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ABSTRACT

This thesis investigates properties of certain analytic functions; in particular,

functions which are univalent and multivalent in the unit disc U = {z ∈ C : |z| < 1}.
Let A denote the class of all normalised analytic functions of the form

f(z) = z +

∞∑

n=2

anz
n.

Interest is focused at several subclasses of A. Functions belonging to these

subclasses are defined via some differential operator; namely the Sălăgean and Al-

Oboudi operator. These classes formed are subclasses of S, the class of univalent

functions.

Let f ∈ Bn(α) for α > 0 and n = 0, 1, 2, . . . be defined by

Re
Dnf(z)α

zα
> α.

where Dn denote the Sălăgean operator.

For functions f ∈ Bn(α), we obtain estimates for the second, third and fourth co-

efficients of the inverse functions. Further, we investigate similar coefficient problems

for functions in the Bλ
n(α), an extension of the above class defined via the Al-Oboudi

operator. In addition, these are then applied to obtain the Fekete-Szegö inequalities.

Next, besides functions of the above normalised form, the thesis also looks at

functions of the form

f(z) = zp +
∞∑

n=1

ap+nz
p+n,

where p a fixed positive integer. For functions of this form, we denote Ap as the class

consisting of such functions. For such class we investigate sharp lower bounds on
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the real part of the quotients between the normalised functions and their sequence

of partial sums for convex and starlike functions as well as their related classes, the

uniformly convex and parabolic starlike functions which satisfy certain conditions.

Finally, for function f(z) ∈ Ap which are analytic in U , results on the preserva-

tion of two integral operators Iσp f(z) and Jσβ f(z) given by

Iσp f(z) =
(p+ 1)σ

zpΓ(σ)

∫ z

0

tp−1
(
log

z

t

)σ−1

f(t) dt (σ > 0).

Jσβ f(z) =

(
p + σ + β − 1

p + β − 1

)
σ

zβ

∫ z

0

(
1 − t

z

)σ−1

tβ−1f(t) dt (σ > 0, β > −1),

are established for some of the classes of functions defined using the Hadamard

product.
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ABSTRAK

Tesis ini mengkaji sifat-sifat fungsi analisis; khususnya, fungsi-fungsi yang uni-

valen dan multivalen dalam unit cakera U = {z ∈ C : |z| < 1}. Andaikan A
mewakili kelas bagi semua fungsi analisis ternormal dalam bentuk:

f(z) = z +
∞∑

n=2

anz
n.

Kajian ini tertumpu kepada beberapa subkelas A, fungsi yang dimiliki oleh

subkelas ini ditakrif melalui beberapa pengoperasian pembezaan; iaitu pengoperasi

Sălăgean dan Al-Oboudi. Kelas-kelas yang dibentuk adalah subkelas S, iaitu kelas

daripada fungsi univalen.

Andaikan f ∈ Bn(α) bagi α > 0 dan n = 0, 1, 2, . . . yang ditakrifkan sebagai

Re
Dnf(z)α

zα
> α.

dengan Dn mewakili pengoperasi Sălăgean.

Bagi fungsi f ∈ Bn(α), anggaran bagi pekali kedua, ketiga dan keempat bagi

fungsi songsang diperoleh. Seterusnya, dengan cara yang serupa masalah pekali

bagi fungsi Bλ
n(α) yang merupakan lanjutan bagi kelas di atas yang ditakrif melalui

pengoperasi Al-Oboudi dikaji. Kemudian ia digunakan untuk mendapatkan ketak-

samaan Fekete-Szegö.

Seterusnya, selain fungsi-fungsi bentuk ternormal di atas, tesis ini juga mengkaji

fungsi berbentuk

f(z) = zp +
∞∑

n=1

ap+nz
p+n,

dengan p adalah integer positif tetap dan mewakilkan Ap sebagai kelas yang men-

gandungi fungsi-fungsi tersebut. Bagi kelas tersebut, batas-batas bawah tepat pada
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bahagian nyata hasil bahagi antara fungsi-fungsi ternormal dan jujukan jumlah sep-

ara bagi fungsi cembung dan fungsi bak-bintang serta kelas-kelas yang berkaitan,

fungsi seragam cembung dan fungsi bak-bintang parabola yang memenuhi syarat-

syarat tertentu diperolehi.

Akhir sekali, bagi fungsi f ∈ Ap yang analisis dalam U , hasil pengawetan bagi

dua pengoperasian kamiran Iσp f(z) dan Jσβ f(z) seperti

Iσp f(z) =
(p+ 1)σ

zpΓ(σ)

∫ z

0

tp−1
(
log

z

t

)σ−1

f(t) dt (σ > 0).

Jσβ f(z) =

(
p + σ + β − 1

p + β − 1

)
σ

zβ

∫ z

0

(
1 − t

z

)σ−1

tβ−1f(t) dt (σ > 0, β > −1),

diperkenalkan bagi beberapa kelas fungsi yang ditakrif menggunakan hasildarap

Hadamard.
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SYMBOLS

A := A1 Class of analytic functions of the form

f(z) = z +
∑∞

n=2 anz
n, (z ∈ U)

Ap Class of all p-valent analytic functions of the form

f(z) = zp +
∑∞

n=2 ap+nz
p+n, (z ∈ U)

C Complex plane

CV Class of convex functions in U

CV(α) Class of convex functions of order α in U

CVp(α) Class of p-valent convex functions of order α in U

CCV Class of close-to-convex functions in U

CCV(α) Class of close-to-convex functions of order α in U

CCVp(α) Class of p-valent close-to-convex functions of order α in U

D Domain

H(U) Class of analytic functions in U

PST Class of parabolic starlike functions in U

P(α) Class of bounded turning functions

S Class of all normalized univalent functions of the form

f(z) = z + a2z
2 + . . . , (z ∈ U)

ST Class of starlike functions in U

ST (α) Class of starlike functions of order α in U

ST p(α) Class of p-valent starlike functions of order α in U

U Open unit disc {z ∈ C : |z| < 1}

Ur Open disc of radius r, {z ∈ C : |z| < r}

UST Class of uniformly starlike functions in U

UCV Class of uniformly convex functions in U

x



CHAPTER 1

PRELIMINARIES

In this thesis we are mainly interested in univalent functions that are also analytic

in the unit disc U = {z ∈ C : |z| < 1}. For this Chapter, basic results and back-

ground materials concerning the theory of the univalent and multivalent functions

are stated. More details about those concepts can be found in Duren (1983) and

Goodman (1983).

1.1 Scope of the thesis

This Chapter presents the basic concepts and definitions concerning the theory of

starlike and convex functions as well as the terminologies. These materials will be

required in the subsequent chapters of the thesis.

In next Chapter, we considered a new class of functions using the Al-Oboudi op-

erator. The class proposed is an extension of the class Bn(α) first introduced in Ab-

dul Halim (2003) which incorporate the Sălăgean operator instead of the Al-Oboudi.

We further the research in investigate the various coefficient properties for both the

Bn(α) and Bλ
n(α) classes of functions. As a special case of our result, we obtain the

Fekete-Szegö inequality for a class of functions defined through differential operator.

In Chapter 3, results on preservation of some integral operators for functions be-

longing to the class ST p,g(β), CVp,g(β) and CCVp,g(β) are discussed. These classes
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are defined using certain characterization and convolution.

In Chapter 4, we obtain sharp lower bounds on the real part of the quotients

between the normalized functions and their sequence of partial sums for certain sub-

classes of S. In particular, the convex and starlike functions as well as their related

classes, the uniformly convex and parabolic starlike functions which satisfy certain

conditions. We look at the lower bounds for Re {f(z)/fk(z)}, Re {fk(z)/f(z)}, Re

{f ′(z)/f ′
k(z)}, and Re {f ′

k(z)/f
′(z)} where fk represent the partial sums.

1.2 Introduction

The theory of complex analysis was founded in the middle of the 19th century, is

one of the classical branches in mathematical fields, which traditionally known as

the theory of functions of a complex variable. In the 20th century, many important

mathematicians like Euler, Gauss, Riemann, Cauchy, and Weierstrass that associate

with complex analysis, which particularly involved the analytic functions of complex

variables.

In mathematics, the main interests and central objects of study in complex analy-

sis are the analytic functions that also known as holomorphic functions. An analytic

function is said to be univalent on a domain D, D ⊂ C, if it provides a one-to-one

mapping onto its image, f(D). Both functions are defined as follows:

Definition 1.2.1. Duren (1983). A function f is said to be analytic at z0 ∈ D if it

has derivative at every point of some neighborhood of z0, and so f is analytic in D
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if it has a derivative at every point of D.

Definition 1.2.2. Goodman (1983). A function f(z) is said to be univalent in a

domain D if the conditions

f(z1) = f(z2), z1 ∈ D, z2 ∈ D,

imply that z1 = z2.

The first study of univalent functions is perhaps due to a paper of Koebe (1907).

In this 100 years, the theory of univalent functions has developed considerably. Many

more papers and books have been published regarding the univalent functions theory.

Next, we describe some important elementary properties and theorem of analytic

and univalent functions which are defined via some geometric condition.

The Riemann Mapping theorem is an important theorem in geometric function

theory. It states that every simply connected domain which is not the whole com-

plex plane can be mapped conformally onto the unit disc U = {z ∈ C : |z| < 1}.

Theorem 1.2.1. (Riemann Mapping Theorem), Duren (1983). Let D be a simply

connected domain which is a proper subset of the complex plane. Let ζ be a given

point in D. Then there is a unique univalent analytic function f which maps D onto

the unit disc U satisfying f(ζ) = 0 and f ′(ζ) > 0.
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For an analytic function g in U , it has a Maclaurin expansion

g(z) = b0 + b1z + b2z
2 + ... =

∞∑

n=0

bnz
n,

that is convergent in U . We observe that if g is univalent in U , then so is the function

g(z) − b0. Since g is univalent, then b1 = g′(0) 6= 0 and hence we may subtract b0

and divide by b1 and consider the analytic function f(z) = (g(z) − b0)/b1, which is

normalized by f(0) = f ′(0) − 1 = 0 and has expansion

f(z) = z +
∞∑

n=2

anz
n, (z ∈ U). (1.1)

Denote by H the class of functions, which are analytic in the open unit disc U

and the subclass of H that consists functions of the form (1.1) is denoted by A. The

subclass of A consisting of functions, which are univalent in the open unit disk U is

denoted by S. The leading example of a function of class S is the Koebe function

which is given by

k(z) =
z

(1 − z)2
=

1

4

[(
1 + z

1 − z

)2

− 1

]
=

∞∑

n=1

nzn,

which maps U onto the complex plane except for a slit along the half-line (−∞,−1/4].

In an intuitive sense this function is the largest function in S, because it is impossi-

ble to add to the image domain any open set of points without destroying univalence.

The Koebe function plays a very important role in the study of S. It is often the

extremal functions for various problems in S. In 1916, Bieberbach (1916) proved

the following theorem for functions in S.
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Theorem 1.2.2. (Bieberbach Theorem), Goodman (1983). If f ∈ S, then |a2| ≤ 2

with equality if and only if f is a rotation of the Koebe function.

In the same paper, he mentioned “|an| ≤ n is generally valid”. This statement is

known as the Bieberbach conjecture. Löewner (1923) and Garabedian (1955) proved

the Bieberbach conjecture, respectively for the cases n = 3 and n = 4. Much later

in 1985, de Branges (1985) proved the Bieberbach conjecture for all coefficients with

the help of the hypergeometric functions.

Next, we describe some of interesting subclasses of univalent functions, which

are defined in geometrical and analytic characterizations.

1.3 Subclasses of Univalent Functions

One important problem in the field of univalent function is to study certain geomet-

ric properties of the image domain. Several authors have considered other classes

such as convex and starlike functions.

Definition 1.3.1. Goodman (1983). A set D in the plane is said to be starlike with

respect to w0 an interior point of D if for each ray with initial point w0 intersects the

interior of D in a set that is either a line segment or a ray. If a function f maps U

onto starlike domain with respect to w0, then we say that f is a starlike with respect

to w0. In the special case that w0 = 0, we say that f is a starlike function.
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Definition 1.3.2. Goodman (1983). A set D in the plane is called convex if for

every pair of points w1 and w2 in the interior of D, the line segment joining w1 and

w2 is also in D. If a function f maps U onto a convex domain, then f is called a

convex function in U .

The class of all functions of S which are starlike in U is denoted by ST . Nevan-

linna (1921) showed that ST ⊂ S and that a necessary and sufficient condition for

f ∈ ST is given by

Theorem 1.3.1. Duren (1983). A function f ∈ ST if and only if

Re

{
zf ′(z)

f(z)

}
> 0.

The class of all functions of S which are convex in U is denoted by CV. Löewner

(1917) showed that CV ⊂ S and that a necessary and sufficient condition for f ∈ CV

is given by the following:

Theorem 1.3.2. Duren (1983). A function f ∈ CV if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0.

In 1915, Alexander (1915) discovered the beautiful relationship between convex

and starlike functions, that has a very simple proof based on the characterization of

both functions in the unit disc.
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Theorem 1.3.3. (Alexander’s Theorem), Goodman (1983). A function f ∈ CV if

and only if zf ′(z) ∈ ST .

Although the Bierberbach conjecture was quite recently (1984) solved for class

S, this was not the case for ST and CV. In 1921, Nevanlinna (1921) proved the

conjecture for ST and Reade (1954) showed that it also holds for CV. Much earlier,

Löewner (1917) proved that if f ∈ CV, then |an| ≤ 1 for n ≥ 1.

The notion of convexity and starlikeness have been extended in many ways.

In 1936, Robertson (1936) generalized the classes ST and CV in the simplest way

by introducing the concept of functions starlike and convex of order α for 0 ≤ α < 1.

Definition 1.3.3. Goodman (1983). A function f ∈ A is said to be in the class of

starlike functions of order α denoted by ST (α), if

Re

{
zf ′(z)

f(z)

}
> α, (0 ≤ α < 1, z ∈ U). (1.2)

A function f ∈ A is in the class of convex functions of order α denoted by CV(α),

if

Re

{
1 +

zf”(z)

f ′(z)

}
> α, (0 ≤ α < 1, z ∈ U). (1.3)

Note that if α < 0, then a function in either of these classes may fail to be univa-

lent, for example f(z) = z
(1−z)λ , when λ > 2, f(z) has the property Re zf

′(z)
f(z)

> 1− λ
2
,

but it is not univalent in U as f ′(1/(1 − λ)) = 0. On the other hand, if α ≥ 1, the
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classes are empty set, since the inequalities (1.2) and (1.3) will not be satisfied at

z = 0. Evidently ST (0) ≡ ST and CV(0) ≡ CV. In addition, f(z) ∈ CV(α) if and

only if zf ′(z) ∈ ST (α) for 0 ≤ α < 1. There is an extensive literature concerning

ST (α) and CV(α). See eg. Goel (1974), Jack (1971), Pinchuk (1968), Schild et. al.

(1965).

Let Ur be the set of |z| < r < 1. Ford (1935) gave more general properties of U

which hold in the subregions Ur. In other words, if f ∈ S is starlike or convex, then

f(Ur) is also a starlike or a convex domain.

Theorem 1.3.4. (Ford’s Theorem), Goodman (1983). Let f be in S. If f(U) is

a convex domain, then for each positive r < 1, f(Ur) is also a convex domain. If

f(U) is starlike with respect to the origin, then for each positive r < 1, f(Ur) is also

starlike with respect to the origin.

However the above theorem of geometric property does not hold in general for

circle whose centers are not at the origin. This motivated Goodman to introduce a

new class of normalized functions analytic and univalent in the unit disc. In Good-

man (1991a) and Goodman (1991b), functions said to be uniformly starlike and

uniformly convex are extensively discussed. The corresponding ”uniform classes”

are defined in the following way, by their geometrical mapping properties.

Definition 1.3.4. Goodman (1991a). A function f is said to be uniformly starlike

in U if f is starlike and has the property that, for every circular arc γ contained in

U , with center ξ also in U , the arc f(γ) is starlike with respect to f(ξ). We let UST

8



denote the class of all such functions.

Theorem 1.3.5. Goodman (1991a). Let f have the form (1.1). Then f ∈ UST if

and only if

Re

{
f(z) − f(ξ)

(z − ξ)f ′(z)

}
≥ 0, (z, ξ ∈ U). (1.4)

Definition 1.3.5. Goodman (1991b). A function f is said to be uniformly convex

in U if f is a convex function and has the property that, for every circular arc γ

contained in U , with center ξ also in U , the image arc f(γ) is a convex arc. We let

UCV denote the class of all such functions.

Theorem 1.3.6. Goodman (1991b). Let f(z) have the form (1.1). Then f ∈ UCV

if and only if

Re

{
1 + (z − ξ)

f ′′(z)

f ′(z)

}
≥ 0, (z, ξ ∈ U). (1.5)

Note that by taking ξ = 0 in (1.4) and (1.5) we will get class ST and CV,

respectively. These classes have been studied extensively by Rönning (1993a) and

independently by Ma and Minda (1992/1993) where they have proved the following

one variable characterization for functions in UCV.

Theorem 1.3.7. Rönning (1993a). A function f of the form (1.1) is in UCV if

and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ , (z ∈ U).

9



However, we know that by Alexander’s theorem stating that f ∈ CV ⇔ zf ′(z) ∈

ST provides a bridge between these two classes. Goodman (1991a) gave examples

that demonstrated the Alexander’s relation does not hold between the classes UCV

and UST . In Rönning (1993a), he introduced the class of parabolic starlike func-

tions PST such that f ∈ UCV ⇔ zf ′ ∈ PST . It is established that

Theorem 1.3.8. Rönning (1993a). A function f is in PST if and only if

Re

{
zf ′(z)

f(z)

}
≥
∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ , (z ∈ U).

Later he proved (see Rönning (1993b)) that neither PST 6⊂ UST nor UST 6⊂

PST . In Rönning (1991/1995) he further generalized the classes UCV and PST by

introducing a parameter α in the following way.

Theorem 1.3.9. Rönning (1991/1995). A function f ∈ A is in PST (α) if it

satisfies the analytic characterization

Re

{
zf ′(z)

f(z)

}
− α ≥

∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ , (0 ≤ α ≤ 1, z ∈ U),

and f ∈ UCV(α), the class of uniformly convex functions of order α, if it satisfies

Re

{
1 +

zf ′′(z)

f ′(z)

}
− α ≥

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ , (0 ≤ α ≤ 1, z ∈ U).

Other authors have also seek to develop a more general class. One such case

is Kanas and Wisniowska (1998) which introduced the class of k-uniformly convex

10



functions. Kaplan (1952) introduced an interesting subclass A which contains ST

and has a simple geometric characterization.

Theorem 1.3.10. Duren (1983). A function f analytic in the unit disc is said to

be close-to-convex if for z ∈ U , there exists a convex function g such that

Re

{
f ′(z)

g′(z)

}
> 0.

We denote the class of close-to-convex functions by CCV. Note that, every starlike

function is close-to-convex. Indeed, each f ∈ ST has the form f(z) = zg′(z) for

some g ∈ CV, and

Re

{
f ′(z)

g′(z)

}
= Re

{
zf ′(z)

f(z)

}
> 0.

Clearly, these are summarized by the chain of proper inclusions

CV ⊂ ST ⊂ CCV ⊂ S.

Every close-to-convex function is univalent. In Noshiro (1934/1935) and Warchawski

(1935), they obtained a simple but interesting criterion for univalence of analytic

functions. The criterion is due to Noshiro and Warschawski.

Theorem 1.3.11. (Noshiro-Warschawski Theorem), Noshiro (1934/1935). If f is

analytic in a convex domain D and Re{f ′(z)} > 0 there, then f is univalent in D.
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A function f is called close-to-convex of order α, α ∈ [0, 1) if f(D) is accessible

of order α. This class is denoted by CCV (α). We shall give an analytical charac-

terization for f to be close-to-convex of order α,

Theorem 1.3.12. Libera (1964). A function f ∈ A is said to be close-to-convex of

order α, for all z ∈ U , if there is a function g ∈ ST such that

Re

{
zf ′(z)

g(z)

}
> α, (0 ≤ α < 1).

For 0 ≤ α < 1, a function f of the form (1.1) is said to be in the class of bounded

turning denoted by P(α), if it satisfies Re {f ′(z)} > α. (see Goodman (1983)).

By the Noshiro-Warschowski theorem the functions in P(α) are univalent and also

close-to-convex in U .

We then discuss the multivalence of analytic functions, which will allow us to

compute the various properties and characteristics for certain subclasses.

1.4 Subclasses of Multivalent Functions

The class of multivalent functions is an important one in complex analysis. Hayman

(1958) introduced and generalized the univalent functions by proving corresponding

results for p-valent functions (multivalent of order p).

Definition 1.4.1. Hayman (1958). A function f is p-valent if for each w0 (in-

finity included), the equation f(z) = w0 has at most p roots in U , where the roots

12



are counted with their multiplicities, and if there is some w1 such that the equation

f(z) = w1 has exactly p roots in U .

Let Ap denote the class of all analytic functions f of the form

f(z) = zp +
∞∑

n=1

ap+nz
p+n, (p ∈ N := {1, 2, . . . })

that are p-valent in the open unit disc U , and for p = 1, let A1 := A.

The class of p-valent functions has been widely studied. In fact, Patil and

Thakare (1983), Owa (1985) and Aouf (1988) studied the subclasses of p-valent

functions of order α which are an extension of the familiar subclasses were studied

earlier by Goodman (1950) and Livingston (1965). Evidently ST 1(α) = ST (α),

CV1(α) = CV(α) and CCV1(α) = CCV(α).

Definition 1.4.2. Patil (1983). A function f ∈ Ap is said to belong to the class of

p-valent starlike functions of order α in U , and is denoted by ST p(α) if it satisfies

Re

{
zf ′(z)

f(z)

}
> α, (0 ≤ α < p, z ∈ U).

Definition 1.4.3. Owa (1985). A function f ∈ Ap is said to belong to the class of

p-valent convex functions of order α in U , and is denoted by CVp(α) if it satisfies

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, (0 ≤ α < p, z ∈ U).

Definition 1.4.4. Aouf (1988). A function f ∈ Ap is said to belong to the class

of p-valent close-to-convex of order α, and is denoted by CCVp(α), if there exists a

13



function g(z) ∈ ST p(α) such that

Re

{
zf ′(z)

g(z)

}
> α, (0 ≤ α < p, z ∈ U).

A result analogues to Alexander’ theorem (1.3.3) was obtained by Ali et. al.

(2009).

Theorem 1.4.1. Ali (2009). The function f belongs to CVp(α) if and only if

zf ′(z)
p

∈ ST p(α).

For functions f, g ∈ Ap, the Hadamard product (or convolution) of f and g is

the functions (f ∗ g)(z) defined by

(f ∗ g)(z) = zp +
∞∑

n=1

ap+nbp+nz
p+n

where f(z) = zp +
∑∞

n=1 ap+nz
p+n and g(z) = zp +

∑∞
n=1 bp+nz

p+n.

Inspired by Shamani et. al. (2009) idea, we introduced some similar classes that

involve Hadamard product in determining preserving properties for certain integral

operators by using the convex hull method.

Definition 1.4.5. The class ST p,g(β) consists of functions f ∈ Ap where g ∈ Ap

is a fixed function satisfying (g∗f)(z)
zp 6= 0 and

Re
1

p

{
z(g ∗ f)′(z)

(g ∗ f)(z)

}
> β, (0 ≤ β < 1, z ∈ U). (1.6)
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Similarly, CVp,g(β) is the class of functions f ∈ Ap where g ∈ Ap is a fixed function

satisfying (g∗f)′(z)
zp−1 6= 0 and

Re
1

p

{
1 +

z(g ∗ f)′′(z)

(g ∗ f)′(z)

}
> β, (0 ≤ β < 1, z ∈ U). (1.7)

Definition 1.4.6. The class CCVp,g(β) consists of functions f ∈ Ap satisfying

(g∗ψ)(z)
zp 6= 0 and

Re
1

p

{
z(g ∗ f)′(z)

(g ∗ ψ)(z)

}
> β, (0 ≤ β < 1, z ∈ U)

for some ψ ∈ ST p,g(β).

Note that by taking g(z) = zp/(1−z) in (1.6) and (1.7), then ST p,g(β) = ST p(α)

and CVp,g(β) = CVp(α). After a brief review of analytic functions, we will then dis-

cuss some of properties of the inverse functions.

1.5 Inverse functions

Inverse functions are very important in mathematics area as well as in many applied

areas of science. In this thesis, we only focused on finding the coefficient estimates

for the inverse function. The inverse of a function f ∈ S of the form (1.1) has a

series expansion

F (w) = w +
∞∑

n=2

Anw
n. (1.8)
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Lőwner (1923) showed that for f ∈ A, and F given by (1.8) the coefficients of

F are bounded as below:

|An| ≤
(2n)!

n!(n+ 1)!
, k = 2, 3, 4, ...

Equality is attained for the Koebe function k(z) = z
(1−z)2 and its inverse

K(w) =
1 − 2w −

√
1 − 4w

2w
.

In Krzyz et. al. (1979), the authors found sharp coefficient estimates for in-

verse of functions in the class ST and their work has been extended in Kapoor and

Mishra (2007). Libera and Zlotkiewicz (1982) obtained sharp lower bounds on the

coefficients of inverse functions for f ∈ CV where |An| ≤ 1 for n = 2, 3, 4, 5, 6 and

7. For other interesting developments on sharp coefficient estimate of inverses in

connection with various subclasses of univalent functions, the reader can refer to

Schober (1977), Ali (2003) and Ma (1990).

In particular, consider functions f ′ ∈ P where P consists of functions p(z) of

the form 1 +
∑∞

n=1 cnz
n and satisfies Re p(z) > 0 for z ∈ U , the authors in Libera

(1983) established |A2| ≤ 1, |A3| ≤ 4
3
, |A4| ≤ 13

6
, |A5| ≤ 59

15
and |A6| ≤ 344

45
and for

other n’s

|An| ≤
1

πn

∫ π

0

dθ

|1 + 2e−iθ log(1 − eiθ)|n <
1

nαn
.

where An are the coefficients of F = f−1.
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At the same time, another interesting approach consider by authors is to look

at the normalised analytic univalent functions defined by operators noted as differ-

ential or integral operators.

1.6 Differential Operators

Generally, a differential operator is an operator involving differentiation and/or mul-

tiplication by other functions, that transforms a functions into another functions.

Many articles discuss on operators and new generalizations of various authors.

Perhaps, Ruscheweyh (1975) was the pioneer in the differential operator who intro-

duced it in 1975. It is then followed by the Sălăgean (1983) giving another version

of differential operator.

Definition 1.6.1. Ruscheweyh (1975). For a function f ∈ A and n ∈ N ∪ {0}, the

Ruscheweyh differential operator, Rnf defined by Rn : A → A

R0f(z) = f(z)

(n+ 1)Rn+1f(z) = z(Rnf(z))′ + nRnf(z), (z ∈ U).

Definition 1.6.2. Sălăgean (1983). For a function f ∈ A, we define the Sălăgean

differential operator, Dnf defined by

D0f(z) = f(z)

D′f(z) = Df(z) = zf ′(z)

Dnf(z) = D(Dn−1f(z)) = z(Dn−1f(z))′ (n ∈ N = {1, 2, 3, . . . }).
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These two operators were used to study different properties and problems involv-

ing subclasses of univalent functions. After these operators are introduced, there

have been numerous operators being formed, generalised and defined. (See Ibrahim

(2008) and Lin (1998)). In 2004, Al-Oboudi generalized Sălăgean operator.

Definition 1.6.3. Al-Oboudi (2004). For a function f ∈ A, Al-Oboudi introduced

the following operator:

D0
λf(z) = f(z)

D1
λf(z) = (1 − λ)f(z) + λzf ′(z) = Dλf(z), (λ ≥ 0)

Dn
λf(z) = Dλ(D

n−1
λ f(z)), (n ∈ N = {1, 2, 3, ...}).

Their elementary properties are important for further research and have been

discussed and studied by many researchers. Abdul Halim (1992) she introduced a

new class, Bn(α) that involve Sălăgean’s operators and show that the class is ana-

lytic, normalized and univalent functions in U .

Definition 1.6.4. Abdul Halim (1992). For α > 0 and n = 0, 1, 2, . . . , a function

f normalised by (1.1) belongs to Bn(α) if and only if,

Re
Dn[f(z)]α

zα
> 0, (z ∈ U).

where Dn denotes the Sălăgean’s differential operator.

For n = 1, B1(α) denotes the class of Bazilević functions with logarithmic growth

studied by others Babalola (2006), Thomas (1968) and Kim (2009). The class B0(α)
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was initiated by Yamaguchi (1966). For B1(α), Singh (1973) gave sharp estimates

for the modulus of the coefficients a2, a2, a3 of f . The results were extended by

Abdul Halim (2003), to the class Bn(α).

Later we derive some integral operators and preliminary results on the class de-

fined by integral operators. Here we give a brief survey of these operators.

1.7 Integral Operators

The study of the integral operators has been rapidly investigated by many authors in

the field of univalent functions. Recently, various integral operators have been intro-

duced for certain classes of analytic univalent functions and their properties is one

of the hot areas of current ongoing research in the geometric function theory. The

first integral transform defined a subclass of S was introduced by Alexander in 1915.

Definition 1.7.1. Alexander (1915). For a function f ∈ A, Alexander introduced

an integral operator as follows

F (z) =

∫ z

0

f(t)

t
dt, (z ∈ U).

Alexander showed that the operator F (z) maps ST onto CV. In 1960, Biernacki

falsely claimed that F (z) is in S whenever f ∈ S. Three years later this error was

noticed by Krzyz and Lewandowski in Goodman (1983). Nevertheless, Biernackis

consideration of the integral transform gave rise to the study of the integral operator.
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Definition 1.7.2. Biernacki (1960). For a function f ∈ A, we define the integral

operator Fα as follows

Fα(z) =

∫ z

0

(
f(t)

t

)α
dt (0 ≤ α < 1, z ∈ U).

Fα(z) is known as integral of the first type and since then many papers have

appeared concerning the operator Fα(z). Later in 1965, Libera introduced an inte-

gral operator. There are many author investigate some interesting characterization

theorems involving the generalized Libera integral operator (see e.g., Libera (1965),

Li (1997) and Oros (2006)).

Definition 1.7.3. Libera (1965). For a function f ∈ A, Libera introduced that the

operator

I(f(z)) =
2

z

∫ z

0

f(t) dt, (z ∈ U).

It is well known that if f(z) is convex, starlike, or close-to-convex in U , then

the Libera integral operator I(f(z)) has the same property. In 1969, Bernardi gave

a more general operator, Lcf(z) and studied its properties. Some of other works

on the Bernardi operator include Owa (1986) and Goa (2005) and references therein.

Definition 1.7.4. Bernardi (1969). For a function f ∈ A, the generalized Bernardi-

Libera-Livingston integral operator, Lc(f) is defined as follows

Lcf(z) =
c+ 1

zc

∫ z

0

tc−1f(t) dt, (c ∈ N, z ∈ U).
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He also showed that the classes ST and CV are closed under this operator,

i.e., the generalized Bernardi operator maps the classes of ST and CV onto the

classes of ST and CV respectively. In 1993 Jung et. al. introduced the following

one-parameter families of integral operators, Iσ and then further investigated by

Uralegaddi and Somanatha (1995), Li (1999) and Liu (2002).

Definition 1.7.5. Jung (1993). For a function f ∈ A, we define the integral

operator Iσ by

Iσf(z) =
2σ

zΓ(σ)

∫ z

0

(
log

z

t

)σ−1

f(t) dt, (σ > 0, z ∈ U).

The operator Iσ is closely related to the multiplier transformations investigated

by Flett (1972) and Kim et. al. (1994). Recently, many authors have introduced

and studied generalized integral operator of multivalent functions such as Bernardi-

Libera-Livingston and Jung-Kim-Srivastava integral operator (see Öznur (2007),

Goyal (2009) and Saitoh et. al. (1992)).

Definition 1.7.6. Reddy (1982). For a function f ∈ Ap, we define the integral

operator Lp,c as follows

Lp,cf(z) =
c+ p

zc

∫ z

0

f(t)tc−1 dt. (c+ p > 0, p ∈ N, z ∈ U).

Definition 1.7.7. Shams (2006). For a function f(z) ∈ Ap, we define the integral

operator Iσp by

Iσp f(z) =
(p+ 1)σ

zpΓ(σ)

∫ z

0

tp−1
(
log

z

t

)σ−1

f(t) dt. (σ > 0, p ∈ N, z ∈ U).
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Many subclasses of analytic functions defined by the p-modified Jung-Kim-

Srivastava integral operator were studied earlier by Shams et. al., Liu (2004) and

Patel and Mohanty (2003). Motivated essentially by the Jung-Kim-Srivastava in-

tegral operator, Liu and Owa introduced and investigated the following integral

operator:

Definition 1.7.8. Liu (2003). For a function f(z) ∈ Ap, we define the integral

operator Jσβ as follows

Jσβ f(z) =

(
p+ σ + β − 1

p + β − 1

)
σ

zβ

∫ z

0

(
1 − t

z

)σ−1

tβ−1f(t) dt (σ > 0, β > −1).

Jahangiri and Farahmand (2003) studied the partial sums of the Libera integral

operator for functions of bounded turning, P(α). It is proved that the partial sums

of the operator is also of bounded turning under certain conditions. The result has

been extended by Babalola (2007), to a more general class of functions involving

the Salagean operator. Recently, Darus and Ibrahim (2010), obtained certain con-

ditions under which the partial sums of the Jung-Kim-Srivastava integral operators

are preserved for functions of bounded turning.
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CHAPTER 2

DIFFERENTIAL OPERATORS

2.1 Introduction

Let A denote be the class of functions f which are analytic in the open disc U =

{z : |z| < 1} and are of the form

f(z) = z +
∞∑

k=2

akz
k. (2.1)

The subclass of A consisting of functions, which are univalent in the open unit

disc U is denoted by S. For α > 0 and n = 0, 1, 2, . . . , a function f normalised

by (2.1) belongs to Bn(α) if and only if,

Re
Dn[f(z)]α

zα
> 0, (z ∈ U),

where Dn denotes the Sălăgean’s differential operator, Sălăgean (1983) with

D0
1f(z) = f(z),

Dn
1f(z) = D(Dn−1f(z)) = z[Dn−1f(z)]′.

For f ∈ A, Al-Oboudi (2004) introduced generalized operator:

D0
λf(z) = f(z)

D1
λf(z) = (1 − λ)f(z) + λzf ′(z) = Dλf(z), (λ ≥ 0) (2.2)

Dn
λf(z) = Dλ(D

n−1
λ f(z)), (n ∈ N = {1, 2, 3, ...}). (2.3)
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For f given by (2.1), using (2.2) and (2.3) we can deduce that

Dn
λf(z) = z +

∞∑

k=2

[1 − λ + λk]n akz
k, (n ∈ N ∪ {0}),

with Dn
λf(0) = 0.

Using the Al-Oboudi operator, Dn
λ , the class Bλ

n(α) is defined as follows:

Re
Dn
λ[f(z)]α

[1 − λ + λα]nzα
> 0, (α > 0, n = 0, 1, 2, . . . )

where

D0
λf(z)α = f(z)α

D1
λf(z)α = (1 − λ)f(z)α + λz(f(z)α)′ = Dλf(z)α, λ ≥ 0 (2.4)

Dn
λf(z)α = Dλ(D

n−1f(z)α). (2.5)

For f of the form (2.1) and α > 0, write

f(z)α =

(
z +

∞∑

k=2

akz
k

)α

= zα +
∞∑

k=2

Hk(α)zα+k−1

which are analytic in the open disc U . Then from (2.4) and (2.5),

Dn
λf(z)α = [1 − λ+ λα]nzα +

∞∑

k=2

[1 − λ+ λ(α + k − 1)]
n
Hk(α)zα+k−1. (2.6)

Using the binomial expansion, it can also be established that

H2(α) = αa2

H3(α) = αa3 +
α(α − 1)

2
a2

2

H4(α) = αa4 + α(α − 1)a2a3 +
α(α− 1)(α − 2)

6
a3

2.
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In proving our results, we shall need the following lemmas.

Lemma 2.1.1. If q(z) is analytic in U , q(0) = 1 and Re q(z) > 1
2
, z ∈ U , then for

any function h(z) analytic in U , the convolution function q ∗ h takes its values in

the convex hull of h(U).

The assertion of Lemma 2.1.1 follows by using the Herglotz representation for p.

The next lemma is due to Fejér (1925). An infinite sequence {λn}∞n=0 of nonnegative

numbers is said to be a convex null sequence if λn → 0 as n→ ∞ and

λ0 − λ1 ≥ λ1 − λ2 ≥ · · · ≥ λn − λn+1 ≥ · · · ≥ 0.

Lemma 2.1.2. Let {λn}∞n=0 be a convex null sequence. Then the function p(z) =

λ0

2
+
∑∞

n=1 λnz
n, z ∈ U , is analytic in U with Re p(z) > 0 in U .

Remark 2.1.1. It is obvious that if {λn}∞n=0 is a convex null sequence, then by the

above Lemma, Re p(z) > 1
2
.

Another well known result on the class of Caratheodory functions are the fol-

lowing lemmas.

Lemma 2.1.3. Abdul Halim (2003). Let p ∈ P and let it be of the form p(z) =

1 +
∑∞

i=1 ciz
i. Then

(i) |ci| ≤ 2, ∀i ≥ 1

(ii) |c2 − µc21| ≤ 2 max{1, |1 − 2µ|} for µ ∈ C.
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Lemma 2.1.4. Nehari (1957). If the functions 1 +
∑∞

v=1 bvz
v and 1 +

∑∞
v=1 cvz

v

belong to P , then the same is true for the function 1 + (1/2)
∑∞

v=1 bvcvz
v.

Lemma 2.1.5. Nehari (1957). Let h(z) = 1 + h1z + h2z
2 + . . . and let 1 +G(z) =

1 + g1z + g2z
2 + . . . be functions in P . Set γ0 = 1 and for v ≥ 1,

γv =
1

2v

[
1 +

1

2

v∑

µ=1

(
v

µ

)
hµ

]
. (2.7)

If Dk is defined by

∞∑

v=1

(−1)v+1γv−1G
v(z) =

∞∑

k=1

Dkz
k (2.8)

then |Dk| ≤ 2.

Lemma 2.1.6. Libera (1982). If p(z) = 1+
∑∞

i=1 ciz
i ∈ P and [p(z)]−1 = 1+p1z+

p2z
2 + ... then

p1 =c21 − c2

p2 =c3 − 2c1c2 + c31

and |pn| ≤ 2 for n = 1, 2, ..., 6.

The aim of this chapter is to investigate further, inclusion relation, coefficient

estimates for functions as well as its inverse that involved Sălăgean and Al-Oboudi

differential operator.
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2.2 Sălăgean differential operator

We consider the problem on finding sharp lower bound for the coefficient and ob-

tain Fekete-Szegö inequality of the inverse function in Bn(α) that involved Sălăgean

differential operator.

Theorem 2.2.1. For f ∈ Bn(α) where α > 0, n ≥ 1, and F (w) = f−1(w) =

w +
∑∞

k=2 Akw
k, the following bounds are sharp.

(i) |A2| ≤
2αn−1

(1 + α)n

(ii) |A3| ≤





2αn−1

(2+α)n (2κ− 1) for κ ≥ 1,

2αn−1

(2+α)n for 0 < κ ≤ 1.

(iii) |A4| ≤ αn−1





2
(3+α)n for ν = 0,

10
(3+α)n − 4(4+α)αn−1

(1+α)n(2+α)n for 0 ≤ µ ≤ ν,

4(4+α)αn−1

(1+α)n(2+α)n − 6
(3+α)n for ν ≤ µ ≤ 0.

2
(3+α)n + φ for 0 ≤ ν ≤ µ or ν < 0, µ > 0.

2
(3+α)n − φ for µ ≤ ν ≤ 0 or ν > 0, µ < 0.
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where

2κ =
αn−1(3 + α)(2 + α)n

(1 + α)2n
> 0,

φ =
4(4 + α)αn−1

(1 + α)n(2 + α)n
− 8(4 + α)(2 + α)α2n−2

3(1 + α)3n
,

µ(α, n) =
1

(3 + α)n
− (4 + α)(2 + α)α2n−2

3(1 + α)3n
, (2.9)

ν(α, n) =
2

(3 + α)n
− (4 + α)αn−1

(1 + α)n(2 + α)n
. (2.10)

Proof :Since f ∈ Bn(α), ∃ p(z) ∈ P such that if p(z) = 1 +
∑∞

k=1 ckz
k, the

following is true.

a2 =
αn−1c1

(1 + α)n
(2.11)

a3 =
αn−1c2

(2 + α)n
+

(1 − α)a2
2

2
(2.12)

a4 =
αn−1c3

(3 + α)n
+

(1 − α)(α− 2)a3
2

6
+ (1 − α)a3a2. (2.13)

Let F (w) = f−1(w) = w +
∑∞

k=2 Akw
k. Since f(w +

∑∞
k=2 Akw

k) = w, we then

have,

(w +A2w
2 +A3w

3 + ...) + a2(w +A2w
2 +A3w

3 + ...)2

+ a3(w +A2w
2 +A3w

3 + ...)3 + a4(w +A2w
2 +A3w

3 + ...)4 + ... = w.
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Equating coefficients, we obtain

A2 + a2 = 0

A3 + 2a2A2 + a3 = 0

A4 + a2(2A3 +A2
2) + 3a3A2 + a4 = 0.

Follows trivially from equation (2.11) and Lemma 2.1.3(i) this complete the proof

of Theorem 2.2.1(i). From equation (2.12) and application of Lemma 2.1.3(ii), we

can write,

|A3| = |2a2
2 − a3|

=

∣∣∣∣∣
(3 + α)

2

(
αn−1c1

(1 + α)n

)2

− αn−1c2
(2 + α)n

∣∣∣∣∣

=

∣∣∣∣
−αn−1

(2 + α)n
(c2 − κc21)

∣∣∣∣

≤ 2αn−1

(2 + α)n
max{1, |1 − 2κ|}.

where 2κ =
αn−1(3 + α)(2 + α)n

(1 + α)2n
.

Since α > 0 therefore κ > 0. By considering the possible cases of |1−2κ| we can

easily obtain the upper bounds of |A3|.

1. when κ ≥ 1 which implies (1 − 2κ) ≤ −1,

|A3| ≤ 2αn−1

(2 + α)n
(2κ− 1)

2. when 0 < κ ≤ 1, then |1 − 2κ| ≤ 1 and therefore we have

|A3| ≤ 2αn−1

(2 + α)n
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which completes the upper bound in Theorem 2.2.1(ii).

Next, writing A2 = −a2 and A3 = 2a2
2 − a3, we get A4 = 5a2(a3 − a2

2) − a4 and

using equation (2.13) we have,

A4 = 5
αn−1c1

(1 + α)n

[
αn−1c2

(2 + α)n
+

(1 − α)

2

(αn−1c1)
2

(1 + α)2n
− (αn−1c1)

2

(1 + α)2n

]

− αn−1

(3 + α)n

[
c3 +

(1 − α)(3 + α)nαn−1

(1 + α)n

(
c1c2

(2 + α)n
+

(1 − 2α)αn−1c31
6(1 + α)2n

)]
.

Using estimates in Lemma 2.1.3 and Lemma 2.1.6, give

|A4| ≤ αn−1

{
2

(3 + α)n
+ 2(2)|ν(α, n)| max

(
1,

∣∣∣∣1 − 2
µ(α, n)

ν(α, n)

∣∣∣∣
)}

, (2.14)

with µ(α, n) and ν(α, n) given by equation (2.9) and equation (2.10). From equa-

tion (2.14), to obtain the upper bounds for |A4|, we consider the following cases:

• |1 − 2µ| ≥ 1 which implies µ
ν
≤ 0 or µ

ν
≥ 1

• |1 − 2µ| ≤ 1 which implies 0 ≤ µ
ν
≤ 1

• ν = 0

which with some elementary manipulation gives the upper bound.

The bounds for |A2|, |A3| and |A4| are all sharp. Result (i), (ii) for κ ≥ 1 and

(iii) for 0 ≤ ν ≤ µ or ν < 0, µ > 0 and µ ≤ ν ≤ 0 or ν > 0, µ < 0 are sharp for

f0(z) = z

(
1 + 2

∞∑

k=1

αnzk

(k + α)n

) 1
α

.
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This function is derived from the following relationship

Dnf(z)α

zα
= αn

(
1 + z

1 − z

)
.

The upperbound for |A3| in the case 0 < κ ≤ 1 is sharp for the function

f1(z) = z

(
1 + 2

∞∑

k=1

αnz2k

(2k + α)n

) 1
α

,

and similarly for |A4| when ν = 0, the bound is sharp for

f2(z) = z

(
1 + 2

∞∑

k=1

αnz3k

(3k + α)n

) 1
α

.

This completes the proof.

Theorem 2.2.2. Let f ∈ Bn(α) and f−1(w) = w +
∑∞

k−2 Akw
k. Then

|A3 − tA2
2| ≤





2αn−1

(2+α)n − 2α2n−2

(1+α)2n (3 − 2t+ α) for t ≤ 3+α
2

− (1+α)2n

αn−1(2+α)n ,

2αn−1

(2+α)n for 3+α
2

− (1+α)2n

αn−1(2+α)n ≤ t ≤ 3+α
2

,

2α2n−2

(1+α)2n (3 − 2t+ α) − 2αn−1

(2+α)n for t ≥ 3+α
2

,

If t ≥ 3+α
2

or t ≤ 3+α
2

− (1+α)2n

αn−1(2+α)n , equality holds if and only if f is given by

Dnf(z)α

zα = αn
(

1+z
1−z

)
. If 3+α

2
− (1+α)2n

αn−1(2+α)n ≤ t ≤ 3+α
2

, equality holds if and only if f is

given by Dnf(z)α

zα = αn
(

1+z2

1−z2

)
.
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Proof : Using equation (2.11) and equation (2.12), write

A3 − tA2
2 = (2 − t)a2

2 − a3

= (2 − t)

(
αn−1c1

(1 + α)n

)2

−
(
αn−1c2

(2 + α)n
+

(1 − α)α2n−2c21
2(1 + α)2n

)

= − αn−1

(2 + α)n

[
c2 −

αn−1(2 + α)n

(1 + α)2n

(
3 − 2t+ α

2

)
c21

]
.

Using Lemma 2.1.3(ii), gives

|A3 − tA2
2| =

∣∣∣∣−
αn−1

(2 + α)n

(
c2 −

αn−1(2 + α)n

(1 + α)2n

(
3 − 2t+ α

2

)
c21

)∣∣∣∣

≤ 2αn−1

(2 + α)n
max{1, |1− 2µ|}

where µ =
αn−1(2 + α)n

(1 + α)2n

(
3 − 2t+ α

2

)
.

By considering the possible cases of |1− 2µ| we can easily obtain the upper bounds

of |A3 − tA2
2| for the different range of values of t.

1. when µ ≤ 0 which means (1 − 2µ) ≥ 1 and also that t ≥ 3+α
2

,

|A3 − tA2
2| ≤ 2αn−1

(2 + α)n
(−1 + 2µ)

=
2α2n−2

(1 + α)2n
(3 − 2t + α) − 2αn−1

(2 + α)n
, for µ ≤ 0.

2. when µ ≥ 1 which implies (1 − 2µ) ≤ −1 and also

t ≤ 3 + α

2
− (1 + α)2n

αn−1(2 + α)n
.

Thus,

|A3 − tA2
2| ≤ 2αn−1

(2 + α)n
(1 − 2µ)

=
2αn−1

(2 + α)n
− 2α2n−2

(1 + α)2n
(3 − 2t+ α), for µ ≥ 1.
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3. Finally, when 0 ≤ µ < 1, then |1 − 2µ| ≤ 1 and therefore we have

|A3 − tA2
2| ≤ 2αn−1

(2 + α)n
for 0 ≤ µ ≤ 1,

which completes the proof of Theorem 2.2.2. Next we will consider to the more

general differential operator.

2.3 Al-Oboudi differential operator

In this section we investigate the inclusion relation, coefficient estimates for class

Bλ
n(α) as well as its inverse. The problem of maximising |a3 − µa2

2| in S and its

various subclasses has been extensively studied by many authors. The next result

concerns Fekete-Szegö type, for the inverse function F that involved Al-Oboudi dif-

ferential operator.

In Abdul Halim (1990), B1
n(α) was considered by Halim, who proved the following

theorem.

Theorem 2.3.1. B1
n+1(α) ⊂ B1

n(α) for n ≥ 1.

Corollary 2.3.2. B1
n(α) ⊂ S.

We now extend these results for class Bλ
n(α).

Theorem 2.3.3. For n ≥ 1, λ > 0 and α ≥ 1,

Bλ
n+1(α) ⊂ Bλ

n(α),
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Proof : Let f be given by (2.1) belong to Bλ
n+1(α). Then from (2.6), we have

Re

{
1 +

1

2

∞∑

k=2

[
1 − λ + λ(α + k − 1)

1 − λ+ λα

]n+1

Hk(α)zk−1

}
>

1

2
. (2.15)

For fixed n, λ and α ≥ 1,

Dn
λf(z)α

[1 − λ+ λα]nzα
= 1 +

∞∑

k=2

[
1 − λ+ λ(α + k − 1)

1 − λ+ λα

]n
Hk(α)zk−1

=

(
1 +

1

2

∞∑

k=2

[
1 − λ+ λ(α + k − 1)

1 − λ+ λα

]n+1

Hk(α)zk−1

)

∗
(

1 + 2
∞∑

k=2

[
1 − λ+ λα

1 − λ+ λ(α + k − 1)

]
zk−1

)
.

Suppose c0 = 1 and ck = 1−λ+λα
1−λ+λ(α+k−1)

for k = 1, 2, . . . . Then it is obvious that

for α ≥ 1, {ck} is a convex null sequence since

c0 − c1
c1 − c2

=

(
λ

1 − λ+ λ(α + 1)

)(
[1 − λ + λ(α+ 1)][1 − λ + λ(α+ 2)]

λ[1 − λ + λα]

)

= 1 +
2λ

1 − λ+ λα

≥ 1

and furthermore for α ≥ 1, ck − ck+1 ≥ 0. Applying Lemma 2.1.2, gives

Re

{
1 + 2

∞∑

k=2

[
1 − λ+ λα

1 − λ + λ(α + k − 1)

]
zk−1

}
> 0.

Then, by taking q(z) = 1 + 1
2

∑∞
k=2

[
1−λ+λ(α+k−1)

1−λ+λα

]n+1

Hk(α)zk−1, (H1(α) = 1)

and using (2.15) in Lemma 2.1.1, we obtain Re
{

Dn
λf

α(z)

[1−λ+λα]nzα

}
> 0, which proves the

result.

Remark 2.3.1. When λ = 1, we obtain Theorem 2.3.1.
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For B1
n(α), Abdul Halim (2003) gave estimates for the modulus of the coefficients

a2, a3 and a4 of f . The author proved the following:

Theorem 2.3.4. If α > 0, n = 0, 1, 2, . . . , and f ∈ B1
n(α) (n is fixed) with f(z) =

z +
∑∞

k=2 akz
k, then the following inequalities hold:

|a2| ≤
2αn−1

(1 + α)n

|a3| ≤





2αn−1

(2+α)n

(
1 −

(
α−1
α

) (
α2+2α
α2+2α+1

)n)
, for 0 < α < 1,

2αn−1

(2+α)n , for α ≥ 1,

|a4| ≤





2αn−1

(3+α)n + 4(1−α)α2n−2

(1+α)n(2+α)n

(
1 + (1−2α)(2+α)nαn−1

3(1+α)2n

)
, for 0 < α < 1,

2αn−1

(3+α)n , for α ≥ 1.

Remark 2.3.2. When n = 1, the above results are reduced to those obtained by

Singh (1973).

Using the similar approach, we extend Halim’s results to the class Bλ
n(α).

Theorem 2.3.5. If α > 0, n = 0, 1, 2, . . . and f ∈ Bλn(α) (n is fixed) with f of the

form (2.1), then the inequalities hold:
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(i) |a2| ≤
2

α

[
1 − λ + λα

1 − λ + λ(α + 1)

]n

(ii) |a3| ≤





2
α

[
1−λ+λα

1−λ+λ(α+2)

]n
for α ≥ 1,

2
α

[
1−λ+λα

1−λ+λ(α+2)

]n
+ 2

α

[
1−α
α

] [
1−λ+λα

1−λ+λ(α+1)

]2n
for 0 < α < 1.

(iii) |a4| ≤





2
α

[
1−λ+λα

1−λ+λ(α+3)

]n
for α ≥ 1,

2
α

[
1−λ+λα

1−λ+λ(α+3)

]n
+ 4

α

[
1−α
α

] [
1−2α
3α

] [
1−λ+λα

1−λ+λ(α+1)

]3n

+ 4
α

[
1−α
α

] [
1−λ+λα

1−λ+λ(α+1)

]n [
1−λ+λα

1−λ+λ(α+2)

]n
for 0 < α < 1.

Remark 2.3.3. When λ = 1, the above results reduce to those obtained by Abdul

Halim (2003) and for n = 1 the results are obtained by Singh (1973).

Proof : Since f ∈ Bλn(α), ∃p ∈ P such that for z ∈ U ,

Dn
λf(z)α

zα
= [1 − λ+ λα]np(z).

Using (2.6) the above can be written as,

1 +

∞∑

k=2

[
1 − λ + λ(α + k − 1)

1 − λ + λα

]n
Hk(α)zk−1 = 1 +

∞∑

i=1

ciz
i. (2.16)
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On comparing coefficients in (2.16), the following relationships hold

a2 =
1

α

[
1 − λ + λα

1 − λ + λ(α+ 1)

]n
c1, (2.17)

a3 =
1

α

[
1 − λ + λα

1 − λ + λ(α+ 2)

]n
c2 +

(1 − α)

2
a2

2, (2.18)

a4 =
1

α

[
1 − λ + λα

1 − λ + λ(α+ 3)

]n
c3 + (1 − α)a2a3

+
(1 − α)(α − 2)

6
a3

2. (2.19)

Inequality Theorem 2.3.5(i) follows easily from (2.17) since by Lemma 2.1.3(i),

|c1| ≤ 2 for all α > 0. Eliminating a2 in (2.18), gives

|a3| =

∣∣∣∣∣
1

α

[
1 − λ + λα

1 − λ + λ(α + 2)

]n
c2 +

(
1 − α

2α2

)[
1 − λ+ λα

1 − λ+ λ(α + 1)

]2n

c21

∣∣∣∣∣

=

∣∣∣∣
1

α

[
1 − λ + λα

1 − λ + λ(α + 2)

]n

×
(
c2 −

[
α − 1

2α

] [
1 − λ + λα

1 − λ + λ(α+ 1)

]n [
1 − λ + λ(α + 2)

1 − λ + λ(α + 1)

]n
c21

)∣∣∣∣

=
1

α

[
1 − λ+ λα

1 − λ+ λ(α + 2)

]n ∣∣c2 − µc21
∣∣

≤ 2

α

[
1 − λ+ λα

1 − λ + λ(α + 2)

]n
max {1, |1 − 2µ|},

where Lemma 2.1.3(ii) is used with

2µ =

[
α− 1

α

] [
1 − λ + λα

1 − λ + λ(α + 1)

]n [
1 − λ+ λ(α + 2)

1 − λ+ λ(α + 1)

]n
.

Since µ ≥ 0 for α ≥ 1, both inequalities in Theorem 2.3.5(ii) are easily obtained.
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We now prove inequality Theorem 2.3.5(iii). From (2.17), (2.18) and (2.19), we have

a4 =
1

α

[
1 − λ + λα

1 − λ + λ(α+ 3)

]n

×
(
c3 +

[
1 − α

α

] [
1 − λ + λ(α+ 3)

1 − λ + λ(α+ 1)

]n [
1 − λ+ λα

1 − λ + λ(α + 2)

]n
c1c2

+

[
1 − α

α

] [
1 − 2α

6α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ + λ(α + 1)

]2n

c31

)

(2.20)

First, consider the case 0 < α < 1/2. The triangle inequality with Lemma 2.1.3(i)

results in the inequality

|a4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n

(
1 + 2

[
1 − α

α

] [
1 − λ+ λ(α + 3)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ+ λ(α + 2)

]n

+ 2

[
1 − α

α

] [
1 − 2α

3α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ + λα

1 − λ+ λ(α + 1)

]2n
)

which is the first inequality in Theorem 2.3.5(iii). For the case 1/2 ≤ α < 1, we use

Carathéodory-Toeplitz result which state that for some ε with |ε| < 1,

c2 =
c21
2

+ ε

(
2 − |c1|2

2

)
. (2.21)

Subtituting (2.21) into (2.20), gives

a4 =
1

α

[
1 − λ + λα

1 − λ + λ(α+ 3)

]n

(
c3 +

[
1 − α

α

] [
1 − λ+ λ(α + 3)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ+ λ(α + 2)

]n
c1

(
c21
2

)

+

[
1 − α

α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
c1

(
2ε− |c1|2

2
ε

)

+

[
1 − α

α

] [
1 − 2α

6α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ + λ(α + 1)

]2n

c31

)
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=
1

α

[
1 − λ+ λα

1 − λ+ λ(α + 3)

]n

(
c3 +

[
1 − α

α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
c1

×
[
c21
2

+ 2ε− |c1|2

2
ε+

[
1 − 2α

6α

] [
1 − λ + λα

1 − λ + λ(α + 1)

]n [
1 − λ+ λ(α + 2)

1 − λ+ λ(α + 1)

]n
c21

])
.

Thus

|a4| ≤
1

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n

(
|c3| +

[
1 − α

α

] [
1 − λ+ λ(α + 3)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ + λ(α + 2)

]n
|c1|

×
∣∣∣∣
|c1|2

2
w + 2ε− |c1|2

2
ε

∣∣∣∣
)
.

where

w = 1 +

[
1 − 2α

3α

] [
1 − λ+ λα

1 − λ+ λ(α + 1)

]n [
1 − λ+ λ(α + 2)

1 − λ+ λ(α + 1)

]n
.

Since 0 < w ≤ 1 and |ε| < 1, it is easily shown that

|a4| ≤
1

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n

(
|c3| +

[
1 − α

α

] [
1 − λ+ λ(α + 3)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ + λ(α + 2)

]n
|c1|

×
[
|c1|2

2
(w − 1) + 2

])
.

and the result follows upon using |c1| ≤ 2 and |c3| ≤ 2.
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Finally, consider the case α ≥ 1. Here, we use a method introduced by Nehari

and Netanyahu (1957) which was also used by Singh (1973) and the author in Abdul

Halim (1989).

First, let h and g be defined as in Lemma 2.1.5, and since p ∈ P , Lemma 2.1.4

indicates that

1 +G(z) = 1 +
1

2

∞∑

k=1

gkckz
k

also belongs to P . Next, it follows from (2.8) that,

|D3| =

∣∣∣∣
1

2
g3c3 −

1

2
γ1g1g2c1c2 +

1

8
γ2g

3
1c

3
1

∣∣∣∣ . (2.22)

Rewrite (2.20) as

[
1 − λ+ λ(α + 3)

1 − λ + λα

]n
αa4

= c3 +

[
1 − α

α

] [
1 − λ+ λ(α + 3)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ + λ(α + 2)

]n
c1c2

+

[
1 − α

α

] [
1 − 2α

6α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 1)

]2n

c31

(2.23)

and compare it with (2.22). The required result easily follows since, by Lemma

2.1.5,

|A3| = α

[
1 − λ+ λ(α + 3)

1 − λ+ λα

]n
|a4| ≤ 2.

This however is only true if we can show the existence of functions h and ψ in P

where ψ(z) = 1 + g(z). To be simple, we choose ψ(z) = (1 + z)/(1− z). Thus, now

40



it remains to construct and show that h ∈ P . Since g1 = g2 = g3 = 2, it follows

from (2.22) and (2.23) that

2γ1 =

[
α− 1

α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
, (2.24)

γ2 =

[
1 − α

α

] [
1 − 2α

6α

] [
1 − λ + λ(α+ 3)

1 − λ + λ(α+ 1)

]n [
1 − λ+ λα

1 − λ + λ(α + 1)

]2n

.(2.25)

However, from (2.7), we have

γ1 =
1

2

(
1 +

1

2
h1

)
, (2.26)

γ2 =
1

4

(
1 + h1 +

1

2
h2

)
. (2.27)

Solving for h1 by eliminating γ1 from (2.24) and (2.26), we obtain

|h1| = 2

∣∣∣∣
[
α− 1

α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
− 1

∣∣∣∣ . (2.28)

Quite trivially, it can be seen that |h1| ≤ 2 for α ≥ 1. In a similar manner,

eliminating γ2 from (2.25) and (2.27) and using h1 given by (2.28), we have

h2 = 2

[
1 − 2

3

[
α− 1

α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n

×
([

1 − 2α

α

] [
1 − λ + λα

1 − λ+ λ(α + 1)

]n [
1 − λ + λ(α + 2)

1 − λ + λ(α + 1)

]n
+ 3

)]
.

(2.29)
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Now we let,

µ1 = 1 −
[
α− 1

α

] [
1 − λ + λ(α + 3)

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n

µ2 =

[
α − 1

α

] [
1 − λ+ λ(α + 3)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ + λ(α + 2)

]n

π = 1 − 2

3

([
1 − 2α

α

] [
1 − λ + λα

1 − λ+ λ(α + 1)

]n [
1 − λ + λ(α + 2)

1 − λ + λ(α + 1)

]n
+ 3

)
.

Form equation (2.30), upon simplification we can construct h2 = 2[1−µ2(1−π)].

Further, with a little bit of manipulation, it can be shown that |π| ≤ 1, then for

α ≥ 1, it is obivious that |h2| ≤ 2.

Next, we construct h by first setting it to be of the form

h(z) =
µ1(1 − z)

1 + z
+
µ2(1 + πz2)

1 − πz2
.

It is readily seen that for α ≥ 1, both µ1 and µ2 are nonnegative and µ1 + µ2 = 1.

By some elementary manipulation it can be shown that the coefficients of z and z2

in the expansion of h are respectively those given by (2.28) and (2.29). Hence h ∈ P

and thus |a4| ≤ 2
α

[
1−λ+λα

1−λ+λ(α+3)

]n
, the second inequality in Theorem 2.3.5(iii). This

completes the proof.

Theorem 2.3.6. If α > 0, n ≥ 1 and f ∈ Bλ
n(α) and F (w) = f−1(w) = w +

∑∞
k=2Akw

k, then the following bounds are true:
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(i) |A2| ≤
2

α

[
1 − λ + λα

1 − λ + λ(α + 1)

]n

(ii) |A3| ≤





2
α

[
1−λ+λα

1−λ+λ(α+2)

]n
(2κ− 1) for κ ≥ 1,

2
α

[
1−λ+λα

1−λ+λ(α+2)

]n
for 0 < κ ≤ 1.

(iii) |A4| ≤





2
α

[
1−λ+λα

1−λ+λ(α+3)

]n
for ν = 0,

−4(4+α)
α2

[
1−λ+λα

1−λ+λ(α+1)

]n [
1−λ+λα

1−λ+λ(α+2)

]n

+ 10
α

[
1−λ+λα

1−λ+λ(α+3)

]n
for 0 ≤ µ ≤ ν,

4(4+α)
α2

[
1−λ+λα

1−λ+λ(α+1)

]n [
1−λ+λα

1−λ+λ(α+2)

]n

− 6
α

[
1−λ+λα

1−λ+λ(α+3)

]n
for ν ≤ µ ≤ 0,

2
α

[
1−λ+λα

1−λ+λ(α+3)

]n
− φ for 0 < ν ≤ µ or ν < 0, µ ≥ 0,

2
α

[
1−λ+λα

1−λ+λ(α+3)

]n
+ φ for µ ≤ ν < 0 or ν > 0, µ ≤ 0,
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where

2κ =

(
3 + α

α

)[
1 − λ + λ(α+ 2)

1 − λ + λ(α+ 1)

]n [
1 − λ+ λα

1 − λ + λ(α + 1)

]n

φ =
8(4 + α)(2 + α)

3α3

[
1 − λ + λα

1 − λ+ λ(α + 1)

]3n

− 4(4 + α)

α2

[
1 − λ + λα

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ + λ(α + 2)

]n

µ(α, n) =
1

α

[
1 − λ + λα

1 − λ + λ(α + 3)

]n
− (4 + α)(2 + α)

3α3

[
1 − λ + λα

1 − λ+ λ(α + 1)

]3n

ν(α, n) =
2

α

[
1 − λ + λα

1 − λ + λ(α + 3)

]n
− 4 + α

α2

[
1 − λ + λα

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n

Proof : Let F (w) = f−1(w) = w +
∑∞

k=2 Akw
k. Since f(w +

∑∞
k=2 Akw

k) = w,

we then have,

(w +A2w
2 +A3w

3 + ...) + a2(w +A2w
2 +A3w

3 + ...)2

+ a3(w +A2w
2 +A3w

3 + ...)3 + a4(w +A2w
2 +A3w

3 + ...)4 + ... = w.

Equating coefficients, we obtain

A2 + a2 = 0 (2.30)

A3 + 2a2A2 + a3 = 0 (2.31)

A4 + a2(2A3 +A2
2) + 3a3A2 + a4 = 0. (2.32)

(i) From (2.17) and (2.30), the result follows trivially from Lemma 2.1.3(i). In sim-

ilar manner, substituting (2.17) and (2.18) in (2.31), gives
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|A3| =

∣∣∣∣∣

(
3 + α

2

)(
1

α

[
1 − λ+ λα

1 − λ + λ(α + 1)

]n
c1

)2

−
(

1

α

[
1 − λ + λα

1 − λ+ λ(α + 2)

]n
c2

)∣∣∣∣∣

=

∣∣∣∣−
1

α

[
1 − λ + λα

1 − λ + λ(α+ 2)

]n

×
(
c2 −

[
(3 + α)[1 − λ+ λ(α + 2)]n[1 − λ + λα]n

2α[1 − λ + λ(α+ 1)]2n

]
c21

)∣∣∣∣

=

∣∣∣∣−
1

α

[
1 − λ + λα

1 − λ + λ(α+ 2)

]n
(c2 − κc21)

∣∣∣∣

≤ 1

α

[
1 − λ+ λα

1 − λ + λ(α + 2)

]n
max{1, |1 − 2κ|}.

where 2κ =
(3 + α)[1 − λ + λ(α + 2)]n[1 − λ+ λα]n

α[1 − λ + λ(α + 1)]2n
> 0.

Application of Lemma 2.1.3(ii) gives the upper bound in (ii).

(iii) Next using (2.17)-(2.19) in (2.32) and after some simplification

−A4 =
1

α

[
1 − λ+ λα

1 − λ+ λ(α + 3)

]n
c3 +

(
(4 + α)(2 + α)

3α3

)[
1 − λ + λα

1 − λ+ λ(α + 1)

]3n

c31

−
(

4 + α

α2

)[
1 − λ+ λα

1 − λ + λ(α + 1)

]n [
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
c1c2

=
1

α

[
1 − λ+ λα

1 − λ+ λ(α + 3)

]n
(c3 − 2c1c2 + c31)

+

(
(4 + α)(2 + α)

3α3

[
1 − λ+ λα

1 − λ + λ(α + 1)

]3n

− 1

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n)
c31

+

(
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n

−4 + α

α2

[
1 − λ + λα

1 − λ + λ(α+ 1)

]n [
1 − λ+ λα

1 − λ + λ(α + 2)

]n)
c1c2.
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Estimates in Lemma 2.1.3 and Lemma 2.1.6, give

|A4| ≤
{

2

α

[
1 − λ+ λα

1 − λ+ λ(α + 3)

]n
+ 2(2)|ν(α, n)| max

(
1,

∣∣∣∣1 − 2
µ(α, n)

ν(α, n)

∣∣∣∣
)}

,

where

µ(α, n) =
1

α

[
1 − λ+ λα

1 − λ+ λ(α + 3)

]n
− (4 + α)(2 + α)

3α3

[
1 − λ+ λα

1 − λ + λ(α + 1)

]3n

,

ν(α, n) =
2

α

[
1 − λ+ λα

1 − λ+ λ(α + 3)

]n
− 4 + α

α2

[
1 − λ+ λα

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ+ λ(α+ 2)

]n
.

Next we consider the following cases:

• |1 − 2µ
ν
| ≥ 1 which implies µ

ν
≤ 0 or µ

ν
≥ 1.

For µ
ν
≤ 0,

|A4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n
+ 4(ν)

(
1 − 2µ

ν

)
, for ν > 0, µ ≤ 0

|A4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n
+ 4(ν)

(
−1 +

2µ

ν

)
, for ν < 0, µ ≥ 0.

For µ
ν
≥ 1,

|A4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n
+ 4(−ν)

(
1 − 2µ

ν

)
, for µ ≥ ν > 0

|A4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n
+ 4(−ν)

(
−1 +

2µ

ν

)
, for µ ≤ ν < 0

46



• |1 − 2µ
ν
| ≤ 1 which implies 0 ≤ µ

ν
≤ 1.

For 0 ≤ µ
ν
≤ 1,

|A4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n
+ 4(ν)(−1), for ν ≤ µ ≤ 0

|A4| ≤
2

α

[
1 − λ+ λα

1 − λ + λ(α + 3)

]n
+ 4(ν)(1), for 0 ≤ µ ≤ ν

• ν = 0.

By using some elementary manipulations, we obtain the upper bounds for |A4|.

Theorem 2.3.7. Let Bλ
n(α) and f−1 = w +

∑∞
n=2 Anw

n. Then

|A3 − tA2
2| ≤





2
α

[
1−λ+λα

1−λ+λ(α+2)

]n
for 3+α

2
− δ ≤ t ≤ 3+α

2
,

2
α

[
1−λ+λα

1−λ+λ(α+2)

]n
− 2

α

(
3−2t+α

α

) [
1−λ+λα

1−λ+λ(α+1)

]2n
for t ≤ 3+α

2
− δ,

2
α

(
3−2t+α

α

) [
1−λ+λα

1−λ+λ(α+1)

]2n
− 2

α

[
1−λ+λα

1−λ+λ(α+2)

]n
for t ≥ 3+α

2
,

where δ = α

[
1 − λ+ λ(α + 1)

1 − λ+ λ(α + 2)

]n [
1 − λ + λ(α + 1)

1 − λ + λα

]n
.

P roof : Using (2.17) and (2.18), we write
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A3 − tA2
2 = (2 − t)a2

2 − a3

= − 1

α

[
1 − λ+ λα

1 − λ + λ(α + 2)

]n

×
(
c2 −

(
3 − 2t+ α

2α

)[
1 − λ+ λ(α + 2)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ+ λ(α + 1)

]n
c21

)
.

Using Lemma 2.1.3(ii), gives

|A3 − tA2
2| ≤

2

α

[
1 − λ + λα

1 − λ + λ(α + 2)

]n
max{1, |1 − 2µ|}

where

µ =

(
3 − 2t+ α

2α

)[
1 − λ+ λ(α + 2)

1 − λ+ λ(α + 1)

]n [
1 − λ + λα

1 − λ + λ(α+ 1)

]n
.

By considering the possible cases of |1− 2µ| we can easily obtain the upper bounds

of |A3 − tA2
2| for the different range of values of t,

(i) |1 − 2µ| ≥ 1 if and only if µ ≤ 0 or µ ≥ 1.

For µ ≤ 0 which means t ≥ 3+α
2

,

|A3 − tA2
2| ≤ 2

α

[
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
(−1 + 2µ) for µ ≤ 0,

= − 2

α

[
1 − λ+ λα

1 − λ + λ(α + 2)

]n
+

2

α

(
3 − 2t+ α

α

)[
1 − λ+ λα

1 − λ + λ(α + 1)

]2n

.

For µ ≥ 1 which implies t ≤ 3+α
2

− α
[

1−λ+λ(α+1)
1−λ+λ(α+2)

]n [
1−λ+λ(α+1)

1−λ+λα

]n
,

|A3 − tA2
2| ≤ 2

α

[
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
(1 − 2µ) for µ ≥ 1

=
2

α

[
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
− 2

α

(
3 − 2t + α

α

)[
1 − λ+ λα

1 − λ + λ(α + 1)

]2n

.
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(ii) |1 − 2µ| ≤ 1 if and only if 0 ≤ µ ≤ 1,

|A3 − tA2
2| ≤ 2

α

[
1 − λ+ λα

1 − λ+ λ(α + 2)

]n
for 0 ≤ µ ≤ 1.

This complete the proof.
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CHAPTER 3

PRESERVING INTEGRAL OPERATORS

3.1 Introduction

Let Ap be given by

f(z) = zp +

∞∑

n=1

ap+nz
p+n, (0 ≤ α < p, p ∈ N). (3.1)

For a function f(z) ∈ Ap which are analytic in U , Shams et al. (2006) defined

the integral operator Iσp by

Iσp f(z) =
(p+ 1)σ

zpΓ(σ)

∫ z

0

tp−1
(
log

z

t

)σ−1

f(t) dt

= zp +

∞∑

n=1

(
p + 1

p+ 1 + n

)σ
ap+nz

p+n, (σ > 0).

Motivated essentially by the Jung-Kim-Srivastava integral operator in Jung et.

al. (1993), Liu and Owa (2003) introduced and investigated the following integral

operator:

Jσβ f(z) =

(
p+ σ + β − 1

p+ β − 1

)
σ

zβ

∫ z

0

(
1 − t

z

)σ−1

tβ−1f(t) dt

= zp +

∞∑

n=1

Γ(p + n+ β)Γ(p + σ + β)

Γ(p + n+ σ + β)Γ(p+ β)
ap+nz

p+n, (σ > 0, β > −1),

where Γ denotes the Gamma function, f ∈ Ap is assumed to be given by (3.1), and

(in general)

(
p+ β − 1

σ

)
:=

Γ(p + β)

Γ(p + β − σ)Γ(σ + 1)
=:

(
p+ β − 1

p + β − 1 − σ

)
.
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If f(z) = zp +
∑∞

n=1 ap+nz
p+n and g(z) = zp +

∑∞
n=1 bp+nz

p+n are analytic in

U , then their Hadamard product (or convolution), denoted by f ∗ g, is the function

defined by the power series

(f ∗ g)(z) = zp +
∞∑

n=1

ap+nbp+nz
p+n, (z ∈ U).

In order to prove our results, we will use the following lemmas.

An infinite sequence λ0, λ1, . . . , λn, . . . of nonnegative numbers is said to be a

convex null sequence if

1. λn → 0 as n→ ∞ and

2. λ0 − λ1 ≥ λ1 − λ2 ≥ · · · ≥ λk − λn+1 ≥ · · · ≥ 0.

Lemma 3.1.1. Jahangiri (2003). Suppose {λn}∞n=0 is a convex null sequence. Then

the function p(z) = λ0

2
+ λ1z + λ2z

2 + ... z ∈ U , is analytic in U with Re p(z) > 0.

Remark 3.1.1. If {λn}∞n=0 is a convex null sequence, then by above Lemma, Re p(z) >

1
2
.

Lemma 3.1.2. Jahangiri (2003). Let p be analytic in U with p(0) = 1 and

Re{p(z)} > 1
2

in U . For any function q analytic in U , the function p ∗ q takes

value in the convex hull image on U under q.
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Lemma 3.1.3. Babalola (2007). Let θ be a real number and l be a positive integer.

If −1 < γ ≤ A, then

1

1 + γ
+

l∑

k=1

cos kθ

k + γ
≥ 0

where the constant A = 4.5678018... is the best possible.

Lemma 3.1.4. Babalola (2007). For z ∈ U and −1 < γ ≤ A = 4.5678018...,

Re

l∑

k=1

zk

k + γ
≥ − 1

1 + γ
.

In this Chapter, we give results on preservation of integral operators for func-

tions belonging to the class ST p,g(β), CVp,g(β) and CCVp,g(β). These classes are

defined using the above characterization and convolution.

3.2 Starlike and Convex function

For a fixed function g ∈ Ap, the class ST p,g(β) which consists of functions f ∈ Ap

satisfying

(g ∗ f)(z)

zp
6= 0

in U and

Re
1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
> β
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where 0 ≤ β < 1. In a similar manner CVp,g(β) is defined using the 1 + zf ′′(z)
f ′(z)

characterization. Our results show the preservation of the integral operators Iσp and

Jσβ for the classes ST p,g(β) and CVp,g(β).

Theorem 3.2.1. If f ∈ ST p,g(β) then both Iσp f and Jσβ f also belong to ST p,g(β).

(ST p,g(β) is preserved by the integral operators Iσp f and Jσβ f).

Proof : Given a fixed g ∈ Ap. If f ∈ ST p,g(β) then ∃h such that Re h(z) > β

and the following is true

1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
= h(z) = 1 +

1

p

∞∑

n=1

cp+nz
p+n. (3.2)

Suppose f(z) = zp +
∑∞

n=1 ap+nz
p+n and g(z) = zp +

∑∞
n=1 bp+nz

p+n. Then

1

p

z(g ∗ f)′(z)

(g ∗ f)(z)
= 1 +

1

p

( ∑∞
n=1 nap+nbp+nz

n

1 +
∑∞

n=1 ap+nbp+nz
n

)
.

From (3.2), we have

1 +
1

p

( ∑∞
n=1 nap+nbp+nz

n

1 +
∑∞

n=1 ap+nbp+nz
n

)
= 1 +

1

p

∞∑

n=1

cp+nz
n

and after simplifying, gives

∞∑

n=1

nap+nbp+nz
n =

∞∑

n=1

cp+nz
n +

(
∞∑

n=1

ap+nbp+nz
n

)(
∞∑

n=1

cp+nz
n

)

=

∞∑

n=1

cp+nz
n +

∞∑

n=2

(
n−1∑

k=1

ap+kbp+kcp+n−k

)
zn.
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Equating coefficients, provides the following relation

nap+nbp+n =
n−1∑

k=1

ap+kbp+kcp+n−k (3.3)

where ap = bp = 1.

Since

Iσp f(z) = zp +
∞∑

n=1

(
p + 1

p+ 1 + n

)σ
ap+nz

p+n,

by using similar method we establish the following,

1

p

z(g ∗ Iσp )′(z)

(g ∗ Iσp )(z)
= 1 +

1

p

[ ∑∞
n=1(

p+1
p+1+n

)σnap+nbp+nz
n

1 +
∑∞

n=1(
p+1

p+1+n
)σap+nbp+nzn

]

= 1 +
1

p

∞∑

n=1

dp+nz
n, say.

Hence,

∞∑

n=1

(
p + 1

p+ 1 + n

)σ
nap+nbp+nz

n

=
∞∑

n=1

dp+nz
n +

(
∞∑

n=1

dp+nz
n

)(
∞∑

n=1

(
p+ 1

p+ 1 + n

)σ
ap+nbp+nz

n

)

=

∞∑

n=1

dp+nz
n +

∞∑

n=2

(
n−1∑

k=1

ap+kbp+k

(
p+ 1

p + 1 + k

)σ
dp+n−k

)
zn,

which, again upon equating coefficients gives

(
p + 1

p+ 1 + n

)σ
nap+nbp+n =

n−1∑

k=0

(
p + 1

p + 1 + k

)σ
ap+kbp+kdp+n−k . (3.4)

Substituting (3.3) into (3.4) results in

(
p + 1

p + 1 + n

)σ (n−1∑

k=0

ap+kbp+kcp+n−k

)
=

n−1∑

k=0

(
p+ 1

p + 1 + k

)σ
ap+kbp+kdp+n−k
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which upon simplification gives the following relation

(
p + 1

p+ 1 + n

)σ
ap+kbp+kcp+n−k =

(
p + 1

p+ 1 + k

)σ
ap+kbp+kdp+n−k

dp+k =

(
p+ n+ 1 − k

p + 1 + n

)σ
cp+k.

Hence,

1

p

z(g ∗ Iαp )′(z)

(g ∗ Iαp )(z)
= 1 +

1

p

∞∑

n=1

dp+nz
n

= 1 +
1

p

∞∑

n=1

(
p+ 1

p + 1 + n

)σ
cp+nz

n

=

(
1 +

∞∑

n=1

(
p + 1

p+ 1 + n

)σ
zn

)
∗
(

1 +
1

p

∞∑

n=1

cp+nz
n

)

= q(z) ∗ h(z)

where

q(z) = 1 +
∞∑

n=1

(
p+ 1

p + 1 + n

)σ
zn = 1 +

∞∑

n=1

λnz
n.

It is obvious that the infinite sequence {λn}∞n=0 where λ0 = 1 is a convex null

sequence. Therefore by Lemma 3.1.1 the Re q(z) > 1
2
. We know that h(z) > β and

by using Lemma 3.1.2 this imply,

Re
1

p

z(g ∗ Iσp )′(z)

(g ∗ Iσp )(z)
> β,

which indicate preservation of Iσp f .

Next, for

Jσβ f(z) = zp +
∞∑

n=1

Γ(p + n+ β)Γ(p + σ + β)

Γ(p + n+ σ + β)Γ(p+ β)
ap+nz

p+n
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we have

1

p

z(g ∗ Jσβ )′(z)

(g ∗ Jσβ )(z)
= 1 +

1

p

[ ∑∞
n=1 nap+nbp+n

Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

zn

1 +
∑∞

n=1 ap+nbp+n
Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

zn

]

= h(z)

= 1 +
1

p

∞∑

n=1

sp+nz
n, (say)

which in comparison, gives

∞∑

n=1

[
Γ(p + n + β)Γ(p+ σ + β)

Γ(p + n + σ + β)Γ(p+ β)

]
nap+nbp+nz

n

=
∞∑

n=1

sp+nz
n +

[
∞∑

n=1

ap+nbp+n
Γ(p + n + β)Γ(p+ σ + β)

Γ(p + n + σ + β)Γ(p+ β)
zn

] [
∞∑

n=1

sp+nz
n

]

=

∞∑

n=1

sp+nz
n +

∞∑

n=2

[
n−1∑

k=1

ap+kbp+k
Γ(p + k + β)Γ(p + σ + β)

Γ(p + k + σ + β)Γ(p+ β)
sp+n−1

]
zn.

Equating coefficient results in,

nap+nbp+n

[
Γ(p + n + β)Γ(p+ σ + β)

Γ(p + n + σ + β)Γ(p+ β)

]

=
n−1∑

k=0

[
Γ(p + k + β)Γ(p+ σ + β)

Γ(p + k + σ + β)Γ(p+ β)

]
ap+kbp+ksp+n−k (3.5)

and substitution of (3.3) into (3.5), gives

sp+n−k =

[
Γ(p + n+ β)

Γ(p + n+ σ + β)

] [
Γ(p + k + σ + β)

Γ(p + k + β)

]
cp+n−k.

Hence,

1

p

z(g ∗ Jσβ )′(z)

(g ∗ Jσβ )(z)
= 1 +

1

p

∞∑

n=1

[
Γ(p + n + β)Γ(p+ σ + β)

Γ(p + n + σ + β)Γ(p + β)

]
cp+n−kz

n

=

(
1 +

∞∑

n=1

qnz
n

)
∗
(

1 +
1

p

∞∑

n=1

cp+nz
n

)

= q(z) ∗ h(z)
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where

{qn} =

{
Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p+ β)

}
,

is a convex null sequence. This is obvious since for σ > 0, β > 0, n > 1 and p > 1,

qn − qn+1

qn+1 − qn+2
=

[
p + n+ σ + β

p + n+ β

] [
p+ n+ σ + β + 1

p+ n + σ + β

]

= 1 +
σ + 1

p + n+ β

≥ 1

and thus,

qn − qn+1 ≥ qn+1 − qn+2 > 0.

Lemma 3.1.1 implies

p(z) =
q0
2

+ q1(z) + q2z
2 + . . .

is analytic with Re p(z) > 0. Furthermore, as q0 = 1

Re

(
1 +

∞∑

n=1

qnz
n

)
= Re

(
1 + p(z) − q0

2

)

= Re

(
p(z) +

1

2

)

>
1

2
.

Using Lemma 3.1.1 and Lemma 3.1.2, with q(z) = 1 +
∑∞

n=1 qnz
n,we obtain q is

analytic in U with q(0) = 1 and Re q(z) > 1
2

where q ∗ h takes its values in the

convex hull of h(U), thus completing the proof.

The next result is an analogous result for the class CVp,g(β).
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Theorem 3.2.2. If f ∈ CVp,g(β) then Iσp and Jσβ also belong to CVp,g(β).

In the next section, we consider preservation of integral operators for f ∈

CCVp,g(β) by using same method but some extra condition is needed.

3.3 Close-to-convex function

For a fixed function g ∈ Ap, the class CCVp,g(β), which consists of functions f ∈ Ap

satisfying

(g ∗ ψ)(z)

zp
6= 0

in U and

Re
1

p

{
z(g ∗ f)′(z)

(g ∗ ψ)(z)

}
> β, (0 ≤ β < 1)

for some ψ ∈ ST p,g(β) and we let g ∈ ST . Our results show the preservation of the

integral operators Iσp and Jσβ for the classes CCVp,g(β).

Theorem 3.3.1. If f ∈ CCVp,g(β) then Iσp f and Jσβ f belongs to CCVp,g(β) for a

fixed g ∈ ST . (CCVp,g(β) is preserved by the integral operators Iσp f and Jσβ f .)

Proof : First we let ψ1(z) = zp +
∑∞

n=1 z
p+n and since g(z) ∈ ST this implies

that ψ1(z) ∈ ST p,g(β). We note that f ∈ CCVp,g(β), then

58



h(z) =
1

p

z(g ∗ f)′(z)

(g ∗ ψ1)(z)
=

1 +
∑∞

n=1

(
p+n
p

)
ap+nbp+nz

n

1 +
∑∞

n=1 bp+nz
n

= 1 +

∑∞
n=1

(
p+n
p

)
ap+nbp+nz

n −
∑∞

n=1 bp+nz
n

1 +
∑∞

n=1 bp+nz
n

.

If we let h(z) = 1 + 1
p

∑∞
n=1 rp+nz

n, then the following is established

∑∞
n=1

(
p+n
p

)
ap+nbp+nz

n −
∑∞

n=1 bp+nz
n

1 +
∑∞

n=1 bp+nz
n

=
1

p

∞∑

n=1

rp+nz
n,

which upon simplification gives the following relation

∞∑

n=1

(p + n)ap+nbp+nz
n −

∞∑

n=1

p bp+nz
n =

∞∑

n=1

rp+nz
n +

∞∑

n=2

(
n−1∑

k=1

bp+krp+n−k

)
zn.

Comparing coefficients, we obtain the following relation

(p+ n)ap+nbp+n − p bp+n =
n−1∑

k=0

bp+krp+n−k (3.6)

with bp = 1 and n = 1, 2, 3, . . . .

Next we let ψ2(z) = zp +
∑∞

n=1

(
p+1

p+n+1

)σ
zp+n and note that ψ2(z) ∈ Sp,g(β).

Now we consider integral operator Iσp ,

1

p

z(g ∗ Iσp f)′(z)

(g ∗ ψ2)(z)

=
1 +

∑∞
n=1

(
p+1

p+n+1

)σ (
p+n
p

)
ap+nbp+nz

n

1 +
∑∞

n=1

(
p+1

p+n+1

)σ
bp+nzn

= 1 +

∑∞
n=1

(
p+1

p+n+1

)σ (
p+n
p

)
ap+nbp+nz

n −
∑∞

n=1

(
p+1

p+n+1

)σ
bp+nz

n

1 +
∑∞

n=1

(
p+1

p+n+1

)σ
bp+nzn

:= 1 +
1

p

∞∑

n=1

sp+nz
n,
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then

∞∑

n=1

(
p + 1

p+ n + 1

)σ
(p + n)ap+nbp+nz

n −
∞∑

n=1

(
p + 1

p+ n+ 1

)σ
pbp+nz

n

=
∞∑

n=1

sp+nz
n +

∞∑

n=2

(
n−1∑

k=1

(
p+ 1

p + k + 1

)σ
bp+ksp+n−k

)
zn.

Hence by equating coefficient gives

(
p + 1

p+ n+ 1

)σ
(p+ n)ap+nbp+n −

(
p + 1

p+ n+ 1

)σ
pbp+n

= sp+n +
n−1∑

k=1

(
p + 1

p+ k + 1

)σ
bp+ksp+n−k

=
n−1∑

k=0

(
p + 1

p+ k + 1

)σ
bp+ksp+n−k (3.7)

where bp = 1 and n = 1, 2, 3, . . . . From (3.6) and (3.7), we have

(
p + 1

p+ n+ 1

)σ n−1∑

k=0

bp+krp+n−k =
n−1∑

k=0

(
p + 1

p+ k + 1

)σ
bp+ksp+n−k ,

and thus the relation,

sp+k =

(
p+ 1 + n− k

p+ n+ 1

)σ
rp+k. (3.8)

Hence using (3.8) we obtain

1

p

z(g ∗ Iσp f)′(z)

(g ∗ ψ2)(z)
= 1 +

1

p

∞∑

n=1

(
p + 1

p+ n+ 1

)σ
rp+nz

n

:= q(z) ∗ h(z),

where

q(z) = 1 +

∞∑

n=1

(
p+ 1

p + n+ 1

)σ
zn = 1 +

∞∑

n=1

λnz
n,

h(z) = 1 +
1

p

∞∑

n=1

rp+nz
n =

1

p

z(g ∗ f)′(z)

(g ∗ ψ1)(z)
.

60



It is elementary to show that the infinite sequence {λn}∞n=0 where λ0 = 1 is a convex

null sequence. This is obvious since for σ > 0, n > 1 and p > 1

λn − λn+1 ≥ λn+1 − λn+2

(
p + 1

p+ n+ 1

)σ
−
(

p+ 1

p + n+ 2

)σ
≥

(
p+ 1

p + n+ 2

)σ
−
(

p + 1

p+ n+ 3

)σ

> 0.

Using Lemma 3.1.1 and Lemma 3.1.2, we obtain q is analytic in U with q(0) = 1

and Re q(z) > 1
2

where q ∗ h takes its values in the convex hull of h(U), thus imply,

Re
1

p

z(g ∗ Iσp f)′(z)

(g ∗ ψ2)(z)
> β ⇒ Iσp f ∈ CCVp,g(β).

This complete the proof.

Let ψ3(z) = zp+
∑∞

n=1
Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

zp+n and note that ψ3(z) ∈ Sp,g(β). Next

using the previous method we now consider operator, Jσβ ,

1

p

z(g ∗ Jσβ )′(z)

(g ∗ ψ3)(z)

=




1 +
∑∞

n=1

(
p+n
p

)
Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

ap+nbp+nz
n

1 +
∑∞

n=1
Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

bp+nzn




= 1 +



∑∞

n=1

(
p+n
p

)
Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

ap+nbp+nz
n −

∑∞
n=1

Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

bp+nz
n

1 +
∑∞

n=1
Γ(p+n+β)Γ(p+σ+β)
Γ(p+n+σ+β)Γ(p+β)

bp+nzn




:= 1 +
1

p

∞∑

n=1

tp+nz
n
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which in comparison, gives

∞∑

n=1

(p+ n)
Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p + β)
ap+nbp+nz

n

−
∞∑

n=1

Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p + β)
pbp+nz

n

=
∞∑

n=1

tp+nz
n +

[
∞∑

n=1

Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p+ β)
bp+nz

n

][
∞∑

n=1

tp+nz
n

]

=
∞∑

n=1

tp+nz
n +

∞∑

n=2

[
n−1∑

k=1

Γ(p + k + β)Γ(p + σ + β)

Γ(p + k + σ + β)Γ(p+ β)
bp+ktp+n−k

]
zn.

Equating coefficient results in,

(p+ n)
Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p + β)
ap+nbp+n −

Γ(p + n + β)Γ(p+ σ + β)

Γ(p + n + σ + β)Γ(p+ β)
pbp+n

= tp+n +
n−1∑

k=1

Γ(p + k + β)Γ(p + σ + β)

Γ(p + k + σ + β)Γ(p+ β)
bp+ktp+n−k

=
n−1∑

k=0

Γ(p + k + β)Γ(p+ σ + β)

Γ(p + k + σ + β)Γ(p+ β)
bp+ktp+n−k (3.9)

with bp = 1 and n = 1, 2, 3, . . . . Then by substituting (3.6) into (3.9), gives

[
Γ(p + n+ β)Γ(p + σ + β)

Γ(p + n+ σ + β)Γ(p+ β)

] n−1∑

k=0

bp+krp+n−k

=
n−1∑

k=0

Γ(p + k + β)Γ(p + σ + β)

Γ(p + k + σ + β)Γ(p+ β)
bp+ktp+n−k

upon simplification

tp+k =

[
Γ(p + n+ β)

Γ(p + n+ σ + β)

] [
Γ(p + n− k + σ + β)

Γ(p + n− k + β)

]
rp+k. (3.10)
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Hence using (3.10) we obtain

1

p

z(g ∗ Jσβ )′(z)

(g ∗ ψ3)(z)
= 1 +

1

p

∞∑

n=1

[
Γ(p + n + β)Γ(p+ σ + β)

Γ(p + n + σ + β)Γ(p + β)

]
rp+nz

n

= w(z) ∗ h(z)

where

w(z) = 1 +
∞∑

n=1

[
Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p+ β)

]
zn = 1 +

∞∑

n=1

λnz
n,

h(z) = 1 +
1

p

∞∑

n=1

rp+nz
n =

1

p

z(g ∗ f)′(z)

(g ∗ ψ1)(z)
.

It is elementary to show that,

{λn} =

{
Γ(p + n+ β)Γ(p+ σ + β)

Γ(p + n+ σ + β)Γ(p + β)

}
,

is a convex null sequence where λ0 = 1. This is obvious since for σ > 0, β > 0,

n > 1 and p > 1

λn − λn+1

λn+1 − λn+2
=

[
p+ n + σ + β

p+ n+ β

] [
p + n+ σ + β + 1

p+ n+ σ + β

]

= 1 +
σ + 1

p + n+ β

≥ 1

and thus,

λn − λn+1 ≥ λn+1 − λn+2 > 0.

Using Lemma 3.1.1 and Lemma 3.1.2, with w(z) = 1 +
∑∞

n=1 λnz
n, we obtain w is

analytic in U with w(0) = 1 and Re w(z) > 1
2

where w ∗ h takes its values in the

convex hull of h(U), thus completing the proof.
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3.4 Bounded turning

Let f ∈ Ap be given by (3.1) and define the integral operator Lp,c as follows

Lp,c(f) =
c+ p

zc

∫ z

0

f(t)tc−1 dt,

= zp +
∞∑

n=1

c+ p

c+ p + n
ap+nz

p+n. (c+ p > 0, z ∈ U)

with its sequence of partial sums denoted by

Lk = zp +
k∑

n=1

c+ p

c+ p + n
ap+nz

p+n. (z ∈ U) (3.11)

The above integral operator was introduced by Reddy and Padmanabhan (1982).

In particular, the operator F1,c was studied earlier by Bernardi (1969).

A function f ∈ Ap is denoted by P(p, α) if it satisfies

Re

{
f ′(z)

zp−1

}
> α, (0 ≤ α < p, z ∈ U).

The classes P(1, 0) and P(p, 0) were investigated by MacGregor (1962) and

Umezawa (1957), respectively. In fact, the class P(p, α) is a subclass of the class A.

In 2010, Darus et. al. proved the following theorem:

Theorem 3.4.1. Darus (2010). Let f ∈ A. If 1
2
< α < 1 and f(z) ∈ P(1, α) then

Lk(z) ∈ P(1, 3−(c+1)(1−α)
3

).

We now extend the result for p-valent functions.
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Theorem 3.4.2. If 1
2
< α

p
< 1 and f ∈ P(p, α), then Lk(z) ∈ P

(
p, p+α(c+p)

p(c+p+1)

)
.

Proof : Since

Re

{
f ′(z)

pzp−1

}
>
α

p
,

(
1

2
<
α

p
< 1, z ∈ U

)

this implies

Re

{
1 +

∞∑

n=1

(
p+ n

p

)
ap+nz

n

}
>
α

p
>

1

2
.

Now for 1
2
< α

p
< 1 we have

Re

{
1 +

∞∑

n=1

(
p + n

p− α

)
ap+nz

n

}
> Re

{
1 +

∞∑

n=1

(
p+ n

p

)
ap+nz

n

}

then

Re

{
1 +

∞∑

n=1

(
p + n

p− α

)
ap+nz

n

}
>

1

2
.

Next, we write

1

p

L′
k(z)

zp−1
= 1 +

k∑

n=1

(p+ n)(c + p)

p(c+ p + n)
ap+nz

n

=

(
1 +

∞∑

n=1

(
p + n

p − α

)
ap+nz

n

)
∗
(

1 +
k∑

n=1

(p− α)(c + p)

p(c + p+ n)
zn

)

:= P ∗Q

Making use of Lemma 3.1.4, we obtain

Re Q(z) = Re

{
1 +

(
(p− α)(c+ p)

p

) k∑

n=1

zn

c+ p + n

}
≥ 1 − (p− α)(c + p)

p(c+ p + 1)

=
p+ α(c + p)

p(c + p+ 1)
.

Therefore, using Lemma 3.1.2, gives the result.
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CHAPTER 4

PARTIAL SUMS

4.1 Introduction

For functions f ∈ A, there have been interest by authors in seeking the properties

of its partial sums. For f given by (1.1), we denote the partial sums fk as

fk(z) = z +

k∑

n=2

anz
n, (z ∈ U).

See Ibrahim et. al. (2010), Latha (2006) and Goyal (2008) for some of these

properties. In particular, for f ∈ CV(0), Sheil-Small (1970) showed that

Re

{
f(z)

fk(z)

}
>

1

2
, (n ≥ 1).

Properties on the real part of the radius of f to its partial sums were investigated

for a variety of other classes as well. For example, in Brickman (1973), if f ∈ CV(α)

and 0 ≤ α < 1, α 6= 1
2
, then the sharp lower bound was obtained as

Re

{
f(z)

f1(z)

}
≥ 1

1 − 2α

1

|z|
[1 − (1 + |z|)2α−1].

Let T ∗(α) and C(α) be the subfamilies of ST and CV, respectively, whose func-

tions are of the form

f(z) = z −
∞∑

n=2

anz
n, (an ≥ 0).
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Furthermore, for T ∗(α) and C(α), Silvia (1985) established

Re

{
f(z)

fn(z)

}
≥ 1

2 − α
,

Re

{
f(z)

fn(z)

}
≥ 3 − α

4 − 2α
.

In 1975, Silverman showed that if f of the form (1.1) satisfies

∞∑

n=2

(n− α)|an| ≤ 1 − α, (4.1)

then f ∈ ST (α) and if f of the form (1.1) satisfies

∞∑

n=2

n(n− α)|an| ≤ 1 − α, (4.2)

then f ∈ CV(α). After that, Silverman (1997) initiated interest into seeking sharp

lower bounds on the real part of the quotients between the normalized starlike and

convex functions and their sequence of partial sums. Silverman determined the fol-

lowing results:

Theorem 4.1.1. If f of the form (1.1) satisfies condition (4.1), then

Re

{
f(z)

fk(z)

}
≥ k

k + 1 − α
,

where fk denotes the k-th partial sums of f . The result is sharp for every k, with

extremal function

f(z) = z +
1 − α

k + 1 − α
zk+1. (4.3)

Theorem 4.1.2. If f of the form (1.1) satisfies condition (4.2), then

Re

{
f(z)

fk(z)

}
≥ k(k + 2 − α)

(k + 1)(k + 1 − α)
.
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The result is sharp for every k, with extremal function

f(z) = z +
1 − α

(k + 1)(k + 1 − α)
zk+1. (4.4)

Theorem 4.1.3. If f is of the form (1.1), then

(i) Re

{
fk(z)

f(z)

}
≥ k + 1 − α

k + 2 − 2α
,

(ii) Re

{
fk(z)

f(z)

}
≥ (k + 1)(k + 1 − α)

(k + 1)(k + 1 − α) + (1 − α)
,

where f in (i) satisfies condition (4.1) and f in (ii) satisfies (4.2). Equalities hold

in (i) and (ii) for the functions given by (4.3) and (4.4), respectively.

Theorem 4.1.4. If f of the form (1.1), satisfies condition (4.1), then

(i) Re

{
f ′(z)

f ′
k(z)

}
≥ αk

k + 1 − α
,

(ii) Re

{
f ′
k(z)

f ′(z)

}
≥ k + 1 − α

(k + 1 − α) + (k + 1)(1 − α)
.

In both cases, the extremal function is given by (4.3).

Theorem 4.1.5. If f of the form (1.1) satiesfies condition (4.2), then

(i) Re

{
f ′(z)

f ′
k(z)

}
≥ k

k + 1 − α
,

(ii) Re

{
f ′
k(z)

f ′(z)

}
≥ k + 1 − α

k + 2 − 2α
.

In both cases, the extremal function is given by (4.4).

In this chapter, we generalized the idea of Silverman for p-valent function which

belongs to ST (α) and CV (α). By using the same method, we also obtained the
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lower bounds for uniformly convex and parabolic starlike functions which satisfy cer-

tain conditions.

4.2 p-valent starlike and convex function

Let Ap be given by

f(z) = zp +
∞∑

n=1

ap+nz
p+n, (0 ≤ α < p, p ∈ N). (4.5)

and its sequence of partial sums is denoted by fk(z) = zp +
∑k

n=1 ap+nz
p+n. As

defined in Section 1.2, a p-valent function f ∈ Ap is starlike and convex if it satisfies

the conditions Re
{
zf ′(z)
f(z)

}
> α and Re

{
1 + zf ′′(z)

f ′(z)

}
> α, respectively. A sufficient

condition for a function f of the form (4.5) to be in ST p(α) is that

∞∑

n=1

(p+ n − α)|ap+n| ≤ p − α, (4.6)

and to be in CVp(α) is that

∞∑

n=1

(p+ n)(p + n− α)|ap+n| ≤ p(p − α). (4.7)

Further, we note that these sufficient conditions are also necessary for functions of

the form (4.5) with positive and negative coefficients (see Owa (1985)). The known

result that Re
{

1+w(z)
1−w(z)

}
> 0, (z ∈ U) if and only if w(z) =

∑∞
n=1 cnz

n satisfies the

inequality |w(z)| ≤ |z| is used to obtain bounds for the above ratios. Further works

by several other authors which provide interesting developments concerning partial

sums of analytic functions can be found in Aouf (2006), Aouf (2009) and Cho (2004).
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Theorem 4.2.1. Suppose f of the form (4.5) satisfies condition (4.6), then

Re

{
f(z)

fk(z)

}
≥ k + 1

k + p+ 1 − α
, (z ∈ U)

where fk denotes the k-th partial sums of f . The result is sharp for every k, with

extremal function

f(z) = zp − p− α

p + n− α
zp+n. (4.8)

Proof : First, write

k + p + 1 − α

p− α

[
f(z)

fk(z)
− k + 1

k + p+ 1 − α

]

=
1 +

∑k
n=1 ap+nz

n +
(
k+p+1−α
p−α

)∑∞
n=k+1 ap+nz

n

1 +
∑∞

n=1 ap+nz
n

=
1 + w(z)

1 − w(z)
.

Thus

w(z) =

(
k+p+1−α
p−α

)∑∞
n=k+1 ap+nz

n

2 + 2
∑k

n=1 ap+nz
n +

(
k+p+1−α
p−α

)∑∞
n=k+1 ap+nz

n

and

|w(z)| ≤

(
k+p+1−α
p−α

)∑∞
n=k+1 |ap+n|

2 − 2
∑k

n=1 |ap+n| −
(
k+p+1−α
p−α

)∑∞
n=k+1 |ap+n|

.

Since the numerator is positive, |w(z)| ≤ 1 if and only if

2

(
k + p + 1 − α

p − α

) ∞∑

n=k+1

|ap+n| ≤ 2 − 2
k∑

n=1

|ap+n|.
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This is equivalent to

k∑

n=1

|ap+n| +
(
k + p + 1 − α

p− α

) ∞∑

n=k+1

|ap+n| ≤ 1. (4.9)

Thus, it is sufficient to show that the expression on the left of (4.9) is bounded

above by
∑∞

n=1

(
p+n−α
p−α

)
|ap+n| which is equivalent to

k∑

n=1

(
n

p− α

)
|ap+n| +

∞∑

n=k+1

(
n− k − 1

p − α

)
|ap+n| ≥ 0.

This is evident true using the hypothesis. The proof is complete.

To see that function f(z) given by (4.8) gives the sharp result, let z = re
iπ
n ,

f(z)

fk(z)
= 1 − p− α

p+ n− α
zn → 1 − p− α

p+ n − α
=

n

p + n− α
=

k + 1

p+ k + 1 − α

when r → 1+ and n = k + 1.

Theorem 4.2.2. If f of the form (4.5) satisfies condition (4.7), then

Re

{
f(z)

fk(z)

}
≥ (k + 1)(2p + k + 1 − α)

(p+ k + 1)(p + k + 1 − α)
, (z ∈ U)

The result is sharp for every k, with extremal function

f(z) = zp − p(p − α)

(p + n)(p+ n − α)
zp+n. (4.10)
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Proof : In a similar manner, consider

(p + k + 1)(p + k + 1 − α)

p(p − α)

[
f(z)

fk(z)
− (k + 1)(2p + k + 1 − α)

(p + k + 1)(p + k + 1 − α)

]

=
1 +

∑k
n=1 ap+nz

n +
(

(p+k+1)(p+k+1−α)
p(p−α)

)∑∞
k+1 ap+nz

n

1 +
∑k

n=1 ap+nz
n

=
1 + w(z)

1 − w(z)

where

w(z) =

(
(p+k+1)(p+k+1−α)

p(p−α)

)∑∞
n=k+1 ap+nz

n

2 + 2
∑k

n=1 ap+nz
n +

(
(p+k+1)(p+k+1−α)

p(p−α)

)∑∞
n=k+1 ap+nz

n
.

Triangle inequality gives

|w(z)| ≤

(
(p+k+1)(p+k+1−α)

p(p−α)

)∑∞
n=k+1 |ap+n|

2 − 2
∑k

n=1 |ap+n| −
(

(p+k+1)(p+k+1−α)
p(p−α)

)∑∞
n=k+1 |ap+n|

.

Furthermore, |w(z)| ≤ 1 if and only if

k∑

n=1

|ap+n| +
(

(p+ k + 1)(p+ k + 1 − α)

p(p − α)

) ∞∑

n=k+1

|ap+n| ≤ 1. (4.11)

Equivalently, we verify that the expression on the left of (4.11) is bounded above

by,
∑∞

n=1
(p+n)(p+n−α)

p(p−α)
|ap+n|. Using (4.7) the following

1

p(p − α)

[
k∑

n=1

n(2p + n− α)|ap+n|
]

+
1

p(p − α)

[
∞∑

n=k+1

[(p+ n)(p + n− α) − (p + k + 1)(p + k + 1 − α)]|ap+n|
]
≥ 0

is easily established and the proof is complete.
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Next, results for the lower bounds of Re
{
fk(z)
f(z)

}
for f ∈ ST p(α) and f ∈ CVp(α)

are obtained.

Theorem 4.2.3. Given f is of the form (4.5), then

(i) Re

{
fk(z)

f(z)

}
≥ k + p + 1 − α

k + 2p + 1 − 2α
,

(ii) Re

{
fk(z)

f(z)

}
≥ (p + k + 1)(p + k + 1 − α)

(p+ k + 1)(p+ k + 1 − α) + p(p − α)
,

where f in (i) satisfies condition (4.6) and f in (ii) satisfies (4.7). Equalities hold

in (i) and (ii) for the functions given by (4.8) and (4.10), respectively.

Proof : We only prove (i) since the proof of (ii) is similar. First, write

k + 2p + 1 − 2α

p − α

[
fk(z)

f(z)
− k + p + 1 − α

k + 2p + 1 − 2α

]

=
1 +

∑k
n=1 ap+nz

n −
(
k+p+1−α
p−α

)∑∞
n=k+1 ap+nz

n

1 +
∑∞

n=1 ap+nz
n

=
1 + w(z)

1 − w(z)
,

where

w(z) =
−
(
k+2p+1−2α

p−α

)∑∞
n=k+1 ap+nz

n

2 + 2
∑k

n=1 ap+nz
n −

(
k+1
p−α

)∑∞
n=k+1 ap+nz

n
.

Easily,

|w(z)| ≤

(
k+2p+1−2α

p−α

)∑∞
n=k+1 |ap+n|

2 − 2
∑k

n=1 |ap+n| −
(
k+1
p−α

)∑∞
n=k+1 |ap+n|

,

and |w(z)| < 1 implies

∞∑

n=1

|ap+n| +
(
k + p + 1 − α

p− α

) ∞∑

n=k+1

|ap+n| ≤ 1. (4.12)
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Since the left hand side expression of (4.12) is bounded above by,

∑∞
n=1

(
p+n−α
p−α

)
|ap+n| ≤ 1, the proof is complete.

Theorem 4.2.4. If f of the form (4.5), satisfies condition (4.6), then

(i) Re

{
f ′(z)

f ′
k(z)

}
≥ α(k + 1)

p(k + p+ 1 − α)
, (z ∈ U)

(ii) Re

{
f ′
k(z)

f ′(z)

}
≥ p(k + p+ 1 − α)

2p(k + p + 1 − α) − α(k + 1)
, (z ∈ U).

In both cases, the extremal function is given by (4.8).

Proof : We prove only (i). Write

p(k + 1 + p− α)

(k + p + 1)(p− α)

[
f ′(z)

f ′
k(z)

− α(k + 1)

p(k + 1 + p − α)

]

=
1 +

∑k
n=1

(
p+n
p

)
ap+nz

n +
(

p(k+1+p−α)
(k+p+1)(p−α)

)∑∞
n=k+1

(
p+n
p

)
ap+nz

n

1 +
∑k

n=1

(
p+n
p

)
ap+nzn

=
1 + w(z)

1 − w(z)
,

which on estimations the modulus of w gives

|w(z)| ≤

(
p(k+1+p−α)

(k+p+1)(p−α)

)∑∞
n=k+1

(
p+n
p

)
|ap+n|

2 − 2
∑k

n=1

(
p+n
p

)
|ap+n| −

(
p(k+1+p−α)

(k+p+1)(p−α)

)∑∞
n=k+1

(
p+n
p

)
|ap+n|

.

Thus, |w(z)| ≤ 1 if and only if the following is true,

k∑

n=1

(
p+ n

p

)
|ap+n| +

(
p(k + 1 + p − α)

(k + p + 1)(p − α)

) ∞∑

n=k+1

(
p+ n

p

)
|ap+n| ≤ 1. (4.13)

Since the left hand side of (4.13) is bounded above by,

∑∞
n=1

(
p+n−α
p−α

)
|ap+n|, thus using (4.6), the proof is complete.
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Theorem 4.2.5. If f of the form (4.5) satisfies condition (4.7), then

(i) Re

{
f ′(z)

f ′
k(z)

}
≥ k + 1

k + p + 1 − α
, (z ∈ U)

(ii) Re

{
f ′
k(z)

f ′(z)

}
≥ k + p+ 1 − α

k + 2p + 1 − 2α
, (z ∈ U).

In both cases, the extremal function is given by (4.10).

Proof : It is well known that f ∈ CVp(α) ⇔ zf ′

p
∈ ST p(α). In particular, f

satisfies condition (4.7) if and only if zf ′

p
satisfies condition (4.6). Thus, (i) is an

immediate consequence of Theorem 4.2.1 and (ii) follows directly from Theorem

4.2.3(i).

4.3 Uniformly Convex & Parabolic Starlike Functions

Let A be the class consisting of functions of the form

f(z) = z +
∞∑

n=2

anz
n, (z ∈ U). (4.14)

with its sequence of partial sums denoted by fk(z) = z +
∑k

n=2 anz
n.

Goodman (1991a/1991b) introduced the concepts of uniformly convex functions,

UCV and uniformly starlike functions, UST . The corresponding ”uniform classes”

are defined in the following way, by their geometrical mapping properties.

f ∈ UCV ⇔ Re

{
1 + (z − ξ)

f ′′(z)

f ′(z)

}
≥ 0, (z, ξ) ∈ U .

f ∈ UST ⇔ Re

{
f(z) − f(ξ)

(z − ξ)f ′(z)

}
≥ 0, (z, ξ) ∈ U .
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Rönning (1993a) further found a more applicable one variable analytic charac-

terization and further proved that a function f of the form (4.14) is in UCV if and

only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
>

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ , (z ∈ U).

In the same paper, Rönning also introduced the class of parabolic starlike func-

tions PST such that f ∈ UCV ⇔ zf ′ ∈ PST . It is established that

Re

{
zf ′(z)

f(z)

}
>

∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ , (z ∈ U).

Rönning (1993a/1993b) further generalized the classes UCV and PST by intro-

ducing a parameter α in the following way. A function f ∈ A is in PST (α) if it

satisfies the analytic characterization

Re

{
zf ′(z)

f(z)

}
− α ≥

∣∣∣∣
zf ′(z)

f(z)
− 1

∣∣∣∣ , (−1 ≤ α ≤ 1, z ∈ U),

and f ∈ UCV(α), the class of uniformly convex functions of order α, if it satisfies

Re

{
1 +

zf ′′(z)

f ′(z)

}
− α ≥

∣∣∣∣
zf ′′(z)

f ′(z)

∣∣∣∣ , (−1 ≤ α ≤ 1, z ∈ U).

Determining bounds for the coefficients have always fascinated researchers. Bharati

et. al. (1997) obtained coefficient properties for the various generalized related

classes. A sufficient condition for f of the form (4.14) to be in PST (α), (−1 ≤ α <

1) is given by

∞∑

n=2

(2n− 1 − α)|an| ≤ 1 − α, (4.15)
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and for f ∈ UCV(α), (−1 ≤ α < 1) is that the following condition is true

∞∑

n=2

n(2n − 1 − α)|an| ≤ 1 − α. (4.16)

Further works by several other authors which provide interesting developments

concerning partial sums of analytic functions can be found in Aouf (2006), Aouf

(2009) and Cho (2004). Motivated by Silverman’s work in Silverman (1997), we

establish the lower bounds for Re (f(z)/fk(z)), Re (fk(z)/f(z)), Re (f ′(z)/f ′
k(z))

and Re (f ′
k(z)/f

′(z)). The known result that Re
(

1+w(z)
1−w(z)

)
> 0, (z ∈ U) if and only

if w(z) =
∑∞

n=1 cnz
n satisfies the inequality |w(z)| ≤ |z| is used to obtain bounds

for the above ratios.

Theorem 4.3.1. If f is of the from (4.14) and satisfies condition (4.15), then

Re

(
f(z)

fk(z)

)
≥ 2k

2k + 1 − α
.

Proof : Consider,

2k + 1 − α

1 − α

[
f(z)

fk(z)
− 2k

2k + 1 − α

]

=
1 +

∑k
n=2 anz

n−1 +
∑∞

n=k+1

(
2k+1−α

1−α

)
anz

n−1

1 +
∑k

n=2 anz
n−1

=
1 +A(z)

1 +B(z)
.

Writing 1+A(z)
1+B(z)

= 1+w(z)
1−w(z)

we obtain,

w(z) =

∑∞
n=k+1

(
2k+1−α

1−α

)
anz

n−1

2 + 2
∑k

n=2 anz
n−1 +

∑∞
n=k+1

(
2k+1−α

1−α

)
anzn−1

.
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For |z| = r < 1, we have

|w(z)| ≤
∑∞

n=k+1

(
2k+1−α

1−α

)
|an|

2 − 2
∑k

n=2 |an| −
∑∞

n=k+1

(
2k+1−α

1−α

)
|an|

.

To establish |w(z)| ≤ 1, it is required to show that the following

k∑

n=2

|an| +
∞∑

n=k+1

(
2k + 1 − α

1 − α

)
|an|

is bounded by
∑∞

n=2

(
2n−1−α

1−α

)
|an|. This is evident since

k∑

n=2

2

(
n− 1

1 − α

)
|an| +

∞∑

n=k+1

2

(
n− k − 1

1 − α

)
|an| ≥ 0.

This completes the proof.

Theorem 4.3.2. If f of the form (4.14) satisfies condition (4.16), then

Re

(
f(z)

fk(z)

)
≥ k(2k + 3 − α)

(k + 1)(2k + 1 − α)
.

P roof : We write

(k + 1)(2k + 1 − α)

1 − α

[
f(z)

fk(z)
− k(2k + 3 − α)

(k + 1)(2k + 1 − α)

]

=
1 +

∑k
n=2 anz

n−1 +
∑∞

n=k+1

(
(k+1)(2k+1−α)

1−α

)
anz

n−1

1 +
∑k

n=2 anz
n−1

=
1 + w(z)

1 − w(z)

where

w(z) =

∑∞
n=k+1

(
(k+1)(2k+1−α)

1−α

)
anz

n−1

2 + 2
∑k

n=2 anz
n−1 +

∑∞
n=k+1

(
(k+1)(2k+1−α)

1−α

)
anzn−1
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and

|w(z)| ≤

∑∞
n=k+1

(
(k+1)(2k+1−α)

1−α

)
|an|

2 − 2
∑k

n=2 |an| −
∑∞

n=k+1

(
(k+1)(2k+1−α)

1−α

)
|an|

.

Next, we show that

k∑

n=2

|an| +
∞∑

n=k+1

(
(k + 1)(2k + 1 − α)

1 − α

)
|an|

is bounded above by
∑∞

n=2
n(2n−1−α)

1−α |an|. Since, it is evident that

k∑

n=2

n(2n − 1 − α)

1 − α
|an| =

k∑

n=2

|an| +
k∑

n=2

(n− 1)(2n + 1 − α)

1 − α
|an|

>

k∑

n=2

|an|

and

∞∑

n=k+1

n(2n − 1 − α)

1 − α
|an| =

∞∑

n=k+1

(n− 1)(2n + 1 − α)

1 − α
|an| +

∞∑

n=k+1

|an|

>
∞∑

n=k+1

(k + 1)(2k + 1 − α)

1 − α
|an|

hence, using the fact that (4.16) is true, thus we establish |w(z)| ≤ 1.

Theorem 4.3.3. Given f is of the form (4.14), then

(i) Re

(
fk(z)

f(z)

)
≥ 2k + 1 − α

2(k + 1 − α)
, (z ∈ U)

(ii) Re

(
fk(z)

f(z)

)
≥ (k + 1)(2k + 1 − α)

(k + 1)(2k + 1 − α) + (1 − α)

where f in (i) satisfies condition (4.15) and f in (ii) satisfies (4.16).
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Proof : We prove (i) since the proof of (ii) is similar. First, write

2(k + 1 − α)

1 − α

[
fk(z)

f(z)
− 2k + 1 − α

2(k + 1 − α)

]

=
1 +

∑k
n=2 anz

n−1 −
∑∞

n=k+1

(
2k+1−α

1−α

)
anz

n−1

1 +
∑∞

n=2 anz
n−1

=
1 + w(z)

1 −w(z)
,

where

w(z) =
−
∑∞

n=k+1

(
2(k+1−α)

1−α

)
anz

n−1

2 + 2
∑k

n=2 anz
n−1 −

∑∞
n=k+1

(
2k

1−α

)
anzn−1

and

|w(z)| ≤

∑∞
n=k+1

(
2(k+1−α)

1−α

)
|an|

2 − 2
∑k

n=2 |an| −
∑∞

n=k+1

(
2k

1−α

)
|an|

.

Finally, |w(z)| ≤ 1 because

k∑

n=2

|an| +
∞∑

n=k+1

(
2k + 1 − α

1 − α

)
|an|

is bounded by
∑∞

n=2

(
2n−1−α

1−α

)
|an| and using the hypothesis the proof is complete.

Theorem 4.3.4. If f of the form (4.14) satisfies condition (4.15), then

(i) Re

(
f ′(z)

f ′
k(z)

)
≥ k(1 + α)

2k + 1 − α
, (z ∈ U)

(ii) Re

(
f ′
k(z)

f ′(z)

)
≥ 2k + 1 − α

(2k + 1 − α) + (1 − α)(k + 1)
, (z ∈ U).

P roof : We prove only (i). Let

2k + 1 − α

(k + 1)(1 − α)

(
f ′(z)

f ′
k(z)

− k(1 + α)

2k + 1 − α

)

=
1 +

∑k
n=2 nanz

n−1 +
(

2k+1−α
(k+1)(1−α)

)∑∞
n=k+1 nanz

n−1

1 +
∑k

n=2 nanz
n−1

=
1 + w(z)

1 − w(z)
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where

w(z) =

(
2k+1−α

(k+1)(1−α)

)∑∞
n=k+1 nanz

n−1

2 + 2
∑k

n=2 nanz
n−1 +

(
2k+1−α

(k+1)(1−α)

)∑∞
n=k+1 nanz

n−1

and

|w(z)| ≤

(
2k+1−α

(k+1)(1−α)

)∑∞
n=k+1 n|an|

2 − 2
∑k

n=2 n|an| −
(

2k+1−α
(k+1)(1−α)

)∑∞
n=k+1 n|an|

.

To establish |w(z)| ≤ 1, it is similar to showing that

k∑

n=2

n|an| +
(

2k + 1 − α

(k + 1)(1 − α)

) ∞∑

n=k+1

n|an| ≤ 1.

Obviously, since

k∑

n=2

2n − 1 − α

1 − α
|an| =

k∑

n=2

n|an| +
k∑

n=2

(n− 1)(1 + α)

1 − α
|an|

>

k∑

n=2

n|an|,

and

∞∑

n=k+1

2n − 1 − α

1 − α
|an| =

∞∑

n=k+1

n|an| +
∞∑

n=k+1

(n− 1)(1 + α)

1 − α
|an|

>

∞∑

n=k+1

2k + 1 − α

(k + 1)(1 − α)
n|an|.

Hence,

∞∑

n=2

2n − 1 − α

1 − α
|an| >

k∑

n=2

n|an| +
∞∑

n=k+1

2k + 1 − α

(k + 1)(1 − α)n|an|
,

which by hypothesis proves the result.
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Theorem 4.3.5. If f of the form (4.14) and satisfies condition (4.16), then

(i) Re

(
f ′(z)

f ′
k(z)

)
≥ 2k

2k + 1 − α
, (z ∈ U),

(ii) Re

(
f ′
k(z)

f ′(z)

)
≥ 2k + 1 − α

2(k + 1 − α)
, (z ∈ U).

P roof : Since is known that f ∈ UCV(α) ⇔ zf ′ ∈ PST (α), therefore, f satisfies

condition (4.15) if and only if zf ′ satisfies condition (4.16). Thus, (i) is an immedi-

ate consequence of Theorem 4.3.1 and (ii) follows directly from Theorem 4.3.3(i).
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for certain analytic functions, J. Math. Anal., 2, No. 2 , 16 - 22.

Ibrahim, R. W. and Darus, M. (2010). Partial sums for certain classes of meromor-

phic functions, Tamkang J. Math. 41(1) , 39-49.

Jack, I. S. (1971). Funclions slarlike and convex of order α, J. London Math. Soc.,

(2)3, 469-474.

Jahangiri, Jay. M. and Farahmand, K. (2003). Partial sums of functions of bounded

turning, J. Ineq. Pure and Appl. Math., 4(4), Art. 79, 1 - 9.

Jung, I. B., Kim, Y. C. and Srivastava, H. M. (1993). The hardy space of analytic

functions associated with certain one-parameter families of integral operators, J.

Math. Anal. Appl., 176, 138-147.

86



Kanas, S. and Wisniowska, (1998). A. Conic regions and k-uniform convexity, II,

Folia Sci. Tech. Resov., 170, 65-78.

Kaplan, W. (1952). Close-to-convex schlicht funtions, Michigan Math. J., 1, 169-

185.

Kapoor, G. P. and Mishra, A. K. (2007). Coefficient estimates for inverses of starlike

functions of positive order, J. Math. Anal. Appl., 329, 922-934.

Kim, Y. C. and Sugawa, T. (2009). A note on Bazilevic functions, Taiwanese J.

Math., 13(5), 1489-1495.

Kim, Y. C., Lee, S. H. and Srivastava, H. M. (1994). Some properties of convolution

operators in the class Pα(β), J. Math. Anal. Appl., 187, 498-512.

Koebe, P. (1907). Über die Uniformisierung beliebiger analytischer Kurven, Nachr.

Ges. Wiss. Gottingen, 191-210.

Krzyz, J. G., Libera, R. J. and Zlotkiewics, E. J. (1979). Coefficients of inverse of

regular starlike functions, Ann. Univ. Mariae Curie-Sklodowska Sect. A, 33(10),

103–109.

Latha, S. and Shivarudrappa, L. (2006). Partial sums of some meromorphic func-

tions, J. Ineq. Pure and Appl. Math. 7(4), Art. 140.

87



Lewandowski, Z. (1958). Sur l’identit de certaines classes de fonctions univalentes.

I, Ann. Univ. Mariae Curie-SkK Sect. A, 12, 131-145.

Lewandowski, Z. (1960). Sur l’identit de certaines classes de fonctions univalentes.

II, Ann. Univ. Mariae Curie-SkK Sect. A, 14, 19-46.

Li, J. L. and Owa, S. (1997). On partial sums of the Libera integral operator, J.

Math. Anal. Appl., 213, 444-454.

Li, J. L. (1999). Some properties of two integral operators, Soochow. J. Math., 25,

91-96.

Libera, R. J. (1964). Some radius of convexity problems, Duke Math. J., 31(1),

143-158.

Libera, R. J. (1965). Some classes of regular univalent functions, Proc. Amer. Math.

Soc., 16, 755-758.

Libera R. J. and Zlotkiewicz, E. J. (1982). Early coefficients of the inverse of a

regular convex function, Proc. Amer. Math. Soc., 85(2), 225-230.

Libera, R. J. and Zlotkiewicz, E. J. (1983). Coefficient bounds for the inverse of a

function with derivative in P , Proc. Amer. Math. Soc., 87(2), 251-257.

88



Lin, L. J. and Owa, S. (1998). Properties of the Sălăgean Operator, Georgian Math-
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