
d2x

dt2
+

dx

dt
+ tx = 0. (5.67)

Initial conditions for this case are given by

x(0) = 1 and x′(0) = 0 (5.68)
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We are going to solve this problem with Laplace transform method. Firstly we have

to take Laplace transform of Eqn. (5.67) with respect to t, so that the expression

becomes

d

ds

{

s2X − sx(0) − x′(0)

}

+ sX − x(0) −
dX

ds
= 0. (5.69)

Substituting above equation with given initial condition in Eqn. (5.68) gives

(s2 + 1)
dX

ds
+ sX = 0 (5.70)

By integrating the above equation gives solution in s domain as below

X(s) =
1

√
s2 + 1

. (5.71)

To find the final answer in t domain, we have to find Laplace inversion of Eqn.

(5.71). Finding the inversion of Laplace transform with this numerical method will

start with expressing Eqn. (5.71) in terms of 1/s. Thus, the equation becomes

X̂

(
1

s

)

=
1/s

√
1 + (1/s)2

. (5.72)

Then, all terms with 1/s is substituted with generalized Haar wavelet operational

matrix,

X̂ (Qm) = Qm(Im + Q2
m)

1
2 . (5.73)

Therefore, the Laplace inversion for this problem with m = 28 and τ = 30 is given

by

x =

[
512

30
−

512

30
∙ ∙ ∙ −

512

30

]

Ht
mQm(Im + Q2

m)
1
2 (Qm)Hm. (5.74)

The solution is shown in Figure 5.11 and its data in Table 5.9. The analytical

solution for Eqn. (5.67) is the first kind Bessel function of zeroth order, J0(t).
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Figure 5.11: Comparison between numerical solution and analytical solution for

initial value problem, t
d2x

dt2
+

dx

dt
+ tx = 0 with m = 28 and τ = 30.

Table 5.9: Data of Figure 5.11

x (×30/512) Numerical Analytic Absolute Relative

solution solution Error Error

1 0.998288 0.999142 0.000854 0.000855

31 0.331278 0.330444 0.000834 0.002524

61 -0.388527 -0.389169 0.000642 0.001650

91 -0.066750 -0.064718 0.002032 0.031398

151 -0.049088 -0.051735 0.002647 0.051165

211 0.120132 0.122830 0.002698 0.021965

271 -0.160514 -0.162654 0.002140 0.013157

301 -0.083414 -0.079964 0.003450 0.043144

337 0.178919 0.178542 0.000378 0.002117

355 0.073666 0.069880 0.003786 0.054179

367 -0.045525 -0.049582 0.004057 0.081824

373 -0.099023 -0.102458 0.003435 0.033526

385 -0.162780 -0.163792 0.001013 0.006185

397 -0.148710 -0.146735 0.001975 0.013460

403 -0.113853 -0.110624 0.003229 0.029189

415 -0.010319 -0.005835 0.004484 0.768466

451 0.138176 0.135982 0.002194 0.016134

511 -0.096959 -0.093181 0.003778 0.040545
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5.6.4 Heat Equation

Heat equation is one of the prominent example of partial differential equation and

it is a parabolic equation. This problem is taken from Carrier and Pearson (1976).

Despite the simplicity of this example, it will show that our method is usable in

solving heat equation.

Consider one-dimensional heat equation problem which is given by below

equation.

∂U

∂t
= a2 ∂U

∂x2
(5.75)

We have to determine the U(x, t) in the region of 0 < x < ∞ and 0 < t < ∞. The

initial condition is given by

U(x, 0) = 0, x > 0 (5.76)

and boundary condition by

U(0, t) = 1, t > 0. (5.77)

Taking Laplace transform at both side of Eqn. (5.75) with respect to time, t we

obtain,

− U(x, 0) + sŨ(x, s) = s2Ũxx (5.78)

where

Ũ(x, s) =

∫ ∞

0

e−stU(x, t)dt (5.79)

and we assume that U(x, t) to be sufficiently well behaved that the processes of

integration with respect to time, t and differentiation with respect to spatial, x are
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interchangeable, so that

∫ ∞

0

e−stUxx(x, t)dt =

(∫ ∞

0

e−stU(x, t)dt

)

xx

. (5.80)

Substitute the initial condition then the solution of Eqn. (5.78) is

Ũ(x, s) = A exp (
√

sx/a) + B exp (
√

sx/a), (5.81)

where A and B is yet to be determined unknown constant. For large x, it is

anticipated that the function U(x, t) will be bounded function of t, so that its

Laplace transform must approach to zero as s approach to ∞. Therefore, the

coefficient B must be set equal to zero. To determine A, we know that from initial

condition based on given Eqn. (5.76), we have

Ũ(x, s) =
1

s
exp

(
−
√

sx

a

)

. (5.82)

To find the solution numerically using this method, we need to express Eqn. (5.82)

in terms of 1/s, then we have

Ũ

(
1

s

)

=
1

s
exp








−

(
1

s

)−1/2

x

a








. (5.83)

Next, we have to substitute 1/s terms with the generalized Haar wavelet

operational matrix, Qm. Thus Eqn. (5.83) become

ũ (Qm) = Qm exp

(
− (Qm)−1/2 x

a

)

. (5.84)

If x = 100 and a = 10, we have

ũ (Qm) = Qm exp

(
−100 ∙ Qm

10

)−1/2

. (5.85)
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Finally, the numerical solution for Laplace inversion of Eqn. (5.82) with m = 25

and τ = 50 can be calculated by

x =

[
64

50
−

64

50
∙ ∙ ∙ −

64

50

]

Ht
32 ∙ Q32 ∙ exp (−Q32)

−1/2 ∙ H32. (5.86)

We could invert directly Eqn. (5.82) using table of Laplace transform to find

the solution analytically. By inverting both sides we have analytical solution for

Eqn. (5.75) as

u(x, t) = erfc

(
x

2a
√

t

)

. (5.87)

Figure 5.12 and Figure 5.13 illustrate result obtained by numerical and analytical

solution for heat equation with m = 25 and m = 27 respectively. Table 5.10 shows

data for Figure 5.12 .
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Figure 5.12: Comparison between numerical solution and analytical solution of

inverse Laplace transform for heat equation, Ut = a2Uxx with a = 10, m = 25 and

τ = 50.
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Figure 5.13: Comparison between numerical solution and analytical solution of

inverse Laplace transform for heat equation, Ut = a2Uxx with a = 10, m = 27 and

τ = 50.

Table 5.10: Data of Figure 5.12

x (×50/64) Numerical Analytic Absolute Relative

solution Solution Error Error

7 0.003096 0.002497 0.000599 0.239910

9 0.007934 0.007661 0.000273 0.035617

13 0.026334 0.026500 0.000166 0.006268

19 0.066259 0.066457 0.000198 0.002983

23 0.095142 0.095293 0.000151 0.001582

27 0.123551 0.123658 0.000107 0.000866

29 0.137306 0.137395 0.000089 0.000650

33 0.163673 0.163734 0.000061 0.000376

37 0.188404 0.188445 0.000042 0.000222

41 0.211494 0.211522 0.000028 0.000133

47 0.243228 0.243243 0.000015 0.000061

51 0.262609 0.262618 0.000009 0.000035

55 0.280707 0.280713 0.000005 0.000019

59 0.297636 0.297638 0.000002 0.000008

63 0.313500 0.313500 0.000000 0.000001
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5.7 Numerical Discussions

The results of all examples are shown in figures and tables. Each figure is plotted

with solution obtained from present numerical analysis and exact solution.

Results from the figures provide a better visualization regarding the agreement

between numerical and exact solution. On the other hand, results in table format

display digits obtained from numerical and exact solution which will give insights

in terms of solutions’ accuracy of our method. Furthermore, from this digits we

calculate absolute error and relative error which illustrate the difference between

approximated valued from the present numerical analysis and the true value from

the exact solution.

Even though the exact solution is available in all examples, the use of numerical

Haar wavelet operational matrix method is much simpler than the conventional

contour integration method and it can be easily coded. This factor gives Haar

wavelet a reason to be ventured further as numerical tools. Additionally, few

benefits come from its great features such as faster computation and attractiveness.

This work is going to be a stepping stone in finding Laplace inversion for transfer

function which is not available in the inversion table of Laplace transform.

It can be observed from the figures that the present numerical method shows

good agreement with the exact solution. As shown in all figures, the time domain

for numerical results obtained are not restricted to one. This is resulted by the

extension work we have done to generalize the Haar wavelet operational matrix.

By generalizing the Haar operational matrix enabling us finding the solution in all

time domain. Without generalization of Haar wavelet operational matrix, we can
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only obtain numerical result within the interval 0 ≤ t < 1, for instance in Figure

5.2.

The present numerical method provides encouraging results even for small

values of Haar wavelet resolution, m = 24. The accuracy of solution in present

numerical results increase as bigger value of m is used as showed in Example 1 of

rational transfer function, Figure 5.3 and Figure 5.4 from m = 25 and m = 26

respectively.

5.8 Conclusion

In this chapter, a numerical method of finding Laplace inversion is derived from

transfer function using generalized Haar wavelet operational matrix. Laplace

inversion of exponential transfer function also can be calculated by this method

as exponential function is expandable using Maclaurin series in which the

expansion expression will have 1/s terms. Generalized Haar wavelet operational

matrix is constructed based on combination work of obtaining the corresponding

integral operational matrix of Haar basis (Wu et al., 2001) and generalized block

pulse function (Kilicman and Zhour, 2007). This method enable finding the

Laplace inversion numerically without limiting its time domain within the

interval 0≤ t < 1 only.

Some of the most effective methods for the numerical inversion of the Laplace

transform are based on the approximation of the Bromwich contour integral.

Instead of performing the conventional contour integration, Laplace inversion can

be achieved by a series of matrix multiplication via numerical generalized Haar

operational matrix method. As a result, this method gives an alternative way to
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find the solution for inversion of Laplace transform in a much quicker time.

Furthermore, due to sparse matrices which appeared during the calculation, it

contributes to a faster computational analysis. Numerical results demonstrate

good performance of the method used in term of accuracy and competitiveness

compared to analytical solution. Examples on solving differential equation, initial

value problem and heat equation by Laplace transform method are also shown

and the numerical solution obtained shows good agreement with analytical

solution. The present method is very convenient as it requires only simple

computing systems, less computing time and less computer memory.
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CHAPTER 6

CONCLUSION AND FUTURE WORK

The study of this thesis was started with understanding the mathematical

background of Haar wavelet. Many scholars whom proposed numerical method

using Haar wavelet basis usually define Haar wavelet operational matrix within

the interval of zero to one. This gives limitations to our ultimate goal as the

integration involved in partial differential equation does not necessarily cover

only in the interval between zero and one. Therefore, it is convenient to derive

the Haar wavelet operational matrix that can cover the whole domain of Haar

series expansion.

In this thesis, we derived the operational matrix using combination work of new

unified method to derive operational matrices of any orthogonal function proposed

by Wu et al. (2001) and generalized block pulse operational matrix for integration

proposed by Kilicman and Zhour (2007). We named the operational matrix derived

from this combination work as generalized Haar wavelet operational matrix.

The first numerical analysis using generalized Haar wavelet operational

matrix is an attempt to solve partial differential equation of hyperbolic heat

conduction in thin surface layers. We established the numerical method with

hybrid concept of time and spatial discretization by finite difference method and

pseudo spectral method respectively. As for pseudo spectral method the highest

order of differential equation is assumed to be equal to Haar series expansion.

The generalized Haar wavelet operational matrix appear in the equation after

integrating the highest order term in ordinary differential equation which has
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been expanded in Haar series. Before we applied this method to solve our

hyperbolic heat conduction equation in thin surface layer, we tried to solve

simpler type of partial differential equation. We employed the proposed method

to solve wave equation which is one of the example of hyperbolic type partial

differential equation. The numerical analysis is shown in Appendix (D) and we

obtained a promising result. After the applicability of the proposed method is

confirmed, then we employed the numerical method to solve the actual problem,

which is the hyperbolic heat conduction problem in thin surface layers.

As mentioned in Chapter 3, the paramount challenge of solving partial

differential equation of hyperbolic heat conduction equation is the exhibits of

numerical oscillation in the vicinity of sharp discontinuities. Through this

method we found that with a certain discretization, the numerical oscillation is

totally eliminated, thus making this numerical method competitive with others.

Two sets of initial and boundary conditions were investigated as evidence to the

accuracy and efficiency of the proposed numerical method for the hyperbolic heat

conduction problem in thin surface layers. Further investigation of the present

methods’ accuracy and efficiency can be examined by solving the equation with

other sets of initial and boundary conditions. For instance, conditions in a pulsed

energy source, surface radiation and in a composite region. To the best of our

knowledge, this is the first effort to solve hyperbolic type partial differential

equation through this method.

In this thesis, we did not go in depth into mathematically proving the

numerical stability of the method. We also do not measure the magnitude of

dissipation and dispersion appeared in the numerical method. It is often to state
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the Courant-Friedrichs-Lewy condition, or CFL condition in establishing

numerical solution method for hyperbolic partial differential equations if finite

difference method is being used. As finite difference method were used for time

discretization, somehow the present numerical method has to be bounded with

CFL condition. This is going to be our next goal in future work in which we

want to establish the numerical stability analysis.

The second numerical analysis is finding Laplace inversion via generalized

Haar wavelet operational matrix. This is an extension work of Wu et al. (2001)

that covers the whole time domain for Laplace inversion in its solution. We have

derived the proposed method for the case of the transfer function using the

extension of Riemann-Liouville fractional integral. Examples of finding Laplace

inversion is illustrated from rational, irrational and exponential transfer function.

Solution of initial value problem and heat equation via Laplace transform are

also given. The resulting approximation in the present numerical method are in a

good agreement with exact solution even for small m. This method does not

involve conventional and complex integration but only a few of matrices

multiplication. The present method is considered to be simple compared to

conventional method and can be easily be coded. It is our hope to extend the

numerical method to find Laplace inversion for multidimensional Laplace

transform. This problem is useable in analysing continuous nonlinear and

time-varying which always expressed by Volterra functional series and distributed

systems expressed by partial differential equation.
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APPENDIX A

MATLAB CODE FOR GENERALIZED HAAR WAVELET

OPERATIONAL MATRIX

m=2^5; % Haar wavelet level with J=5

S=10; % Haar series expansion domain

t=0.5/m:1/m:(m-0.5)/m; % generate collocation points

M=2*m*ones(1,m);

for i=2:2:m

M(i)=-M(i);

end

zeta1=@(j,k) (k-1)/2^j;

zeta2=@(j,k) (k-0.5)/2^j;

zeta3=@(j,k) k/2^j;

% generating Haar wavelet matrix size of (m x m)

H(1,1:m)=1;

for i=1:(m-1)

j=floor(log(i)/log(2));

k=i-2^j+1;

% fprintf(’ i= %d , aa= %d and k = %d \n’, i, aa, k)

for s=1:m

if ( t(s) >= zeta1(j,k)) && ( t(s) < zeta2(j,k))
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H(i+1,s)= 2^(j/2);

elseif (t(s) >= zeta2(j,k)) && (t(s) < zeta3(j,k))

H(i+1,s)= -2^(j/2);

else

H(i+1,s)= 0;

end

end

end

H=H/sqrt(m); % Haar wavelet matrix

% generating generalized block pulse operational matrix

QB=triu(ones(m));

for i=1:m

QB(i,i)=0.5;

end

QB=QB/m; % generalized block pulse operational matrix

% generating generalized Haar wavelet operational matrix

% with Wu et. al method.

QH=H*QB*H’;

QH=S*QH; generalized Haar wavelet operational matrix
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APPENDIX B

MATLAB CODE FOR HYBRID METHOD OF SOLVING

HYPERBOLIC HEAT CONDUCTION IN THIN SURFACE LAYERS

B.1 The MATLAB code for Prescribed Wall Temperature

(Example 1)

% Haar wavelet resolution

m=2^3; L=1;

% Parameters that change

epsilon=0; %concave or convex

T=0.5; %dimensionless time has 4 values

dt=0.001; %time increment

% Generate block pulse matrix

Q=2*triu(ones(m,m));

for i=1:m

Q(i,i)=Q(i,i)-1;

end

QB=Q/(2*m);

% Generate Haar matrix

H=ones(m);

J=log2(m);

x=1:2:(2*m-1); x=x/(2*m);

for alpha=0:(J-1)
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for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) &&...

( x < (k-0.5)/pow2(alpha)))...

- (( x < k/pow2(alpha)) && ( x >= (k-0.5)/pow2(alpha)));

i=pow2(alpha)+k;

for j=1:m

H(i,j)=pow2(alpha/2)*fun(x(j));

end

end

end

H=H/sqrt(m);

% Haar operational matrix via Wu formula

Q=H*QB*H’;

% For boundary value problem matrix

lambda=Q(:,1); theta=zeros(m,1); theta(1,1)=1;

x=L*x; Q=L*Q;

% Coefficients for ODE

A=(dt)^2;

B=epsilon*(dt)^2;

C=(-1-2*dt);

% Time increment

N=T/dt;

% Initial condition

uim1=zeros(1,m);
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ui=uim1;

for s=1:N

u=-2*(1+dt)*ui+uim1;

k=u*H’+sqrt(m)*(B*theta’/L+C*theta’*Q/L-C*theta’);

left=A*eye(m) +B*Q -B*L*lambda*theta’+C*Q^2-C*L*lambda*theta’*Q;

c=k/left;

uip1=(c*(Q-L*lambda*theta’)*Q*H + sqrt(m)*(theta’-theta’*Q/L)*H);

uim1=ui;

ui=uip1;

end

% MATLAB code for Analytical Solution Example 1

ep=epsilon; %epsilon has 3 values -0.1,0,0.1

zeta=T; % fix and has 4 values, dimensionless time

area=zeros(1,m);

% integration value of Bessel function in analytical solution

for i=1:m

if x(i)<=zeta

tau=linspace(x(i)+0.0001,zeta,100000);

%argument for bessel function

a=(1-(ep^2)/4);b=(tau.^2-x(i)^2);

Z=(a*b).^(1/2);

%Modified bessel function

func=@(tau) (exp(-tau).*besseli(1,Z))./sqrt(b);

area(i)=trapz(tau,func(tau));
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else

area(i)=0;

end

end

Theta=zeros(1,m);

for i=1:m

if x(i)<=zeta

Theta(i)=exp((-x(i)./2)*ep)*(exp(-x(i))+sqrt(a)*x(i).*area(i));

else

Theta(i)=0;

end

end

% Graph command

stairs(x-(1/m),ui,’r’); % numerical solution

hold on

plot(x,Theta,’--’); % analytical solution

axis([0 2.2 -0.2 1]);

xlabel(’Dimensionless Length, \eta’);

ylabel(’Dimensionless Temperature, \theta’);

hleg3 = legend(’Numerical’,’Analytic’);

str1(1) = {’\epsilon=0’};

str1(2) = {’m=2^9’};

str1(3) = {’dt=0.001’};
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text(1.5,0.8,str1,’FontSize’,14)

B.2 The MATLAB code for Prescribed in a Finite Slab

(Example 2)

% Haar wavelet resolution

m=2^10;

% Boundary condition interval (0,1)

L=1;

% Parameters that change

epsilon=0; %concave or convex

T=1.5; dt=0.0001;

% Generate block pulse matrix

Q=2*triu(ones(m,m));

for i=1:m

Q(i,i)=Q(i,i)-1;

end

QB=Q/(2*m);

% Generate Haar wavelet matrix

H=ones(m);

J=log2(m);

x=1:2:(2*m-1); x=x/(2*m);

for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) &&...
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( x < (k-0.5)/pow2(alpha)))...

- (( x < k/pow2(alpha)) && ( x >= (k-0.5)/pow2(alpha)));

i=pow2(alpha)+k;

for j=1:m

H(i,j)=pow2(alpha/2)*fun(x(j));

end

end

end

H=H/sqrt(m);

% Generate Haar operational matrix via Wu formula

Q=H*QB*H’;

lambda=Q(:,1);

theta=zeros(m,1); theta(1,1)=1; beta=theta’*H(:,m);

x=L*x; Q=L*Q;

% Coefficient of ODE

A=(dt)^2./(dt)^2;

B=(epsilon*(dt)^2)./dt^2;

C=(1+2*dt)./dt^2;

% time increment

N=T/dt;

% Iteration

uim1=zeros(1,m); % initial

ui=uim1;

for s=1:N
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u=((-2*(1+dt))./dt^2)*ui+uim1/dt^2;

k=u*H’+C*(sqrt(m)*theta’);

left=A*eye(m)+B*Q-B*theta*theta’-C*Q^2+C*theta*theta’*Q;

c=k/left;

uip1=(c*Q^2-c*theta*theta’*Q+sqrt(m)*theta’)*H;

uim1=ui;

ui=uip1;

end

hold on

stairs(x-(1/m),ui,’b’);

axis([0 1 -0.2 1]);

xlabel(’Dimensionless Length \eta’);

ylabel(’Dimensionless Temperature,\theta (^0C)’);
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APPENDIX C

MATLAB PROGRAMMING FOR NUMERICAL LAPLACE

INVERSION

% Haar wavelet resolution, m

m=2^5;

% Generate block pulse operational matrix

Q=2*triu(ones(m,m));

for i=1:m

Q(i,i)=Q(i,i)-1;

end

QB=Q/(2*m);

% Generate Haar wavelet matrix

H=ones(m);

J=log2(m);

x=1:2:(2*m-1); x=x/(2*m);

for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) &&...

( x < (k-0.5)/pow2(alpha)))...

- (( x < k/pow2(alpha)) && ( x >= (k-0.5)/pow2(alpha)));

i=pow2(alpha)+k;

for j=1:m

H(i,j)=pow2(alpha/2)*fun(x(j));
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end

end

end

H=H/sqrt(m);

% Generate generalized Haar wavelet operational matrix via...

% Wu et. al formula

Q=H*QB*H’; Q=L*Q;
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APPENDIX D

NUMERICAL ANALYSIS OF WAVE EQUATION WITH

GENERALIZED HAAR WAVELET OPERATIONAL MATRIX

METHOD

D.1 Numerical Analysis

Wave equation is a prominent hyperbolic type partial differential equation. The

equation is derived from the model of the vibrating string. One-dimensional wave

equation is given as below,

∂2u

∂x2
=

1

a2

∂2u

∂t2
(D.1)

where a2 = 1 is considered here. Boundary conditions are given as

u(0, t) = u(L, t) = 0, t ≥ 0, (D.2)

and initial conditions are given as

u(x, 0) =






2x

L
0 ≤ x ≤

L

2

2(1 − x)

L

L

2
≤ x < L,

(D.3)

∂u

∂t
(x, 0) = 0. (D.4)

From Eqn. (D.1) , using a backward finite difference in t, we have

∂u

∂t
= u

(i+1)
t ≈

u(i+1) − ui

Δt
+ O(Δt) (D.5)

∂2u

∂t2
= u

(i+1)
tt ≈

u(i+1) − 2ui + u(i−1)

Δt2
+ O(Δt2) (D.6)
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Substitute Eqns. (D.5) and (D.6) into Eqn. (D.1), we have

u(i+1) − 2ui + u(i−1)

Δt2
= u(i+1)

xx (D.7)

Δt2u(i+1)
xx − u(i+1) = −2ui + u(i−1) (D.8)

Let us consider this notation U(x) = u(i+1)(x). Therefore we can rewrite Eqn.

(D.8) as in the form as below

Δt2U ′′(x) − U(x) = k(x) (D.9)

where k(x) = −2ui+u(i−1) = kthm(x). For spatial discretization, the highest order

term in Eqn. (D.9) is assumed can be expanded in terms of Haar wavelet series

expansion as below

U ′′(x) = ct
mhm(x). (D.10)

Subsequently, U ′(x) and U(x) are obtained by integrating Eqn. (D.10). Thus we

have

U ′(x) = ct
mQmhm(x) +

√
mU ′(0)θthm(x), (D.11)

and

U(x) = ct
mQ2

mhm(x) +
√

mU ′(0)θtQmhm(x) +
√

mU(0)θthm(x). (D.12)

The following formula will be helpful for solving boundary value problem (BVP).

Qmhm(L) =
L

√
m

θm (D.13)

and

Q2
mhm(L) =

L
√

m
Λm (D.14)
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where

Θt
m =

[
1, 0, 0, . . . , 0

]
, (D.15)

Λt
m =

[
L

2
,
L

22
,

L

27/2
, . . . , . . . , . . .

]

. (D.16)

Λt
m is taken from the first column of generalized Haar wavelet operational matrix,

Qm. Substituting U(L) = 0 into Eqn. (D.12), U ′(0) can be determined.

U(L) = ct
mQ2

mhm(L) +
√

mU ′(0)θtQmhm(L)

U ′(0) = −ct
m

1
√

m
Λm. (D.17)

Substituting Eqn. (D.17) into Eqns. (D.10), (D.11) and (D.12) and rearranging

Eqn. (D.9), so we have

ct
[
ImΔt2 − Q2

m + ΛmθtQm

]
hm(x) = kthm(x). (D.18)

From Eqn. (D.18), Haar coefficient, ct can be calculated and finally, the solution

for wave equation is given by

U(x) = ct(Qm − Λmθt)Qmhm(x). (D.19)

Analytical solution using separation of variables for this problem is given by

U(x, t) =
8

π2

∞∑

n=0

sin

(
nπx

L

)

sin

(
nπ

2

)

cos

(
nπat

L

)

n2
. (D.20)

Results of the present numerical and analytical method are shown in Figure D.1

below.
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0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Length

u
(x

,t
)

 

 

Haar
Analytic

t = 0.3

(c) Solutions when t = 0.3

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Length

u
(x

,t
)

 

 

Haar
Analytic

t = 0.7

(d) Solutions when t = 0.7

0 0.2 0.4 0.6 0.8 1
-1

-0.5

0

0.5

1

Length

u
(x

,t
)

 

 

Haar
Analytic

t = 0.9
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Figure D.1: Comparison between numerical and analytical solution for wave

equation, utt = a2uxx when a2 = 1, L = 1 and Δt = 0.0001 at various values

of time, t.
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D.2 MATLAB code for numerical analysis of wave equation

% Solving wave equation

% U_tt = c^2*U_xx

% ODE aU" - U’=k

m=2^4;L=3;

% Generate block pulse operational matrix

Q=2*triu(ones(m,m));

for i=1:m

Q(i,i)=Q(i,i)-1;

end

QB=Q/(2*m);

% Generate Haar matrix

H=ones(m);

J=log2(m);

x=1:2:(2*m-1); x=x/(2*m);

for alpha=0:(J-1)

for k=1:pow2(alpha)

fun=@(x) (( x >= (k-1)/pow2(alpha)) &&...

( x < (k-0.5)/pow2(alpha)))- (( x < k/pow2(alpha))...

&& ( x >= (k-0.5)/pow2(alpha)));

i=pow2(alpha)+k;

for j=1:m

H(i,j)=pow2(alpha/2)*fun(x(j));
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end

end

end

H=H/sqrt(m);

% Haar operational matrix via Wu formula

Q=H*QB*H’;

Q=L*Q;

theta=zeros(m,1); theta(1,1)=1;

theta=L*theta;

lambda=Q(:,1);

% initial input

dt=0.001;

v=1;a=(v*dt)^2;T=0.001; N=T/dt;

left=a*eye(m)-Q^2 + lambda*theta’*Q;

x=L*x;

fun = @(x) (2*x)/L.*(0<=x & x< L/2) + 2*(1-x/L).*(L/2 <=x & x< L);

uim1=fun(x); % initial condition

ui=uim1;

for s=1:N

u=uim1-2*ui;

k=u*H’; %right hand side

c=k/left; %coefficient
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uip1=c*(Q-lambda*theta’)*Q*H;

uim1=ui;

ui=uip1;

end

%analytical solution

for s=0; t=0.001; c=1;

for n=1:20

s=s+sin(n*pi*x/L)*sin(n*pi/2)*cos(n*pi*c*t/L)/(n*n);

end

f=8*s/(pi^2);

end

stairs(x-3/(2*m),f)

hold on

plot(x,ui,’r’)

103



APPENDIX E

TABLE OF LAPLACE TRANSFORMS

Table E.1: Laplace transforms X(s) = L{x(t)} =
∫∞

0
e−stf(t)dt

No Transfer Function, X(s) Laplace Inversion, x(t)

1 1 δ(t)

2
1

s
1, u(t)

3
1

s2
t

4
1

sp+1

tp

Γ(p + 1)
, (p > −1)

5
X(s)

s

∫ t

0

x(τ)dτ

6
X(s)

sn

∫ t

0

∙ ∙ ∙
∫ t

0

f(τ)dτn =

∫ t

0

(t − τ)n−1

(n − 1)!
f(τ)dτ

7
1

s2 + 1
sin t

8
1

s − a
e−at

9
1

sn
√

s

4nn!

(2n)!
√

π
tn−1/2

10
e−a

√
s

√
s

e−a2/4t

√
πt

11
a

2
√

πs3/2
e−a2/4s sin a

√
t

π

12
e

1
s

s
√

s

sinh 2
√

t
√

π

13 s2X(s) − sx(0) − x′(0) x′′(t)

14 snx(s) − sn−1x(0) ∙ ∙ ∙ x(n−1)(0) x(n)(t)

15
1

s
exp

(
−
√

sx

a

)

erfc

(
x

2a
√

t

)
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