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Abstract 

This study is focused on the effects of the structural properties of the 

hydrogenated amorphous carbon (a-C:H) underlayer on the subsequent formation of 

carbon nitride nanostructures (ns-CNx). Both layers were prepared sequentially using 

radio-frequency plasma enhanced chemical vapour deposition (RFPECVD). The a-C:H 

underlayers and ns-CNx were deposited from pure methane and a mixture of pure 

methane and nitrogen gases, respectively. The deposition parameters of the ns-CNx 

were fixed while the parameters relating to the deposition of a-C:H underlayers were 

varied. Three sets of ns-CNx deposited using fixed deposition parameters on a-C:H 

underlayer were studied. The first two sets of ns-CNx samples were deposited on a-C:H 

underlayers grown at different deposition time duration and RF power. The H2 plasma 

treatment time duration done on a-C:H underlayers were varied for the third set of      

ns-CNx samples. The structural properties of the a-C:H underlayers studied were 

characterized using atomic force microscopy (AFM), Fourier transform infrared 

spectroscopy (FTIR) and Raman spectroscopy while the structural properties of ns-CNx 

samples were characterized using field emission scanning electron microscopy 

(FESEM), FTIR spectroscopy, Raman spectroscopy and Auger electron spectroscopy.  

It was determined that the a-C:H underlayer with highest surface roughness of   

6 nm results in the formation of rigid vertically aligned CNx nanorods. The a-C:H 

underlayer with highest surface roughness which induced the formation of cone-like 

structures was shown to have an ordered structure of sp
2
 clusters and the optimized 

deposition time duration for the growth of the underlayer was established to be 10 

minutes. By varying the applied RF power at 30-80 W, ion bombardment was shown to 

play an important role in changing the surface morphology of a-C:H underlayer. From 

the FTIR analysis, the a-C:H underlayer with highest surface roughness shows low CHn 

band associated with low H content, and dominant sp
2
 clustering. These properties 

induced the formation of the said rigid vertically aligned CNx nanorods. It was also 

found that by tuning the RF power, unique flower-like ns-CNx structure was formed. 

The treatment of H2 plasma at different time at 3, 5 and 10 minutes on these a-C:H 

underlayers showed that H bombardment could be used effectively to modify the 

surface morphology of the underlayer films. In contrast to the high surface roughness 

requirement for the growth of nanorods, CNx nanotips were formed on smooth a-C:H 

underlayer film surface.  

These results showed the effects of changes in structural properties of a-C:H 

underlayers on the formation of different ns-CNx. The ns-CNx formed were rigid 

vertically aligned nanorods, nanotip and the rare flower-like structures. Both layers 

were able to be fabricated in the same system at low deposition temperature of 100 
o
C 

without the use of catalyst. High N content and preferential formation of -N≡C bonds 

are crucial aspects in the formation of rigid and vertically aligned nanorods.  
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Abstrak 

Kajian ini ditumpukan kepada kesan sifat struktur filem nipis amorfus karbon 

berhidrogen (a-C:H) yang digunakan sebagai substrat dasar bagi pembentukan  karbon 

nitrida bernanostruktur (ns-CNx). Kedua-dua lapisan ini dihasilkan berturutan 

menggunakan pemendapan frekuensi radio wap kimia secara peningkatan plasma 

(RFPECVD). Lapisan dasar a-C:H dan berikutnya ns-CNx, masing-masing 

dimendapkan daripada metana tulen dan campuran gas metana tulen dan nitrogen. 

Parameter bagi pemendapan ns-CNx ditetapkan manakala bagi lapisan a-C:H, parameter 

yang digunakan diubah. Tiga set ns-CNx yang dimendapkan menggunakan parameter 

pemendapan yang tetap dimendapkan di atas lapisan dasar a-C:H telah dikaji. Dua set 

pertama terdiri dari sampel ns-CNx yang dimendapkan di atas lapisan dasar a-C:H yang 

dimendapkan pada tempoh masa dan kuasa RF yang berbeza-beza. Lapisan dasar a-C:H 

yang dirawat dalam plasma H2 pada tempoh masa berbeza-beza digunakan sebagai 

lapisan dasar untuk sampel ns-CNx bagi set ketiga. Sifat struktur bagi lapisan dasar      

a-C:H telah dikaji menggunakan mikroskopi daya atom (AFM), spektroskop inframerah 

transfomasi Fourier (FTIR) dan spektroskopi Raman manakala sifat struktur bagi        

ns-CNx dikaji menggunakan mikroskopi pancaran medan pengimbasan elektron 

(FESEM), spektroskopi FTIR dan spektroskopi elektron Auger.  

Lapisan dasar yang mempunyai kekasaran permukaan yang paling tinggi iaitu 6 

nm menyebabkan pembentukan CNx rod-nano yang tegar dan secara menegak. 

Kekasaran permukaan lapisan dasar a-C:H yang tinggi mendorong pembentukan 

struktur menyerupai kon yang mengandungi kelompok sp
2 

yang tertib dan ini 

dioptimumkan pada tempoh pemendapan lapisan dasar sebanyak 10 minit. Dengan 

mengubah kuasa frekuensi radio (RF) yang dikenakan daripada 30-80 W, hentaman ion 

memainkan peranan penting dalam mengubah morfologi permukaan lapisan dasar a-

C:H. Daripada analisis FTIR, lapisan dasar a-C:H yang mempunyai kekasaran paling 

tinggi menunjukkan jalur CHn yang rendah yang dikaitkan dengan kandungan H rendah, 

dan pengkelompokan sp
2
. Sifat-sifat yang dominan ini mendorong pembentukan rod-

nano CNx yang tegar dan menjajar secara menegak. Pembentukan struktur unik 

menyerupai bunga juga diperolehi dengan mengubah kuasa RF. Rawatan plasma H2 

pada 3, 5 dan 10 minit ke atas lapisan dasar a-C:H menunjukkan bahawa hentaman H2 

boleh digunakan secara berkesan dalam mengubah morfologi permukaan lapisan filem 

dasar. Berbeza dengan rod-nano yang memerlukan permukaan ynag kasar, tip-nano CNx 

telah dihasilkan di atas lapisan dasar a-C:H yang rata.  

Keputusan ini menunjukkan kesan perubahan dalam sifat struktur lapisan dasar      

a-C:H berpotensi terhadap pembentukan ns-CNx yang berbeza. ns-CNx terbentuk adalah 

rod-nano yang tegar dan menjajar secara tegak, tip-nano dan struktur menyerupai bunga 

yang jarang ditemui. Kedua-dua lapisan boleh disediakan dalam sistem yang sama pada 

suhu yang rendah iaitu 100 
o
C tanpa penggunaan bahan pemangkin. Kandungan N yang 

tinggi dan pembentukan -N≡C adalah aspek penting dalam pembentukan rod-nano yang 

tegar dan menjajar secara tegak. 
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CHAPTER 1 : INTRODUCTION 

1.1 Development on Carbon Nitride  

Studies on carbon nitride (CNx) films have received considerable attention in 

recent years particularly after 1979 following the work by Cuomo et al. In their work, 

CNx films were prepared by reactive RF sputtering of carbon in nitrogen (Cuomo et al. 

1979). The interest on CNx films further expanded following the  work done by Liu and 

Cohen in 1989 which reported the feasibility of producing β-C3N4 which is analogous to 

β-Si3N4 having hardness comparable to diamond (Liu and Cohen 1989). Over the years, 

the research continues with the discovery of various types of CNx structures including 

diamond, graphitic, polymeric and others (Shimoyama et al. 2001; Sung and Sung 

1996; Zambov et al. 2000).  

Fabrication of one dimensional CNx nanostructures is one of the most significant 

progress in the study of carbon related films beginning with the work carried out by 

Pradeep et al. in incorporating N in fullerene in 1991. This was followed by various 

work to fabricate other CNx nanostructures (ns-CNx) such as nanotube, nanofiber, 

nanorod, nanowire, nanotip, nanosphere, nanoribbon, nanobell and several rare species 

including flower-like, leaf-like and worm-like structures (Droppa et al. 2002; Pradeep et 

al. 1991; Wang and Ostrikov 2009; Yang, et al. 2006). The most recent progression in 

the fabrication of ns-CNx focused on incorporating nitrogen into single or multilayer 

graphene sheets (Qu et al. 2010; Shao et al. 2010; Wang et al. 2010). Figure 1.1 

summarizes the progression of the works done on ns-CNx.                   
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Figure 1.1: Progression chart of ns-CNx. 
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1.2 Properties of Carbon Nitride and Application 

CNx is a promising material in various applications due to its interesting and 

unique properties. Nitrogen incorporation in carbon films leads to structural 

transformation with preference to bond as sp
2
 bonded CNx. In a  study reported by Hu et 

al. on the preparation of carbon nitride films using plasma-assisted pulsed laser 

deposition technique having N incorporation increasing from 12% to 17% results in a 

decrease in sp
3
 bonded carbon from 70% to almost 0% (Hu et al. 1998). Consequently, 

sp
2
 content in the film increased. The increase in N content are caused by the preference 

in N to bond to carbon atoms in the films due to the strong electronegativity of N atom. 

Additionally, the N atom could be substituted in the carbon network to form double or 

single bond  subjected to the N concentration (Wang et al. 2008).  

 N incorporation into carbon films brings about an enhancement in mechanical 

characteristic leading to excellent adhesion properties of these films (Lowther 1998; 

Ren et al. 1995). Additionally N incorporation also improve the local density of states 

near the Fermi level of these materials thus enhances their electronic characteristic. 

Such materials are suitable candidates for field emission devices which would show low 

turn-on voltage (Chan et al. 2003; Kim et al. 2011; Zhong et al. 2001). Lately, CNx has 

gained considerable attention in its potential in various electrical devices, photo-

catalyst, oxygen reduction agent, hydrogen storage material and active sensors (Bai      

et al. 2001; Jun et al. 1998; Pan et al. 2011a). One of the outstanding examples is that 

reported by Gong et al. on vertically aligned nitrogen containing carbon nanotube used 

as metal-free electrode in oxygen reduction reaction to improve fuel cell performance. 

These nitrogen containing carbon nanotubes are said to have better characteristic 

compared to conventional platinum electrode due to enhancement in electro-catalytic 

activity, being more stable for long term operation and at lower production cost     

(Gong et al. 2009). Integrated sensor systems including humidity sensitive field effect 
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transistor, temperature sensor and operational amplifier have utilized ns-CNx as a 

component material in the device system. This ns-CNx sensor was fabricated by analog 

mixed CMOS process (Lee et al. 2008). Other notable example of CNx application is as 

hydrogen storage material. This study was done by Ito et al. using amorphous CNx. The 

maximum hydrogen content uptake was reported as high as 0.78 wt% which is 

dependent on the type of hydrocarbon precursor used for the deposition such as CH4, 

C2H6, C2H4 and C6H6 (Ito et al. 2008; Koh et al. 2012).  

 

1.3 Related Works, Motivation and Objectives for This Study 

 A novel technique of growing vertically aligned CNx nanorods was established 

and reported by Ritikos et. al. from Low Dimensional Materials Research Centre, 

University of Malaya where this work was carried out (Ritikos et al. 2011). This 

technique established the fabrication of CNx nanorods by RF-PECVD at low 

temperature (100 
o
C) using a parallel plate configuration without the use of metal 

catalyst. The effect of high electric field induced by small electrode spacing between the 

powered electrode and the substrate holder resulted in the formation of these nanorods 

at fixed RF power of 80 W in a mixture of methane and nitrogen flow rates of 20 and  

47 sccm, respectively. The work also shows that N incorporation is one of the crucial 

aspects in obtaining the vertical alignment. However, further work is proposed by that 

study to find ways of modifying these structures while retaining a large part of its 

deposition parameters and avoiding the use of metal catalysts. The use of catalytic 

materials can change the structure of CNx but this sacrifices the purity of the resulting 

product since they introduce contaminants into the material structure. Thus, this work 

was motivated by these suggestions and also by the emergence of a recent study on the 

use of pre-deposited hydrogenated amorphous carbon (a-C:H) underlayer films as 
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template or seeding layer for the growth of carbon nanostructures (Wang et al. 2012b; 

Wang and Zhang 2006). These underlayer films would act as the substrate upon which 

this nanostructures are built on. Indeed substrate conditioning has been suggested as an 

important aspect that can influence the properties of the resulting upper-structures. 

Several studies have been carried out on the effects of substrate characteristic including 

variations in temperature, crystallinity orientation, morphology, type, and treatment 

process (Cao et al. 2007; Gielen et al. 1997; Jayatissa et al. 1998; Sakata et al. 2010; 

Smietana et al.2010). 

In this work the ns-CNx were deposited on a-C:H underlayers by RF-PECVD. 

The ns-CNx were deposited from a mixture of methane and nitrogen at fixed deposition 

preparation conditions while methane was used as gas source for the growth of a-C:H 

underlayers prepared  by varying a specific deposition parameter for each set of 

samples.  The objectives of this work are as listed below: 

(1) To grow the ns-CNx on a-C:H underlayers deposited under these conditions; 

i. Different deposition time duration 

ii. Different RF powers applied during deposition  

iii. Different time duration of H2 plasma treatment 

 

(2) To study the effects of structural properties of a-C:H underlayer on the 

morphology  of the ns-CNx formed. 
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1.4 Thesis Outline 

This Chapter 1 features an introduction to this study and is followed by   

Chapter 2 which presents the literature review related to this work. The literature review 

is divided into four parts. The first part introduces various types of one-dimensional       

ns-CNx including nanorod, nanotube, nanotip and also rare species such as nanobell, 

flower-like and leaf-like CNx. The second part covers common deposition techniques 

employed to fabricate ns-CNx. The third part looks into various types of substrate 

conditioning including film deposition on bare Si substrate, with catalytic assistance or 

with template assistance. The last part presents a brief theoretical background on the 

two analytical techniques used in this work that is Raman scattering and Fourier 

transform infrared spectroscopy.  

 Chapter 3 presents details on the experimental and analytical techniques used in 

this work. These include the deposition procedures and characterization of the films. 

The deposition procedures outline the description of the RFPECVD system, substrate 

preparation, film deposition and post deposition procedures. The characterization 

methods used comprise of atomic force microscopy (AFM), surface profilometer, 

scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, 

Raman spectroscopy and Auger electron spectroscopy (AES). These methods are 

briefly described in this chapter. 

 Chapter 4 presents the experimental results, analysis and discussion related to 

the study of carbon underlayer films and the subsequent fabrication of ns-CNx. The 

focus on this chapter is to study the effect of a-C:H underlayer on formation of ns-CNx. 

For the a-C:H underlayers, their growth rate, surface roughness, chemical bonding and 

structural properties were studied. Subsequently, ns-CNx were grown directly onto these 

a-C:H underlayer films. These ns-CNx/a-C:H films were studied in terms of their 
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surface and cross sectional images, growth rates, elemental composition and bonding 

properties.  

 Chapter 5 presents the general conclusion of this study and also offers 

suggestions for future works. 
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CHAPTER 2 : LITERATURE REVIEW 

2.1 Introduction 

This chapter presents a literature review of two critical topics related to this 

work. The first part comprises a review on various types of one dimensional ns-CNx 

which can consist of not only nanorod, nanotube, nanotip but also more rare species 

such as nanobells, nanoribbon, nanosphere, flower-like and leaf-like CNx. Then, the 

next section looks into a brief theoretical background on two particular analytical 

techniques related to this work. These include the Fourier transform infrared and Raman 

analysis. 

 

2.2 Carbon Nitride Nanostructures 

2.2.1 Nanorods 

Nanorods are nanostructures with stick or rod shapes with relatively low aspect 

ratio. Several investigations have been done in order to fabricate these structures. 

Ritikos and co-wokers have found  CNx nanorods  deposited by RFPECVD at low 

temperature and not assisted by catalyst.The CNx nanorods are have diameter of 20-140 

nm, length up to 5 µm with high nitrogen content of 42 at.% (Ritikos, et al. 2011). 

Moreover, Cespedes et al. also reported high density of 4 cm
2
 area CNx nanorods with 

diameter 50-200 nm and length 1 µm (Cespedes et al. 2005). CNx nanorods were cited 

as one of the potential materials for applications in optic, electronic and optoelectronic 

devices (Liu et al. 2002a; 2002b). In another related work, Yang et al. obtained aligned      

ultra-fine crystalline CNx nanorods prepared by pulsed laser ablation technique at room 
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temperature (Yang et al. 2007). Figure 2.1 shows SEM images of examples of CNx 

nanorods. 

       

                                 Figure 2.1: Example of FESEM images CNx nanorods. 

 

2.2.2 Nanotubes 

Carbon nanotube (CNT) can be categorized either as multi wall or single wall 

nanotube. Single wall nanotube exhibit only one graphite layer with hexagonal lattice 

that appears wrapped up into a seamless cylinder. Multi wall nanotube form as a group 

of single wall nanotube with a mutual centre axis (Tu and Ou-Yang 2002). The 

inclusion of other element such as B and N into carbon nanotube network has been 

studied and it is expected to enhance their properties. From previous work, it was 

reported that doping nitrogen to carbon  nanotubes network is expected to enhance its 

structural, magnetic and electronic properties and the size of carbon nitrogen atom is 

almost the same (Che, Peng, and Wang 2004; Ganesan et al. 2010; Krstić et al. 2007; 

Moradian and Azadi 2006). From experiment and simulation, Hu et al. showed that 

nitrogen influenced the structural properties of CNx. by which it causes relaxation of sp
3
 

bonded carbon to sp
2 

bonding (Chan et al. 2004; Hu et al. 1998). The enhancement in 

electronic characteristic could be applied as field emitting devices (Chan et al. 2003; 

Kim et al. 2011; Zhong et al. 2001). This is due to improvement of local density of 

(Ritikos et al. 2011) (Liu et al. 2002a) 
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states near the Fermi level in CNx thus lowers the field emission threshold voltage 

(Srivastava et al. 2006). By functionalizing CNT with different transition metals such as 

W, Ti, Cr and Mn, the magnetic moment may be aligned to create either ferro or anti-

ferro magnetic properties between neighboring metal atoms. This functionalized CNT 

can be applied in gas and energy storage devices (Pan et al. 2011b). Koh et al. showed 

that the graphitic CNx nanotubes is one of the promising material in H2 storage with the 

ability to uptake up to 4.66 wt. % hydrogen (Koh et al. 2012). Other applications 

include utilizing nitrogen doped carbon nanotubes coated with atomic layer of SnO2 as 

functional material in lithium ion batteries (Meng et al. 2011). Figure 2.2 depicts the 

example of FESEM images of CNx nanotubes. 

                                 

             Figure 2.2: Example SEM images of various CNx nanotubes structure. 

 

2.2.3 Nanotips 

CNx nanotips show similar features as nanorods but lower aspect ratio and are 

tapered at the tip. Figure 2.3 shows the examples of FESEM images of CNx nanotips. 

Liu at al reported on CNx nanotips containing graphitic clusters which help to enhance 

its field emission characteristic (Liu et al. 2000) while Wang et al. stated that the CNx 

nanotips discovered in their work have emission current density of 0.5 mA/cm
2
 at          

6 V/µm and the turn on field of 5.2 V/µm (Wang et al. 2012b). In a recent work on CNx 

(Choi et al. 2005) (Tao et al. 2007) 

(b) 
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nanotips prepared by hot filament plasma enhanced CVD system, a thin carbon 

underlayer was pre-deposited using RF magnetron sputtering prior to the deposition 

procedure. This underlayer was used as seed layer to promote the growth of nanotips. In 

another work, Dang and Wang reported on the effect of different growth duration on PL 

properties of CNx nanotips. The longer duration resulted in stronger PL intensity due to 

strong effect of light trapping within the nanotips. This work showed that the dimension 

(length, height and diameter) of the nanotips influences the absorption and reflection 

process during the PL measurement (Dang and Wang 2012).  

                        

                              Figure 2.3: FESEM images of CNx nanotips. 

 

2.2.4 Other ns-CNx 

Nanobells. Several works have reported the growth of CNx nanobells (Bai et al. 2001; 

Wang 2002, 2006; Zhang, et al. 2002). This structure is made up of a series of stacking 

graphite cones growing parallel to each other in compartmentalized spaces, were 

produced by using microwave plasma enhanced CVD technique from a mixture of CH4 

and N2 gases. From the HRTEM image shown in Figure 2.4, these structures were seen 

as nanotubes with nanobell compartments where the catalyst are encapsulated at the root 

of the fiber like structure. The bell-like structures are made up of a curved top and bend 

(Wang et al. 2012a) (Wang and Zhang 2006) 
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edges. It was proposed that the nanobells growth follow the vapour-liquid-solid (VLS) 

growth mechanism. Nanobells give good field emission characteristic with high 

emission current. Furthermore, they exhibit high hydrogen uptake making them good 

candidate for hydrogen storage material (Bai et al. 2001; Zhang et al. 2002). Other 

related work produced polymerized CNx nanobell by using electrochemical method that 

can be used as Li storage. From electrochemical performance of Li intercalation test, the 

specific capacity obtained for this nanobell is 480 mAhg
-1 

which is considerably high 

for such application (Zhong et al. 2001). 

   

Figure 2.4: HRTEM image of CNx nanobell (Zhang et al. 2002). 

 

Nanoribbons.  CNx nanoribbons structures could be prepared using solvothermal 

technique through a chemical reaction of C3N3Cl3 and Na. This product would form 

aligned and microsphere nanoribbons as depicted in Figure 2.5. These nanoribbons can 

be applied in nanoscale devices due to their special mechanical, electrical and optical 

properties (Li et al. 2006). 



Chapter 2: Literature Review 

 

13 

 

                     

Figure 2.5: SEM images of carbon nitride (a) aligned nanoribbons and  

(b) microsphere nanoribbons (Li et al. 2006). 

 

Nanospheres. CNx nanospheres could be prepared using solution reaction or template-

directed solid-state of cynuric chloride or fluoride with lithium nitride. Zimmerman et al 

were able to obtain nanosphere with sizes in the range of 30-200 nm. The features of the 

nanospheres could be controlled by using silica spheres as template. It is important to 

control the sphere size and shape for their application and desired properties 

(Zimmerman et al. 2001). Figure 2.6 shows example of TEM image of the CNx 

nanospheres.  

 

Figure 2.6: TEM image of the CNx nanospheres (Zimmerman et al. 2001). 

 

(a) (b) 
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Flower-like. Bai et al. reported the formation of flower-like CNx prepared by the high-

energy ball-milling and subsequent thermal-annealing process in a horizontal tube 

furnace using melamine as precursor. In this work, annealing temperature of up to 

650
o
C is the key factor in the successfully formation of flower-like CNx (Bai, Cao and 

Xu 2010). Yang et al. fabricated flower-like CNx via liquid pulsed laser ablation 

technique using ammonia solution. These structures are made up of self-assembled 

nano-petals structures. Different ablation time, laser energy, ammonium concentration 

and drying speed play crucial roles in the formation of these flower-like structures. 

Figure 2.7 shows examples of SEM images of flower-like CNx (Yang et al. 2007). 

                                   

Figure 2.7: SEM image the formation of (a) nano-petals  

and (b) flower-like CNx structure (Yang et al. 2007). 

 

Leaf-like. Leaf-like CNx structure consists of large number of packed ordered nanorods 

could be formed by self-assemble process using liquid phase pulsed laser ablation of 

graphite target and ammonia solution. The formation of leaf-like structure depends on 

the ablation duration. Such structures have wide band gap and are therefore suitable for 

optical application. Example of this structure is shown in Figure 2.8. 

 

(a) (b) 
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Figure 2.8:  The TEM image of CNx leaf-like structures (Yang et al. 2006). 

 

2.3 Review on Preparation of Carbon Nitride Nanostructures 

The fabrication of CNx nanostructures can be obtained by several preparation 

techniques. Their properties are strongly dependent on the deposition parameters. 

Therefore, comparative study between different approaches in synthesizing CNx 

nanostructures is essential. The synthesis of CNx structure was started by Yi et al. in 

1993 not long after Iijima discovered  carbon nanostructures which was identified as 

carbon nanotube (Ayala et al. 2010; Iijima 1991; Yi and Bernholc 1993). Techniques 

that have been utilized to produce CNx nanostructures include sputtering, arc discharge, 

laser ablation and chemical vapour deposition (CVD). CVD consists of different 

variation including microwave plasma CVD, floating catalyst CVD, hot filament plasma 

enhanced CVD, radio frequency plasma enhanced CVD and electron cyclotron 

resonance CVD. CVD is proven to be the most effective technique in producing large 

deposition area and seldom requires extensive post treatment compared to other 

techniques (Tao et al. 2007; Zhong et al. 2001). Additionally, this well-known technique 

is preferred because of the ease in control and the deposition could be carried out at low 

deposition temperature.  
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2.3.1 Sputtering 

In sputtering technique, film deposition is carried out by using radio frequency 

(RF), direct current (DC) or pulsed DC source as power sources and it generates ions 

that can eject material through sputtering process from a target, then deposits the 

sputtered elements onto a substrate. CNT coated with amorphous CNx and ns-CNx have 

been obtained by RF magnetron sputtering (Banerjee et al. 2010; Kim et al. 2011). The 

fabrication process was carried out on c-Si substrate at a working pressure range of    

6.7 x 10
-3

 to 5 x 10
-2

 mbar with Ar to N2 flow rate ratio of 1:1 and 4:1, respectively. 

High purity graphite was used as target. The deposition was carried out for 3 hours and 

10 minutes for CNT coated with amorphous CNx and ns-CNx, respectively. In the 

fabrication of the CNT coated with amorphous CNx, Ni with thickness of 7 nm was 

used as catalyst. In another study, Suenaga et al. deposited nanotubulite CNx using DC 

magnetron sputtering system. The sample was deposited on cleaved NaCl substrate in 

Ar/N2. The deposition temperature was at 350 
o
C (Suenaga et al. 1999). Examples of 

conventional sputtering system are shown in Figure 2.9. 

    

Figure 2.9: The example of schematic diagram of magnetron sputtering system. 

 

 

(Honda et al. 2002) (Iseki 2009) 
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2.3.2 Arc Discharge 

Arc discharge has been one of the earlier methods in producing ns-CNx. The arc 

discharge occurred as the anode rods in the schematics move closer to the cathode, thus 

forming a plasma. Glerup et al. reported on nitrogen doped single wall carbon nanotube 

prepared using graphite mixed with melamine and Ni/Y as catalyst and these were 

packed into the drillings of anode rods. Yu et al. prepared nitrogen doped fullerenes 

using a similar technique. The preparation of nanotubes and nitrogen doped fullerenes 

was carried out at current of 95–100 and 100–135 A, respectively (Glerup et al. 2004; 

Yu et al. 1995). Other related work includes the fabrication of nitrogenated carbon 

nanotubes using Fe, Co and Ni as catalyst at deposition pressure 300 Torr in nitrogen – 

helium mixture ambient (Droppa et al. 2002). An example of a conventional arc 

discharge system is shown in Figure 2.10. 

  

Figure 2.10: Example of schematic diagram of arc discharge system (Cui et al. 2004). 
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2.3.3 Laser Ablation 

Laser ablation is one of the common physical vapour deposition used in 

producing ns-CNx. Laser ablation occurs when short laser pulses are irradiated onto a 

solid or liquid target, which at certain conditions will formed a plasma. The utilization 

of laser ablation has a few advantages such as enabling direct chemical analysis for 

solids, produces high quality sample with low contamination and enables analysis to be 

done without separating the solids and solution. CNx nanorods has been prepared using 

a Nd: YAG laser with wavelength of 532 nm focused onto a solid graphite target which 

was submerged in a 35% ammonia solution at longer ablation duration of 5 hours. 

Alternatively, at lower deposition duration (2 hours), only nanoparticles were formed 

(Yang et al. 2007). Other ns-CNx using this technique includes flower-like and leaf-like 

CNx which could be produced by controlling the deposition duration (Yang et al. 2007b, 

2006a, 2006b). Examples of conventional laser ablation system are shown in         

Figure 2.11. 

    

             Figure 2.11: Example of schematic diagram of pulsed laser ablation system.   

(Sasaki et al. 1998) (Apostol et al. 2011) 
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2.3.4 Chemical Vapour Deposition 

2.3.4.1 Hot filament plasma enhanced CVD 

Hot filament plasma enhanced CVD (HFPECVD) has been utilized to fabricate 

CNx nanotips on carbon substrates (Dang and Wang 2012; Wang et al. 2005, 2012a, 

2012b; Wang, Dong and Xu 2011; Wang and Zhang 2006, 2007). A coiled tungsten 

filament with diameter of 1 mm was used and was placed at varied distance of               

8 -10 mm to produce CNx nanotips. Negative bias voltage or RF power was applied to 

substrate holder to create plasma. The filament and substrate temperature were heated in 

the range of 1600 to 1950 
o
C and 750 to 800 

o
C, respectively. The filament was         

pre-treated in a H2─NH3 plasma for 5 minutes in order to improve nucleation. The CNx 

nanotips were grown using a mixture of CH4, NH3 and H2 gases and flow rates of 20, 

10–70 and 40–70 sccm, respectively. Apart from that, Ar has also been used as reaction 

gas usually at flow rate of 30 sccm. The nanotips were grown between 12–30 minutes in 

a total pressure of 2-4 kPa. Additionally, CNx nanotubes and some rare species such as 

worm-like and foil-like nanostructures have also been produced using this technique. 

(Kurt, Bonard and Karimi 2001a, 2001b). Figure 2.12 depicts the example of schematic 

diagram of HFPECVD system. 
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Figure 2.12: Example of schematic diagram of HFPECVD system. 

2.3.4.2 Electron cyclotron resonance CVD 

Electron cyclotron resonance CVD (ECRCVD) has been used to obtain CNx 

nanotubes, CNx nanotips and vertically aligned amorphous CNx nanorods as reported by 

Liu et al., Sung et al. and Lai et al. (Lai et al. 2003; Liu et al. 2000, 2002b; Sung et al. 

1999). The CNx nanorods and nanotubes structures were deposited on anodic alumina 

composite membrane with pore diameter 100-250 nm and 50-80 µm length which acts 

as a template for the growth of the structure. All structures were prepared using a 

mixture of C2H2 and N2 gases. The electron cyclotron resonance operated using a 

microwave excitation at 2.45 GHz to generate plasma was fed perpendicularly through 

the quartz dome into a magnetic field created by coils surrounding the chamber. It is 

believed that ECRCVD provides the highest plasma density compared to other CVDs 

(Wang et al. 2005) (Wang et al. 2012) 

(Kurt, Bonard and Karimi, 2001a) 
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such as RF, dc or microwave plasma enhanced CVD. For template assistance CNx 

nanorods fabrication, the alumina template was eliminated by mechanical polishing post 

treatment. Figure 2.13 shows some examples of schematic diagram of ECRCVD 

system. 

          

Figure 2.13: The example of schematic diagram ECRCVD system. 

 

2.3.4.3 Radio frequency plasma enhanced CVD 

Examples of radio frequency plasma enhanced CVD (RFPECVD) system are 

shown in Figure 2.14. This is a popular technique used in the fabrication of CNx films. 

Deposition parameters such as temperature, flow ratio, RF power and pressure are 

crucial aspects which influence the morphology of the CNx nanostructures. Cespedes et 

al. reported CNx nanorods growth prepared by catalyst assistance at deposition 

temperature in a range of 650-800 
o
C (Cespedes et al. 2005; Ritikos et al. 2011). CNx 

nanorods were synthesized without assisted by catalytic material was reported by 

Ritikos et al. These CNx nanorods were prepared by RFPECVD technique using CH4 

(Kim and Grotjohn 2000) (Inaba et al. 2002) 
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and N2 as precursor gases and deposited at different duration of 5 to 90 minutes on p-

type <111> Si substrate at low temperature ~100-200 
o
C and RF power of 60 W.  

         

Figure 2.14: The schematic diagram of RFPECVD system. 

 

2.3.4.4 Microwave plasma CVD 

Examples of microwave plasma enhanced CVD (MWPECVD) is shown in 

Figure 2.15. They are one of the common techniques which have been used in 

producing ns-CNx including nanotubes and nanobells. Plasma was generated by the 

microwave source working at frequency of 2.45 GHz. The CNx nanotubes could be 

grown on Si substrate from a mixture of different gases such as CH4, C2H2, NH3 or N2 

and are usually assisted by catalyst such as Fe and Ni. The deposition temperature, 

pressure and gas flow rate ratio are critical parameters that influenced the formation of 

the structures. Nanotubes and nanobells structures could be deposited on Si substrate at 

temperature between 450–800 
o
C for 10 to 30 minutes at microwave power of         

500–600 W and pressure of 2 kPa (Bai et al. 2001; Chan et al. 2003; Srivastava et al. 

2006; Zhang et al. 2002;  Zhong et al. 2001).  

(Ritikos et al. 2009b) (Meyyappan et al. 2003) 
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Figure 2.15: Example of schematic diagram of MWPECVD system. 

 

2.3.4.5 Floating catalyst CVD 

There are several works reported on the fabrication of CNx nanotubes and 

nanofibers by using this technique. Usually single or multilayered catalyst such as Fe, 

Ni, Al2O3 and MgO are used with carbon and nitrogen sources in a mixture of 

acetonitrile and ethanol or CH4, NH3 and H2. The deposition of the films could take as 

long as 8 to 60 minutes depending on the deposition conditions and temperature of the 

substrate. The deposition requires pressure of the horizontal tube furnace to be in range 

of 1 x 10
-6

 to 89 mbar. N2 or Ar gas is flowed into the tube before it was heated to the 

desired temperature. When the entrance temperature increase to about 200 
o
C, the 

precursor was introduced into the tube and evaporation begins. The temperature of the 

furnace is increased up to 950 
o
C. The vapour was carried out by the gas flow to the 

higher temperature region and thus the reaction occurrs. Then, the tube furnace is 

allowed to cool down to room temperature (Ayala et al. 2007a, 2007b; He et al. 2005; 

Koós et al. 2009; Liu et al. 2005, 2010; Maldonado, Morin and Stevenson 2006; 

(Baehr et al. 1997) (Hung et al. 2011) 
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Maldonado and Stevenson, 2005; Suenaga et al. 2000; Tao et al. 2007). Figure 2.16 

shows the typical schematic diagram of a floating catalyst CVD system. 

 

Figure 2.16: Example of typical schematic diagram of  

floating catalyst CVD system (Singh et al. 2002). 

 

2.4 Substrate Condition 

2.4.1 Bare Substrate 

Si and SiO2 wafers are common substrate in ns-CNx fabrication. The Si wafer 

have two different impurity doping which are n and p-type with various crystal 

orientation including <111> and <100> which provide various structural properties of 

the resulting product. Si substrate needs to be cleaned before being used in order to 

remove contamination and maintain the quality of substrate. A number of methods are 

used in these cleaning processes. The standard method involves sequential immersion in 

HF, HCl and NH4OH solutions with thorough rinsing in deionized water in between and 

finally are rinsed in acetone and ethanol and dried in a flow of N2. Other approach 

proposed include that of Brown et al. where the substrates are immersed in acetone and 

isopropyl alcohol in ultrasonic bath for 5 minutes in each solution and then the 

substrates were rinsed in deionized water and dried in N2 flow (Brown et al. 2011). 
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2.4.2 Catalyst 

 The use of catalytic materials to produce ns-CNx is a common practice. Usually, 

transition metals such as Ni, Co, and Fe were used to achieve the desirable structures 

(Lin et al. 2003; Sen et al. 1997). Catalyst preparation technique could be divided into 

two types. The first is solution base preparation, such as dissolution, stirring, 

precipitation, refluxing, separation, annealing or calcination. These techniques are 

commonly used in CVD sample preparation. The second is physical method including 

thermal evaporation, lithography, sputtering, transfer printing and combustion (Lin et al. 

2003; Tao et al. 2007). These physical techniques are more widely used since they are 

quicker, easier and enables small patterns compared to solution base techniques. There 

are three factors affecting the formation of catalytic growth of ns-CNx. First, the 

selection of catalyst where different materials formed different structures through the 

precursor gases due to different catalytic reaction. Secondly, the effects of adsorption or 

absorption on the catalyst surface due to the surface energy and its electronic state. 

Finally, the structure of the catalyst including its size and crystallographic structure  

(Lin et al. 2003). He et al. produced aligned nitrogen doped carbon nanotube by CVD 

technique on Si substrate using Fe as catalyst and acetonitrile as precursor gas while Sen 

et al. obtained CNx nanotubes by pyrolysis of pyridine on ~50 nm size of Co powder 

(He et al. 2005; Sen et al. 1997). Ayala et al. used multilayered catalyst films which 

promote the formation of vertically aligned nitrogen doped carbon nanotube prepared 

from acetonitrile. These multilayered catalysts contain different metallic films made up 

of Si, Al, MgO, Mo and Fe. The catalyst was then removed by mild sonication (Ayala et 

al. 2007b). According to Brown et al., even though the purification method has been 

enhanced recently, there are still few obstacles which should be resolved such as the 

possibility of structural damage, the extra cost and  process (Brown et al. 2011).  



Chapter 2: Literature Review 

 

26 

 

2.4.3 Template and Underlayer 

 Another approach in synthesizing ns-CNx is by using template assistance. This 

technique does not involve the use of catalyst. Examples are the CNx nanotubes that 

were prepared by ECR-CVD on anodic alumina (Sung et al. 1999). The anodic alumina 

was used as the template, prepared by anodizing aluminum foil in aqueous phosphoric 

and oxalic acid mixture which produced channels with parallel and packed arrays 

structures. CNx nanotubes were formed in the channels with the help of a bias voltage 

applied to the graphite substrate. After the CNx nanotubes were obtained, the anodic 

alumina template was chemically removed by dissolving them in KOH solution. Similar 

method was used by Liu et al. for fabrication of CNx nanorods (Liu et al. 2002).    

Figure 2.17 shows examples of template used in CNx nanotubes fabrication. 

Other successful method used in the formation of ns-CNx is by depositing a 

carbon underlayer prior to the growth of the ns-CNx. The carbon underlayer acts as seed 

layer (Wang et al. 2011; Wang and Zhang 2006).The surface roughness of the carbon 

underlayer effects the growth rate of the ns-CNx (Wang and Ostrikov 2009).  

            

 

(Sung et al. 1999) (Lai et al. 2003) 

Figure 2.17: The example of template used in CNx nanotubes fabrication. 
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2.5 Review of Analytical Methods 

The following section reviews some of the analytical methods used in this work. 

The review includes Fourier transform infrared (FTIR) and Raman scattering analysis. 

Other methods including profilormeter measurement, atomic force microscopy (AFM), 

field emission scanning electron microscopy (FESEM) and Auger electron spectroscopy 

(AES) analysis are not discussed since they can be interpreted directly from images 

and/or instrumental software. 

 

2.5.1 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy is one of the common and 

popular characterization tool widely used in the determination of bonding in a-C:H and 

CNx. Any compound, either organic or inorganic has covalent bonds which would 

absorb electromagnetic radiation in various specific frequencies in the infrared region. 

The wavenumber of interest is in the region of 400-4000 cm
-1

. The vibrational energy 

transition for different bonding in a compound are assigned to specific value, thus could 

be used as the „finger print‟ of the material. In general, there are a few types of 

vibrational motion including stretching, bending, scissoring, wagging, rocking and 

twisting. These are shown in Figure 2.18. 

 



Chapter 2: Literature Review 

 

28 

 

 

Figure 2.18: Type of vibration mode in FTIR analysis (Marcelli et al. 2012). 

 

From the FTIR spectrum obtained, the peak position and intensity of each bond 

are assigned. However, the interpretation of the data should be done carefully since 

there are some overlapping peaks which form broad peak thus clustering the shape and 

the profile of the spectrum. Deconvolution method using Gaussian fitting has been used 

extensively to solve this problem (Fanchini et al. 2005; Rodil 2005). Figures 2.19 and 

2.20 show examples of typical FTIR spectra of a-C:H and CNx films.  
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Figure 2.19: Example of typical FTIR spectrum of a-C:H film. 

 

Figure 2.20: Example of typical FTIR spectrum of CNx film. 
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For the example shown, the spectrum could be divided into specific bonding 

regions. Each bonding component was fitted into three regions. Table 2.1 list the 

various functional groups that could be obtained in a-C:H and CNx films for these three 

main regions.  

 

Table 2.1: The assignments of FTIR vibrational frequencies of a-C:H underlayer and 

nanostructured CNx films prepared by RFPECVD. 

Region  

(cm
-1

) 

Wavenumber 

(± 0.1 cm
-1

) 
Assignment Reference 

1300-1800 

1460 C sp
3
 H2  bending 

Fanchini et al. 2005; 

Ritikos et al. 2009; 

1630 C=C and/ or C=N 

1680 N-H 

1700 C=C stretching 

2000-2300 

2060 HCN 

Kundoo et al. 2003; 

Mutsukura and Akita 

1999; Mutsukura 2001 

2105  

2160 C2H5─N≡C 

2190 CH3─N≡C 

2215 
 

2245 hydrocarbon groups─C≡N 

2800-3700 

2800-3000 C-Hn stretching 

Ritikos et al. 2009; 

Pereira et al. 2006; 

Kundoo 2003; Fanchini 

et al. 2005 

2920 
sp

3
 CH2 or sp

3
 CH or C sp

3
 

H2  asymmetric stretching 

2965 sp
3
-CH3 

3200-3500 N-H stretching 

3330 N-H and / or O-H 

3350 N-H 

 

 

 

 

─C≡N 

─N≡C 
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2.5.2 Raman Spectroscopy 

Raman spectra are associated with the structure of material. The various type of 

carbon structure such as diamond, graphite, amorphous and others structures would give 

different Raman spectra. Firstly, it is important to identify the general type of structure 

according to its features.  Example of typical Raman spectra for different types of 

structure is presented in Figure 2.21 (Chu and Li 2006).  

 Typical Raman spectrum for carbon films shows two prominent peaks due to sp
2
 

sites known as the D and G peak at Raman shift of 1360 and 1560 cm
-1

, respectively. 

However, there may also be one background peak at Raman shift of 1500 cm
-1

 typically 

found for amorphous hydrogenated carbon (Huang et al. 2003). The D peak is attributed 

to breathing modes of sixfold aromatic rings and only become active in the presence of 

disorder. The G peak is due to bond stretching of all pairs of sp
2
 atoms both in rings and 

chains (Escobar-Alarcón et al. 2005; Ferrari, Rodil and Robertson 2003; Ferrari 2007; 

Zhao et al. 2011). There are four information which could be deduced from the Raman 

analysis. This includes (a) sp
2
 phase clustering, (b) presence of sp

2
 chains or rings, (c) 

bond disorder and (d) relative content of sp
2
 and sp

3
.  

The Raman interpretation typically includes the deconvolution using Gaussian 

fitting method (Marchon et al. 1997; Park et al. 2005). From this fittings, five 

parameters can be extracted including its peak position and full width half maximum 

(FWHM) of the D and G peaks and also the peak integrated intensities to calculate the 

ID/IG ratio.  
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Figure 2.21: Typical Raman spectra for carbon based materials. 
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The red-shift (to higher wavenumber) in G peak position towards 1600 cm
-1

 

being higher than that of graphite (1550 cm
-1

) though not exceeding the limit of 

graphitic carbon may imply that these films have high degree of graphitization. This 

may also imply that the film exhibit characteristic of olefinic (chain sp
2
 group) with 

shorter bond length (Gilkes et al. 1998). The blue shift (to lower wavenumber) in D 

peak position can be attributed to the strained or curved graphite plane which occurs 

when there is a change in the vibration frequency due to the change of spacing between 

the atoms (Ferrari and Robertson 2000; Yu, Lee and Lee 2002). 

A broadening in the width of the D peak (FWHMD) is correlated to the increase 

in disorder due to the re-distribution of clusters with different orders and dimensions. 

This is due to the presence of different order in the clusters. The FWHMG is also 

sensitive to structural disorder though this is attributed to bond angle and bond length 

distortion. If there is no defect within the cluster, the size of FWHMG would be small. 

Conversely, an increase in bandwidth of both D and G, indicates lower degree of 

clustering and less ordered structure (Zhao et al. 2011). 

The ID/IG ratio depend on the size of the sp
2
 phase (Casiraghi et al. 2005). 

According to Zhao et al, the low ID/ IG ratio (<1) in disordered graphite is due to the 

decrement of defect or ordering of carbon atoms. This is attributed to small crystal size 

or the destruction of symmetry in the crystalline structure. However in amorphous 

carbon, the increase in ID/IG towards unity (ID/ IG ≈ 1) indicates an increase disorder or 

decreasing crystallite size (Zhao et al. 2011). Further increase in ID/IG indicates an 

increase in the number and/or size of graphitic cluster in the films (Ferrari and 

Robertson 2000). 
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CHAPTER 3 : EXPERIMENTAL AND ANALYTICAL TECHNIQUES 

3.1 Introduction 

In this work, carbon nitride (CNx) nanostructured films were prepared using 

radio frequency plasma enhanced chemical vapour deposition (RFPECVD) technique. 

This chapter presents the deposition procedures, experimental and analytical techniques 

used in the characterization of the films. The first section focused on the RFPECVD 

system, substrate preparation, film deposition and post deposition procedures. The 

substrate preparation procedures consist of the substrate cleaning and pre-deposition 

treatments. The next section discussed the characterization methods used, which include 

atomic force microscopy (AFM), surface profilometer, scanning electron microscopy 

(SEM), Fourier transform infrared (FTIR) spectroscopy, Raman spectroscopy and 

Auger electron spectroscopy (AES). 

 

3.2 Radio Frequency Plasma Enhanced Chemical Vapour Deposition System 

The radio frequency plasma enhanced chemical vapour deposition which is 

made up of a reaction chamber connected to three part subsystems consisting of a 

vacuum system, gas distribution system and electrical system (Ritikos et al. 2009). 

Figure 3.1 shows the schematic diagram of the RFPECVD system. 

In this work, pure methane 99.995% (CH4), nitrogen 99.995% (N2) and 

hydrogen 99.995% (H2) were used. The gases were flowed into the reaction chamber 

through the sequence of line tubing and mass flow controllers (MFC) which are used to 

control their flow rates. These MFCs operate at 0-200 standard cubic centimeter per 

minute (sccm) for N2 and H2 while 0-50 sccm for CH4.  
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Figure 3.1: Schematic diagram of RFPECVD system. 

The vacuum system consists of a water-cooled diffusion pump and a rotary 

pump connected to the reaction chamber via a bellow valve. The rotary pump is used for 

the initial rough pumping and also during deposition while the diffusion pump is used 

for fine pumping. Firstly, using the rotary pump, the reaction chamber is roughly 
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pumped to a base pressure of approximately at 3 x 10
-3

 mbar. During this time, the 

diffusion pump is warmed up for about 30 minutes once the desired pressure is 

achieved. The bellow valve direction of the pump is switched on and the pumping is 

continued till the chamber pressure reached approximately to 5 x 10
-5

 mbar. The rotary 

pump should be switched off immediately before the diffusion pump is operated to 

avoid backflow due to difference in pressure.  

The electrical system consists of a RF generator with a matching impedance 

network, and also a temperature controller fitted with a heater power supply. The RF 

generator is connected to the reaction chamber via the matching impedance which 

balanced the different between impedance of the unit and the system. The substrate was 

heated using (400 W) Watlow firerod cartridge heater driven by the ac power supply, 

where the substrate temperature was measured using K-type thermocouple. The 

temperature was monitored and controlled using a thermocouple and temperature 

controller.  

The main part in this RFPECVD system is the reaction chamber. Figure 3.2 

shows the schematic diagram of this reaction chamber. This chamber is made from 

stainless steel. The RF generator and gas distribution system are connected to the upper 

part while the pumping system is attached to the bottom part of this chamber. The 

electrode is arrayed in a parallel plate configuration. The upper electrode is a shower 

head with holes size of about 1 mm and arrayed 1 cm apart. This electrode is connected 

to the RF generator and is insulated from the chamber using a teflon block. The bottom 

electrode which acts as the substrate holder, was electrically grounded and connected to 

the heating component. The legs of the substrate holder are insulated by teflon cylinder 

to avoid touching the body of the reaction chamber. Throughout this work, the distance 

between the top and bottom electrode is fixed at 1 cm. 
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1. Gas shower head  7. Thermocouple  

2. Upper electrical feedthrough 8. Heater 

3. Teflon 9. Substrate holder 

4. Shower head 10. View port 

5. Electrode distance 11. Lower electrical feedthrough 

6. Substrate 12. Pressure gauge 

Figure 3.2: Schematic diagram of RFPECVD system reaction chamber. 
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3.3 Sample Preparation 

3.3.1 Substrate Cleaning Procedures 

The substrates were cleaved into rectangular pieces with dimension of 2.0 cm x 

2.5 cm. The substrate cleaning is an important part in preparing the substrates for the 

film deposition. Small amount of contamination on the substrate may change the 

properties of the sample and also decrease the adhesion of the film onto the substrate. In 

this work, all samples were deposited onto silicon (Si) substrate. 

 Firstly, the Si substrate was rinsed in deionized water and then soaked in a 

solution of H2O:H2O2:HCl = 6:1:1 for 10 minutes. Then, these substrates were soaked 

with deionized water in a beaker placed in an ultrasonic bath for 10 minutes. They were 

soaked again in a solution of H2O:H2O2:NH4OH = 5:1:1 for 1 minute. After the 

substrates were rinsed with deionized water, they were then immersed in a solution 

H2O:HF = 10:1 for 1 minute. Finally, the substrates were rinsed with deionized water 

and immersed in ethanol and then acetone before they were dried in a stream of nitrogen 

gas and then placed in the deposition chamber. This whole process was done to remove 

impurities and the oxide layer on the surface of these Si substrates.  

 

3.3.2 Pre-deposition Process 

The deposition chamber was thoroughly cleaned to remove all the deposits left 

from the previous deposition process. Sand paper was used to remove the deposits on 

the steel surface inside the chamber. The surface was then thoroughly cleaned with 

acetone. The set up was assembled and the thermocouple and electrical connection were 

attached to the substrate holder. Four clean substrates were positioned on the substrate 

holder with a mask shown in Figure 3.3. The chamber was sealed and all the valves 

were closed before the system is ready to be pumped down.  
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The reaction chamber was evacuated in two phases using the rotary pump and 

sequentially using the diffusion pump to obtain a base pressure of 5 x 10
-5

 mbar. In the 

first phase, the chamber was evacuated together with the gas lines with all the valves 

and mass flow controllers fully opened. This is to ensure there is no leakage and also 

reduces the contamination due to residual gases in the lines. Once the desired pressure 

have been reached, the gas line valves were closed and rotary pump‟s valve was closed 

before the diffusion pump‟s bellow valve was fully opened. The chamber was further 

prepared until the pressure of about 10
-5 

mbar is achieved.  

In this high vacuum condition, the substrates were heated to approximately 

100
o
C. Once the high vacuum pressure and substrate temperature were stable, the     

pre-deposition substrate treatment is initiated. The bellow valve was closed and the 

rotary pump‟s valve is opened. Then, hydrogen gas was immediately flowed into the 

chamber. The hydrogen gas flow was maintained at 50 sccm. By adjusting the rotary 

pump‟s valve the deposition chamber was maintained at a pressure of 0.8 mbar. The RF 

generator was turned on and fixed at 60 W to carry out hydrogen plasma treatment on 

the substrate for 10 minutes. This process was done to further minimize substrate 

surface contamination.  

 

 

Figure 3.3: Top view mask of substrate holder. 
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3.3.3 Deposition Process 

The film grown in this work consist of underlayer amorphous hydrogenated 

carbon, a-C:H films and carbon nitride films which were deposited onto these a-C:H 

underlayer; were grown by RFPECVD. Both configurations are shown in Figure 3.4. 

These a-C:H underlayers were deposited from pure methane (99.995%) plasma. Where 

there are variation in the a-C:H underlayer deposition, some of the parameter are fixed 

throughout this work. This include the flow rate, deposition pressure and substrate 

temperature of 20 sccm, 0.31 mbar and 100 
o
C, respectively. The CNx films were grown 

on these a-C:H underlayer from the RF discharge of gas mixture of pure methane (CH4) 

and nitrogen (N2) gas. The deposition parameters are fixed throughout this work. The 

flow rate of the CH4 and N2 were fixed at 20 and 50 sccm respectively. The RF power 

was fixed at 60 W while the deposition pressure was fixed at 0.58 mbar. Single a-C:H 

underlayers were also fabricated to study the underlayers themselves. 

 

 

 

 

 

 

 

c-Si 
a-C:H 

c-Si 
a-C:H 

c-Si 

CNx 

CH4 plasma [CH4  + N2] 

plasma 

Figure 3.4: Single a-C:H underlayer deposited on Si substrate and CNx film  

deposited on a-C:H underlayer prepared by RFPECVD. 
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Three sets of a-C:H underlayer and the subsequent CNx thin films were 

prepared. In the first set, a-C:H underlayers were deposited at different deposition 

duration of 5, 10, 15 and 30 minutes at RF power of 60 W. CNx films was deposited on 

these a-C:H underlayers. In set 2, a-C:H underlayers were prepared at different RF 

power of  30, 40, 50, 60, 80 and 100 W and deposited for 10 minutes. The last set 

consists of a-C:H underlayers deposited at fixed RF power of 100 W and deposition 

time of 10 minutes; and these are subsequently treated in hydrogen plasma for different 

duration of 3, 5 and 10 minutes. The hydrogen plasma was produced from hydrogen at 

flow rate 50 sccm. Subsequently CNx films were deposited onto these films and the 

effects of varying each deposition condition were studied in terms of the a-C:H 

underlayer and the CNx formation.  The chart of the set of samples prepared in this work 

is shown in Figure 3.5. Table 3.1 summarizes the parameters for a-C:H layer and CNx 

film.  
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c-Si 

a-C:H 
c-Si 

a-C:H 
c-Si 

CNx 

Set 1 

a-C:H underlayers 

deposited on c-Si  for 

deposition duration of 5, 

10, 15 and 30 minutes at 

fixed RF power of 60 W 

Set 2 

a-C:H underlayers 

deposited on c-Si  

substrate at RF power of 

30, 40, 50, 60, 80 and 

 100  W for 10 minutes 

Set 3 

a-C:H underlayers 

deposited on c-Si  

substrate at RF power of 

100  W for 10 minutes 

with different H2 

treatment time of 3, 5 and 

10 minutes 

Set 1 

Subsequent CNx film on  

a-C:H underlayers 

deposited at different 

deposition time of 5, 10, 

15 and 30 minutes. 

Set 2 

Subsequent CNx film on 

a-C:H underlayers 

deposited at RF power of 

30, 40, 50, 60, 80 and  

100  W for 10 minutes 

Set 3 

Subsequent CNx film on 

a-C:H underlayers 

deposited at RF power of 

100  W for 10 minutes 

with different H2 

treatment time of 3, 5 and 

10 minutes 

Figure 3.5: Chart of sample preparation. 
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Table 3.1: Deposition parameter of a-C:H layer and CNx nanostructures. 

Films 
a-C:H 

CNx 
Set 1 Set 2 Set 3 

Deposition time 

(minutes) 

0, 5, 10, 15 

and 30  
10  10  90  

RF power (W) 60  
30, 40, 50, 60, 

80 and  100  
100  60  

Hydrogen plasma 

treatment 
- - 

0, 3, 5 and  

10 minutes 
- 

Gas source and 

flow rate (sccm) 

CH4  

20  

CH4  

20  

CH4  

20  

CH4+N2 

20 + 50  

Pressure (mbar) 0.3  0.3  0.3  0.6  

Deposition 

temperature (
o
C) 

100 100 100 100 

 

The RF generator was turned on to ignite the plasma once the substrate 

temperature has stabilized. The plasma discharge is depicted in Figure 3.6. Carbon 

nitride films were deposited for 90 minutes on the a-C:H coated c-Si substrates. For 

comparison a set of CNx films was deposited on bare c-Si substrates. Throughout the 

deposition, the chamber pressure, substrate temperatures and gas flow rates were 

regulated at their fixed value.  

 

Figure 3.6: Plasma discharge during deposition process. 
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3.3.4 Post-deposition Process 

At the end of the deposition time, the RF generator and heater power supply 

were turned off. The chamber was continually pumped down to allow the sample to 

cool down slowly to room temperature under vacuum.  

 

3.4 Analytical Techniques 

3.4.1 Atomic Force Microscopy 

Atomic Force Microscopy (AFM), a scanning probe microscopy technique was 

established in 1986 by Binnig and co-workers. This instrument produces atomic scale 

images of the surface topography of conducting and non-conducting surfaces.  Figure 

3.7 shows a schematic diagram of AFM. Thin film sample was placed on a piezoelectric 

scanner under a stationary sharp tip attached to a flexible cantilever. The instrument 

works by measuring deflection from the cantilever as it is scanned across the surface of 

the sample. The cantilever deflection detection system is used to retain a constant 

deflection angle by adjusting the displacement of piezoelectric scanner tube in  

z-direction which moves upward and downward. This allows the changes of surface 

morphology of the sample when scanning along the x and y-direction to be recorded in 

the form of a topographic map. The sensitivity of the cantilever is determined by its 

length and type of material that makes up the tip. Commonly, SiN3 is selected because 

SiN3 shows high hardness and durability and can be mass produced using chemical 

vapour deposition while the tip could be induced using microelectronic lithography. 

There are 3 modes of measurement usually used in AFM. This includes contact, 

non-contact and tapping modes. The choice of modes depends on the type of sample to 

be scanned and also resolution. High resolution surface topography could be obtained 

by contact mode while non-contact mode prevents sample damage. On the other hand, 
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tapping mode is preferred because its combines the advantages of both contact and non-

contact modes. This minimizes damage of the film surface while producing high 

resolution image. A VEECO Dimension 3000 atomic force microscope as shown in 

Figure 3.8, was used to determine the surface roughness and morphological properties 

of the a-C:H underlayer. 

 

Figure 3.7: Schematic diagram of AFM 

  

 

Figure 3.8: VEECO Dimension 3000 atomic force microscope. 
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An a-C:H underlayer was scanned within an area of 5 x 5 m
2
. Figure 3.9 (a) 

and (b) show a typical surface morphological image and the corresponding roughness 

analysis respectively.  

 

 

 

Figure 3.9: Surface morphological (a) and roughness analysis (b) of a-C:H underlayer 

deposited by RFPECVD at 10 minutes. 

 

 

 

 

(a) 

(b) 
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3.4.2 Profilometer 

The growth rate of the a-C:H underlayer was calculated from the film thickness 

obtained using a KLA TENCO P-6 profilometer. The profilometer is shown in      

Figure 3.10. The thickness is measured from the height difference between the substrate 

surface and the carbon layer. Figure 3.11 shows a typical surface profile measurement 

used to determine the thickness of the a-C:H underlayers. The thickness was calculated 

at different positions and average of the thickness was obtained.  

 

 

 

Figure 3.10: KLA TENCO P-6 profilometer. 
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Figure 3.11: Data observed from profilometer for film deposited at 100 W  

RF power with 3 minutes hydrogen treatment process. 

 

3.4.3 Scanning Electron Microscopy  

High resolution surface and cross section of images of the CNx films were 

obtained from a FEI Quanta 200 field emission scanning electron microscope (FESEM). 

The FESEM is shown in Figure 3.12. The FESEM operates using a beam of electron 

which is scanned across a sample. During the scanning process, the specimen is 

bombarded with electrons. The electrons may be elastically reflected or absorbed by the 

sample. Secondary electrons and x-rays can be produced from the specimen surface if 

the incident beam is energetic enough. This causes a slight energy loss and path change 

in the incident electrons and ionization of electron in the specimen atom. Several 

secondary electrons can be produced by each of the incident electrons and all these 

effects can be used to produce an image. 
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Figure 3.12: FEI Quanta 200 field emission scanning electron microscope. 

 

The thickness of CNx films was obtained from the cross sectional images. The 

thickness was calculated from the vertical height of the film perpendicular to the 

underlayer surface for at least 50 points from each image, and then the average was 

calculated. Growth rate is obtained by dividing the film thickness with the deposition 

duration. An example of surface and cross section images of CNx films are shown in 

Figure 3.13.  
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(a) (b) 

Figure 3.13: Surface (a) and cross section (b) images of CNx film deposited on a-C:H 

underlayer prepared at RF power of 50 W. 

        

3.4.4 Fourier Transform Infrared Spectroscopy Measurement  

Fourier Transform Infrared (FTIR) spectroscopy, is used to determine the 

chemical bonding structure and molecule content in the a-C:H underlayer and CNx thin 

film. The FTIR technique is used to identify the absorption of various bonding of the a-

C:H and CNx films. This was done by measuring the infrared radiations by the sample 

under transmission mode. Molecular vibrations give rise to IR bands only if they cause 

a change in the dipole moment of the molecule which includes stretching, wagging, 

rocking and bending. The normal way to interpret an IR spectrum is to identify 

functional group regions, then to note any unusually strong bands or particularly 

prominent patterns in the fingerprint region. These functional groups could be identified 

from the spectra with reference to those obtained from literature. Figure 3.14 shows the 

schematic diagram of Fourier Transform Infrared Spectrometer. The interferogram is a 

complex signal produced from an optical pathway pattern. This signal is generated by 

combination of two beams oriented toward the sample by a beam splitter. The sample 

absorbs the beam that passes through at specific wavelength and the computer compares 

the signal produced with a reference laser beam. The resulting interferogram shows all 
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the information in an imaginary one time-domain signal. A mathematical process called 

Fourier transform is applied by the computer to produce the resulting infrared spectrum. 

 

 

Figure 3.14: Schematic diagram of Fourier Transform Infrared Spectrometer. 

 

FTIR measurements were done using a Perkin Elmer System 2000 FTIR 

spectrometer in transmission mode as shown in Figure 3.15. The sample deposited on Si 

substrate was scanned in the range of 400-4000 cm
-1

. A blank Si substrate was used as 

background. The spectrum is converted to absorption spectrum by normalizing it to film 

thickness. 
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                     Figure 3.15: The Perkin Elmer System 2000 FTIR spectrometer. 

  

 Figure 3.16 shows a typical FTIR spectrum of a-C:H underlayer while       

Figure 3.17 shows a typical FTIR spectrum for CNx nanostructures. These spectra are 

divided into 2 and 3 regions at wavenumber respectively of 1300-1800, 2000-2300 and       

2800-3700 cm
-1

. Each region is assigned to bonds accordingly as shown in Table 2.1. 
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Figure 3.16: FTIR spectrum of a-C:H underlayer. 

 

  

Figure 3.17: FTIR spectrum of CNx nanostructures. 
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The spectrum was deconvoluted according to those proposed by other 

researchers (Mutsukura and Akita 1999; Fanchini et al. 2005; Li et al. 2006) to obtain 

the integrated intensity of the absorption spectra This integrated intensity can be 

determined from the following relation. 

 The absorption coefficient is given by equation 3.1. 

                                         = ln                                                  (3.1) 

where d is the film thickness and T is the transmittance. 

 The integrated intensity of the absorption band representing a particular bonding 

configuration is obtained using equation 3.2. 

                                              I= d                                                    (3.2) 

The Gaussian or Doppler line shape was used to deconvolute the component peak from 

the absorption spectrum. This can be expressed using 

                     ( ) = max exp                   (3.3) 

with                          max =                                                  (3.4) 

 

and                                 Sband =                                                    (3.5) 

Sband, ,  ( ) and  are the area under the spectrum, the full width half maximum 

(FWHM) of the absorption peak, the maximum absorption coefficient and the position 

of absorption peak respectively. Equation 3.2 can be rewritten in the form of 

                                             y = A exp (-Bx)               (3.6) 

where A, B and x can be expressed in the following form 

                                             y = ( )                (3.7) 

                                             x = ( )
2          

                                              (3.8) 

                                            A = , or  A =                (3.9)
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                                            B =           (3.10) 

          

Performing natural logarithm on both sides of equation 3.6,  

                                        ln y = ln A – B( )
2 
                                        (3.11) 

 From equation 3.2, the integrated intensity can be expressed as  

                                             I =                                                            (3.12) 

 Figure 3.18 shows an example of deconvolution of FTIR absorption peaks 

obtained for CNx nanostructures in wavenumber region of 1950-2350 cm
-1

. These peaks 

were deconvoluted using Gaussian fitting calculated by OriginPro 8.1 program. 

 

 

Figure 3.18: Example of deconvolution FTIR absorption peaks of a-C:H underlayer  

and CNx nanostructures in wavenumber region of 2000-2300 cm
-1

 (Mutsukura 2001). 
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3.4.5 Raman Spectroscopy 

Raman Spectroscopy is used to study the vibrational, rotational and other low 

frequency transition properties of materials. The Raman effect occurs when frequency 

of monochromatic light changes upon interaction with a sample due to an inelastic 

scattering of the monochromatic laser source. The sample absorbs the photon from the 

laser source and reemitted photon and the difference in frequency of incident and 

emitted photon provides information about the vibrational and rotational transition in 

molecules. 

 Figure 3.19 shows the Renishaw inVia Raman Microscope and in this work 

measurements were carried out by using Helium-Cadmium laser with excitation 

wavelength of 325 nm and grating slit of 2400 lines/mm for film deposited on c-Si 

substrate. Raman shift was determined in wavenumber range of 1000-2500 cm
-1

 

measured at an exposed time of 10 s at laser power of approximately 0.2 mW.  

 

 

Figure 3.19: The Renishaw inVia Raman Microscope. 
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The example of typical Raman spectra for a-C:H underlayers is shown in Figure 

3.20. The example is for films prepared at different deposition duration showing the 

presence of D and G bands in range of 1350-1380 cm
-1

 and 1550-1600 cm
-1

 

respectively. For the deconvolution of D and G bands, the spectra were initially 

corrected by removing the PL background baseline as shown in Figure 3.20 (a). The 

corrected spectra are then deconvoluted using standard Gaussian fitting computed using 

Origin Pro 8.1 as shown in Figure 3.20 (b). From the fitting, the clustering of the sp
2 

phase, bond disorder, presence of sp
2
 rings or chains and sp

2
/ sp

3
 ratio of the films were 

studied. 

 
 

Figure 3.20: (a) Raman spectra with the baseline and (b) corrected Raman spectra with the 

Gaussian fitting D and G bands. 

  

 

 

 

(a) (b) 
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3.4.6 Auger Electron Spectroscopy 

Auger Electron Spectroscopy (AES) have been used widely to determine the 

composition of the surface layer of a film. This measurement is derived from the 

phenomenon of emission of low energy electron by Auger process when electrons with 

energies of 3-20 keV are incident on a sample, that is electrons from atoms in the 

sample could be ejected producing a photoelectron and an atom with a core hole. The 

atom then relaxes via the transition of electrons with lower binding energy into the core 

hole. Energy released from this relaxation can be converted into an X-ray or emission of 

an electron. The emitted electron due to this relaxation process is called an Auger 

electron. Schematic diagram of this Auger process is summarized in Figure 3.21. With 

the emission of the Auger electron, the atom is left in a doubly ionized state. The energy 

of the Auger electron is characteristic of the element that emits it, and can thus be used 

to identify the element. The short inelastic mean free path of Auger electrons in solids 

ensures the surface sensitivity of its measurement. AES is a popular technique for 

determining the composition of the top few layers of a surface. It cannot detect 

hydrogen or helium, but is sensitive to all other elements, being most sensitive for low 

atomic number elements.  
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Figure 3.21: Schematic diagram of Auger electron process. 
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In this work, Auger electron was measured by JAMP-9500F Field Emission 

Auger Microprobe, as shown in Figure 3.22. Etching and measure cycles were carried 

out to obtain reliable, consistent result, since the top surface of the film tends to have 

contamination. The etching process is done by sputtering of high energy heavy ion 

beam in which Ar
+
 ions was used to impinge the surface of the film. Figure 3.23 

illustrates the typical AES spectra of CNx nanostructured films. In this example, the 

films are prepared at different deposition duration for the a-C:H underlayer. From the 

quantitative analysis, the nitrogen to carbon content ratio was calculated.  
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                       Figure 3.22: JAMP-9500F Field Emission Auger Microprobe. 

                     

Figure 3.23: AES spectra variation of CNx prepared on different deposition  

duration of a-C:H underlayer and bare c-Si substrate. 
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CHAPTER 4 : EFFECTS OF HYDROGENATED AMORPHOUS CARBON 

UNDERLAYER ON THE FORMATION OF CARBON 

NITRIDE NANOSTRUCTURES: RESULTS, ANALYSIS AND 

DISCUSSION 

 

4.1 Introduction 

 This chapter presents the experiment results, analysis and discussion related to 

the study of hydrogenated amorphous carbon (a-C:H) thin films used as the underlayer 

film in the subsequent fabrication of  carbon nitride nanostructures (ns-CNx). These 

films were deposited using radio frequency plasma enhanced chemical vapour 

deposition (RFPECVD) from the precursors methane and nitrogen gases. For the a-C:H 

underlayers, their growth rate, surface roughness , chemical bonding and structural 

properties were studied. Subsequently, ns-CNx were grown directly onto these a-C:H 

underlayer films.  These ns-CNx/a-C:H films were studied in terms of their surface and 

cross section images, growth rates, elemental composition and bonding properties.  

This exploratory study focuses on three different aspects of the a-C:H underlayer 

growth and treatment. The first aspect looks into the effects of growth duration on these 

underlayer films, then the effects of the morphology of the underlayer on the formation 

of the ns-CNx were studied. While the deposition time duration is varied, other critical 

deposition parameters such as the RF power, gas ratios, deposition temperatures and 

pressures, were kept constant. These critical parameters are known to significantly 

influence the structure of the film and thus it is expected that by keeping them constant 

throughout the deposition, the bulk structure of the films themselves should remain 

constant. This may enable studies of the growth and surface morphology to be 

scrutinized.     
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The second part looks into one of these critical deposition parameters, namely 

the effect of applied RF power on the deposition of the a-C:H underlayer and 

corresponding ns-CNx. This was carried out while keeping the rest of the parameters 

constant, including the deposition duration. The third part looks into a totally different 

aspect. This involves the effect of hydrogen treatment onto a particular a-C:H 

underlayer sample. The as-deposited sample chosen exhibited the smoothest surface. 

The purpose of the treatment is to determine the potential of using surface treatment to 

alter the a-C:H surface and subsequently to produce different ns-CNx structures.     

 In each part, the results and discussion were first focused on the characterization 

of the a-C:H underlayer films, followed by the characterization of the subsequent 

formation of ns-CNx. The discussion in these part includes the correlation of the 

properties of the a-C:H underlayers and the structure of the ns-CNx. Figure 4.1 

summarizes the methodology and variations in the parameters involved in the 

modification of the a-C:H underlayer.    
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 Varied = deposition 

duration 
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Varied = H2 plasma 
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ns-CNx 
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?????? 

 

 

Fixed parameters: 

RF power = 60 W 

CH4 = 20 sccm 

Pressure = 0.3 mbar 

Temperature = 100oC 

 

Common Fixed parameters: 

RF power = 60 W 

CH4 + N2 = 20 + 50  sccm 

Pressure = 0.6 mbar 

Temperature = 100oC 

Duration = 90 min 

 

 Figure 4.1: Summary of the methodology and variations in film preparation parameters. 
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4.2 Effects of Deposition Time Duration of a-C:H Underlayer and Resulting 

CNx/ a-C:H Formation 

 

The first study focuses on the effects of different deposition time duration on the 

properties of a-C:H underlayers and thus its effects on the properties of the ns-CNx. Five 

sets of samples are prepared where the deposition duration for a-C:H underlayers  was 

varied at 5, 10, 15, 30 minutes, together with a CNx prepared on bare c-Si. The growth 

rate, morphology, chemical bonding properties and composition of the films were 

studied. 

 

4.2.1 Effects of Deposition Time Duration on a-C:H Underlayers 

4.2.1.1 Growth rate of a-C:H underlayers 

The thickness of these a-C:H underlayers were determined from surface profiler 

measurement. Figure 4.2 presents the variation of thickness and deposition rate of a-C:H 

underlayer deposited as a function of deposition time duration (tD). The thickness of the 

a-C:H underlayers increase gradually at tD up to 10 minutes, and subsequently increased 

linearly up to tD of 30 minutes. The growth rates of these a-C:H films were calculated 

from the thickness. The growth rate decreased slightly when tD was increased from 5 to 

10 minutes and then, with further increase in tD an almost constant increase in the 

growth rate was observed.  

The growth rate of the a-C:H underlayers by RFPECVD is dependent on the 

number of nucleation sites present for the diffusion of carbon growth radicals from the 

plasma. The creation of the nucleation sites is mainly contributed by hydrogen etching 

effects and/or ion bombardment and abstraction process by CH3 radicals. These 
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effectively break weak C-C bonds or H terminated bonds (Si-H on the c-Si substrates or 

C-H bonds), creating dangling bonds which allowed C growth radicals to bond onto the 

film. The slight decrease in growth rate for the film deposited at tD of 10 minutes 

indicates that the rate of nucleation sites formation was larger than the rate of diffusion 

of C growth radicals onto these nucleation sites. Longer deposition duration increased 

the number of growth radicals reaching the growth sites thus increased the growth rate 

of the film.  

 

Figure 4.2: Thickness (■) and growth rate (♦) of a-C:H underlayer deposited by RFPECVD for 

different deposition time duration. The line is only an eye-guide. 
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4.2.1.2   Surface roughness and surface morphology of a-C:H underlayers 

The morphology and surface roughness of the a-C:H underlayer films were 

determined from AFM measurements. The AFM surface images of the a-C:H 

underlayer are shown in Figure 4.3, while the variation of the corresponding surface 

roughness as a function of tD is shown in Figure 4.4. 

 

    

Figure 4.3: AFM surface morphology of  (a) bare c-Si, a-C:H underlayers deposited for tD of 

(b) 5, (c)10, (d) 15, (e) 30 minutes and (f) the high magnification of a-C:H underlayer deposited 

at 10 minutes. 
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The surface roughness increases to maximum for the film deposited at tD of 10 

minutes while that of 5 and 30 minutes remained almost the same as bare c-Si. The 

maximum surface roughness for film deposited at tD of 10 minutes is consistent with the 

AFM surface morphology seen in Figure 4.3 (c) where the surface roughness is 

contributed by the formation of what appear to be islands of broad tip cone-like 

structures protruding vertically on the substrate surface. Magnification of Figure 4.3 (c) 

is shown in Figure 4.3 (f). With the further increase in tD from 10 minutes to 30 

minutes, the cone-like structures appears to decrease and then disappear altogether 

resulting in the smooth film at tD of 30 minutes. This corresponds to a sharp decrease in 

surface roughness from tD 10 minutes to 15 minutes and then a gradual decrease from 

15 minutes to 30 minutes as seen in Figure 4.4.  

                 

Figure 4.4: Variation of surface roughness of bare c-Si and a-C:H underlayers 

deposited at 5, 10, 15 and 30 minutes. 
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4.2.1.3  Chemical bonding properties of a-C:H underlayers 

FTIR spectra were obtained to study the chemical bonding of the a-C:H 

underlayers. The FTIR spectra for the films prepared at different tD are shown in    

Figure 4.5. The spectra can be separated into 2 main regions at wavenumber ranges of 

1200-1900 cm
-1

 and 2700-3800 cm
-1

. The absorption bands at 1200-1900 cm
-1

 are 

assigned to CH bending and C=C stretching bonds; while the band in the region of 

2700-3800 cm
-1

 are assigned to various of CHn groups and O-H bonds (Mutsukura and 

Akita 1999).  

 

Figure 4.5: The FTIR spectra of a-C:H underlayer deposited for varied  

deposition duration. 

 

 

 

 

 

 For detailed analysis, the FTIR spectra were deconvoluted into its corresponding 

components as shown in Figure 4.6. For the region in the wavenumber  range of 1200-

1900 cm
-1

, the deconvolution peaks corresponds to sp
2
 C, Raman D, sp

3
 CH, Raman G, 

CH, C=C and C=C stretching modes found at 1350, 1380, 1450, 1580, 1600, 1650 and 
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1700 cm
-1

, respectively. The peaks in the second region within the wavenumber range 

of 2700-3200 cm
-1

 are represented by the symmetry sp
3
 CH2, symmetry sp

3
 CH3, 

asymmetry sp
3
 CH2, asymmetry sp

3
 CH3, sp

2
 CH and sp

2
 CH

2
 bonds located at 2835, 

2875, 2930, 2960, 3000 and 3020 cm
-1

 respectively. From these spectra, the chemical 

bondings in the films remain almost the same indicating that the bonding composition 

remains the same irrespective of tD. In particular, the bonds within the range of       

1200-1900 cm
-1 

remain almost the same, with the deconvolution peaks showing almost 

no changes with the change in tD. This is expected since the deposition parameters such 

as the RF power, deposition pressure and temperature, and gas flow rates were kept 

constant. These parameters are the ones which would greatly affect the structure of the 

films. The deposition duration should not influence the structure of the bulk film 

drastically. This however does not mean that the bonding and structure of the film does 

not alter during the film growth, as proven in the AFM analysis. This could be 

correlated with the slight change in the absorption intensities of the CHn bands within 

the wavenumber range of 2700-3200 cm
-1

. It could be seen that their intensities 

decreases particularly for the films deposited at tD above 10 minutes which indicates a 

decrease in H content in the film. The fact that this decrease occurs for the film 

deposited at tD above 10 minutes coincide with the change in the film surface from the 

cone-like formation to a smoother surface, and corresponding decrease in surface 

roughness. This suggests a certain relationship between the decrease in H content 

through the CHn bonds and the surface morphology. It is believed that H etching and 

energetic ion bombardment of the growing surface may contribute to the formation of 

these cone-like structures thus creating a very rough film surface. These cone-like 

structures were believed to be covered with H terminated bonds. The presence of 

energetic H atoms at the growth sites resulted in the formation of these bonds as they 

were easily diffused onto the dangling bonds covering the surface of these cone-like 
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structures. These effects become effective at the initial tD up to tD of 10 minutes where 

the formation of these cone-like structures form uniformly on the film surface. However 

with the further increase in tD from 10 minutes to 30 minutes, the increase in the number 

of growth radicals at the growth sites increased the size of the cone-like structures, 

forcing them to fuse together. This will effectively embed the cone-like structures as 

indicated in the progression shown in Figure 4.3 (c) and (d). Finally, as seen in      

Figure 4.3 (e) a smooth surface effectively covered the cone-like structures results in the 

smooth film. This corresponds to the gradual decrease in surface roughness from tD 10 

minutes to 30 minutes seen in Figure 4.4.  
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Figure 4.6: Variation of FTIR spectra for a-C:H underlayers deposited at different duration of 5, 10, 15 and 30 minutes. 
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4.2.1.4 Raman Analysis 

 Figure 4.7 (a) and (b) present the raw Raman spectra and the Raman spectra 

after the background extraction for a-C:H underlayers prepared at different tD of 5, 10, 

15 and 30 min respectively. The typical D and G peaks are detected around Raman shift 

of 1360-1380 cm
-1 

and 1580-1600 cm
-1 

respectively assigned to disorder and graphitic 

carbon (Ferrari and Robertson 2000). The D band is attributed to disordered sp
2
 

graphite-like micro-domain induced by linkage with sp
3
 carbon atoms and the finite 

crystalline sp
2
 micro-domains whereas G band corresponds to a graphite-like layer of 

sp
2
 micro-domains (Liu et al. 2002). In general, the G band is more dominant compared 

to the D band.  

The strong background could be observed in Figure 4.7 (a) for a-C:H underlayer 

prepared at 5 minutes due to strong luminescence which results in positive slope in the 

baseline (Nemanich et al. 1988). This phenomenon was also observed by Theye et al. 

when they used Raman spectroscopy to characterize the hydrogenated amorphous 

carbon film (Theye, Paret and Sadki 2001). As the deposition time increases from 10 to 

30 minutes the decrease in slope of the Raman spectra could be observed. These results 

are in agreement with the results observed in the FTIR results discussed previously. 

Further analysis of these Raman spectra was done. The luminescence background has 

been removed by subtracting their baseline and the spectra were deconvoluted into 3 

bands as shown in Figure 4.7 (b). The spectra show two prominent peaks which are D 

and G bands, and a background peak at Raman shift approximately at 1500 cm
-1

 

indicated by the curve fit assigned to disordered  sp
3
 carbon according to Chu et al. 

(Chu and Li 2006). However, the presence of D band is forbidden in ideal graphite. As 

it is disturbed by sp
3
 sites, the intensity of D band increases (Schwan et al. 1996). 
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Figure 4.7: The raw Raman spectra with strong background (a) and the Raman spectra after the background extraction (b)  

for a-C:H underlayers prepared at different deposition duration of 5, 10, 15 and 30 min. 

 

(a) (b) D D G G 
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 From Raman analysis, the variation of G and D peak positions, FWHM and     

ID/ IG ratio for a-C:H underlayers as a function of tD were obtained as shown in Figure 

4.8. In general, the G peak position is almost uniform at ~1590 cm
-1

 for all films as 

shown in Figure 4.8 (a). This is higher than its 1550 cm
-1

 value in visible Raman but 

does not exceed the band limit of graphitic carbon. This indicates that the shifted G peak 

position in uv region is contributed by olefinic (chain) sp
2
 groups with high vibrational 

frequencies than graphitic groups due to their shorter bond lengths (Gilkes et al. 1998) . 

Likewise the D peak position, it is also uniform at around 1375 cm
-1

 for the a-C:H 

underlayer deposited at tD of 5, 10 and 15 minutes and increases to 1390 cm
-1

 for a-C:H 

underlayer prepared at tD of 30 minutes as shown in Figure 4.8 (b). The band width of G 

and D bands for a-C:H underlayer  prepared at tD of 10 minutes are highest compared to 

others as seen in Figure 4.8 (c) and (d). It is suggested that the a-C:H underlayer 

prepared at 10 minutes has lower degree of clustering of sp
2 

phases and less ordered 

structures compared to those underlayers prepared at tD of 5, 15 and 30 minutes 

(Jawhari, Roid and Casado 1995). This may be due to the increase in bond-angle 

disorder at sp
2
 site in carbonaceous materials. From Figure 4.8 (e), the ID/IG ranges from 

0.4 to 0.9. It is observed that the ID/IG decreases as the tD increases indicating an 

increase in the ratio of sp
3
 to sp

2
 bonded to carbon. Zhao et al has suggested that the low 

ratio of ID/ IG (<1) in disordered graphite is due to the decrement of defect or ordering of 

carbon atoms. This is shown by small crystal size or the destruction of symmetry in 

crystallite structure (Zhao et al. 2011). 
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Figure 4.8: Raman analysis of a-C:H underlayers prepared at tD of 5, 10, 15 and          

30 minutes. Line is guide to the eyes. 

 

(a) (b) 

(c) (d) 
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4.2.2 Effect on Resulting ns-CNx/a-C:H Formation 

4.2.2.1  Surface and cross-sectional images 

The surface and cross-sectional images of the ns-CNx deposited onto the a-C:H 

underlayer which were produced at different tD are shown in Figure 4.9. 

Surface  Cross-sectional  

  

(a) bare c-Si 

  

(b) tD = 5 minutes 

  

(c) tD = 10 minutes 

  

(d) tD =15 minutes 

  

(e) tD = 30 minutes 

Figure 4.9: Surface and cross-sectional images of ns-CNx  

deposited on a-C:H underlayer prepared at different tD. 
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Figure 4.9 (a) shows that ns-CNx could be deposited directly on bare  

c-Si substrate. These fiber-like nanostructures exhibited high aspect ratio with average 

diameter of 88 ± 14 nm and length of 3.81 ± 0.09 μm. It was also observed from Figure 

4.9 (b)-(e) that the formation of ns-CNx could be influenced by introducing the a-C:H as 

an underlayer base. The formation of these ns-CNx on the a-C:H base varied in 

accordance to tD. The nanostructures formed on the a-C:H underlayer deposited at tD of 

5 minutes resembles those on bare c-Si substrate but the length of the former was 

decreased by almost one third. Furthermore, they were more tightly packed and were 

formed on the surface of the a-C:H underlayer. The film deposited on the a-C:H 

underlayers at tD of 10 minutes were tightly packed, rigid and cylindrical in shape with 

enhanced vertical alignment. These nanostructures show a slightly lower aspect ratio 

compared to the fiber-like structures produced on the bare c-Si substrate whereby the 

average diameter of the former was 84 ± 17 nm while their average length was         

3.38 ± 0.07 m. The ns-CNx deposited on the a-C:H underlayer deposited  at tD of       

15 minutes formed bunches of dendrite-like structures fused at the base. The 

nanostructures deposited on the a-C:H underlayer at tD of 30 minutes also showed a 

dendrite-like structures but of smaller size protruding from that possibly the a-C:H 

underlayer. This is influenced by cone-like structure of the a-C:H as underlayer appears 

to decreases and disappear altogether.  

Among these, the well aligned, rigid, cylindrical rod-like structure is of great 

interest. Figure 4.10 compares the well aligned fiber-like CNx formed on bare c-Si and      

a-C:H underlayer deposited at tD 10 minutes. The formation of the fiber-like ns-CNx 

formed on the bare c-Si substrate is believed to be influenced by the crystalline structure 

of the substrate itself. In contrast, this was not so for film grown on the c-Si substrate 

coated with the a-C:H underlayer film. Here, the growth of the rod-like ns-CNx 

coincided with the high surface roughness of the film. The high surface roughness was 
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contributed by the presence of vertical broad tip cone-like features of the a-C:H 

underlayer. These morphological features may have acted as the template for the 

formation of these structures. Ion bombardments on the H terminated bonds of the cone-

like structures along with H etching effects during the growth of the CNx structures 

might have induced the formation of a higher ordering of these structures which resulted 

in the growth of highly aligned rigid cylindrical nanostructures. It is also seen that the 

„roots‟ of the nanofibers that grew directly on the c-Si substrate appear to form 

separately from each other. In contrast, the nanorods grew on the a-C:H underlayer 

appears to have more solid base where their „roots‟ grew from. It is very likely that this 

base is the a-C:H underlayer film. 

For deposition on the a-C:H underlayers film which were produced at tD of 15 

and 30 minutes, the formation of ns-CNx reduced significantly in size and appeared as 

dendrite-like structures. These cone-like structures appear to be embedded in the a-C:H 

film.  The changes in the growth of the ns-CNx corresponds to the reduction in the 

surface roughness of the a-C:H underlayer and shows that the growth of the nanorods 

are effectively suppressed. 

  
bare c-Si 10 minutes 

Figure 4.10: Variation of FESEM cross-sectional images for ns-CNx deposited on 

bare c-Si and 10 minutes a-C:H underlayer. 
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4.2.2.2   Auger electron spectroscopy measurement of ns-CNx  

 The elemental composition of these ns-CNx was determined by using AES. 

From these measurements the relative concentration (%) of C and N elements were 

calculated. The N/C ratio for the ns-CNx grown on the a-C:H deposited as a function of 

tD is shown in Figure 4.11. The results indicate that the incorporation of nitrogen was at 

the highest for the film deposited at tD of 10 minutes. This coincides with the formation 

of the rigid and aligned nanostructures (Ritikos et al. 2011). This indicates that high 

incorporation of N atoms into the film structure is important in the formation of the 

rigid and highly aligned vertical cylindrical ns-CNx. It is important to determine how 

these N atoms are bonded to the C structure. This was studied by means of FTIR 

characterization. 

 

Figure 4.11: Variation of nitrogen to carbon N/C ratio of ns-CNx  

deposited on c-Si, a-C:H underlayers at tD of 5, 10, 15 and 30 minutes. 
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4.2.2.3   FTIR spectra of ns-CNx  

The FTIR spectra obtained for the ns-CNx films deposited onto the a-C:H 

underlayer which was prepared as a function  of tD are shown in Figure 4.12. The 

spectra are composed of 3 main characteristic bonding groups. These include the 

absorption band at 1300-1800 cm
-1

 related to sp
2
-CH bending and C=C and/or C=N; 

absorption band at 2000-2300 cm
-1

 corresponding to sp
1 

nitrile and/or isonitrile (CN) 

bonds and those at 2800-3700 cm
-1

 which are related to sp
3
 CHn groups and N-H and / 

or O-H (Motta and Pereyra 2004; Mutsukura and Akita 1999; Pereira et al. 2006). For 

clarification, the individual spectra for each region are presented in Figure 4.13. 

Compared to the spectra for the a-C:H underlayer (Figure 4.5), the spectra for the ns-

CNx films show the additional absorption region within the range of 2000-2300 cm
-1

, 

which was attributed to the incorporation of N atoms into the film structure. Indeed it is 

the band in this region which shows the most significant changes with the variation in 

the deposition parameter. These changes are deem more important and reliable than the 

other regions since the changes in the sp
2
 or sp

3
 phases may be influenced or 

contributed by any changes in the a-C:H underlayer films during the CNx deposition.   
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Figure 4.12: Variation in FTIR absorbance spectra of ns-CNx  

as a function of deposition duration of a-C:H underlayers. 

H 
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Figure 4.13: The FTIR spectra for ns-CNx deposited at different tD of a-C:H underlayers  

in the range of (a) sp2, (b) sp1 and(c) sp3 phases. 

(a) (b) (c) 
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Figure 4.14:  The FTIR spectra in the wavenumber range of 1900-2300 cm-1 of  

CNx nanostructres as a function of tD a-C:H underlayers. 

 

The spectra region in question, shown in Figure 4.14 is contributed by the 

presence of nitrile and/or isonitrile (CN) bonds in the films. The broad bands in this 

region were decomposed into five overlapping bands associated with these nitrile 

(−C≡N) and isonitrile (−N≡C) bonds (Mutsukura 2001; Mutsukura and Akita 1999) 

which include the isolated and/or fused aromatic rings bonded either to isonitrile 

(−N≡C) bonds at 2105 cm
-1

 or nitrile bonds (−C≡N) at 2215 cm
-1

; hydrocarbon 

molecules which include C2H5 at 2160 cm
-1

 and CH3 at 2190 cm
-1

 bonded to isonitrile 

(−N≡C); and the hydrocarbon groups (CH3, C2H5, etc.) bonded to nitrile (−C≡N) which 

appear as a single peak at 2245 cm
-1

. The deconvolution of the spectra carried out using 

standard Gaussian curve-fitting method (Fanchini et al. 2005; Mutsukura and Akita 

1999) is shown in Figure 4.15. Among these spectra and their deconvolution, a 

consistency in the film prepared on bare c-Si and the underlayer film at tD of 10 minutes 
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is observed, where they exhibit some similar traits and preferential bonds in the films. 

These preferential bonds coincide with the formation of the vertical aligned 

nanostructures for both films, suggesting the importance of these bonds.  

 

Figure 4.15: Gaussian fitting profiles for FTIR spectra in wavenumber region of  

2000-2300 cm-1 for a-C:H underlayer at tD 10, 30 minutes and c-Si. 

 

The dominant peak in both samples was located at 2105 cm
-1

 suggesting the 

preferential bonding of isonitrile bonded to aromatic rings in the film in the formation 

of these nanostructures. The presence of these bonds also suggest a dominant presence 

of aromatic bonds in the film being part of the architecture that made up the 

nanostructures. In addition, isonitrile bonds tend to form rigid, linear and continuous 

non-terminating bonds, which would form long ordered networks in the material 
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suitable for the formation of the nanostructured fibers and rods. Furthermore, 

preferential bonding of the ring through N atom rather than C for the isonitrile, 

suggested the presence of partial charge (−N
+
≡C

−
) formed within the nanostructures. 

The electric field imposed by the RF plasma aligns the partial charge, resulting in the 

formation of the vertical aligned growth of these structures perpendicular to substrate 

surface (Ritikos et al. 2011). 

 

4.2.3 Summary 

 The influence of the surface morphological and chemical bonding properties of 

PECVD-grown a-C:H underlayer pre-deposited films on p-type <111> c-Si substrates 

were studied. The effects of the films properties on the subsequent growth ns-CNx 

produced on these films are reported. This study shows that a-C:H pre-deposited 

underlayer films could be used as a template for the formation and modification of ns-

CNx. Indeed with the use of these a-C:H template the rigidity and shape of the ns-CNx 

could be modified from the vertically aligned CNx nanorods produced on bare c-Si. The 

formation of rigid and vertically aligned cylindrical ns-CNx is produced on a-C:H 

underlayer prepared at tD of    10 minutes. Though the structure and properties of these 

a-C:H films appear to have minimal variation with tD, the a-C:H film produced at tD of 

10 minutes shows the highest surface roughness. Its surface morphology is made up of 

broad tip cone-like structures with highly ordered sp
2
 clusters covered with H 

terminated bond. Nitrogen incorporation in ns-CNx and the preference of isonitrile 

bonds in the film induce the formation of vertically aligned ns-CNx.   
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4.3 Effects of RF Power on a-C:H Underlayer and Resulting CNx/a-C:H 

Formation 

 

This section study the effects of different applied RF power, PUL on the 

deposition of the a-C:H underlayer and the effects on the resulting ns-CNx. PUL were set 

at  30, 40, 50, 60, 80 and 100 W giving 6 sets of a-C:H underlayers and corresponding 

ns-CNx/a-C:H films. The deposition time was fixed at 10 minutes. The effects of 

applied RF power on the formation of a-C:H underlayers by RFPECVD have been 

investigated by other researchers working on this material (Choi et al. 2005; von 

Keudell, Meier and Hopf 2002). It is generally accepted that applied power significantly 

influences the structure of the deposited a-C:H films. Three aspects are usually taken 

into consideration when dealing with the studies of PUL on the film deposition. These 

include (i) the dissociation of gas precursors through primary and secondary reactions in 

the plasma, (ii) absorption and desorption processes on the film surface, and (iii) ion 

bombardment on the growth surface. The first aspect is associated with gas phase 

reactions, while the second and third aspects are related to surface reactions. Each 

aspect has its influence on the resulting film. 

 

4.3.1 Effects of RF Power on a-C:H Underlayer 

4.3.1.1 Growth rate of a-C:H underlayers 

Figure 4.16 shows the relationship between PUL and the corresponding film 

growth rate of the a-C:H underlayers. It is also found that the increase in PUL 

significantly increases the growth rate of the a-C:H underlayer films. The reason for the 

increase in growth rate is probably due to the increase in dissociation of the CH4. This 

will increase the number of reactive species in the plasma including hydrocarbon radical 
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and ion through primary reactions, and further enhancement through secondary 

reactions of these radicals with other available CH4 molecules (von Keudell, Meier and 

Hopf 2002). However, a slight decrease in thickness and growth rate of a-C:H 

underlayer deposited at RF power of 60 W could be due to a more dominant ion 

bombardment effects compared to a-C:H underlayers prepared at RF power of 30, 40, 

50, 80 and 100 W.  

 

Figure 4.16: Growth rate of a-C:H underlayers deposited by RFPECVD at different  

RF power. The line is only an eye-guide. 

 

4.3.1.2 Surface roughness and surface morphology of a-C:H underlayers 

The surface morphology of the a-C:H underlayers was studied by AFM analysis. 

The surface morphologies of the a-C:H underlayers are shown in Figure 4.17. In 

contrast with the progressive increase in the growth rate with increasing PUL, the surface 

morphology and its corresponding surface roughness of the a-C:H underlayer (RUL) 

films show different trend.  
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Figure 4.17: AFM surface morphology of a-C:H underlayers deposited for RF power  

of 30, 40, 50, 60, 80 and 100 W. 

 

Figure 4.18 presents the variation of surface roughness RUL of a-C:H 

underlayers as a function of PUL . RUL was almost constant when PUL is varied from 30 

to 50 W, then spikes to a maximum at PUL of 60 W before decreasing to a minimum at 

PUL of 80 W. With the current results, specific explanations could not be given for the 

variation in RUL with PUL particularly to the significant decrease in RUL for film 

deposited at PUL of 80 W. However, the changes in RUL are believed to be attributed by 

various degree and contribution of the gas phase and surface reactions. Though the 

substrate is grounded throughout the deposition process, ion bombardment contributed 

by the plasma, is expected to play an important role in the structural formation of the 

films. This may be true considering the close proximity of the electrodes (1 cm). Ion 

bombardment would effectively remove weak hydrogen bonds from the surface 

allowing structural modifications to occur as PUL is varied. Also when PUL is increased, 

primary reactions would dominate the gas phase reactions allowing increase in 
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production of hydrocarbon radicals until all the precursor gas were completely 

dissociated.  

This could lead to variation of surface modification of a-C:H underlayers. It is 

believed that the high RUL of the film deposited at PUL of 60 W is due to the 

enhancement of ion bombardment effect at this RF power. However, when PUL is 

further increased, the gas phase reactions dominates, with the primary reactions 

determining the properties of the films and this leads to the suppression of the ion 

bombardment effects. 

It is also noted that the rest of the films also shows some resemblance of         

nanostructures but different forms from that of the film deposited at PUL of 60 W. These 

include the large elongated mounds in the films deposited at PUL of 50 W, or the more 

scattered isolated cones present on the films grown at PUL of 30 W and 100 W. 

 

Figure 4.18: Variation of surface roughness of a-C:H underlayers 

         deposited at RF power of 30, 40, 50, 60, 80 and 100 W. 
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4.3.1.3 FTIR spectra of a-C:H underlayers 

The FTIR spectra of the C:H underlayer films prepared at different PUL are  

shown in Figure 4.19. Included is also the corresponding surface roughness. These 

spectra also show the expected functional groups common for a-C:H films. These 

groups consist of various sp
2
 C related bonds in the wave number range of              

1300-1700 cm
-1

. Among others, these bonds include those of C­C, the so called G and 

D bands and sp
2
 C bonds at frequency range of, 1550-1570 cm

-1
, 1360-1380 cm

-1
 and 

1620-1650 cm
-1

,
 
respectively (Lazar et al. 2005). Also, the CHn bands are clearly 

observed within the frequency range of 2800-3050 cm
-1

 which includes various 

overlapping sp
2
 and sp

3
 CHn bonds (Ghodselahi and Vesaghi 2008). For clarification, 

the individual spectra for each region are presented in Figure 4.20. 

A significant difference between the spectra of the film deposited at PUL of 60 W 

and the rest of the films is clearly seen and this film shows the highest RUL. While the 

rest of the films show a more dominant and stronger CHn bands than the sp
2 

C bands, 

the opposite is seen for film at PUL of 60 W. The decrease in CHn shows that there is a 

significant decrease in H content in the film. This is in line with the proposed decrease 

of H bonds due to their removal by ion bombardment. The sp
2
 C bonds are observed to 

show a more dominant presence in these films compared to sp
3
 C bonds. The clustering 

of sp
2
 C species within the amorphous sp

3
 C matrix is reflected by the surface 

morphology and high RUL of the film deposited at RF power of 60 W. The smooth cone 

shaped structures seen on the film deposited at PUL of 60 W, may very well be linked to 

these sp
2
 clusters. On the other hand with further increase in PUL to 80 W and 100 W, 

the increase in the H content supports the later explanation of decrease in surface 

roughness in AFM analysis attributed to the suppression of ion bombardment effect on 

the film during growth. Indeed in both extreme cases of the films deposited at PUL of 60 

W and 80 W, where the former show the highest RUL but weakest  CHn bonds (high sp
2
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absorption bands) and the latter shows the lowest RUL but strong CHn bonds (and lowest 

sp
2
 absorption bands), the relationship between H content and RUL is undeniable. 

 

 

Figure 4.19: The FTIR spectra of a-C:H underlayer at different RF power of 

 30, 40, 50, 60, 80 and 100 W. 
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Figure 4.20: Variation of FTIR spectra for a-C:H underlayers deposited at 

different RF power in the range of 1400-2000 cm-1 and 2600-4000 cm-1. 

 

4.3.1.4 Raman scattering analysis 

The structural properties of a-C:H underlayers was further studied by Raman 

scattering microscopy. The Raman spectra of a-C:H underlayers deposited at different 

PUL are shown in Figure 4.21. Figure 4.21 (a) is plotted from the raw Raman data and 

exhibits strong photoluminescence (PL) background which causes the positive slope in 

the spectral baseline. The presence of this slope was also observed by Casiraghi et al. in 

their study of hydrogenated diamond-like carbon films (Casiraghi et al. 2005). 

According to Casiraghi et al., the increasing PL background is due to increasing H 

content in the films which contributes to hydrogen saturation of non-radiative 

recombination centers in the films (Escobar-Alarcón et al. 2005).  



Chapter 4: Results and Discussion 

 

93 

 

Coincidently, the spectrum of a-C:H underlayer prepared at PUL of 60 W almost 

do not show this characteristic slope which again supports the low H content in the film. 

It is also found that the PL background strengthens at low PUL. For further analysis of 

these Raman spectra, the PL background was removed by subtracting the baseline. 

These corrected spectra are shown in Figure 4.21 (b). These spectra show two 

prominent peaks which are the D and G bands, and a background peak at Raman shift  

of approximately 1500 cm
-1

 assigned to amorphous hydrogenated carbon (Huang et al. 

2003) commonly observed in PECVD using CH4/ H2 discharge. The D and G bands lie 

at 1360-1380 and 1580-1600 cm
-1

 respectively (Miyajima, Henley and Silva 2011). 
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Figure 4.21: Raw Raman spectra (a) and corrected Raman spectra (b) of a-C:H underlayers as a function of RF power.  

(a) (b) 
D G D G 
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Figure 4.22 presents the Raman analysis of a-C:H underlayers including the 

variation in (a) G peak position, (b) D peak position, (c) FWHMG, (d)  FWHMD and        

(e) ID/IG. In general the G peak positions of all these films were blue shifted towards 

1600 cm
-1

 compared to deposition normally found for pure graphite at 1560 cm
-1

. This 

indicates that these films are made up not only of nanocrytalline graphitic structure but 

also C=C sp
2
 stretching vibrations of olefinic or conjugated carbon “chain” in the films 

(Schwan et al. 1996; Wang and Zhang 2007). As shown in Figure 4.22 (d), a-C:H 

underlayer films prepared at 30 and 60 W show higher FWHMD compared to the rest of 

the films. This behavior indicates increase in the disorder in sp
2
 C bonds. This is due to 

the presence of different order in the clusters distribution.  

Among these films, the a-C:H underlayers deposited at 60 and 100 W shows 

high ID/IG ratio of 0.56 and 0.52, respectively. High in ID/IG indicates an increase in the 

number and/or size of graphitic cluster in the films (Ferrari and Robertson 2000). This 

suggests that the C atoms have high probability of forming C=C ring structures rather 

than the chain structure. In addition, a-C:H underlayer prepared at PUL of 60 W has the 

highest ID/IG  ratio which is ascribed to the conversion of sp
3
 to sp

2
 bonds and 

desorption of hydrogen. This is also in line with FTIR results which show more sp
2
 C 

bonds. Thus, the a-C:H underlayer film prepared at PUL of 60 W has dominant sp
2
 C 

bonds. The Raman results suggest that the a-C:H underlayer deposited at PUL of 60 W 

consists of dominant sp
2
 clusters compared to the rest of the films. This supported the 

observation in both AFM and surface roughness results that these sp
2
 clusters may 

contribute to highest surface roughness seen in the film.  
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Figure 4.22: Raman analysis of a-C:H underlayers prepared at different RF power. 

 

 

 

(a) (b) 

(c) (d) 

(e) 
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4.3.2 Effect of RF Power on Resulting CNx/a-C:H Formation 

4.3.2.1 Surface and cross-sectional images 

The next phase of this work is to study the morphology and structural properties 

of the ns-CNx with respect to the properties of the a-C:H underlayer on which these 

nanostructures were grown. Here, RUL of the a-C:H underlayer is used as the reference 

rather than PUL so as to shift our focus towards the establishment of the a-C:H 

underlayer properties on these ns-CNx films. The changes in the structure of the ns-CNx 

films could be clearly seen from the FESEM surface and cross section images shown in 

Figure 4.23. 

A remarkable and progressive transformation of these structures with the 

increase in RUL of a-C:H underlayer is observed. At the lowest RUL of 0.635, ns-CNx are 

formed as vertical sheet-like structures that protrude from the surface of the a-C:H 

underlayer as evident from its cross section image. These structures are small but are 

well distributed over the surface of the film. As RUL is increased to 2.027, its cross 

sectional image shows that the structures remain almost the same except for an obvious 

increase in height. These too protrude out on the surface of the a-C:H underlayer films. 

However, the surface image indicates that as they grew, there is a tendency to 

conglomerate to form solid-like centers. The ns-CNx formed on the a-C:H underlayer 

with RUL of 2.475 changes to more compact structures embedded in the a-C:H 

underlayer. These are shorter than those on the a-C:H underlayer with RUL of 2.027 but, 

akin to the latter, are also formed randomly over the surface of  the a-C:H underlayer 

film. 
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Figure 4.23: Surface and cross-section images of ns:CNx deposited by RFPECVD at different RF power of a-C:H underlayer. 
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The ns-CNx structures formed on the underlayers with RUL, of 2.783, 3.262 and 

5.956, all shows significantly different structures. There appears to be some common 

features; firstly these are formed as vertically aligned structures and secondly, they are 

formed uniformly over the underlayer film, especially for RUL of 5.956 as shown in 

Figure 4.24. Nevertheless, each structure is unique. The ns-CNx formed on the a-C:H 

underlayer with RUL of 2.783 forms vertical petal-like features when viewed from the 

cross section image and are arranged into flower-like nanostructures as shown by the 

surface image clearly depicted in Figure 4.25. Upon enlarging the cross sectional image 

of the ns-CNx formed on the underlayer with RUL of 3.262, the structures show similar 

petal-like structures as seen earlier for the underlayer with RUL of 2.783. However, these 

smaller petal-like structures conglomerate to form solid-like bulk structures as evident 

from both the surface and cross sectional images. Among all these ns-CNx, the ns-CNx 

formed on the a-C:H underlayer with RUL of 5.956 remains the most interesting. These 

ns-CNx are formed as vertical aligned rigid nano-rods, distributed uniformly in a large 

area over the substrate. These nano-rods have average lengths and diameters of 3.38 ± 

0.07 µm and 84 ± 17 nm, respectively, giving an aspect ratio of approximately 40. 
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Figure 4.24: FESEM cross section image for ns-CNx deposited on  

pre-deposited a-C:H underlayer with surface roughness of 5.956. 

             

 

4.3.2.2 Auger electron spectroscopy measurement of CNx nanostructures 

AES analysis was done to determine the chemical composition of C and N in 

these ns-CNx. Figure 4.26 presents the variation of N/C ratio as a function of RUL. This 

1  

1  

Figure 4.25: FESEM surface image for ns-CNx deposited 

 on pre-deposited a-C:H underlayer with surface roughness of 2.783. 
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effect is contributed by the incorporation of N atoms in the film structure. N 

incorporation increases with the increase in RUL. 

At lower RUL, the N/C ratio is in the range of 0.0635-0.2475 may be due to less 

N2 gas dissociation at corresponding RF power. Furthermore, the N incorporation is the 

highest in the ns-CNx grown on the underlayer with the highest RUL of 5.596 nm. These 

indicate that the isonitrile formation contributes significantly to the overall formation of 

the CNx nanorods which are not formed on the other a-C:H underlayer with lower RUL 

that will be described in next section. 

              

Figure 4.26: Variation of nitrogen to carbon N/C ratio of ns-CNx films as a function of 

surface roughness of a-C:H underlayers. 

There appears to be a strong relationship between the N/C ratio, RUL and its 

corresponding structure. This also indicates that template effect of the surface 

morphology influence the N incorporation into the film. The N incorporation also 

appears to determine the structure of the ns-CNx film. Thus, the RUL and also its 

corresponding PUL indirectly determine the ns-CNx formed. 
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4.3.2.3 FTIR spectra of CNx nanostructures 

The chemical bonding in the ns-CNx grown on the a-C:H underlayer is shown in 

the FTIR spectra depicted in Figure 4.27. The spectra can be divided into three main 

regions. These include sp
2
 C peaks positioned in the frequency region of 1100-1700 cm

-

1
, the sp

1
 phases related to C≡N at wavenumber of 1900-2500 cm

-1
 and CHn bands 

within the region of 2800-3050 cm
-1

 (Fanchini et al. 2005; Mutsukura 2001; Ritikos et 

al. 2009). For clarification, Figure 4.28 presents individual spectra for each region.  

The spectra look similar to the FTIR spectra of the a-C:H underlayer except that 

the these spectra produce a broadening and increase in the intensities of the sp
2
 C peaks 

positioned in the frequency region of 1100-1700 cm
-1

. This is attributed to the formation 

of various CN bonds particularly C꞊N band which overlaps the C꞊C and sp
2
 C bands in 

the region of 1620-1650 cm
-1

 and 1300-1350 cm
-1

, respectively, together with the C꞊N 

peak at 1220-1265 cm
-1

 (Motta & Pereyra, 2004).  

Consequently the intensities of the CHn bands within the region of 2800-      

3050 cm
-1

 appears relatively weaker. This represents the relative contribution of the CN 

layer (as the a-C:H underlayer should still contribute to these spectra). Thus, while the 

sp
2
 C bands within the range of 1100-1700 cm

-1
 becomes stronger and broader due to 

the added contribution of the CN layer, the CHn bonds which are contributed largely by 

the a-C:H underlayer appears relatively weaker.  



Chapter 4: Results and Discussion 

 

103 

 

 

Figure 4.27: Variation in FTIR absorbance spectra as a function  

surface roughness of a-C:H underlayers. 
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Figure 4.28: The FTIR spectra for CNx nanostructures deposited on a-C:H underlayers with different roughness  

in the range of (a) sp2, (b) sp1 and (c) sp3 phases. 

(a) (b) (c) 
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It was observed that the ns-CNx deposited on the a-C:H underlayer with the 

highest RUL of 5.596 shows the lowest intensity of the CHn bonds and is consistent with 

the sp
2
 C for the underlayer film (Figure 4.19). This indicates that the chemical bonding 

preference of this ns-CNx film is induced by the bonding properties of their a-C:H 

underlayer film. In this sense the presence of the cone-like structures in the a-C:H 

underlayer films, believed to be formed by clustering of the sp
2
 C species in the film, 

may act as the template on which the growth of the nano-rods are induced. Selective 

etching by N
+ 

ions bombardments removes the softer polymeric C structures 

surrounding sp
2
 C clusters thus forming the observed ns-CNx (Ritikos et al. 2011). This 

is also true for the other films but the effect works at varying degrees. Another 

important aspect which could be deduced from these spectra is the appearance of the 

nitrile and/or isonitrile bonds in the frequency range of 1900-2500 cm
-1

 for these        

ns-CNx films as shown in Figure 4.29. 
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Figure 4.29:  The FTIR spectra in the range of 1900-2300 cm-1 of ns-CNx  

as a function of RUL a-C:H underlayers. 

 

The band superposes isolated and/or fused aromatic rings bonded either to 

isonitrile (-N≡C) at 2105 cm
-1

 or nitrile (-C≡N) at 2215 cm
-1

, hydrocarbon molecules 

which includes C2H5 at 2160 cm
-1

 and CH3 at 2190 cm
-1

 bonded to isonitrile (N≡C), and 

hydrocarbon groups (CH3, C2H5, etc.) bonded to nitrile (-C≡N) located as a single peak 

at 2245 cm
-1

 (Mutsukura and Akita 1999). Generally, the CNx films deposited on the   

a-C:H underlayer films with RUL in the range of 0.63-3.26 nm show a dominant peak 

attributed to isonitrile bonded to aliphatic at approximately 2190 cm
-1

. In contrast, the 

nanorods shows preferential formation of isonitriles bonded to aromatic rings at 2105 

cm
-1

. The differences is seen in the formation of aromatic rings attributed by the 

increase in sp
2
 C bonds in the a-C:H films and CNx nanorods. From our previous 

studies, we also deduce that isonitrile bonds induce a partial charge within these 

nanostructures, and together with the electric field imposed by the RF plasma results in 

the vertical alignment. Figure 4.30 shows the example of Gausian fitting related to those 
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bonds in the region of 2000-2300 cm
-1

 for a-C:H underlayers with surface roughness of 

5.596 and 3.262.  

 

Figure 4.30: Gaussian fitting profiles for FTIR spectra in the region 2000-2300 cm-1 for a-C:H 

underlayers with surface roughness 5.596 and 3.262. 

 

4.3.3 Summary 

The effects of RF power on the growth rate, surface morphology and chemical 

bonding of the a-C:H underlayer film have been studied. Consequently, the morphology 

and structural properties of ns-CNx film formed on these underlayer film were 

investigated. The RF power indirectly determines the formation of the sp
2
 C clusters 

and surface morphology of the a-C:H underlayer. The variation in surface roughness 

and morphology of the a-C:H underlayer result in the formation of ns-CNx with unique 

features such as flower-like structures and vertically aligned rigid nano-rods. The sp
2
 C 
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clusters in the a-C:H underlayer acted as templates, where selective etching of the softer 

polymeric C structures surrounding or within the clusters by N
+
 ion bombardment in the 

different ns-CNx on the a-C:H underlayers occured. High N incorporation and the 

preferential formation of isonitrile bonds is the condition that forms vertically aligned 

rigid carbon nitride nanostructures. 

 

4.4 Effects of Hydrogen Treatment on the a-C:H Underlayer and the Resulting 

CNx/ a-C:H Film 

 

The third part of the study emphasize the effects of different time duration of H2 

plasma treatment on the a-C:H underlayers, deposited for 10 minutes and at RF power 

of 100 W, also on the properties of the resulting CNx/a-C:H nanostructures. There are 4 

sets of sample including the as-deposited a-C:H underlayer (without H2 plasma  

treatment), 3, 5 and 10 minutes treated a-C:H underlayers and their corresponding CNx 

films. The surface morphology, chemical, structural and elemental composition 

properties of the films were studied. 
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4.4.1 Effect of H2 Treatment Time Duration on a-C:H Underlayers 

4.4.1.1 Surface roughness and surface morphology of a-C:H underlayers 

The surface morphology of the a-C:H underlayers were studied using AFM 

imaging. Figure 4.31 shows the AFM surface images of a-C:H underlayers, while the 

corresponding variation of surface roughness is presented in Figure 4.32. These were 

depicted as a function of the time duration of H2 plasma treatment, tH.  

 

Figure 4.31: AFM surface morphology of  a-C:H underlayers at various  

time duration of H2 plasma treatment. 
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Figure 4.32: Variation of surface roughness of a-C:H underlayer as a  

function of tH. Line is a guide to the eyes. 

 

The surface morphology of the as-deposited a-C:H underlayer shows 

homogeneous grains with scattered cone-like structures perpendicular to the surface. 

This film shows the highest surface roughness at 3.087 nm. After tH of 3 minutes, the 

surface structure becomes much smoother and the cone-like structures disappear. This is 

due to the effect of H2 bombardment onto the surface of the film during the treatment. 

Hopf et. al. also reported that H ion bombardment on hydrocarbon films influence the 

significant reduction in film thickness due to ion–induced dangling bond formation of 

hydrogen atom at the surface of the film (Hopf, von Keudell and Jacob 2003). This 

explains the dramatic decrease in the surface roughness of this a-C:H underlayer to 

0.433 nm at tH of 3 minutes. 

The surface image of a-C:H underlayer films treated at tH of 5 and 10 minutes 

did not change significantly compared to the changes seen from the as-deposited to tH of          

3 minutes. However, the surface roughness increases slightly to 0.635 and 0.616 nm, 

respectively. The increase in the surface roughness indicates a subtle change in the H 
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ion bombardment on the surface. It is believed that the H plasma etching effect is time 

dependent, and becomes less dominant since weakly bonded sites would have been 

removed by this tH. On the other hand, the atomic hydrogen density increases when the     

a-C:H underlayers experienced longer tH. The energy of the impinging H ions is 

dependent on the amount of collision that occurs in the plasma. When their energies are 

larger than the critical value of atomic displacement in the a-C:H underlayer, the ions 

will be able to penetrate the outermost surface of a-C:H underlayer. This process is 

called subplantation (Robertson 2002). During this process, the ions will be integrated 

into the bulk volume of the subsurface thus contributing to the morphology of a-C:H 

underlayer at longer tH. It appears that the subplantation of the H atoms and ions is 

dependent on tH and increase with tH after the initial 3 minutes.  

 

4.4.1.2 Chemical bonding properties of a-C:H underlayers 

The chemical bonding of the a-C:H underlayers as a function  of tH were studied 

using FTIR.. These FTIR spectra are shown in Figure 4.33. The spectra can be divided 

into two main regions at wavenumber ranges of 1200-1900 cm
-1

 and 2700-3800 cm
-1

. 

The absorption bands at 1200-1900 cm
-1

 are assigned to sp
2
 phase CC bond; while the 

band in the region of 2700-3800 cm
-1

 are assigned to the bonds of CHn groups and O-H 

(Mutsukura and Akita 1999).  

These two major regions of the FTIR spectra were deconvoluted and presented 

in Figure 4.34. For the region within the range of 1200-1900 cm
-1

, the spectra were 

fitted for band corresponding to sp
2
 C, Raman D, sp

3
 CH, Raman G, C=C and C=C 

stretching at 1350, 1380, 1450, 1580, 1650 and 1700 cm
-1

 , respectively as shown in 

Figure 4.34 (a). Figure 4.34 (b) shows the second region in the range of                  

2700-3200 cm
-1

, whereby the spectra represent sym sp
3
 CH2, sym sp

3
 CH3, asym sp

3
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CH2, asym sp
3
 CH3 and sp

2
 CH at 2835, 2875, 2930, 2960 and 3020 cm

-1
, respectively 

(Fanchini et al. 2005; Pereira et al. 2006; Ritikos et al. 2009a).  

   

Figure 4.33: FTIR spectra of a-C:H underlayers as a function of tH. 
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Figure 4.34: Variation of FTIR spectra for a-C:H underlayers prepared by RFPECVD as a function of tH in  

regions of  (a) 1300-1900 cm-1 and (b) 2700-3200 cm-1. 

(a) (b) 
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The deconvoluted FTIR spectra depicted in Figure 4.34 show that the functional 

groups remains intact even with the H2 treatment on these a-CH underlayer films. In 

particular, the sp
2
 phase region remains almost the same even after tH of 10 minutes. A 

similar deduction could be made for the CHn region although it is seen that there are 

slight changes in the relative peak intensities of the sp
3
 CH2 and sp

2
 CH3 peaks at 2930 

and 2960 cm
-1

, respectively. However a more significant change is seen for the overall 

spectra as shown in Figure 4.33. While the sp
2
 CC band does not change, a significant 

decrease is seen in the CHn particularly when compared between the as deposited a-C:H 

and after tH of 3 minutes.  

The decrease in CHn indicates a decrease in H bonds and this is in line with the 

proposed H ion bombardment effect on the film surface which creates dangling bonds 

(Hopf, von Keudell and Jacob 2003). It appears that the ion bombardment would 

preferentially reduce this CHn bonds. With the increase in tH, the CHn bond intensities 

remains almost the same which support the saturation in the etching effect of the H 

bombardment that leads instead to the subplantation of these ions or atom.  

 

4.4.1.3 Raman analysis 

The Raman spectra of these a-C:H underlayers were obtained in the Raman shift 

range of 1000–2000 cm
-1

 using UV excitation of 325 nm. The raw Raman spectra 

depicted in Figure 4.35 (a) shows two prominent peaks at around 1380 and 1600 cm
-1

 

assigned to their D and G band, respectively. The Raman spectrum of the as-deposited 

a-C:H underlayer has strong PL background resulting in a positive slope of the 

spectrum. This was also observed by Marchon et. al in hydrogenated carbon films 

prepared by DC-magnetron sputtering technique (Marchon et al. 1997). The PL 

background is due to hydrogen saturation of non-radiative recombination centers in the 
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film (Escobar-Alarcón et al. 2005) which promotes the PL emission in this material. 

The increase in H bond in a-C:H usually leads to an increase in PL emission. In contrast 

having undergone H treatment even as early as tH of 3 minutes the PL background 

reduces significantly which completely eliminates the slope. This indicates a reduction 

in H bond in the film in line with the deduction in FTIR and AFM analysis.  

The corrected and fitted Raman spectra for a-C:H underlayers as a function of tH 

are shown in Figure 4.35 (b), while the corresponding fitting parameters including the 

variations in G and D peak positions, FWHM and ID/ IG ratio are shown in Figure 4.36. 

In general, the G peak position lies at a constant wavenumber approximately 1597 cm
-1

 

regardless of tH. This value being higher than that of graphite (1550 cm
-1

) though not 

exceeding the limit of graphitic carbon implies that these films have high degree of 

graphitization but also exhibit characteristic of olefinic (chain sp
2
 group) with shorter 

bond length (Gilkes et al. 1998). However it is the D band which best explains the 

changes in the film with tH. The D peak red-shifted drastically with tH particularly from 

the as-deposited to the initial tH of 3 minutes. The red-shift in D peak could be attributed 

to either a decrease in the number of ordered aromatic ring or a strained or curved 

graphitic plane (Ferrari and Robertson 2000; Yu et al. 2002). In contrast, the FWHMD 

increases drastically with tH particularly from the as-deposited to the initial tH of            

3 minutes. This implies a broadening in the width of the D peak which is correlated to 

the increase in disorder due to a distribution of clusters with diferent orders and 

dimensions. The changes in the initial tH of 3 minutes coincides with the proposed 

etching and reduction of H bonds on the film surface with H ion bombardment. Thus it 

can be deduced that in the initial tH of 3 minutes, there appears to be an increase in 

disorder due to the breaking of the CH bonds, which in turns causes a change in the 

number of aromatic rings and a redistribution of the clusters containing these rings. It 

can also be stipulated that the redistribution of the clusters also causes the changes in 
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the surface morphology of the films seen in the AFM imaging whereby the surface was 

smoothen out and the roughness decreases significantly. It is deemed true that the 

clusters in the film consisting of sp
2
 domains may be taken as ordered domains by 

Raman, these clusters are the cone-like structures on the surface which induce the high 

roughness in AFM analysis.  

With the increase in tH above 3 minutes, the D peak blue-shifted slightly, while 

the FWHMD decreases, implying an slight increase in ordering and an increase in the 

number or size of the ordered sp
2
 aromatic ring clusters. Indeed this is in-line with the 

slight increase in the surface roughness (Figure 4.32) which further supports the 

deduction proposed concerning the effect of the H ion treatment.         
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Figure 4.35: The raw Raman spectra with strong background (a) and the Raman spectra after the background extraction (b) for a-C:H 

underlayers as a function of tH. 

(a) (b) 
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Figure 4.36: Raman analysis of a-C:H underlayers prepared  

as a function  hydrogen treatment duration. Line is guide to the eyes. 

 

(a) (b) 

(c) (d) 

(e) 
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4.4.2 Effect on Resulting CNx/a-C:H Formation 

4.4.2.1 Surface and cross-sectional images 

The next step is to investigate the formation of ns-CNx deposited onto these      

a-C:H underlayers treated at different tH. The surface and cross-sectional FESEM 

images of these ns-CNx/a-C:H are presented in Figure 4.37 as a function of tH. The     

ns-CNx prepared on as-deposited a-C:H underlayer formed  petal–like structure which 

conglomerate to form solid-like bulk structures. The ns-CNx grown on a-C:H underlayer 

treated at 3 minutes shows similar structures as those deposited on the as-deposited      

a-C:H underlayer. However these are formed as distinct vertical fiber-like structures 

which are well separated as compared to the conglomeration of those mention for its 

predecessor. Conversely, the structures of the ns-CNx evolved with the increase of tH 

above 3 minutes. It is seen that the ns-CNx/a-C:H  formed at tH of 5 minutes were 

produced as well defined short nanotips. The length and distribution of these CNx 

nanotips are quite uniform with the average length and diameter calculated from the 

cross-sectional image to be approximately 125 ± 1 nm and 78.0 ± 0.2 nm, respectively. 

With the increase in tH to 10 minutes, the ns-CNx/a-C:H forms similar structure as those 

at tH of 5 minutes but  the length, diameter and distribution appears to change. The 

length and diameter of these nanotips appear to increase though the growth appears not 

to be so uniform with large disparities where the length varies between 20 to 211 nm 

and the diameter between 39 to 60 nm. It is also noted that the ns-CNx produced on the 

as-deposited a-C:H and at tH of 3 minutes appears to grow as part of the underlayer film. 

No clear distinction could be made to identify the boundary between the root of the    

ns-CNx and the top layer of the a-C:H underlayer. In contrast, the boundary between the 

CNx nanotips formed at tH of 5 and 10 minutes is easily distinguish.  
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Surface images Cross-section images 
 

  

ns-CNx on as  

 

deposited a-C:H  

  

ns-CNx/a-C:H  

at tH of 3 min 

  

ns-CNx/a-C:H  

at tH of 5 min 

 

 

 

ns-CNx/a-C:H  

at tH of 10 min 

 

Figure 4.37: The surface and cross-section images of ns-CNx subsequently deposited on 

different tH a-C:H underlayers. 

 

1m 1m 
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4.4.2.2 Auger electron spectroscopy measurement of ns-CNx 

The chemical composition of the ns-CNx was determined as the relative 

concentration of N and C (N/C) calculated from AES measurement. Figure 4.38 shows 

the variation of N/C ratio of these ns-CNx as a function of different tH for the treatment 

of a-C:H underlayers. The ns-CNx grown on the as-deposited a-C:H underlayer has the 

highest N/C ratio at 0.2 . With the H2 treatment of the a-C:H underlayer and increase in 

tH the N/C ratio of the ns-CNx formed reduces gradually after the initial tH of 3 minutes. 

This indicates a significant decrease in N incorporation in the ns-CNx with the H 

treatment of the a-C:H underlayer. From the previous sections on the study of rf power 

and deposition duration, it was seen that CNx nanorods were produced at the high a-C:H 

surface roughness and highest N/C ratio of the ns-CNx, which was correlated to 

presence and ordering of the sp
2
 clusters. In contrast, with the H2 treatment on the        

a-C:H underlayers, CNx nanotips are formed at low surface roughness while having low 

N/C ratio. Indeed, other researcher has reported the formation of CNx nanotips formed 

on a-C:H films at high deposition temperature, having also low N content (Wang et al. 

2005). According to these researchers, the N2 in the plasma not only acts as reactants 

but also as etching agents. These N etching ions help to form the nanostructure but do 

not get incorporated into the film, thus keep the N incorporation low. However in this 

work there is an obvious dependence of the change in ns-CNx and the surface condition 

of the a-C:H films brought about by the H2 plasma treatment. The earlier studies on the 

Raman scattering of these a-C:H underlayer as a function of tH implies a redistribution 

and decrease in the size and/or number of sp
2 

clusters. These clusters may act as the 

nucleation sites for the growth of the ns-CNx (Wang et al. 2011) and with the changes in 

these sp
2
 clusters, the sites may become smaller and thus decreases the size of the       

ns-CNx and forms the nanotips. The redistribution of the cluster by the H2 plasma also 

results on the uniform distribution of the nanotips.    
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       Figure 4.38: Variation of nitrogen to carbon, N/C ratio of ns-CNx  

         deposited on different tH a-C:H underlayers. 

 

4.4.2.3 FTIR spectra of ns-CNx 

FTIR analysis was carried out on the ns-CNx grown on a-C:H underlayers as a 

function of tH. The variation their spectra are shown in Figure 4.39 in the region of     

1000–4000 cm
-1

, while the three separated main regions within the range of 1100–1900, 

2000–2300
 
and 2700–3800 cm

-1
 are shown in Figure 4.40. Similar to the previous 

sections the first region within the range of 1100–1900 cm
-1 

is attributed to sp
2
-C bonds 

including C-C, C-N, C=C and C=N. The second region in the range of 2000–2300 cm
-1

 

is assigned to the sp
1
-C bonds including nitrile and isonitrile bonds. Lastly, the third 

region in the range of 2700–3800 cm
-1

 represents sp
3
-C bonds, O-H and N-H groups 

(Motta and Pereyra 2004; Pereira et al. 2006; Ritikos et al. 2009b). 
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Figure 4.39: Variation in FTIR absorbance spectra of ns-CNx  

as a function of H2 treatment time of a-C:H underlayers. 
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Figure 4.40: The FTIR spectra for ns-CNx deposited on different tH of a-C:H underlayers  

in the range of (a) sp2, (b) sp1 and (c) sp3 phases. 

(a) (b) (c) 
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The sp
2
 and sp

3
-C bonds within the ranges of 1100–1900 and 2700–3800 cm

-1
, 

respectively, remains almost the same regardless of tH. The remarkable difference was 

seen in the spectra range of 1900-2300 cm
-1

 as shown in the overlaid spectra shown in 

Figure 4.41 for this region. As mentioned before, this absorption band is related to 

nitrile and/or isonitrile (C≡N) bonds in the chemical structure of the material. The 

region consists of five overlapping bands associated to HCN at 2050 cm
-1

, aromatic 

ring, C2H5 and CH3 bonded to isonitrile (-N≡C) located at 2105, 2160 and 2190 cm
-1

, 

respectively, together with the aromatic ring and hydrocarbon (CH3,  C2H5, etc.) bonded 

to nitrile (-C≡N) at 2215 and 2245 cm
-1

, respectively
 
(Mutsukura and Akita 1999). The 

deconvoluted peaks using standard Gaussian curve-fitting method are shown in Figure 

4.42. 

 

Figure 4.41:  The FTIR spectra in the wavenumber range of 1900-2300 cm-1 of  

ns-CNx as a function of tH a-C:H underlayers. 
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The deconvoluted spectra show a certain progression in the formation and 

preferential sp
1
-C bonds which makes up the ns-CNx film. While isonitrile (-N≡C) 

bonds appear to be the preferential type compared to nitrile (-C≡N) for all these 

samples, the functional group which are attached to these bonds appears to be 

important. The ns-CNx deposited onto the as-deposited a-C:H underlayer shows the 

preference of isonitrile bonded to aliphatic CH3 (CH3─N≡C), with the absorption peaks 

corresponding to isonitrile bonded to aliphatic C2H5 and nitrile bonded to aromatic rings 

being slightly less stronger.  

In contrast, when these ns-CNx were deposited onto the treated a-C:H 

underlayers, a significant shift in the preferential bonds to isonitrile bonded to aromatic 

rings is seen. Its absorption peaks strengthen considerably relative to the other bonding 

and indicates the increase in aromatic rings and thus the sp
2
 clusters in the 

nanostructures. This signifies the importance of the aromatic rings in the formation of 

these vertically aligned nanostructures. This may also have led to the separation of the 

nanostructure strands which allows the nanofibers and nanotips to form apart rather than 

conglomerate like the ns-CNx formed on the as-deposited a-C:H.  

The variation in the spectra also shows a significant increase in the formation of 

HCN particularly for the ns-CNx/a-C:H treated at tH of 5 and 10 minutes. These 

elements could also be found in gaseous form and are normaaly volatile. Thus, it is 

probable that during the deposition, these elements may be a substantial part of the 

species in the plasma. Due to the volatile nature of this element, a large part of it may 

have been discarded as residual rather than being incorporated into the film. Thus this 

reduces the N incorporation in the film resulting in the low N/C ratio in the                 

ns-CNx/a-C:H with tH.  
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Figure 4.42 : Gaussian fitting profiles for FTIR spectra in wavenumber region of  

         1900-2400 cm-1 for a-C:H underlayer at tH of 3, 5, 10  minutes and  

a-C:H underlayer without H2 treatment.  

 

4.4.3 Summary 

The effects of H2 treatment at various tH on the structure and morphology of     

a-C:H underlayer were studied. H2 treatment alters the surface morphologies of these 

films giving a smoother surface roughness with the increase in tH. This was related to an 

increase in the disorder in the film due to the decrease in size and/or number of the sp
2
 

clusters and a redistribution of these clusters. This in turn was speculated to be due to 

the H etching and subplantation during H ion bombardment on the film surface. It was 

shown that by using this treatment method, the ns-CNx deposited onto this underlayer 

1m 



Chapter 4: Results and Discussion 

128 

 

film could be manipulated. CNx nanotips were successfully produced by RFPECVD at 

low temperature on a-C:H underlayers treated at tH above 3 minutes. While all these   

ns-CNx/a-C:H films still shows the preferential formation of isonitrile bonds, the 

formation of distinct and separated strands were induce by the increase in aromatic 

rings in the film being bonded to these isonitrile. The decrease in the N incorporation 

with the formation of the nanotip may be due to production of volatile HCN in the 

plasma which did not contribute to the growth of the film. 
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CHAPTER 5 : CONCLUSION AND FUTURE WORKS 

5.1 Conclusion 

The deposition of various types of ns-CNx through the modification of the 

structural properties of pre-deposited a-C:H underlayer has been studied. Both ns-CNx 

and a-C:H underlayer films were successfully grown using RFPECVD technique 

without catalyst assistance at 100 
o
C. The ns-CNx were fabricated at fixed deposition 

parameters including RF power, deposition duration, temperature, pressure and gases 

flow rate ratio while the deposition parameters of the a-C:H underlayer were varied 

using different preparation condition or post-deposition treatments. In the first two sets, 

ns-CNx samples were deposited on a-C:H underlayers prepared using different 

deposition time duration (tD) and RF power (PUL) while in the third set, the ns-CNx were 

deposited on a-C:H underlayers treated with H2 plasma at different time duration (tH). 

Under these conditions different types of ns-CNx was formed including rigid and 

vertically aligned nanorods, fiber-like, flower-like nanostructures and nanotips. 

The structural properties of the a-C:H underlayer influences the formation of        

ns-CNx. In the study of deposition time duration of 5, 10, 15 and 30 minutes, it was 

found that high surface roughness of a-C:H underlayer induce the formation of rigid and 

vertically aligned CNx nanorods. The a-C:H underlayer deposited for 10 minutes shows 

the highest surface roughness inducing the protrusion of broad-tipped cone-like features 

from the film surface. This was shown to be associated with the presence and ordering 

of sp
2
 clusters in the a-C:H film.  

The contribution of the surface roughness was further studied by varying the 

applied RF power. This effectively influences the ion bombardment effect on the 
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growing film surface and significantly changes the structural properties of the a-C:H 

underlayer. From the FTIR results, it was obtained that the film with highest surface 

roughness shows low CHn band indicating low H content in the film attributed by the 

dominant sp
2
 C bonds. This confirms the deduction made in the earlier study where the 

highest surface roughness of the a-C:H underlayer was due to the presence and ordering 

of sp
2
 clusters in the a-C:H film. In this work, it was also established that by tuning the 

RF power, a unique flower-like CNx nanostructures can be grown.  

The study on the variation of H2 plasma treatment time duration of 3, 5 and 10 

minutes shows that H bombardment effects influenced the structural properties of the a-

C:H underlayers. These results showed that the formation of dangling bonds as a results 

of bombardment of the surface with  hydrogen atoms form a smooth surface of a-C:H 

underlayers as a consequent of the disorder in the film structure due to the decrease in 

size and/or number of sp
2
 clusters and the redistribution on these clusters. The smooth 

a-C:H underlayers that were treated for a duration of 5 and 10 minutes led to the 

formation of CNx nanotips. 

Different structures of ns-CNx were formed as a result of different a-C:H  

underlayer properties. The nanostructures formed included rigid vertically aligned 

nanorods and nanotips. Rigid, vertically aligned CNx nanorods exhibit the highest N 

incorporation with N/C ratio of 0.2. This indicates that high N incorporation is crucial in 

the formation of this type of structure. CNx nanotips show relatively lower N 

incorporation whereby N in the plasma act as etching agents in the growth process and 

do not get easily incorporated into the film structure. In general, the chemical bonding 

of these different ns-CNx structures show preference of N bonding in the form of nitrile 

(-C≡N) and isonitrile (-N≡C). From this chemical bonding analysis, the preference of 

aromatic ring bonded to isonitrile bonds favours the formation of rigid, vertically 

aligned nanorods of CNx. Throughout this work, it is proposed that a-C:H underlayer 
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acts as template or seed layer that helps the formation of nucleation site for ns-CNx 

growth. 

 

5.2 Future Works 

 Due to the introductory nature of this work and constraint in time and resources 

a number of different aspects in this study were not able to be carried out. Some of these 

aspects are listed here as suggestion for future works:  

(1) Material characterization particularly on the properties of these ns-CNx, 

measurements such as high resolution transmission electron microscopy 

(HRTEM) and x-ray photo spectroscopy are needed to further identify the 

nature and crystallinity of these structures. 

(2) Growth progress and mechanism for both the a-C:H underlayer and ns-CNx 

that could be done by studying the growth as a function of deposition duration 

for both layers.  

(3) Exploring different areas of application for the films. 

(i) CNx nanotips as scanning probe-tip and electron emitting devices seem 

high in view of its size and distribution of the growth.  

(ii) CNx nanorods as potential material for humidity or gas sensors and 

hydrogen storage material. 
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