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ABSTRACT 

This research looks into how ontology can be used to pre-classify training set images to 

improve the efficiency of Content-Based Image Retrieval (CBIR) for Biodiversity. The 

set of images used for image retrieval are the Malaysian monogeneans belonging to the 

order Dactylogyridae Bychowsky, 1937. Monogeneans are parasitic Platyhelminths and 

are distinguished based on both soft reproductive anatomical features as well as shapes 

and sizes of sclerotised hard parts (haptoral bar, anchor, marginal hook, and male and 

female copulatory organ). The diagnostic features of monogeneans especially their 

sclerotised hard parts are given as illustrations in the literatures. In this study, two 

models of image retrieval were built; one that does not use image pre-classification, 

while the other uses image pre-classification. A model without image pre-classification, 

named Model 1, runs using typical CBIR approach, whereby all the images in the image 

database are used as training set images. The second model, a model with image pre-

classification, named Model 2 runs by integrating the CBIR with ontology, which pre-

classifies the images in the image database for training purposes. In this approach, the 

images are annotated with taxonomic classification, diagnostic parts and image 

properties using the Taxonomic Data Working Group (TDWG) Life Sciences Identifiers 

(LSID) structured vocabulary that is represented in the form of ontology. In this context, 

the purpose of the image pre-classification is to classify the images in the training set 

based on certain parameters, which in this study focuses on the dorsal and ventral side 

of the haptoral bars. As a result, the size of the images in the training set decreases after 

the image pre-classification process. In the CBIR approach implemented in both 

models, region-based shape information using pixel mean value is used as the descriptor 

to represent the shapes of the images. As for image classification, Minimum distance 

classifier is used to classify the retrieved images and the relevant images in the retrieved 

images are then measured based on the Euclidean distance and visual comparison. For 
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both the systems, the implementation is tested on 148 haptoral bar images. The 

performances of both systems are assessed using R-Precision, Error Rate (ER), Mean 

Average Precision (MAP), PR Graph, Receiver Operating Characteristic (ROC) and 

Area under ROC Curve (AUC). According to these measurements, Model 2 system 

performed better image retrieval. The application of this method shows that the 

relevancy rate increases when the size of the training set decreases since all the images 

are mostly relevant to the query image. Also, it shows that the size of training set affects 

the relevancy rate of the retrieved images whereby the relevancy rate is inversely 

proportional to the size of the training set. Besides that, the retrieval results contain the 

retrieved images with their annotations, providing more understanding and knowledge 

to the user. Finally, in this study a three-tier architecture of Biodiversity image retrieval 

is proposed and developed. 
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ABSTRAK 

Kajian ini melihat kepada bagaimana ontologi boleh digunakan untuk mengesahkan 

pengkelasan imej set latihan untuk meningkatkan kecekapan Biodiversiti Content-Based 

Image Retrieval (CBIR). Satu set imej yang digunakan untuk temubalik imej adalah 

monogeneans Malaysia dalam order Dactylogyridae Bychowsky, 1937. Monogeneans 

adalah platyhelminths parasit dan dibezakan berdasarkan kedua-dua ciri-ciri anatomi 

pembiakan lembut serta bentuk dan saiz bahagian keras sclerotised haptoral bar, sauh, 

cangkuk dan organ sanggama jantan dan betina mereka. Ciri-ciri diagnostik 

monogeneans terutamanya bahagian keras sclerotised mereka diberikan sebagai ilustrasi 

didalam penerbitan. Dalam kajian ini, dua model temubalik telah dibina; salah satu yang 

tidak menggunakan imej pra-klasifikasi, manakala yang lain menggunakan imej pra-

klasifikasi. Satu model tanpa imej pra-klasifikasi, dinamakan Model 1 berjalan 

menggunakan pendekatan CBIR biasa, di mana semua imej dalam pangkalan data imej 

digunakan sebagai imej set latihan. Model kedua, model dengan imej pra-klasifikasi, 

dinamakan Model 2 berjalan dengan mengintegrasikan CBIR dengan ontologi yang pra-

mengklasifikasikan imej dalam pangkalan data imej untuk latihan. Dalam pendekatan 

ini, semua imej adalah dicatatkan dengan pengelasan taksonomi, bahagian diagnostik 

dan sifat imej menggunakan perbendaharaan kata berstruktur Taxonomic Data Working 

Group (TDWG) Life Sciences Identifiers (LSID) yang diwakili dalam bentuk ontologi. 

Dalam konteks ini, tujuan imej pra-klasifikasi adalah untuk mengelaskan imej dalam 

latihan yang ditetapkan berdasarkan parameter tertentu yang mana dalam kajian ini 

menekankan kepada dorsal dan ventral haptoral bar. Akibatnya, saiz imej dalam latihan 

menurun selepas proses imej pra-klasifikasi. Pendekatan CBIR yang dilaksanakan 

didalam kedua-dua model, maklumat berasaskan rantau bentuk menggunakan nilai min 

piksel digunakan sebagai pemerihal untuk mewakili bentuk imej; untuk pengelasan 

imej, pengelas jarak minimum digunakan untuk mengelaskan imej yang diambil; dan 
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imej-imej yang relevan dalam imej yang dicapai kemudiannya diukur berdasarkan jarak 

Euclidean dan perbandingan visual. Bagi kedua-dua sistem, pelaksanaan diuji pada 148 

imej haptoral bar. Prestasi kedua-dua sistem dinilai menggunakan R-Precision, Error 

Rate (ER), Mean Average Precision (MAP), PR Graph, Receiver Operating 

Characteristic (ROC) dan Area under ROC Curve (AUC). Menurut pengukuran ini, 

sistem Model 2 telah melakukan temubalik imej yang lebih baik. Implikasi kaedah ini 

menunjukkan bahawa kadar kesesuaian meningkat apabila saiz set latihan berkurangan 

kerana semua imej kebanyakannya relevan kepada pertanyaan imej. Selain itu, ia 

menunjukkan bahawa saiz set latihan memberi kesan kepada kadar kesesuaian imej-

imej yang dicapai di mana kadar kesesuaian adalah berkadar songsang kepada saiz set 

latihan. Disamping itu, hasil capaian mengandungi imej-imej yang dicapai dengan 

catatan mereka, menyediakan pemahaman dan pengetahuan yang lebih kepada 

pengguna. Akhirnya, dalam kajian ini seni bina tiga peringkat temubalik imej 

Biodiversiti adalah dicadangkan. 
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CHAPTER 1:                       

INTRODUCTION 
 

 

1.1 Background 

Images play an important role in numerous human activities. Images are central to a 

wide variety of fields ranging such as law enforcement, agriculture and forestry 

management, earth sciences and so forth. One of the uses of digital images is in face 

recognition and identification for security purposes. In the field of medicine, MRI 

images are used for cancer detection as well as for disease diagnosis and educational 

purposes. Similarly, geological images are needed in every stage of work for oil 

exploration. Images also play an important role in continually monitoring the surface of 

the earth via satellites. Hence, applications of digital images continue to develop in 

many areas. 

 

1.1.1 Monogenean data 

Taxonomy is a prerequisite for all biological endeavors. Globally, it is envisaged that 

there will be a decline in the number of expert taxonomists in the near future and this 

decrease will be more deeply felt in countries such as Malaysia where the number of 

expert taxonomists are few to begin with (Lim & Gibson, 2010b). In view of this 

impending decrease in taxonomists, particularly in parasitology, Lim and Gibson (2010) 

proposed that along with training of a new generation of taxonomists with multiple 

skills, alternative tools to assist Biologists in species identification such as computer-

assisted identification system for DNA should be developed so as to reduce dependence   
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on the few available taxonomists. Here in Malaysia, the taxonomists are also preparing 

for the eventuality that we might have to resort to using the said alternative tools to 

assist non-taxonomist biologists in species identification due to lack of researchers 

willing to take up the challenges of being taxonomists. This is done by digitizing known 

Malaysian parasite species, in particular the monogeneans, into a databases, which can 

then be analyzed for further information. 

 

Monogeneans are parasitic platyhelminths and are distinguished based on both soft 

reproductive anatomical features as well as shapes and sizes of sclerotised hard parts of 

their haptoral bar, anchor, hook and male and female copulatory organ (see Lim, 1995, 

1998; Lim & Gibson, 2007, 2010a). The diagnostic features of monogeneans, especially 

their sclerotised hard parts, are given as illustrations in the literatures.  

 

Currently, species are recognized and identified using morphological and 

morphometrical characteristics of the sclerotised hard parts in the form of illustrated 

images. In this study, we are looking at developing a computerized system to automate 

recognition using these images. 

 

1.1.2 Image retrieval methods 

Generally, there are two approaches in image retrieval i.e. metadata-based and content-

based which are based on human-annotated metadata and analyzing the actual image 

data, respectively (Avril, 2005). 

 

Metadata-based image retrieval is the approach based on the textual string to describe 

the image. This approach involves two important aspects, i.e. image annotation and 

image retrieval. Image annotation refers to the process in describing images, while 
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image retrieval refers to the process of finding images by using the annotated metadata. 

This approach is lexically motivated whereby it is relating to the words or vocabularies 

rather than understanding the meaning of the words or vocabularies. Since the retrieved 

images are based on the word comparison rather than the actual meaning of the word, it 

leads into irrelevant retrieved images. In terms of data representation, there are two 

main questions that could be raised regarding this approach, viz (i) How to represent the 

annotated metadata? and (ii) What are the techniques and tools that are needed in order 

to interpret the metadata? With the advancement in semantic web ontology techniques 

(Lassila, van Harmelen, Horrocks, Hendler, & McGuinness, 2000) and metadata 

languages (Hyvönen, Harjula, & Viljanen, 2002), it makes for a promising aid in this 

approach for semantic image retrieval. As for the image retrieval results, the retrieved 

images are normally listed in an unranked order. 

 

On the other hand, content-based image retrieval (CBIR) is an approach suitable for 

task-dependent query, whereby the image query cannot be described and is very 

subjective to put into words. Thus, in this approach, similar images will be searched and 

retrieved based on the query image. The interface layer allows users to send a query 

image. The images from the image database are then assigned as training set images. 

Both query and training set images' features (such as shape, texture and color) are 

extracted and form the feature vectors in the feature space. The similarity comparison 

(using distance parameters such as Euclidean distance and Mahalanobis distance) 

between the query and training set images are then measured, and the classifier (such as 

Minimum distance, Maximum distance and K-Nearest classifier) is used to classify the 

retrieved images. The results are then returned to the user through a user interface. As 

for the results, the retrieved images must be accurate, relevant and related to the user 

query. The retrieved images are usually indexed in the ranked order.  
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The performance of this approach is dependent on features such as color, texture or 

shape to represent the image, as well as the classifier to categorize the similar images. 

The selection of features and classifier are determined generally by the complexity of 

the domain problem. Other factors such as the image quality must also be considered 

because of its effects on the image processing and analysis. Some of the problems are 

caused by lighting conditions, presence of complex background, and differences in scale 

and viewing angle. Constraints such as low quality image and small number of training 

images may lead to irrelevant retrieved images. To eliminate or alleviate some of these 

problems, Gaussian-smoothing technique can be used to minimize the background 

effect. Other techniques such as image normalization can be performed before the 

recognition process to eliminate the problem of scale and viewing angle (Lemieux & 

Parizeau, 2003). 

 

1.1.3 Biodiversity image retrieval  

In biology, images are needed, particularly for organism identification, educational and 

scientific purposes. For example, in biodiversity studies, the researchers produce a vast 

number of biological images and these outputs are important for anyone interested in 

biology or any other related fields. From the images, elements such as diagnostic hard 

part structures can be used to identify the organism at any level such as genus or 

species. Along with the images, the annotations that describe the related details are 

provided. These annotations are also important so that the information provided is 

detailed enough and relevant. However, this data can only be retrieved from the 

literatures or personal communication with the researchers.  

 

To enable the sharing, and to some extent, remote access of this information, the way to 

go is towards entirely digitizing the data wherein the database system plays a most 
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important role. Currently, there are many online databases and current biodiversity 

databases, which exist independently i.e. image database and textual database. Image 

annotations are often ignored, rendering the information provided to the user as useless 

data. When the databases exist independently, the user has to switch between distinct 

systems and perform laborious analysis on their own before the extracted information 

can be combined.  

 

Moreover, specialized taxonomic image databases are very limited. It may be because 

image storing is cumbersome (Curry & Humphries, 2007). In order to develop a 

practical system, developers may have technical difficulties especially in dealing with 

diagnostic characters. Besides that, there is a lack of interest because this kind of 

database has no commercial impact. From image databases, it can be used for 

information sharing such as Global Cestode Database (Caira, 1995) and Flybase 

(McQuilton, Pierre, Thurmond, & Consortium, 2012) where the retrieved images are 

based on the textual query. However, the retrieved images may be irrelevant to the user 

query. Furthermore, it can be used for automated identification systems such as DAISY 

(O'Neill, 2010) and Butterfly family identification (Wang, Ji, Liang, & Yuan, 2012) 

where the identified images are retrieved without their annotations. Thus, the retrieved 

images are insufficient to the user since the details pertinent to the images are not 

provided. 

 

On the contrary, well established biodiversity textual databases   such as Parasite-Host 

Database at the Natural History Museum (Gibson, Bray, & Harris, 2012) and MonoDB 

(Andy & James, 2012) provides information   on the known species of monogeneans for 

parasitologists. The information from both databases can be retrieved based on the 

textual query. However, to get a clearer picture of the information, user has to obtain 
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through other image databases, from the original literature or personal correspondence 

with the researchers responsible for the information. 

 

Biodiversity data exists in different forms (such as text and image), interlinked between 

different repositories such as Parasite-Host and Herbivore-Plant, and complex images   

that are not easily described using words. Thus in this study, after considering the data 

used for retrieval i.e. heterogeneity of biological data and the complexity of images, as 

well as the aim to get more relevant images based on the user query, both the image 

retrieval approaches stated previously are combined in order to develop a system for 

biodiversity image retrieval. 

 

Ontology-based image retrieval (OBIR) is developed based on the ontology approach. It 

is a concept whereby the terms can be used to express the intentional meaning s and the 

information can be queried based on human perception. It is also very suitable for 

dynamic datasets as information in biology are always evolving over time. In the 

proposed architecture, OBIR was used as an approach to filter images to be used as 

training set images in the Content-based image retrieval (CBIR) layer by eliminating the 

irrelevant images using the text-based query, rather than the classifier used in matching 

the images. 

 

The performance of image retrieval was measured based on the efficiency of the 

retrieval between Model 1 and Model 2, which is conventional CBIR and CBIR 

integrated with ontology, respectively. This step is to determine whether this approach 

can be used as support in the CBIR layer. 
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1.2 Problem Statement 

As stated previously, there are many types of biodiversity databases and these databases 

exist independently i.e. image database and textual database. To provide more 

information and knowledge to the user, researchers in biology or anyone interested in 

this field needs an integrated automatic image retrieval system so that relevant images 

are retrieved and corresponding annotations can be used in their work. However, to 

develop this kind of image retrieval system, challenges such as (i) how to manage the 

image content, (ii) how to provide the image retrieval capabilities, and (iii) how to 

retrieve more relevant images to the user query, must be addressed (Murthy et al., 

2009). 

 

Generally, there are two image retrieval approaches i.e. metadata-based image retrieval 

and content-based image retrieval, which are based on human-annotated metadata and 

analyzing the actual image data, respectively. These two approaches have many 

differences but the main similarity of both approaches is that both may lead to the 

retrieval of irrelevant images (Avril, 2005).  

 

Developing an image retrieval system is not an easy task because it is difficult to 

measure the performance in terms of image accuracy and relevancy (Abu, Lim, Sidhu, 

& Dhillon, 2013). Generally, at the end of the process, the retrieved images must be 

accurate and relevant to the user query. Accuracy is an important factor to determine 

whether a system is working well or not and it is defined by the closeness of a 

measurement to an accepted true value, whereby the smaller the difference between the 

measurement and the true value, the more accurate the measurement (Universities, 

2005). 
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Most previous research focused on image representations (Krishnapuram, Medasani, 

Sung-Hwan, Young-Sik, & Balasubramaniam, 2004; Wei, Guihua, Qionghai, & Jinwei, 

2006; Lamard et al., 2007; Sergyan, 2008), classifier algorithms (Xin & Jin, 2004; 

Duan, Gao, Zeng, & Zhao, 2005; Liu, Wang, Baba, Masumoto, & Nagata, 2008), the 

use of image database (Kak & Pavlopoulou, 2002), and relevance feedback (Stejić, 

Takama, & Hirota, 2003; Zhang, Chen, Li, & Su, 2003; Ortega-Binderberger & 

Mehrotra, 2004; Wang & Ma, 2005; Wei & Li, 2006) in an effort to enhance the image 

retrieval system using CBIR approach. 

 

Another alternative approach is to integrate textual image retrieval into the conventional 

CBIR. However, there were not many studies looking into this.  Some examples are 

EKEY (EKEY, 2012), BISs (Torres, Medeiros, Goncalves, & Fox, 2004), SuperIDR 

(Murthy et al., 2009), and teaching tool for parasitology (Kozievitch et al., 2010). 

EKEY is a web-based system that provides taxonomic classification, dichotomous key, 

text-based search and combination of shape and text-based search, which takes into 

account fish shape outlines and textual terms. For the SuperIDR, instead of providing 

the same features as EKEY, it enables user interaction features such as add content, 

support for working with specific parts of images, performing content-based image 

annotation and retrieval and has pen-input capabilities, which mimics free-hand drawing 

and writing on paper. In terms of database system, the relational database architecture 

was used for text annotation. Both systems were used in the Ichthyology domain. As an 

alternative approach to teach, compare and learn concepts about parasites in general, 

research groups (Kozievitch et al., 2010) adapted SuperIDR. 

 

Furthermore, most of them rely on computer readable formats such as in relational 

databases (examples such as Biota (Colwell, 2010), InsideWood (InsideWood, 2004-



9 

 

2012), MonoDb (Andy & James, 2012)) and XML (examples such as Open Microscopy 

Environment (OME) Data Model and XML File (Goldberg et al., 2005), knowledge-

based grid services for high-throughput biological imaging (Ahmed, Lenz, Jia, 

Robinson, & Ghafoor, 2008), PLAZi (Jesse, 2005-2012)) 

 

Based on this, there was no work done on using ontology for image pre-classification 

and how it affects the content-based image retrieval process. Though this study is 

concerned with the development of biodiversity image retrieval with integration of the 

ontology- and content- based image retrieval, this study also looks into how image pre-

classification can aid in the matching process in order to overcome the problem of the 

efficiency of the retrieval system. Image pre-classification is a way to group only 

selected images that are relevant and similar, given certain parameters, to the training 

set. 

 

Besides that, currently there is no such work done on monogenean diagnostic hard parts. 

Thus, in this study, haptoral bar images were used as the data samples. Compared to the 

other diagnostic hard parts, haptoral bar has a very simple shape, thus making it easier 

for feature extraction purposes in image recognition process. 

 

1.3 Objective 

The main objective of this study is to produce an automated prototype of biodiversity 

image retrieval using both text and image as query. By doing this, the retrieval process 

can be improved i.e. images with their annotations, more accurate and relevant to the 

user query. The use of image pre-classification also aids in the image retrieval process 

in terms of accuracy, where can be accomplished when the rate of the retrieved images 

is increased. 
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In order to achieve the above objectives, the following tasks were performed:- 

(i) Analyses of current techniques of image retrieval; specifically to study and evaluate 

work done on image retrieval using text- and content- based image retrieval, 

particularly on improving the accuracy of such approaches. 

(ii) Collection and digitization of monogenean species and their diagnostic hard part 

images from manuscripts into e-library of monogenean images (Image database), in 

particular the haptoral bars. 

(iii)Collection and digitization of monogenean species data and their literatures that will 

be stored in an e-library of monogenean species and literature (Textual data). 

(iv) Developing the monogenean haptoral bar ontology (text and image) using semantic 

web ontology and metadata languages. 

(v) Develop ontology-based image retrieval (OBIR) for retrieving monogenean haptoral 

bar images. 

(vi) Develop content-based image retrieval (CBIR) for retrieving monogenean haptoral 

bar images using shapes to represent the object. 

(vii) Integrate OBIR and CBIR for retrieving monogenean haptoral bar images. 

(viii) Measure and compare the efficiency of image retrieval using R-Precision, 

classification Error Rate, Mean Average Precision, Precision-Recall Graph, 

Receiver Operating Characteristic (ROC), and Area under ROC Curve. 

(ix) Use image pre-classification to increase the semantic gap between the visual 

features and user’s level of understanding. 

(x) Propose a solution that can improve the accuracy of content-based image retrieval 

using shape description and matching using image pre-classification technique. 
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1.4 Scope of the Study 

In the present work, two image retrieval systems were built:- 

1. Model 1 - Content-based image retrieval (CBIR) 

2. Model 2 - Integration of ontology and CBIR 

 

For both of the systems, the same collections of images from the image database were 

used. These images were annotated with vocabularies (parameters) such as taxon name, 

publication and so forth. As a result, MHBI-Fish ontologies were produced and are then 

used for Model 2 image retrieval system. 

 

The CBIR approach was used to develop the image retrieval system for both Model 1 

and Model 2. As for Model 1, all the images from the monogenean image database was 

allocated and put into a training set; while for the Model 2, only a subset of the images 

in the database was put into the training set, depending on the parameters given by the 

user. Image pre-classification for Model 2 emphasized on the dorsal and ventral sections 

of the haptoral bar. 

 

In the testing phase, the performance is measured based on the retrieval efficiency of   

both image retrieval systems in terms of their Precision, Recall, F-measure, R-Precision, 

classification Error Rate, Mean Average Precision, Precision-Recall Graph, Receiver 

Operating Characteristic and Area under ROC Curve. The results gathered are then 

compared in order to validate the accuracy of the retrieved images. 

 

1.5 Research Significance 

The purpose of this study is to provide an alternative approach to image retrieval, 

specifically in biodiversity image database.  Both image and textual data play an 
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important role in taxonomy studies to provide more information and knowledge to the 

user. However, due to the lack of database functionalities, it is very hard to develop a 

practical system and this compromises the accuracy of the retrieved images. 

 

This study also provide another alternative in improving the accuracy of the image 

retrieval system by focusing on the data aspect i.e. the approach to reduce the training 

images for the CBIR layer by eliminating the irrelevant images using the text-based 

query, rather than the algorithm or techniques used in matching the images. 

 

The main impact of using image pre-classification is on the size of the training set, 

whereby there is a decrease in the number of images in the training set. Theoretically, 

the collected images in the training set will be the nearest subset to the query image to 

be recognized. Thus, the accuracy rate on the identified image is higher. 

 

Apart from the above, some characteristics of the biological data are heterogeneous, 

containing complex images and terminology to describe the data and are always 

evolving overtime. Thus, the proposed architecture in this study is able to manage and 

handle the heterogeneous dataset collection. Furthermore, it could also be implemented 

in other domains involving images such as in archeology, earth sciences and geology. 

 

In biology, images can be used for species identification and image retrieval. This study 

is a proof of concept specifically for image retrieval in the monogenean domain. There 

are many biological databases, which exist independently, thus the users have to switch 

between different database systems before the extracted information can be combined 

for further analysis. The proposed architecture is able to solve this problem whereby the 

retrieved results contains the relevant images in ranked order, with the textual 
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annotations attached to the image, therefore providing more information and 

knowledge. 

 

One of the issues in integrated text- and content- based information retrieval is the data 

modeling for textual representation. In order to organize data in a manner that focuses 

on the meaning of objects by expressing relationships, this can only be done via 

semantics. In this study, the images in the database were annotated along with textual 

information in a structured manner using semantics. Thus, the information can be 

queried based on human perception and enables rapid information retrieval. 

 

1.6 Chapter Organization 

This thesis report is divided into six chapters described as follows. Each chapter starts 

with an introduction and ends with a summary or conclusion. 

 

Chapter 1 provides an overview about the biodiversity image retrieval, the objective 

and justification for this study. 

 

Chapter 2 provides the literature review of this study. It is a summary of the results 

from the fact-finding of current existing systems, current technologies and other related 

and relevant matters pertaining to the biodiversity databases as well as image retrieval 

approach issues. 

 

Chapter 3 describes the output interpreted from the fact-findings. All the problems that 

correspond to biodiversity image data integration and image retrieval approaches are 

defined in this section. The compiled information helps in identifying the system 

requirements for the proposed architecture. 
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Chapter 4 describes the overview of the proposed solution. It includes the research 

methodologies that were used in the development of the system and the strategies for 

system development. 

 

Chapter 5 provides the implementation of system development for both Model 1 and 

Model 2 based on the proposed solution as described in Chapter 4. It includes the 

technical design and implementation of the system i.e. system architecture, design of 

input and output interface, description of the development tools and the relevant code 

segmentations are given to show how the system works for each implementation. 

Testing procedures and experimental results are given. The results are then further 

interpreted to justify the objectives of this study.  The strengths and weaknesses of the 

study were also discussed for future enhancement. 

 

Finally, Chapter 6 discusses the proposed architecture for biodiversity image retrieval. 

The strengths and limitations as well as future enhancements are presented. A 

conclusion is given at the end of this chapter. 
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CHAPTER 2:  

LITERATURE REVIEW 
 

 

2.1 Introduction 

A literature review was conducted to investigate and confirm the status of the research 

topic. All of the information was collected using on-line search via internet and from 

reading materials such as articles in academic journals, proceedings, conference papers, 

reference books and so on. The collected information resources are listed below:- 

(i) Reading materials from library, ebook and Web of Knowledge at 

http://apps.webofknowledge.com 

(ii) Online reference thesis from other local and international universities 

(iii)Online database systems from organisations’ and individuals’ websites and articles 

 

This chapter presents the review done on previous and current literatures, which are 

relevant and related to the field of study. It includes a brief overview of the application 

of digital images in biology. Furthermore, emphasize is given to the application of 

image retrieval approaches in biology. It discusses the status of both text- and content- 

based image retrieval approaches, including the techniques, current issues and current 

applications in the field of study. Image classifiers are also discussed in this chapter. 

 

2.2 Biodiversity Data Sources 

A biological database is similar to any other database in many aspects such as, the 

function of database is to store the data, the data is easily accessible remotely and the 
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data can be shared with others. However, some of unusual aspects to this database are 

(i) biology data are large because of its large subject area and its inter-relationships 

among other data, (ii) the business logics are complex and are constantly changing and 

evolving over time, and (iii) it need special requirements of scientific culture. 

 

Biological database is a library of life science information, which is collected from 

scientific experiments, published literatures, high throughput experiment technology 

computational analysis and others ("Biological databases introduction," 2010). It 

encompasses many research areas such as molecular biology, biochemistry, cell 

biology, evolutionary & population biology, and biodiversity and ecology. Furthermore, 

these databases are in inter-related manner such as in parasites-hosts, herbivores-plants, 

DNA-organs and organs-donors. Moreover, biological data is kept in many formats 

such as in a text, sequence data, protein structure, and taxonomic description form; and 

this form is either in text or image data format. 

 

This fact shows that some of the biological database features are heterogeneous, 

dynamic, has broad domain knowledge, workflow oriented and information is more or 

less integrated. Thus, one of the issues that need to be addressed in order to develop a 

more useful biological database is, how to organize this data in a meaningful manner so 

that the relevant and useful information to a user’s query can be searched and retrieved. 

 

This study focuses on the biodiversity data. In biodiversity studies, particularly in 

taxonomy, both text and image data plays an important role to the researchers so as to 

have a better understanding of that particular organism. The following section discusses 

further the topic of this study. 
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2.2.1 Existing data sources - Image databases 

There are huge numbers of online databases specifically in the biodiversity field 

(Parker, 2010). Some of these databases provide image database as one of the system 

functions. After going through these image databases, most of databases provide almost 

the same system requirements and features but they are used in different domains such 

as catfish, ants, insects, birds and plant. Thus in this study, only five were selected for 

reviewing purposes.  

 

a) FlyBase (http://flybase.org/) 

FlyBase (McQuilton et al., 2012) is an image database of Drosophila genes and 

genomes. One of the query tools provided in this system is ImageBrowse (see Figure 

2.1) for browsing the images based on the organ system, life-cycle stages, major tagma, 

germ layer and all species images.  

 

 

Figure 2.1: ImageBrowse in FlyBase 
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The images in this database were collected from the literatures such as journal articles 

and books. The retrieved images are listed in unranked order along with a short 

description (see Figure 2.2). 

 

 

Figure 2.2: Retrival results from FlyBase 

 

b) Global Cestode Database (GCD) (http://tapewormdb.uconn.edu/) 

The Global Cestode Database – GCD initiative was funded by the U.S. National 

Science Foundation’s Partnership for Enhancing Expertise in Taxonomy Program 

(PEET). The project began in 1995 at the University of Connecticut in Storrs, but has 

developed into an ongoing collaboration among Cestodologists in nine countries from 

around the world (Caira, 1995). The GCD provides a resource about the global cestode 

or tapeworms, whereby it has currently progressed on the entry of taxonomic names and 

literature. For easier accessing and tracking of the database elements, they have 

migrated from multiple FileMaker Pro databases to a single MySQL database. It allows 

direct data entry and uploading of PDFs from any site in the world that has Internet 

access. 
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As shown in Figure 2.3, the information can be searched based on the four main 

categories, which are Cestode Scientific Name, Type Host, Type Locality and 

Specimen. For image retrieval, there are a few parameters given and users have to select 

the category based on their interest. Any images that are related to taxonomic 

classification as shown in Figure 2.4 will be retrieved together as shown in Figure 2.5. 

 

 

Figure 2.3: GCD searching page 
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Figure 2.4: Retrieved results from GCD 

 

 

Figure 2.5: Retrieved images from GCD 

 

c) Specimen Image Database – SID (http://sid.zoology.gla.ac.uk/) 

Specimen Image Database – SID (Simon & Vince, 2011) is a searchable database of 

high-resolution images for phylogenetic and biodiversity research. This database is 
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intended as a reference collection of named specimens and a resource for comparative 

morphological research. Each image is accompanied by a fully searchable annotation, 

and can be browsed, searched or downloaded. Public users can register in this database 

and the registered users can add, annotate or label the images. Currently, this database is 

devoted to the insect order Phthiraptera (lice) and contains 7650 images of 440 taxa.  

 

Key features of SID (see Figure 2.6) include web upload/download of images, bulk and 

single image annotation via web forms, extensive browse and search options by text 

query, web service facility, web utility to label specific image features, taxonomy 

served and validated independently by the Glasgow Taxonomy Name Server, plus alias 

addresses for images by accession number and freeware which allows anyone to set up 

the database and serve their own images. The retrieved images are listed in unranked 

order with the taxon information, host as well as image properties. 

 

 

Figure 2.6: SID – Search page interface 
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d) Universal Chalcidoidea Database (UCD) (http://www.nhm.ac.uk/chalcidoids) 

The Universal Chalcidoidea Database – UCD currently contains citations of taxonomic 

names made available within the Chalcidoidea. It includes a comprehensive list of the 

various generic combinations and misspellings that have been used in the literature. 

Also included are host/associate and distribution records, for which the latter can be 

used to provide regional lists of Chalcidoidea (Noyes). 

 

Figure 2.7 shows the searching page in this database. A bibliographic database lists over 

40,000 references have been used in Chalcidoidea and this can be searched using 120 

predefined keywords in order to locate references dealing with specified subjects. A 

similar search can also be conducted in the taxonomic part of the database. More than 

350 images of a wide range of living chalcidoids are also available. The full set can be 

browsed or restricted to images specific to a particular family, genus or species. A new 

aspect of this database is the inclusion of .pdf files of references. Currently, it is limited 

to papers by Girault (by permission of Michael Schauff) and Grandi (by permission of 

Jean-Yves Rasplus). A .pdf icon alongside the reference in the bibliographic database 

indicates the presence of these .pdf files.  
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Figure 2.7: Universal Chalcidoidea Database – Search page interface 

 

The images can be retrieved by using text query based on the taxon family, or by 

browsing the entire image database as shown in Figure 2.8. The retrieved images are 

listed in unranked order with the taxonomic classification and additional information 

such as the owner of the photo and image description. 

 

 

Figure 2.8: Browsed image page 
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e) MonoDb (http://www.monodb.org/index.php) 

MonoDb (Andy & James, 2012) is another biodiversity database that provides image 

gallery as one of the features in the database. MonoDb is a web-host for the parasite 

monogenea. As mentioned in this website, the purpose of this website is to help 

children, adults, experts and non-experts to learn more about this fascinating group of 

animals. Browsing the entire images provided in the database can retrieve images in this 

database. The images are listed randomly and no information is attached to the images 

(see Figure 2.9). 

 

 

Figure 2.9: Monogenean images in MonoDb 

 

2.2.2 Summary of current data sources review 

Table 2.1 is a summary of the features of current existing Biodiversity data sources 

presented in the previous section. Based on this information, it helps in identifying the 

proposed approach’s requirements, which is explained in more detail in the following 

chapter. 
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Table 2.1: A summary of the features and requirements of existing Biodiversity data sources 

Features / 

Requirements 

Biodiversity data sources 

Flybase 
Global Cestode 

Database 

Speciemen Image 

Database 

Universal 

Chalcidoidea 

Database 

MonoDB 

Developer Peter McQuilton, 

Susan E. St. Pierre, 

Jim Thurmond, and 

the FlyBase 

Consortium 

 Janine N. Caira, 

University of 

Connecticut and 

Kirsten Jensen, 

University of Kansas 

Simon Rycroft and 

Vince Smith 

Dr John S. Noyes, 

The Natural History 

Museum London 

Collaboration of 

many institutions 

Aim To provide a 

complete annotation 

of the Drosophila 

melanogaster genes 

and genomes 

To provide images 

of specimens, 

habitats, living hosts, 

and pressed host 

voucher specimens 

To provide a 

searchable database 

of high-resolution 

images for 

phylogenetic and 

biodiversity research 

To provide a 

complete citations of 

taxonomic names 

within the 

Chalcidoidea 

To help experts or 

non-experts to learn 

more about parasite 

monogenea 

System-based Web Web Web Web Web 

System requirements 

Query method Browsing Text-based Text-based Text-based Browsing 

Retrieval approach Browsing Metadata Metadata Metadata Browsing 

Database Built-in image 

database 

Built-in image 

database 

Built-in image 

database, 7650 

images of 440 taxa 

Built-in image 

database, more than 

350 images 

Static, Built-in image 

database 

Image pre-

preprocessing 

- - - - - 
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Table 2.1, continued 

Development tools 

Operating system - - Mac, Windows, 

Linux 

- - 

Language - - Php, Java - Php 

DBMS - MySQL MySQL - - 

Image editor - - Imagemagick - - 

System process 

Input - Textual string Textual string Textual string - 

Output List of images in 

unranked order 

List of colored 

images in jpeg 

format, unranked 

order 

List of colored 

images in jpeg 

format, unranked 

order 

List of colored 

images in jpeg 

format, unranked 

order 

An image 

Textual annotations Taxon information, 

description, anatomy 

terms, image 

properties 

Taxon information  Taxon information, 

host, image 

properties 

Taxon information, 

owner of the photo, 

photo description 

- 

Interfaces Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 
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Most of the images in the image database are retrieved based on the text-based query. 

Usually, the results of retrieved images are listed in unranked order plus in a very broad 

manner because it depends on the words or vocabularies to represent the images. 

Moreover, each image will be attached together with their annotations such as taxon 

information, short description and distribution information to describe the image. 

However, there is no CBIR capability provided. 

 

2.3 Biological Image Processing 

As stated in (Castelli & Bergman, 2002), images are central to a wide variety of field 

ranging from history to medicine, including astronomy, oil exploration and weather 

forecasting. Image plays an important role in numerous human activities such as law 

enforcement, agriculture and forestry management, earth science and so forth. One of 

the uses of images is in face recognition and identification. Other example is in 

medicine where images are used for both diagnostic and educational purposes. In the 

same way, geologic images are needed in every stage of work for oil exploration. 

Images also play an important role in numerous satellites to continually monitor the 

surface of the earth. Hence, applications of digital images are continually developing in 

many areas. 

 

Similarly, specifically in biology, images are needed for organism identification, 

educational and scientific purposes. In biodiversity research, scientists produce vast 

number of images, which provide very useful information to many contemporaries. 

From the images, the elements such as diagnostic hard parts can be used to identify the 

organism at any level such as genus or species. This finding can be shared and used for 

teaching and educational purposes such as in research. However, these images can only 

be retrieved from the literatures or personal communication with the experts. With the 
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advancement in information technology, these images can be shared, accessed and 

retrieved remotely to make it useful to other people who have interest on the matter. 

Thus, it leads towards an entirely digitalized image wherein image databases partake a 

most important role. Besides that, as stated in (Curry & Humphries, 2007), the whole 

approach to computing and database management has shifted from the independent 

researcher keeping records for a particular project to the state-of-the-art file storage 

systems, presentation and distribution over the World Wide Web. 

 

In biology, automated systems and tools such as organism identification, data 

management, data sharing and information retrieval are needed to assist and support 

biologists in doing their research. With the advancement in computer vision (Forsyth & 

Ponce, 2002), image processing (Gonzalez & Woods, 2010) and machine vision studies 

which involve many studies such as artificial intelligence, imaging and pattern 

recognition, one of the major applications of digital images in biology is for species 

identification. The following sections present the selected current systems, which are 

reviewed in this study. The current systems were reviewed based on (i) the aim of the 

system, (ii) the system requirements used to develop the systems, approach used in 

retrieval, training set, image pre-preprocessing and relevant structures for the 

identification, and (iii) system flow on how to use the system from input requirement 

right up to the retrieved results to the user. 

 

2.3.1 Existing automated identification systems  

a) Digital Automated Identification SYstem – DAISY 

One of the established identification systems is DAISY. DAISY is widely used for 

species identification (O'Neill, 2010). It can be used to help non-experts for rapidly 

screening the unknown species. The prototype was first developed and tested to 
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discriminate five species of parasitic wasp, based on differences in their wing structure 

using principle component analysis and linear discriminant analysis (Weeks, O'Neill, 

Gaston, & Gauld, 1999). DAISY was also used in the identification of other insect 

groups such as the biting midges, Xylophanes hawkmoth (Gauld, O'Neill, & Gaston, 

2000) and live moths of Macrolepidoptera (Watson, 2002; Watson, O'Neill, & Kitching, 

2004). DAISY system is generic (O'Neill, 2007) and was then further enhanced with 

new methods such as artificial neuron network and support vector machines (Mayo & 

Watson, 2007), and plastic self-organizing map (Lang, 2007). In summary, as 

mentioned in (O'Neill, 2010), DAISY has been exhaustively tested in many significant 

morphological and molecular datasets including British bumblebees (Pajak, 2000), 

British Lepidoptera (butterflies), sphingid larvae and lycosid spiders. 

 

b) SPecies IDentified Automatically – SPIDA 

Other example for generic species identification is SPIDA (Platnick, Russell, & Do, 

2012). SPIDA (see Figure 2.10), which is an identification system for spiders whereby 

artificial neuron network is applied to recognize images, encoded with wavelet (Do, 

Harp, & Norris, 1999). Until 2005, they have developed internet-accessible automated 

identification system named SPIDA-web (SPecies IDentification, Automated and web 

accessible) with two perspectives i.e. taxonomic (Family Trochanteriidae) and 

geographic (surveys conducted in Knox Co., TN). 

 



30 

 

 

Figure 2.10: SPIDA-web interface 

 

c) Automated Bee Identification System Automated – ABIS 

ABIS is an identification system of bee species by image analysis of their wings. This 

system is also integrated and applied as a tool for data gathering within the information 

system EDIS - Entomological Data Information System. Geometrical image analysis, 

template matching, affine projection, discriminant analysis, kernel functions and GIS 

are the methods used in developing this system (Schröder, Drescher, Steinhage, & 

Kastenholz, 1995). 

 

d) DrawWing 

The last example is DrawWing, which is the software for insect identification based on 

the analysis of wing images and currently it is working on honeybee (Apis) wings 

(Adam, 2008). 
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2.3.2 Summary of current systems review 

Table 2.2 is a summary of the features of current existing identification systems that 

were discussed in the previous section. The review helped in identifying the proposed 

approach’s requirements, which is explained in more detail in Chapter 3 and 4. 

 

Generally, with advancement in information technology, many systems and tools have 

been developed to assist and support biologists in performing their research works.  

 

Both DAISY and SPIDA are generic-based system, which means these systems can be 

used to recognize many other species. On the contrary, ABIS and DrawWing are are 

restricted to insects, which operates by matching specific set of characteristics based on 

wing venation. Basically, the identification system is built based on pattern recognition 

approach. The species diagnostic characters are used for the identification, which are 

represented by certain patterns such as color, shape and/or texture. The query image will 

be compared to the images in the training set and the identification result; normally the 

system will return the identified species image along with taxon species name but no 

complete annotations to describe the image. 

 

 

 

 



32 

 

Table 2.2: A summary of the features and requirements of existing automated identification systems 

Features / Requirements 
Automated identification systems 

DAISY SPIDA-web ABIS DrawWing 

Developer Mark O'Neill Kimberly N. Russell, 

Martin T. Do 

Prof. Dr. W. Drescher, 

Prof. Dr. D. Wittman, Dr. 

S. Schröder 

 

Adam Tofilski 

Aim A system to rapidly 

identify insects and other 

invertebrates (to aid 

biodiversity and ecology 

studies) 

An automated 

identification system for 

biological species in the 

Australasian spider family 

Trochanteriidae 

An automated 

identification of bee 

species by image analysis 

of their wings 

Software for analysis of 

insect wing images and 

extraction of some 

information about the 

wings. The information 

can be used for insects’ 

identification. At the 

moment DrawWing is 

designed to work with 

honeybee (Apis) wings 

System-based Stand-alone Web Stand-alone Stand-alone 

System requirements 

Query method Image-based Image-based Image-based Image-based 

Retrieval approach Image recognition Image recognition Image recognition Image recognition 

Training set Built-in image database Built-in image database Built-in image database Built-in image database 

Image pre-preprocessing Cropped image in tiff 

format 

Cropped square image in 

51x51 pixels size, 

grayscale image in jpeg or 

tiff format 

Yes Cropped  image at 

resolution 2400x2400 dpi 

Relevant structures for 

identification 

Wings of insects Adult specimens, 

epigynum and pedipalp of 

spider 

Wings of bee Wings of insects 
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Table 2.2, continued 

Development tools 

Operating system Linux or BSD UNIX - - - 

Language - - - - 

DBMS - - - - 

System process 

Input Species image uploaded 

by the user 

Species image uploaded 

by the user 

Species image uploaded 

by the user 

Species image uploaded 

by the user 

Output Identified species Identified species Identified species Identified species 

Textual annotations Species name Species and genus name Species name Species name 

Interfaces Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 

Yes. Simple and user 

friendly 
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2.3.3 System requirements 

There are six aspects that are important to consider when developing an identification 

system, i.e. the training images, features to represent the image, similarity comparison, 

the classifier, query specification and the expected output of the retrieval process.  

 

The training images are the main input requirement in an image retrieval system, 

whereby all images must be with the same standard properties. Therefore, pre-

processing an image is needed to ensure the width, height and pixel size of all images. 

The image should also be cleared of any noise. Database is used to store these training 

images. With regards to pattern recognition, features are needed to represent an image, 

the similarity between two images are then compared using distance function and the 

similar images to the query image are classified using classifier. As for query 

specification, a query image is needed as input whether in query-by-example, query-by-

sketch or query-based browsing method. The last aspect is the output of the retrieval 

process, which is crucial in determining whether the retrieval process works well and in 

an efficient manner. Thus to achieve this, the most similar and relevance images must 

be retrieved. 

 

There are also many research groups working on species identification either for plant 

or animal. Briefly, automated identifications have been developed for the identification 

of plants (based on shapes, texture and colors of leaves) (Yanhua, Chun, Chun-Tak, 

Hong, & Zheru, 2004; Moreno, Grana, & Veganzones, 2007; Lang et al., 2007; 

Kebapci, Yanikoglu, & Unal, 2009), helminth parasites (based on eggs shape and 

texture) (Yang, Park, Kim, Choi, & Chai, 2001), butterfly families (based on colour, 

texture and shape of wings) (Wang et al., 2012) and marine life based on colors of the 

images (Sheikh, Lye, Mansor, Fauzi, & Anuar, 2011). In this present study, the use of 



35 

 

shape is considered for a similarity-based image retrieval system for monogenean 

haptoral bars. A review of the automated identification systems developed for Biology 

and approaches used are summarized in Table 2.3. 

 

2.4 Image Retrieval Methodologies  

Images from the image database can be retrieved by using either text- or content- based 

image retrieval approaches. Intially the text-based approach was mainly used in building 

applications. When the multimedia data began to mushroom over the Internet, plus 

limitations of text-based information retrieval, image-based approach started to move 

forward in order to improve and enhance performance of image retrieval. Currently, 

works on both approaches are still in progress. The following sections discusses these 

approaches further including the techniques involved in implementing the approach, 

their advantages and disadvantages and example of current existing systems for 

reviewing purposes. 
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Table 2.3: A summary of the review on the image recognition systems in Biology 

Shape information Reference Aim Features Classifier Similarity measure 

Boundary Swain, Norremark, 

Jorgensen, Midtiby, 

& Green (2011) 

Weed identification Mean value of 

coordinates of 

landmark points 

derived from weed 

images 

Not available Mahalanobis 

distance 

Araabi, Kehtarnavaz, 

McKinney, Hillman, 

& Würsig (2000)  

Dolphin 

identification from 

photographs of their 

dorsal fins 

 

Curvature of 

dolphin’s fin  

Not available Syntactic/semantic 

distance measure 

Ardovini, Cinque, & 

Sangineto (2008)  

Elephant photo 

identification system  

Nick curvature of 

elephants’ears 

 

Minimum distance Euclidean distance 

da F. Costa, dos 

Reis, Arantes, Alves, 

& Mutinari (2004) 

Geographic 

differentiation of 

rodent species 

Thrichomys 

apereoides based on 

patterns of cranial 

morphologies 

Curvature of skull Not available Euclidean distance 

Do et al., 1999  Spiders 

identification  

Wavelet 

transformation of 

epigynum 

Artificial Neural 

Network 

Not available 

Gope, Kehtarnavaz, 

Hillman, & Würsig 

(2005)  

Marine mammals 

identification  

Affine curve of the 

mammal images 

 

Minimum distance Affine distance 
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Table 2.3, continued 

Boundary Van Tienhoven, Den 

Hartog, Reijns, & 

Peddemors (2007)  

Shark 

Carcharias taurus 

identification 

Affine 

transformation of the 

natural spot marks 

 

Minimum distance Euclidean distance 

Moreno et al., 2007  Categorization of 

mushroom samples 

 

Active contour 

technique (snake)  

K*, Naive 

Bayes,  

C4.5, Ripper 

Not available 

Region Pauwels, de Zeeuw, 

& Ranguelova 

(2009)  

Tree taxonomy using 

image-based queries  

 

Moment invariants K-nearest neighbors Euclidean distance 

Wang et al., 2012 Butterfly families 

identification  

 

Geometric Template match Euclidean distance 

Wilder, Feldman, & 

Singh (2011)  

Classification of 

shapes into broad 

natural categories for 

animal and leaf of 

plants 

Shape skeleton 

statistics using mean 

of skeleton depth, 

branch angle 

Bayesian classifier Not available 
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2.4.1 Image retrieval basic principles  

Image retrieval is the task for searching images from image database. The basic 

principles involved in image retrieval are shown in Figure 2.11. 

 

 

Figure 2.11: Image retrieval basic principles 

 

These basic principles are query method, image database and retrieved results, in any 

method of image retrieval. A query to the image database can be in various forms, i.e. in 

text, query-by-example or query-by-sketch. All the images in the database will be 

searched using retrieval algorithm based on the approach used. At the end of the 

searching process, the retrieved images will be indexed and displayed to the users. 

 

2.4.2 Image retrieval techniques 

Generally, there are two approaches to image retrieval, metadata-based image retrieval 

that is based on the human-annotated metadata (Avril, 2005), and content-based image 

retrieval (CBIR) that analyze the actual image data, as presented in the following. 

 

A. Metadata-based image retrieval 

This approach involves two important aspects, i.e. image annotation and image 

retrieval. Image annotation refers to the process in describing images; whereby image 

retrieval refers to the process of finding images by using the annotated metadata. 
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Avril (2005) mentioned that metadata is a technique that uses textual strings to describe 

the image. The metadata describes the image with two concerns, i.e. (i) the concepts that 

give information such the image creator, tools used in the process of creating the image, 

art style of the image and the price which refers to the explicit properties of the image, 

and (ii) describes what is actually in the image which refers to implicit properties that 

can be understood by percepting the image itself. Thus, in analyzing an image, both 

must be taken into account. Figure 2.9 shows an example of interpreting an image. 

 

 

Figure 2.12: Interpreting an image 

 

At a higher conceptual level, this image will be searched and retrieved based on their 

textual annotations. Basically for text retrieval, it starts with Boolean search of words in 

the text using the combination of AND, OR and Not. The other method is using vector 

space model, whereby the distance between search terms and documents is calculated. 

 

I. Techniques used in metadata-based image retrieval 

Most of the techniques in this approach are adapted or sometimes reinvented from text 

information retrieval.  
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For image annotation, as reviewed in (Hanbury, 2008) there are three image annotation 

techniques, which are:- 

(i) Free text annotation is a technique where the image can be annotated using 

combination of words or sentences. It makes it easy to annotate but it leads into 

difficulty in image retrieval. Normally, it is used as additional annotation choice of 

keywords or ontology. Some of examples are IBM VideoAnnEx software (Lin, 

Tseng, & Smith, 2003) and ImageCLEF 2004 (Peters et al., 2004). 

(ii) Keyword annotation is based on a list of keywords associated with the image. The 

image can be annotated using arbitrary keywords as required or restricted to using a 

pre-defined list of keywords or a controlled vocabulary. 

(iii)Annotation based on ontologies is a technique that uses the concepts (entities) and 

their relationships (predicates) and rules in ontology to annotate the image. 

 

As for image retrieval, Müller (2010) mentioned, some of the techniques used are as 

follows:- 

(i) Bag of words approach or N-grams can be used for image classification in which 

every word is represented in unordered index or dictionary where the grammar and 

order of word are disregarded.  

(ii) Stop words removal is a technique to remove very frequent words on certain 

frequency, which contain little information. These words, depending on the 

language, such as in English where words like ‘a’, ‘an’, ‘is’ and ‘have’ are 

frequently used in sentences, so those words can be removed. 

(iii)Stemming or conflation is another technique that can improve the retrieval results 

that use suffix stripping based on a set of rules. For instance, words such as ‘book’, 

‘books’ and ‘booked’ where the word ‘book’ is the root or stem. This technique is 

also strongly dependent on the language and Porter stemmeing in English (Porter, 
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2010) is one of the well-known algorithms with a free implementation. However, 

the limitation of this approach is, it may slightly change the meaning of words. 

(iv) Mapping of text to a controlled vocabulary is a technique that uses certain 

vocabulary or terminology in certain domain. 

 

II. Issues in metadata-based image retrieval 

As stated previously, the basis of metadata-based image retrieval is text retrieval 

whereby many techniques (Müller, 2010) come from this domain approach. On one 

hand, in this approach, the image can be retrieved based on human perception because 

the text has more meaning than visual features (Müller, 2010). On the other hand, there 

are few limitations in terms of image annotation as well as the relevancy of the retrieved 

images. 

 

Image annotation is never complete and a never-ending task because from time to time 

an image might be needed to be annotated to make it more detail and easy to retrieve. 

Moreover, it depends on the goal of the annotation. Furthermore, some images are very 

subjective and are difficult to describe in words for examples like feelings, situations 

and shape of the object. Sometimes, an object can have many alternative ways to 

express it thus the synonyms, hyponyms and hypernyms (Müller, 2010) must be 

considered in annotating the image. Typo error as well as the spelling differences such 

as UK English and US English can happen during the annotation process. 

Consequently, the annotator needs to put more effort and extra time to use the correct 

words in order to avoid these circumstances. 

 

In terms of image retrieval, this approach is lexical motivated (Avril, 2005) which is 

more to relating the words rather than to understand the meaning of the words. The 
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difference of words is measured based on the weightages and not the distance of the 

features (Müller, 2010). Thus, it affects the relevancy of retrieved images because the 

irrelevant images might be retrieved as well. Furthermore, the retrieved images are 

always listed in unranked order and it depends on the users’ judgment to determine the 

relevancy of the retrieved images.  

 

Nevertheless, the studies in this field are still in progress with new improvement and 

enhancement of the traditional techniques such as an expansion and reranking approach 

for annotation-based image retrieval from the web (Kilinc & Alpkocak, 2011); image 

search reranking (Yang & Hanjalic, 2012); and a graph-based image annotation (Jing 

Liu, Wang, Lu, & Ma, 2008). 

 

III. Data modeling approach 

The above topic broadly discussed on the techniques of image annotation and retrieval 

involves in the metadata approach, which have been applied in many field such as 

science library, medical and biology. Another aspect presented in this study is the data 

representation or data modeling for the image annotation and retrieval. To conclude, 

there are two questions that would be raised towards this approach; i.e. (i) How to 

represent the annotated metadata? and (ii) What are the techniques and tools needed in 

order to interpret the metadata? The scope in biodiversity field is presented in this 

discussion. 

 

a) Tabular 

In traditional data modeling approaches, namely tabular, relational have been applied in 

many fields, including in modeling the huge and complex biodiversity data. Tabulation 

of data in spreadsheets was common as spreadsheet was simple to read and manipulate, 
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such as to store, print and edit by biologists. Besides, many examples were presented 

that can be used by biologists to store their data into digital forms using these simple 

methods. For example, the Global Biodiversity Information Facility – GBIF (GBIF, 

2001) promotes biodiversity data entry into spreadsheets as many scientists use 

spreadsheets quite regularly for data management. It is also believed that many 

scientists do not have specialized tools as well as low Internet access, which prevented 

them from migrating their data into better modeling approaches. While spreadsheets 

also use rows and columns to model the data, like the relational model, it is still very 

different in terms of structure and format. Spreadsheets are also considered as flat files 

and storing images are cumbersome. An example of the Parasite Host data is shown 

Table 2.4 and Table 2.5. 

 

Table 2.4: Parasite Host data for reading purposes 

Order Family Genus Parasite_Species Host_Species 

Plagiorchiida Anchitrematidae Anchitrema Anchitrema 

sanguineum 

Glischropus 

tylopus, 

Hipposideros 

Pomona, 

Rhinolophus 

luctus 

 

Table 2.5: Parasite Host data for reading and querying purposes 

Order Family Genus Parasite_Species Host_Species 

Plagiorchiida Anchitrematidae Anchitrema Anchitrema 

sanguineum 

Glischropus 

tylopus,  

Plagiorchiida Anchitrematidae Anchitrema Anchitrema 

sanguineum 

Hipposideros 

Pomona 

Plagiorchiida Anchitrematidae Anchitrema Anchitrema 

sanguineum 

Rhinolophus 

luctus 

 

Data stored in this way has apparent limitations. In the Host_Species column in Table 

2.4, three values are crammed into a single column which is acceptable for reading 

purposes but not for query. In Table 2.5, although the Host_Species can be separated 

into three different rows, it creates a major problem of data redundancy, especially 
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when storing huge amount of data. Redundancy takes more space, hence affects the 

performance. 

 

b) Relational model 

Another common method of storing biodiversity data is the relational model. In a 

relational model, data is stored in database management systems (DBMS) such as 

Oracle, DB2, MySQL, and PostgreSQL as well as the simpler ones such as Microsoft 

Access. Relational databases are more structured, powerful, systematic, and allows 

storage of heterogeneous and large amount of data. Although data is also represented in 

a tabular, the relational approach allows multiple tables to be joined and queried easily, 

in a standardized manner. The Structured Query Language (SQL) is commonly used to 

query a relational database. SQL is an ANSI standard computer language. It is 

commonly use for accessing and manipulating data in the DBMS such as to execute 

queries against a database, retrieve data from a database, insert new data into a database, 

delete data from a database and update data in a database. 

 

The flat file approach used in Table 2.4 and Table 2.5 can be represented in a relational 

model as shown in Figure 2.10, which not only eliminates redundancy but also allows 

more specific query results. 
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Figure 2.13: Relational model for Parasite Host data (Physical design) 

 

The relational model is more explicit compared to the flat file approach as the entities 

that form the tables, attributes or fields that form the columns of the table and tuples that 

forms the rows of the table can represent schema. This schema can be represented using 

the entity-relationship diagram (E-R) as shown in Figure 2.14. 

 

 

Figure 2.14: Example of an Entity Relationship Diagram – ERD (Logical design) 

 

Many huge biodiversity projects in the world uses the relational model, which involves 

building the databases, querying, integration as well as data sharing. Examples, which 
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are published online, include the All Catfish Species Inventory (Sabaj et al., 2003-

2006), AntWeb (AntWeb, 2002), ASEAN Biodiversity Sharing Service (BISS) 

(Biodiversity, 2005), FishBase (Froese & Pauly, 2012), HerpNET (Spencer, 2009), and  

WikiSpecies (Wikispecies-Contributors, 2012). 

 

Therefore, the relational model has been successfully used in many database projects. 

Scientific research is ever evolving, thus data in this field increases very rapidly. A 

database schema with fixed entities and set of fields may not be relevant for new 

discoveries and entries. A new addition in a current relational model may require new 

schemas to be developed and revision of existing queries has to be done. Migration to a 

new schema and query can be very cumbersome and time consuming to database 

administrators as well as programmers. 

 

c) Graph data 

A recent approach to data modeling is using the graph data. The application of graph 

data in modeling is more commonly known as semantics technology. In this approach, 

the meaning of ‘entity’ is represented in the triple statement that contains subject, 

predicate and object, compared to the relational model in Figure 2.14. An example is 

shown in Figure 2.15. As stated in (Toby, Colin, & Jamie, 2009), multiple triples can be 

tied together by using the same subjects and objects in different triples. These chains of 

relationships are then assembled and form a directed graph to present the data. The 

ontology techniques (Lassila et al., 2000) and metadata languages (Hyvönen et al., 

2002) are then used to form a graph; for example, the semantic web uses the Resource 

Description Framework (RDF) as a general-purpose language to form a graph on the 

Web (Janev & Vranes, 2009). RDF schema (Brickley & Guha, 2012) is a technique to 

define hierarchical ontology classes and RDF (Beckett, 2004) for annotating image 
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metadata according to the ontology. The ontology together with the image metadata 

forms a RDF graph, a knowledge base, which can facilitate new semantic information 

retrieval services (Hyvönen, Saarela, Styrman, & Viljanen, 2003). The main goal of 

RDF notations is to make the content machine processable and understandable (Janev & 

Vranes, 2009). 

 

 

Figure 2.15: A graph of triples showing information about a specimen (S1) 

 

Many biodiversity data modeling work have started to adopt this approach. For 

example, the SERONTO framework, a product of the Network of Excellence ALTE-

Net (UK) has been used for the semantic data integration of biodiversity textual data. It 

was developed to allow seamless access and querying of heterogeneous data resources 

across multiple institutions and several scientific domains (Bertrand et al., 2010). 

Another text-based data using semantic technology is SAPPHIRE or Situational 

Awareness and Preparedness for Public Health Incidences and Reasoning Engines, a 

semantic-based health information system. It has the capability of tracking and 

evaluating situations and occurrences that may affect public health. The University of 

Texas Health Science Center at Houston developed it in 2004 in association with the 
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Oracle Corporation and TopQuadrant, Inc (SAPPHIRE, 2012). Semantic is also used in 

the development of the vocabulary for dedicated fields. One example is Gene Ontology 

(GO). The objective of the Gene ontology (GO) consortium is to produce a controlled 

vocabulary that can be applied to all organisms and able to accommodate new and 

different information on gene and protein roles in cells. GO provides three structured 

networks with defined terms to describe gene product attributes (OBO, 2012). The 

above examples indicate that the current trend is to use semantic technology in database 

development for effective data acquisition, organizational and information retrieval. 

 

B. Content-based image retrieval 

As a result of advances in Internet and digital image technology, the volume of digital 

images produced by scientific, educational, medical, industry and other applications 

available to users increased dramatically in the early 1990s (Feng, Siu, & Zhang, 2003). 

Thus, it leads towards a need for efficient management of this visual information and 

formed the emergence of content-based image retrieval approach. Since then, this 

approach has attracted researchers in many fields such as information retrieval, 

computer vision, machine learning, database management as well as human-computer 

interface and research in this approach has developed rapidly. Moreover, the number of 

literatures as well has increased enormously. 

 

Figure 2.13 shows a typical architecture of CBIR system depicted from Torres & Falcao 

(2006). The goal of this approach is to search and retrieve a set of similar images to the 

user query. The interface layer allows user to send a query image. The images from 

image database are then assigned as training set images. Both query and training set 

images features (such as shape, texture and color) are extracted and formed the feature 

vectors in the feature space. The similarity comparison (such as Euclidean distance and 



49 

 

Mahalanobis distance) between the query and training set images are then measured, 

and the classifier (such as minimum distance, maximum distance and k-nearest 

classifier) is used to classify the retrieved images. The results are then returned to the 

user through user interface. As for the results, the retrieved images must be accurate, 

relevant and related to the user query. 

 

 

Figure 2.16: A typical architecture of CBIR system (Torres & Falcao, 2006) 

 

I. Related works in CBIR 

Rui, Huang, & Chang (1999), Smeulders, Worring, Santini, Gupta, & Jain (2000), Feng 

et al. (2003) and Torres & Falcao (2006) introduce some fundamental techniques as 

well as technical achievements in the field of CBIR. They review on the features aspect 
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to represent the images; distance functions for similarity comparison; classifier 

algorithms for indexing and user interaction between the user and the retrieval system. 

They also review on system performance evaluation and suggest future directions of 

CBIR. A few examples of CBIR systems and applications together with the methods 

used are introduced in these papers. 

 

Mehtre, Kankanhalli, & Wing-Foon (1997) present a work of comparison on shape 

measures for CBIR. They have tested the effectiveness of eight shape measures – 

boundary- and region- based, for the purpose of content-based shape similarity retrieval 

of images on advertisements. The other example (Iqbal, Odetayo, & James, 2012) 

proposed a new CBIR approach for biometric security, which combined three well-

known algorithms – color histogram, Gabor filter and moment invariant. Their work 

shows that combined features are better than the individual features for effective image 

retrieval. 

 

Instead of combining the features to represent the image, Arevalillo-Herráez, Domingo, 

& Ferri (2008) proposed a method to combine a given set of dissimilarity functions 

whereby for each similarity function, a probability distributions is built for similarity 

comparison purposes. 

 

In terms of image classification, Park, Lee, & Kim, (2004) proposed a method of 

content-based image classification using a neural network for the texture feature using 

the back-propagation learning algorithm. However, Wong & Hsu, (2006) presented a 

scaling and rotation invariant encoding scheme for shapes. Support vector machines 

(SVM) and artificial neural networks (ANN) are used for the classification of shapes 
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encoded by the proposed method. The results show that SVM achieved better 

performance than ANN did. 

 

In order to improve the relevant retrieved images, there are a few works such as (Stejić 

et al., 2003; Xin & Jin, 2004; Duan et al., 2005) focus on relevance feedback that 

involves user interaction with the retrieval system. Most of the works show that, the 

retrieval performances get better compared to the typical CBIR system. 

 

One of the common issues in CBIR is semantic gap (Smeulders et al., 2000), which 

affected the efficiency of retrieval. As mentioned in (Liu, Zhang, Lu, & Ma, 2007), in 

order to improve the retrieval accuracy of CBIR systems, research focus has been 

shifted from designing sophisticated low-level feature extraction algorithms to reducing 

the semantic gap between the visual features and the richness of human semantics.  

 

As mentioned in (Deselaers, Keysers, & Ney, 2008), a common problem in image 

retrieval is the performance evaluation. It is difficult to compare the available systems, 

because no common performance measure for image retrieval has been established and 

even constructing a performance measure is difficult since the success or failure of an 

image query strongly depends on the requirements of the user. Thus, as mentioned in 

(Müller, Müller, Squire, Marchand-Maillet, & Pun, 2001), performance evaluation 

methods can be measured based on user comparison, single-valued measures and 

graphical representation. Generally, most of the measurements are based on the 

Precision and Recall values as mentioned in (Müller et al., 2001; Deselaers et al., 2008; 

Manning, Raghavan, & Schütze, 2008; Davis & Goadrich, 2006; Deselaers et al., 2004; 

Hua, 2009). 
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II. Techniques in CBIR approach 

a) Image representations 

A digital image is visual information that is represented in digital form (Hunt, 2010). 

The visual content of an image or low-level image feature such as color, shape, texture 

and spatial layout are used to represent the image (Feng et al., 2003). 

(i) Color 

A color model is an abstract mathematical system for representing colors (Hunt, 2010). 

Since color is a three-dimensional entity, a color model defines three primary colors, 

which correspond to three dimensions. Numerous color models are commonly in use 

and well suited for a certain class of applications. These include RGB, CMY, CYMK, 

HSB and NTSC color models (Rodrigues, 2001).  

 

(ii) Shape 

As stated in (Sonka, Hlavac, & Boyle, 1998), the shape descriptor is some set of 

numbers to describe a given shape and the descriptors for different shapes should be 

different enough so that the shapes can be discriminated. In Castañón, Fraga, Fernandez, 

Gruber, & da F. Costa (2007) mentioned, the set of features (object description / 

descriptor) to be used in pattern recognition (to represent the object / object 

representation) is strongly dependent on the characteristic of the image domain. As 

mentioned in (Mehtre et al., 1997), shape description techniques can be broadly 

categorized into two types, boundary based and region based. Boundary based methods 

look into the contour or border of the object shape and completely ignore its interior 

whereby region based methods look into internal details inside the object shape. There 

are many discussions on shape description / descriptor to represent the shape. Some 

well-known boundary-based methods are chain codes (Richard, 1996) and Fourier 

descriptors and their extended algorithms such as UNL Fourier (Zhang & Lu, 2003; 
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Kunttu, Lepistö, Rauhamaa, & Visa, 2006; El-ghazal, Basir, & Belkasim, 2009; 

Agarwal, Venkatraghavan, Chakraborty, & Ray, 2011). Invariant moments (Belkasim, 

Shridhar, & Ahmadi, 1991; Zhao & Chen, 1997; Zhu, De Silva, & Ko, 2002; Jin Liu & 

Zhang, 2005; Papakostas, Karakasis, & Koulouriotis, 2010; Yuanbin, Bin, & Tianshun, 

2010), profile (Ritter & Schreib, 2001; Efraty, Bilgazyev, Shah, & Kakadiaris, 2012), 

and Zernike moments (Miao, 2000; Gu, Shu, Toumoulin, & Luo, 2002; Kan & Srinath, 

2002; Hwang & Kim, 2006) are other examples of region-based method. 

 

(iii)Texture 

In Liu et al. (2007) mentioned, texture is not really well defined like color and shape 

features. This feature is suitable for representing the content of real world images such 

as tree, brick, fabric (Ben-Salem & Nasri, 2010; Wang, Georganas, & Petriu, 2011) and 

fruit skin. It can be classified into two categories i.e. structural and statistical. Structural 

methods such as morphological operator and adjacency graph describe texture by 

identifying structural primitives and their placement. Statistical methods including 

Tamura features (Islam, Zhang, & Lu, 2008; Qi, 2009), Markov random field (Gleich, 

2012; Ng, Hamarneh, & Abugharbieh, 2012) and wavelet transform (Ruttimann et al., 

1998; Sun, Wang, & Yin, 2009), characterize texture by the statistical distribution of the 

image intensity (Sanchez, Petkov, & Alegre, 2005). 

 

b) Classifiers  

Once the set of features is extracted and turned into features vector, next is to choose the 

classifier for object matching. For object matching, there are many approaches that have 

been proposed and (Mehtre et al., 1997) stated it is based upon the image representation 

methods. However, as mentioned in (Bradski & Kaehler, 2008), often the choice of 

classifier is dictated by computational, data or memory considerations. Generally, there 
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are two main methods of image classification, supervised and unsupervised 

classification (Santos, 2009). As for supervised image classification such as Bayes 

(Shastri & Mani, 1997; Abe & Kudo, 2006; Barshan, Aytaç, & Yüzbaşıoǧlu, 2007; 

Chen & Peter Ho, 2008; Liu, Sun, Liu, & Zhang, 2009; Wu & Li, 2009), K-nearest 

(Hattori & Takahashi, 2000; Liu & Nakagawa, 2001; Du & Chen, 2007) and distance 

functions (Di Gesù & Starovoitov, 1999; D. Zhang & Lu, 2003; Zuo, Zhang, & Wang, 

2006; Wang, Hu, & Chia, 2011), the sample of known classes is provided so that the 

classification algorithm can differentiate one class from the  other. Whereby, the 

unsupervised image classification such as clustering algorithm (Kim & Oommen, 2007), 

the basic information on how many classes are expected to be presented on the image is 

provided in classification algorithm and the algorithm attempts to identify those classes. 

This topic is further discussed in the following sections. 

 

c) Similarity comparison 

Regardless of the method used for classification, the similarity comparison between 

images is then calculated which rely on some distance measurements such as Euclidean 

distance (Li & Lu, 2009), Mahalanobis distance (Xiang, Nie, & Zhang, 2008), 

correlation (Ma, Lao, Takikawa, & Kawade, 2007) and others. As a result of similarity 

based image retrieval, a set of closely matching images is indexed based on the 

classifier used. 

 

d) User interactions 

Another aspect in CBIR system is user involvement. Thus user interface is needed in 

order for user to communicate with the system and as stated in (Feng et al., 2003), user 

interfaces in image retrieval system typically consists of a query formulation part and a 

result presentation part. 
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Feng et al. (2003) mentioned, there are few methods for query specification such as 

query by example, query by sketch, query by concept, and category browsing. Again, 

the method used for the query is depending on the application itself. However, the most 

common methods use for querying are query by example such as in (Google, 2012; Inc., 

2012) and query by sketch such as in (Daoudi & Matusiak, 2000; la Tendresse & Kao, 

2003). 

 

In order to get more relevant retrieved images, relevance feedback method is used for 

user to refine a list of ranked retrieved images according to a predefined similarity 

comparison. In Xin & Jin (2004) and Duan et al. (2005) present the utilization of 

relevant feedback using Bayesian network to improve the retrieval effectiveness. Wei & 

Li (2006) as well applied learning algorithm in relevance feedback to improve the 

retrieval performance. 

 

III. Issues in CBIR 

Many open issues have been discussed and suggested (Rui et al., 1999; Smeulders et al., 

2000; Shandilya & Singhai, 2010) to improve the typical CBIR approach such as 

involving user interaction, integration of multi-disciplines approach, relevance feedback 

and reducing semantic gap. The main purpose of these improvements is to enhance the 

efficiency of image retrieval.  

 

Most previous works focused on image representation (Krishnapuram et al., 2004; Wei 

et al., 2006; Lamard et al., 2007; Sergyan, 2008), classifier algorithm (Xin & Jin, 2004; 

Duan et al., 2005; Liu et al., 2008), the use of image database (Kak & Pavlopoulou, 

2002), and relevance feedback (Stejić et al., 2003; Zhang et al., 2003; Ortega-

Binderberger & Mehrotra, 2004; Wang & Ma, 2005; Wei & Li, 2006) to enhance the 
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CBIR system. However, as mentioned in (Liu et al., 2007), research focus has been 

shifted into reducing the semantic gap and had identified five major categories of the-

state-of-the-art techniques in narrowing it down i.e. (i) using object ontology to define 

high-level concepts, (ii) using machine learning methods to associate low-level features 

with query concepts, (iii) using relevance feedback to learn users’ intention, (iv) 

generating semantic template to support high-level image retrieval, and (v) fusing the 

evidences from HTML text and the visual content of images for WWW image retrieval. 

 

On the other hand, as stated in (Torres et al., 2004), the implementation of CBIR 

systems raises several research challenges such as (i) new tool for annotating need to be 

developed to deal with the semantic gap presented in images and their textual 

descriptions, (ii) automatic tool for extracting semantic features from images, (iii) 

development of new data fusion algorithm to support text-based and content-based 

retrieval when combining information of different heterogeneous formats; (iv) text 

mining techniques to be combined with content-based descriptions, and (v) 

investigating user interfaces for annotating, browsing and searching based on image 

content. 

 

Regarding the idea to reduce the semantic gap between the visual (low-level) features 

and the richness of human semantic (high-level features), a completely new works in 

this direction is in progress. These are including (Lin, Chang, & Chen, 2007) proposes 

the integration of textual and visual information for cross-language image retrieval; 

(Zhang, Huang, Shen, & Li, 2011) presents automatic image tagging automatically 

assigns image with semantic keyword called tag, which significantly facilitates image 

search and organization; (Aye & Thein, 2012) presents a retrieval framework which can 

support various types of queries and can accept multimedia examples and metadata-
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based document; and (Lee & Wang, 2012) presents a utilization of text- and photo- 

types of location information with a novel approach of information fusion that exploit 

effective image annotation and location based text-mining approaches to enhance 

identification of geographic location and spatial cognition. 

 

IV. Existing CBIR systems 

There are many CBIR systems ranging from research or demo prototype to commercial 

search engines. The use of CBIR systems in commercial line is quite a lot such as 

Google Image Search (Google, 2012), Visual Image Search (pixolution, 2012), TinEye 

(Inc., 2012), Macroglossa Visual Search (MACROGLOSSA, 2010), and 

IMMENSELAB (LLC, 2011).  

 

On the other hand, many CBIR systems were proposed as research or demo prototype, 

and are being developed in universities and research laboratories. These are including 

SIMBA (Siggelkow, 2001), CIRES (Iqbal & Aggarwal, 2002), FIRE (Deselaers, 2009), 

PIBE (Ciaccia, Bartolini, & Patella, 2004), and Pixcavator (Saveliev, 2007-2010). 

Furthermore, some of these CBIR systems do not only look at the content of their 

images but also embedded with metadata query in order to return retrieved images that 

match a particular query. 

 

a) Google Image Search (http://images.google.com/) 

Google Image Search is a Google's CBIR system. Query specification follows the query 

by example using external images. However, it does not work on all images. Metadata 

query function is also provided. 
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b) Visual Image Search (http://pixolution.does-

it.net/fileadmin/template/visual_web_demo.html) 

Visual Image Search is a CBIR search engine by pixolution. The images are searched 

and retrieved based on the color feature, which is the query specification follows the 

query-based browsing using internal images. As to finding similar images, query 

specification follows the query by example using external or internal images. 

 

c) TinEye (http://www.tineye.com/)  

TinEye is a CBIR site for finding variations of web images, by Idee Inc. The number of 

images in the database is approximately 1800M. For image retrieval, query specification 

follows the query by example using external images as well as by entering the image 

address from any website. 

 

d) Macroglossa Visual Search (http://www.macroglossa.com/) 

Macroglossa is a visual search engine based on the comparison of images, coming from 

an Italian Group. For image retrieval, query specification follows the query by example 

using external images or query by category such animals, biological, panoramic, artistic 

or botanical. Macroglossa supports all popular image extensions such jpeg, png, bmp, 

gif and video formats such avi, mov, mp4, m4v, 3gp, wmv, mpeg. 

 

e) IMMENSELAB (http://www.immenselab.com/) 

IMMENSELAB is a CBIR search engine by KBKGROUP. For finding similar images, 

query specification follows the query by example using external or internal images and 

by entering the image address from any website. Search methods included in this system 

are RGB diff, background, shape and category. 
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f) SIMBA - Search IMages By Appearance (http://simba.informatik.uni-

freiburg.de/) 

SIMBA is a demo system by the Institute for Pattern Recognition and Image 

Processing, Albert-Ludwigs-Universitet Freiburg (Germany). Currently, in their 

database they have nearly 2500 photograph images. Query specification follows the 

query by example using external or internal images. The approach used in this system is 

based on invariant features (Siggelkow, Schael, & Burkhardt, 2001).  

 

g) CIRES (http://cires.matthewriley.com) 

CIRES is developed by Computer & Vision Research Center at the University of Texas 

at Austin. Currently, in their database they have 57,847 images, which were extracted 

from royalty free image databases and the Flickr website. Query specification follows 

the query by example using external or internal images as well as query-based 

browsing. 

 

h) FIRE - Flexible Image Retrieval Engine (http://code.google.com/p/fire-cbir/) 

FIRE, is an image retrieval system designed for research in this area. The main aim of 

FIRE is to investigate different image descriptors and evaluate their performance 

(Deselaers et al., 2008). FIRE was developed in C++ and Python and is meant to be 

easily extensible. 

 

i) PIBE - Personalizable Image Browsing Engine (http://www-

db.deis.unibo.it/PIBE/) 

PIBE is an adaptive image browsing system, which aims to provide users with an 

intuitive, easy-to-use, structured view of the images in a collection and complements it 

with ideas from the field of adaptable content-based similarity search. In particular, 
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PIBE provides users with a hierarchical view of images (the Browsing Tree) that can be 

customized according to user preferences. A key feature of PIBE is that it maintains 

local similarity criteria for each portion of the Browsing Tree. This makes it possible 

both to avoid costly global reorganization upon execution of user’s actions and, 

combined with a persistent storage of the Browsing Tree (BT), to efficiently support 

multiple browsing tasks. 

 

j) Pixcavator image search 

(http://inperc.com/wiki/index.php?title=Pixcavator_image_search) 

Pixcavator image search is a similar image search based on topological image analysis. 

It is an image-to-image search engine. Pixcavator finds objects in the image. They are 

automatically captured inside contours and listed in a table along with their sizes, 

locations, and other characteristics. Pixcavator is a desktop-based application and is 

developed by a private company, Intelligent Perception. 

 

A more complete examples and descriptions of current existing CBIR systems can be 

found in Wikipedia – List of CBIR engines (Engines, 2012). 

 

The CBIR approach has been used as well in several applications such as face 

identification, digital libraries, historical research, medical and geology. It is probably 

the most useful application in biology. In this study, some of these applications are 

presented as follows but the scope is limited to medical and biology applications. 

 

a) Medical applications 

CBIR approach has been widely applied in medical for teaching, research and 

diagnostics on diseases. The benefits and future directions have been discussed in 
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(Müller, Michoux, Bandon, & Geissbuhler, 2004). In (Kak & Pavlopoulou, 2002), 

CBIR is used to automate retrieval from large medical image databases and presented 

solutions to some of them in the specific context of HRCT images of lung and liver. 

(Scott & Chi-Ren, 2007) presents a knowledge-driven multidimensional indexing 

structure for biomedical media database retrieval. While in (El-Naqa, Yongyi, 

Galatsanos, Nishikawa, & Wernick, 2004; Rosa et al., 2008), they used CBIR approach 

for digital mammographic masses. In improving retrieval efficiency, some of the works 

such as mentioned in (Demner-Fushman, Antani, Simpson, & Thoma, 2009; Hsu, 

Antani, Long, Neve, & Thoma, 2009; You et al., 2011), they have combined the 

metadata approach into CBIR approach. 

 

b) Biology applications 

As mentioned previously, biologists produce a vast number of digital images. These 

images can be used for identification as well as for teaching and research. (Wang et al., 

2012) presented a work on butterfly family identification using CBIR, while (Sheikh et 

al., 2011) developed CBIR system for various types of marine life images. Mallik, 

Samal, & Gardner (2007) developed a content-based pattern analysis system for a 

biological specimen collection and Chen, Bart, & Teng (2005) developed a CBIR 

system for fish taxonomy research. As stated in Wang et al. (2012), CBIR is applied 

because of its capacity for mass processing and operability.  

 

However, because of the heterogeneous data, complexity of the biology images as well 

as the images descriptions are often ignored and are attached together with the images. 

There are few works such as mentioned in (EKEY, 2012; Torres et al., 2004; Murthy et 

al., 2009) to enhance the CBIR capability. 
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C. Comparison of Approaches 

(i) Image representation 

Text-based approach typically requires proper parameters or vocabularies to describe an 

image. These parameters or vocabularies can be specific based on the image domain or 

broad. Conversely, in content-based, features such as shape, color, texture or spatial 

domain are fixed to represent the visual information of an image in any domain. 

 

(ii) Image matching 

In text-based approach, images are retrieved based on the word comparison; where two 

images are similar if they have the same text value. Compared to content-based 

approach, images are retrieved based on the visual comparison. Thus, a classifier is 

needed to classify the images.  

 

(iii)Retrieved images order 

The result of retrieval, in text-based approach, retrieved images is listed in unsorted 

order, thus producing an unranked image list; while in the content-based, retrieved 

images is listed in sorted order because the distance between the query image and 

training images is calculated. This distance is then sorted in increment or decrement 

order and produced a ranked image list. 

 

(iv) Accuracy of retrieved images 

The accuracy of retrieved images in content-based is much higher than text-based 

approach. This is because an image is represented semantically in content-based; 

compared to text-based, where usually an image is annotated with wide-ranging words. 
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(v) Data modeling 

Content-based approach requires no data modeling; while in text-based approach, data 

modeling must store the image annotations in structured or unstructured manner. 

 

(vi) Application domain 

Text-based approach is widely used as search engine in many applications such Google, 

Yahoo and Bing, while content-based approach is mostly used in specific domain 

application. 

 

2.5 Image Classification Methodologies  

A digital image is composed of pixels and is represented in numbers in a 

multidimensional space. In the spectral band, each pixel, x consisted of the values of x1, 

x2, .., xn, and usually refer to the brightness or the level of the gray for that pixel. On the 

contrary, in the feature space for a classification task, each pixel value forms a vector or 

also called the feature vector. Image classification (in the point of image processing and 

analysis) can be interpreted as pixel classification, a process in which every pixel in an 

image is assigned to a class or category on the image (Santos, 2009). 

 

This section presents the available classifiers that can be used for image classification 

and the methods for image classification are also discussed. 

 

2.5.1 The classifiers  

To accomplish the image classification task, given the inputs, a pattern recognition 

system will require the use of an appropriate classifier. In particular, as mentioned in 

(Duda, Stork, & Hart, 2001), there are various approaches and it includes parametric 

techniques such as Bayesian estimation, Maximum-likelihood estimation, Hidden 
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Markov Models, Expectation-Maximization, Linear Discriminant Functions, Neural 

Network and Stochastic methods; Non-parametric techniques such as K-Nearest-

Neighbor and Fuzzy Classifications; and Non-metric methods. Examples of each 

technique including methods are described below:- 

 

a) Bayesian classification (Santos, Ohashi, Yoshida, & Ejima, 1997; Duda et al., 

2001) 

This approach is based on statistical approach that uses probability. The determination 

to which class region the input pattern belongs to are calculated and expressed in 

probabilistic measures. This approach as well is known as Naïve Bayes classifier. 

The classes in a classification task can be denoted by 

                                                          

 

The probability that the correct class for   is    is given by 

 (  | )                        (  | )                                        

 

To decide which class   is the best for the pixel  , the largest  (  | ) should be 

selected. 

                   (  | )      (  | )                     Equation 1 

 

However, the problem with these  (  | ) is when to determine the class for pixel   are 

unknown. The probability to find a pixel from class    in position    

 ( |  ) can be estimated if all the classes have enough samples. In other words, if there 

are   classes, there would be   values for  ( |  ) denoting the relative probabilities 

that the pixel   belongs to class  . This relation between  (  | ) and  ( |  ) is given 

by Bayes’ theorem: 
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 (  | )  
 ( |  ) (  )

 ( )
 Equation 2 

Where  (  ) is the probability that the class    occurs in the image also known as a-

prior probability and  ( )  is the probability of finding a pixel from any class at position 

 . 

 

By removing p(x), this equation is used to change Equation 1 to 

 

                   ( |  ) (  )      ( |  ) (  )                    Equation 3 

 

This approach can be used for classification if the prior probabilities are known. 

However, in the real case of applications, to have a complete knowledge about the 

probabilistic structure of the problem is very exceptional. 

 

b) Maximum-likelihood estimation (Santos et al., 1997; Duda et al., 2001) 

This approach is one of the parameter estimation techniques. General knowledge about 

the data and parameters are commonly known in supervised classification. However, the 

limitation is how to use the provided information to train the classifier. Thus 

corresponding to this limitation, the samples are used to estimate the unknown 

probabilities and probability densities and the resulting estimates are used, as those are 

true values. 

 

The Maximum-likelihood assumes that the classes are unimodal and distributed. Its 

discriminant function is given by: 

  ( )     (  )  
 

 
  |  |  

 

 
(    )

 ∑ (    )
  
  Equation 4 

Where  (  ) is a-prior probability for class  ,    and    are the mean and covariance 

matrix for the data of class   and |  | is the determinate of the covariance matrix. The 

classification is done by choosing the maximum  ( ) for all classes      . 
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This classifier will attempt to classify a pixel regardless of its likelihood. In normal 

distributions for the classes, the tails for the histograms for the classes will have very 

low values and with certain conditions, the pixels could be assigned to those classes. 

 

c) Support Vector Machine (SVM) 

One of the techniques in the linear discriminant analysis is SVM, where it relies on 

preprocessing the data to represent patterns in a high dimension (Duda et al., 2001). 

 

In formal definition as mentioned in (Duda et al., 2001), within an appropriate non-

linear mapping  ( ) To a sufficiently high dimension, data from two categories can 

always be separated by a hyperplane. Each pattern    is assumed to be transformed to 

    (  ). For each of the   patterns,         , we let      , according to 

whether   is in    or   . A linear discriminant in an augmented   space is 

 ( )       Equation 5 

Where both the weight vector and the transformed pattern vectors are augmented (by 

      and     , respectively. Thus, a separating hyperplane ensures 

   (  )                    Equation 6 

 

The goal in training a SVM is to find the separating hyperplane with the largest margin 

where the larger the margin, the better generalization of the classifier. The distance from 

any hyperplane to a transformed pattern   is | ( )| ‖ ‖⁄ , and assuming that a positive 

margin   exists, Equation 6 implies 

   (  )

‖ ‖
                   Equation 7 

Where the goal is to find the weight vector   that maximizes  . 
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d) Back-Propagation Neural Network 

This technique is one of the multilayer neural network approaches whereby the 

parameters governing the nonlinear mapping are learned at the same time as those 

governing the linear discriminant. Since this approach admit fairly simple algorithms 

where form of the nonlinearity can be learned from training data. Thus, the models are 

extremely powerful, good theoretical properties and well applied in many real world 

applications (Duda et al., 2001). 

 

This classifier can use labeled input samples to estimate the parameters for a set of 

hyperplanes that will partition the feature space in most cases. The parameters for these 

hyperplances will be given by the weight of the network, which are the values that are 

altered between iterations of the training steps. 

 

In the training of the network to estimate the hyperplanes parameters involves 

presenting to the network the input values, applying the weights, comparing the network 

output to the expected results, and readjusting weights that correspond to the line slopes 

and interceptions. It performs until the difference between the network output and 

expected values is small enough or a maximum number of training steps is achieved 

(Santos et al., 1997). 
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Figure 2.14 shows the summarized flow chart depicted from Lee (2008). 

 

 

Figure 2.17: Back-Propagation Neural Network procedures 

 

The steps of this procedure are as follow:- 

Step 1: Initialize all weights to small random values within the range. 

Step 2: Given the input vectors and output vectors. 

Step 3: Compute the output values in a feed-forward direction for each unit of each 

layer. 

Step 4: Use the values computed by the final layer units and the corresponding target 

value to compute the delta quantities. 

Step 5: Compute the deltas for each of the preceding layers by back propagating the 

errors. 

Step 6: Update all weights. 

Step 7: Return to step 2 and repeat for each pattern until the iteration has reached. 

Step 8: Stop the procedure of training once the iteration is reached. 



69 

 

e) Other methods 

Stochastic methods could be considered when the models become more complex 

whereby the naïve approach would not be able to deal with exhausted search and 

impractical for real-world problems (Duda et al., 2001). Sophisticated search for finding 

suitable model parameters might be appropriate when the prior knowledge and training 

data are lessen. 

 

Duda et al. (2001) mentioned that, there are two general approaches i.e. Boltzman 

learning and genetic algorithms. Boltzman learning is based on concepts and techniques 

from statistical mechanic in physics; on the other hand, genetic algorithms are based on 

concepts of the mathematical theory of evolution in mathematics. 

 

Thus far, all the classifier examples are based on feature vectors of both real and 

discreet numbers. The other classifiers such as decision tree-based and syntactic-based 

are implemented using logical rules. This approach is also known as non-metric where it 

comprises lists of nominal attributes (strings) in unordered or ordered form. 

 

Examples of the decision-based approach include methods such as CART, ID3 and 

C4.5, rely on answers to a series of questions, typically in binary for classification. 

From the questions, the tree is grown, initially at the root node and dividing into more 

leaf nodes. This approach is flexible and suitable for many applications. 

 

Furthermore, syntactic-based approach such as grammatical pattern is suitable for 

solving classification in structural information. In any case, the structural information is 

brokendown hierarchically whereby the top most is usually abstract description for the 
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pattern and further down the hierarchy contains the sub-patterns in simpler structural 

information (Duda et al., 2001). 

 

2.5.2 The methodologies 

The above section described the various forms of classifier for image classification, all 

of which could be used in any methods of image classification both supervised and 

unsupervised. 

 

A. Supervised classification 

Supervised classification is the approach that uses samples of known character to 

classify pixels of unknown character. The classifier needs to be trained how it can 

differentiate one class from another class, whereby it can be done by providing samples 

of known pixels that should be assigned to a particular class. The classifier will then use 

the provided information to classify the unknown pixels of the image. 

 

Depending on the nature of the data to be classified, different methods might yield 

different results. Most of the classifiers require, as input, samples of all the classes that 

will be used in the classification process. The signatures from those pixels will be 

calculated to represent the corresponding classes. The signatures or also called 

descriptors for the classes often contain statistical information about the pixel used as 

samples. 

 

To create signatures for training the supervised classification classifier, the region on 

the image needs to be identified and those pixels are used to calculate the signature. 

This is involving the iterative process for each class whereby one or many sample 

regions can be used. 
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B. Unsupervised classification 

On the other hand, in the unsupervised classification approach, the basic information 

such as a number of expected classes present on the image is given and the classifier try 

to obtain the classes by analyzing the distribution of the pixels in the image. Usually, it 

is based on the assumption that the pixels belongs to the same spectral classes, would be 

closed in the feature space and they would form clusters that can be detected (Santos et 

al., 1997). 

 

In the clustering approach, normally, a number of clusters will be provided to the cluster 

classifier. From the result, depending on the required parameters, clusters can be 

merged or separated and this iterative process is repeated until the classifier decides it 

has reached a stable state (Duda et al., 2001). This process resulting in clusters 

represents the classes and the pixels assigned to these clusters are considered classified. 

 

C. Comparison of the methodologies 

(i) Prior knowledge for classification 

There is no extensive prior knowledge of the classes that is required for unsupervised 

classification. Unlike supervised classification, it requires featured knowledge of the 

classes for classifying purposes. 

(ii) Unique class recognizing  

In supervised classification, the unique class will be put into unrecognized class and 

could unintentionally be incorporated into other classes and creating error during the 

classification process. On the contrary, in unsupervised classification, the unique classes 

are allowed to be recognized as distinct or other objects. 
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(iii)Possibility of human error 

In unsupervised classification, opportunity of human error can be minimized because 

the information provided to the classifier is basic information such as expected number 

of classes present on the image or there might be constraints governing the distinctness 

and consistency of groups. However, in supervised classification, featured knowledge of 

the classes is required and human gives this information, and in such situation human 

error can be considerably high. 

 

2.6 Summary 

This chapter provides the findings of current status of biodiversity databases as well as 

the automated identification systems specifically in biology. These two are the main 

automated applications that can assist and support biologists in running their research 

works. There are many biodiversity databases and there are not much different from one 

to another. But from the findings, specifically in image retrieval information, it can be 

said that, the images from the databases are retrieved using text query. Moreover, in 

many automated identification systems, the systems work well in identifying the 

organisms at species level for both plants and animals. However, the image description 

is often ignored and it leads toward insufficient information to the users.  

 

Furthermore, specifically in image retrieval, there are two methods of retrieval i.e. text- 

and content- based image retrieval. In text-based image retrieval, it depends on how the 

images are annotated with text descriptions in string so that it can be retrieved. On the 

contrary, CBIR method depends on the visual information that can be derived from few 

procedures such as image processing and analysis, and extracted information will be 

used for image classification based on pattern recognition. Both methods have 
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advantages and disadvantages and the same problem of both may lead user to retrieve 

irrelevant images.  

 

In summary, biology data is heterogeneous, contains complex images and are normally 

well described. Some of the query cannot be expressed in words. Thus, it leads user to 

query the information based on image query whereby not so many biodiversity 

databases can provide this function. To achieve this, CBIR method can be used to solve 

this problem. Image classification in conventional CBIR approach is based on the use of 

a classifier to classify the images. However, one of the CBIR limitations is the semantic 

gap. To reduce this semantic gap, approach of image retrieval has been shifted into 

integrating text- and content- based information. 
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CHAPTER 3:         

PROBLEM DEFINITION 
 

 

3.1 Introduction 

From past studies, all the facts that were gathered are discussed and analysis was 

performed on the data to help in identifying the problems and proposing the solution. 

Firstly, this chapter defines the problems in each approach involved in image retrieval. 

Secondly, based on the problems corresponding to the biodiversity image data 

integration, the need for integrating ontology into CBIR approach is presented. 

 

3.2 Problem Definitions 

3.2.1 Image data 

Biological data is heterogeneous. For instance, biodiversity data specifically in 

taxonomy studies contain various types of images and these images are well described. 

This information is very important and valuable, and is used for species identification, 

teaching and educational purposes. However, these images can only be obtained from 

literatures or personal communication from the experts. To make it more useful, it is 

recommended to lead it towards an entirely digitized data in the form of database. Since 

all the images are digitized, they can be shared and used for future taxonomic analysis 

such as automatic species identification based on the diagnostic hard parts. 
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3.2.2 Image processing procedures 

Based on the review done on the current existing systems, the systems’ requirements 

and features are identified. A summary of the features of these systems is mentioned 

and discussed in the previous chapter, Table 2.2. These review and analysis are 

important in order to determine the requirements of the proposed solution. 

 

As stated earlier, there are six aspects that are important to be considered when 

developing the identification system, i.e. the training images, features to represent the 

image, similarity comparison, the classifier, query specification and the expected output 

of the retrieval process. Many research studies were done to enhance the recognition 

and identification process by looking at a few aspects such as using many features to 

represent an image (Krishnapuram et al., 2004;  Wei et al., 2006; Lamard et al., 2007; 

Sergyan, 2008), improving the algorithm itself (Xin & Jin, 2004; Duan et al., 2005; Liu 

et al., 2008), and using a large number of training images (Kak & Pavlopoulou, 2002). 

 

Furthermore, as stated previously, the use of shape is considered for a similarity-based 

image retrieval system for monogenean haptoral bars. Generally, shapes have both 

boundary-based (outline or contour) and region-based (details of the interior space 

defined by the outline or contour) information that can be used in the recognition 

process. There are several methods available for using boundary-based and region based 

information as summarized in Table 2.3. It is necessary to decide whether to use 

boundary-based information or region-based information to determine the shape for 

classifying and comparative purposes. The decision whether to use boundary-based or 

region-based information is dependent on the images available for developing the 

similarity based system for recognition purpose. For example, in monogenean 

taxonomy, illustrated images are used in describing the species and the main issue in 
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such images is the quality of the images, in particular, the thickness and thinness of the 

outline, which can affect the methods to be used for defining the shapes. 

 

In this study the effectiveness of using various techniques to represent the shapes of the 

haptoral bar are investigated. Thus, the use of pixel mean value, a region-based statistics 

to represent the shapes in classifying the training images and unknown query images 

were proposed to avoid problems in determining whether to use the inner edge or outer 

edge of contour of the illustrated images. The pixel mean value has been used in 

Biology by Swain et al. (2011) to extract boundary information and by Wilder et al. 

(2011) to extract region information of the basic skeleton of shape (Table 2.3). 

 

In conclusion, based on the review done, few main points are derived:- 

(i) All the current systems reviewed performed image pre-processing to ensure that all 

images are normalized in terms of the same image size and without noise. The 

image pre-processing is done either manually or automatically. 

(ii) All systems were working on identification of species on species level using species 

whole image.  

(iii)Both automated identification and image retrieval systems are built based on pattern 

recognition approach. 

(iv) Automatic identification system will return the recognized object; while image 

retrieval system will return few similar images to the query image. 

 

In this study a supervised similarity based image retrieval system is developed which 

requires that the images of the selected hard parts (sclerotisedhaptoral bars) be initially 

pre-defined into classes according to their shapes. The resulting classes are validated by 

comparing the images using a shape descriptor, which in this case is the shape region 
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statistics, the pixel mean value. The pixel mean values of the different shapes will be 

compared within and between the resulting pre-defined classes to validate the manual 

classification using Euclidean distance similarity measure, which is a widely used 

similarity measure in the Biology domain (see Table 2.3). 

 

3.2.3 Ontology 

Based on the review done on ontology-based image annotation and retrieval as stated in 

Literature Review chapter, the models’ requirements and features are identified. In 

order to develop ontology-based image annotation and retrieval model, there are a few 

important aspects to consider such as semantic representation of the image, vocabularies 

to be used to describe the image, and methodologies, tools and languages for building 

the ontologies. 

 

Organizing data in a manner where the meaning of object is often referred as semantic 

representation. To semantically represent the data, vocabularies are needed in order to 

describe the data. Advancement in semantic web ontology and metadata languages 

equips a new means to annotating and retrieving images. Ontology is the core that is 

representing the information structure, thus towards the ontology development process 

in specific domain, it involves a number of times refining the process until the ontology 

is accepted. Tools as well are important in order to support the development process and 

the languages to implement the ontology. The created ontologies are then used for 

image annotation and retrieval. 

 

The organization of image data along with textual descriptions can be achieved using 

computer readable formats such as in relational database (examples such as Biota 

(Colwell, 2010), InsideWood (InsideWood, 2004-2012), MonoDb (Andy & James, 
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2012)) and XML (examples such as Open Microscopy Environment (OME) Data Model 

and XML File (Goldberg et al., 2005), knowledge-based grid services for high-

throughput biological imaging (Ahmed et al., 2008), PLAZi (Jesse, 2005-2012)). 

However, these formats have their own limitations. Annotations of images in a 

relational database are confined by the number of columns used for the descriptions of 

the images. The number of characters allowed in a cell of a database table is also fixed. 

Any new inclusions into existing relational model with fixed tables and set of fields may 

require new schema to be developed and existing queries to be revised. Migration to a 

new schema and revision of queries can be very cumbersome and time consuming. 

Excessive images stored in a database take up a lot of space and create a huge database 

file, affecting retrieval time. Storing images outside the database file in a directory and 

linking them via identifiers in the database column was a possible solution but here 

again any new inclusion of data will require a change in identifiers. XML is a 

technology concerned with the description and structuring of data (Taniar & Rusu, 

2010). Annotations of images in XML are not linked and hence the relationships 

between objects are not expressed. 

 

In conclusion, based on the review done, to organize data in a manner that focuses on 

the meaning of objects by expressing relationships can only be done via semantics, 

which provide the necessary vocabulary to link the data. In the semantics representation, 

different entities are linked to their properties using appropriate vocabularies (Yu, 2007; 

Toby et al., 2009). Thus in this study, the images of monogenean haptoral bars were 

annotated in a structured manner with their textual information or descriptions 

semantically for retrieval purposes. 
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3.2.4 Image classification 

Image classification is one of the tasks in performing image retrieval. Generally, images 

can be classified before, during or/and after performing image retrieval. Regardless of 

any method, the classifier is needed for image classification purposes. 

 

In a probability approach, the classifier can be optimized if the knowledge of prior 

probabilities and the class-conditional densities are known. However, in real 

applications, to get the complete knowledge about the probability structure of the 

problem is very tricky (Duda et al., 2001). For example, how do we train a classifier 

given a set of training data. Thus in order to solve this problem, the parameter 

estimation technique can be used by using the samples to estimate the unknown 

probabilities and probabilities density (Duda et al., 2001). 

 

Moreover, it should be noted that the discriminant functions could be used for samples 

to estimate the values of parameters of the classifier. However, this approach is too 

broad and can only be extended when working with appropriate non-linear mapping. It 

creates more powerful classifier for training multi-layer specifically in neural networks 

architecture. 

 

Thus far, regardless of any classifier, parametric methods of supervised classification 

take a statistical approach whereby the parametric values are based on statistical 

parameters such as mean, standard deviation and covariance matrix of the pixels that are 

in the training sample. On the contrary, non-parametric methods use a set of non-

parametric values to assign pixels to a class based on their location, inside or outside in 

the feature space. Classifiers in this method are normally more flexible, use information 
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provided by training samples, and no prior knowledge such as the number of parameters 

is provided. 

 

In summary, regarding image classification while performing image retrieval, the 

classifier is needed in image matching. However, a selection of classifiers are 

determined generally by the complexity of the domain problem such as features to 

represent the image and number of classes for comparing in the feature space, as well as 

external factors such as computing power and quality of the images also need to be 

considered. As mentioned in (Bradski & Kaehler, 2008) often the choice of classifier is 

dictated by computational, data or memory consideration. These factors are necessary to 

consider as it effects on the classifier performance, whereby it normally can be 

measured based on the accuracy of the retrieved images and the time it consumes for 

matching process. Complex images may need more features and more classes in the 

feature space, thus it may lead into using more powerful processors to get the results in 

a short time; or if a less powerful processor is used, then it may consume a long 

processing time to get the results. In any situation, the accuracy of the retrieved images   

can only be determined after the process ends.  

 

Images also can be classified before and after image retrieval process, for example pre 

and post –classification respectively, with or without using classifier. These approaches 

could be considered if the performance of retrieved images during image retrieval 

process is unsatisfactory. Integrating text-based approach into CBIR approach is one of 

the solutions in image pre-classification and relevance feedback is one of the solutions 

in image post-classification by refining the retrieved images to get more relevant 

images. 
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3.3 Problem of Biodiversity Image Data Integration  

The previous chapter discussed generally on the Biodiversity databases. Other than 

images, the descriptions of the images are also needed in digitized form so that it can be 

shared, accessed and retrieved remotely. However, current biodiversity databases are 

split into two types, which are image database and textual database. 

 

Textual databases are well established. The information can be retrieved based on the 

textual query such as species’ name, author’s name and others. The information such as 

taxon, species distribution, and host are the kind of information that can be retrieved 

from these databases. For instance, Parasit-Host database (Gibson et al., 2012) provides 

host-parasite information but limited to browsing. Another example MonoDb (Andy & 

James, 2012) provides information to parasitologists on the known species of 

monogeneans. Information access in MonoDb is limited to textual-based searching. 

Meanwhile, the WoRMS – World Register of Marine Species (Appeltans et al., 2012) 

provides an authoritative and comprehensive list of names of marine organisms 

including information on synonym.  

 

While image database such as Flybase, GCD, SID, and UCD as were mentioned above 

are many, however, specialized taxonomic image databases are very limited. In order to 

develop a practical system, the restraints such as being cumbersome in image storing 

and technical difficulties in dealing with many diagnostic hard parts have to be taken 

into account. Moreover, not many people have the interest to work on this since there is 

no commercial impact. Normally, the images are retrieved based on the text-based 

image retrieval approach. 
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Based on these examples, it can be summarized that, both textual and image databases 

exist independently whereby user has to switch between distinct systems before the 

extracted information can be combined. Furthermore, specifically in image databases, 

image annotations are often ignored. Thus, the information gather from this database is 

not informative and not useful enough to user. 

 

As has been noted, textual-based information retrieval has been successfully deployed 

and has become easier through efficient indexing techniques. However, for image 

retrieval, in many biodiversity image databases, the images are often retrieved based on 

text query. Furthermore, some of the query may not be very descriptive or task-

dependent query like describing a shape, thus image query may be needed to retrieve 

the similar images. Yet, in any method, most of the time it may lead to retrieving 

irrelevant images to a user’s query because text-based image retrieval is lexical 

motivated (Avril, 2005) and image-based image retrieval is very subjective. 

Performance of the retrieval largely depends on few factors based on the approach used 

such as image quality, features or vocabularies to be used to represent the image, and 

image annotation techniques. 

 

3.4 Need for Integrated Semantic CBIR Framework 

Based on the reviews done in Chapter 2, several main points are derived:- 

(i) None of the existing systems use ontology based image annotation and retrieval to 

perform image pre-classification. The nearest are the EKEY (EKEY, 2012) and 

SuperIDR (Murthy et al., 2009) whereby each image is annotated with certain 

parameters such as species name. Thus, the user can customize their search 

according to these parameters to find the nearest match to the query image. 
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(ii) All systems reviewed aimed at providing identification of species using species 

whole image. 

(iii)Biological data is heterogeneous, containing complex images and terminology to 

describe the data and is always involving overtime. Thus, graph data is a suitable 

approach for text data modeling. 

(iv) Both text- and content-based image retrieval approaches have their own advantages. 

Yet both approaches have the same limitation, which is, they may retrieve irrelevant 

images.  

 

Consequently, in order to improve the efficiency of image retrieval in CBIR approach, 

one of the solutions to reduce the semantic gap limitation is by combining text-based 

image retrieval into CBIR. By using this approach, it will narrow down the most 

relevant images to be used for training set images. Therefore, in this study, image pre-

classification is used to create a sub-set of the training set based on ventral and dorsal of 

the haptoral bar images. As a result, the size of the training set becomes smaller and 

contains more relevant images. Thus, the expected output of the retrieval process is that 

the retrieved image becomes more relevant to the query image. 

 

There are however, a few aspects that are important to be considered when developing 

the integrated text- and content- based image retrieval model, i.e. textual data 

representation, image annotations, query specification and the expected output of the 

retrieval process. 

 

In addition, suitable and proper vocabularies are needed in order to annotate the image 

because the images will be retrieved based on the vocabularies. The annotated data is 

required to be represented in meaningful, dynamic and flexible manner so that any 
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inclusion of new vocabulary in the future can be done without changing the whole data 

structure. As for query specification, both textual and image query are needed. The last 

aspect is the output of the retrieval process, which is crucial in determining whether the 

retrieval process works well and in an efficient manner. Thus to achieve this, the most 

relevance images must be retrieved with their annotation.  

 

3.5 Summary 

In summary, the following problems below are identified. In the next chapter, the details 

of the proposed solution in conjunction with the identified problems are discussed. 

 

(i) Insufficient image data 

- Specifically in parasites domain, most images can be obtained from literatures and 

personal communication with the experts. While available images in online parasite 

databases are very limited since they are focused on the species images and the species’ 

egg. Particularly, there are no such work on diagnostic hard parts of monogenean such 

as haptoral bar, haptoral anchor, haptor hook and copulatory organ. 

 

(ii) The same problem of both image retrieval approaches is on how to increase the 

accuracy of retrieved images. 

 

(iii)The problem of ontology-based image annotation and retrieval where 

- Ontology-based approach needs proper vocabularies in order to annotate the images in 

meaningful manner 

- Images can only be annotated with their annotations once the vocabularies are defined 
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(iv) The problem of content-based image retrieval where 

- The correct features need to be addressed to represent the images 

- Inconsistency image quality may hamper the image processing and analysis 

- A selection of classifier to be used for image classification depends on the complexity 

of the domain problem  

 

(v) The problem of biodiversity image retrieval where 

- Images are retrieved based on text-based query 

- Images annotations are often ignored thus provided insufficient information to the user 

 

  



86 

 

CHAPTER 4:        

SOLUTION OVERVIEW 
 

 

4.1 Introduction 

In the previous chapter, the problems are identified and the details of the proposed 

solution in conjunction with the identified problems are presented in this chapter. This 

chapter covers the research methodology, which explains in detail how this research is 

conducted in order to achieve the objectives of this study. It describes the methods and 

technical processes used in order to develop the proposed architecture. 

 

4.2 User Requirements 

Based on personal communication with the experts in this field and data gathered and 

analysed on the current existing systems, the user requirements were defined. In 

addition, the requirements for the model are identified, which includes both functional 

and non-functional requirements. The user can be a new taxonomist, non-taxonomist 

and general user and the system tester are taxonomist and a specific user. 

 

4.3 Proposed Image Retrieval Models 

To achieve the aims of this study, two systems are built whereby the comparison 

between these two systems will be measured in terms of the efficiency of retrieval. The 

stated approaches have been applied to build the two image retrieval systems, namely 

Model 1 and Model 2. Both systems use the CBIR approach for image retrieval and the 
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same images in the image database. All images are pre-processed manually to ensure 

that they are in the same standards. 

 

4.3.1 Proposed solution: Model 1 

Model 1 is developed based on the typical CBIR approach as shown in Figure 4.1. In 

this model, all the images from the image database are used as training set. Thus, a set 

of n training images is defined as {Γ1, Γ2, Γ3, .. ,Γn}. 

 

 

Figure 4.1: Procedural flow of Model 1 

 

4.3.2 Proposed solution: Model 2 

Model 2 is the system that preceded image retrieval using ontology and CBIR 

approaches as shown in Figure 4.2. In this model, the OBIR layer determines the 

training set for CBIR. Ontology-based image retrieval is used as technique to reduce the 

training images for the CBIR layer by eliminating the irrelevant images using the text-

based query in OBIR layer. This technique is also referred as data reduction usually 

used in data pre-processing to obtain a reduced representation of the dataset, which is 

smaller in quantity, yet closely maintains the integrity of the original data. 
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In Model 2, a set of n images is defined as {Γ1, Γ2, Γ3, .. ,Γn}. With the OBIR layer, a set 

of n’ training images are produced whereby:- 

     

             

       

 

As a result, a set of n’ training images is defined as {Γ1, Γ2, Γ3, .. , Γn’}. 
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Figure 4.2: Procedural flow of Model 2 
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4.4 Data Gathering Methodology 

An image database is an important element in image retrieval systems. In this study, the 

images from monogenean class domain are used to build the image database. Overall, 

there are a few image databases in the parasitology domain such as Parasite-Host 

Database by Natural History Museum (Gibson et al., 2012) and MonoDB (Andy & 

James, 2012), as described previously in the Literature Review chapter. These databases 

are focuses on the images of the species as well as the species’ egg. Currently, there is 

no image database on diagnostic hard parts of monogenean, in particular on such topics 

such as haptoral bar, haptoral anchor, haptor hook and copulatory organ. 

 

Monogeneans are parasitic platyhelminths and are distinguished based on both soft 

reproductive anatomical features as well as shapes and sizes of sclerotised hard parts of 

their haptoral bar, anchor, hook and male and female copulatory organ (see Lim, 1995, 

1998; Lim & Gibson, 2007, 2010). The diagnostic features of monogeneans especially 

their sclerotisedhard parts are given as illustrations in the literatures. Currently, species 

are recognized and identified using morphological and morphometrical characteristics 

of the sclerotisedhard parts in the form of illustrated images, and this study is looking at 

developing a computerized system to automate image retrieval using these images. 

 

4.4.1 Image digitization 

Monogenean images dataset are obtained and extracted from the manuscript as shown in 

Figure 4.3. 

 

Images of Malaysian monogeneans (belonging to the order DactylogyrideaBychowsky, 

1937) are digitized from the published works of Lim (for example Lim, 1995, 1998; 

Lim & Gibson, 2007, 2010; Tan & Lim, 2009) using HP Scanjet 5590 to convert them 
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into digital form and store into the image database. The images of the required 

structures, for example haptoral bars, are cropped from the images in the database and 

saved as a new image data file. 

 

 

Figure 4.3: Example of the images from manuscript (Lim & Gibson, 2009) 

 

4.4.2 Image pre-processing 

Images in the database are heterogeneous in terms of image quality due to illumination, 

contrast, focus, resolution, size as well as scale, which will hamper the process of 

recognition (Castañón et al., 2007). Thus, these images need to be pre-processed and 

Adobe Photoshop CS is used for image normalization. It is to ensure that each 
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diagnostic hard parts image is clean and in the same standard to avoid inconsistency and 

instability in image segmentation. Adobe Photoshop CS is used for this purpose, as it is 

easy to use and provide many image processing functions.  

 

Figure 4.4 shows the entire process involved in the image pre-processing. Since all the 

images are heterogeneous in term of image quality, thus the manual image pre-

processing is performed to meet the image standards. Even though this manual method 

of image pre-processing is more precise, but it is slow and take some time to pre-

process all the images as it involved iteration processes. 

 

 

Figure 4.4: Image pre-processing flow 

 

4.4.3 Pre-defined classes of monogenean haptoral bar images  

A total of 148 haptoral bar images in the Monogenean image database forms the 

training set. After a close study on the shapes of these haptoral bars, they are grouped 

into six distinct classes as shown in Figure 4.5, for supervised image retrieval. These six 

classes were named according to their shapes and abbreviations are used throughout the 

thesis, such as the Straight-bar shape is abbreviated as S1 (40 images), U-shape as S2 

(39 images), U-shape with side wings as S3 (19 images), V-shape as S4 (12 images), V-

shape with side wings as S5 (35 images), and Star-shape with five processes as S6 (3 

images). Memberships of each class are assigned based on visual comparison. 
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Figure 4.5: Six distinct classes of monogenean haptoral bar 

 

Since illustrated images are used and the outlines or contours of the images are not of 

the same thickness, region-based information (pixel mean value) is used instead of 

boundary-based information. 

 

4.5 Ontology-Based Image Annotation and Retrieval  

In this study, the images in the image database are annotated in the form of ontology. 

The process of building the ontology is described in detail in the steps below. The 

textual information attached to a monogeneanhaptoral bar images are obtained from the 

literatures. 
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4.5.1 Structured vocabularies 

a) Identifying concepts 

Data used in this study are images of the monogenean haptoral bars along with textual 

information, which consist of taxonomic classification; diagnostic part as well as image 

property, found in literatures. The data is analyzed and structured into main concepts. 

Defining these concepts using a standard structured vocabulary is necessary to make 

sure the meaning of data is clear and explicit, thus facilitating data sharing and 

maximizing reusability in a wide variety of contexts. 

 

The Taxonomic Data Working Group - TDWG (TDWG, 2007) strongly suggests the 

deployment of Life Science Identifiers (LSID), the preferred Globally Unique Identifier 

technology and transitioning to RDF encoded metadata as defined by a set of simple 

vocabularies.  The TDWG LSID vocabulary has been widely used in biodiversity and 

offers a wide coverage of concepts, which are suitable to annotate the taxonomic 

information of an organism. The nomenclature used in this study is from TDWG LSID 

vocabulary and where necessary, appropriate vocabularies specific to the 

monogeneansare formed (see Appendix A). Specific vocabularies (for example 

DiagnosticPartTerms) are needed as Monogeneans are parasitic platyhelminths and are 

distinguished based on both soft reproductive anatomical features as well as shapes and 

sizes of sclerotised hard parts such as the haptoral bar, anchor, hook and male and 

female copulatory organ (Lim, 1995). 

 

Seven concepts are described from the monogenean data used in this study - Specimen, 

TaxonName, PublicationCitation, KindofSpecimenTerm, TaxonRankTerms, 

PublicationTypeTerms are defined using the TDWG LSID controlled vocabulary, 

whereas the DiagnosticPartTerm is a new concept. Specimen concept represents the 
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illustrated images of the haptoral bars of the monogeneans. TaxonName represents a 

single scientific name. PublicationCitation represents a reference to the publication of 

the monogenean species. KindofSpecimenTerm represents the specimen terms such as 

illustration, digital object and still image. TaxonRankTerms represents the taxon rank 

terms for taxonomic classification. PublicationTypeTerms represents the type of 

publication for example an article in a journal or in a book. DiagnosticPartTerms 

represents the name of the monogenean hard parts. 

 

b) Defining properties and relationships  

The properties and relationships to bind the concepts described above are needed to 

describe them. There are two types of properties for the semantics representation and 

they are object properties and datatype properties. Object properties are relationships 

between two individuals (linking an individual to another individual), whereas datatype 

properties describe relationships between an individual and data values. The properties 

defined for the seven concepts are mentioned here and descriptions are available in 

Appendix A. 

(i) Properties for Specimen concept 

Four object properties are defined under the Specimen concept; kindOfSpecimen, 

isHaptorBar, isCitedIn, typeForName and three datatype properties; specimenId, 

imgDir and imgDescription. 

(ii) Properties for TaxonName concept 

Eight object properties are defined under the TaxonName concept; rank, isBelong, 

part, hasSpecies, hasGenus, hasFamily, hasOrder, isHostedIn and four datatype 

properties; nameComplete, authorship, year and locality. 
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(iii)Properties for PublicationCitation concept 

Two object properties are defined under PublicationCitation concept; pubType and 

lists and five datatype properties; author, year, title, parentPublicationString, and 

number. 

(iv) Properties for DiagnosticPartTerms, KindofSpecimenTerms, TaxonRankTerms, 

PublicationTypeTerms concepts  

One datatype property is defined for DiagnosticPartTerms, KindofSpecimenTerms, 

TaxonRankTerms, PublicationTypeTerms concepts, which is called definedTerm. 

This property is given a generic name, as it will be used to bind multiple concepts 

together. 

 

4.5.2 Conceptual framework of the proposed ontology 

Seven concepts, 27 properties, and the relationships between them represent 

conceptualization of the data used in this study. This conceptual framework needs to be 

converted in a machine-readable formal specification to give reason about the identified 

concepts and eventually describe the data. This formal specification of shared 

conceptualization is called ontology (Gruber, 1995). 

 

The OWL Web Ontology Language is a formal language for representing ontologies in 

the Semantic Web. OWL has features from several families of representation languages. 

OWL (McGuinness & Harmelen, 2004) is an ontology language for the Semantic Web, 

developed by the World Wide Web Consortium (W3C) Web Ontology Working Group. 

OWL was primarily designed to represent information about categories of objects and 

how objects are interrelated—the sort of information that is often found in ontology. 

OWL can also represent information about the objects themselves—the sort of 

information that is often thought of as data (Sidhu, Dillon, Chang, & Sidhu, 2005). 
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OWL facilitates greater machine interpretability of Web content than that supported by 

underlying XML, RDF, and RDF Schema representations by providing additional 

vocabulary along with a formal semantics. In this study, ontologies in OWL format are 

utilized to represent shared structured vocabularies that describe the monogeneans 

image data through the concepts, properties and relationships discussed above. Figure 

4.6 depicts the whole ontology in a graph format. 

 

Graph representation of multiple triple statements (the ovals represent the concepts, the 

squares represent the data values in the specific concept and the lines represent the 

properties. In like manner, the line with arrowheads and solid lines are directed from the 

subject (concept) to the object (concept or data value). 
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Figure 4.6: The ontology in a graph format 
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A detailed example of how triple statements are tied together to form a graph is shown 

in Figure 4.7, where the predicate nameComplete links the TaxonNameconcept (subject) 

to the object concept, which in this case is the name of the monogenean species. 

 

 

Figure 4.7: A detailed example of triple statements to form a graph 

 

Since monogeneans species are parasites on fish, frogs and turtles, linking the 

monogenean data to their host data will provide more information about the 

monogeneans. In this study, the data used are basically of the monogenean species 

found in fish, thus a simple Fish ontology with TaxonName concept is built to 

demonstrate how the host ontology can be linked to the MHBI ontology. The two 

ontologies are merged by redefining the datatype property (isHostedin) in the 

TaxonName concept in the MHBI ontology as an object property to merge with the 

TaxonName concept in the Fish ontology as shown in the graph model (Figure 4.8).
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Figure 4.8: MHBI-Fish ontologies in a graph format 
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4.5.3 Biodiversity image data annotation 

The data described by concepts is annotated in the form of instances. While there are no 

fixed rules to name the instances, nevertheless the names should be reflective of the data 

they represent. For example, for the Specimen concept the record of each image of the 

haptoral bar or instance is given a unique label that will include its taxon name, 

diagnostic part depicted by the image and its sequence number in the directory (as 

shown in Table 4.1). There are 148 instances for the Specimen concept, which 

represents all the haptoralbars of the monogenean images (see Table 5.2). 

 

For example the record of the image (or instance) of the ventral haptoral bar (vb) of 

Bifurcohaptorbaungi Lim & Furtado, 1983 from the fish host Mystusnemurus, which is 

the first image in the directory, is labelled as bif-baungi-vb-i1. The naming of instances 

and number of instances in all the classes are presented in Table 4.1. 

 

4.5.4 Ontology based image retrieval  

The image retrieval system in this study combined classical Boolean search and 

SPARQL (Prud'hommeaux & Seaborne, 2008). Jena framework is used as a tool to 

access and navigate the ontology. Jena ontology API, convert the ontology into a RDF 

graph data format as the ontology is queried in this format, using SPARQL. The object 

and datatype properties in Appendix A are used as parameters to formulate the query 

and retrieve the images. 
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Table 4.1: Naming of instance and number of instances for each concept 

Class Naming of instances Name of instance (in bold) Number of 

instances 

TaxonName Instance for species is named 

according to genus and species 

name 

Instance of species Bifurcohaptor baungi is labelled as 

BifBaungi 

591 

The full name of genus is used 

for naming the genus instance 

name 

Instance of genus Bifurcohaptor is labelled as 

Bifurcohaptor 

122 

The full name of family is used 

for naming the family instance 

name 

Instance of family Ancylodiscoididae is labelled as 

Ancylodiscoididae 

35 

The full name of order is used 

for naming the order instance 

name 

Instance of order Dactylogyridea is labelled as 

Dactylogyridea 

10 

PublicationCitation Instance for publication is 

named according to author and 

year  

Instance of publication Lim, L. H. S. & Furtado, J. I. 

(1983). Ancylodiscoidins (Monogenea: Dactylogyridae) 

from two freshwater fish species of Peninsular Malaysia. 

Folia Parasitologica. 30, 377 – 380 is labelled as 

LimFurtado1983 

57 

DiagnosticPartTerms The full name of diagnostic part 

is used for naming the instance  

Instance of haptor sclerotised parts bar is labelled as 

HaptorSclerotisedpartsBar 

3 

KindOfSpecimenTerms The full name is used for naming 

the instance  

Instance of illustration is labelled as Illustration 3 

TaxonRankTerms The full name is used for naming 

the instance  

Instance of species is labelled as Species 4 

PublicationTypeTerms The name of publication type is 

used for naming the instance  

Instance of journal article is labelled as JournalArticle 4 
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4.6 Image Classification using Ontologies in CBIR 

Image classification is a technique to reduce the training images by eliminating 

irrelevant images. This technique is also referred as data reduction usually used in data 

pre-processing to obtain a reduced representation of the dataset, which is smaller in 

quantity, yet closely maintains the integrity of the original data. 

 

In typical CBIR system, all the images in the image database will be used as default 

training set images. However, in this study, images to be used as training set images 

will be filtered using OBIR. 

 

Each image comes with information based on diagnostic hard part whether dorsal or 

ventral of haptoral bars. A subset of the images from the image database is chosen as 

the training set, based on the parameters given by the user. 

 

4.7 Content-Based Image Retrieval Methodology 

CBIR is designed mainly for visual content, which are illustrations of the monogenean 

haptoral bars in this study. 

 

In the CBIR approach, similar images are retrieved based on a user-defined 

specification or pattern based on content properties (e.g. shape, color or texture), which 

are usually encoded into feature vectors (Wang & Ma, 2005). In this study, the shapes 

of the monogenean haptoral bars are used as the content, and since illustrated images 

are used and the outlines or contours of the images are not of the same thickness, 

region-based information (pixel mean value) is used instead of boundary-based 

information. The process of building the image retrieval system using the CBIR 

approach is presented below. 
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a) Feature extraction 

A pre-classification technique, extracting region-of-interest (ROI) based on selected 

polygonal coordinates is used to extract the shape of the image, which is then converted 

into region containing pixels. The statistics value on the pixels on a ROI can be 

calculated by using only pixels inside the ROI. The shape descriptor used here is the 

mean value of all the pixels,   , is calculated as follows. 

     
∑   

 
   

 
                                                                  

 

The shape,  then represented as follow:- 

                                                        

 

The shape descriptor is then used as feature vector in the feature space. 

 

b) Defining feature space 

Corresponding to the average of all pixels in all regions for a particular class, C a single 

mean features vector, meanC in feature space is created as shown in the following 

steps:- 

(i) Mean features vector, meanC (mean value of all the pixels in the region,   ) is 

calculated for each class to represent the central point for each class. 

(ii) For class k,    is the mean of the pixel values, x, for region, r. The mean of the pixel 

value for region r,    is the sum of all the pixel values,    divide by number of 

pixels within the region, n. 

     
∑   

 
   

 
                                                               

(iii)The mean features vector for class k,       , is represented as follows: 

         [        ] 
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(iv) To obtain the mean features vector for each class, r the above steps (ii and iii) are 

repeated. 

(v) The mean features vector,      vector is used as signatures for validation of the 

groups and for classification of the unknown query images. 

(vi) The mean of all pixel values is also calculated for unknown class, u, where u refers 

to unknown query image. 

 

The mean features vector for each class will be used as signatures for the classes in the 

next step. 

 

c) Similarity comparison 

Euclidean distance, ε between mean pixel of unknown class and the signatures of each 

class are calculated and the shortest distance is considered as the nearest match to the 

class as shown in the following step:- 

(i) The Euclidean distance is calculated by subtracting the pixel mean value of the 

unknown class, u and the signatures of each of the six classes. 

                      √∑(          ) 

 

   

 

 

d) Indexing and retrieval 

Corresponding to the nearest signature in the feature space, Minimum distance is 

preferred. Euclidean distance, ε vectors from the similarity comparison is then indexed 

in ascending order. 
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4.8 Summary 

This chapter summarizes the overview of the proposed solution. The materials and 

methods used for the development of image retrieval system were described. The 

existing image databases that can be used in this study were insufficient. Thus new 

image database was developed using primary data set gathered by local expert. Prior to 

building this database, the image data was collected and pre-processed using the 

described methods. This image database is used for image retrieval systems. 

 

Image retrieval methods were also described in this chapter. Generally, an image or a 

set of images from image database can be retrieved using metadata or content –based 

image retrieval. Yet, since both methods have their limitations, thus in this study, these 

two approaches were integrated to propose a new solution towards biodiversity image 

retrieval. This solution adopts the image pre-classification technique. The purpose of 

this technique is to filter the images to be used for a training set before the training set 

can be used in CBIR system. On top of that, ontology-based approach is used for image 

annotation and retrieval to classify the images. 

 

The proposed solution is presented in the next chapter. Two systems are built based on 

these approaches and compared for efficiency of retrieval performance. 
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CHAPTER 5:            

SYSTEM DESIGN, 

IMPLEMENTATION 

AND TESTING 
 

 

5.1 Introduction 

This chapter describes the system design and implementation in order to fulfill the 

requirements defined. From the design phase, the design models are transformed into a 

form that can be used on a computer using selected development tools during the 

implementation phase. Testing procedures and experimental results are also presented 

and further discussed in this chapter. 

 

5.2 System Design 

System design is the process to define the system architecture, interface and data for the 

model in order to satisfy the specified requirements. In this phase, several aspects have 

been taken into account. These include the interaction between the model and its 

environment and the dependencies with other factors such as user interface and data to 

be used in order to solve the problem statement. The outcome of this phase will then be 

used during system implementation, when the system is fully developed. 
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5.2.1 System architecture 

System architecture is the overall organization of a system, broken into several 

components called sub-systems. A sub-system is a package of classes, association, 

operation and constraint that are interrelated, reasonably well-defined and have a simple 

interface that are interrelated with other sub-system (Bass, Clements, & Kazman, 2003) 

 

As was mentioned in earlier chapters, two CBIR models were developed. Model 1 is 

developed using typical CBIR approach; while Model 2 is developed using both the 

ontology and CBIR approaches. Figure 5.1 and Figure 5.2 show the system architecture 

for Model 1 and Model 2 respectively, in three-tier architecture. 

 

The backend database layer for both systems contains Monogenean Image Database, 

which consists of the images to be used for image retrieval and for visual display 

purpose. Model 2 is different in the sense that it contains the MHBI-Fish Ontologies, 

which has text annotation of the images to perform as textual data storage. 

 

A user query is processed in the web application layer and both systems use the same 

CBIR application. As mentioned earlier, in Model 2, an additional OBIR application 

exists to perform image pre-classification task. In Model 1, once a user query is 

processed; all the images are collected from image database are used as training set 

images for CBIR. While in Model 2, a user query is processed using two layers; the 

OBIR application collects the images from image database to be used as training set 

images; and the collected images then are used for CBIR. 
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Figure 5.1: Image retrieval architecture for the Model 1 
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Figure 5.2: Image retrieval architecture for the Model 2 
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The architecture also includes the client-tier, which has a query interface and results. A 

graphical query interface is provided for a user to communicate with the web 

application. The interface collects the information from the user and displays the 

retrieved results to provide interpretation of the results retrieved. In both systems, the 

retrieved results contain the retrieved images in the ranked order. However, additional 

information is provided in Model 2, which are the images annotations. 

 

5.2.2 Prototype process model for ontology development  

Comparing the process to the other data modeling methodology, there is no specific 

methodology in ontology process development (Corcho et al., 2003; Avril, 2005). 

Therefore, in this study as proposed in the Avril (2005), evolutionary prototyping model 

is used as a suitable process type. Vocabularies uses in Biodiversity field are evolving 

overtime. Thus, new inclusion vocabularies in this ontology might be needed in the 

future. Based on this justification, Figure 5.3 shows the evolutionary prototyping model 

used in this process as proposed by Avril (2005). By choosing this model, the ontology 

can be enhanced from time to time without adjusting the whole data structure and 

ontology testing can proceed likewise to improve the requirement in the future. The 

created ontology is used for ontology-based image retrieval. 

 

 

Figure 5.3: Ontology development using evolutionary prototyping model 
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5.2.3 User interface design  

User interface is the medium for user to interact and communicate with a system. 

Typically, a user interface should be simple and easy to understand and use. It involves 

the design of screens and dialogue boxes. In developing both systems, emphasis is given 

to both the input and output design. The user interface is designed based on the current 

existing systems as mentioned in Table 2.1 and personal communication with the 

experts in this field. 

 

a) Input design 

The inputs required depend on the system. In general, both systems require two types of 

images; the images to be stored in the image database (which are then used as the 

training set) and an unknown query image that need to be retrieved. Both images must 

have certain standards in order to aid in the matching process. 

 

However, for Model 2, along with the query image, an additional input is needed to 

filter the images to be used as training set images. The additional input is in the form of 

a parameter, which in this study the emphasis is given to dorsal or ventral haptoral bar 

images. 

 

b) Output design 

Output is the information delivered to the user. For both systems, the retrieval system 

will provide an output as soon as the matching process is over. The results will display 

the retrieved images that are displayed in jpeg format and in the ranked order. However 

for Model 2, together with the images are their annotations in text format. The outputs 

of the retrieved images are important to verify whether it is similar to a query image. 
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5.3 Development Environment 

Development tools deal with the hardware and software that are used to build a system. 

Figure 5.4 shows the software development tools environment for building the system. 

This system is constructed to run under Windows Server 2003 platform as it deals with 

menu-driven interfaces. 

 

There are two important software i.e. Eclipse Galileo IDE as the main code editor and 

Protégé 4.1 for the ontology editor which is used to build a system. Eclipse Galileo IDE 

is chosen because of it capabilities such as complex code completion, project support, 

code navigation, versioning system, refactoring and code generation. While Protégé 4.1 

is chosen because of its adoption, maturity and effectiveness, it also provides simple 

interface and is easy to use. Above all most of them are free and very powerful in 

supporting many additional plug-in. 

 

 

Figure 5.4: The software development tools environment 
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Java is used as the main programming language because it supports object-oriented 

approach in developing the system. Client scripts such as HTML and CSS were used to 

create the user interface. 

 

All the support libraries such as Apache Tomcat 6.1 for web server, Java Advanced 

Imaging 1.1 for image processing, MySQL Server 5.1.55 for database, JDBC 5.1.15 for 

database connection, Jena 2.5.6 and Pellet 2.0.0 were plug-in into Eclipse Galileo IDE. 

 

Languages to implement the ontology are mentioned and discussed in previous 

Literature Review chapter. The selections of language to implement the ontology are 

dependent on the application needs in terms of expressiveness and inference (Corcho et 

al., 2003). Thus in this research, RDF, RDFS and OWL were chosen as complementary 

languages to implement the ontology. RDF is defined as a language for expressing data 

models using triple statement (Toby et al., 2009). To add the semantics and more 

description on the RDF data, RDFS and OWL were used. RDFS provides a specific 

vocabulary for RDF that can be used to define the classes, properties and simple domain 

and range specifications for properties; and OWL provides an expressive language for 

defining ontologies that capture the semantics of domain knowledge (Hebeler, Fisher, 

Blace, Perez-Lopez, & Dean, 2009). The ontology is then presented in RDF/XML 

serialization format. As for ontology editor, Protégé is considered the most popular 

ontology development tool, as it is freely available online and easy to use (Khondoker 

& Mueller, 2010). Hence, Protégé was chosen in this study to build the ontology as it 

supported the stated languages. 

 

In order to manipulate the ontology programmatically, which is to access, query and 

search the ontologies, semantic web programming framework is needed as a medium to 
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communicate. The selection of tool is dependant on the development language used to 

develop the system and the features that are provided. Thus, Jena was chosen since Java 

is used as main system development language. Furthermore, instead of the freely 

available and open-source software (Hebeler et al., 2009), it provides more effective 

features such as supporting a few databases like MySQL, DB2 and PostgreSQL; 

memory, database and file can be used as model storage (Bizer & Westphal, 2007); 

SPARQL as a query language; and reasoner. 

 

As for image pre-processing, image processing software is needed to pre-process the 

images. Adobe Photoshop CS is used for this purpose, as it is easy to use. Each image is 

manually pre-processed in order to ensure that all the images are in the same standard. 

 

In addition, for their hardware requirements, these tools are divided into Server-side and 

Client-side environments as shown in Table 5.1. 

 

Table 5.1: Server- and client- side hardware tools 

Category 
Hardware tools 

Server-side Client-side 

Processor 
Intel ® Xeon ® CPU 

5160 @ 3.00GHz 

Intel ® Core™2 CPU 

6420 @ 2.13GHz 

RAM 4.00 GB 2.00 GB 

Hard-disk space 200 GB 120 GB 

Internet 100mbps 100mbps 

 

5.4 System Implementation 

System implementation deals with the technical steps taken in order to solve the 

problem statement. In this study, the issue concerns the selection of the images in the 

training set, depending on parameters such as dorsal or ventral haptoral bar and the 

similarity based image retrieval of a given query image. As was mentioned in the 

previous section, both models are built using Java in Eclipse Galileo IDE, with the 
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incorporation of Protégé 4.1 for implementing the ontology, while the content-based 

image retrieval approach was used in implementing the image retrieval. 

 

5.4.1 Pre-processing of the images 

As stated previously, the images were extracted from manuscripts provided by the 

experts. However, these images must first undergo a pre-processing stage before it can 

be used in the retrieval process. The pre-processing is performed to eliminate 

differences among the images. As was mentioned in the above section, Adobe 

Photoshop CS was used as the tool for image pre-processing. The details of each 

process are explained as in the followings. 

 

a) Image rescaling 

In the publication, scale is needed to represent the actual size of the species and 

diagnostic hard parts. This information is very important to the taxonomist especially 

for species identification. Different literatures may have different scales, thus all the 

images containing species and diagnostic hard parts are rescaled and presented in a 

spatial resolution of 50 pixels/10 μm or 0.5cm/10 μm. 

 

Figure 5.5 shows the rescaling process whereby the document size is changed by 

increasing or decreasing the values of the width and height. For instance, the original 

scale in the publication is 0.55cm/10 μm. Thus for rescaling purpose, the values of 

width and height were decreased. 
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Figure 5.5: Image rescaling process 

 

b) Image normalization 

Once all the images are in the same scale, each structure is cropped and saved as a new 

individual image data file in grey scale color jpeg format. Image normalizing processes 

involved several steps to erase the unnecessary objects in the image, reduce noise, 

adjust the contrast and sharpen as shown in Figure 5.6. 

 

 

Figure 5.6: Image normalization process 
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c) Image resizing 

All the normalized images are in different image sizes. Thus, as shown in Figure 5.7, 

each image is cropped again, and pasted at the center of a new image file with sizes of 

300 and 150 for both width and height respectively, and with white background in gray 

scale format. 

 

 

Figure 5.7: Image resizing process 

 

As a result, the images have certain standards and these standards are:- 

(i) Each image is scaled to a spatial resolution of 50 pixels/10 μm or 0.5cm/10 μm 

(ii) Each image is stored as 8-bit grey scale colour jpeg format 

(iii)Each image has the same image size, which is a width and height of 300 and 150 

pixels respectively 

(iv) Only the structure is taken whereby the structure is positioned at the centre of the 

image file, with white background image 
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All the pre-processed images form image database are standardized before it can be 

used for image retrieval. To date, the image database contains approximately 900+ 

images. These images include species image and diagnostic hard parts of species which 

are anchor, bar, marginal hook, male copulatory organ and female vagina. Examples of 

images in the image database are shown in Figure 5.8, Figure 5.9, Figure 5.10 and 

Figure 5.11. 

 

 

Figure 5.8: Species images 
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Figure 5.9: Haptoral anchor images 

 

 

Figure 5.10: Haptoral bar images 
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Figure 5.11: Haptoral hook images 

 

5.4.2 Ontologization - Building the ontology 

Ontologization is the process to create the ontology, which involves identifying the 

concepts and their relationships and defining the vocabularies to be used to represent the 

data. 

 

a) Implementation using Protégé 

The semantic representation of the data as shown in Figure 4.7 will be put into a 

computer readable format known as ontology. Through this ontology, the computer will 

be able to interpret the triple statements for retrieval.  

 

Using the Wizard in Protégé an ontology file is created (MonogeneanKB1.owl) with a 

unique resource identifier (URI) 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl and the 

serialization format to be used in this ontology will be RDF/XML. Other formats are 
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available for examples turtle, N3. The RDF/XML format can be read by many machine 

language interpreters (see Figure 5.12). 

 

 

Figure 5.12: Wizard in Protégé to create an ontology 

 

In Protégé, a concept is known as class. For example, the Specimen concept is known as 

the Specimen class. Classes (see Appendix A) are created in the ontology. As shown in 

Figure 5.13, ‘Class Tab’ is selected. To add a new class, a user has to press on the ‘Add 

subclass’ button. 
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Figure 5.13: Creating a class in Protégé 

 

Next, the object and datatype properties will be created which are essentially the 

properties of the schema (see Appendix A). To create the object properties, switch to the 

‘Object Properties’ tab. Press on the ‘Add Object Property’ button and enter the 

property name. All the created object properties in the ontology are shown in the Figure 

5.14. 

 

 

Figure 5.14: Creating an object property in Protégé 
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To create a datatype property, switch to the ‘Datatype Properties’ tab. Press on the ‘Add 

Datatype Property’ button to create a new Datatype property. All the created datatype 

properties in the ontology are as shown in the Figure 5.15. 

 

 

Figure 5.15: Creating a datatype property in Protégé 

 

In this ontology, seven classes correspond to the seven concepts, 14 object properties 

and 13 datatype properties in the semantic representations of the data are used in this 

study (see Appendix A, for the descriptions). 

 

b) Linking data from other ontologies 

Since monogeneans species are parasites on fish, frogs and turtles, linking the 

monogenean data to their host data will provide more information about the 

monogeneans. In this study, a simple Fish ontology with TaxonName class is 

developed and linked by importing it into the MHBI ontology in Protégé. The two 

ontologies are merged by redefining the datatype property (isHostedin) in the 

TaxonName class in the MHBI ontology as an object property to merge with the 

TaxonName class in the Fish ontology as shown in Figure 5.16. 
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Figure 5.16: Linking MHBI and Fish ontologies 

 

c) MHBI and MHBI-Fish ontologies 

Two ontologies were built in this study; MHBI and a merged of MHBI-Fish ontologies. 

These ontologies can be viewed in a graph format (see Figure 5.17 and 5.18) in Protégé 

and the full codes of the owl ontology in the RDF/XML serialization format are 

presented in Appendix C (i) for MHBI-Fish ontologies and Appendix C (ii) for Fish 

ontology. 

 

The main goal of the ontologization process is to create ontology suitable for 

biodiversity image retrieval. The top-level classes in ontology are depicted in Figure 

5.17. These classes describe the specimen, taxon, publication citations and collection 

records (see Appendix A for the detail descriptions). This ontology is restricted to the 

major taxon taxonomic classification of class, order, family, genus and species. To 

make the ontology more informative, each class is annotated with other classes and 

subclasses. 
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Figure 5.17: Top-level classes in MHBI ontology 

 

Some of the advantages of using graphs to model the data are the reusability of using 

existing schema and merging the separate graphs with consistent vocabularies for 

subject and object properties. In biology, other than heterogeneous of data, the data as 

well are in the inter-relations manner or related to each other such as parasites-and-

hosts, herbivores-and-plants, DNA-and-organs, and organs-and-donors. Thus in this 

study, MHBI schema (for parasite) was reused to build the separate Fish ontology (for 

host). Since both graph models have consistent vocabularies, both were merged by 

redefining property to link and form a merged of MHBI-Fish ontologies as shown in 

Figure 5.18. 
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Figure 5.18: Top-level classes in MHBI-Fish ontologies 

 

However, there is a major difficulty in the early stage of data annotation, creating the 

instances. Each instance is needed to annotate with many vocabularies, so that the 

ontology is more informative. Nevertheless, it can be overcome by retrieving more 

relevant and related images to the user’s query during the image retrieval. 

 

Currently, the ontology can be manipulated for adding new instances, deleting and 

updating current instances through Protégé ontology editor. In future, incorporating the 

administrative modules through a simple GUI can further enhance it. 

 

5.4.3 Image annotation 

In Protégé, the data in the seven classes are annotated in the form of instances. These 

instances are added and annotated with object properties and datatype properties in 

Protégé (see Table 5.2). In Protégé, inclusion of new data can be done by simply 

creating new classes, instances, and object and datatype properties. 
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In Protégé, switch to the ‘Individual’ tab and click on the Specimen class and click on 

‘add new instance’ button (see Figure 5.19) and instances will be annotated with object 

and datatype properties as shown in Figure 5.20 and Figure 5.21. An example of 

annotated instance is as shown in Figure 5.22. Next instances in the TaxonName class 

will be annotated with objects and datatype properties as an example as shown in Figure 

5.23. 

 

 

Figure 5.19: Creating a new instance for Specimen class 
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Table 5.2: Classes, instances, object or datatype properties 

Class Instances Object 

properties 

Datatype 

properties 

Example of data 

Specimen bif-baungi-vb-

i1 

kindOfSpecimen  Illustration 

isHaptorBar  Haptor Sclerotised parts Bar 

typeForName  BifBaungi 

isCitedIn  LimFurtado1983 

 specimenId j1-bif-bau-ven-bar 

 imgDir /images/BIF-BAUNGI-ventral-bar-single.jpg 

TaxonName BifBaungi 

 

Part  bif-baungi-vb-i1 

rank   Species  

isBelong  Bifurcohaptor 

isHostedIn  SilBagMysHemurus 

 nameComplete Bifurcohaptor baungi 

 authorship Lim & Furtado 

 year 1983 

 locality Tasek Bera, Pahang; Bukit Merah Reservoir, 

Perak 

          

Bifurcohaptor 

Rank  Genus 

isBelong  Ancylodiscoididae 

hasSpecies  BifBaungi, BifIndicus 

 nameComplete Bifurcohaptor 

 authorship Jain 

 year 1958 
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Figure 5.20: Annotating an instance with object properties 

 

 

Figure 5.21: Annotating an instance with datatype properties 
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Figure 5.22: Annotated instance for Specimen class 

 

 

Figure 5.23: Annotated instance for TaxonName class 

 

5.4.4 Implementation of the image classification using ontology -based 

image retrieval (OBIR) 

Once the images are annotated in the ontology, this ontology is used for image retrieval 

purposes. The image retrieval system in this study combined classical Boolean search 

and SPARQL (Prud'hommeaux & Seaborne, 2008). Jena framework is used as a tool to 

access and navigate the ontology. Jena ontology API, convert the ontology into a RDF 

graph data format as the ontology is queried in this format, using SPARQL. The object 

and datatype properties in Appendix A are used as parameters to formulate the query 

and retrieve the images. The processes involved are presented below. 
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Image pre-classification is an approach to group selected images based on certain 

parameters. In Model 2, parameters such as dorsal or ventral haptoral bar are needed. 

By using these parameters, the system will search the ontology to extract the set of 

images for the training set. 

 

Before the images could be represented, the training set images that are stored in the 

image database needs to be stored in a list so that, it can be loaded and manipulated by 

the program. 

 

a) Process flow 

Process flow in Figure 5.24 shows the entire process in each different layer in OBIR 

layer. In presentation layer, user will select parameters on the query page and the query 

processing manipulates the user query into the processing procedures in application 

layer. In business layer, the MHBI-Fish ontologies will be converted into RDF graph 

data. Once the RDF graph model created, it can be used for sparql query. Results of the 

query are shown in image path directory along with their annotations. The images will 

be collected based on the images path directory. In the application layer, again it will 

pass the results (retrieved images and annotations) for displaying on the result page as 

well as being used as input for CBIR web application. 

 

 

Figure 5.24: OBIR process flow 
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b) Query page 

The interface for a user to communicate with the system was developed using simple 

interface and enough to meet the requirements of the system. The codes implemented to 

create the user interface are presented in Appendix B (i). The user interface was 

developed using HTML, CSS and JSP; and contained a form with a file upload button, 

options to select the training set images and buttons to submit the query and reset button 

to clear the form (see Figure 5.33 for the interface). 

 

c) Query processing 

The user’s query then will be manipulated in the query processing. The query image 

will be uploaded into the server and the parameter given will be used to search the 

ontology and extract the set of images for training. The codes implemented to perform 

these processes are presented in Appendix B (ii) and were developed using Java and 

Java servlet. 

 

d) Loading the graph data 

In order to query the ontology it must be converted into an RDF graph data format. The 

ontology files will be called and Jena Ontology API is used to convert the MHBI 

ontology and the MHBI-Fish ontologies into a RDF graph data format. The codes 

implemented to perform this process are presented in Appendix B (iii). The example of 

the RDF graph data is presented in Appendix C (iii). 

 

The RDF graph data is then stored and accessed temporarily from the computer memory 

as it is still in the midst of adding new data into the ontology. Eventually this RDF 

graph data will be stored in a database file such as MySQL. 
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e) SPARQL query 

A simple classical Boolean search query was developed using SPARQL. The codes 

implemented to perform sparql query are presented in Appendix B (iv). The retrieved 

data will be stored in a list so that it can be loaded and manipulated by the program in 

the next step. However, before keeping the images in a list, the size of the list needs to 

be counted. The codes implemented to perform this process are presented in Appendix 

B (iv). The retrieved data will be used in section 5.4.5 (The codes implemented to 

perform this process are presented in Appendix B (vi)) as well as for displaying in the 

Result page. 

 

f) Result page 

Results of the retrieved data are passed back and will be displayed on the simple result 

page for the user in HTML, CSS and JSP. The codes implemented to perform this 

process are presented in Appendix B (v). It contained a list of the retrieved images as 

shown in Figure 5.37. 

 

5.4.5 Implementation of image retrieval using CBIR 

The CBIR is an approach for image retrieval for a given query image. There are two 

steps taken, which are defining the feature space and similarity comparison as described 

in the previous chapter. In defining the feature space, two types of images are needed. 

First, the images that are taken for training set and second is a query image to be 

retrieved. Both type of images need to be represented in a way whereby mathematical 

calculation can be performed as required in the pattern recognition algorithm. Once the 

feature space is defined, it would be used in solving the similarity comparison process.  
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The implementation is shown in a psedocode below. 

 

Require: Polygonal coordinates 

Require: Training images, Ti 

Require: No. of training region, n 

Require: unknown query image, u 

Require: No. of classes, k 

 

1. Defining mean features vector for each class, meanC 

for i=1 to i=k do 

set meanCi[] with zero 

get region, r[] = [r  Ti] 

for r=1 to r=n do 

µr=getMean() 

end for 

meanCi[] = [µr1 .. µrn] 

end for 

2. Defining u 

u=getMean() 

3. Calculating the Euclidean distance,  
 distN[] = Euclidean_distance(u, meanCi[]) 

4. Do indexing 

for p1=0 to p1<y2-1 do  

for p2=p1+1 to p2<y2 do  

if (distN[p1] > distN[p2]) {  

temptDist = distN[p1];  

distN[p1] = distN[p2];  

distN[p2] = temptDist; 

} 

end for 

end for 

 

The entire implementation processes are explained as follows. 

 

a) Process flow 

Figure 5.25 and Figure 5.26 show the entire processes flow in each different process in 

CBIR layer for both systems in Model 1 and Model 2, respectively. There are two 

inputs in this layer and they are the query image from user as well as the images for the 

training set that is to be kept in images vector. 
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Figure 5.25: CBIR process flow for Model 1 

 

 

Figure 5.26: CBIR process flow for Model 2 

 

In Model 1, all the images from monogenean image database need to be kept in images 

vector; while for Model 2, the output from OBIR layer will be used as input. There are 

two outputs from OBIR layer i.e. images and their annotations. Thus, in this layer, the 

output will be split into two vectors input i.e. images vector and annotations vector. 

 

Once the images have been stored in the images vector, the program can load and 

manipulate them. In presentation layer, user will upload the query image on the query 

page and the query processing manipulates the user query into the processing 

procedures in application layer. In business layer, the features of both input images; 

query image and images vector will be extracted and represented into mathematical 

model and define the feature space. The retrieval algorithm performs image similarity 

comparison using Euclidean distance in the feature space. The Euclidean distance vector 

is obtained as a result of the comparison between the query image and images vector. 

The Euclidean distance vector is sorted in ascending order and corresponding images 
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with the smallest 10 distances are retrieved based on preferred minimum distance 

classifier. The codes implemented these processes were developed using Java, Java 

servlet and additional Java library, JAI. 

 

The results (retrieved images) for Model 1 will be processed in application layer and 

passed to the results page for display. While the results for Model 2 will be processed in 

application layer, which is to combine the 10 images with their annotations (from 

annotations vector) and pass the results i.e. retrieved images and their annotations for 

displaying on the result page. 

 

b) Query processing 

For both models, the interface for a user to communicate with the system was developed 

using simple interface and enough to meet the requirements of the system. The codes 

implemented to create the user interface are presented in Appendix B (vii) and 

Appendix B (viii) for Model 1 and Model 2 respectively. The user interface was 

developed using HTML, CSS and JSP; and contained a form with a file upload button 

to upload the query image (see Figure 5.28 and Figure 5.29 for Model 1; and Figure 

5.33 and Figure 5.34 for Model 2). 

 

The user’s query then will be manipulated in the query processing. The query image 

will be uploaded into the server. The codes implemented to perform this process are 

presented in Appendix B (ix) for Model 1, and Appendix B (x) for Model 2; and is 

developed using Java and Java servlet. 
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c) Feature extraction 

As was mentioned previously, the input image is in 8-bit jpeg file format. Therefore, the 

image must be represented in 8 bit per pixel. All the images for the training set need to 

be kept in a list by storing the pathnames of each images in a list. The codes 

implemented to perform this process in Model 1 are presented in Appendix B (xi); while 

the codes implemented in Model 2 are presented in Appendix B (xii). 

 

In Model 1, the system will collect all the images from image database and put them 

into the training set named others[]. While in Model 2, the output from OBIR layer will 

be split into two vectors i.e. images vector named imgDir[] and annotation vector 

named imgDesc[]. 

 

Once the file pathname of the images have been stored in the list, the program can load 

and manipulate them. Then, the shape of the image needs to be represented in a one 

dimensional matrix format. A pre-classification technique, extracting region-of-interest 

(ROI) based on selected polygonal coordinates is used to extract the shape of the image, 

which is then converted into region containing pixels. The shape descriptor used here is 

the mean value of all the pixels,   , is calculated as follows. 

     
∑   

 
   

 
                                                               

 

The codes implemented for this process are presented in Appendix B (xiii). 
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d) Defining feature space 

Corresponding to the average of all pixels in all regions for a particular class, C a single 

mean features vector, meanC is feature space is created as shown in the following steps. 

(i) Calculate the number of points named numberOfPixels on that region, r 

numberOfPixels is calculated by counting the pixel within the width, w and height, h of 

the bounding box. 

(ii) Calculating the mean of the pixel values using function named getMean 

Once the number of point on that region, r is calculated, it will be used to calculate the 

average of the pixel values for each image in the images vector using function named 

getMean. The pixel mean values are calculated within the width, w and height, h of the 

bounding box. 

(iii) Store the calculated mean of the pixel values in a list 

The calculated pixels mean values are stored temporarily in a list named ts_means for 

images vector and a list named inImgMean for unknown query image.  

 

These lists define the feature space and the codes implementing these processes are 

presented in Appendix B (xiv). 

 

e) Similarity comparison 

Once the mean feature vectors have been calculated in feature space, the matching 

process begins using Euclidean distance function. This is done by performing 

subtraction of pixel mean values between the unknown class named inImgMean and the 

images vector named ts_means. The calculated values are stored temporarily in a list 

named distN. 

 

The codes implemented for these processes are presented in Appendix B (xv). 
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f) Indexing and retrieval 

The next step is finding the most similar images using minimal distance classifier. As a 

result of the similarity comparison, the smallest value calculated is the nearest match. 

Euclidean distance, ε vector named distN from the similarity comparison is then 

indexed in ascending order. 

 

The codes implemented for these processes are presented in Appendix B (xvi). 

 

g) Results of retrieved images and their annotations 

Finally, the results of the retrieved data are passed back and will be displayed on the 

simple result page for the user in HTML, CSS and JSP. For Model 1, it contains a list of 

the retrieved images in unranked order as shown in Figure 5.37; while for Model 2, it 

contains a list of the retrieved images in ranked order along with their annotations as 

shown in Figure 5.43. 

 

The codes implemented to perform this process for both Model 1 and Model 2 are 

presented in Appendix B (xvii) and Appendix B (xviii) respectively. 

 

5.5 Testing 

Two types of testing were implemented which are; ontology test and test of image 

retrieval systems (Model 1 and Model 2). 

a) Ontology testing  

The ontology evaluation process may be considered either from the technical point of 

view (quality of the designed ontology), or from the practical view (usability of the 

designed ontology). For the purpose of evaluation of quality of the designed ontologies, 

we adopted five criteria’s suggested by Gruber (1995) against which these ontologies 
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will be evaluated. The five criteria’s are clarity, coherence, extendibility, ontology 

commitment and encoding bias. These criteria are discussed further in the Result 

section. 

b) Image retrieval testing 

On the image retrieval, the testing is an integral part of model development, whereby 

the model that has been coded is examined to determine whether it performs according 

to the user’s requirements and is working correctly. For the purpose of this research, 

four types of testing were conducted which are; unit testing, module testing, integration 

testing and system testing. In order to satisfy the objective of this research, emphasize is 

given on system and performance testing. System testing is performed on the whole 

system to detect the presence of errors in the system. Once it is done, performance 

testing can take place in order to discover how well the system performs its tasks in 

order to accomplish the objective of this research. 

 

5.5.1 Tester 

Both the taxonomists and developer had conducted the system testing. However, only 

the developer conducted performance testing. 

 

5.5.2 System testing 

System testing is performed on the system, whereby the areas tested include the 

interface between modules, the control flows and the performance of the system. It is 

the process to evaluate the system’s actual functionality in relation to expected or 

intended functionality. This process is a continuous process that requires a lot of time to 

complete in order to ensure that the system is free from any errors and can perform well. 
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In this study, emphasize is given on functional testing and user interface testing. 

Functional testing is concerned with determining whether the functional requirement 

stated in previous chapters are partially or fully satisfied, while user testing is more 

towards the suitability of the interface in performing its tasks. In performing both types 

of testing, a test case was developed. 

 

A test case is a set of condition to determine that a requirement is fully satisfied. A test 

case includes a description of the functionality to be tested taken from the requirement 

list. Table 5.3 shows a sample of a test case conducted for the function to Upload query 

image and select images for training set. Other samples of test cases are given in 

Appendix D. 

 

Once all the test cases have passed, whereby the expected results meet the actual results, 

means that the system is free from any expected errors. The next step was performance 

testing. This is the crucial part to determine whether the objective of this study has been 

accomplished or otherwise. 

 

Table 5.3: A test case sample 

Test case – Upload query image and select images for training set 

Test description – to verify the query image is uploaded and training set images 

option is selected 

Test execution: 

Click ‘Browse’ button -> ‘Choose File to Upload’ dialog box appears 

Select a file image to upload 

Click ‘Open’ -> The image file path appears on the text box 

Check a value for ‘Select training set’ 

Click ‘Upload’ button -> The entered values are sent into the application for 

query processing 

Click ‘Reset’ button -> To clear all the entered values 

Expected results – The image file path appears on the text box and one of the 

options for the training set is check 

Actual results – Pass. The image file path appeared on the text box and one of 

the options for the training set is checked 
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5.5.3 Performance testing 

Performance testing takes place in order to discover how well the systems perform their 

task under certain conditions or constraints. It can be used to compare between any 

systems, to find out which one performs better in order to meet some criteria 

performance. As mentioned in the Introduction chapter, one of the tasks to achieve the 

objective of this research is to determine how image pre-classification using ontology 

can aid in image retrieval. Thus to achieve this objective, the performance of each 

system was measured and the results were compared.  

 

The system performance is measured based on the efficiency of retrieval performance. 

For both Model 1 and Model 2, the efficiency of retrieval performance were measured 

according to the performance of the relevance ranking and classification error rate of the 

retrieved images using R-Precision and classification Error Rate (ER) respectively; and 

the efficiency of overall retrieval performance using Mean Average Precision (MAP), 

Precision-Recall Graph (PR-Graph) and Receiver Operating Characteristic (ROC) and 

Area Under ROC Curve (AUC). These metrics are further explained in the following 

section. 

 

a) Test plan 

The test plan is drawn up during the design stage and serves as a guide in carrying out 

the tests. Different systems have different test plans as stated below. The test plan 

includes the description of the condition under which the test will run; the test data to be 

used; and the expected results. 
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(i) A description of the condition under which the test will run 

To achieve the objectives of this study, the performance results of two systems were 

compared. Model 1 is run without using any parameter to classify the images in the 

training set. On contrary, Model 2 is run using certain parameters to filter the images in 

the training set. These two systems will use the same image database but one with 

additional ontology (for Model 2 system). 

 

(ii) A description of the test data to be used 

There are two types of data needed as input:- 

1. Haptoral bar image 

Haptoral bar image is the main requirement for the system. In Model 1, all the images 

from the image database are extracted. While in Model 2, the image is stored in the 

ontology as file path that has the name of the directories in which the image is located. 

The extracted image will be converted, whereby the image needs to be stored in a 

vector. This process is done so that it can be manipulated and loaded by the program. 

All the images are in the same standard as previously stated in section 5.4.1. 

2. Parameters for image pre-classification 

Besides the image, Model 2 needs the parameters such as dorsal or ventral haptoral bar 

to filter a set of images for the training set from the image database, which are in text 

data format. 

 

(iii)A description of the expected result 

At the end of the process, the system shall display a ranked list retrieved images in jpeg 

file format, where the image is verified as relevant or irrelevant based on the visual 

comparison. For Model 2, along with these images are their annotations in text data 

format. 
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b) Performance metrics 

The performance of these two systems was compared in terms of the efficiency of 

retrieval. To evaluate the system, several performance evaluation metrics have been 

proposed (Müller et al., 2001) based on the precision P and recall R (see Equation 1 and 

2):- 

             
  

   
  Equation 1 

          
  

   
  Equation 2 

Where    is the number of retrieved images that are relevant to the query image;     is 

the number of retrieved images; and     is the number of relevant images. 

 

(i) F-measure 

A single measure that trades off precision versus recall is the           (see 

Equation 3), which is the weighted harmonic mean of precision and recall (Manning et 

al., 2008). 

          
         

   
  Equation 3 

Where   is the Precision value and   is the Recall value. 

 

The above three metrics are commonly used to measure for unranked lists of retrieved 

images. To evaluate the ranked lists of retrieved images, Precision and Recall measures 

are further extended as explained below. Manning et al. (2008) mentioned that, in a 

ranked retrieval context, appropriate sets of retrieved documents are naturally given by 

the top k retrieved documents. Thus, the evaluation for ranked retrieved images is based 

on a list of top 10 retrieved images. 
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(ii) Precision-Recall Graph (P-R Graph) and Mean Average Precision (MAP) 

As mentioned in (Deselaers et al., 2004), precision and recall values are usually 

represented in a P-R Graph and the most common way to summarize this graph into one 

value is the    . The average precision    for a single query q is calculated by 

averaging the precision values at the points at which each relevant image is retrieved 

(see Equation 4 and 5): 

                      ∑  ( )    ( ) 
    Equation 4 

Where   is the number of retrieved images;  ( ) is the number of precision at a cut-off 

of   images; and          ( ) is the number change in recall that happened between 

cut-off     and cut-off  . 

 

The     is the mean of the average precision values over all queries: 

         
∑   ( ) 

   

 
 Equation 5 

Where   in the number of queries 

 

An advantage of the     value is that it contains both precision and recall oriented 

aspect and is sensitive to the entire ranking (Deselaers et al., 2004). 

 

(iii)Receiver Operating Characteristic (ROC) and Area Under ROC Curve (AUC) 

Another metric corresponding to PR Graph is ROC to show the tradeoffs between true 

positive rate and false positive rate. A common aggregate to report is the    value, 

which is the ROC analogue of MAP (Davis & Goadrich, 2006). The AUC computes by 

the trapezoidal method. 
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(iv) Error Rate (  ) 

The classification    for all queries was also indicated. In this case, only the most 

similar image according to the ranking was considered. A query image is to be 

classified correctly, if the first retrieved image is relevant or equal to    ( ), where 

 ( ) is the precision after one image retrieved. Otherwise, the query is misclassified 

(see Equation 6). 

 

    
 

| |
∑ {

                                             
                                                                       Equation 6 

Where   is a set of queries. 

 

(v) R-Precision 

As for the relevance ranking in the top ten retrieved images, we measured the ranking of 

relevant images in the retrieved images by calculating the precision. The R-Precision for 

each query is obtained by computing precision value at the      position in the ranking 

of retrieved images that has relevant images (see Equation 7) and the mean of the 

            is obtained by averaging the             values for a set of 19 

queries (see Equation 8). 

 

             
 

   
  Equation 7 

                                      
∑            ( ) 

   

 
 Equation 8 

Where   is the number of relevant images retrieved in the top of 10 retrieved images; 

    is the number of relevant images; and   is the number of query. 
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c) Experimental testing 

To compute the efficiency of the retrieval, a test was designed as follows:- 19 query 

images (Figure 5.27) which represent the S1, S2, S3, S4, S5, and S6 classes were 

selected. In Model 1, each query image was matched against all the 148 of haptoral bar 

images in the image database; whereas in Model 2, each query image was matched 

against a training set which the OBIR layer filters with 16000 triple statements in the 

ontology. 

 

 

Figure 5.27: 19 unknown query images for testing 

 

In the CBIR layer, for a given query image q, the feature vector is extracted and 

compared to the feature vectors of the training images {Γ1, Γ2, Γ3, .. , Γx}. The retrieval 

algorithm performs image similarity comparison using Euclidean distance in the feature 

space. The Euclidean distance vector ε(q, Γn) is obtained as a result of the comparison 

between the unknown query image and all images in the training set. The Euclidean 

distance vector is sorted in ascending order (which is used to create the ranking) and the 

corresponding images with the smallest 10 distances are retrieved, as we preferred 

Minimum distance classifier. Given a ranked list retrieved images, the image is verified 

as relevant or irrelevant based on the visual comparison. 
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5.6 Results and Discussions 

This section presents the results of the image retrieval implementation on both systems. 

The results are discussed further, which involve assessing the strengths and weaknesses 

of the image retrieval systems based on the proposed approaches. In addition,, 

suggestions are discussed for future enhancement. In order to achieve the research 

objective, the evaluation emphasizes on the performance of the image retrieval. The 

results and discussion on the efficiency of retrieval for both Model 1 and Model 2 are 

presented based on the testing methodology that was performed as described in the 

previous section. The results are then compared to show that the Model 2 image 

retrieval system has performed better than Model 1 image retrieval system. 

 

5.6.1 Ontology evaluation 

This methodology was successfully used previously to evaluate the Protein Ontology 

(Sidhu, Dillon, & Chang, 2007). We introduced some level of formality into this 

discussion by adopting criteria suggested by Gruber (1995) against which the ontology 

needs to be evaluated. 

 

a) Clarity 

Definitions within an ontology need to be stated in such a way that the number of 

possible interpretations of a concept would be restricted. This will contribute to the 

effectiveness of communication between agents. In the design of our MHBI Ontology, 

we stated that for each concept c with property p; the pair (c, p) exactly specifies a 

unique pair. During the design of MHBI Ontology this rule is enforced, and the 

uniqueness of the definition of concepts is guaranteed (see Figure 4.6). Clarity of MHBI 

Ontology is also checked by running eight tests listed below and making sure, all of 

them return true: 
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1. No Cardinality Restriction on Transitive Properties 

2. No Classes or Properties in Enumerations 

3. No Import of System Ontologies 

4. No Meta-Class 

5. No Properties with Class as Range 

6. No Sub Classes of RDF Classes 

7. No Super or Sub Properties of Annotation Properties 

8. Transitive Properties cannot be Functional 

 

Example of result for Test 1 and Test 8 are as shown in Figure 5.28. Biological data is 

evolving over time whereby a new data type may need to be insered into the ontology at 

any time. Thus for transitive properties we have not assigned any cardinality restriction. 

Besides that, it cannot be functional because it relates to more than one instance via the 

property. The example is explained further in Coherence Test 11.  

 

 

Figure 5.28: Results of the Clarity criteria evaluation (Test 1 and Test 8); and the 

Coherence criteria evaluation (Test 6, Test 7 and Test 11) 

 



151 

 

As for Test 2 result, as presented in Figure 4.6, it clearly shows that are no classes or 

properties in enumeration. Furthermore, for the Test 3 as illustrated in Figure 5.29, even 

though we have followed TDWG LSID standard for the vocabulary, along the way, we 

have created our own ontology based on our requirement study. Thus, we have not 

imported any other system ontologies. For the Test 7 result, we only used the built in 

Annotation property in Protégé and there are no super or sub properties of Annotation 

properties as shown in Figure 5.29. 

 

 

Figure 5.29: Results of the Clarity criteria test (Test 3 and Test 7). Visualization of 

MHBI ontology in Protégé. 

 

For Test 4, Test 5 and Test 6 results, as illustrated in Figure 5.17, in the MHBI 

ontology, there is no Meta-class, properties with class as range and sub classes of RDF 

classes. 
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b) Coherence 

The definitions of concepts given in the ontology should be consistent. Only inferences 

consistent with existing definitions should be allowed. The formal part of the MHBI 

Ontology is checked by running the 12 consistency tests listed below and ensuring that, 

for all these tests, all return true: 

1. Domain of a Property should not be empty 

2. Domain of a Property should not contain redundant Classes 

3. Range of a Property should not contain redundant Classes 

4. Domain of a Sub Property can only narrow Super Property 

5. Range of a Sub Property can only narrow Super Property 

6. Inverse of Functional must be Inverse Functional 

7. Inverse of Inverse Functional must be Functional 

8. Inverse of Sub Property must be Subproperty of Inverse of Super Property 

9. Inverse of Symmetric Property must be Symmetric Property 

10. Inverse of Top Level Property must be Top Level Property 

11. Inverse of Transitive Property must be Transitive Property 

12. Inverse Property must have matching Range and Domain 

 

Results of the Test 1 to Test 3 are presented in Appendix A. As shown in the results, 

domain and range of all the properties are assigned and do not contain redundant 

classes. 

 

The result of Test 4, Test 5, Test 8 and Test 10, are as illustrated in Figure 5.30. 

ishaptorbar property is a sub property of super property named part. Thus, domain and 

range of the sub property are defined by the super property. In this ontology, the 

fullImage, isBar, isHaptor and isHaptorBar sub properties are classified under part 
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property. This is because, each specimen of haptoral bar image may annotate to any of 

these properties. 

 

 

Figure 5.30: Results of the Coherence criteria evaluation (Test 4, Test 5, Test 8 and 

Test 10). 

 

One of the results for Test 6 and Test 7 were applicable on the typeForName and part 

properties. If a property is inverse functional, then it means that the inverse property is 

functional (Protégé, 2004). For example, as illustrated in Figure 5.28, in this ontology, 

typeForName is a functional property while part is an inverse functional property. Thus, 
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we can state that BifBaungi typeForName for bif-baungi-vb-i1, and then because of 

the inverse property we can infer that bif-baungi-vb-i1 part of BifBaungi. 

 

An example for the result of Test 11 is illustrated as well in Figure 5.28. It shows an 

example of the transitive property isBelong. Since Bifbaungi isbelong to 

Bifurcohaptor, and Bifurcohaptor isbelong to Ancylodicoididae, then we can infer 

that Bifbaungi isbelong to Ancylodicoididae. As for inverse of transitive property 

hasSpecies, we can infer that Ancylodicoididae hasSpecies Bifbaungi. Furthermore, as 

presented in Appendix A, inverse property in this example had fulfilled the Test 12 

whereby it matched the range and domain. 

 

Figure 5.31 illustrates an example of a Test 9 result. It shows an example of the 

symmetric property hasSynonym. The instance BycGharui is related to the instance 

SiloGharui via the hasSynonym property. Then we can infer that SiloGharui must also 

be related to BycGharui via the hasSynonym property. In other words, the property is 

its own inverse property. 

 

 

Figure 5.31: Results of the Coherence criteria evaluation (Test 9). 
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c) Extendibility 

It should be possible to extend the ontology without altering the existing definitions. 

The requirement of easy ontology extension is quite an important feature as new 

knowledge emerges each day and may need to be added to an already existing ontology. 

To make MHBI Ontology extendable, the design consists of a hierarchical classification 

of concepts represented as classes, from general to specific. In MHBI ontology the 

notions classification, reasoning, and consistency are applied by defining new concepts 

from defined generic concepts. The concepts derived from generic concepts are placed 

precisely into the class hierarchy of MHBI Ontology to completely represent 

information defining a specimen. 

 

Figure 5.32 illustrates an example of this criterion. Currently, in MHBI ontology for the 

DiagnoticPartTerms concept, we have considered on the HaptorSclerotisedpartBar, 

HaptorSclerotisedpartAnchor and FullImage. However, in the future we would like to 

include the other diagnostic part such as HaptorSclerotisedpartMarginalHook, 

HaptorSclerotisedpartPatch and HaptorSclerotisedpartOther. Thus, this ontology do 

not sanction a preference for one diagnostic part only and allow for the definition of 

other diagnostic parts, and a way to relate them to existing diagnostic parts. 

 

 

Figure 5.32: Results of the Extendibility criteria evaluation. 
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d) Ontology Commitment 

Ontology should make as few claims as possible about the domain while still supporting 

the intended knowledge sharing. MHBI Ontology will have as low an ontology 

commitment as domain ontology, because it reuses most of the concepts that have 

already been used to represent monogenean data and knowledge, and propose fewer 

new concepts. The low ontology commitment of the MHBI Ontology makes it more 

extendible and reusable as shown in Figure 5.18. Also, if fewer new concepts need to be 

agreed upon by the community, then this makes agreement easier. 

 

e) Encoding Bias 

Ontology representation language should be as independent as possible from the use of 

the ontology. While developing MHBI Ontology, the choice of representation language 

as OWL (Michael, Chris, & Deborah, 2005) will keep the encoding bias to a minimum 

as MHBI ontology will be used by all stakeholders of taxonomy domain like: domain 

experts, pharmaceutical companies, researchers and students. 

 

5.6.2 Results of similarity-based image retrieval – Model 1 

A Model 1 web-based image retrieval system was developed (see Figure 5.33 until 

Figure 5.37). A simple query interface as shown in Figure 5.33 and Figure 5.34 

illustrate the query for user to upload the preferred query image. 
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Figure 5.33: Query page for the Model 1 

 

 

Figure 5.34: User has to select preferred query image 

 

Once the preferred image is selected, user can start upload the query image into the 

server as shown in Figure 5.35. 
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Figure 5.35: Upload the query image into the server 

 

Once the query image is uploaded into the server, user has to select any option of the 

given shapes. User has options for query image against individual shape or all shapes. 

Once the required parameters are fulfilled, user can start to submit to the server for 

performing image retrievals as shown in Figure 5.36. 

 

 

Figure 5.36: Options for query image to against individual shape or all shapes 

 

Once the query is processed, the results of ranked list images will appear as shown in 

Figure 5.37. 
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Figure 5.37: Retrieval results for the Model 1 

 

19 unknown query images were used to test the Model 1 system. The results of the 19 

queries are shown in Appendix E (i). With these results, the aim to perform supervised 

similarity based image retrieval for monogenean haptoral bars was achieved. The 

efficiency of retrieval performance is discussed further in the following section. 

 

To summarize, the Model 1 similarity-based image retrieval system is able (i) to retrieve 

relevant images from the image database, parse it and then display it on the user’s 

interface, and (ii) to retrieve the 10 most similar images in ranked order. 

 

5.6.3 Results of similarity-based image retrieval – Model 2 

A web-based image retrieval system was developed (see Figure 5.38 until Figure 5.44). 

A simple query interface as shown in Figure 5.38 and Figure 5.39 illustrate that user is 

required to upload the query image and select the preferred images to be used for 

training set images. 
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Figure 5.38: Query page for the Model 2 

 

 

Figure 5.39: User has to select preferred query image 

 

Once the preferred query image and training set images are selected, user can start to 

upload the query image into the server as shown in Figure 5.40. 
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Figure 5.40: Send the query image and preferred training set images to the server 

 

Next, Figure 5.41 displays the uploaded query image and the retrieved images (to be 

used as training set images) from the OBIR layer. User has to select any option of the 

given shapes. User has options for query image against individual shape or all shapes. 

Once the required parameters are fulfilled, user can start to submit to the server for 

performing image retrievals. 

 

 

Figure 5.41: Buttons to view retrieved images and options for query image to against 

individual shape or all shapes 
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User can also view the retrieved images by clicking the view image button and the 

images will appear in a new web browser window as shown in Figure 5.42. 

 

 

Figure 5.42: Retrieved images display in a new web browser 

 

Once the query has been processed, the results of ranked list images along with their 

annotations will appear as shown in Figure 5.43. 

 

 

Figure 5.43: Retrieval results for the Model 2 
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To view the image annotations in details, user has to click on the link to view full details 

and a new browser window will pop-up and display the results as shown in Figure 5.44. 

 

 

Figure 5.44: View an image with the annotations 

 

19 unknown query images were used to test the Model 2 proposed approach. The results 

of the 19 queries are shown in Appendix E (ii). With these results, the aim to perform a 

supervised similarity based image retrieval for monogenean haptoral bars was also 

achieved and the annotations were provided along with the images. The efficiency of 

retrieval performance is discussed further in the following section. 

 

To summarize, the Model 2 similarity-based image retrieval system is able (i) to retrieve 

relevant images from the image database, parse it and then display it on the user 

interface, (ii) to retrieve the 10 most similar images in ranked order and recommend it to 

the user, and (iii) to allow user to view a complete annotations such as the description of 

each diagnostic hard part. 
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5.6.4 Performance results and comparisons for Model 1 and Model 2 

A sample of similarity-based image retrieval output for a query image is shown in Table 

5.4. Same query images were used for both models. The best 10 Euclidean distance 

measures, ε, are given in ascending order of differences. Based on visual comparison, a 

retrieved image is considered relevant if image is from the correct or nearest group, in 

which the query image belongs, is retrieved; otherwise, it is considered irrelevant. It can 

be seen from this result that the retrieval output in Model 2 is better than in Model 1. 

For example, there are three irrelevant images in Model 1 result rather than in Model 2, 

all relevant images are retrieved. 
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Table 5.4: Sample of retrieval – Results of similarity-based retrieval of both models, Model 1 and Model 2, for the ventral bar query image 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

Model 1           

7 
ε 0.04 0.77 1.07 1.26 1.52 1.59 1.61 1.77 1.82 1.86 

Visual 
comparison ∕ × × ∕ ∕ ∕ × ∕ ∕ ∕ 

Model 2           

10 
ε 0.04 1.26 1.52 1.59 1.77 1.82 1.86 2.16 2.46 3.33 

Visual 
comparison ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 
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The efficiency of retrieval for both models over 19 queries is shown in Table 5.5, Figure 

5.45 and Figure 5.46. 

 

Table 5.5: The efficiency of retrieval for both models 

Retrieval Metrics Model 1 Model 2 

R-Precision 0.53 ~ 5/10 0.71 ~ 7/10 

Error Rate (ER) 0.47 ~ 9/19 0.32 ~ 6/19 

Mean Average 

Precision (MAP) 
0.39 ~ 4/10 0.60 ~ 6/10 

Area Under ROC Curve 

(AUC) 
0.22 0.46 

 

For the relevance ranking measure on the best 10 retrieved images, Model 2 is able to 

retrieve up to seven relevant images compared to Model 1 that only retrieved five 

relevant images.  

 

The MAP and ER show strong connection between the image retrieval and 

classification as both measures are based on precision. Thus for the ER measure, it is 

suggested that it is best that relevant images are retrieved early (Deselaers et al., 2008). 

On the other hand, the MAP accounts for the average performance of the retrieval over 

the complete PR graph. As shown in above Table 5.5, out of 19 queries, in Model 2, 

only six queries were classified into the wrong group compared to Model 1 where nine 

queries were classified into the incorrect group. As for the MAP, the MAP value for 

both Model 1 and Model 2 is 0.60 and 0.39 respectively. It means that, on average, 

Model 1 is able to return only around 4 relevant images compared to Model 2 which had 

up to six relevant images among the 10 retrieved images for each query. 

 

A PR Graph (Figure 5.45) shows the Precision-Recall curves for both models over 19 

queries. Model 1 curve shows that it is able to achieve 0.10 of recall without sacrificing 
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any precision at 0.77. However, to achieve 1.00 recall, the precision drops to 0.06. In 

contrast, Model 2 curve shows that, the model is able to achieve 0.10 of recall without 

sacrificing any precision at 0.90. Nevertheless, to achieve 1.00 recall, the precision 

drops to 0.18. Although both systems can only achieve up to 0.10 recall to maintain the 

precision, it clearly shows that the precision for Model 2 is better compared to Model 1 

with approximately 13% percentage increase. As well as achieving1.00 recall, Model 2 

shows improvement at approximately 12% percentage increases over Model 1. 

 

Figure 5.46 demonstrates the comparison of both models in terms of the fraction of true 

positive rate over false positive rate. The areas under ROC curves are 0.22 and 0.46 for 

both Model 1 and Model 2 respectively. Even though the graph climbs steeply on the 

left side, the AUC for both models are less than 0.50, which means these two models do 

not provide adequate discrimination. This could be due to the volume of data used in 

this study. However, it clearly shows that the AUC rate in the Model 2 achieves higher 

performance compared to Model 1. 
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Figure 5.45: PR-Graph for both models 
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Figure 5.46: ROC curves for both models 
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5.7 Summary 

This chapter provides the whole architecture of the system based on the requirements 

listed on the previous chapter. In addition, the development tools that were used in the 

development are included. Besides, the detailed reports on the implementation of the 

coding are provided. Both the systems are web-based system which runs on Windows 

Server 2003 platform; Apache tomcat as a tool for web server; a Java language as a 

main programming language; Protégé 4.1 as an ontology editor to store the structured 

data; MySQL Server 5.1.55 for database; JSP, HTML and CSS as client scripts to create 

the user interface; Eclipse Galileo IDE as main code editor; and Adobe Photoshop CS as 

a tool for image pre-processing. 

 

Finally, this chapter presented results of 3 types of testing; ontology testing, system 

testing and performance testing that were implemented on both Model 1 and Model 2. 

The quality of ontology was evaluated based on the technical point of view. System 

testing performed on the entire system is to ensure that the system requirements are 

fulfilled. To achieve the objective of this research, the systems’ performance testing is 

the most important testing in order to ascertain the effect of image pre-classification 

using OBIR layer in the CBIR approach as implemented in Model 2. Both systems 

performed well and fulfilled the stated requirements. 
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CHAPTER 6:            

FUTURE WORK AND 

CONCLUSION 
 

 

6.1 Introduction 

This chapter discusses the proposed architecture for biodiversity image retrieval. The 

proposed architecture’s strengths and limitations are identified. Finally, future 

enhancements are proposed. 

 

6.2 Proposed Image Retrieval  

Today’s CBIR system is one of the significant applications in biology. In biodiversity 

research, in particular taxonomy, in order to obtain more accurate, related and relevant 

knowledge to a user’s query, both text and image data types are needed. As stated 

previously, most previous work focused on enhancing the retrieval process, instead of 

integrating with the text.   

 

Hence, in this study, the emphasize is on improving the relevancy of the training set 

using ontology to collect the most relevant images to be used as training set images for 

content-based image retrieval. In this study, a three-tier integrated model architecture 

for Biodiversity image retrieval as shown in Figure 5.2, is proposed. The backend 

database tier contains two databases, namely the Monogenean Image Database, which 

contains the images to be used for image retrieval and visual display purpose, and the 

MHBI-Fish Ontologies that contains the text annotation of the images. The user’s query 
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is processed using two layers in the web application tier. The Ontology-based Image 

Retrieval layer collects the images using the approach described in Section 4.6-OBIR. 

The collected images then go through the Content-based Image Retrieval layer using the 

approach as described in Section 4.7-CBIR. The architecture also includes the client-tier 

that has a query interface and results. A graphical query interface is provided for user to 

communicate with the web application. The interface collects the information from the 

user and displays the retrieved images and information to provide interpretation of the 

images retrieved. In this architecture, the results contain the retrieved image in ranked 

order together with the textual annotations attached to the image (see Figure 5.43), 

therefore it provides more knowledge to user compared to the conventional CBIR 

system (see Figure 5.37). This is a very useful feature in the field of Biodiversity as 

taxonomic information related to the image provides more understanding and 

knowledge. 

 

6.3 Reducing the Semantic Gap 

Many open issues have been discussed and suggested (Rui et al., 1999; Smeulders et al., 

2000; Shandilya & Singhai, 2010) to improve the conventional CBIR approach and one 

of the issues is to reduce the semantic gap between the query image and training images 

to retrieve more images that are relevant. Most previous research focused on classifier 

algorithms, image representations, the use of an image database, and relevance feedback 

as an effort to enhance the CBIR based image retrieval. Other alternative approach is to 

integrate textual image retrieval into the conventional CBIR such EKEY (EKEY, 2012), 

BISs (Torres et al., 2004), SuperIDR (Murthy et al., 2009), and as teaching tool for 

parasitology (Kozievitch et al., 2010) as described above. This kind of work is not only 

very few but mostly rely on relational databases and XML formats. In this study, an 

approach to reduce the semantic gap is proposed by adopting the ontology as a layer to 
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filter irrelevant data before we use the CBIR approach. Instead of conventional database 

systems or even XML, the ontology is preferred as it allows web resources to be 

semantically enriched (Nicola, Missikoff, & Navigli, 2005). Unlike databases, one of 

the fundamental assets of ontology-based approach is that it is independent of platform 

and applications. Thus, in this study the conventional CBIR is integrated with ontology 

to give a better retrieval efficiency and performance. 

 

6.4 Retrieval Performance 

Retrieval results in the Section 5.6.4 show that the OBIR layer has an impact on the 

relevancy of the retrieved images. Both models used the same image database (data 

source) as a training set. However, the main difference lies in its size and relevancy, 

whereby in Model 1, all the images are used as the training set; while in Model 2, only a 

selected subset used it because the training set is filtered by the query in the OBIR layer. 

Thus, the numbers of classes in the feature space for both models were different. From 

the results, it shows that the relevancy rate of the image retrieval in Model 2 is more 

relevant than in Model 1. It can be concluded that the relevancy rate increases when the 

size of the training set decreases since all the images are mostly relevant to the query 

image. Besides that, it shows that the size of training set effect the relevancy rate of the 

retrieved images whereby the relevancy rate is inversely proportional to the size of the 

training set. 

 

6.5 Approach Applicability 

The proposed architecture is designed to support the heterogeneous biological data. In 

biodiversity, vast images in many colors, shapes and textures are produced. However, 

because of function limitations provided by database system, the images and the 

annotations along with the images are often ignored. Moreover, because of the 
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complexity of images such as how they deal with many diagnostic characteristics, the 

developers may have problem in developing a practical image retrieval system. Thus, 

when the CBIR approach integrates with the ontology approach, the high-level features 

of the images can be utilized in ontology; whereas the low-level features can be utilized 

in CBIR. Consequently, the developers can minimize the features to be used for 

representing the images; yet is able to maintain the relevancy to the possible images to 

be used for the training set in CBIR. 

 

6.6 Ontology Applicability in Organizing Biology Data  

Biology data is a large subject area. Some of the characteristics of biology data are 

heterogeneous, in interrelation-manner, complex business logics, with data structure 

constantly changing and evolving over time and has special requirements of scientific 

culture. Thus, it shows there is a need to organize this data in a meaningful manner 

using semantic representation in ontology, whereby the relevant and related information 

can be searched and retrieved to user’s query. This approach is suitable for organizing 

the data in heterogeneous, dynamic, broad domain knowledge, workflow oriented and in 

information integration style. 

 

6.7 Display Retrieved Images in Ranked Order 

In the proposed architecture, all the retrieved images are displayed in a ranked order. 

Thus, this makes it easier for user to closely verify whether the retrieved images are 

relevant or irrelevant to a user’s query. 
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6.8 Query Image by Example 

The proposed architecture provides the query image examples for user to retrieve 

similar images. Thus, this method is suitable for application where the target has similar 

images that the user wants to retrieve but is under different varieties as shown in Figure 

5.39. By doing this, user is not required to provide any explicit description of the target 

images as it is computed by the system. 

 

6.9 Proposed Architecture Limitations  

In spite of the above strengths, the proposed architecture also has some limitations:- 

 

6.9.1 Image pre-processing 

All the images must undergo a pre-processing stage before it can be used for retrieval. 

The purpose of the pre-processing image is to normalize all the images to eliminate 

differences among the images so that the image are in the same standard and are cleared 

of any noise. In this study, the pre-processing image is performed manually and requires 

a lot of time to ensure that the images are in good quality. 

 

6.9.2 Query by example using internal image 

As stated above, user can send a query image by example to retrieve similar images. 

However, in this proposed architecture, the query image is limited to internal images 

whereby a user has to use the provided unknown images as a query image. Thus, it 

limits a user’s requests in order to perform the retrieval process. 
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6.9.3 Data annotation in ontology 

The major difficulty in using ontology approach is during data annotation. To make 

informative ontology, each instance must be annotated in detail. Thus in the early stage 

of annotation the work requires a lot of time. 

 

6.9.4 CBIR limitations 

CBIR retrieval performance is determined by the quality of the image as described 

above, as well as the feature used to represent the image. Currently, only one feature is 

used for image representation. Eventhough it is able to do image recognition, it needs to 

use more features such as curvature and boundary-based information. For this reason, 

the relevant images in the retrieved images can be nearer to the query image. The 

number of images is also a very important requirement because it is the main input for 

the system. However, there is a limitation of the images in the dataset. 

 

6.10 Future Work 

As mentioned in the above section in the proposed architecture limitations, several 

suggestions are recommended for future enhancement. 

 

6.10.1 Implementation in other domain 

Current proposed architecture is has only been tested with haptoral bars of the 

monogeneans. In future, other diagnostic hard parts such as haptoral anchor and 

copulatory organ will be included in the proposed model so that more testing and 

evaluation can be conducted. Based on these results, it can be used as the proof and 

eventually this architecture can be implemented in other domain involving images such 

as archeology, earth sciences and geology. Currently in archeology, the images are well 
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described with their own previous historical information such as year, location and 

person involved. While in earth sciences and geology, the images are well described 

with the geographic information such as location, longitude, latitude and map. 

 

6.10.2 Upgrading query image methods  

Since this proposed architecture limits a user’s requests by using the provided internal 

images for query image, the query image will be further enhanced with query by 

example using external image and query by sketching. For query by example using 

external image, a user can provide his or her own image as query image. User is free to 

use any image as long as that image has a similar look in terms of shape or color or 

texture with the images in the database. On the contrary, query by sketch allows user to 

draw a sketch of an image as query image. Query by sketching can be done in instances 

where the retrieval system provides the editing tools for user to draw or using any third 

party drawing tool. 

 

6.10.3 Automatic image quality checker 

For standardizing the images, normalization function can be added in order that the 

images undergo first pre-processing image computationally. As mentioned previously, 

this pre-processing image requires alot of time and it is not an easy task. This task 

cannot be ignored as the relevancy of the retrieved images is influenced by the quality 

of the images. Therefore, this function can help in standardizing the images with certain 

criteria. 
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6.10.4 Customizable search criteria with semantic query  

The queries developed and used in this study are simple static queries using the 

predefined vocabularies (see Appendix A). Although the retrieved results indicate that 

the images are well annotated, a semantic based query might allow more versatility in 

querying the data. In the future, incorporating natural query language will further 

develop work on semantics query and in addition, a user can make a search using any 

word or sentence related to monogeneans and their hosts.  

 

6.10.5 Semantic search engine 

Currently, a simple Boolean search is used to perform the searching in the RDF graph 

data. In future, the semantic search engine will be incorporated into the current 

searching methods such as graph patterns and fuzzy logics. 

 

6.10.6 Upgrading to more informative ontology  

The vocabularies currently used in the ontology are enough to accommodate the data. 

However, to make it more informative and useful to user, more vocabularies will be 

added in the future. 

 

Current MHBI ontology links to Fish ontology and forming merged MHBI-Fish 

ontologies. In the future, other ontology for the monogenean hosts such as amphibians 

and reptiles will be created and linked with MHBI. Eventually, this study will further 

develop into a monogenean knowledge base to assist researchers in retrieving 

information for future analysis. 
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6.11 Conclusion 

Though image retrieval sounds like a fairly simple problem, but it is not an easy task to 

work on especially in biology.  Biologists normaly produce a huge number of images. 

Some of these images may contain simple objects and some may contain complex 

objects. Besides that, each image is normally well described with their annotations 

whereby these annotations are often ignored in online biology database. Furthermore, 

most of the image databases do not provide image retrieval capability using CBIR 

approach, whereby, the images are retrieved based on text-based query. Thus, it leads 

into retrieving irrelevant images to the user’s query. In other field such as in digital 

library, the image annotation is widely used to support their image retrieval purposes. 

Hence, after considering the heterogeneous of biological data, complexity of the images 

and a need of integrating automatic image retrieval to provide more useful information 

and knowledge to the researchers, the objectives of this study is to fulfill all these 

requirements in an integrated manner and are accomplished while taking into 

consideration the advance in semantic web ontology, metadata languages and CBIR. 

 

To retrieve more relevant images to the user query, ontology-based image retrieval 

(OBIR) is used as approach to reduce the training set images for the CBIR layer by 

eliminating the irrelevant images using the text-based query in OBIR layer. This 

technique, which is also referred as data reduction usually used in data pre-processing to 

obtain a reduced representation of the dataset, which is smaller in quantity, yet closely 

maintains the integrity of the original data. The implication of this approach shows that 

the relevancy of the retrieved images in the proposed architecture is better than the 

conventional CBIR approach. 
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In conclusion, the main contributions of this study, (i) architecture for managing 

heterogeneous datasets collection, (ii) reducing the semantic gap between the query 

image and training set images by adopting the ontology as a layer to filter irrelevant 

images before using the CBIR approach, (iii) the retrieved results contains the retrieved 

images in ranked order together with the textual annotations attached to the image, 

therefore providing more information and knowledge, and finally, (iv) implementing the 

proposed architecture using illustration of monogeneanhaptoral bar diagnostic hard part 

to demonstrate how text- and content- based information can be integrated for building 

a better image retrieval system. 
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APPENDICES 

Appendix A – TDWG LSID and New Vocabularies 

Vocabulary Range Description 

Concepts (Classes) 

Specimen - It represents the record of specimen. The specimen includes image, fossil, 

herbarium, text or video. In this study it represents the illustrated images of the 

haptoral bars of the monogeneans 

TaxonName - It represents a single scientific name  

PublicationCitation - It represents a reference to a publication  

DiagnosticPartTerms - It represents the name of the monogenean hard parts 

KindOfSpecimenTerm - It represents the specimen terms such as Illustration,Digital Object, Still Image 

TaxonRankTerms - It represents the taxon rank terms such as Species, Genus, Family, Order 

PublicationTypeTerms - It represents the publication types such as Article, Journal, Book 

Object properties 

kindOfSpecimen KindOfSpecimenTerms The kind of object this specimen is e.g. Illustration, Digital Object, Still Image. 

It links to an instance of KindOfSpecimenTerms 

isHaptorBar DiagnosticPartTerms The kind of diagnostic part this specimen is e.g. Haptor Sclerotised parts Bar, 

Haptor Sclerotised parts Anchor Full Image. It links to an instance of 

DiagnosticPartTerms 

isCitedIn PublicationCitation Where the specimen is cited in publication. It links to an instance of 

PublicationCitation 

typeForName TaxonName A name for which this specimen is a type. It links to an instance of TaxonName 

isHostedIn TaxonName  A link to the host species. It links to an instance of TaxonName in the merged 

monogenean image- fish ontology 

rank TaxonRankTerms The taxonomic rank of this taxon e.g. Species, Genus, Family, and Order. It 

links to an instance of TaxonRankTerms 
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TDWG LSID and New Vocabularies, continued 

isBelong TaxonName Which taxon it belongs to. It links to an instance of TaxonName 

part  Which monogenean diagnostics hard part it represents 

hasSpecies TaxonName Species in the genus. It links to instances of TaxonName 

hasGenus TaxonName Genus or genera in the Family. It links to instance(s) of TaxonName 

hasFamily TaxonName Family or families in the Order. It links to instance(s)  of TaxonName 

hasOrder TaxonName Order or Orders in the Class. It links to instance(s) of TaxonName 

publicationType PublicationTypeTerms The type of the publication e.g. Book, Journal Article, Journal. It links to an 

instance of PublicationTypeTerms 

lists TaxonName Types of Taxon listed in the publication. It links to an instance of  TaxonName 

Datatype properties 

specimenId String The museum deposition number of the specimen 

imgDir String The image path directory where the image is stored 

imgDescription String Description of the image 

locality String Location where the specimen is collected 

nameComplete String The complete name of the taxon 

authorship String The name of all the authors to this taxon 

year String The year of publication of this taxon 

authorship String The authors of the publications 

year String The year of the publication 

title String The title of the publication 

parentPublicationString String The name of journal of the publication. 

number String The part number of the publication. E.g. 12, 325-330 means volume 12, p. 325-

330 

definedTerm String The complete name of the term 

 

TDWG LSID and new vocabularies (highlighted with gray background). The range of the vocabulary refers to the type of values for the object and 

datatype propertyies (Toby et al., 2009) 
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Appendix B – Sample of Source Codes 

(i) Query page 

queryImgKb.jsp 

.. 
<form action="getImgKb" method="post" enctype="multipart/form-data" 

name="productForm" id="productForm"> 

 

<table width="400px" align="center" border=1 style="background-color:ffeeff;"> 

 <tr> 

  <td align="center" colspan=2 style="font-weight:bold;font-

size:20pt;"><p>Query for Monogenean Haptoral Bar Image Retrieval<br>(shape-based 

image retrieval)</br></p></td> 

 </tr> 

 <tr> 

  <td>Test image: </td> 

  <td><input type="file" name="file" id="file"></td> 

 </tr> 

 <tr> 

  <td>Select training set: </td> 

  <td> 

   <input name="tset" type="radio" value="hb">Haptoral bar 

images<br> 

   <input name="tset" type="radio" value="hbd">Haptoral bar 

(Dorsal) images<br> 

   <input name="tset" type="radio" value="hbv">Haptoral bar 

(Ventral) images<br> 

  </td> 

  </tr> 

 <tr> 

  <td align="center" colspan=2><p><input type="submit" 

name="Submit" value="Upload"></p></td> 

 </tr> 

</table> 

 

</form> 

.. 

 

(ii) Query processing I 

getImgKb.java 

.. 
 //**get training set**BEGIN// 

   

  query = req.get(1); 

  System.out.println("query : " + query); 

   

  if (query.equals("hb")) {       

      try { 

       /** 

       page="/selShape.jsp"; 

       System.out.println("tset : " + query); 

       List<String> imgdetail = new monogeneanKb().hbImgs(); 

       request.setAttribute("hbimgdetail",hbimgdetail); 

        */ 

       imgdetail = new monogeneanKb().hbImgs(); 

        

      } catch (IOException e) { 

       e.printStackTrace(); 

      } 

  }//(query.equals("hb")) 

 

  else if (query.equals("hbd")) { 

      try { 

       imgdetail = new monogeneanKb().hbdImgs();     

  

      } catch (IOException e) { 

       e.printStackTrace(); 

      }    
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  }//(query.equals("hbd")) 

 

  else if (query.equals("hbv")) { 

      try { 

       imgdetail = new monogeneanKb().hbvImgs(); 

      } catch (IOException e) { 

       e.printStackTrace(); 

      }    

  }//(query.equals("hbv")) 

.. 
  else {  

      page="/MonoPage1.jsp"; 

   System.out.println("query : " + query); 

     } 

.. 
  //**get training set**END// 

 

page="/selShape.jsp";//for displaying results 

.. 

 

(iii) Loading the graph data 

monogeneanKb.java 

.. 
 public List<String> hbImgs() throws IOException { 

.. 
 String className = "com.mysql.jdbc.Driver"; 

      IDBConnection conn = null; 

      Model modeltmp = null; 

  OntModel mKBase = null; 

 

 try { 

  Class.forName(className); 

  System.out.println("JDBC Driver found"); 

 } catch (ClassNotFoundException e) { 

  System.out.println("JDBC Driver NOT found!!"); 

  e.printStackTrace(); 

 }        

 

     String DB_URL = new String("jdbc:mysql://localhost:3306/monokb1c"); 

     String DB_USER = new String("root"); 

     String DB_PASSWD = new String("p@ssw0rd");//202.185.70.191 

     String DB_TYPE = new String("MySQL"); 

  

     conn = new DBConnection(DB_URL, DB_USER, DB_PASSWD, DB_TYPE); 

      

     try { 

  if(conn.getConnection() != null)  // throws exception 

         System.out.println("Connection Successful"); 

  } catch (SQLException e) { 

   e.printStackTrace(); 

  }   

    

     ModelMaker maker = ModelFactory.createModelRDBMaker(conn); 

 

     //check to see if the model is already present in db 

     if(conn.containsModel("MonogeneanInstancesDB")){ 

      modeltmp=maker.openModel("MonogeneanInstancesDB",true); //throws 

exception if not present 

      } 

     else { 

      modeltmp = maker.createModel("MonogeneanInstanceDB"); 

     } 

      

     OntModelSpec spec = new OntModelSpec(OntModelSpec.OWL_MEM); 

     mKBase = ModelFactory.createOntologyModel(spec,modeltmp); 

 List<String> dataList = new ArrayList<String>();    

 StringBuffer queryStr = new StringBuffer(); 

     

 InputStream in = 

FileManager.get().open("D:arpah/workspace/Monogenean//Ontologies/MonogeneanKB1.o

wl"); 

 mKBase.read(in,"http://202.185.70.191/Monogenean/Ontologies/monogeneankb

1#"); 
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 InputStream in2 = 

FileManager.get().open("D:arpah/workspace/Monogenean//Ontologies/FishOnt.owl"); 

 mKBase.read(in2,"http://202.185.70.191/Monogenean/Ontologies/monogeneank

b1#"); 

 InputStream in3 = 

FileManager.get().open("D:arpah/workspace/Monogenean//Ontologies/TaxonRank.owl")

; 

 mKBase.read(in3,"http://202.185.70.191/Monogenean/Ontologies/monogeneank

b1#"); 

.. 
 }//hbImgs() 

.. 
 

(iv) Sparql query 

monogeneanKb.java 

.. 
 public List<String> hbImgs() throws IOException { 

.. 
 queryStr.append("PREFIX MonogeneanKB1" + ": <" + 

"http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#" + "> "); 

 queryStr.append("PREFIX FishOnt" + ": <" + 

"http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#" + "> "); 

 queryStr.append("PREFIX TaxonRank" + ": <" + 

"http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl#" + "> "); 

 queryStr.append("PREFIX rdfs" + ": <" + "http://www.w3.org/2000/01/rdf-

schema#" + "> "); 

 queryStr.append("PREFIX rdf" + ": <" + "http://www.w3.org/1999/02/22-

rdf-syntax-ns#" + "> "); 

 

 String queryRequest = " select * where{  " + 

 "?sub MonogeneanKB1:kindOfSpecimen MonogeneanKB1:DigObject . " + 

 "?sub MonogeneanKB1:isHaptorBar MonogeneanKB1:HaptorSclerotisedpartsBar 

. " + 

   

 "?sub MonogeneanKB1:specimenId ?specimenId . " + 

 "?sub MonogeneanKB1:imgDir ?imgDir ." +  

 "?sub MonogeneanKB1:imgDescription ?imgDesc . " + 

 

 "?sub MonogeneanKB1:shapeType ?specimenShapeType . " +   

 "?specimenShapeType MonogeneanKB1:defineAs ?specimen_shape . " + 

   

 "?sub MonogeneanKB1:typeForName ?spname . " + 

 "?spname MonogeneanKB1:nameComplete ?nameComplete " + 

 ";       MonogeneanKB1:authorship ?authorship " + 

 ";       MonogeneanKB1:year ?year ." + 

   

 "?sub MonogeneanKB1:isCitedIn ?pub . " + 

 "?pub MonogeneanKB1:pub_author ?pub_author " + 

 "; MonogeneanKB1:pub_year ?pub_year  " + 

 "; MonogeneanKB1:pub_number ?pub_number  " + 

 "; MonogeneanKB1:pub_parentPublicationString ?pub_publisher  " + 

   

 "; MonogeneanKB1:pub_title ?pub_title . " + 

 

 "?sub MonogeneanKB1:isHostedIn ?host . " + 

 "?host FishOnt:nameComplete ?host_name . " + 

 "?host FishOnt:authorship ?host_authors . " + 

 "?host FishOnt:year ?host_year " + 

   

 "} ";  //add the query string 

 

 queryStr.append(queryRequest);  

 Query query = QueryFactory.create(queryStr.toString()); 

 QueryExecution qexec = QueryExecutionFactory.create(query, mKBase); 

   

 try { 

  ResultSet response = qexec.execSelect(); 

 

  while( response.hasNext()){ 

   QuerySolution soln = response.nextSolution(); 

 

   RDFNode imgdir = soln.get("?imgDir"); 

   RDFNode imgDesc = soln.get("?imgDesc"); 
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   RDFNode specimen_id = soln.get("?specimenId"); 

   RDFNode specimen_shape = soln.get("?specimen_shape"); 

     

   RDFNode spname = soln.get("?nameComplete"); 

   RDFNode authorship = soln.get("?authorship"); 

   RDFNode year = soln.get("?year"); 

     

   RDFNode host_name = soln.get("?host_name"); 

   RDFNode host_authorship = soln.get("?host_authors"); 

   RDFNode host_year = soln.get("?host_year"); 

     

   RDFNode pub_author = soln.get("?pub_author"); 

   RDFNode pub_year = soln.get("?pub_year"); 

   RDFNode pub_title = soln.get("?pub_title"); 

   RDFNode pub_publisher = soln.get("?pub_publisher"); 

   RDFNode pub_number = soln.get("?pub_number"); 

         

   if( imgdir != null ){ 

    dataList.add(imgdir.toString()); 

    dataList.add(imgDesc.toString()); 

    dataList.add(specimen_id.toString()); 

    dataList.add(spname.toString()); 

    dataList.add(authorship.toString()); 

    dataList.add(year.toString()); 

    dataList.add(host_name.toString()); 

    dataList.add(host_authorship.toString()); 

    dataList.add(host_year.toString()); 

    dataList.add(pub_author.toString()); 

    dataList.add(pub_year.toString()); 

    dataList.add(pub_title.toString()); 

    dataList.add(pub_publisher.toString()); 

    dataList.add(pub_number.toString()); 

    dataList.add(specimen_shape.toString()); 

   } 

   else 

    System.out.println("No taxon found!"); 

  }    

    

 } finally { qexec.close();}     

  

  return dataList; 

 }//hbImgs() 

.. 
 

(v) Result page 

selShape.jsp 

.. 
 String inImg = (String)request.getAttribute("timage"); 

 String serURLInImg = 

"http://202.185.70.193:8080/Monogenean/inputImage/"; 

 String serURLPubImg = "http://202.185.70.193:8080/Monogenean/pubImg/"; 

 String serURLtImg = 

"http://202.185.70.193:8080/Monogenean/trainingSets/trainingsetgreyL1L2L3L4L5L6/

"; 

  

 Iterator i; 

 

 List<String> tset = (List)request.getAttribute("imgdetail");//result 

from getImgKb.java - hb() 

 List<String> fnameL1 = new ArrayList<String>();//to store the file names 

only for images to be displayed in selShape.jsp 

.. 
 //list 1 - 50 images - page 1 

 for(int x=0;x<50;x++){ 

  String filename = (String) tset.get(i10); 

  fnameL1.add(filename); 

  System.out.println(" img dir = "+filename); 

  i10+=15; 

 } 

.. 
    <tr> 

      <td align="center" colspan=2 style="font-weight:bold;font-

size:20pt;"><p>Shape Recognition</p></td> 



187 

 

    </tr> 

    <tr>   

      <td width="20%" align="center">Test image :</td> 

      <td width="80%" align="center"><p><img src="<%= serURLInImg+inImg %>" 

width="200" height="100"></p></td> 

    </tr> 

    <tr> 

      <td align="center">Training set :</td> 

      <td align="center"><p><%= y %> images in the training set 

      <input name="viewImages" type="button" 

onClick="javascript:window.open('http://202.185.70.193:8080/Monogenean/viewImgs.

jsp?param=<%=fnameL1%>','_blank','scrollbars=no,menubar=no,height=600,width=1000

,resizable=yes,toolbar=no,location=no,status=no','');" value="View Images Page 

1">  

.. 
viewImgs.jsp 

.. 
 String[] values = request.getParameterValues("param"); 

 System.out.println("values = "+values); 

 

 Iterator i; 

 List<String> params1 = new ArrayList<String>(); 

 

 String serURLtImg = 

"http://202.185.70.193:8080/Monogenean/trainingSets/trainingsetgreyL1L2L3L4L5L6/

"; 

  

 String valuesSubstr0 = values[0].substring(1,values[0].length()-1); 

 System.out.println("valuesSubstr0 = "+valuesSubstr0); 

 

 Pattern p1 = Pattern.compile("[,\\s]+"); 

 String[] res1 = p1.split(valuesSubstr0); 

 for (int j = 0; j < res1.length; j++) { 

  System.out.println(res1[j]); 

  params1.add(res1[j]); 

 } 

.. 
  <td align="center"><p CLASS="nounderline"><font style="font-

weight:bold;font-size:20pt;">Images in the training set</font>  

  <a 

href="javascript:window.open('','_parent','');window.close();">[<font>Close 

Window</font>]</a> 

  </p></td> 

.. 
  <td><table align="center" border="0" cellspacing="0" 

cellpadding="0"> 

<% 

 for (i=params1.iterator(); i.hasNext(); ) 

 { 

%>   

   <tr> 

    <td align="center"><p><img src="<%= 

serURLtImg+i.next()%>" width="50" height="50"></p></td> 

.. 

 

(vi) Data for CBIR 

selShape.jsp 

.. 
 List<String> tset = (List)request.getAttribute("imgdetail");//result 

from getImgKb.java - hb() 

.. 
request.getSession().setAttribute("imgList",tset);//input for CBIR 

.. 
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(vii) Query page for image uploading (Model 1) 

queryimg.jsp 

.. 
<form action="uploadQueryImg" method="post" enctype="multipart/form-data" 

name="productForm" id="productForm"> 

.. 
 <tr> 

  <td>Test image: </td> 

  <td><input type="file" name="file" id="file"></td> 

 </tr> 

 <tr> 

  <td align="center" colspan=2><p><input type="submit" 

name="Submit" value="Upload"></p></td> 

 </tr> 

.. 
</form> 

.. 
 

(viii) Query page for image uploading (Model 2) 

queryImgKb.jsp 

.. 
<form action="getImgKb" method="post" enctype="multipart/form-data" 

name="productForm" id="productForm"> 

.. 
  <td align="center" colspan=2 style="font-weight:bold;font-

size:20pt;"><p>Query for Monogenean Haptoral Bar Image Retrieval<br>(shape-based 

image retrieval)</br></p></td> 

.. 
 <tr> 

  <td>Test image: </td> 

  <td><input type="file" name="file" id="file"></td> 

 </tr> 

.. 
</form> 

.. 
 

(ix) Query processing (Model 1) 

uploadQueryImg.java 

.. 
 String page = "/optshape.jsp"; 

 String viewImage = " "; //test image 

.. 
 String uploadImage = fname+"_"+r+domainName; 

 viewImage = fname+domainName; 

 

 File savedFile = new 

File("D:/arpah/workspace/Monogenean/"+"userInput\\"+uploadImage); 

 item.write(savedFile); 

.. 
 request.setAttribute("viewImg", viewImage); 

.. 
optShape.jsp 

.. 
<form action="shapeRecognition" method="get"  enctype="multipart/form-data" 

name="productForm" id="productForm"> 

.. 
        <tr> 

          <td colspan="3" align="center"> 

            <div align="center"> 

            <input name="shape" type="radio" value="s123456B"> 

          All shapes</div></td> 
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        </tr>         

.. 
    <tr> 

     <td align="center" colspan=2><p><input type="submit" name="Submit" 

value="Start"></p></td> 

    </tr> 

  </table> 

</form> 

.. 
 

(x) Query processing (Model 2) 

getImgKb.java 

.. 
 File savedFile = new 

File("D:/arpah/workspace/Monogenean/"+"userInput\\"+uploadImage); 

 item.write(savedFile); 

req.add(itemName); 

.. 
  page="/selShape.jsp";  

.. 
  request.setAttribute("imgdetail",imgdetail); 

.. 
 

(xi) Training set list (Model 1) 

shapeRecognition.java 

.. 
   //training set images 

   File dir1 = new 

File(serverDir+"WebContent/trainingSets/ts1"); 

..    

   //get all the images from var dirX and store in others[] 

array 

   others1 = dir1.listFiles(); 

.. 
 

(xii) Training set list (Model 2) 

getImageShape.java 
 
.. 
 //get from selShape.jsp 

 String testImg = request.getParameter("testImg"); 

 String optshape = request.getParameter("shape"); 

 List imgList = (List) request.getSession().getAttribute("imgList"); 

.. 
//split imgList list into 6 groups 
  for (int indexof=14; indexof<imgListSize; indexof+=15){ 

   String setshape = (String)imgList.get(indexof); 

   

   String imgDir = (String)imgList.get(indexof-14); 

   String imgDesc = (String)imgList.get(indexof-13); 

    

   String spname = (String)imgList.get(indexof-11); 

   String authorship= (String)imgList.get(indexof-10); 

   String year = (String)imgList.get(indexof-9); 

 

   String host_name = (String)imgList.get(indexof-8); 

   String host_authors = (String)imgList.get(indexof-7); 

   String host_year = (String)imgList.get(indexof-6); 

    

   String pub_author = (String)imgList.get(indexof-5); 

   String pub_year = (String)imgList.get(indexof-4); 

   String pub_title = (String)imgList.get(indexof-3); 
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   String pub_publisher = (String)imgList.get(indexof-2); 

   String pub_number = (String)imgList.get(indexof-1); 

       

   if (setshape.equals("Shape1")){    

    iList1.add(imgDir); 

    iList1.add(imgDesc); 

    iList1.add(spname); 

    iList1.add(authorship); 

    iList1.add(year); 

    iList1.add(host_name); 

    iList1.add(host_authors); 

    iList1.add(host_year); 

    iList1.add(pub_author); 

    iList1.add(pub_year); 

    iList1.add(pub_title); 

    iList1.add(pub_publisher); 

    iList1.add(pub_number); 

   } 

   .. 
 

   else if (setshape.equals("Shape6")){ 

    iList6.add(imgDir); 

.. 
   } 

  } 

.. 
 

(xiii) Feature extraction 

shapeRecognition.java (Model 1) & getImageShape.java (Model 2) 

.. 
 //polygonal coordinates to extract region (aka shape on the image)  

 s1 = boundingBox1.readFromFile(serverDir+"extFiles/box1.txt"); 

.. 

boundingBox1.java 

.. 
 // Skip comment. 

 br.readLine(); 

 // For each line... 

 while(true) 

 { 

  String s = br.readLine(); 

  if (s == null) break; 

  String[] tokens = s.split(" "); 

  int x = Integer.parseInt(tokens[0]); 

  int y = Integer.parseInt(tokens[1]); 

  pol.addPoint(x,y); 

 }   

.. 
 

(xiv) Defining feature space 

shapeRecognition.java (Model 1) 

.. 
 //**TEST IMAGE**//    

 imageROI inROI1 = new imageROI(inImage,s1); 

.. 
 //FEATURE VECTOR FOR TEST IMAGE 

 //get pixel mean value for test image 

 inImgMean1 = inROI1.getMean(); 

.. 
 //FEATURES VECTOR FOR TRAINING SET 

 //get pixel mean value of all pixels in each region in tsImage[] array 

and store into variable ts_means[0] 

  double[] ts_means = r.getMean(); 

  cts_means[o] = ts_means[0];  

.. 
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getImageShape.java (Model 2) 

.. 
//**TEST IMAGE**// 

 imageROI inROI1 = new imageROI(inImage,s1); 

.. 
 //FEATURE VECTOR FOR TEST IMAGE 

 //get pixel mean value for test image 

 inImgMean1 = inROI1.getMean(); 

.. 
 //for shape classification / shape matching (i)input image (ii) 

polygonal coordinates for bounding box (iii) training set 

 List<String> retrievedImgs1 = new 

shapeMatching().findNearest(inImgMean1[0], s1, iList1); 

.. 

shapeMatching.java (Model 2) 

 
.. 
   imageROI r = new imageROI(tsImg[o],s); 

 

   //FEATURES VECTOR FOR TRAINING SET 

   //get pixel mean value of all pixels in each region in 

tsImage[] array and store into variable ts_means[0] 

   double[] ts_means = r.getMean(); 

   //System.out.format("Mean %5.2f\n",ts_means[0]); 

.. 

imageROI.java 

.. 
 // Calculate the number of points on that region. 

 numberOfPixels = 0; 

 // Use the bounding box to speed things. 

 for(int h=boundingBox.y;h<boundingBox.y+boundingBox.height;h++) 

 { //System.out.println("h: " + boundingBox.y); 

  for(int w=boundingBox.x;w<boundingBox.x+boundingBox.width;w++) 

  {  

   if (roi.contains(w,h)) 

    numberOfPixels++; 

  } 

 } 

.. 
 public double[] getMean() 

 { 

  double[] mean = new double[numBands]; 

  // For all pixels on the image and polygon bounds 

.. 
    // Is this point inside the polygon ? 

    if (roi.contains(w,h)) 

    { 

     // Get the array of values for the pixel 

on the w,h coordinate. 

     double[] pixel = new double[numBands]; 

     raster.getPixel(w,h,pixel); 

     for(int b=0;b<numBands;b++) mean[b] += 

pixel[b]; 

    } 

..   
   for(int b=0;b<numBands;b++) mean[b] /= numberOfPixels; 

       

   return mean; 

 } 

.. 
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(xv) Similarity comparison 

shapeRecognition.java (Model 1) 

.. 
  //**SIMILARITY COMPARISON**//    

  //findNearest(inImgMean[0], s, others); 

..  
  List<String> retrievedImgs = findNearest(inImgMean[0], s, 

others); //for shape classification / shape matching (i)input image (ii) 

polygonal coordinates for bounding box (iii) training set  

.. 
 //function: to calculate the distance and find the nearest similar to 

test image 

 private List<String> findNearest(double tImage, Shape s, File[] cList) 

throws IOException { 

  // TODO Auto-generated method stub 

  //read images in training set (others[]) and store the 

information of each images in tsImage[] array  

   

  //get number of images in the training set 

  int y = cList.length; 

  System.out.println("\nLength training set [y]: "+ y); 

   

  double[] cts_means = new double[y]; 

  double[] cts_means_round = new double[y]; 

  double[] distN = new double[y]; 

   

  String [] cFname = new String [y]; 

   

  List<String> dataList = new ArrayList<String>(); 

..    

   cts_means[o] = ts_means[0];  

   double dist = (Math.sqrt((tImage - ts_means[0])*(tImage - 

ts_means[0]))); 

    

   double roundDist = Math.round(dist*100)/100.0d; //decimal 

format - #.##  

   distN[o] = roundDist; 

  } 

.. 

shapeMatching.java (Model 2) 

.. 
public List<String> findNearest(double tImage, Shape s, List cList) throws 

IOException { 

.. 
  //get number of images in the training set 

  //int y = cList.length; 

  int y1 = cList.size(); 

  int y2 = y1/13; 

.. 
  //SIMILARITY COMPARISON 

  cts_means[o] = ts_means[0];  

  double dist = (Math.sqrt((tImage - ts_means[0])*(tImage - 

ts_means[0]))); 

  //DecimalFormat df = new DecimalFormat ("#.##"); 

  double roundDist = Math.round(dist*100)/100.0d; //decimal format 

- #.##  

  distN[o] = roundDist; 

.. 
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(xvi) Indexing and retrieval 

shapeRecognition.java 

.. 
private List<String> findNearest(double tImage, Shape s, File[] cList) throws 

IOException { 

.. 
 //sorting distance, distN array in descending order 

 for (int p1=0; p1 < y-1 ; p1++) { 

  for (int p2=p1 + 1; p2 < y ; p2++) { 

   if (distN[p1] > distN[p2]) { 

    double temptDist = distN[p1]; 

    distN[p1] = distN[p2]; 

    distN[p2] = temptDist; 

      

    String tempFname = cFname[p1]; 

    cFname[p1] = cFname[p2]; 

    cFname[p2] = tempFname; 

      

    double tempcts_means_round = cts_means_round[p1]; 

    cts_means_round[p1] = cts_means_round[p2]; 

    cts_means_round[p2] = tempcts_means_round; 

   } 

  } 

 } 

.. 
shapeMatching.java 

.. 
 public List<String> findNearest(double tImage, Shape s, List cList) 

throws IOException {   

.. 
  //sorting distance, distN array in descending order 

  for (int p1=0; p1 < y2-1 ; p1++) { 

   for (int p2=p1 + 1; p2 < y2 ; p2++) { 

    if (distN[p1] > distN[p2]) { 

     double temptDist = distN[p1]; 

     distN[p1] = distN[p2]; 

     distN[p2] = temptDist; 

     ..      
     String tempPubNumber = pub_number[p1]; 

     pub_number[p1] = pub_number[p2]; 

     pub_number[p2] = tempPubNumber; 

    } 

   } 

  } 

.. 
 

(xvii) Result page (Model 1) 

allresultimg2.jsp 

.. 
    <tr> 

      <td align="center" colspan=2><table width="100%"  border="1" 

cellspacing="0" cellpadding="0" colspan="2"> 

       <tr> 

        <td align="center" colspan=3 bgcolor="#99CCCC"><p 

CLASS="nounderline"><a name="U-shape"><b>U-shape</b></a><br><a href="#b2t">[back 

to top]</a></p></td> 

       </tr> 

      <tr> 

        <td bgcolor="#666666"><font 

color="#ffffff"><b>Image</b></font></td> 

        <td bgcolor="#666666"><font color="#ffffff"><b>Mean 

pixel</b></font></td> 

        <td bgcolor="#666666"><font color="#ffffff"><b>Euclidean Distance 

measure</b></font></td> 

       </tr> 

<% 

      for (i=imgList2.iterator(); i.hasNext(); ) { 
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%> 

        <tr> 

          <td><p><img src="<%= serURLtImg+i.next()%>" width="200" 

height="100"></p></td> 

          <td><%= i.next() %></td> 

          <td><%= i.next() %></td> 

        </tr> 

<%   } 

%>         

      </table></td> 

    </tr> 

.. 
 

(xviii) Result page (Model 2) 

getImageShape.java 

.. 
String pageall = "/getResultAll.jsp"; //if against all the shapes 

.. 
 List<String> retrievedImgs1 = new 

shapeMatching().findNearest(inImgMean1[0], s1, iList1); 

.. 
 //pass result to be displayed at 'page' jsp file 

 request.setAttribute("testImg", testImg); 

 request.setAttribute("classRank", cRank); 

    

 request.setAttribute("retrievedImgs1", retrievedImgs1); 

   

.. 
getResultAll.jsp 

..     
    <tr> 

      <td align="center" colspan=2><table width="100%"  border="1" 

cellspacing="0" cellpadding="0" colspan="2"> 

       <tr> 

        <td align="center" colspan=3 bgcolor="#99CCCC"><p 

CLASS="nounderline"><a name="U-shape"><b>U-shape</b></a><br><a href="#b2t">[back 

to top]</a></p></td> 

       </tr> 

      <tr> 

        <td bgcolor="#666666"><font 

color="#ffffff"><b>Image</b></font></td> 

        <td bgcolor="#666666"><font color="#ffffff"><b>Distance 

measure</b></font></td> 

        <td bgcolor="#666666"><font 

color="#ffffff"><b>Details</b></font></td> 

       </tr> 

<% 

   for (int x=0; x < c22; x++) { 

%> 

        <tr> 

          <td><p><img src="<%= serURLtImg+imgDir2[x]%>" width="200" 

height="100"></p></td> 

          <td><%=distN2[x]%></td> 

          <td align="left"><p><b>Description:</b> <%=imgDesc2[x]%><br> 

          <b>Taxon:</b> <i><%=spname2[x]%></i> <%=authorship2[x]%>, 

<%=year2[x]%><br> 

          <b>Host:</b> <i><%=host_name1[x]%></i> <%=host_authors2[x]%>, 

<%=host_year2[x]%><br> 

          <b>Publication:</b> <%=pub_author2[x]%> (<%=pub_year2[x]%>). 

<%=pub_title2[x]%>. <%=pub_publisher2[x]%>. <%=pub_number2[x]%><br><br> 

          [<a 

href="http://202.185.70.193:8080/Monogenean/getDetails.jsp?param=<%=imgDir2[x]%> 

          &param=<%=spname1[x]%>&param=<%=authorship2[x]%>&param=<%=year2[x]%> 

          

&param=<%=host_name2[x]%>&param=<%=host_authors2[x]%>&param=<%=host_year2[x]%> 

          &param=<%=imgDesc2[x]%> 

          

&param=<%=pub_author2[x]%>&param=<%=pub_year2[x]%>&param=<%=pub_title2[x]%>&para

m=<%=pub_publisher2[x]%>&param=<%=pub_number2[x]%>" 

           target="_blank">View Full Details</a>] 

           </p></td> 
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        </tr>  

.. 

getDetails.jsp 

.. 
 <tr> 

  <td align="center" colspan=2 style="font-weight:bold;font-

size:20pt;"><p>Image Full Details</p></td> 

 </tr> 

  <tr> 

    <td width="50%"><table width="100%"  border="0" cellspacing="0" 

cellpadding="0"> 

<% 

    for (i=params.iterator(); i.hasNext(); ) { 

%> 

      <tr> 

        <td bgcolor="#666666"><span class="style1">Haptoral bar</span></td> 

      </tr> 

      <tr> 

       <td><p><img src="<%= serURLtImg+i.next()%>" width="200" 

height="100"></p></td> 

      </tr> 

      <tr> 

        <td bgcolor="#666666"><span class="style1">Scientific classification 

(Taxon) </span></td> 

      </tr> 

.. 
      <tr> 

        <td bgcolor="#666666"><span class="style1">References</span></td> 

      </tr> 

      <tr> 

        <td>&nbsp;<%= i.next() %> (<%= i.next()%>). <%= i.next()%>. <%= 

i.next()%>. <%= i.next()%></td> 

      </tr> 

       

    </table></td> 

<% 

    } 

%> 

  </tr> 

.. 
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Appendix C – Sample of Ontology OWL Codes and RDF Graph Data Code 

(i) Ontology OWL code for the MHBI-Fish Ontology (MonogeneanKb1.owl) 

<?xml version="1.0"?> 

 

 

<!DOCTYPE rdf:RDF [ 

    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 

    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 

    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 

    <!ENTITY FishOnt "http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#" 

> 

    <!ENTITY TaxonRank 

"http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl#" > 

]> 

 

 

<rdf:RDF xmlns="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#" 

     xml:base="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl" 

     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

     xmlns:owl="http://www.w3.org/2002/07/owl#" 

     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

     

xmlns:TaxonRank="http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl#" 

     xmlns:FishOnt="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#"> 

    <owl:Ontology 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl"> 

        <owl:imports 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl"/> 

    </owl:Ontology> 

 

    <!--  

//////////////////////////////////////////////////////////////////////////////// 

    // Object Properties 

////////////////////////////////////////////////////////////////////////////////      

--> 

 

    <!-- 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#basionymFor --> 

 

    <owl:ObjectProperty 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#basiony

mFor"/> 

     

.. 

    <!--  

//////////////////////////////////////////////////////////////////////////////// 

    // Data properties 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!-- 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#authorship --> 

 

    <owl:DatatypeProperty 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#authors

hip"> 

        <rdfs:subPropertyOf rdf:resource="&owl;topDataProperty"/> 

    </owl:DatatypeProperty> 

     

.. 

    <!--  

//////////////////////////////////////////////////////////////////////////////// 

    // Classes 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!-- http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#TaxonName --> 

 

    <owl:Class rdf:about="&FishOnt;TaxonName"/>     

.. 

    <!--  

//////////////////////////////////////////////////////////////////////////////// 

    // Individuals 

////////////////////////////////////////////////////////////////////////////////     



197 

 

--> 

.. 

    <!-- 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#HeteroAsymmetricus 

--> 

 

    <owl:NamedIndividual 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#HeteroA

symmetricus"> 

        <rdf:type 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#Taxo

nName"/> 

        <year>1988</year> 

        <authorship>Majumdar, Ramchandrula, Trupati &amp; Agrawal</authorship> 

        <nameComplete>Heteronchocleidus asymmetricus</nameComplete> 

        <isBelong 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#Hete

ronchocleidus"/> 

        <rank 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#Spec

ies"/> 

    </owl:NamedIndividual> 

     

    <!-- 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#HeteroAthari --> 

 

    <owl:NamedIndividual 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#HeteroA

thari"> 

        <rdf:type 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#Taxo

nName"/> 

        <year>1986</year> 

        <authorship>Pandey &amp; Mehta</authorship> 

        <nameComplete>Heteronchocleidus athari</nameComplete> 

        <isBelong 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#Hete

ronchocleidus"/> 

        <rank 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#Spec

ies"/> 

    </owl:NamedIndividual> 

     

.. 
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Ontology OWL code for the Fish Ontology (FishOnt.owl) 

<?xml version="1.0"?> 

 

 

<!DOCTYPE rdf:RDF [ 

    <!ENTITY owl "http://www.w3.org/2002/07/owl#" > 

    <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" > 

    <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#" > 

    <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#" > 

    <!ENTITY TaxonRank 

"http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl#" > 

]> 

 

 

<rdf:RDF xmlns="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#" 

     xml:base="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl" 

     xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#" 

     xmlns:owl="http://www.w3.org/2002/07/owl#" 

     xmlns:xsd="http://www.w3.org/2001/XMLSchema#" 

     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

     

xmlns:TaxonRank="http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl#"> 

    <owl:Ontology 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl"> 

        <owl:imports 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl"/> 

    </owl:Ontology> 

     

    <!--   

//////////////////////////////////////////////////////////////////////////////// 

    // Datatypes 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!--  

//////////////////////////////////////////////////////////////////////////////// 

    // Object Properties 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!-- http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#authorTeam --> 

 

    <owl:ObjectProperty 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#authorTeam"/> 

.. 

    <!--     

//////////////////////////////////////////////////////////////////////////////// 

    // Data properties 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!-- http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#authorship --> 

 

    <owl:DatatypeProperty 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#authorship"> 

        <rdfs:subPropertyOf rdf:resource="&owl;topDataProperty"/> 

    </owl:DatatypeProperty>    

.. 

    <!--    

//////////////////////////////////////////////////////////////////////////////// 

    // Classes 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!-- http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#TaxonName --> 

 

    <owl:Class 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#TaxonName"/> 

.. 

    <!--    

//////////////////////////////////////////////////////////////////////////////// 

    // Individuals 

////////////////////////////////////////////////////////////////////////////////     

--> 

 

    <!-- http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#Ang --> 

    <owl:NamedIndividual 

rdf:about="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#Ang"> 
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        <rdf:type 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#TaxonName"

/> 

        <authorship>null</authorship> 

        <nameComplete>Anguilliformes</nameComplete> 

        <year>null</year> 

        <hasFamily 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#AngAng"/> 

        <hasFamily 

rdf:resource="http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl#AngMur"/> 

        <rank rdf:resource="&TaxonRank;Order"/> 

    </owl:NamedIndividual> 

     

..   
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RDF graph data code 

mKBase: <ModelCom   

{http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl @rdf:type 

owl:Ontology; http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl 

@owl:imports http://202.185.70.191/Monogenean/Ontologies/FishOnt.owl; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#basionymFor 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#fullImage 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#fullImage 

@rdfs:subPropertyOf 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#part; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasBasionym 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasFamily 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasGenus @rdf:type 

owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasGenus 

@rdfs:range 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#TaxonName; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasOrder @rdf:type 

owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasSpecies 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hasSpecies 

@rdfs:range 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#TaxonName; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#hostCollection 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isBar @rdf:type 

owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isBar 

@owl:equivalentProperty 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isHaptor; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isBar 

@owl:equivalentProperty 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isHaptorBar; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isBar 

@rdfs:subPropertyOf 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#part; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isBelong @rdf:type 

owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isCitedIn 

@rdf:type owl:ObjectProperty; 

http://202.185.70.191/Monogenean/Ontologies/MonogeneanKB1.owl#isCitedIn 

@rdfs:subPropertyOf owl:topObjectProperty; 

 

.. 

 

http://202.185.70.191/Monogenean/Ontologies/TaxonRank.owl @rdf:type 

owl:Ontology; :TaxonRankTerm @rdf:type owl:Class; :Bio-Variety @rdf:type 

owl:NamedIndividual; :Bio-Variety @rdf:type :TaxonRankTerm; :Candidate @rdf:type 

owl:NamedIndividual; :Candidate @rdf:type :TaxonRankTerm; :Class @rdf:type 

owl:NamedIndividual; :Class @rdf:type :TaxonRankTerm; :Convar @rdf:type 

owl:NamedIndividual; :Convar @rdf:type :TaxonRankTerm; :Cultivar @rdf:type 

owl:NamedIndividual; :Cultivar @rdf:type :TaxonRankTerm; :Cultivar-Group 

@rdf:type owl:NamedIndividual; :Cultivar-Group @rdf:type :TaxonRankTerm; 

:DenominationClass @rdf:type owl:NamedIndividual; :DenominationClass @rdf:type 

:TaxonRankTerm; :Division @rdf:type owl:NamedIndividual; :Division @rdf:type 

:TaxonRankTerm; :Domain @rdf:type owl:NamedIndividual; :Domain @rdf:type 

:TaxonRankTerm; :Empire @rdf:type owl:NamedIndividual; :Empire @rdf:type 

:TaxonRankTerm; :Family @rdf:type owl:NamedIndividual; :Family @rdf:type 

:TaxonRankTerm; :Form @rdf:type owl:NamedIndividual; :Form @rdf:type 

:TaxonRankTerm; :Genus @rdf:type owl:NamedIndividual; :Genus @rdf:type 

:TaxonRankTerm; :Graft-Chimaera @rdf:type owl:NamedIndividual; :Graft-Chimaera 

@rdf:type :TaxonRankTerm; :Grex @rdf:type owl:NamedIndividual; :Grex @rdf:type 

:TaxonRankTerm; :Infraclass @rdf:type owl:NamedIndividual; :Infraclass @rdf:type 

:TaxonRankTerm; :Infradivision @rdf:type owl:NamedIndividual; :Infradivision 

@rdf:type :TaxonRankTerm; :Infrafamily @rdf:type owl:NamedIndividual; 

:Infrafamily @rdf:type :TaxonRankTerm; :InfragenericTaxon @rdf:type 

owl:NamedIndividual; :InfragenericTaxon @rdf:type :TaxonRankTerm; :Infragenus 

@rdf:type owl:NamedIndividual; :Infragenus @rdf:type :TaxonRankTerm; 

:Infrakingdom @rdf:type owl:NamedIndividual; :Infrakingdom @rdf:type 

:TaxonRankTerm; :Infraorder @rdf:type owl:NamedIndividual; :Infraorder @rdf:type 

:TaxonRankTerm; :Infraphylum @rdf:type owl:NamedIndividual; :Infraphylum 

@rdf:type :TaxonRankTerm; :Infraspecies @rdf:type owl:NamedIndividual; 

:Infraspecies @rdf:type :TaxonRankTerm; :InfraspecificTaxon @rdf:type 
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owl:NamedIndividual; :InfraspecificTaxon @rdf:type :TaxonRankTerm; :Infratribe 

@rdf:type owl:NamedIndividual; :Infratribe @rdf:type :TaxonRankTerm; :Order 

@rdf:type owl:NamedIndividual; :Order @rdf:type :TaxonRankTerm; :Patho-Variety 

@rdf:type owl:NamedIndividual; :Patho-Variety @rdf:type :TaxonRankTerm; :Phylum 

@rdf:type owl:NamedIndividual; :Phylum @rdf:type :TaxonRankTerm; :Section 

@rdf:type owl:NamedIndividual; :Section @rdf:type :TaxonRankTerm; :Series 

@rdf:type owl:NamedIndividual; :Series @rdf:type :TaxonRankTerm; :SpecialForm 

@rdf:type owl:NamedIndividual; :SpecialForm @rdf:type :TaxonRankTerm; :Species 

@rdf:type owl:NamedIndividual; :Species @rdf:type :TaxonRankTerm; 

:SpeciesAggregate @rdf:type owl:NamedIndividual; :SpeciesAggregate @rdf:type 

:TaxonRankTerm; :Sub-Sub-Variety @rdf:type owl:NamedIndividual; :Sub-Sub-Variety 

@rdf:type :TaxonRankTerm; :Sub-Variety @rdf:type owl:NamedIndividual; :Sub-

Variety @rdf:type :TaxonRankTerm; :Subclass @rdf:type owl:NamedIndividual; 

:Subclass @rdf:type :TaxonRankTerm; :Subdivision @rdf:type owl:NamedIndividual; 

:Subdivision @rdf:type :TaxonRankTerm; :Subfamily @rdf:type owl:NamedIndividual; 

:Subfamily @rdf:type :TaxonRankTerm; :Subform @rdf:type owl:NamedIndividual; 

:Subform @rdf:type :TaxonRankTerm; :Subgenus @rdf:type owl:NamedIndividual; 

:Subgenus @rdf:type :TaxonRankTerm; :Subkingdom @rdf:type owl:NamedIndividual; 

:Subkingdom @rdf:type :TaxonRankTerm; :Suborder @rdf:type owl:NamedIndividual; 

:Suborder @rdf:type :TaxonRankTerm; :Subphylum @rdf:type owl:NamedIndividual; 

:Subphylum @rdf:type :TaxonRankTerm; :Subsection @rdf:type owl:NamedIndividual; 

:Subsection @rdf:type :TaxonRankTerm; :Subseries @rdf:type owl:NamedIndividual; 

:Subseries @rdf:type :TaxonRankTerm; :Subspecies @rdf:type owl:NamedIndividual; 

:Subspecies @rdf:type :TaxonRankTerm; :SubspecificAggregate @rdf:type 

owl:NamedIndividual; :SubspecificAggregate @rdf:type :TaxonRankTerm; :Subsubform 

@rdf:type owl:NamedIndividual; :Subsubform @rdf:type :TaxonRankTerm; :Subtribe 

@rdf:type owl:NamedIndividual; :Subtribe @rdf:type :TaxonRankTerm; :SuperKingdom 

@rdf:type owl:NamedIndividual; :SuperKingdom @rdf:type :TaxonRankTerm; 

:Superclass @rdf:type owl:NamedIndividual; :Superclass @rdf:type :TaxonRankTerm; 

:Superdivision @rdf:type owl:NamedIndividual; :Superdivision @rdf:type 

:TaxonRankTerm; :Superfamily @rdf:type owl:NamedIndividual; :Superfamily 

@rdf:type :TaxonRankTerm; :Superorder @rdf:type owl:NamedIndividual; :Superorder 

@rdf:type :TaxonRankTerm; :Superphylum @rdf:type owl:NamedIndividual; 

:Superphylum @rdf:type :TaxonRankTerm; :Supertribe @rdf:type 

owl:NamedIndividual; :Supertribe @rdf:type :TaxonRankTerm; :SupragenericTaxon 

@rdf:type owl:NamedIndividual; :SupragenericTaxon @rdf:type :TaxonRankTerm; 

:Tribe @rdf:type owl:NamedIndividual; :Tribe @rdf:type :TaxonRankTerm; :Varietry 

@rdf:type owl:NamedIndividual; :Varietry @rdf:type :TaxonRankTerm} | > 
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Appendix D – Sample of Test Cases 

Model 1 

(i) Upload query image 

Test case – Upload query image 

Test description – to verify the query image is uploaded  

Test execution: 

Click ‘Browse’ button -> ‘Choose File to Upload’ dialog box appears 

Select a file image to upload 

Click ‘Open’ -> The image file path appears on the text box 

Click ‘Upload’ button -> The entered value is sent into the application for query 

processing 

Click ‘Reset’ button -> To clear all the entered values 

Expected results – The image file path appears on the text  

Actual results – Pass. The image file path appeared on the text 

 

(ii) Image retrieval  

Test case – Image retrieval 

Test description – to verify the retrieved images 

Test execution: 

A query image must be uploaded in the server and displayed in Query Image 

Check a value for ‘Select training set’  -> against all images in the database or 

against images with selected shape 

Click ‘Start’ button -> The entered values are sent into the application for 

performing image retrieval 

Once the process is completed, the retrieved images will be displayed in ranked 

order 

Expected results – The retrieved images are displayed in ranked order 

Actual results – Pass. The retrieved images are displayed in ranked order  
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Model 2 

(i) Upload query image and select images for training set 

Test case – Upload query image and select images for training set 

Test description – to verify the query image is uploaded and training set images 

option is selected 

Test execution: 

Click ‘Browse’ button -> ‘Choose File to Upload’ dialog box appears 

Select a file image to upload 

Click ‘Open’ -> The image file path appears on the text box 

Check a value for ‘Select training set’ 

Click ‘Upload’ button -> The entered values are sent into the application for 

query processing 

Click ‘Reset’ button -> To clear all the entered values 

Expected results – The image file path appears on the text box and one of the 

options for the training set is checked 

Actual results – Pass. The image file path appeared on the text box and one of 

the options for the training set is checkeded 

 

(ii) Image retrieval  

Test case – Image retrieval 

Test description – to verify the retrieved images 

Test execution: 

A query image must be uploaded in the server and displayed in Query Image. 

The selected images to be used for training set are displayed in the Training Set. 

Click ‘Start’ button -> The entered values are sent into the application for 

performing image retrieval 

Once the process is completed, the retrieved images will be displayed in ranked 

order with their annotation 

Expected results – The retrieved images are displayed in ranked order with their 

annotations 

Actual results – Pass. The retrieved images are displayed in ranked order with 

their annotations 

 

 



204 

 

Appendix E – Retrieval Results 

(i) Model 1 

 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images  

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

6 
ε 0.05 0.05 0.09 0.16 0.19 0.24 0.26 0.27 0.37 0.42 

Visual 
comparison ∕ ∕ × ∕ ∕ × × ∕ ∕ × 

 

 

          

3 
ε 0.04 0.15 0.16 0.19 0.25 0.33 0.49 0.52 0.57 0.63 

Visual 
comparison ∕ × × × ∕ ∕ × × × × 

 

 

          

3 
ε 0.14 0.16 0.24 0.30 0.46 0.60 1.03 1.35 1.46 1.47 

Visual 

comparison ∕ ∕ × × ∕ × × × × × 

 

 

          

10 
ε 0.08 0.08 0.22 0.27 0.38 0.72 0.87 1.83 2.28 2.75 

Visual 

comparison ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 

 

 

          

7 
ε 0.04 0.77 1.07 1.26 1.52 1.59 1.61 1.77 1.82 1.86 

Visual 

comparison ∕ × × ∕ ∕ ∕ × ∕ ∕ ∕ 
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Model 1, continued 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

6 
ε 0.45 0.52 0.72 0.75 0.80 0.83 0.98 1.03 1.21 1.28 

Visual 
comparison × ∕ ∕ × × × ∕ ∕ ∕ ∕ 

 

 

          

1 
ε 0.43 0.54 0.79 1.51 2.01 2.38 2.55 3.95 5.83 6.48 

Visual 
comparison × ∕ × × × × × × × × 

 

 

          

6 
ε 0.06 0.25 0.26 0.35 0.49 0.50 0.52 061 0.96 1.62 

Visual 

comparison ∕ ∕ ∕ × ∕ ∕ × ∕ × × 

 

 

          

6 
ε 1.21 1.59 1.72 2.95 3.19 3.39 3.48 3.49 3.66 3.77 

Visual 

comparison ∕ ∕ × ∕ × × ∕ × ∕ ∕ 

 

 

          

8 
ε 0.21 0.25 0.28 0.30 0.34 0.42 0.45 0.52 0.78 0.95 

Visual 

comparison ∕ × ∕ ∕ ∕ ∕ ∕ × ∕ ∕ 



206 

 

Model 1, continued 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

7 
ε 0.11 0.18 0.32 0.34 0.37 0.50 0.55 0.56 0.61 0.66 

Visual 
comparison ∕ ∕ ∕ × ∕ × ∕ ∕ ∕ × 

 

 

          

6 
ε 0.01 0.05 0.16 0.18 0.44 0.67 0.67 0.86 1.01 1.10 

Visual 
comparison ∕ ∕ ∕ × × ∕ × ∕ ∕ × 

 

 

          

6 
ε 0.02 0.03 0.20 0.35 0.35 0.37 0.43 0.45 0.49 0.53 

Visual 

comparison × ∕ ∕ ∕ ∕ × ∕ ∕ × × 

 

 

          

4 
ε 0.01 0.13 0.17 0.25 0.26 0.41 0.58 0.59 0.71 0.71 

Visual 

comparison × × × × × ∕ × ∕ ∕ ∕ 

 

 

          

4 
ε 0.17 0.25 0.53 0.68 0.83 1.04 1.09 1.28 1.47 1.75 

Visual 

comparison × ∕ × ∕ ∕ × ∕ × × × 
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Model 1, continued 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

3 
ε 0.01 0.08 0.09 0.40 0.52 0.60 0.68 0.71 0.74 0.75 

Visual 
comparison × × × × × ∕ × × ∕ ∕ 

 

 

          

0 
ε 0.1 0.3 0.34 0.46 0.45 0.6 0.86 0.87 0.99 1.25 

Visual 
comparison × × × × × × × × × × 

 

 

          

2 
ε 0.09 0.15 0.16 0.16 0.16 0.42 0.49 0.49 0.55 0.73 

Visual 

comparison × × × × × × ∕ × ∕ × 

 

 

          

1 
ε 0.68 0.87 0.87 1.23 2.45 2.82 2.91 2.99 3.92 4.39 

Visual 

comparison × × × × × × × × ∕ × 



208 

 

(ii) Model 2 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images  

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

4 
ε 0.19 0.24 0.42 0.72 1.17 1.25 1.26 1.30 1.33 1.36 

Visual 
comparison ∕ × × ∕ × × × ∕ × ∕ 

 

 

          

4 
ε 0.16 0.25 0.57 0.84 0.89 1.00 1.38 1.54 1.69 1.85 

Visual 
comparison × ∕ × × ∕ × × × ∕ ∕ 

 

 

          

3 
ε 0.14 0.24 0.60 1.35 1.48 1.82 1.82 2.12 2.16 2.19 

Visual 

comparison ∕ × × × × ∕ × ∕ × × 

 

 

          

10 
ε 0.08 0.08 0.22 0.38 0.72 0.87 2.28 2.75 3.50 3.83 

Visual 

comparison ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 

 

 

          

10 
ε 0.04 1.26 1.52 1.59 1.77 1.82 1.86 2.16 2.46 3.33 

Visual 

comparison ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 
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Model 2, continued 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

9 
ε 0.52 0.72 0.98 1.03 1.21 1.28 1.39 1.54 2.41 4.36 

Visual 
comparison ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ × 

 

 

          

5 
ε 0.54 1.38 1.51 1.65 2.95 3.05 3.53 3.61 4.45 4.67 

Visual 
comparison ∕ ∕ × ∕ ∕ ∕ × × × × 

 

 

          

7 
ε 0.06 0.26 0.50 0.61 1.62 1.64 1.66 1.76 1.78 1.81 

Visual 

comparison ∕ ∕ ∕ ∕ ∕ × ∕ ∕ × × 

 

 

          

7 
ε 1.12 2.95 3.19 3.49 3.77 4.98 5.22 5.25 8.5 9.32 

Visual 

comparison ∕ ∕ × × ∕ ∕ ∕ ∕ × ∕ 

 

 

          

7 
ε 0.25 0.28 0.30 0.52 0.78 0.95 1.05 1.06 1.16 1.21 

Visual 

comparison × ∕ ∕ × ∕ ∕ × ∕ ∕ ∕ 
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Model 2, continued 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

8 
ε 0.11 0.32 0.37 0.50 0.55 0.79 0.89 1.18 1.38 1.94 

Visual 
comparison ∕ ∕ ∕ × ∕ × ∕ ∕ ∕ ∕ 

 

 

          

8 
ε 0.01 0.05 0.16 0.18 0.86 1.01 1.12 1.12 1.24 1.67 

Visual 
comparison ∕ ∕ ∕ × ∕ ∕ × ∕ ∕ ∕ 

 

 

          

8 
ε 0.03 0.35 0.35 0.43 0.45 0.88 1.47 1.47 1.54 1.61 

Visual 

comparison ∕ ∕ ∕ ∕ ∕ ∕ × × ∕ ∕ 

 

 

          

9 
ε 0.41 0.58 0.59 0.71 0.91 1.34 1.39 1.51 1.57 1.67 

Visual 

comparison ∕ × ∕ ∕ ∕ ∕ ∕ ∕ ∕ ∕ 

 

 

          

9 
ε 0.25 0.83 1.09 1.28 2.13 2.26 2.26 2.40 2.74 2.92 

Visual 

comparison ∕ ∕ ∕ × ∕ ∕ ∕ ∕ ∕ ∕ 
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Model 2, continued 

Query 

image 

Retrieved images 

ε: Euclidean distance 

Visual comparison –  ∕: Relevant; ×: Irrelevant 

Relevant 

images 

(out of 10) 
Rank 1 2 3 4 5 6 7 8 9 10 

 

           

6 
ε 0.09 0.52 0.60 0.71 0.74 0.75 0.91 0.94 1.15 1.35 

Visual 
comparison × × ∕ × ∕ ∕ ∕ ∕ ∕ × 

 

 

          

0 
ε 0.87 0.99 1.02 1.05 1.26 2.03 2.36 2.46 2.47 2.52 

Visual 
comparison × × × × × × × × × × 

 

 

          

1 
ε 0.09 0.15 0.16 0.16 0.49 0.55 0.79 1.06 1.09 1.43 

Visual 

comparison × × × × × ∕ × × × × 

 

 

          

1 
ε 0.87 0.87 1.23 2.45 2.82 2.91 2.99 3.92 4.39 5.60 

Visual 

comparison × × × × × × × ∕ × × 
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