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ABSTRACT 

 

Selected sperm and oocyte factors related were evaluated in ICSI experiments involving 

mouse and goat species in the present study. The mouse oocyte collection was 

conducted through oviduct retrieval, while the goat oocytes were retrieved via LOPU 

technique. The effectiveness of sperm capacitation chemical treatment (Heparin and 

Theophylline) for 1 hour and sperm movement (Rapid and Slow) were identified in both 

species. For oocyte factors, the effects of post-hCG injection durations (13-15 hours and 

16-18 hours) in mice were studied. LOPU cycles (OR1, OR2 and OR3) and IVM 

durations (18-21 hours and 22-25 hours) were investigated in goats. 

 In Experiments 1, the effects of different sperm capacitation chemicals and 

sperm movement of mouse sperm were studied. Mouse ICSI-embryonic development at 

early stages (2- and 4-cell stage) were improved by using Heparin compared to 

Theophylline (64.67±1.69% versus 60.50±1.21% and 50.55±2.01% versus 

45.09±1.60%, respectively). Both sperm movement factors had same potential to 

produce mouse ICSI-derived embryos. 

In Experiments 2, the effect of post-hCG injection duration in mouse oocytes on 

embryonic development rates were studied. Two different durations were significantly 

different (P<0.05) on all cleavage rates (2-, 4-, 8-cell and morula stage) whereby at 13-

15 hours were higher than at 16-18 hours duration (67.95±1.06% versus 57.02±1.33%, 

53.51±1.13% versus 41.90±1.98%, 39.40±1.01% versus 22.21±1.62%, and 

14.83±1.09% versus 9.77±1.02%, respectively). 

 Experiment 3 evaluated the effect of two different sperm capacitation chemicals 

(Heparin and Theophylline) and sperm movement (Rapid and Slow) of goat sperm were 

studied.  Both sperm capacitation chemicals gave same potential of goat ICSI-embryo 



iv 

 

development (P>0.05). Rapid sperm movement gave better goat ICSI-embryonic 

development (4-, 8- cell and morula stage), whereby the respective values were 

56.62±4.69% versus 41.80±4.49%, 39.51±4.70% versus 24.24±4.05% and 9.21±2.85% 

versus 2.24±0.94%. 

 Experiment 4 investigated the effect of LOPU cycles on the yield of different 

oocyte grades (Grades A, B, C, D and E) from 16 donors goat. Lower number of Grades 

D and E (31 and 19, respectively) oocytes were obtained compared to Grades A, B and 

C. Higher number of Grade C oocytes were obtained compared to Grades A and B from 

LOPU technique (153 versus 106 and 91, respectively). OR1 gave better quantity and 

quality oocytes, followed by OR2 and OR3 (number of oocytes per ovary were 

5.47±0.67, 3.94±0.44 and 3.09±0.50, respectively). In another sub-experiment, 

maturation rate of goat oocytes at 18 to 21 hours was higher than 22 to 25 hours of IVM 

duration (97.34±7.86% versus 89.01±2.41%, respectively).  However, both IVM 

durations had the same potential in ICSI-derived embryo development.  

In conclusion, for mouse study, embryonic development can be achieved from 

Heparin-sperm capacitation treatment, using any sperm movement for 13 to 15 hours of 

post-hCG suntikan oocytes. For goat study, LOPU is good procedure to provide 

consistent high quality oocytes (Grades A, B and C) and it usage can be repeated on the 

same donor up to 3 times. Rapid sperm movement is a better choice for ICSI-embryonic 

development. Both sperm capacitation chemical treatments have the same potential to 

produce ICSI-embryonic development. 
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ABSTRAK 

 

Faktor sperma dan oosit tertentu berkaitan telah dinilai dalam eksperimen ICSI 

melibatkan spesies mencit dan kambing dalam kajian kini. Pengumpulan oosit mencit 

dilakukan melalui perolehan oviduk, manakala oosit kambing diperolehi melalui teknik 

LOPU. Keberkesanan perlakuan kimia kapasitasi sperma (Heparin dan Theophylline) 

selama 1 jam dan pergerakan sperma (laju dan perlahan) dikenalpasti pada kedua-dua 

spesies. Bagi faktor oosit, kesan tempoh suntikan pasca-hCG (13-15 jam dan 16-18 

jam) pada mencit dikaji. Kitaran LOPU (OR1, OR2 and OR3) dan tempoh IVM (18-21 

jam dan 22-25 jam) disiasat dalam kambing. 

 Dalam Eksperimen 1, kesan perbezaan kimia kapasitasi sperma dan pergerakan 

sperma dikaji. Perkembangan embrio-ICSI mencit pada peringkat awal (2- dan 4- 

peringkat sel)  boleh diperbaiki dengan penggunaan Heparin berbanding Theophylline 

(64.67±1.69% berbanding 60.50±1.21% dan 50.55±2.01% berbanding 45.09±1.60%, 

masing-masing). Kedua-dua faktor pergerakan sperma menunjukkan potensi yang sama 

untuk menghasilkan embrio melalui ICSI. 

Dalam Eksperimen 2, kesan tempoh suntikan pasca-hCG terhadap oosit mencit 

terhadap kadar perkembangan embrio dikaji. Terdapat perbezaan ketara pada dua 

tempoh yang berbeza (P<0.05), ke atas semua kadar pembahagian sel (2-, 4-, 8-sel dan 

morula) di mana pada tempoh 13-15 jam adalah berbeza berbanding pada tempoh  16-

18 jam (67.95±1.06% berbanding 57.02±1.33%, 53.51±1.13% berbanding 

41.90±1.98%, 39.40±1.01% berbanding 22.21±1.62%, dan 14.83±1.09% berbanding 

9.77±1.02%, masing-masing). 

Eksperimen 3 menilai kesan perbezaaan dua kimia kapasitasi sperma dan 

pergerakan sperma (laju dan perlahan)pada sperma kambing dikaji. Kedua-dua kimia 
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kapasitasi sperma memberi potensi sama pada perkembangan embrio-ICSI (P>0.05). 

Pergerakan sperma yang laju memberi perkembangan embrio-ICSI yang lebih baik 

(peringkat 4-, 8- dan morula )berbanding  pergerakan sperma yang perlahan, di mana 

nilai masing-masing ialah 56.62±4.69% berbanding 41.80±4.49%, 39.51±4.70% 

berbanding 24.24±4.05% and 9.21±2.85% berbanding 2.24±0.94%. 

 Eksperimen 4, menyiasat kesan kitaran LOPU terhadap hasil gred oosit (Gred A, 

B, C, D dan E) yang berbeza daripada 16 kambing penderma. Oosit Gred D dan E 

adalah yang terendah (31 dan 19, masing-masing) diperolehi berbanding dengan Gred 

A, B dan C. Gred C menunjukkan hasilan oosit yang tertinggi berbanding oosit Gred A, 

dan B daripada teknik LOPU (153 berbanding 106 dan 91, masing-masing). OR1 

memberikan kuantiti dan kualiti oosit yang baik, diikuti oleh OR2 dan OR3 (bilangan 

oosit per ovari adalah 5.47±0.67, 3.94±0.44 dan 3.09±0.50, masing-masing). Pada sub-

eksperimen yang lain, kadar kematangan oosit kambing pada tempoh 18 ke 21 jam 

adalah tinggi berbanding pada tempoh IVM 22 ke 25 jam (97.34±7.86% berbanding 

89.01±2.41%, masing-masing). Walau bagaimanapun, kedua-dua tempoh IVM 

mempunyai kadar potensi yang sama dalam perkembangan embrio perolehan ICSI.  

Kesimpulannya, bagi kajian mencit, perkembangan embrio boleh dicapai 

daripada perlakuan kapasitasi Heparin-kapasitasi sperma, dengan  menggunakan mana-

mana pergerakan sperma dengan mengguna 13 ke 15 jam tempoh suntikan pasca-hCG. 

Bagi kajian kambing, LOPU adalah prosedur yang baik untuk membekalkan oosit 

berkualiti tinggi secara konsisten (Gred A, B dan C) dan penggunaanya boleh diulang 

pada penderma yang sama sehingga 3 kali. Pergerakan sperm yang laju adalah pilihan 

yang lebih baik untuk perkembangan embrio-ICSI. Kedua-dua perlakuan kimia 

kapasitasi sperma memberi potensi yang sama untuk menghasilkan perkembangan 

embrio-ICSI. 

 



vii 

 

ACKNOWLEDGEMENTS 

 

First of all, I would like to express my thanks and respect to my supervisor, Professor 

Dr Wan Khadijah Embong and co-supervisor Professor Dr. Ramli Abdullah for giving 

me chance, unfailing advice and motivation and continual guidance from the beginning 

of research until the completion of this dissertation. A lot of scientific advice, 

enthusiasm, criticism, patience and encouragement were given to me during the course 

of my experiments especially during the LOPU session. Also, I appreciate their physical 

and moral supports in carrying out LOPU surgeries throughout the research duration. 

I also would like to express a big appreciation to all Animal Biotechnology-

Embryo Laboratory (ABEL) members for their constant help, advice, supportive, ideas 

in order to do self improvement for experiment also in dissertation writing phase. I also 

would like to thank all members for giving lots of enjoyment and sweet memories at the 

moment in the laboratory and also in the field (farm) during course of experimentation 

whether it be individual help or group activities. I would like to recognise the following 

individuals: Mr. Parani Baya, Ms, Kwong Pheik Jin, Ms. Kong Sow Chan, Mdm. 

Azieatul Ashikin Abdul Aziz, Ms. Asdiana Amri, Mdm. Nor Fadilah Awang, Mdm. 

Ainul Bahiyah, Professor Aminoor Rahman, Mr. Mohamad Nizam Abdul Rashid, Mr. 

Shahrulzaman shaharuddin, Ms. Tan Wei Lun, Ms. Soh Hui Hui, Ms. Goh Siew Ying, 

Mdm. Siti Khadijah Idris, Mdm. Shariffah Nazari, Ms. Raja Ili raja Khalif, Mr. Xiao 

Zhi Chao, and Mr. Rokibur Rahman.  

Not to forget I would like to give a lots of appreciation to Mini ISB Farm staff in 

ever-ready helping attitude and advice especially Mr. Razali Jonit, Mr. Mohd Nor 

Azman Mat Nong, Mr. Ravichandran s/o K. Gopalan, Mr. Jamaludin Abbas, and Mr. 



viii 

 

Abdul Maid Abdul Rasid. I am lucky to have a good co-operation at anytime even 

during the holidays.  

I would like to thank Institute of Biological Sciences (ISB), Faculty of Science, 

Research Management and Monitoring (IPPP), Institute of Graduate Studies (IPS), 

University of Malaya to allow me to pursue Master’s Degree in Science and funding my 

research experiments under Postgraduate Research Grant (PJP).  I also would like to 

acknowledge Human Resource Department for giving me a fee waiver during my study. 

Last but not least, I’m would like to express a lot of appreciation and love to my 

parents, sisters, brothers and husband for their encouragement, support, motivation, love 

and understanding particularly at the critical moment of doing my laboratory research 

and dissertation writing-up. I am fortunate to have their shoulders to lean on to both in 

terms of spirit and monetary assistance throughout the completion of this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 

 

TABLE OF CONTENTS 

Page 

DECLARATION          ii 

ABSTRACT          iii 

ABSTRAK          v 

ACKNOWLEDGMENTS        vii 

TABLE OF CONTENTS        ix 

LIST OF TABLES         xix 

LIST OF FIGURES         xxii 

LIST OF SYMBOLS AND ABBREVIATIONS     xxiii 

LIST OF APPENDICES TABLES       xxix 

LIST OF APPENDICES FIGURES       xxxii 

 

Chapter 1 

1.0 INTRODUCTION         1 

1.1 INTRODUCTION        1 

1.2 BACKGROUND        2 

1.2.1 Intracytoplasmic Sperm Injection (ICSI)     2 

1.2.2  Application of ICSI         3 

1.3 STATEMENT OF PROBLEMS      4 



x 

 

1.4 JUSTIFICATION        5 

1.5 OBJECTIVES         7 

 

Chapter 2 

2.0  REVIEW OF LITERATURE      8 

2.1 BACKGROUND        8 

2.2 OESTRUS SYNCHRONISATION AND SUPEROVULATION   17 

2.2.1  Oestrus Synchronisation        17 

2.2.2 Ovarian Superovulation       18 

2.2.2.1  Factors influencing superovulation       20 

2.2.2.1.1 Age          20 

2.2.2.1.2 Weight and Nutrition       21 

2.2.2.1.3 Breed or Strain        23 

2.2.2.1.4 Application of Gonadotrophin        24 

2.2.2.1.5 Timing of Gonadotrophin treatment     25 

2.2.3 Adverse effect of superovulation      26 

2.3 RECOVERY OF OOCYTES       27 

2.3.1  Laparoscopic oocytes pick-up (LOPU) and Surgical Oocytes   27 

          Retrieval (SOR) 

2.3.2  Laparotomy and ovariectomy       29 



xi 

 

2.4 IN VITRO MATURATION (IVM)      30 

2.4.1 Events of Oocytes Maturation      31 

2.4.2  Nuclear and Ooplasmic Maturation      32 

2.4.3 Factors Affecting IVM        34 

2.4.3.1 Donor age         34 

2.4.3.2 Follicle and oocyte diameter       35 

2.4.3.3 IVM culture media        36 

2.4.3.4 IVM duration         38 

2.5 INTRACYTOPLASMIC SPERM INJECTION (ICSI)   39 

2.5.1 Factors Affecting the Outcome of ICSI     40 

2.5.1.1  Microtools         40 

2.5.1.2 General ICSI procedure       41 

2.5.1.3 Sperm factor         43 

2.5.1.4 Oocytes factors        45 

2.5.1.5 Role of medium used in ICSI       47 

2.5.2 Oocyte Activation Following ICSI      48 

2.5.2.1 Chemical activation        49 

2.5.2.2 Mechanical activation        50 

2.5.2.3 Electrostimulation        50 

2.6  IN VITRO CULTURE (IVC)       51 



xii 

 

2.6.1 In Vitro Culture Media        51 

2.6.2 In Vitro Culture System       54 

 

Chapter 3  

3.0 MATERIALS AND METHODS      56 

3.1 INTRODUCTION         56 

3.2 EXPERIMENTAL ANIMALS      56 

3.2.1 Mice          56 

3.2.2  Goats          57 

3.3 MATERIALS         58 

3.3.1 Equipment         58 

3.3.2 Chemicals and Reagents        58 

3.3.3 Disposables and Consumables      59 

3.4 METHODOLOGY        59 

3.4.1 General Maintenance for a Good IVP Environment    59 

3.4.2 Preparation of Stock Solutions and Media     61 

3.4.2.1 Medium preparation for goat experiments     62 

3.4.2.1.1 Preparation of  heparinised saline solution    62 

3.4.2.1.2 Preparation of flushing medium      62 

3.4.2.1.3 Preparation of blood and heat-inactivated serum    63 



xiii 

 

3.4.2.1.4 Preparation of IVM medium      64 

3.4.2.1.4 (a) Preparation of IVM stocks solution     64 

3.4.2.1.4 (b) Preparation of IVM working solution     65 

3.4.2.1.5      Preparation of other solutions      66 

3.4.2.1.5(a) Preparation of heparin stocks      67 

3.4.2.1.5(b) Preparation of  hyaluronidase solution     67 

3.4.2.1.5(c) Preparation of calcium ionophore solution    68 

3.4.2.1.5(d) Preparation of 6- dimethylaminopurine (6-DMAP) solution  69 

3.4.2.1.5(e) Preparation of TCM-199 with Hepes supplemented    70 

                   with FBS         

3.4.2.1.5(f) Preparation of  sperm-TALP (sp-TALP) solution   71 

3.4.2.1.5 (g) Preparation of  sperm capacitation     72 

3.4.2.1.5 (h) Preparation of potassium simplex optimised medium (KSOM)  73 

3.4.2.2   Medium preparation for mouse experiments    74 

3.4.2.2.1   Toyoda, Yokohama and Hosi’s medium (TYH)   75 

3.4.2.2.2  Preparation of modified hepes Whitten’s medium (HWM)  76 

3.4.2.2.3  Preparation of modified Whitten’s medium (WM)   77 

3.4.2.2.3  Preparation of other solutions     78 

3.4.2.2.3 (a) Preparation of sperm capacitation medium    78 

3.4.2.2.3 (b) Preparation of hyaluronidase (0.1%)     79 



xiv 

 

3.4.2.2.3 (c) Preparation of strontium chloride (0.02 mM)    80 

3.4.2  Preparation of Microtools      81 

3.4.2.1  Preparation of mouth pick-up pipette     81 

3.4.2.2  Preparation of microneedles      82 

3.4.3  Preparation of Experimental Animals     84 

3.4.3.1  Preparation of donor goats      84 

3.4.3.1 .1  Oestrus synchronisation and superovulation    85 

3.4.3.1 .2 Laparoscopic oocytes pick-up (LOPU) for    86 

oocytes retrieval 

3.4.3.1 .2 (a) Sedation and anaesthetisation of donor goat    86 

3.4.3.1 .2 (b) Preparation of disinfection in LOPU procedure   87 

3.4.3.1 .2 (c) Retrieval and searching of oocyte     88 

3.4.3.1.2 (d) Post-surgery management      89 

3.4.3.1 .3 Ovariectomy        90 

3.4.3.2  Preparation of mice        92 

3.4.3.2 .1 Superovulation of female and male management   92 

3.4.3.2 .2 Oocytes recovery       92 

3.4.3.2 .2 Sperm  recovery       93 

3.5 TECHNIQUES AND PROTOCOLS      93 

3.5.1 In Vitro Maturation of Goat Oocytes      94 



xv 

 

3.5.2 Intracytoplasmic Sperm Injection (ICSI)     96 

3.5.2.1  Preparation of oocytes for ICSI     96 

3.5.2.2  Preparation of sperm for ICSI      97 

3.5.2.2.1  Sperm preparation for ICSI in goat     97 

3.5.2.2.2  Sperm preparation for ICSI in mice     98 

3.5.2.3  Preparation of ICSI dish      98 

3.5.2.4  Preparation of microneedles alignment    100 

3.5.2.5  Procedure of ICSI       101 

3.5.3 Chemical Activation        103 

3.5.3.1  Chemical activation for goat oocytes     103 

3.5.3.2  Chemical activation for mouse oocytes    103 

3.5.4 In Vitro Culture (IVC)        104 

3.5.5 ICSI-derived Embryos using Hoechst Staining     104 

3.6 EXPERIMENTAL DESIGN       105 

3.6.1 Effects of Sperm Factors on ICSI Performance in Mice    105 

(Experiment 1)  

 

3.6.2 Effects of Oocyte Factors on ICSI Performance in Mice    105 

(Experiment 2) 

 

3.6.3 Effects of Sperm Factors on ICSI Performance in Goat    106 

(Experiment 3) 



xvi 

 

3.6.4 Effects of Oocyte Factors on ICSI Performance in Goat    107 

(Experiment 4)  

  

3.7 STATISTICAL ANALYSIS       108 

 

Chapter 4 

4.0  RESULTS          110 

 

4.1 EFFECT OF SPERM CAPACITATION ON ICSI PERFORMANCE  110 

IN MICE (EXPERIMENT 1) 

 

4.2 EFFECT OF OOCYTE FACTORS ON ICSI PERFORMANCE   115 

IN MICE (EXPERIMENT 2) 

 

4.3 EFFECTS OF SPERM FACTORS ON ICSI PERFORMANCE   120 

IN GOAT (EXPERIMENT 3) 

 

4.4 EFFECTS OF OOCYTE FACTORS ON ICSI PERFORMANCE   128 

IN GOAT (EXPERIMENT 4)  

 

4.4.1 The Effect of LOPU Cycle on Yield of Oocytes    128 

4.4.2 The Effects of IVM Duration on Maturation Rate and    132 

ICSI- Derived Embryonic Development 

 

 

 

 



xvii 

 

Chapter 5 

5.0  DISCUSSION         139 

5.1 EFFECT OF SPERM FACTORS ON ICSI PERFORMANCE   139 

IN MICE (EXPERIMENT 1) 

 

5.2 EFFECT OF OOCYTE FACTORS ON ICSI PERFORMANCE     144 

IN MICE (EXPERIMENT 2) 

 

5.3 EFFECTS OF SPERM FACTORS ON ICSI PERFORMANCE   147 

IN GOAT (EXPERIMENT 3) 

 

5.4 EFFECTS OF OOCYTE FACTORS ON ICSI PERFORMANCE   152 

IN GOAT (EXPERIMENT 4)  

5.4.1 The Effect of LOPU Cycle on Yield of Oocytes    152 

5.4.2 The Effects of IVM Duration on Maturation Rate and    155 

ICSI- Derived Embryonic Development 

 

5.5 GENERAL DISCUSSION        158 

5.5.1 Influence of Sperm and Oocytes Factors on In Vitro Production  159 

5.5.2 Intracytoplasmic Sperm Injection (ICSI)      162 

5.5.3 Embryonic Development via ICSI      166 

 5.5.4 Future Direction        168 

 

Chapter 6 

6.0 CONCLUSIONS         170 



xviii 

 

REFERENCES         172 

 

APPENDICES         208 

APPENDIX 1: LIST OF MATERIALS      208 

APPENDIX 2: SUPPLEMENTARY FIGURES     212 

APPENDIX 3: STATISTICAL DATA       218 

APPENDIX 4: PROCEEDING POSTER      289 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xix 

 

LIST OF TABLES 

Table           Page 

2.1  First reports of ICSI-derived live offspring production in    8 

   various species  

 

2.2 Timeline of selected significant findings of IVM, ICSI and    9 

IVC in mice and goat studies regarding the oocyte factors 

 

2.3 Timeline of selected significant findings of ICSI in mice and   15 

goat studies regarding the sperm factors 

 

3.1 Composition of heparinised saline solution      62 

 

3.2 Composition of flushing medium      63 

3.3  List of stock solutions for IVM medium     65 

3.4 List of components for IVM working solution    66 

3.5 Composition of heparin stock solution     67 

3.6  Composition of  hyaluronidase solution (0.1%)    68 

3.7  Composition of calcium ionophore stock A solution   68 

3.8  Composition of calcium ionophore (5 µM) working solution   69 

3.9 Composition of 6-DMAP stock A solution     70 

3.10 Composition of 6-DMAP (5 µM) working solution     70 

3.11  Composition of TCM-199 with hepes supplemented with FBS  71 

3.12 Composition for sp-TALP stock solution     71 

3.13 Composition for sp-TALP working solution     72 

3.14 Composition for sperm capacitation using heparin    73 

3.15 Composition for sperm capacitation using theophylline   73 

3.16 Composition for KSOM stock solution     74 

3.17 Composition for KSOM working solution     74 

3.18 Composition for TYH stock solution      75 

3.19 Composition for TYH working solution     76 



xx 

 

3.20 Composition for HWM stock solution     76 

3.21  Composition for HWM working solution     77 

3.22 Composition for WM stock solution      77 

3.23 Composition for WM working solution     78 

3.24 Composition for sperm capacitation using heparin    78 

3.25 Composition for sperm capacitation using theophylline   79 

3.26 Composition of Hyaluronidase solution (0.1%)    79 

3.27 Composition for Strontium chloride stock     80 

3.28 Composition for Cytochalasin B (CB)     80 

3.29 Composition for Chatot, Ziamek and Bavier medium (CZB)  80 

3.30 Composition for Strontium chloride activation medium   81 

3.31 Grading of the COCs according to the CC layers     95 

and morphology. 

 

4.1 Number and percentages of oocytes obtained through    111 

oviduct oocytes retrieval in mice 

 

4.2 Cleavage rate (mean ± SEM) of ICSI derived embryos for    112 

different sperm capacitation chemicals treatment and  

sperm movement in mice 

 

4.3 Cleavage rate (mean ± SEM) of ICSI derived embryos for   113 

different sperm capacitation chemicals treatments in mice 

 

 

4.4 Cleavage rate (mean ± SEM) of ICSI derived embryos    114 

  for different sperm movements in mice 

 

4.5 Number (mean ± SEM) and percent (mean ± SEM) of oocytes  116 

obtained through oviduct oocytes retrieval in mice 

 

 

4.6 Cleavage rate (mean ± SEM) of ICSI derived embryos for    117 

different post-hCG duration in mice 
 



xxi 

 

4.7 Number (mean ± SEM) of oocytes obtained after LOPU    122 

according to grades of goat oocytes 

 

4.8 Maturation rates (mean ± SEM) of oocyte after LOPU    123 

according to grades of goat oocytes 

 

4.9 Cleavage rate (mean ± SEM) of ICSI derived embryos for    124 

different sperm capacitation chemicals treatments in goats 

 

4.10 Summary of cleavage rate (mean ± SEM) of ICSI derived embryos 126 

for different sperm capacitation chemical treatments in goats 

 

4.11 Summary of cleavage rate (mean ± SEM) of ICSI derived    127 

embryos for different sperm movements in goats 

 

4.12 Number (mean ± SEM) of oocytes per ovary obtained after LOPU   130 

according grades for different OR cycle in goats 

 

4.13 Percentage (mean ± SEM) of oocytes obtained after LOPU    131 

according grades for different OR cycle in goats 

 

4.14 Cleavage rate (mean ± SEM) of ICSI derived embryos at    133 

different IVM duration for different grades of goat oocytes 

 

4.15 Cleavage rate (mean ± SEM) of ICSI derived embryos at    134 

different IVM duration regardless grade of goat oocyte 

 

 

 

 

 

 

 

 

 

 

 



xxii 

 

LIST OF FIGURES 

Figure           Page 

3.1  A schematic represent the summary of process involved in   84 

donor goat. 

 

3.2  The diagram represents the microdroplet position preparation for 99 

ICSI dish where   i)          is sperm suspension microdroplet, ii)            

is oocyte microdroplet,  iii)                 is PVP (10%)  microdroplet.  

The patterned microdroplets are made to standby for microneedles 

cleaning during ICSI. 

 

3.3  The represented diagram showed the flow chart of experimental  109 

design in this study. 

 

4.1  Percentage of oocytes obtained in mice.    111 

 

4.2  Morphology of different oocyte quality obtained after   118 

oviduct oocyte  retrieval in mice.  (a) Present of polar body,  

(b) absent of polar body  and (c) dysmorphic oocytes. 

 

4.3   Morphology of different embryonic development stage   119 

 in mice. (a) 2-cell embryo, (b) 4-cell embryo, (c) 8-cell  

   embryo and (d) morula. 

 

4.4  Morphology of different grade of goat oocytes. (a) Grade A,  135 

(b) Grade B, (c) Grade C, (d) Grade D and (e) Grade E. 

 

4.5   Morphological of matured oocyte with present of first   136 

 polar body. (a) at IVM duration 18-21 hours and  

   (b) at IVM duration 22-25 hours. 

 

4.6  Morphological of embryo development. (a) 2-cell embryo,   137 

(b) 4-cell embryo, (c) 8-cell embryo and (d) morula. 

 

4.7  Hoechst staining. (a) 2-cell embryo, (b) 4-cell embryo,   138 

(c) 8-cell embryo and (d) morula (e) unfertilised oocyte. 

 

 

 



xxiii 

 

LIST OF ABBREVIATION 

 

%  percentage 

µ/µm  Micron/Micrometre 

µl  Microlitre 

µm  Micrometre 

µM  Micromolar 

°C  Degree Celsius 

6-DMAP 6-dimethilaminopurine 

ABEL  Animal Biotechnology-Embryo Laboratory 

AI  Artificial Insemination 

ANOVA One-way analysis of variance 

AR  Acrosome reaction 

ART  Assisted reproduction techniques 

ATP  Adenosine triphosphate 

bFSH  Bovine FSH 

BME  Basal media eagle 

BO  Bracket and Oliphant 

BSA  Bovine serum albumin 

BSA-FAF Bovine serum albumin-Fatty acid free 

Ca
2+  

Calcium 

CaI  Calcium ionophore 

cAMP  Cyclic adenosine monophosphate 

CB  Cytochalasin B 

CC  Cumulus cells 

CFO  Cumulus free occytes 

cFSH  caprine FSH (follicle stimulating hormone) 

CHX  Cycloheximide 



xxiv 

 

CIDR  Controlled internal drug release 

CL  Corpura lutea 

CO2  Carbon dioxide 

COC  Cumulus oocytes complexes 

COCs  Cumulus-oocyte complex(es) (i.e. CCs and oocyte cytoplasm) 

COM  Cumulus oocyte mass 

CR1aa  Charles Roskenkran’s 1 amino acid 

CR2  Charles Roskenkran’s 2 

CZB  Chatot-Ziomek-Bavister 

D-Glucose Deoxy-Glucose 

DM  Defined medium 

DMRT  Duncan's multiple range test 

DMSO  Dimethysulfoxyde anhydrous 

DNA  Deoxyribonucleic acid 

DPBS  Diphosphate-buffered saline 

DTT  Dithiothreitol 

e.g  For example 

E2  Estradiols 

eCG  Equine chorionic gonadotrophin 

EDI  Electrode ionization 

EDTA  Ethylene diamine tetraacetic acid 

EMiL  Embryo Micromanipulation Laboratory 

et al.  et alii/alia (and others) 

ET  Embryo transfer 

etc.  et cetera (and so forth) 

F1  Phenotype  

FBS  Foetal bovine serum 

FCS  Foetal calf serum 



xxv 

 

FF  Follicular fluid 

FGA  Fluorogestone acetate 

FPN  female pronucleas 

FSH  Follicle stimulating hormone 

G  Gauge 

g  Gram 

g  Gravity 

G1-G2  Gardner’s sequential media 

G6PD   Glucose -6-phosphate dehydrogenase 

GCs  Granulosa cell(s) 

GnRH  Gonadotrophin –releasing hormone 

GOEC  Goat oviduct ephithelial cells 

GSH  Oocyte glutathione hormone 

GV  Germinal vesicle 

GVBD  Germinal vesicle breakdown 

hCG  Human chorionic ganadotrophin 

hr  Hour 

HWM  Hepes Whitten’s medium 

i.m.  Intramuscular 

i.p.  Intraperitoneal 

ICSI  Intracytoplasmic sperm injection 

ID  Inner diameter 

IGF-I  Insulin-like growth factor-I 

IPPP  Institute of Research, Management and Monitoring 

ISB  Institute of Biological Science 

IU  International unit 

IVC  In vitro culture 

IVF  In vitro fertilisation 



xxvi 

 

IVM  In vitro maturation 

IVP  In vitro production 

K
+
-ATPase Kalium-Adenosine Triphosphatease 

KSOM  Potassium simplex optimization medium 

LED  Light emitting diode 

L-Glutamine  (Left)- glutamine 

LH  Luteinising hormone 

LN2  Liquid nitrogen 

LOPU  Laparoscopic oocyte pick-up 

m  Meter 

M  Molar 

MAP  Medroxyprogestrone acetate 

MAPK  Mitogen-activated protein kinase 

mDM  Modified defined medium 

mean±SEM Mean plus or minus standard error of means 

MEM  Minimum essential medium 

mg  Milligram 

MI  Metaphase I 

MIC  Microdrop individual culture 

MII  Metaphase II 

ml  Milliliter 

mm  Millimeter 

mM  Millimolar 

mOsm/kg Miliosmol per kilogram 

MPF  Maturation-promoting factor 

MPN  Male pronucleus 

mSOF  Modified synthetic oviductal fluid 

mTALP Modified Tyrode-Albumin-Lactate-Pyruvate  



xxvii 

 

MΩ-cm Milliohm-centimeter 

n  Number 

Na Lactate  Natrium lactate 

Na pyruvate Natrium pyruvate 

Na
+   

Natrium
 

NaTuRe Nuclear Transfer and Reprogramming Laboratory 

NT  Nuclear transfer 

OD  Outer diameter 

oFSH  Ovine FSH (follicle stimulating hormone) 

OGS  Oestrus goat serum 

OPU  Oocyte pick-up 

OR  Oocyte recovery / oocyte retrieval 

OS  Oestrus serum 

p.H  Negative logarithm of the effective hydrogen-ion concentration in gram 

PB  Polar body 

PB-I  First polar body  

PB-II  Second polar body 

PBS  Phosphate buffer saline 

PCC  premature chromosome condensation 

PMSG  Pregnant mare’s serum gonadotrophin 

PN  Pronucleus 

PVA  Polyvinylalcohol 

PVP  Polyvinylpyrrolidone 

r
2  

Regression coefficients 

RNA  Ribonucleic acid 

RO  Reverse osmosis 

rpm  Rotation per minute 

s.c.  Subcutaneous 



xxviii 

 

SOAF  Sperm-borne-oocyte-activating-factor 

SOF  Synthetic Oviductal Fluid 

SOR  Surgical oocytes retrieval 

SPSS  Statistical Package for Social Science 

sp-TALP Sperm-tyrode-Albumin-Lactate-Pyruvate 

SrCL2  Strontium Cloride 

SS  Steer serum 

TCM-199 Tissue culture medium-199 

TCM-Py Tissue culture media-Pyruvate 

TUGA  Transvaginal ultrasound-guided aspiration   

TYH  Toyoda, Yokohama and Hosi’s 

UV  Ultraviolet 

Vs.  Versus 

w/v  Weight: volume ration 

WID  Well-in-drop 

WM  Whitte’s medium 

ZD  Zona drilling 

ZP  Zona pellucida 

β  Beta 

 

 

 

 

 

 

 

 

 



xxix 

 

LIST OF APPENDICES TABLES 

 

Appendix Table         Page 

1.1  List of equipment and instruments      208 

1.2  List of chemicals, reagents and media     210 

1.3  List of labware and disposable items      211 

3.1  Effect of  sperm movement with Heparin on mouse embryo   218 

cleavage rate 

 

3.2  Effect of  sperm movement with Theophylline on mouse embryo   221 

sperm movement on mouse embryo cleavage rate 

 

3.3  Effect of  sperm capacitation chemical treatments regardless of    223 

  sperm movement on mouse embryo cleavage 

 

3.4  Effect of  sperm movement  regardless of  sperm capacitation    226 

chemicals treatments on mouse embryo cleavage rate 

 

3.5  Effect of  post-hCG duration administration duration on    229 

   mouse quality of oocytes retrieval 

 

3.6  Percentage of mouse oocyte quality retrieval regardless post-hCG  232 

duration administration duration 

 

3.7   Effect of oocyte qualities on no. of  goat oocyte recovery     233 

from LOPU procedure 

 

3.8  Effect of  goat oocyte qualities on  percentage of oocyte recovery    234 

from LOPU procedure 

 

3.9  Effect of  sperm movement with Heparin on goat embryo cleavage  235 

rate for Grade A 

 

 



xxx 

 

Appendix Table         Page 

 

 

3.10  Effect of  sperm movement with Heparin on goat embryo   238 

cleavage rate for Grade B 

 

3.11  Effect of  sperm movement with Heparin on goat embryo   241 

cleavage rate for Grade C 

 

3.12  Effect of  sperm movement with Heparin on goat embryo   245 

cleavage rate for Combined Grades (A, B and C) 

 

3.13  Effect of  sperm movement with Theophylline on goat embryo  248 

cleavage  rate for Grade A 

 

3.14  Effect of  sperm movement with Theophylline on goat embryo  251 

cleavage rate for Grade B 

 

3.15  Effect of  sperm movement with Theophylline on goat embryo  254 

cleavage rate for Grade C 

 

3.16  Effect of  sperm movement with Theophylline on goat embryo  257 

cleavage rate for Combine Grades (A, B and C) 

 

3.17  Effect of  sperm movement on goat embryo cleavage rate   260 

regardless sperm capacitation chemical treatments 

 

3.18  Number  of oocyte qualities  in different cycles of LOPU  263 

 

3.19  Number of different oocyte qualities regardless cycles of   268 

LOPU procedure 

 

3.20  Percentage of different oocyte qualities from LOPU   270 

procedure 

 

3.21  Percentage of different oocyte qualities regardless cycles of  272 

LOPU procedure 

 

 



xxxi 

 

Appendix Table         Page 

 

 

3.22  Effect of 18 to 21 hours IVM duration from different grades  276 

of oocytes on goat embryo cleavage rate 

 

3.23  Effect of  22 to 25 hours IVM duration from different grades  281 

of oocytes on goat embryo cleavage rate 

 

3.24  Effect of  different  IVM duration from on goat embryo   286 

cleavage rate regardless grades of oocytes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxxii 

 

LIST OF APPENDICES FIGURES 

Appendix Figure         Page 

2.1   ICR mouse: hormone injection through intraperitoneal  212 

injection (i.p.). 

 

2.2    Dissection area for obtain oviduct.     212 

2.3    Arrow showed swollen area at oviduct contained that  213 

cumulus oocytes complexes (COCs). 

 

2.4   Cumulus oocytes complexes (COCs).   213 

 

2.5    Surgical instruments and consumables that involved  214 

during LOPU procedure. 

 

2.6     Conducting LOPU procedure.    214 

 

2.7   Ovary morphology observations through the LOPU   215 

monitor system. 

 

2.8   Micropuller.       216 

 

2.9   Microphorge.       216 

 

2.10   Microgrinder for making bevel at the tips of    217 

ICSI microneedle. 

 

2.11   Proceeding’s poster: 32
nd

 MSAP Annual Conference,  289 

   6-9 June 2011, Tawau.  

     

2.12   Proceeding’s poster: 7
th 

ARBS Annual Conference,   290 

   8-12  Nov  2010, Kuala Lumpur.



 

 

 

 

 

 

 

 

 

Chapter 1 

1.0 INTRODUCTION



1 

 

Chapter 1 

1.0 INTRODUCTION 

 

1.1 INTRODUCTION 

Assisted reproduction techniques (ART) have been applied to solve reproductive 

problems laboratory animals, livestock animals, wildlife animals and human. The 

common ART include artificial insemination (AI), oestrus synchronisation, 

superovulation, laparoscopic oocyte pick-up (LOPU), in vitro maturation (IVM), in 

vitro fertilisation (IVF), in vitro culture (IVC), intracytoplasmic sperm injection (ICSI), 

embryo transfer (ET), gametes and embryo cryopreservation, nuclear transfer (NT), 

gene transfer and stem cells technique. 

 Laboratory animals such as the mice are commonly used to study reproductive 

technologies. They are smaller in size and easier in handling and management of this 

animals as well as they are good models to study reproduction in larger mammalian 

species such as livestock animals.   

  The first successful fertilisation of mammalian oocyte by ICSI procedure was 

reported in hamster about 20 years ago (Uehara and Yanagimachi, 1976). Among the 

many laboratory animals, mice are commonly used as model animals. Mice are ideal 

experimental subjects because the oocytes and embryos are easier and more hardy to 

culture in vitro and they are available in abundance (Kimura and Yanagimachi, 1995). 

 Goat is an important small ruminant economically for in the production of goat 

meat, goat milk and their products. However, the productivity of goats depends on 

breed, season and environmental conditions.  
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Advances in goat reproductive technologies are comparatively slower than those 

of other domestic animals (Keskintepe et al., 1996) even though there are successful 

reports on in vitro maturation, fertilisation and culture condition (Keskintepe et al., 

1994; Martino et al., 1995; Ongeri et al., 2001; Baldassarre et al., 2003; Wang et al., 

2003; Rahman, 2008a).  

 In the human, ICSI is a popular ART that has been used routinely in fertility 

centres worldwide in an effort to alleviate infertility problems, especially in 

oligospermia cases (Palermo et al., 1992). In farm animals, ICSI technique has been 

used successfully to produce offspring in cattle (Goto et al., 1990; Hamano et al., 1999; 

Horiuchi et al., 2002; Wei and Fukui, 2002; Oikawa et al., 2005), sheep (Catt et al., 

1996; Gomez et al., 1998) and goats (Wang et al., 2003). However, the reproductive 

efficiency is still unsatisfactory (Ock et al., 2003). 

 

1.2 BACKGROUND 

1.2.1 Intracytoplasmic Sperm Injection (ICSI) 

The ICSI technique is generally classified as an extended, special version of in vitro 

fertilisation in mammalian species. This technique can bypass the process of sperm 

penetration of cumulus cells, corolla oophorus, zona pellucida and oolema during 

fertilisation by directly depositing the sperm into the ooplasma. This technique requires 

the micromanipulator unit and skilled operator. There is good historical background 

regarding of ICSI, where the fertilisation was occurred and the live births of offspring 

was obtained from mammalian species such as hamsters (Uehara and Yanagimachi, 

1976); rabbits (Hosoi et al., 1988); cattles (Goto et al., 1990); humans (Palermo et al., 

1992); mice (Kimura and Yanagimachi, 1995); sheep (Catt et al., 1996); horses 
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(Cochran et al., 1998); cats (Pope et al., 1998); monkeys (Hewitson et al., 1999) and  

pigs (Martin, 2000). 

 ICSI procedure includes sperm immobilisation, sperm insemination into the 

oolemma and oocyte activation. The orientation of polar body during sperm 

insemination at position 6 and 12 o’clock (Keskintepe et al., 1997; Wang et al., 2003; 

Jimenez-Macedo et al., 2005, 2006 and 2007; Rahman, 2008a), the flexibility of the 

oolemma and the maturity of oocytes also contribute and play major role to determine 

the success of the ICSI procedure. Many attempts have been made to improve the ICSI 

performance. Among them is to use the assisted machine for ICSI called piezo-driven 

ICSI. This device helps to avoid the high elasticity of oolemma especially in mice 

(Kimura and Yanagimachi, 1995). In goat, this technique is still not popular, hence, 

many researchers are still using the conventional ICSI protocol without piezo-driven. 

Usually sperm or oocytes are chemically treated to obtain better fertilisation and embryo 

development rates (Keskintepe et al., 1997; Zhou et al., 2004; Jimenez-Macedo et al., 

2006 and 2007; Rahman, 2008). Wang et al, (2003) used the piezo-driven without any 

activation treatment. 

 

1.2.2  Application of ICSI  

ICSI technique has been described as depositing a single sperm directly into the 

ooplasm of oocytes for the process of fertilisation and further developmental 

competence of embryos, foetuses and offspring. One advantage of using ICSI technique 

is to avoid the occurrence of polyspermy during the process of fertilisation (Palomo et 

al., 1999; Bhatia et al., 2002).  In addition through this good criteria, ICSI become 

major application for animal production includes use of genetically important but 

biologically inferior male gametes for creating wild and domestic animal (Iritani, 1991).  
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Recently, ICSI was adapted in human therapy to overcome the male infertility and 

unexplained fertilisation failure starting of the successful research done by Palermo et 

al., (1992). 

The introduction of ICSI in assisted reproductive has contributed the 

understanding of early events of fertilisation especially during the two gametes 

interacting such as capacitation, the acrosome reaction and pronucleus formation. In 

addition, ICSI also can be a valuable research device for studying the mechanism of 

fertilisation in normal versus abnormal and in vivo versus in vitro condition, both in 

animal and human. This technique has been used to produce farm animals’ offspring, 

such as cattle (Goto et al., 1990; Hamano et al., 1999; Horiuchi et al., 2002; Wei and 

Fukui, 2002 and Oikawa et al., 2005), sheep (Catt et al., 1996 and Gomez et al., 1998) 

and goat (Wang et al., 2003). 

ICSI  intriguing perspective of being able to predetermine the sex of the 

offspring by using sperm as carriers for altered chromosomal material, this may become 

the useful way of generating transgenic  animals (Perry et al., 2001). 

 

1.3 STATEMENT OF PROBLEMS 

ICSI has become one of the famous ART which has been used widely in various 

species. Physiology of oocyte and sperm aspects become one of the limitation for the 

successful of ICSI procedure include: 

a) How efficient and frequent of laparoscopic oocyte pick-up (LOPU) procedure 

can be carried out for collection of the oocytes from each goat? 

b) How does the quality of oocytes after different oocytes retrieval (OR) cycles 

affect the ICSI performance? 
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c) What is the optimal maturation duration for OR goat oocytes before ICSI can be 

performed? 

d) Are there any differences in ICSI-derived embryo development for different 

types of sperm movement in mice and goat? 

e) Which sperm capacitation chemical gives the optimal ICSI performance in mice 

and goat? 

f) Does hormonal treatments (PMSG, hCG and FSH) affect the quality of oocytes 

and their subsequent ICSI performance similar in mice?  

 

1.4 JUSTIFICATION 

In Malaysia, the source of goat ovaries from abattoir is limited. Therefore, this will be a 

major constraint to carry out extensive goat embryo biotechnology studies in this 

country. As an alternative, it has been suggested that good quality oocytes could be 

obtained for various assisted reproductive technologies (ART) research studies from 

does using LOPU procedure (Baldassarre et al., 2004; Wang et al., 2007). Moreover, 

LOPU-derived oocytes could be obtained from repeated OR cycles of individual healthy 

does with minor ovarian damage that may not affect the oocytes quality. If the LOPU 

surgery is carried out properly, there should be minor adhesion particularly when 

compared to laparotomy procedure which is more traumatic and major injury as well as 

more physical handling on the reproductive tract.  At ABEL laboratory, we have 

excellent LOPU facilities for goat embryo research. Therefore, this present study took 

the advantage of the facilities availability and LOPU procedure is dedicated to obtain all 

the oocytes to be used in ICSI experiment in goat. 
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This study was initiated by focusing on the OR cycle to determine its effect on 

oocytes quantity and quality, fertilisation rate and cleavage rate after ICSI procedure. 

The next phase of this research was to determine the effect of in vitro maturation 

duration on ICSI performance.  Since sperm also plays important role in the success of 

ICSI procedure, an experiment was conducted to evaluate the ICSI performance by 

using different capacitation chemical treatments. The factors, such as OR cycle, 

maturation duration and sperm capacitation that were studied in the present project are 

significant determinants to ensure maximal in vitro embryos survival after ICSI 

procedure. At present, the information on these factors is scarce and controversial; and, 

therefore, should be clarified and understood before ICSI procedure in goat could be 

recommended to be used routinely for research laboratory projects or application in goat 

industries. 

In this research, mice were used as model animals before ICSI procedure was 

carried out in goat. Factors such as the post-hCG duration for recovery the oocytes, the 

sperm capacitation treatment and sperm morphology were evaluated prior to ICSI 

procedure proper being carried out in goats. At the same time, using model animals 

such as mice provided abundance oocytes for researcher to gain skills and expertise. 
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1.5 OBJECTIVES 

The general objective of this research was to develop an ICSI procedure for mouse and 

goat by optimising various factors from sperm and oocyte, such as sperm capacitation 

chemical treatment, sperm movement criterion, post-hCG administration duration, OR 

cycle and IVM duration on ICSI performance. Specific objectives were as follows: 

a) To determine the effect of sperm capacitation treatment on ICSI performance in 

mice and goat. 

b) To determine the effect of sperm movement criterion on ICSI performance in 

mice and goat. 

c) To determine the effect of post-hCG administration duration on ICSI 

performance in mice species  

d) To determine the effect of OR cycle on ICSI performance in goat. 

e) To determine the effect of IVM duration on ICSI performance in goat. 
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Chapter 2 

2.0  REVIEW OF LITERATURE 

 

2.1 BACKGROUND 

Intracytoplasmic sperm injection (ICSI) is widely used in human as an alternative way 

to overcome the sperm infertility factors in order to obtain offspring (Palermo et al., 

1992). This technique is one of the assisted reproductive technologies (ART) that has 

been carried out in animals. There were first successful reports in ICSI-derived 

offspring in various mammalian such as described in Table 2.1. 

 

Table 2.1: First reports of ICSI-derived live offspring production in various species 

 

Year Author Species 

1988 Hosoi et al. Rabbit 

1990 Goto et al. Cattle 

1992 Palermo et al. Human 

1995 Ahmadi et al. Mouse 

1996 Catt et al. Sheep 

1998 Cochran et al. Horse 

1998 Pope et al.  Cat 

1999 Hewitson et al. Monkey 
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2000 Martin Pig 

2002 Hirabayash et al. Rat 

2002 Yamauchi et al. Hamster 

2003 Wang et al. Goat 

2003 Magarey and Mate Kangaroo  

Source: Adapted from Rahman, (2008a). 

 

Various research and findings were contributed by researchers since the past few 

decades. These findings helped in improving and increasing the success of ICSI 

procedure. Other than the ICSI procedure factor, the oocyte and sperm factors played 

various important roles in order to obtain the optimal ICSI results.  

 

Table 2.2: Timeline of selected significant findings of IVM, ICSI and IVC in mice and  

       goat studies regarding the oocyte factors 

 

Year Author Species Significant event/finding 

1983 Markert Mouse Blastocysts were successfully obtained. 

 

1992 De Smedt et al. Goat Maturation rates from follicle sized 2.0-6.0 

mm was 86% and 1.0-1.8 mm follicle sized 

was 24% 

 

1995 Crozet et al. Goat Maturation rate from follicle sized 2.0-3.0 

mm was 70%, 3.1-5.0 mm was 83% and >5 

mm was 97%. 
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1995 Ahmadi et al. Mouse Total number of blastocyst and inner cell 

mass (ICM) were increased in which sperm 

was injected 3 hours following injection of 

Ca
2+

 into oocyte. 

 

1995 Rajikin Goat Maturation rate of abattoir-derived oocytes 

after 20-30 hours in TCM-199 + FCS + BSA 

+ OGS (20%) without hormones obtained 

from COCs (55.1%) and CFOs (20.0%). 

Maturation rate after 40-48 hours from 

COCs (58.5%) and CFOs 57.6%). 

 

1995 Martino et al. Goat Maturation rate of abattoir-derived 

prepubertal COCs in TCM-199 + FBS 

(10%) for 27 hours with presence (72.0%) or 

absence of GCs (76.9%). 

 

1996 Sharma et al. Goat Maturation rate of abattoir-derived with 

COCs in TCM-199 + OGS (20%) with IVM 

duration 32 hours (71.6%), 36 hours 

(59.7%), 31 hours (55.8%) and 24 hours 

(50.3%).  

 

1996 Pawshe et al. Goat Maturation rate of abattoir derived COCs for 

24 hours in  IVM media containing FSH, LH 

and oestradiol using Ham’s-12 + OGS(10%) 

= 49.0%, Ham’s-12 + FCS (10%) = 64.8%, 

TCM-199+OGS (10%) = 62.6%, and TCM-

199 + FCS (10%) = 90.0%. 

 

1996 Burruel et al. Mouse Oocyte activation and subsequently 

produced normal offspring could be 

obtained from oocyte injected by grossly 

misshapen head. 

 

1996 Gall et al. Goat Maturation rate of COCs (hormone 

stimulated slaughter goat) in TCM-199 + 

FCS (10%) with IVM duration 20 hours 
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(22.0%) and 27 hours (96.0%); from 2-6 mm 

follicle sized (3.5%) and 1.0-1.8 mm follicle 

sized (8.0%). 

 

1996 Keskintepe et al. Goat Success to obtain blastocyst and 

subsequently produced offspring through 

uterine transfer. 

 

1997 Keskintepe et al. Goat Success to obtain cleavage (57.7%), morula 

(35.5%) and blastocyst (24.4%) from the 

oocyte injected with broken tail sperm 

without any activation treatment. 

 

1997 Yadav et al. Goat The optimal IVM duration was 30 hours 

based on chromosomes sequential 

configuration. 

 

1999 Malik et al. Goat Maturation rate of abattoir-derived COCs for 

28 hours in different media; TCM-199 + 

OGS (20%) (63.6%), goat peritoneal fluid 

(55.6%) and rabbit peritoneal fluid (44.6%). 

 

2000 Samaké et al. Goat Maturation rate of COCs (synchronised and 

superovulated goat) for 24 hours in TCM-

199+FBS (10%) through both laparotomy 

and ovariectomy methods was 100%. 

 

2001 Rho et al. Goat Maturation rate of abattoir derived COCs in 

M-199 + FCS (10%) in 27 hours (73%), 24 

hours (55%) and 20 hours (30%). 

 

2002 Velilla et al. Goat Maturation rate of abattoir-derived COCs 

(prepubertal goat) in TCM-199 + FBS (10%) 

and Hoechst stained after 27 hours (51.05), 

20 hours (36.9%) and 15 hours (25.7%). 



12 

 

 

2002 Liu et al. Mouse In vitro matured preantral follicles could 

gave significant higher of 2-cell 

development rate via ICSI compared with 

IVF. 

 

2003 Baldassarre et al. Goat LOPU is reliable technique for oocyte 

recovery and the donors could be repeated 

used with known health status. 

 

2003 Koeman et al. Goat Gonadotrophin-primed prepubertal goat 

gave higher yield of oocytes than adult but 

no significant different in vitro development 

through LOPU technique. 

 

2003 Wang et al. Goat The embryo development using G1.3-G2.3 

medium gave cleavage (74%), morula (15%) 

and blastocyst (9%), while for mTALP-

mKSOM medium, the cleavage (89%), 

morula (41%) and blastocyst (35%) using 

Piezo-ICSI with tail cut sperm. 

 

2003 Lacham-Kaplan  

and Trounson 

Mouse Activation of oocyte using SrCl2 that has 

injected by frozen sperm resulted in live 

offspring. 

 

2004 Zhou et al. Goat Oocyte activation after ICSI with ionomycin 

alone or ionomycin plus 6-DMAP 

significantly increased the embryo 

development rate after ICSI. 

 

2004 Pierson et al. Goat LOPU can be repeated up to five times at 

different intervals and seasons with less or 

no important change in overall response. 
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2005 Jimenez-Macedo et al. Goat Chemical activation (ionomycin plus 6-

DMAP) is important and able to produced 

embryos ups to 8-cell stage in G1.3/G2.3 

medium culture. 

 

2006 Jimenez-Macedo et al. Goat The oocyte diameter smaller than 125 µm 

were unable to develop to blastocyst stage. 

 

2006 Kharche et al. Goat Maturation rate of COCs in TCM-199 + 0, 

10, 15, 20% OGS for IVM duration between 

24 to 27 hours were 28.6%, 61.9%, 72.7%, 

and 78.6%, respectively. 

 

2007 Tateno and Kamiguchi Mouse The chromosome aberrations in ICSI-

derived embryos were found depended on 

type of medium and incubation time. 

 

2007 Jimenez-Macedo et al. Goat Oocytes size has a relationship on yield and 

quality of blastocyst. ICSI and embryo 

biopsy give no negative effect on embryo 

development. 

 

2007 Katska-Ksiazkiewicz et al. Goat The selection of COCs based on morphology 

features might be helped in obtained the 

competent oocyte before IVM. 

 

2007 Rahman et al. Goat LOPU oocyte source shown better 

maturation and embryo development rate 

compared with abattoir source. Morula stage 

of embryos was obtained without using the 

artificial activation of IVM heterogenous 

oocytes.  

 

2008 Abdullah et al. Goat Optimal yield of oocytes obtained using 60 

or 72 hours post FSH/hCG before LOPU.  
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2009 Anguita et al. Goat Oocyte diameter and COC morphology 

could be influenced the oocyte development 

competence in prepubertal goat. 

 

2009 Kharche et al. Goat The cleavage rate of using media contained 

fatty acid free albumin was significantly 

higher compared to unmodified albumin. 

The supplementation of 20% OGS increased 

the cleavage rate of oocytes compared to 

defatted albumin. 

 

2010 Lv et al. Goat β-mercaptoethanol supplementation and 

oocyte selection may influence the 

progression of prepubertal oocytes to 

undergo metaphase II, whereas the 

inhibitory of IVM are caused by high 

concentration of oestradiol. 

 

2010 Kong Goat Maturation, cleavage and embryo 

development rate were increased using the 

oocytes that undergo IVM duration at 22 to 

25 hours from LOPU-derived oocytes via 

ICSI technique and subsequently activated 

with the combination of Ca
2+

 ionophore and 

6-DMAP. 
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Table 2.3: Timeline of selected significant findings of ICSI in mice and goat studies 

         regarding the sperm factors 

 

Year Author Species Significant event/finding 

1995 Lacham-Kaplan  

and Trounson 

Mouse Acrosome reaction induction from sperm 

treatment with calcium ionophore was 

increased the formation of pronuclear in 

intact oocyte. 

    

1995 Kimura  

and Yanagimachi 

Mouse First report of live offspring from sperm 

injection using the piezo-injector and 

subsequently undergo embryo transfer. 

 

1996 Kuretake et al. Mouse Normal embryo development might be 

obtained when the sperm heads were 

separated by sonification with or without 

Triton X-100 treatment. It shows that 

sperm with intact structure is not needed. 

Plasma, acrosome membrane ans tail 

component is non essential in mouse ICSI. 

 

1998 Kimura et al. Mouse The injection of primary spermatocyte 

would undergo premature chromosome 

condensation (PCC) during second meiotic 

division. The breakage of chromosomes 

was observed prior to first cleavage. 

 

1999 Palomo et al. Goat Sperm motility and viability could be 

improved through swim-up protocol. 

 

1999 Ogura et al. Mouse The PCC occurrence in spermatid 

chromosomes could move safely to 

opposite poles after oocyte activation. 

2001 Yazawa et al. Mouse The used of elongated sperm could 

produce the normal offspring and has 

suggested that normal oscillation patern of 

Ca
2+

 is not necessary for normal 
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fertilisation and embryo development.  

 

2002 Szczygiel et al. Mouse Cryopreserved sperm (frozen sperm) was 

more efficiently used in ICSI procedure 

compared to IVF to obtain the embryos. 

 

2003 Wang et al. Goat First report of ICSI-derived live offspring 

in goat, procedure was conducted by using 

the Piezo-ICSI, where injecting the oocyte 

with tail-cut sperm. 

 

2003 Lacham-Kaplan       

and Trounson 

Mouse Fertilisation rate using the cryopreserved 

sperm was similar with fresh sperm. 

However, the blastocyst rate was reduced. 

 

2004 Zhou et al. Goat Sperm treatment using 0.0005% Triton X-

100 before ICSI shows high significant 

rates of fertilisation and embryo 

development compared to other 

concentration and manual immobilisation. 

 

2006 Ajduk et al. Mouse Sperm capacitation through acrosome 

removal before ICSI with Calcium 

ionophore A23187 but not with Triton X-

100 would allow more synchronous 

chromatin remodeling, delayed the DNA 

synthesis and lead to produce the good 

embryo. 

 

2006 Jimenez-Macedo et al. Goat Sperm treatment before ICSI with heparin 

plus Ca
2+

 ionophore and culturing in 

mSOF media gave 23.7% cleavage, 8.25 

morula and 5.1 blastocysts. 
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2007 Jimenez-Macedo et al. Goat Sperm treatment before ICSI with heparin 

plus Ca
2+

 ionophore and culturing in 

mSOF media according to oocyte diameter. 

the oocyte diameter cleavage and 

blastocyst rate in sized 110-125 µm (51.0% 

and 14.7%) and sized >135 µm (66.2% and  

34.5%, respectively). 

 

 

2.2 OESTRUS SYNCHRONISATION AND SUPEROVULATION  

The main aim of superovulation was to induce multiple ovulations in animals. 

Superovulation regime was closely related with oestrus synchornisation in ART 

programme. In goat, the manipulation of either the luteal or the follicular phase of the 

oestrous cycle could aid for oestrus synchronisation, by extending the luteal phase by 

using exogenous progesterone or by shortening the phase by prematurely regressing 

existing corpura lutea (Wildeus, 2000). In mice, the pheromone phenomenon (odour of 

a male) was to stimulate the oestrous cycle and to synchonise the females in high 

percentage on the third day of pairing (Whitten, 1956). Superovulation was normally 

carried out through exogenous gonadotrophin treatment. 

 

2.2.1  Oestrus Synchronisation  

Classically, corpura lutea (CL) would undergo timely regression in all animals at any 

stage of oestrous cycle through progesterone or progestagen treatment. Most of the 

progestagen was built with vaginal pessaries. For examples, the polyurethane sponge 

impregnated with fluorogestone acetate (FGA), medroxyprogestrone acetate (MAP) or 

Y-shaped silicone-coated device (controlled internal drug release, CIDR) impregnated 

with progesterone for 9 to 11 days (Evans and Maxwell, 1987; Ritar et al., 1989; 
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Baldassarre and Karatzas, 2004). Other than vaginal pessaries, there were implants 

impregnated containing highly potent synthetic device, which was inserted under the 

skin on the upper side of ear (Bretzlaff and Madrid, 1985, 1989; Holtz and Sohnrey, 

1992; Yuswiati and Holtz, 1996; Freitas et al., 1997; Graff et al., 1999; Mellado et al., 

2000; Oliveira et al., 2001; Medan et al., 2002) or underside of tail (East and Rowe, 

1989). In terms of synchronisation efficiency, there was no difference between sponges 

and subcutaneous implants (Holtz and Sohnrey, 1992).  

 The subcutaneous implants or CIDR devices were more practically used 

compared to sponges because of discomfort to the animals and the device may adhere to 

the vaginal surfaces that made it difficult to withdraw from vagina. Subsequently, a 

luteolytic dose of prostaglandin or an analogue (cloprostenol) was administered either at 

the onset (Rubianes and Menchaca, 2003) or at the end or 24 to 48 hours prior end of 

progestagen treatment. During the progesterone treatment, the progesterone prevented 

and reduced the formation of dominant follicles (Adam, 1999; De Castro et al., 1999; 

Menchaca and Rubianes, 2001; Simoes et al., 2006).  

 

2.2.2 Ovarian Superovulation 

Superovulation in animals could help to increase the number of competent oocytes for 

in vivo and in vitro embryo production (Malhi et al., 2008).  The superovulation 

treatment commonly combined with oestrous synchronisation through gonadotrophin 

administration to induce the ovulation in order to release more number of oocytes from 

the ovaries. The presence or absence of dominant follicle and CL at the time of follicle 

stimulating hormone (FSH) administration gave an effect on superovulation response.  

In goat studies, it was suggested that the number and quality of embryos 

produced were enhanced by the presence of CL prior to the first dose of FSH injection 
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(Gonzalez-Bulnes et al., 2002, 2003, 2004, 2005). At the final stage of oestrous cycle 

(preovulatory), the progesterone level was initially high and decreased after regression 

of CL (De Castro et al., 1999; Mechaca and Rubianes, 2001) and resulted in increase in 

oestrogen level with the development of the dominant follicles (De Castro et al., 1999). 

The rapid development of dominant follicles normally occurred before ovulation 

(Kojima et al., 2003). A single treatment of FSH plus equine chorionic gonadotrophin 

(eCG), injected 36 hours before LOPU proved to be as effective as traditional regime 

with FSH multi-doses in goat (Baldassarre et al., 1996, 2002). Abdullah et al. (2008) 

suggested that prolonging the interval (60 to 72 hours) from ovarian superovulation to 

LOPU improves oocytes yield, quality and development competence in goat. 

 However, in the superovulatory response, there are variabilities in the number of 

follicles and oocytes obtained. Therefore, this may be a major constraint in obtaining 

successful results in goat IVP programme. The extrinsic factors such as source, batch 

purity of gonadotrophin and regime of hormone (Wollen et al., 1985; Cognie, 1999); 

and the intrinsic factors such as breed/strain, age and reproductive status (Baril et al., 

1993) were the causes the variability in superovulation responses. The new 

gonadotrophin preparations and animal management system (Cognie, 1999) may also 

contribute to this variability.  Thus, to optimise the number of quality of oocytes 

obtained, it was suggested that application of appropriate hormone stimulation should 

be seriously considered in any superovulation protocols (Sirard et al., 2006). 
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2.2.2.1  Factors influencing superovulation  

The major constraints for superovulatory response being classified either as extrinsic 

(depending on the treatment protocol used for ovarian stimulation) and intrinsic factors 

(related to the physiological status of the animal).  

 

2.2.2.1.1 Age 

The effect of age on ovarian response after superovulation is commonly ignored. 

However, it has been shown that superovulatory response variation may occur between 

animals of different ages due to individual physiological variation (Jainudeen et al., 

2000). For example, the optimal age for superovulated female mice was 21 to 42 days 

could produce large number of oocytes from a particular strain (Hogan et al., 1986; 

Zudova et al., 2004). The optimal age was related with strain of mice: 25 days for 

C57BL/6J female (Hogan et al., 1986) and 21 days for BALB/ca (Gates, 1971). 

According to Hogan et al. (1986), at this age, the follicle maturation wave increased the 

number of follicles capable of responding to FSH. The age difference in the 

superovulation response was also related to the genetic difference and age at puberty 

(Gates and Bozarth, 1978). In superovulatory response, the F1 hybrid responded earlier 

(16-17 days old) and were more responsiveness at  a younger age (22-24 days) 

compared to the inbred strains of BALB/c (25-30 days) and 129 (28-33 days) mice. 

Information on influence of age on superovulatory response in goat is scarce. 

Younger goats showed low superovulatory response due to high sensitivity to the 

negative effects of steroids compared to adult goats (Driancourt, 2001; Senger, 2003). 

The age of goats less than 3 years showed poor superovulatory response (Mahmood et 

al., 1991).  The poor results could be due to cytoplamic, ultrastructural,metabolic and 

nuclear abnormalities in prepubertal female oocytes (Armstrong, 2001). However, it 
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was reported that older female animals were reproductively competent due to 

decreasing uterine health and oocyte viability (Carnevale et al., 1993, 1997; Morris and 

Allen, 2002; Morel et al., 2005). The reason for the reduction in the number of oocytes 

obtained with old age after superovulation was related to ovulation of smaller pre-

ovulatory follicles that failed to undergo the final meiotic division and/or maturation 

before ovulation (Carnevale et al., 1999). Also the poor superovulatory response in old 

animals may be due to a reduction in capability of number of follicles responding to the 

gonadotrophin treatment (Lerner et al., 1986). 

 In contrast, previous reports have shown that the age of the animal was not 

considered to be main factor in superovulatory response (Hasler, 1992) whereby no 

significant age effects were shown on quantity and quality of oocytes obtained (Katska 

and Smorg, 1984; Wani et al., 1999; Kong, 2010) as well as no similar effect on the 

total number of embryos obtained (Donaldson, 1984; Kong, 2010).  

 

2.2.2.1.2 Weight and Nutrition 

The body weight of animals and nutrition were shown to be related to reproductive 

performance. The available information regarding these effects on the embryo quality 

and recovery rate was mainly from superovulation of cattle and sheep. 

 The optimal yield of oocytes through superovulated mice was between 12.5 and 

14 grammes (Hogan et al., 1986). The nutritional and health status of animals may 

affect the bodyweight of the females. In mice, the low body weight may cause less 

superovulatory response as reflected in lower yield of oocytes obtained after 

superovulation  (Hogan et al., 1986). 
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 The hypothalamus-pituitary-ovarian axis was influenced by dietary intake of 

animals. The follicular growth was affected by the changes in the plane of nutrition 

(Gutierrez et al., 1997; Gong et al., 2002; Diskin et al., 2003; Mihm and Bleach, 2003) 

through the changes in plasma metabolites and metabolic hormones, such as insulin and 

insulin-like growth factor-I (IGF-I) (Armstrong et al., 2001; Ferguson et al., 2003) 

and/or in hormones and growth factors in follicular fluid (Landau et al., 2000).  

Different dietary regimes were shown to change the endocrine signaling pathways. 

However, the effect of these changes on fertility is unclear. The growth of oocytes and 

the follicular environment in vivo were highly correlated with hormonal and ovarian 

receptor communication. 

 The oocyte morphology (O’Callaghan et al., 2000), oocytes development and 

embryo production were affected by dietary intake. The detriment oocyte quality, 

embryo mortality and late embryo development in vivo (Mantovani et al., 1993; 

McEvoy et al., 1995; Negrao et al., 1997) and in vitro (Papadopaulos et al., 2001) were 

affected by overfed animals. Overfeeding can lead to reduced pregnancy rates (Parr et 

al., 1987) and decreased the presence of embryos collected on Day 2 after fertilisation 

(Creed et al., 1994). On the other hand, during under-nutrition, embryo development 

was delayed during first two weeks after fertilisation (Parr et al., 1987; Abecia et al., 

1995) embryo motality was higher during the first two weeks of pregnancy (Rhind et 

al., 1989; Abecia et al., 1995). 

 The variable responses and inconsistent outcomes in relation to nutrition and 

reproduction in ruminants are complex. For examples, low dietary intake can reduce the 

ovulation rate in sheep (Smith, 1991) and mice (Hogan et al., 1986), and the dietary 

supplements with high energy and protein can increase the ovulation rate even though in 

poor body condition and not supplemented with exogenous gonadotrophins (Downing 

et al., 1995). The increased dietary intake can enhance the ovarian folliculogenesis in 
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cattle as well as the superovulatory response (Gutierrez et al., 1997). This may be due to 

the small follicle populations are induced to increase.   

 The feeding level on oocyte quality is dependent on the body condition of the 

animals (Adamiak et al., 2005). The high level of dietary intake can be beneficial to 

oocytes from animals of low body condition but detrimental to oocytes from moderately 

high body condition animals. The embryo production is influenced by nutrition remains 

to be fully characterised. It may affect the oocytes development before fertilisation and 

early embryo development. In order to optimise the oocytes and embryo production, 

good nutritional management of donor goats for superovulation programme and LOPU 

is required (Scaramuzzi and Murray, 1994). 

 

2.2.2.1.3 Breed or Strain 

The superovulatory response to the gonadotrophin is different among the various breeds 

of animal. This has been reported in goat (Amoah and Gelaye, 1990; Mohd Noor 

Hisham, 2006), sheep (Torres et al., 1987; Vivanco et al., 1994), cattle (Crister at al., 

1979; Holness et al., 1980; Donaldson, 1984), and mice (Gates and Bozarth, 1978; 

Hogan et al., 1986; Spearow, 1998, Zudova et al., 2004, Byers et al., 2006). There is a 

good relationship between superovulatory response and genetic background of animal, 

resulting in high ovulation rates (Bindon et al., 1986; Synder, 1986). For examples, the 

number of ovulated oocytes in A/J mice (5.4±2) was shown to be lower number than 

C57BL/6J mice (25±1.2) (Byers et al., 2006); the breed with high prolificacy was found 

to be more sensitive to gonadotrophin (Smith, 1976; Piper et al., 1982) compared to less 

prolific breed (Kelly et al., 1983; Bindon et al., 1986; Picazo et al., 1996). The 

differences in superovulatory response in breed were related to differential kinetic 

behaviour of gonadotrophin or differential follicular dynamics and function in response 



24 

 

to the hormone (Ammoun et al., 2006). For example, the absorption and elimination of 

FSH in the blood between breeds was different (McNeilly, 1985; Fry et al., 1987) which 

may be caused either by hormone preparation used or by route of administration or by 

the inherent variability of hormone elimination (Demoustier et al., 1988; Prakash et al., 

1996). 

 

2.2.2.1.4 Application of Gonadotrophin   

The effect of exogenous hormones on stimulation of goat follicles has been studied 

(Lambert et al., 1986; Amoah and Gelaye, 1990). The common gonadotrophin 

treatments for superovulation in goats are FSH and eCG. The FSH is more expensive 

compared to eCG because latter is easily available in local market and requires a single 

injection (Monniaux et al., 1983). However, the FSH is more efficient in superovulatory 

response than eCG (Armstrong et al., 1983; Nuti et al., 1987; Mahmood et al., 1991; 

Nowshari et al., 1992) whereby it contains an appropriate admixture of LH and FSH. 

Thus, the use of eCG with or without a follow-up with eCG antibodies (Pintado et al., 

1998) will not deliver the good response (Saharrae et al., 1998; Cognie, 1999). 

According to Baldassarre and Karatzas (2004), the anti-eCG antibodies were developed 

as an immune response to previous treatment in an effort to use of eCG repeatedly 

without detrimental effect on superovulatory response. Generally, the superovulatory 

response was maintained by using the FSH repeatedly in goats (cFSH) and sheep 

(oFSH) (Baril et al., 1993).  

 A route of administering the hormone will lead to variation in superovulatory 

response based on the rate of gonadotrophin absorption (Dobbs et al., 1994). The 

absorption of FSH is faster through intramuscular (i.m.) compared to subcutaneous 

(s.c.) administration of FSH. According to the previous studies in goat, the 
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administration through i.m. was found to be highly variable in ovulation rate 

(Armstrong et al., 1983; Selgrath et al., 1990; Mahmood et al., 1991). The FSH 

injection through s.c. proved to be l more predictable than i.m., lowed unfertilised ova 

yield and enhanced fertility (Senthil Kumar et al., 2003; Lehloenya and Greyling, 

2009). Even though the s.c route of FSH administration can lead to follicular growth 

and ovulation, the oocytes obtained do not undergo complete maturation. Generally, 

two types of gonadotrophin were administered in mice, which were PMSG and hCG, 

with the recommended dose of PMSG (5 IU) via intraperitoneal (i.p.), even though s.c. 

administration was suggested to be equally efficient (Hogan et al., 1986). The second 

injection through i.p. was hCG (5 IU dose) to induce the ovulation. The hCG was 

suggested to be injected via i.p. because it is crucial that the hCG enter the circulation 

quickly, before the endogenous LH released (Hogan et al., 1986). 

 

2.2.2.1.5 Timing of Gonadotrophin treatment 

Previous studies in humans (Thornton et al., 1990; Mansour et al., 1994), monkeys (Ng 

et al., 2002; Chen et al., 2006) and pigs (Ratky et al., 2003), the oocyte pick-up (OPU) 

was performed 36 hours after hCG administration. In goat oocytes collected 36 hours 

after FSH and eCG or hCG injection were still at the immature stage and therefore need 

to undergo IVM for 27 hours before becoming meiotically competent (Baldassarre et 

al., 2003). Good quality goat oocytes for IVM and embryo production were obtained 

via LOPU at 60 and 72 hours after FSH and hCG treatment (Abdullah et al., 2008). In a 

later study, it was claimed that the yield of good quality goat oocytes and embryo 

production were obtained from 60 hours post-treatment of FSH and CG and underwent 

the IVM for a duration of  22 to 25 hours (Kong, 2010).  
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 In mice, the time interval of PMSG/hCG injection and the light cycle of the 

animal house will affect the developmental uniformity and the yield of oocytes that 

recovered from donor (Hogan et al., 1986). They reported that the optimal yield of 

oocytes in most mouse strains could be obtained from the time interval of 42-48 hours 

between injection of PMSG and hCG injection. Other evidence also exists about the 

time interval between PMSG and hCG administration (Mizoguchi and Dukelow, 1980; 

Hiller et al., 1985; Edgar et al., 1987; Vergara et al., 1997) as well as the time from 

hCG injection to oocytes collection for IVP (Hashlamoun and Killian, 1985; Vergara et 

al., 1997) which may affect the yield of fertilised oocytes. 

 

2.2.3 Adverse effect of superovulation 

The variation in the viability of embryos was related to the influence from the 

superovulation protocol (synchronisation-hyperstimulation) (Leyva et al., 1998). The 

progestagen treatment during synchronisation could contribute to alteration in endocrine 

(Scaramuzzi et al., 1988) and follicular function (Leyva et al., 1998) by lack of 

complete suppressive effect on LH secretion (Kojima et al., 1992). The donor with 

endogenous progesterone from a previous CL may suppress the LH secretion. The 

deficiencies in pituitary regulation by the progestagen will be higher in the absence of 

CL. The alteration in follicular function led to the ovulation of oocytes with the 

abnormalities of their development competence, diminished potential fertility and 

alteration in the normal process of early embryo development (Greve et al., 1995). The 

uses of PMSG in superovulation regime treatment may cause a high number of non-

ovulated follicles, early regression of CL, short or irregular oestrus cycle and potential 

risk of embryo expulsion (Amoah and Gelaye, 1990). Superovulation with PMSG-hCG 

combination has been claimed to lead the number of fragmented, degenerated and 
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denuded oocytes (Miller and Amstrong, 1981; Walton and Amstrong, 1981; Moor et al., 

1985; Lehtonen and Kankondi, 1987). Based on previous studies, it was suggested that 

the embryonic development abnormalities after superovulation with gonadotrophin was 

mainly influenced by the effect of hormone treatment on maternal oviductal and uterine 

environment (Elmazar et al., 1989; Van der Auwera et al., 1999). 

  

2.3 RECOVERY OF OOCYTES 

In order to sustain and success in in vitro production (IVP) programme, continuous 

supply of competent oocytes is important. Oocytes can be collected from both live and 

killed donors. Oocyte recovery (OR) from live donor may be done through laparoscopic 

oocytes pick-up (LOPU), surgical oocytes retrieval (SOR), ovariectomy, laparotomy or 

transvaginal ultrasound-guided aspiration (TUGA) procedures. The OR from killed 

donors could be obtained at post-mortem via laparotomy and ovariectomy especially in 

mice. 

 

2.3.1 Laparoscopic oocytes pick-up (LOPU) and Surgical Oocytes Retrieval (SOR) 

LOPU was not fully practical until the IVP programme was developed in sheep and 

goat (Baldassare et al., 1994, 2002; Tervit, 1996; Kuhholzer et al., 1997, Graff et al, 

1995; Pierson et al., 2004).Even though this technique is less invasive, it involves 

anaesthesia and requires sophisticated equipment and good technical skill for handling 

the procedure (Baril et al., 1993; Flores-Foxworth, 1997).  Briefly, the donor was 

restrained on a standard laparoscopy table under general anaesthesia. The ovarian 

follicles were aspirated under laparoscopic observation (laparoscopy camera and 

monitor) using a 20G needle mounted in a plastic pipette connected to a collection tube 
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and a vacuum line. Normally this procedure was performed to retrieve the immature 

oocytes. Therefore, most of the oocytes obtained were underwent the IVM procedure. 

This procedure normally was performed in short time duration (10 to 20 

minutes), depending on the number of follicles to be aspirated (Kuhholzer et al., 1997). 

Commonly, the number of oocytes retrieved from this procedure was more than 5 

oocytes per donor (Baldassarre and Karatzas, 2004). Through this procedure, a good 

quality and quantity of oocytes from prepubertal, pubertal or ageing animal and this 

showed that the MOET is not possible to be performed (Koeman et al., 2003; 

Baldassarre et al., 2007). Therefore, LOPU is an efficient method for the ‘reproductive 

rescue’ of valuable donor that has reduced fertility because of ageing factor (Baldassarre 

et al., 2007). LOPU procedure is less traumatic and results in fewer surgical adhesions 

than laparotomy, thus this procedure could be repeated for several times without ovarian 

damage or decrease in the donor fertility (Stangl et al., 1999; Alberio et al., 2002; 

Baldassarre et al., 2003; Baldassarre and Karatzas, 2004). According to Pierson et al. 

(2004) LOPU could be repeated up to 5 times in the same donor with minimal surgical 

adhesions and no major changes in overall response, and that donor could become 

pregnant and kid after insemination or natural mating. Another study reported that 

LOPU had no detrimental effect on the fertility of donor even repeated up to 20 times 

(Stangl et al., 1999). 

Surgical oocytes retrieval (SOR) was a method to collect the ovulated oocytes, 

does not require euthanasia and preserve the reproductive potential (Byers et al., 2009). 

This method application is similar with the laparoscopic surgery; however that is not a 

practical method to small rodents. Previous traditional technique that had been used 

need euthanasing the donor mice, removing the oviducts and dissecting cumulus 

oocytes masses from the ampulae (Fowler et al., 1957; Nagy et al., 2003). A clump of 

cumulus oocytes complexes (COC) inside the ampulla were become a cumulus oocyte 
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mass (COM). Prior to SOR procedure, the mice were anaesthetising, 12 to 15 hours 

after post-hCG injection. After that, the ovary and oviduct were surgically exposed and 

making an incision (1-2 mm) in the ampulla wall to remove the COM (Byers et al., 

2009). Then, the incision part were sealed with a tissue adhesive and returned the 

oviduct to the body cavity and finally, sealed back the abdominal muscle and skin. 

Multiple oocytes collection could be made from this procedure and also could be 

repeated using the same donor (Byers et al., 2009). This procedure are still made the 

mice breed and produce litters for further breeding programme.  

  

2.3.2 Laparotomy and ovariectomy 

The oocytes recovery via surgical and laparoscopic methods were expensive and the 

number of oocytes obtained was also very small (Pawshe et al., 1994). Laparotomy or 

standard surgery that commonly together with ovariectomy was an invasive oocytes 

recovery method. This is due to it frequently causing adhesion of ovaries, related with 

complications and even death (Melican and Gavin, 2008). Usually this both technique 

were done on slaughtered animals, aged animals that has decrease fertility activity or 

animal that have been underwent several repeated times of LOPU session (>3) 

(Rahman, 2008b).  

Ovaries obtained from the slaughter animals are the cheapest and could give the 

large number of oocytes (Agrawal et al., 1995) through aspiration the visible ovarian 

follicles (Wahid et al., 1992), slicing the ovary (Slavik et al., 1992; Watson et al., 1994) 

and follicular dissection (Fukui et al., 1988) methods. Ovary slicing was reported as 

simple and more efficient method compared to follicle aspiration (Martino et al., 1994; 

Pawshe et al., 1994). However, it was found that more debris will interfere the number 

of oocytes recovery. Follicle aspiration was done through puncturing the ovarian surface 
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by an 18G hypodermic needle and recovery the oocytes through aspiration, was an 

alternative to slicing method (Mogas et al., 1992; Pawshe et al., 1994). The aspiration 

method may be attributed to the presence of some follicles embedded deeply within the 

cortex, that were released by puncturing the ovary and some of the oocytes may be lost 

during aspiration of the follicles that might be happened in this method. Due to this, the 

number of oocytes recovered might be lower than slicing method. 

 

2.4 IN VITRO MATURATION (IVM) 

In vitro maturation is the one of the essential steps in IVP process in animal assisted 

reproductive technology activity such as IVF, ICSI and cloning. In mammals, the 

primary oocytes enter meiosis in early prenatal life and progress to the diplotene stage 

of prophase 1 (Geminal Vesicle; GV stage). At GV stage the oocytes were remaining 

arrested until before the time of ovulation. However, the oocytes were able to resume 

the meiosis spontaneously when removed from the follicles and cultured in vitro 

(Chang, 1951; Edwards, 1965; Gilchrist and Thompson, 2007). At the same time, the 

nuclear membrane of oocytes disappears and germinal vesicle breakdown (GVBD) and 

followed by chromosome decondensation that happened at MI stage. Subsequently, the 

presence of first polar body shows that the oocytes were at MII stage which was ready 

for the next IVP process. However, the successful of IVM should be to make sure that 

the oocytes must undergo synchronically nuclear and cytoplasmic maturation as well. 
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2.4.1 Events of Oocytes Maturation 

The process name of the oogenesis was called meiosis. This will be start with GV stage 

of first meiotic prophase during the growth process (Voronina and Wessel, 2003). Then, 

the oocytes were underwent GVBD and proceed to metaphase I (MI) stage. The 

extrusion of first polar body shows that the oocytes were at metaphase II (MII) stage. 

The oocytes growths were happened in follicle. Therefore, the follicle growth rate was 

related with the oocytes growth rate. The oocytes acquired the ability to progress to MI 

in follicles diameter were between 1.0 to 1.8 mm and to during achieving the MII stage 

the follicles diameter size were more than 2 mm. According to De Smedt et al. (1992) 

meiotic competence of oocytes was obtained in antral follicles diameter size between 

0.5 to 3.0 mm in goats. 

 The pre-ovulatory surge of luteinising hormone (LH) were lead the final phase 

of oocyte maturation within the ovulatory follicle. This may triggers the resumption of 

meiosis and its progression to ovulate at MII stage. Once the oocytes were removed 

from the follicle and in vitro cultured, it may result in spontaneous resumption of 

meiosis (Pincus and Enzmann, 1935). The stage of follicular development where the 

oocytes were removed was important in order to development into transferable embryo 

(Hyttel et al., 1997; Dielman et al., 2002). Therefore, the oocytes developmental 

competence occurs continuously through folliculogenesis, the influence of follicle size 

and follicle atresia (Mermillod et al., 1999). 

 During the growth phase of oocytes, the protein were synthesised and storage, 

ribosomal as well as heterogenous ribonucleic acid (RNA) were taking place (Crozet et 

al., 1981). This express that the oocytes ability to be competence not only nuclear 

maturation but also cytoplasmic changes also occurred to maintain embryo 

development. The cytoplasmic changes were included protein and RNA storage, 
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development of calcium regulatory mechanisms, maturation-promoting factor (MPF) 

activity and mitogen-activated protein kinase (MAPK) changes and redistribution of 

cellular organelles. MPF was played as important role in regulation of cytoplasmic 

maturation. MPF activity was visible just before GVBD, increased until MI and 

followed by a sudden decrese in oocytes releasing the first polar body (Hashimoto and 

Kishmoto, 1988; Choi et al., 1991; Dekel, 1996; Zernicka-Goetz et al., 1997). The MPF 

activity was increased again at MII as well as remains high until fertilisation activity 

(Dedieu et al., 1996; Eppig, 1996). 

  

2.4.2  Nuclear and Ooplasmic Maturation 

Oocytes acquire the intrinsic ability to support the subsequent stage of development and 

reaching activation of the embryonic genome. All of this involves complex and distinct 

events of nuclear and cytoplasmic maturation.  

 Nuclear maturation refers to meiosis activity that entails the ability of the oocyte 

nucleus to progress from GV stage to MII stage. GV chromatin of goat oocytes were 

classified based on the size of nucleoli and the degree of chromatin condensation; i) 

GV1: large nucleoli and diffuse chromatin; ii) GV2: medium-sized nucleoli and 

clumped chromatin; iii) GV3: small nucleoli and clumped chromatin and; iv) GV4: no 

nucleolus but clumped chromatin. The variation in GV stage of oocytes recoverey from 

a range antral follicles both at the time collection and after period of IVM (Grupen et 

al., 1997; Nagai et al., 1997; Funahashi et al., 1997).  The asynchronous meiotic 

progression via IVM will increase the aged oocytes, that have different abilities 

following embryo IVP (McGaughey and Polge, 1972; Motlik and Fulka, 1976; 

Funahashi and Day, 1993; Ocampo et al., 1993; Christmann et al., 1994; Grupen et al., 

1997). 
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 Cytoplasmic maturation involved in a step-wise manner (Eppig and Schroeder, 

1989), requiring complete antral development (Ceconi et al., 1996) and maintenance of 

functional gap junction between somatic and germ cells (Buccione et al., 1990; Ceconi 

et al., 1996; Eppig et al., 1996). The process of modifying the oocyte cytoplasmn which 

are important for fertilisation and pre-implantation the embryo development was 

describing the cytoplasmic maturation. The cytoplasmic maturation involves: a) protein 

and mRNA synthesis b) development of calcium regulation c) changes in MPF activity 

(Masui and Markert, 1971) and d) redistribution of cellular organelles. Thus, these were 

required to obtained oocytes development competence that fosters embryonic 

development competence (Bravini-Gandolfi and Gandolfi, 2001; Krisher, 2004; Sirard 

et al., 2006; Watson, 2007). During the cytoplasmic maturation, cumulus cells was 

played the important role through increased the number of cumulus cell layers and 

cumulus-oocyte complex (COC) compactness pre-IVM correlated with improved 

developmental outcome (Shioya et al., 1988; Abeydeera, 2002). 
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2.4.3 Factors Affecting IVM  

The event occurring during oocyte maturation can influence the embryonic development 

(Rajikin et al., 1994, Rajikin, 1995; Teotia et al., 2001). During the maturation process, 

there were several factor has been reported to be affecting the process, for examples, 

donor age (Izquierdo et al., 2002), follicle size (Pavlok et al., 1992; Blondin and Sirard, 

1995), oocyte diameter (Hyttel et al., 1997), oocyte developmental stage (Hagemann et 

al., 1999), media composition (Lonergan et al., 1997), hormones (Zuelke and Brackett, 

1990) and serum (Avery et al., 1998). Duration of maturation also important factor that 

influencing the successful of good maturation rate. Otherwise, improper timing of 

maturation could lead the abnormal chromatin formation (Dominko and First, 1997), 

oocyte aging (Hunter, 1989; Hunter and Greve, 1997) and impaired development 

(Marston and Chang, 1964). 

 

2.4.3.1  Donor age 

The oocytes developmental competence could be affected by donor age from 

prepubertal does (Izquierdo et al., 2002). The prepubertal oocytes developmental 

competence was decrease may be due to a deficiency in cytoplasmic maturation 

bringing to reduced sperm penetration, lack of MPN formation, failure to block 

polyspermy, failure to cleave, failure to reach or survive the transition from maternal to 

embryonic genomic expression, and failure during pregnancy (during the 

preimplantation and postimplantation stage (Armstrong, 2001; Velilla et al., 2004). The 

prepubertal and adult oocytes was different in term of ultrastructure that related with the 

kinetics of nuclear maturation including abnormal chromatin and microtubule 

configurations (Damiani et al., 1996; de Paz et al., 2001), level and activity of histone 
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H1 kinase reduced (indicative of MPF activity) and MAPK (Damiani et al., 1998; 

Salamone et al., 2001). 

 

2.4.3.2 Follicle and oocyte diameter 

The follicle diameter, oocyte diameter, meiotic competence and embryo development in 

goats were found to have a direct relationship among each other (Crozet et al., 1995, 

2000).  The developmental potential of oocytes is determined by multifactorial 

interactions; for examples, the oocyte development with same COC morphology and 

follicle size with the same grade of cumulus expansion might be different in 

developmental competency (Han et al., 2006). Oocytes from larger follicles (>5 mm in 

diameter) produced more blastocysts compared to follicles less than 5 mm diameter 

(Crozet et al., 1995). The oocytes from follicles less than 3 mm in diameter are not fully 

meiotically competent, and this may lead a limited ability to support embryo 

development following IVM (Abeydeera, 2002).  

 Generally, the oocyte diameter  shows the level of oocyte growth, where the size 

of oocyte is increasing when it undergoes intensive synthesis of RNA during maturation 

(Crozet et al., 1981; Lazzari et al., 1994; Lonergan et al., 1994). The smaller oocytes 

tend to follow the abnormal path of meiotic maturation and may cause disturbances in 

maturation process (Lechniak et al., 2002). The meiotic oocyte competence has been 

categorised based on oocyte diameter for both adult (De Smedt et al., 1992) and 

prepubertal (Martino et al., 1995) goats as incompetent oocytes (< 110 µm), partially 

competent oocytes (110-125 µm) and competent oocytes (125-135 µm).  It has been 

demonstrated that once the oocyte growth were increased, its ability to develop to the 

blastocyst stage in vitro were also increased until the optimum rates at a maximum 

diameter of 135 µm (Arlotto et al., 1995; Fair et al., 1995; Harada et al., 1997). 
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 The degree of expansion of cumulus cells can be used as a morphological 

indicator of quality of oocytes for IVM and embryo development (Ball et al., 1983; 

Chen et al., 1993; Qian et al., 2003; Han et al., 2006). The better quality oocyte is 

characterised by more layers of cumulus cells (CC) surround the oocyte (Blondin and 

Sirard, 1995; Zuerner et al., 2003; Warriach and Cohan, 2004; Yuan et al., 2005; 

Rahman et al., 2007). It has been observed that high maturation and embryo 

development rate were obtained using the oocytes with complete layers of CC (> 5 

layers of CC) compared with when using the cumulus free occytes (CFO) or having less 

than one layer of CC.  

 

2.4.3.3  IVM culture media 

The goat oocytes are maturing in buffered TCM 199 supplemented with L-glutamine, 

hormones (FSH and oestradiol-17β) and serum (10-20%) (Mogas et al., 1997). Most of 

the IVM culture media are supplemented with gonadotrophin and oestradiol-17β that 

can improve the maturation rate significantly (Keskintepe et al., 1994; Izquierdo et al., 

1998; Dhruba and Majumdar, 2002).  The presence of gonadotrophin in IVM medium 

may enhance the oocyte quality and developmental potential by possible alteration of 

metabolic process (Brackett and Zuelke, 1993).  The oestradiol may enhance the 

synthesis of presumed male pronucleus growth factors and stimulating DNA 

polymerase β, where involves in ooplasmic maturation. Previous research has shown 

that the maturation of oocytes was increased in the medium in presence of oestradiol-

17β (Pawshe and Totey, 2003). 

 Serum contains unidentified growth factors, hormones and peptides which may 

support the growth and development of oocytes (Kane, 1985). Fatty acid also contains 

in serum for energy substrates for embryo development (Kane, 1979). In goat, the 
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concentration of heat-activated serum in IVM media is 10 to 20%. It provides nutrients 

to cells in COC and prevents zona pelucida (ZP) hardening in sheep (Wani, 2002). In 

goats, different types of serum were used in IVM medium including homologous and 

heterologous  oestrus goat serum (OGS) (Agrawal et al., 1995; Sharma et al., 1996;  

Malik et al., 1999), steer serum (SS) (Rodriguez-Gonzalez et al., 2003; Urdaneta et al., 

2003b; Jimenez-Macedo et al., 2005; Jimenez-Macedo et al., 2006a; Jimenez-Macedo 

et al., 2007), foetal calf serum (FCS) (Crozet et al., 1999; Gall et al., 1996; Rho et al., 

2001) and foetal bovine serum (FBS) (Martino et al., 1995; Keskintepe et al., 1997; 

Crozet et al., 2000; Samaké et al., 2000; Mayor et al., 2001; Velilla et al., 2002). 

 Follicular fluid (FF) from non-atretic or gonadotrophin-stimulated large follicles 

(>4 mm) has beneficial effect on goat maturation (Cognie et al., 2003) and it can be 

used as a supplement in maturation medium. This beneficial effect may be due to the 

presence of growth factors, hormones and intra-ovarian peptides in FF physiological 

(Cognie et al., 2004). Other than FF, the follicular cells also have been supplemented in 

goat IVM culture media (Teotia et al., 2001; Dhruba and Majumdar 2002; Jimenez-

Macedo et al., 2005). These cells were energised by the granulose cells (GC) that 

interacted with COC during the IVM (Crister et al., 1986). They initiated the protein 

and/or polypeptide synthesis that provided the cytoplasm competent to assume normal 

cooperation with the male genome (Thibault et al., 1987). The GC cells may delay 

maturation for a few hours (Teotia et al., 1997), however, it will improve the ooplasmic 

maturation and thus will increase the maturation rate. GC secretion may lead to the 

synthesis of oocyte glutathione (GSH) which may be involved in male pronuclear 

formation (Calvin et al., 1986) and in early development. The GSH level was increased 

during maturation and decreased during the fertilisation and embryo development 

(Yoshida et al., 1993). The addition of cysteamine increased the GSH concentration and 

improved the embryo development during IVM and IVC by protect the cells from 
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culture oxidative stress (De Matos et al., 1995; Luvoni et al., 1996; De Matos and 

Furnus, 2000).  

 In order to prevent bacterial and fungal contamination, the antibiotics were 

generally added in IVM medium. Penicillin and streptomycin have been added in IVM 

medium (Zhou et al., 2000). Gentamicin has a wider range of pH stability compared to 

penicillin or streptomycin, and it can maintain the biological activity in presence of 

serum (Schafer et al., 1972). The same authors suggested that gentamicin was preferred 

antibiotic to prevent bacterial contamination of goat oocytes in maturation medium. 

 

2.4.3.4 IVM duration 

The IVM duration is the critical point of the successful of oocytes maturation. The 

inappropriate duration of maturation may lead the abnormal chromatin (Dominko and 

First, 1997), oocyte aging (Hunter 1989; Hunter and Greve, 1997) and reduced 

development (Marstan and Chang, 1964). According to the previous studies, the 

appropriate time for goat oocytes to reach the metaphase II is about 27 hours, 

independent of the physiology of the animals (Martino et al., 1994; Song and Iritani, 

1987; Le Gal et al., 1992; Rho et al., 2001). On the other hand, 24 hours of IVM 

duration has been found as the best time for goat maturation in vitro (Younis et al., 

1991). The latest research also found by Kong (2010) that the optimal maturation rate of 

LOPU derived oocytes was found when oocytes underwent maturation between 22 and 

25 hours. For goat abattoir-oocytes, the optimal duration of IVM was 32 to 30 hours, 

respectively, in a study on the basis of sequential configuration of chromosomes 

(Sharma et al., 1996 and Yadav et al., 1997). 

 It has been reported that variation in the timing of oocyte maturation process in 

vitro could be due to oocyte quality which is related to the age of donor goats (Izquierdo 



39 

 

et al., 2002; Koeman et al., 2003). The increase in abnormal oocytes was probably due 

to pH variation, osmolarity or accumulation of toxic materials in the media during the 

later stages of maturation (Shea et al., 1976; McGaughey, 1977; Deb and Goswami, 

1990). Therefore, the variable in duration of oocyte maturation may be influenced by 

the medium used, serum percentage, medium concentration and the culture system 

(Baldassarre et al., 1996; Samaké et al., 2000; Teotia et al., 2001; Bormann et al., 2003; 

Cognie et al., 2003). 

 

2.5 INTRACYTOPLASMIC SPERM INJECTION (ICSI) 

Intracytoplasmic sperm injection (ICSI) is widely used in animals and humans as one of 

the assisted reproductive techniques (ART) in which a sperm is mechanically injected in 

the cytoplasmn of an oocyte (Ming-Wen and Llyod, 2006). ICSI technique could 

overcome the fertility problem by enabling the use of sperm with functional defects and 

even immature sperm cells to produce normal embryos and offspring.   

 ICSI technique was initiated in sea urchin (Hiramoto, 1962), followed by mouse 

(Lin, 1966). The first of live offspring obtained from ICSI technique in domestic 

animals were reported in several animals, such as in cattle (Goto et al., 1990), sheep 

(Catt et al., 1996), pig (Martin, 2000) and goats (Wang et al., 2003).  
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2.5.1 Factors Affecting the Outcome of ICSI 

ICSI technique requires skill and experience of the performer in order to obtain optimal 

results. However, this procedure also depends on many other factors, including the 

microtools, sperm, oocytes, medium used and the ICSI protocol. These factors will be 

described in the following subsections based on human, mouse, goat and cattle ICSI. 

 

2.5.1.1  Microtools 

The microtools required in ICSI are ICSI microneedle and holding microneedle. The 

functions of ICSI microneedle are for sperm catching, sperm immobilising and inserting 

the sperm into the ooplasma of oocytes. The holding microneedle is used for oocytes 

holding and manipulation during the ICSI procedure. Both microneedles are mainly 

made from borosilicate and Pyrex glass. The glass physical properties may influence the 

setting or programme of the instrument that used in microtools preparation (Joris et al., 

1998). The size of capillaries of glass is important to make both microtools (Payne, 

1995). The inner and outer diameter of capillaries of ICSI microneedle and holding 

microneedle was shown to affect the success of embryo development (Tocharus et al., 

1996). The ICSI microneedle must be bevelled and sharp and it can either be fitted with 

a sharp spike or without the spike (Catt et al., 1995). The bevel angel of ICSI 

microneedle can vary from 28° to 30° (Hamberger et al., 1995; Palermo et al., 1995) 

and about 45° to 50° (Van Steirteghem et al., 1993). The outer (OD) and inner diameter 

(ID) of the microneedles can also affect the success of ICSI-derived embryo 

development (Tocharus et al., 1996). The size of microneedle (OD and ID) should be 

just large enough with the sperm head to enter and aspirated into the ICSI microneedle. 

This may prevent the additional mechanical force and to increase the volume of 

injection solution. The wider inner diameter may result extra distruption of the ooplasm 
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and arrest development (Tocharus, et al., 1996). The narrow inner diameter may result 

in difficulty in sperm movement during aspiration and injection (Payne, 1995). It was 

suggested that the better ID of ICSI microneedle should be varied for different species 

of animals: human (6-7 µm) (Joris et al., 1998), mouse (7-9 µm) (Ahmadi et al., 1995) 

and goat (6 to 7 µm)  (Wang et al., 2003).  

 

2.5.1.2 General ICSI procedure 

The conventional ICSI procedure includes several steps which are sperm catching, 

sperm immobilisation, oolemma breakage and sperm injection into oolemma. The ICSI 

procedure requires the use of micromanipulator and inverted microscope. It has been 

suggested that oocytes should not be exposed to outside environment during 

micromanipulation for more than 10 minutes (Keskinetepe et al., 1997). In order to 

maintain proper temperature similar to CO2 incubator, the specimens (oocytes and 

sperm) are allowed to warm using a transparent stage warmer that is fixed onto the ICSI 

microscope. There is an optimal temperature requirement for species of animals, for 

examples, mouse 37.5°C and goat 38.5°C.  

 Sperm immobilisation could be considered as oocyte activation. Sperm 

immobilisation was performed on motile sperm before injecting the sperm into the 

oocyte oolemma. There were several methods of sperm immobilisation include 

aspirating the sperm in and out of ICSI microneedle (Redgment et al., 1994; Kimura 

and Yanagimachi, 1995; Yanagida et al.,  1999), squeezing the sperm tail using the 

ICSI microneedle (Fishel et al., 1995; Van den Bergh et al., 1995; Vanderzwalmen et 

al., 1996) and piezo-pulse applied to mid-piece of the sperm (Kimura and Yanagimachi, 

1995; Yanagida et al., 1999). Sperm immobilisation would disrupt the sperm plasma 

membrane and lead the release of a soluble factor with subsequent intracellular Ca
2+
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oscillation (Dozortsev et al., 1997). This also may lead to sperm nuclear decondensation 

(Tesarik and Kopecny, 1989; Montag et al., 1992), resumption of meiosis, second polar 

body extrusion, pronuclear formation and exocytosis (Stice and Robl, 1990; Swann, 

1990),  DNA synthesis and first mitotic cleavage (Schultz and Kopf, 1995). 

 Prior to inject the sperm into the oocytes, the MII stage oocyte was held with the 

position of polar body position at 6 or 12 o’clock to avoid damage to meiotic spindle 

(Nagy et al., 1995; Joris et al., 1998). The disruption of spindle may cause of oocyte 

aneuploidy or maturation arrest, thus the cytoskeletal integrity of oocyte may influence 

the fate of the embryos.   However, polar body position is not a reliable guide to the 

location of metaphase plate (Palermo et al., 1995).  

 During injection of sperm, one of the technical failures was not injecting the 

sperm into the oocyte cytoplasmn. This could be due to unsuccessful breaking the 

oocyte membrane during aspiration of ooplasm into the ICSI microneedle. Therefore, 

once the sperm was placed next to the membrane and the oolema returned to the 

original position, the sperm was pushed out into perivitelline space or trapped inside a 

sac formed by the membrane (Esfandiari et al., 2005). The sperm may stick to the tip or 

within of ICSI microneedle and pulled out upon withdrawal the microneedle from the 

cytoplasm. The use of inappropriate size of microneedle for examples, too large or not 

sharp enough may result in faulty ICSI procedure. In addition, over aspiration of 

ooplasm may degenerate the oocyte after ICSI. It has been postulated that the 

cytockelatal structure could be disturbed during ICSI procedure (sperm injection 

process) and lead to irregular chromosome segregation (Macas et al., 1996; Rosenbusch 

and Sterzik, 1996).   
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2.5.1.3  Sperm factor 

Sperm factor is responsible for initiating the oocyte activation, where the sperm 

components can trigger oocyte activation in the absence of sperm-oocyte plasma 

membrane interaction (William, 2002). Other than deficiency of sperm activating factor, 

the lack of ooplasmic factor could trigger sperm chromatin decondensation (Van 

Blerkom et al., 1994; Yanagida et al., 1999). The mutual interactions of factors among 

ooplasm and sperm sub-membrane components initiated the decondensation of sperm 

nucleus and oocyte activation (Perry et al., 1999). Insufficient and inappropriate 

capacitation of sperm before ICSI may obstruct the release of sperm factors for take 

action for oocyte activation (Stricker, 1999) and/or lead in block of sperm head 

decondensation. It was reported that there are several to  destabilise the sperm 

membrane before ICSI, such as freezing and thawing (Perreault et al., 1988; Catt and 

Rhodes, 1995), immobilisation by crushing the sperm tail with microneedle (Keskintepe 

et al., 1997) or laser shot (Montag et al., 2000) and sonification for  removing the tail 

and acrosome of the sperm (Goto, 1993; Keefer, 1989). 

 Sperm capacitation treatments were carried out to increase sperm membrane 

permeabilisation, acrosome reaction and sperm head condensation following ICSI using 

by various chemicals. The strategy of treatments is removing the sperm membrane that 

may improve male nuclear formation and facilitate the sperm-borne oocyte activating 

factor available to cytoplasm of oocyte. This could be beneficial for embryo 

development of sperm-injected oocytes (Rho et al., 1998; Wei and Fukui, 1999; Suttner 

et al., 2000). The examples of chemicals that have been used for sperm capacitation 

were heparin (Keefer et al., 1990; Chen and Seidel, 1997; Wei and Fukui, 1999), 

caffeine (Gato, 1990; Iwasaki and Li, 1994; Wei and Fukui, 1999), theophylline 

(Hishinuma and Sekine, 2004) and Ca
2+

 ionophore (Chen and Seidel, 1999; Wei and 

Fukui, 1999; Rahman, 2008a). Sperm treatment with Triton X-100 (non-ionic detergent) 
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could have oocyte fertilisation with same efficiency as intact sperm head (Kuretake et 

al., 1996). The combination sperm treatment between Triton X-100 and dithiothreitol 

(DTT) was reported to cause paternal chromosome damage and should be avoided in 

ICSI (Szczygiel and Ward, 2002). However, the combination treatment using heparin 

and ionomycin can improve the fertilisation and embryo development (Wang et al., 

2002; Urdaneta et al., 2004). 

 Sperm morphology alone cannot be used as an indicator for the successful of 

ICSI derived embryo development. The abnormalities, such as amorphous, round and 

elongated heads are related with chromosome defects, however, there was no increase in 

chromosome aberrations were found in sperm with large or small heads compared to 

normal morphology (Burruel et al., 1996; Ohta et al., 2009). This shows that the 

abnormal sperm may not be detrimental to embryonic development and further growth 

as it may not affect the necessary genome and organelles. Thus, the abnormal sperm 

morphology is not necessary reflect a genetic abnormality of the gamete compared 

inability to cross physiological barriers (Ben-Yosef and Shalgi, 2001). 

 Sperm motility and sperm vitality are correlated with the ICSI performance. The 

sperm is considered dead when the sperm plasma membrane are severely damaged and 

lost. The immotile sperm that does not fertilise oocyte is obviously dead as cells (Goto, 

1997). However, according to Nijs et al. (1996) the immotile sperm shows some 

motility after 2 to 3 hours of incubation. The dead sperm DNA may have already started 

the degeneration process (Goto, 1997). It was reported that normal offspring were 

produced from killed and dead sperm by using frozen-thawed sperm without 

cryoprotectant (Goto et al., 1990; Hatakeyama et al., 1994; Hoshi et al., 1994; 

Wakayama et al., 1998). These could show that the sperm were dead as cells but the 

nuclei were still alive for further development process (Goto, 1997). Even though 

research has shown that the immotile sperm has the possibility to fertilise the oocyte, in 
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clinical situation, the motile sperm should be selected for ICSI to get a better chance of 

choosing normal DNA compared the degenerated DNA from immotile sperm. 

 

2.5.1.4 Oocytes factors 

Effect of oocyte morphology on the quality of ICSI-derived embryos has been 

controversial especially using the abnormal morphology oocyte. Some researchers 

claimed that no correlation between oocyte morphology, fertilisation rate and embryo 

quality (De Sutter et al., 1996; Balaban et al., 1998). However, other researchers found 

that the oocyte morphology influenced the fertilisation rates and embryo quality 

following ICSI. The dysmorphic oocyte could undergo normal fertilisation but did not 

have same developmental potential (Sehral et al., 1997) or less competent (Rahman, 

2008a) than normal oocytes. Abnormal oocytes or oocyte dysmorphism can exhibit in 

different forms such as excessive granularity, vacuolarisation, fragmented polar body 

and refractile bodies.  

 The in vitro maturation (IVM) culture condition could be affected by unsuitable 

culture condition (Geshi et al., 1999). This inappropriate condition may lead to 

glutathione depletion in oocytes block decondensation of male pronuclear (MPN) 

during fertilisation (Sirard et al., 2006). The duration of IVM may also affect the 

fertilisation rates after ICSI (Garcia-Rosello et al., 2006; Kong, 2010). For examples, 

oocytes that undergo IVM with duration time at 22 to 25 hours were more survival 

compared to the longer conventional IVM duration at 27 to 32 hours (Kong, 2010). 

These shows that the delayed injection of ICSI may contribute to oocyte aging, failure 

of MPN formation and reduce the fertilisation rate (Zheng et al., 2004). 

 The flexibility or elasticity aspect of oocyte oolemma is important to ensure the 

success of ICSI. A high elasticity of oolemma can damage the oocyte once the insertion 
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of ICSI microneedle into the oocyte. The less elasticity of oolemma can allow the ICSI 

microneedles penetrate easily into the oolemma, but if it becomes more elastic it is 

difficult to penetrate the oocyte. In order to minimise the oolema damage during ICSI, 

the ICSI microoneedle is designed with a sharp spike at the tip of the needle (Nagy et 

al., 1995; Palermo et al., 1996). The high elasticity of zona pellucida and oolemma of 

some species, for example the mice, would result in injection difficulty. This may be 

due to low viscosity of the ooplasm (Kimura and Yanagimachi, 1995). In conventional 

ICSI, even though using the sharp tip of ICSI microneedle, the zona pellucida was 

found to be easy to break; however, the oolemma was hard to break even the tip of 

microneedle reached the cortex opposite side of oocyte (Kimura and Yanagimachi, 

1995). This may cause the oocyte to burst during ICSI. Therefore, to overcome this 

difficulty, Piezo-driven was widely used in mouse ICSI which was introduced by 

Kimura and Yanagimachi (1995). Using this device, the efficiency of ICSI was 

improved not only in mice (Kimura and Yanagimachi, 1995) but also in other species 

such as cattle (Katayose et al., 1999), human (Huang et al., 1996) horse (Choi et al., 

2002) and goat (Wang et al., 2003). This device was found to give less traumatic to the 

oocytes than the conventional method, where the oolemma breakage can be performed 

using completely flattened tips together with applying the piezo-electric effect. 

However, most of the ICSI procedures are still performed conventionally in which 

optimal results in  fertilisation rate and embryo development could be achieved (Zhou et 

al., 2004; Jimenez-Macedo et al., 2005, 2006, 2007; Rahman, 2008a, b; Kong, 2010; 

Ainul Bahiyah, 2010).  
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2.5.1.5 Role of medium used in ICSI 

In common ICSI medium contains hepes buffer to maintain pH of 7.2 to 7.4 outside the 

CO2 incubator. This ICSI medium functions when oocytes are manipulated during ICSI 

procedure. The ICSI medium could be used from the basic culture media, such as 

modified synthetic oviductal fluid (mSOF) (Takahashi and First, 1992), modified 

defined medium (mDM) or BO (Brackett and Oliphant, 1975; Younis et al., 1991) and 

tissue culture medium 199 (TCM-199) (Lonergan et al., 1994).  

 The oocyte are used for ICSI have to be free from cumulus cells (CC) by using 

hyaluronidase. However, the amount of concentration of hyaluronidase should be 

reduced from 760 IU/ml to 160 IU/ml, because oocyte activation was observed before 

injection procedure (Palermo et al., 1992).The lower concentration of hyaluronidase (80 

IU/ml) was  shown to increase fertilisation rate and the yield of activated oocyte was 

decreased drastically (Joris et al., 1998). 

 Polyvinylpyrrolidone (PVP) is a large weight polymer (molecular weight 

360,000), has been widely used in ICSI to increase viscosity of sperm solution that 

facilitate sperm handling, control of ooplasmic aspiration and sperm injection 

procedure, prevent adhesion of sperm to wall of injection microneedle (Uehara and 

Yanagimachi, 1976) and allow clear observation of sperm motility patterns (Cohen et 

al., 1994). PVP also has been reported can affect the acrosomal status of sperm and 

enhance pronuclear formation in ICSI (Kato and Nagao, 2009). However, the exposure 

of sperm to the PVP can cause submicroscopic changes in structure and the nucleus 

becomes damaged (Strehler et al., 1998). This may be due to breakdown of sperm 

membrane, thus the nucleus tends to decondense frequently (Strehler et al., 1998). It 

was found the oocyte that was exposed to PVP may cause delaying between sperm 

injection and the beginning of calcium oscillation after ICSI, and may suppress the 
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embryonic development (Dozortsev et al., 1995a,b). Even though some studies have 

shown the adverse effect of PVP in ICSI, there was a report on the success of ICSI 

pregnancy in human with using 10% (w/v) concentration of PVP for manipulation and 

sperm injection process (Palermo et al., 1992). Therefore, PVP is still being used for 

ICSI in facilitating the sperm motility with lower concentration (~10%, w/v) in mouse 

and goat. 

 

2.5.2 Oocyte Activation Following ICSI 

The lower oocyte fertilised and developed to embryos is probably due to insufficient of 

oocyte activation and sperm capacitation that make the oocyte fail to fertilise and 

develop to embryo. Proper oocyte activation may cause the oocyte to form two 

pronucleai, cleaved and developed normally into embryo (Nakagawa et al., 2001). The 

artificial oocyte activation has been studied not only for understanding the mechanism 

of oocyte activation (Schuetz, 1975) but also for studying parthenogenesis (Steinhardt et 

al., 1974) and nuclear transplant (Wakayama et al., 1998). There are several types of 

artificial oocyte activation, depending on species, involving chemical activation, 

mechanical activation and electrostimulation activation. 
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2.5.2.1 Chemical activation 

Chemical activation for artificial oocyte activation has been used as single chemical 

activator such as ethanol (Hamano et al., 1999), Ca
2+ 

ionophore (Goto et al., 1990; 

Probst and Rath, 2003; Rahman, 2008a), ionomycin (Rho et al., 1998); or combined 

with more than one chemical such as, ionomycin and 6-dimethilaminopurine (6-DMAP) 

(Fulka et al., 1991; Rho et al., 1998; Chung et al., 2000; Kong, 2010). The initiation 

and propagation of oocyte activation is mainly performed by calcium in intracellular 

signaling function. There is a variable pattern of intracellular Ca
2+ 

increase in oocyte, 

depending on various chemicals used. For examples, calcium ionophore A23187, 

ionomycin and ethanol induce only one increase in intracellular Ca
2+

 for single 

treatment. However, the MPF was incomplete to inactivate due to reaccumulation of 

cyclin B (Liu and Yang, 1999) and lead the oocyte to arrest again at MII stage (Liu and 

Yang, 1996; Rho et al, 1998; Chung et al., 2000). Therefore, these chemicals were 

accompanied with other chemicals to obtain the efficient activation process, such as 

cycloheximide (CHX) which performed as a protein synthesis inhibitor (Galli et al., 

2003) or 6-DMAP as a protein kinase inhibitor (Rho et al., 1998; Ock et al., 2003; 

Oikawa et al., 2005, Kong, 2010). These combinations of chemicals can make the MPF 

in activation (directly or indirectly) without changing the intercellular calcium. The 

histone kinase inhibitor and the prevention of MPF reaccumulation can improve the 

efficiency of oocyte activation (Susko-Parish et al., 1994) .Strontium prepared in 

combination of cytochalacin B was effectively used in mouse oocyte activation. This 

treatment induced the Ca
2+

 transient in oocyte activation (Kono et al., 1996) and 

mediated through inositol triphosphate receptor (Zhang et al., 2005).  
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2.5.2.2 Mechanical activation 

The injection of sperm into oocyte during ICSI was found to lower the MPF activity of 

oocyte after ICSI. The MPF could not maintain at low level and has a shortage of cyclin 

B that promoted progression towards early cleavage was inhibited in the ooplasm by 

temporary elevation (Fujinami et al., 2004). Other mechanical activation, for example 

using using the Piezo-drive would increase the oocyte activation and cleavage rates. 

This has been shown in previous research in goat (Wang et al., 2003), cows (Katayose 

et al., 1999; Wei and Fukui, 2002) and mouse (Kimura and Yanagimachi, 1995). 

 

2.5.2.3 Electrostimulation 

Electrostimulation is a device that can be used for oocyte activation. Oocytes were 

placed between parallel electrodes plates, electric field will generate by direct current 

voltage. This process would cause protein to be charged in lipid bilayer of the cell 

membrane to move and pores were formed in the membrane (Zimmerman and Vienken, 

1982). Electrostimulation was not only been used for ICSI but also in other studies such 

as parthenogenesis and animal embryo cloning (Yanagida et al., 2008). The activation 

oocytes occurred when the extracellular Ca
2+

 transient elevating the interior Ca
2+

 

concentration through the pores during generating the electric field. The process will 

takes  about 10-40 minutes (37°C) for pore to repair and will take longer duration if the 

temperature is lower (Bates et al., 1987). This method was successfully applied to 

produced embryo development via ICSI in various species such as mouse (Sasagawa 

and Yanagimachi 1996; Yanagida et al., 1999), pig (Probst and Rath, 2003; Yoo et al., 

2011), cattle (Hwang et al., 2000). 
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2.6  IN VITRO CULTURE (IVC) 

First report of in vitro culture (IVC) of mammalian embryos was made by Schenk 

(1880). The development of IVC system and media was paralleled with the 

development of in vitro production (IVP) technologies. There are numerous factors or 

stressors affecting the performance of IVC (Lane, 2001; Lane and Gardner, 2005). 

These stressors are the inappropriate of media formulation and supplement, problem in 

culture system, technical issue or improper of quality control and quality assurance 

management during handling the cultivation (Gardner, 2004). These stressors tend to 

bring the cell or embryo to change its morphology (Pollard and Leibo, 1994; Crosier et 

al., 2000, 2001; Abe and Hoshi, 2003), metabolism (Khurana and Niemann, 2000; 

Thompson, 2000; Houghton and Leese, 2004), cell proliferation and apoptosis (Knijn et 

al., 2002; Gjorret et al., 2003), transcriptome (Wrenzycki et al., 2005; Fabian et al., 

2005; Corcoran et al., 2006; Sagirkaya et al., 2006) and proteome (Katz-Jaffe et al., 

2005). In addition, the in vitro embryonic development  is affected by various factors 

such as, embryo density during culture (Lane and Gardner, 1992), co-culture with 

somatic cells (Smith et al., 1992), growth factors (Grupen et al., 1997) supplementation 

with antioxidants (Kitagawa et al., 2004) and oxygen tension (Karja et al., 2004; Booth 

et al., 2005). 

 

2.6.1 In Vitro Culture Media  

In earlier stages in developing the optimal media, most of the studies were conducted in 

mice. There are two types of medium used in embryo culture work which are biological 

and chemical defined media. In the pioneer experiments, a mixture of egg yolk with 

inorganic salts (biological defined medium) without culturing in CO2 atmosphere was 

proved to be able to obtain the blastocysts from 8-cell stage mouse embryos 



52 

 

(Hammond, 1949). Chemical defined medium is an artificial mixture of chemical 

components that can replace or similar to the natural microenvironment of cells after 

they are explanted. The first chemical defined medium was described by Whitten 

(1956). It is widely used compared to biological medium due to its availability to be 

used any time in any laboratory, and free of enzyme activities that can interfere with the 

responses being studied.  

 The basal culture medium composition for embryos is an important factor for 

development process. There were different types of chemical semi-defined and defined 

media as a basal culture medium. For examples, the Synthetic Oviductal Fluid (SOF) 

(Tervit et al., 1972; Krisher et al., 1999), CR1aa and CR2 (Rosenkrans and First, 1991), 

Chatot-Ziomek-Bavister (CZB) (Chatot et al., 1989; Ellington et al., 1990), KSOM 

(Erbach et al., 1994), G1.2 and G2.2 (Gardner, 1994), BECM (Dobrinsky et al., 1996; 

Lim et al., 1999), G1 (Krisher et al., 1999) and  IVD101 (Abe and Hoshi, 2003). 

 Carbohydrate is important for energy that placed by Na
+ 

and K
+
-ATPase 

required for blastoceol formation (Thompson, 1996). Pyruvate and/or L-lactate are not a 

compulsory requirement but it can enhance the embryo development. The pyruvate is 

used for the early cleavage stage nutrient where this chemical are involved in sequential 

media. The sequential medium was developed to respond to the different level 

requirements of nutrient to different stages of embryo development (Bavister, 1995; 

Gardner and Lane, 1997; Pool, 2004). In sequential medium, during earlier cleavage 

stage when the low levels oxygen is consumed, pyruvate is added in the medium. Then, 

during the post-compaction period, the new same medium is used where the pyruvate is 

switched to glucose to allow the embryo development process meets the increased 

energy demand for blastulation, differentiation and growth (Donnay et al., 1999; 

Thompson, 2000; Houghton and Leese, 2004; Lopes et al., 2007). Furthermore, through 

sequential medium, the byproduct accumulation, such as ammonium and serum and this 
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may be reduced the risk of large offspring syndrome (Van Wagtendonke Leeum et al., 

2000). 

 Serum albumin supplementation and oestrus serum (OS) are used as protein 

supplement in IVC media. The serum albumin supplementation is good for preventing 

embryos from adhering to the Petri dish surface and chelates the metal cations. The 

OGS is used as protein source to provide the undefined beneficial growth factors, 

peptides, hormones (Phua, 2006). Lipid and fatty acids were found to not be important 

requirement in IVC medium. It has been found that the embryos were successfully 

cultured by using the lipid-free medium (Seidel et al., 1991; Bavister et al., 1992). 

 The toxic heavy metal and free radical production may remove and prevent from 

IVC medium by using the antioxidant. The ethylene diamine tetraacetic acid (EDTA) 

could be used for this purpose (Nasr-Esfahani et al., 1992). The free oxygen radical was 

found to lead blocking in embryo development process (Legge and Sellens, 1991). 

Other antioxidants could be used are thioredoxin and superoxide dismutase (Nonogaki 

et al., 1991), catalase (Nasr-Esfahani and Johnson, 1992) and vitamin (C and E) 

(Vermeiden and Bast, 1995). 
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2.6.2 In Vitro Culture System 

The culture system referring the culture environment may influence the embryo 

development and gene expression (Harvey et al., 2004; Fisher-Brown et al., 2005; Gyu-

Jin et al., 2007).The physical nature of embryo culture, temperature, osmolarity, oxygen 

concentration, degree of humidification, oil used and embryo density are varied among 

laboratories. 

 Embryos have varying capabilities to develop depending on the genetic 

background (Hansen, 2007; Thompson et al., 2007) and the sperm used (Palma and 

Sinowatz, 2004; Fischer-Brown et al., 2005) in any particular culture system. The low 

atmospheric oxygen concentration level was found to be reflected the rate of embryo 

development in many mammalian species (Hooper et al., 2001; Orsi and Leese, 2001). 

The embryo oxygen requirement changes with development level. The post-compaction 

may need less oxygen concentration compared to at pre-compaction embryos, based on 

ATP generation from oxidative phosphorylation decrease during the compaction begins 

(Thompson et al., 1996). The low oxygen (5%) was found to increase the embryo 

development rates in mouse (Hooper et al., 2001; Orsi and Leese, 2001) and also in 

goat (Keskintepe et al., 1997; Wang et al., 2003; Jimenez-Macedo et al., 2007). 

 The osmolarity, temperature and pH of media have been to be important in 

embryo development environment process. The osmolarity of media was kept at 270 to 

280 mOsm/kg  (Tervit et al., 1972; Younis et al., 1991) or 280 to 300 mOsm/kg 

(Brackett and Oliphant, 1975; Takahashi and First, 1992). The temperatures of media 

were different between species, where the mouse temperature is 37.5°C and for the goat 

is 38.5°C in the CO2 incubator. The pH of IVC medium was maintained at range 7.2 to 

7.4 both for mouse and goat embryo cultivation. 
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 There are various types of oil can be used to overlay the microdroplet of 

medium, such as mineral oil, paraffin oil or silicone oil. The light mineral oil or paraffin 

oils are commonly used for this purpose because they are less toxic and clear in 

appearance compared to silicone oil. The used of oil is to prevent evaporation and gas 

diffusion, thus can stabilise the pH, temperature and osmolarity of medium 

(microenvironment surrounding the samples). 
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Chapter 3 

3.0 MATERIALS AND METHODS 

 

3.1 INTRODUCTION  

This study was conducted to produce viable embryos through intracytoplasmic sperm 

injection (ICSI) technique with special reference to sperm capacitation, in vitro 

maturation duration, post-hCG duration and oocytes recovery cycle. Three species of 

experimental animal were used which were mice, pigs and goats. Mice and pigs were 

used as preliminary studies before conducting the goat experiments.  

The animal management, medium preparation and protocol were slightly different 

among the species of animals used. Mouse and goat experiments were conducted at the 

Nuclear Transfer and Reprogramming Laboratory (NaTuRe), Institute of Research 

Management and Monitoring (IPPP). All media and reagents were prepared in Embryo 

Micromanipulation Laboratory (EMiL), Institute of Biological Sciences, Faculty of 

Science, University of Malaya, Malaysia. The experiments were conducted from 

February 2010 to May 2011. 

 

3.2 EXPERIMENTAL ANIMALS 

3.2.1 Mice 

The mice were bred in the Animal House, ISB Mini Livestock Farm, University of 

Malaya. Mice were kept in clean cages and were separated according to gender or kept 

in mating cages (male: female ratio of 3:5). They were fed with commercial pellet and 
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clean drinking water was made available to the animals ad libitum. The cage was 

layered by dry saw-dust and cleaned at least once a week. 

The mice were bred at room temperature (25°C) with natural light: dark cycle 

(12 hours: 12 hours). Both male and female mice were bred from same strain (ICR 

inbred; Appendix Figure 2.1). The date of birth was noted for identify the age and 

growth development of the offspring. The newborn offspring were separated from the 

mother after 1 month old (4 weeks). After separation from mother, the pups were 

straightly separated by gender and the date of birth was noted. The separated female 

mice could be ready to use for experiments when they reached 8 to 10 weeks old and for 

the male at 10 to 12 weeks old. 

 

3.2.2 Goats 

The experimental goats were sourced from ISB Mini Farm, University of Malaya. 

Female goats were selected as oocytes donors which were under went oestrus 

synchronisation and superovulation. The experimental goats that have been used 

consisted of Boer crossbred and Local Mix breed. The age of the animals ranged from 

12 to 42 months old. 

 The frozen semen was obtained from Jermasia buck was used for ICSI 

procedure in goats. The semen were cryopreserved at University of Malaya before used 

in this study. The frozen semen were kept in 0.5 ml French straws and stored in the 

liquid nitrogen storage tank at -196
°
C. 
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3.3 MATERIALS 

Materials used in the present study included various equipment, chemicals, reagents, 

consumables and disposables. These are briefly described in the following sections. 

 

3.3.1 Equipment 

The equipment that have been used in the present study were listed with model number, 

manufacturer’s and supplier’s name in Appendix Table 1.1. The commonly used 

equipment included autoclave, CO2 incubator, centrifuge, flushing and aspiration 

system, laparoscopic system, fluorescent microscope, inverted microscope with 

micromanipulator, stereomicroscope, laminar flow work station, liquid nitrogen tank, 

micropipette microforge, micropipette micropuller, micropipette grinder, osmometer, 

pH meter, stage warmer, surgical set, ultrapure water system and waterbath. 

 

3.3.2 Chemicals and Reagents  

Analytical grade laboratory and cell tested chemicals and reagents were used in 

preparation of the solutions and media. The chemicals and reagents were mainly 

purchased from Sigma-Aldrich Co. from USA unless otherwise stated. A detailed list of 

the chemicals, reagents and media with catalogue number, manufacturer’s and 

supplier’s name are listed in Appendix Table 1.2. For media, the pH was adjusted to 7.2 

to 7.4 and the osmolarity to 280 to 300 mOsm/kg (Tervit et al., 1972; Brackett and 

Oliphant, 1975; Younis et al., 1991; Takahashi and First, 1992). 
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3.3.3 Disposables and Consumables 

A list of disposables and consumables with manufacturer’s name and catalogue number 

used in this study is tabulated in Appendix Table 1.3. 

 

3.4 METHODOLOGY 

3.4.1 General Maintenance for a Good IVP Environment 

In order to obtain a good IVP environment, all laboratory activities and facilities 

adhered to strict cleanliness regimes and sterile techniques were followed throughout all 

experimental procedures. The laboratory users were reminded to be responsible to 

cleanliness and hygienic environment in order to optimise the outcomes of the 

experiments. It is very important to minimise the potential infection or contamination 

while handling and culturing the sperm, oocytes and embryos. 

 Most of the embryo works were carried out using the CO2 (5%) incubator in 

humidified air to maintain the correct physiological pH (pH range 7.3 to 7.4) with the 

temperature of 38.5
°
C (for goat samples) or 37

°
C (for mouse samples). In order to 

maintain the sterility and ideal environment for the embryos, oocytes or sperm, the 

incubator was cleaned monthly. The cleaning process involved wiping the inside wall, 

doors and racks with sterile reverse osmosis (RO) water using the sterile towels or 

tissues. The tray and the RO water contained in it which was to provide humidity were 

sterilised and changed according to the scheduled time. The CO2 (5%) incubator 

should be monitored regularly and the LED display of temperature was checked with 

independent reading. For better precaution steps, the repeated opening and closing of 

the CO2 (5%) incubator must be kept to the minimum because it may affect the stability 

of the oocyte or embryo environment.  
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The washable glassware and non-disposable items were rinsed vigorously with 

tap water to remove any debris. Blood, sediment items and tissues, for examples, were 

rinsed once or twice before being soaked in a diluted detergent (7x
®
-PF) for a few 

minutes. Then, they were cleaned using sponge after which were rinsed vigorously five 

times with tap water followed by reverse osmosis (RO) water. After that, they were 

either wrapped with aluminum foil or packed in autoclavable disposable bags. All the 

items were sterilised by autoclaving them at 121
°
C for 20 minutes. Later, all items were 

dried in an oven at 60
°
C. The waterbath should be cleaned and the water changed using 

RO water at least once a week. 

 Before conducting the experiments or preparing the medium, the general 

cleanliness could be achieved by applying hand sanitiser or washing with diluted 

detergent and spraying with 70% alcohol. Equipment such as laminar flow and 

microscope should be wiped with 70% alcohol using cleaned and dried tissues. The 

work station should be sterilised with 70% alcohol before commencing the experiment. 

The residual traces of alcohol were allowed to evaporate for at least 20 minutes before 

starting the laboratory activities. Subsequently, all glassware, culture dishes and other 

consumables ought to be UV sterilised by placing them inside the laminar flow for 15-

30 minutes before conducting the experiments. However, the media, chemicals and 

reagents should not be exposed to UV light. 
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3.4.2 Preparation of Stock Solutions and Media 

All stock solutions and working media were prepared ‘in-house’ instead of purchasing 

commercially.  In the process of preparing the media, the toxic contaminants in the 

culture medium ingredients, including water, were a major concern. Therefore, in a way 

to obtain the good media, water source should be from the ultrapure water purification 

system; with treatments of particulate filtration, activated carbon filtration, RO and 

electrode ionisation (EDI), ultraviolet oxidation system, followed by Milli-Q PF Plus 

purification (18.2 MΩ-cm). All the prepared media finally would be filtered with a 

membrane filter (0.22 µm) to discard trace particles as well as to prevent bacterial 

contamination.  

 Normally, the fresh culture media were prepared weekly or fortnightly. 

Preparation of different culture media requires accurate but time consuming 

measurements. Due to these, it is convenient to prepare media from a series of stock 

solutions (Nagy et al., 2003). The media were prepared into two types which were stock 

solutions and working media. All fundamental stock solutions prepared were filter-

sterilised using syringe filter (0.22 µm pore sizes) aliquot in microcentrifuge tubes or 

bottles and stored  in refrigerator (2-8
°
C) or freezer (-20

°
C) as appropriate. All the 

media were prepared under laminar air flow work station. 

 In present study, two species of animals were used, namely goat and mouse. 

Consequently, most of the stock solutions and working media used were different as the 

culture conditions for the two species were different. Thus, in this study, the media 

preparation was prepared depending on the experimental animals. 
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3.4.2.1  Medium preparation for goat experiments 

In general, the goat experiments involved the following techniques such as LOPU, 

IVM, sperm preparation, ICSI, activation and IVC. The detailed preparations of media 

are given below. 

 

3.4.2.1.1 Preparation of  heparinised saline solution 

The heparinised saline solution was used for preventing blood clotting during the 

surgery (LOPU) procedure. The medium was prepared by weighing the NaCl (9.00 g) 

and heparin (0.05 g) using a digital balance and dissolved in one litre ultrapure Milli-Q 

water by stirring gently. Then, the saline was sterilised by autoclaving (120
o
C) and kept 

for 3 months in the refrigerator (4
°
C) for further use. 

 

Table 3.1: Composition of heparinised saline solution  

 

Chemical (catalogue no.) Concentration Quantity/ 1000 ml 

NaCl (S5886) 0.9 (w/v) 9.00 g 

Heparin (H0777) 0.0 mg/ml 0.05 g 

 

 

3.4.2.1.2 Preparation of flushing medium 

Flushing medium was prepared during aspirating or collecting the oocytes from the 

ovarian follicle during oocyte retrieval via LOPU technique.  Generally, a 

microvolumes of fluid was flushed into the ovarian follicle and then would be aspirated 

with the oocyte together with fluid from the follicle. The aspirated contents (3 ml) were 

then collected in a sterile round-bottom test tube which was pre-warmed by test tube 
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heating system. Then, the collected fluid was searched for the oocytes under 

stereomicroscope. Typically, this medium was prepared 12 hours before oocytes 

retrieval. The flushing medium consisted of diphosphate-buffered saline (DPBS) 

supplemented with penicillin G, streptomycin sulfate, heparin and polyvinylpyrrolidone 

(PVP).  

 

Table 3.2: Composition of flushing medium 

Chemical components (catalogue no.) Quantity/ 1000 ml 

DPBS tablets (BR0014G) 10 tablets 

Penicillin G (P779) Penicillin G was dissolved in DPBS 

prior to use 

Streptomycin sulphate (S1277) Streptomycin sulphate was dissolved 

in DPBS prior to use 

Heparin (H0777) Heparin (*mg) was dissolved in DPBS 

solution prior to use 

PVP (PVP360) PVP was dissolved in DPBS prior to 

use 

*1 mg of heparin contains 156 IU. 

 

 

3.4.2.1.3 Preparation of blood and heat-inactivated serum 

The blood was collected from the goat during the oestrus time to obtain the serum 

which was known as oestrus goat serum (OGS). This serum is traditionally 

supplemented in oocyte or embryo culture media to provide additional unidentified 

beneficial growth factors, hormones and peptides. Prior to using the serum, it was heat-

inactivated to inactivate potentially harmful components. The blood samples were 

collected aseptically via jugular vein from oestrus goat using Vacutainer
®
 tubes 
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(without heparin) with a needle (21G) and a venojector holder. The collected blood was 

left to clot for 30 to 60 minutes in a laminar flow at room temperature (25
°
C) to obtain 

the serum from the clot blood. Then, the blood was centrifuged (500 x g, 10 minutes, 

25
°
C). The supernatant (serum) was aspirated gently into conical centrifuge tube (15 

ml). Later, the serum was heat in-activated in waterbath for 30 minutes in 56
°
C to 

destroy components that might lead to cell lysis by antibody binding. After heat-

inactivation, the serum was cooled at the room temperature (25
°
C) and it was 

centrifuged again (500 x g, 10 minutes, 25
o
C) to sediment residue erythrocytes. The 

OGS sterilised using sterile syringe filter (0.22 µm pore size) and aliquot in sterile 

microcentrifuge tubes (1.5 ml)  and stored with a maximum shelf life of 6 months in the 

freezer (-20
°
C). The OGS should be warmed (room temperature) immediately prior to 

use. 

 

3.4.2.1.4 Preparation of IVM medium 

3.4.2.1.4 (a) Preparation of IVM stocks solution 

The IVM medium were prepared from the IVM stock and equilibrated inside the CO2 

incubator (5%) at least 3 hours before use. Prior to preparation of the IVM solution, 

several stocks solution should be prepared. All the stock solutions should be kept in 

cryotubes which were covered with aluminium foil. 
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Table 3.3: List of stock solutions for IVM medium 

Stock 

solution 

Chemical composition Method of preparation Storage 

temperature 

and shelf  

life 

TCM-Py Sodium pyruvate (P4562) 

Cystein (C2529) 

TCM 199 (11150-059) 

Weigh 0.0022 g of sodium 

pyruvate and 0.0085 of 

cystein and dissolved with 1 

ml of TCM 199 in 1.5 ml 

microcentrifuge tube. Slowly 

vortex the components for 

around 10 sec and filter with 

sterile syringe filter. 

4
o
C for 2-3 

days 

bFSH Folltropin V
®  

(L032-B053) 

 

Dissolve 0.0050 g of the 

powder to 1 ml of solution 

provided with the powder. 

Gently dissolve and filter 

with sterile syringe filter.  

4
o
C for 6 

months 

Gentamycin Gentamycin (G3632) 

DPBS solution 

Weigh and add 1 g of 

gentamycin to 20 ml of DPBS 

solution. Gently dissolve and 

filter with sterile syringe 

filter. 

4
o
C for 6 

months 

Oestradiol 

17β (E2) 

Oestradiol 17β (E8875) 

Ethanol 

Weigh and add 0.001 g of 

oestradiol in 1 ml ethanol 

(already sterile filtered before 

used). 

4
o
C for 6 

months 

Oestrus goat 

serum 

(OGS) 

- Preparation of OGS was 

similar as stated in 3.4.2.1.3. 

-20
o
C for 6 

months 

 

 

3.4.2.1.4 (b) Preparation of IVM working solution 

The IVM working solution was freshly prepared and equilibrated inside the CO2 (5%) 

incubator at least 3 hours before being used. In order to make the IVM working 

solution, all stock solutions were warmed under room temperature (25
o
C) inside a 

laminar flow. Stock solutions should be avoided from being exposed to the light to 

prevent the oxidation.  Table 3.4 shows the volume that was needed for preparation of 

the IVM working solution. All the solutions were mixed, except the oestradiol. Then, 

the medium was sterilised using the sterile syringe filter (0.22 µm; Milipore).  Finally, 
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oestradiol was added into the sterile medium and later, the solutions were gently mixed. 

Prior to equilibration, a droplet form of IVM working solution were made and covered 

with the mineral oil (M8410) and kept inside the CO2 (5%) incubator. 

 

Table 3.4:  List of components for IVM working solution 

Stock solution Amount of volume/ 10 ml 

TCM-199 with Earle’s salt, L-glutamine and sodium pyruvate  

(11150-059) 

8.90 ml 

TCM-Pyruvate 100.00 µl 

bFSH 10.00 µl 

Gentamycin 5.00 µl 

(Oestrus goat serum) 

OGS 

1.00  ml 

Oestradiol 17β (E2) 10.00 µl 

 

 

3.4.2.1.5 Preparation of other solutions 

A number of stock solutions and other solutions were prepared to be used in sperm 

preparation, oocyte denudation or activation medium.  These are as follows: 
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3.4.2.1.5(a) Preparation of heparin stocks 

Heparin was used in the sperm capacitation medium to aid in sperm capacitation 

activity. The heparin stock solution was prepared by dissolving heparin (5 mg) in 

ultrapure water (5 ml). The solution was mixed properly and sterilised using syringe 

filter (0.22 µm).  Then, the solution was aliquot (100 µl) in microcentrifuge tube (0.1 

ml) and stored for six months in the freezer (-20
°
C). 

 

Table 3.5: Composition of heparin stock solution 

Chemical  

(catalogue no.) 

Concentration Quantity/ 5 ml  Storage temperature 

and shelf life 

Heparin (H0777) 1 mg/ml 5.00 mg 
-20

°
C for 6 months 

Ultrapure water - 5.00 ml 

 

 

3.4.2.1.5(b) Preparation of  hyaluronidase solution 

Hyaluronidase solution was used to aid in COCs denudation after maturation. 

Hyaluronidase solution (0.1%) was used for this study. 0.01 g of IV-S hyaluronidase 

from bovine testes was dissolved into TCM 199 with Hepes (5 ml) stock solution 

medium.  Then, the mixed solution was stirred until dissolved properly. Additional 

TCM 199 with Hepes (5 ml) was added and stirred again until the powder was dissolved 

properly. The prepared solution was filter-sterilised by syringe sterile filter (0.22 mm), 

aliquot into microcentrifuge tube (100 µl) and stored for 3 months in the freezer (-20
°
C). 

The storage hyaluronidase (0.1%) was warming before used. 
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Table 3.6: Composition of  hyaluronidase solution (0.1%) 

Chemical  

(Catalogue no.) 

Concentration Quantity/ 

10 ml  

Storage temperature 

and shelf life 

IV-S Hyaluronidase from bovine testes 

(H4272) 

0.1 % 0.01 g 

-20
°
C for 3 months 

TCM 199 with Hepes 1x 10.00 ml 

 

 

3.4.2.1.5(c) Preparation of calcium ionophore solution 

Oocyte activation was done using double activation with calcium ionophore (CaI) and 

6-dimethylaminopurine (6-DMAP). The CaI stock A (5 mM) was prepared by 

dissolving calcium ionophore (10 mg) with DMSO (38.2 ml) and stored at -20
o
C. 

Aliquot of stock A (10 µl) into microcentrifuge tube (1 ml).  

 

Table 3.7  Composition of calcium ionophore stock A solution 

Stock Chemical  

(Catalogue no.) 

Concentration Quantity/ 

38.2 ml 

Storage temperature 

and shelf life 

A Ca
2+

 ionophore  

(A23187) 

5 mM 10.00 mg -20
o
C for 3 months, 

aliquot 10 µl 

 

 

At least 3 hours before used, IVC medium (KSOM; 990 µl) was added into stock A (10 

µl) to become 5 µM of the solution concentration. After preparing the CaI working 

solution, the solution was sterilised by using the syringe filter (0.22µm) and kept inside 

the CO2 (5%) incubator for calibration.  
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Table 3.8: Composition of calcium ionophore (5 µM) working solution  

Chemical  

 

Concentration Quantity/ 

100µl 

Storage temperature 

and shelf life 

Stock A 5 µM 

 

10.00 µl Freshly prepared, 

calibrated 3 hours 

before used 

 

 

3.4.2.1.5(d) Preparation of 6- dimethylaminopurine (6-DMAP) solution 

6-DMAP was used together with CaI to activate the goat oocytes following ICSI. Stock 

A with the concentration (0.2 M) was obtained by dissolving the 6-DMAP (0.25 g) into 

the ultrapure water (7.7 ml). This stock A could be kept for 3 months, and aliquot (10 

µl) into each microcentrifuge tube (100 µl). 

 

Table 3.9: Composition of 6-DMAP stock A solution 

Stock Chemical  

(Catalogue no.) 

Concentration Quantity/ 

7.7 ml 

Storage temperature 

and shelf life 

A 6- dimethylaminopurine 

(D2629) 

0.2 M 0.25 g -20
°
C for 3 months, 

aliquot 10 µl 

 

 

In order to make 6-DMAP working solution, stock A was added with IVC medium 

(KSOM; 990 µl) at least 3 hours before used to obtain the final concentration (2 mM). 

After preparing the working solution, the solution was sterilised by using the syringe 

filter (0.22 µm) and kept inside the CO2 (5%) incubator for calibration.  
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Table 3.10: Composition of 6-DMAP (5 µM) working solution  

Chemical  

(Catalogue no.) 

Concentration Quantity/ 100 µl Storage temperature 

and shelf life 

Stock A 5 µM 10 .00 µl Freshly prepared, 

calibrated 3 hours 

before used 
KSOM 1x 990.00 µl 

 

 

3.4.2.1.5(e) Preparation of TCM-199 with Hepes supplemented with FBS 

The TCM-199 with hepes which is supplemented with OGS (10%) was used during 

handling the oocytes or embryo outside the CO2 (5%) incubator especially during 

washing or ICSI procedures. Both TCM199 with hepes and OGS (10%) were mixed, 

filter sterilisation (0.22 µm) and calibrated inside the CO2 (5%) incubator at least 3 

hours prior used. The media could be kept for 1 week under 4
°
C. 

 

Table 3.11 : Composition of  TCM-199 with Hepes 

Chemical  

(Catalogue no.) 

Concentration Quantity/ 

100µl 

Storage temperature 

and shelf life 

TCM-199 with Hepes 1x 270.00 µl Freshly prepared, 

calibrated 3 hours 

before used 
Foetal bovine serum (FBS) 1x 30.00 µl 
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3.4.2.1.5(f) Preparation of  sperm-TALP (sp-TALP) solution 

The sp-TALP was functioned for sperm handling medium. The medium consisted of 

NaCl, KCL, NaHPOC3, NaH2PO4, Na Lactate (60% syrup), CaCl2.2H2O, MgCl2.6H2O, 

HEPES C8H17O4SNa and Phenol Red. The concentration and quantity of each 

component of the medium is shown in Table 3.12. The concentration of the stock 

solution is 10x (100 ml) by weighing and dissolving all component, except Na Lactate 

(60% syrup) with ultrapure water (40 ml) in Schott bottle (100 ml). The mixture of 

chemical was stirred slowly and then Na Lactate (60% syrup) was added carefully and 

slowly because it was in viscous liquid form. Then, the ultrapure water was top-up until 

100 ml, and all components were slowly stirred again until they were well mixed 

(approximately about 10 to 15 minutes). After that, the prepared medium was filter 

sterilised using syringe filter (0.22 µm) and kept inside a new sterile bottle under 4
°
C 

for 3 months before used. 

 

Table 3.12: Composition for sp-TALP stock solution 

Chemical Catalogue no. Quantity/ 100 ml 

NaCl S5886 0.5840 

KCl P5405 0.0023 

NaHCO3 S 5761 0.2100 

NaH2PO4 S5011 0.0035 

Na Lactate (60% syrup) L7900 368 µl 

CaCl2.2H2O C3881 0.0310 

MgCl2.6H2O M2393 0.0080 

HEPES C8H17N2O4SNa H3784 0.1190 

Phenol red P3532 0.0010 
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The sp-TALP working solution was freshly prepared at least 3 hours before used and 

already calibrated inside the CO2 (5%) incubator. The non-calibrated prepared medium 

could be stored for a week before used. 

 

Table 3.13: Composition for sp-TALP working solution 

Chemical  Catalogue no. Quantity/ 10 ml 

Sp-TALP stock - 10.00 ml 

Sodium pyruvate P4562 0.0011 g 

BSA-FAF  A6003 0.06 g 

Gentamycin stock solution - 5.00 µl 

 

 

3.4.2.1.5 (g) Preparation of  sperm capacitation 

In the present study, there was two types of chemicals were used for capacitation which 

were heparin and theophylline. Both chemicals were widely used for capacitation in 

other species especially in cattle.  

 Preparation of sperm capacitation medium using heparin was by warming the 

heparin stock (refer section 3.4.2.1.5(a)). Heparin stock (20 µl) was added into sp-TALP 

working solution (1.88 ml).  This solution is freshly prepared and need to be CO2 

incubated (5%) at least 3 hours before used.  

 Preparation of sperm capacitation medium using theophylline was by adding 

theophylline (0.009 g) into sp-TALP working solution (10.00 ml). The medium also 

need to be CO2 incubated (5%) at least 3 hours before used.  
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Table 3.14: Composition for sperm capacitation using heparin 

Chemical  Catalogue no. Quantity/ 2 ml 

Heparin stock - 200 µl 

Sp-TALP - 1.80 ml 

 

Table 3.15: Composition for sperm capacitation using theophylline 

Chemical  Catalogue no. Quantity/ 10 ml 

Theophylline T1633 0.009g 

Sp-TALP - 10.00 ml 

 

 

3.4.2.1.5 (h) Preparation of potassium simplex optimised medium (KSOM)  

The KSOM medium is widely used for embryo culture system in domestic animals. 

This KSOM stock solution consists of NaCl, KCL, KH2PO4, MgSO4, Na lactate (60% 

syrup), Na pyruvate, D-Glucose, NaHCO3, CaCl2.2H2O, L-Glutamine and EDTA. All 

the chemicals components were weighed as described for sp-TALP preparation. 

Ultrapure water (40 ml) was added to the components in Schott bottle (100 ml) and 

stirred. Then, Na lactate (60% syrup) was added slowly until fully mixed. Finally, the 

medium was topped-up until 100 ml level and sterilised by syringe filter (0.2 µm pore 

size). The prepared medium was kept inside refrigerator (4°C) for 3 months shelf life 

before used in various experiments. 
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Table 3.16: Composition for KSOM stock solution 

Chemical  Catalogue no. Quantity/ 100 ml 

NaCl S5886 0.5553 

KCL P5405 0.0186 

KH2PO4 P5655 0.0048 

MgSO4 M7506 0.0024 

Na lactate (60% syrup) L7900 186 µl 

Na pyruvate P4562 0.0022 

D-Glucose G6152 0.0036 

NaHCO3 S5761 0.2101 

CaCl2.2H2O C7902 0.0251 

L-Glutamine G3126 0.0146 

EDTA E9884 0.0004 

 

The working solution was prepared and calibrated inside the CO2 incubator (5%) 

at least 3 hours before used. The prepared medium could be used within 1 week. 

 

Table 3.17: Composition for KSOM working solution 

Chemical  Catalogue no. Quantity/10 ml 

Stock solution - 9.85 ml 

BSA A6003 0.04 g 

MEM M7145 50.00 µl 

BME B6766 100.00 µl 

   

 

 

  

3.4.2.2  Medium preparation for mouse experiments 

In mouse experiments generally involved the following techniques, such as sperm 

preparation, ICSI, activation and IVC. The detailed preparation of medium is given 

below.  
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3.4.2.2.1  Toyoda, Yokohama and Hosi’s medium (TYH) 

TYH medium was used for sperm preparation and capacitation. The medium is a 

modification of Krebs-Ringer bicarbonate medium by Toyoda et. al. (1971). The stock 

solution for this medium containing several components as follows: 

 

Table 3.18: Composition for TYH stock solution 

Chemicals Catalogue no. Quantity/100 ml 

NaCl S5886 0.5140 

KCl P5405 0.0358 

CaCl2.2H2O C7902 0.0251 

KH2PO4 P5655 0.0162 

MgSO4.7H2O M8150 0.0293 

NaHCO3 S5761 0.2108 

Glucose G7021 0.1000 

Natrium pyruvate P4562 0.0055 

Penicillin-G P7794 0.0075 

Streptomycin S1277 0.0050 

L-Glutamine G3126 0.0146 

Taurine T7146 0.0125 

Phenol red P3532 0.0010 

Na2EDTA E4884 100.00 µl 

 

 

 The Na2EDTA stock solution (10 mM) was prepared before added into the TYH 

stock solution. Milli-Q was added to dissolve the chemicals and make it 100 ml level. 

The stock solution was sterilised using sterile filter (0.22 µm pore size) and kept in 4
0
C 

for 3 months.  

BSA (3%) was added into the stock medium (10 ml) prior to use. This solution 

could be kept for 7 days in 4
°
C. The working solution need to calibrate into CO2 

incubator at least 3 hours before used. 
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Table 3.19: Composition for TYH working solution 

Chemical  Catalogue no. Quantity/ 10 ml 

TYH stock solution - 10.00 ml 

BSA A6003 0.03 g 

 

 

3.4.2.2.2 Preparation of modified hepes Whitten’s medium (HWM) 

The function of HWM medium was for handling oocytes or embryos outside the 

incubator. Usually this medium was used during oocytes collection, washing and ICSI. 

Similar to TYH medium, HWM medium was prepared in stock solution before being 

used (working solution). All chemicals involved were dissolved in Milli-Q water (top-

up until 100 ml). HWM medium consists of chemicals as follows: 

 

Table 3.20: Composition for  HWM stock solution 

Chemicals Catalogue no. Quantity/100 ml 

NaCl S5886 0.5140 

KCl P5405 0.0356 

KH2PO4 P5655 0.0162 

MgSO4.7H2O M8150 0.0294 

NaHCO3 S5761 0.0304 

Na Hepes H3784 0.6508 

Glucose G7021 0.1000 

Calcium lactate 2376 0.0338 

Lactic acid L7900 370.00 µl 

Natrium pyruvate P4562 0.0029 

Penicillin-G P7794 0.0075 

Streptomycin S1277 0.0050 

Phenol red P3532 0.0010 

 

BSA (3%) was added into the stock medium (10 ml) prior to use. This solution 

could be kept for 7 days in 4
°
C. The working solution was kept warm inside water bath 

(37
0
C) before used. 
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Table 3.21: Composition for HWM  working solution 

Chemical  Catalogue no. Quantity/ 10 ml 

HWM  stock solution - 10 ml 

BSA A6003 0.03 g 

 

 

3.4.2.2.3 Preparation of modified Whitten’s medium (WM) 

WM medium was used in culturing the oocytes or embryos (IVC).  This medium was 

minor modified based on Whitten (1971). The stock solution has been prepared before 

being used (working solution). All chemicals for stock were weighed and dissolved with 

Milli-Q. Then, the stock solution was sterilised filter and kept for 3 months in a 

refrigerator (4
°
C). All the chemicals involved are tabulated as shown below: 

 

Table 3.22: Composition for WM stock solution 

Chemicals Catalogue no. Quantity/100 ml 

NaCl S5886 0.5140 

KCl P5405 0.0356 

KH2PO4 P5655 0.0162 

MgSO4.7H2O M8150 0.0294 

NaHCO3 S5761 0.1900 

Glucose G7021 0.1000 

Calcium lactate 2376 0.0338 

Lactic acid L4263 370 µl 

Natrium pyruvate P3662 0.0029 

Penicillin P7794 0.0075 

Streptomycin S1277 0.0050 

L-Glutamine G3126 0.0146 

Taurine T7146 0.0125 

Phenol red P3532 0.0010 

Na2EDTA - 100 µl 

 

BSA (3%) was added into the stock medium (10 ml) prior to use. This solution 

could be kept for 7 days in a refrigerator (4
0
C). The working solution was calibrated by 

placing it inside a CO2 (5%) incubator for at least 3 hours before used. 



78 

 

Table 3.23: Composition for WM working solution 

Chemical  Catalogue no. Quantity/ 10ml 

WM stock solution - 10.00 ml 

BSA A6003 0.03 g 

 

 

3.4.2.2.3 Preparation of other solutions 

Generally, the other solutions that need were for sperm capacitation, oocyte denudation 

and activation. 

 

3.4.2.2.3 (a) Preparation of sperm capacitation medium 

The preparation of sperm capacitation medium using heparin and theophylline was the 

same as with goat experiments (Refer to Section 3.4.2.1.5 (g)), except the dissolving 

medium was using TYH medium (for mouse experiments) instead of using sp-TALP 

(for goat experiments).  

 

Table 3.24: Composition for sperm capacitation using Heparin 

Chemical  Catalogue no. Quantity/ 2 ml 

Heparin stock - 200 µl 

TYH working solution - 1.80 ml 

Table 3.25: Composition for sperm capacitation using Theophylline 

Chemical  Catalogue no. Quantity/ 10 ml 

Theophylline T1633 0.009 g 

TYH working solution - 10.00 ml 
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3.4.2.2.3 (b) Preparation of Hyaluronidase (0.1%) 

The preparation of hyaluronidase (0.1%) was similar to that for goat preparation 

medium (Refer to Section 3.4.2.1.5 (b)). The difference was the hyaluronidase was 

dissolved with HWM medium (for mouse experiments). 

 

Table 3.26: Composition of  Hyaluronidase solution (0.1%) 

Chemical  

(Catalogue no.) 

Concentration Quantity/ 

10 ml  

Storage 

temperature  

and shelf life 

IV-S Hyaluronidase from bovine testes 

(H4272) 

0.1 % 0.01 g 
-20

°
C for 3 

months 
HWM working solution 1x 10.00 ml 

 

The medium was incubated for at least 3 hours inside the CO2 (5%) incubator 

before being used. 
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3.4.2.2.3 (c) Preparation of Strontium chloride (0.02 mM) 

Table 3.27: Composition for Strontium chloride stock 

Chemical  

(Catalogue no.) 

Quantity/ 

10 ml  

Storage temperature and 

shelf life 

Strontium chloride (439665) 0.027 g 
-20

°
C for 3 months 

HWM working solution 1.00 ml 

 

Table 3.28: Composition for Cytochalasin B (CB) 

Chemical  

(Catalogue no.) 

Quantity/ 

10 ml  

Storage temperature and 

shelf life 

Cytochalasin B (C6762) 1.00 mg 
-20

°
C for 3 months 

DMSO (D5879) 2.00 ml 

 

Table 3.29: Composition for  Chatot, Ziamek and Bavier medium (CZB) 

Chemical  

 

Catalogue no. Quantity/ 

100 ml  

Storage temperature and 

shelf life 

NaCl S5886 0.479 

4
°
C for 3 months 

KCl P5405 0.036 

KH2PO4 P5655 0.016 

Lactic acid L4263 0.530 ml 

MgSO4.7H2O M8150 0.029 

NaHCO3 S5761 0.210 

Disodium lactate - 0.004 

Glucose G6152 0.100 

Phenol red P3532 0.001 

BSA A7906 0.500 

    

 

 Strontium chloride (0.02 mM) was used as mouse oocyte activation. In order to 

prepared this medium. The stock of CB and CZB were prepared as have been describe 

in Table 3.28 and 3.29, respectively. The activation solution was prepared (Table 3.30) 

on the day of experiment and should be incubated by CO2 incubator at least 3 hours 

before used. 



81 

 

Table 3.30: Composition for Strontium chloride activation medium 

Chemical  

 

Catalogue no. Quantity/   

2 ml  

Storage temperature and 

shelf life 

Strontium chloride S5886 10.00 µl 
Freshly prepared 

CB P5405 1.00 µl 

CZB with Ca
2+

 free - 89.00 µl  

 

 

3.4.2  Preparation of Microtools 

Mouth pick-up pipette and microneedles are mirotools were used for handling the 

oocytes and embryos. The mouth pick-up pipette was used mainly for picking up, 

transfer the oocytes or embryos during the experiments. This pipette was in-house made 

in the laboratory using the rubber tube, cotton, and glass pipette with desired inner 

diameter size (200-500 µm). 

 The microtools were accessories in ICSI procedure, which consists of ICSI 

injecting micropipette and holding micropipette. Both micropipettes were in-house 

preparation using the specific equipment such as micropuller, microforge and 

microgrinder. 

 

3.4.2.1  Preparation of mouth pick-up pipette 

Using glass Pasteur pipette, a mouth pick-up pipette was prepared by exposing the 

burner flame in the middle of the glass until it became soft. Then, by holding at both 

ends of the glass, immediately withdrawn from the heat and pulled the glass in opposite 

direction. This technique will give the desired inner diameter size (200–500 µm) in the 

middle of the glass. Generally, 2 types of inner diameter size were prepared which were 

for embryos or denuded oocytes (200-300 µm) and COCs (300-500 µm).  
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 After the desired inner diameter size was determined, the glass was broken using 

a diamond stone. In a way to obtain a neat break, the pulled portion of the glass was 

scribed with the diamond stone and snapped at the scribed portion. The tip of the pulled 

glass was fire-polished by quickly exposed to the flame to achieve a smooth edge of the 

glass tip. The step is important to avoid any jagged glass end that may potentially cause 

damage to the zona pellucida during oocytes or embryos handling.  

 The prepared pipette was rinsed with Milli-Q water and alcohol (70%) for 

several times (approximately 3x). The pipette was autoclaved (20 minutes; 120
o
C) and 

dried inside the oven (60
o
C). Before conducting the experiment, the pipette should be 

sterilised with other lab-wares under ultraviolet (UV) light for 30 minutes inside a 

laminar flow cabinet. 

 

3.4.2.2  Preparation of microneedles 

Microneedles are important for manipulation of oocytes or sperm during ICSI 

procedure. They were prepared using the borosilicate capillaries using appropriate 

equipment. 

 The preparation of both microneedles (ICSI and holding micropipette) were 

initiating by pulling the borosilicate capillaries using a horizontal micropuller (P-97, 

Sutter Instrument, USA). This equipment was programmed with the quantity of heat, 

pull speed and strength based on previous established and stored programmes.  

 The pulled capillary was attached with microforge to make the capillary in 

desired inner and outer size. The inner size of ICSI micropipette (8-10 µm: goat and 4-8 

µm: mice) of pulled glass was aimed to be identify at this level. In order to obtain the 

desired size, the capillary was place in horizontal. A small bead of the glass was placed 
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on top of the heat element; this is to ensure the glass bead attached with the filament 

itself would not come into direct contact with the capillary.  The glass bead would glow 

dull red colour when the heat control adjuster was on at certain level (less than 0.5 

marked unit). The capillary was lowered continuously as the glass melted until a bead 

approximately 8-10 µm diameters has formed; and the heat switched off and bring a 

way from the needle. The heat shock was applied through this step to achieve the 

desired inner diameter and neat break on the tip of capillary. Next, the tip of capillary 

was ground to make a bevelled edge with microgrinder at 45
o 

desired angle for 

approximately 2-3 minutes. The capillary was washed away with hydrofluoric acid 

(10%; 5 seconds) and rinsed with Milli-Q water (10 seconds). The specialty of ICSI 

micropipette is a spike. It was made by applying a small, gentle and quickly touch on 

the heated glass bead (same heat level during breaking the capillary).   

 The holding micropipette was prepared by scoring the pulled capillary with an 

ampoule cutter and breaking it (outer diameter: 150-180 µm). The capillary was placing 

in vertical position where the tip of the edge would face the glass bead. Through heating 

the glass bead (no more than 3 unit marked), the tip would be fire-polished until to the 

desired inner diameter (25-30 µm).  

 Finally, both ICSI and holding micropipette would go through the bending 

process by placing the capillary in horizontal position and apply the heat until they were 

bent at 25-30 degrees with microforge to allow a horizontal displacement on the 

microscope stage. 

All prepared ICSI and holding micropipette were rinsed with alcohol (70%), 

kept in needle holder, dried into oven 60
o
C and finally they were sterilised under UV 

light for 30 minutes inside the laminar flow cabinet. 
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3.4.3  Preparation of Experimental Animals 

The protocols for preparing the experimental animals are described below: 

 

3.4.3.1  Preparation of donor goats 

The donor goats were used to provide constant oocyte samples for various experiments. 

The selected donor goats underwent oestrus synchronisation, superovulation and 

laparoscopic oocyte pick-up (LOPU). The same goat would be used for another surgery 

with at least 3 months of intervals surgery cycles using the same procedure.  Figure 3.1 

shows a summary of schematic presentation of processes involved in oestrus 

synchronisation, superovulation and LOPU in donor goats. 

 

 

 

 

 

 

 

 

 

Figure 3.1: A schematic represent the summary of process involved in donor goat. 
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3.4.3.1 .1  Oestrus synchronisation and superovulation 

Prior to oocytes retrieval, the goat preparation was initiated by oestrous synchronisation 

procedure. This procedure is important for manipulating the oestrous cycle of donor 

goats. Therefore, it will assist in terms of plan the date and time of oocyte retrieval 

during LOPU.  Controlled Intravaginal Drug Release (CIDR
®
, 0.3 g progesterone) 

device was used for this purpose. CIDR was inserted into the vagina with the assist of a 

sterile CIDR applicator and a veterinary obstetrical lubricant (K-Y Jelly) for 14 days (at 

0900 hr on Day-0). CIDR is made from an inert silicone elastomer that is non-porous 

and does not readily absorb bodily fluids. Once properly inserted deep into the donor’s 

vagina, the CIDR will unfold in ‘T’ like formation that aids in retention. In this study, 

the donor goats with CIDR insertion were monitored daily to confirm that it had not 

been inadvertently dropped from the vagina. A luteolytic treatment of Cloprostenol 

(Estrumate
®, 

125 µg) was administered intramuscularly (at 0900 hr on Day-13) to 

regress the corpus luteum in order to lower the blood progesterone level, thus initiation 

of pro-oestrus and eventually resulted in a rapid surge of oestradiol for a  onset of 

oestrus.  

 Superovulation was the subsequent procedure carried out following oestrus 

synchronisation to induce the multiple growths of follicles in the ovaries. The effect of 

this procedure would make the surface of ovary with visible fluid-filled ‘pimple-like’ 

structures. The protrusion of the ‘pimple-like’ structures indicates the follicles were 

growing in the ovaries. Therefore, in this study, pregnant mare’s serum gonadothrophin 

(PMSG; Folligon
®
;
 
1500 IU) was administrated intramusculary at 1600 hr on Day-14 

before the CIDR was being removed. Human chorionic gonadotrophin (hCG; Ovidrel
®
; 

250 IU) was administered intramuscularly at 2100 hr on Day-14, upon the removal of 

CIDR. The onset of oestrus behaviour such as twitching of tail, visible of vaginal 

secretion and eagerness to be mounted on by teaser buck was observed after 
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approximately 48 hours of the PMSG administration. The presence of oestrus indicates 

superstimulation of ovaries, thus facilitating the subsequent LOPU procedure to be 

carried out. 

 

3.4.3.1 .2 Laparoscopic oocytes pick-up (LOPU) for oocytes retrieval 

LOPU is a microsurgical procedure for oocytes retrieval. In the beginning, the donor 

goat should be sedated and anaesthetised, surgical instruments and accessories were 

disinfected. The oocytes were retrieved by aspiration of follicular contents from the 

‘pimple-like’ protrusions on the surface of ovary under laparoscopic observation. 

During the process of oocytes retrieval, the follicular fluids were collected in collecting 

tubes (3 ml) and passed to the embryologists to search for oocytes under microscope. 

After the completion of oocytes retrieval, the donor goat underwent post-surgical 

treatment. 

 

3.4.3.1 .2 (a) Sedation and anaesthetisation of donor goat 

A day before performing the LOPU, the donor goat was deprived from food and water 

(1730 hr on Day-16). The next day, prior to LOPU surgery (at 0800 hr on Day-17), the 

donor goat was sedated and anaesthetised with xylazine hydrochloride (0.22 mg/ kg of 

body weight), followed by ketamine hydrochloride (11 mg/ kg of body weight) through 

intramuscular injection. During the period of LOPU surgery, the donor goat was 

maintained under anaesthesia with injection of ketamine hydrochloride (0.1 mg/ kg of 

body weight) at the interval of approximately 30 minutes or as required. 
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3.4.3.1 .2 (b) Preparation of disinfection in LOPU procedure 

LOPU procedure should be done in a well organised and free from contamination room. 

In order to avoid errors and to ensure the operation of LOPU runs smoothly, all 

equipment and surgical instruments should be in well organised, functional and 

disinfected to facilitate the surgery to be carried out under hygienic condition (Appendix 

Figure 2.5). A day before the surgery, non-autoclavable surgical instruments were 

disinfected by immersing completely in Gigasept
®
 solution (10% for 10 minutes) and 

subsequently rinsed in sterile autoclaved distilled water before arranging them on a 

table-cum-trolley. The autoclavable surgical instruments were autoclaved and dried 

completely in the oven (56
°
C) prior to use for surgery. To avoid any contamination 

during handling the instruments, the outer wrapping of the surgical pack was opened 

and unfolded carefully without touching the sterilised instruments inside. All the 

surgical instruments were assemble and arranged orderly on a sterile surgical table-cum-

trolley which was already laid with a sterile drape.  

 The donor goat was immobilised after anaesthetised, then she was placed on a 

clean small ruminant retaining cradle. The cradle was sprayed with alcohol (70%) 

before the donor goat being placed on it.  The cradle was set at 45
°
 angles with the head 

of the goat lowered to facilitate the LOPU procedure. For disinfection procedure, the 

abdominal area of donor goat was disinfected with diluted Hibiscrub (10%) using clean 

gauzes and the hair shaved.  Next, the bare skin was wiped with undiluted Hibiscrub 

and subsequently with weak iodine solution. After wiping, the abdominal area was 

covered with a sterile drape with an opening that revealed the disinfected bare skin and 

was ready for oocyte retrieval procedure. The drape was positioned without the fabric 

dragging across a non-sterile surface and secured in a place with towel clamps at four 

corners of the surgical site.  



88 

 

 The light system which was lens and probe and the entire length of the fibre 

optic cable were disinfected with alcohol (70%) before performed the white balance. 

 

3.4.3.1 .2 (c) Retrieval and searching of oocyte 

The fibre optic cable was connecting the light probe to the light system. The CCD 

camera and monitor was connected to the light system after the light system was turned 

on. A small incision was made on the abdominal area and trocar connected to a CO2 

tank via the CO2 insufflators was inserted into the incision to insert the CO2 into the 

abdominal cavity. Three small incisions (3-5 mm) were made once the peritoneum was 

expended in order to facilitate visualisation of the reproductive tract.  The three 

incisions were made: i) near the umbilicus to facilitate insertion of trocar for passing the 

laparoscope, ii) on the right side of lower-ventral abdomen were inserted into each 

trocar, respectively, iii) on the left side of the abdominal cavity for directly inserted 

oocyte retrieval needle.  

 The collecting tubes for collecting the follicle-fluid were pre-warmed (38.5
°
C) in 

a test tube heating system, the collection medium was filled in a sterile luer slip syringe 

(50 ml) also being pre-warmed (38.5
°
C) and placed horizontally in the aspiration 

system. During the aspiration process, the tube was connected with the tube of oocyte 

retrieval needle. Prior to use, the oocyte retrieval needle has been sterilised by exposing 

the UV light (30 minutes) and rinsed with the collecting medium. 

 The ovaries was visualised and identified through gentle manipulation of uterine 

horns using the grasper. The ovaries were exposed by pulling the fimbria in different 

directions using the grasper. Thus, the follicles visible on the surface of ovaries were 

punctured and fluids were aspirated by aspiration needle which was assisting of 
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aspiration system. The fluids were filled the collecting tube (1-3 ml) and passed to the 

embryologist for oocyte searching.  

 The oocyte searching was done at another area of sterile room known as 

embryology room. Here, the stereomicroscope used for oocyte searching was pre-

warmed (38.5°C) before searching of the oocyte. Once the embryologist obtained the 

collected follicle fluid tube, the fluids were dispensed into sterile petri dish (90 mm) for 

isolation and evaluation under 20x and 40x magnifications. The oocytes were rinsed 

using flushing medium (2x) and IVM medium (allocated droplet for rinsed; 2x) before 

cultured into real IVM cultured droplet according to oocytes grades. 

 After oocytes retrieval, the ovary was rinsed with warm heparinised (38.5°C) 

physiological saline through one of the trocar aid in order to reduce adhesion following 

oocytes aspiration. Then, the incision parts on the abdomen were sutured and finally the 

donor goat was removed from the cradle. The sutured incision area was sprayed with 

antiseptic and insecticide containing cyphenothrin.  

 

3.4.3.1 .2 (d) Post-surgery management 

In order to prevent possible post-surgical infection, the donor goat was administered 

with oxytetracycline (20 mg/ kg body weight) via i.m. injection once in four days within 

the duration of  2 weeks.  

 All surgical instruments were physical cleaned with diluted 7X
®
-PF solution and 

rinsed 5 times with running tap-water followed by two times with RO water. Then, they 

were drained dry. The aspiration needle was disinfected with alcohol (70%) at the outer 

surface area and the opening parts were flushed with the alcohol (70%) using syringe 

(20 ml) attached to a needle (18 G), drained dry and packed in surgical bag. The 
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autoclavable instruments were packed in an autoclave bag and pasted with autoclave 

sticker (recorded the date of sterilisation). Later, the instruments were autoclaved for 20 

minutes at 120°C. While, for the non-autoclavable surgical instruments, after cleaning, 

they were dried and packed individually in a clean transparent bag before proceeding to 

UV sterilisation (30 minutes). 

 The floor of surgery room was swept and mopped with disinfectant agent such 

as Dettol
® 

disinfectant liquid. The cradle for animal, aspiration system and light probe 

was wiped with alcohol (70%) and kept properly and safely.  

 

3.4.3.1 .3 Ovariectomy 

After third or fourth cycle of LOPU, the donor goat underwent ovariectomy. Before 

ovariectomy, the goat underwent oestrus synchronisation and superovulation as well as 

anaesthetisation and disinfection similar with those of LOPU. Ovariectomy procedure 

was initiated by making vertical abdominal incision (4 to 6 cm). A tunnel, lateral to the 

skin incision was made using blunt dissection to help the muscles of the posterior 

abdominal wall separated that facilitated abdominal cavity entrance. A warm 

heparinised (38.5°C) physiological saline was administered (approximately to 200 ml) 

into the abdomen to prevent dryness. Due to location of ovaries in a fat pad beneath the 

muscles, the periovarian fat was gently grasped to lift and easy to place the ovary on the 

skin using forceps. The fallopian tube and cranial-most part of the uterine horn distal to 

ovary was crushed using a small and curved haemostatic forceps. This step needs to be 

carefully carried out not to crush or contact the ovary. Then, the ovary was removed by 

cutting above the clamped area and the uterine horn was inserted back carefully into the 

abdomen.  The incisions part was sutured and subsequently, sprayed the area with 

antiseptic and insecticide containing cyphenothrin. The donor goat was administered 
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with oxytetracycline (20 mg/ kg body weight) via i.m. injection once in 4 days within 

the duration of 2 weeks.  

The cut ovary was passed to embryologists in a petri dish (35 mm) containing 

the flushing medium for slicing to search and recover the COCs. The ovaries were 

rinsed with saline again to remove the blood. Then, under the laminar flow, the ovaries 

were freed from the surrounding tissues and overlying bursa using surgical scissors and 

forceps. The ovaries was sliced individually on another petri dish (90 mm) that 

contained the flushing medium, the checker-board incisions were made along the whole 

ovarian surface using a quarter sections of antiseptic stainless steel razor blade (wiped 

with 70% alcohol) held by a sterile haemostat. During the slicing, the media used were 

pre-warmed (38.5°C) by placing the medium on a stage warmer. Then, the sliced 

ovaries were dipped completely into another flushing medium to ensure all the possible 

COCs could be recovered.  

The follicular fluids that recovered out from the slicing procedure were 

assembled on the petri dish (90 mm). Hence, the COCs would be examined under the 

stereomicroscope (magnification at 20x to 40x). The found COCs were picked up and 

wash with another flushing medium microdroplets (3x) and IVM microdroplets (2x). 

The COCs were graded similar done for recovered COCs from LOPU before cultured 

into IVM medium. 
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3.4.3.2  Preparation of mice  

The preparations of mice for experiments were involved superovulation of female, male 

management,  oocytes and sperm recovery. 

 

3.4.3.2 .1 Superovulation of female and male management 

The 8 to 12 weeks of matured female mice were superovulated via intraperitoneal 

injection (i.p.) of PMSG (5 IU in 0.1 ml) at 1700 to 1800 hours. Approximately 48 

hours later, the hCG (5 IU in 0.1 ml) was administered to the same female mice. During 

the injection, the mouse was held firmly by twisting the tail around the little finger.  The 

hormone was administered using the sterile disposable needle (26G) carefully to avoid 

the internal organs.  

 The male mice was kept with enough fed and water and never been used in 

mating programme (separated with female). This is due to help in obtained the good 

quality of sperm.  

 

3.4.3.2 .2 Oocytes recovery 

In order to recovery the oocytes, microdroplets of warmed HWM medium (100 µl/ 

microdroplet) were made. The female mice were scarified by cervical dislocation and 

the abdominal cavity was cut open (Appendix  Figure  2.2). The oviducts were cut and 

placed into the HWM medium microdoplet. The first or second droplet was used for 

rinsed the oviduct to discard the debris such as blood and fur. In another microdroplet, 

the oviduct was held with fine forceps while ampullae region was punctured with a 

sterile disposable needle (18-G).The COCs was released by gently drawn with the 
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needle into the microdroplet. The COCs was placed to another washing dish which was 

containing HWM medium and ready to be denuded by hyaluronidase solution (0.1%). 

 In this study, the oocytes recovery was done at 13 to 15 hours and 16 to 18 hours 

post- hCG administration. 

 

3.4.3.2 .2 Sperm  recovery 

The TYH medium was prepared in a sterile 4-well culture dish (400 µl) which had been 

added by sperm capacitation solution (theophylline or heparin). The medium was 

equilibrated overnight in CO2 (5%) incubator at 37°C. 

 The 10 to 15 weeks old matured male mice were sacarified by cervical 

dislocation. The caudal epididymis was held firmly with blunt forceps and was slit with 

a pair of fine dissecting scissors. Prior to recovery the epididymal sperm, the fine 

forceps was rinsed by TYH medium and then collect the sperm followed by placing 

them into the TYH microdroplet. The sperm suspension was then incubated for 60 

minutes in CO2 (5%) incubator at 37°C. 

 

3.5 TECHNIQUES AND PROTOCOLS 

Generally, after underwent animal preparation (goats and mice), medium preparation, 

oocytes and sperm recovery, the next in vitro production (IVP) activities were IVM (for 

goat experiment), ICSI, activation and IVC procedure. All of these procedures were 

done in the embryology room. In this study, the activities such as ICSI, activation and 

IVC procedure were slightly similar, but the differences were found in medium types 
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using and period cultivation. Therefore, the author would describe the protocols based 

on the types of activities. 

 

3.5.1 In Vitro Maturation of Goat Oocytes 

The IVM microdroplets (80 µl) were prepared and overlaid with light mineral oil in a 

petri dish 35 mm) and labeled with author’s initial, date and type of experiment before 

incubated into the CO2 (5%) incubator for at least 3 hours before used. This is important 

to allow temperature and gas equilibration. 

 The stereomicroscope that used for oocytes searching should be warmed by 

attaching with the stage warmer (38.5°C). After searching the COCs during the LOPU 

session, the COCs were washed (2x in flushing medium and 2x in IVM medium 

microdroplets) to remove the debris. Subsequently, the COCs was placed into another 

IVM microdroplet (10–15 COCs/ 80 µl). The COCs were graded and cultured in 

separate microdroplets based on cumulus cell (CC) layers. The grades of COCs was 

done as described by Rahman et al. (2007) which shows in Table 3.29. 

 After grading, the COCs were cultured into the IVM microdroplet inside the 

incubator environment (38.5°C in humidified atmosphere with 5% of CO2). The 

duration ranging period for the IVM was depending on the experiment treatment ( i: 18-

21 hours and ii: 22-25 hours). 

 At the end of IVM duration, the COCs layers were expended and need to 

proceed for the nest procedure which is called denudation to score the matured oocytes 

with the presence of the polar body. 
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Table 3.31: Grading of the COCs according to the CC layers and morphology 

Characteristics COCs 

and CFOs 

Morphology Grade Figure 

COCs with more than 5 

complete layers of CCs 

Homogenous finely 

granulated ooplasm 

and normal 

morphological features 

A  

 
 

COCs with 3-5 complete 

layers of CCs 

Homogenous finely 

granulated ooplasm 

and normal 

morphological features 

B  

 
 

COCs with 1-2 complete 

layers of CCs or COCs 

with 3-5 partially with 

CC layers 

Homogenous finely 

granulated ooplasm 

and normal 

morphological features 

C  

 
 

CFOs or oocyte with 

incomplete layer of CCs 

(1-2 layers) 

Homogenous finely 

granulated ooplasm 

and normal 

morphological features 

D  

 
 

Oocytes without the CCs 

layer or apoptotic in 

jelly-like CC layers or 

very small oocytes 

Degenerating or 

abnormal, size, shape 

and heterogenous 

ooplasm oocytes 

E  

 
 

Adapted from Rahman et al. (2007). 
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3.5.2 Intracytoplasmic Sperm Injection (ICSI) 

Prior to ICSI procedure, the, oocyte and sperm preparation, ICSI dish, and  

microcapilaries alignment need to be prepared. Both of goat and mice experiments 

preparation for ICSI was same unless the differences would be state in the procedure 

below. 

 

3.5.2.1  Preparation of oocytes for ICSI 

The COCs were harvested from the IVM culture (for goat) and recovered from the 

oviduct (for mice) were denuded by repeated pipping in TCM-199 with hepes (goat) or 

HWM (mouse) containing hyaluronidase (0.1%, 100 µl). Generally, the hyaluronidase 

microdroplets were made on the petri dish (60 mm) covered with mineral oil if the 

number of COCs is less than 10, especially for goat samples. While, if the number of 

COCs is higher, the denudation was conducted in 100 µl microcentrifuge tube, 

especially in mice samples. This is due to facilitate the denudation activity. In order to 

remove the CC layers, the oocytes were applied with repeated pippetting (in and out 

aspiration using mouth pick-up pipette or micropipettor; 100 µl). For the mouth pick-up 

pipette, the opening size of Pasteur pipette was about 250 µm and 200 µm in diameter, 

respectively, under a stereomicroscope. 

 The denuded oocytes were washed via 3 microdroplets of hepes containing 

medium (depends on experimental animal). Then, the oocytes were identified for 

maturation under the inverted microscope. The oocytes presence with clear first polar 

body (PB-1) were considered as matured which was at metaphase II (MII) stage and 

meiotic competent. Thus, the oocytes were transferred to another dish and washed 

through 3 microdroplets (50 µl) of equilibrated TCM-199 with FBS (10%) and 

incubated in the CO2 (5%) incubator at 38.5°C (for goats) or  were transferred to 
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another dish and washed through 3 microdroplets (50 µl) of equilibrated WM and 

incubated in the CO2 (5%) incubator at 37°C (for mice) until begin the ICSI.  

 

3.5.2.2  Preparation of sperm for ICSI 

The sperm source and preparation for goats and mice were different as described below: 

  

3.5.2.2.1 Sperm preparation  for ICSI in goat 

As been mentioned in earlier part, the goat sperm source was obtained from the frozen-

thawed sperm. The preparation for sperm was performed 80 minutes before initiating 

the ICSI experiment. A straw of frozen sperm was withdrawn from the liquid nitrogen 

storage tank and left outside briefly at normal temperature (25°C, 1 minute)  followed 

by thawing in a water bath (37°C, 1 minute). The straw was taken out from the water 

bath and disinfected with alcohol (70%) and allowed it to dry.  

 The equilibrated sperm wash medium (sp-TALP) was poured (3 ml) into a 

centrifuge conical tube (15 ml size). Then, the end of straw (sealed end) was cut and the 

thawed sperm were inserted into the sp-TALP (3 ml).  The remaining of sperm in the 

straw was released into the sp-TALP by cutting another end of straw (cotton-plugged 

end) and gently passed it through the medium. Before mixing the sperm and medium, a 

drop of thawed sperm was placed on the slide, in order to examine the movement 

characteristics of the sperm under the inverted microscope. 

 The centrifuge conical tube (mixed sperm and medium) was tightly capped and 

then, the tube was centrifuged (200 x g, 15 minutes). After done centrifugation, the 

supernatant was discarded and the pellet of the sperm was loosen by gently pipetting 
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using micropipettor before placed it (100-200 µl) at the bottom of the centrifuge conical 

tube with fresh capacitation medium (2 ml). The capacitation of sperm was carried out 

using a  medium containing heparin or theophylline depending on the experiment. This 

procedure was taken 60 minutes inside the CO2 (5%) incubator. The end of sperm 

capacitation process, the three quarter (volume) of supernatant was discarded. The 

remaining supernatant containing pellet of sperm was gently loosen and withdrawn into 

the ICSI dish for ICSI procedure. The remaining pellet sperm were kept inside the CO2 

(5%) incubator. 

 

3.5.2.2.2  Sperm preparation for ICSI in mice 

After the sperm capacitation incubation (60 minutes) (refer to 3.4.3.2.2), the sperm 

suspension was withdrawn to examine the sperm mortality and progressive under the 

inverted microscope before preparing for ICSI on the ICSI dish.  

 

3.5.2.3  Preparation of ICSI dish 

The ICSI dish was prepared using the lid of Petri dish (35 mm). The Petri dish was 

divided into 3 parts as shown in Figure 3.2. The top fraction was the sperm suspension 

microdroplet (5 µl), centre fraction was the PVP microdroplet (10%, 3-5 µl) and bottom 

fraction was the oocyte microdroplet (5 µl). 
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Figure 3.2:  The diagram represents the microdroplet position preparation for ICSI dish  

          where   i)          is sperm suspension microdroplet, ii)           is oocyte      

        microdroplet, iii)                 is PVP (10%)  microdroplet. The patterned  

          microdroplets are made to standby for microneedles cleaning during ICSI. 

 

 The sperm suspension and PVP (10%) microdroplets were prepared in flattened 

form. This was to ensure the sperm were clear visually and immobilised during ICSI 

procedure. The sperm swimming space could be reduced by applying this technique. 

While the oocyte microdroplets were prepared in round shape form without flattened for 

easy to manipulate during sperm injection. Each type of microdroplet was used for 

standby for microneedles cleaning during the ICSI procedure. All microdroplets were 

overlaid with mineral oil for preventing the evaporation and kept in warm (38.5°C for 

goat samples and 37°C for mice samples). 

 

 

5 µl of 

sperm 

suspension 

microdroplet 

5 µl of 

oocytes 

microdroplet 

3-5 µl of 

PVP (10%) 

microdroplet 



100 

 

3.5.2.4  Preparation of microneedles alignment 

Two microneedles which is ICSI microneedle and holding microneedle were aligned 

using a micromanipulator. The micromanipulator was attached with the inverted 

microscope and the warmer stage for placing the ICSI dish. All knobs (X-, Y- and Z-

control) and the syringes (3 ml) were adjusted to the centre of the scale. 

 Alignment of microneedles was done over a Petri dish cover (35 mm). Two 

flattened microdroplets were prepared containing ICSI medium (for oocyte 

microdroplet; 2-3 µl) and PVP (10%, 2-3 µl) overlaid with mineral oil at the centre 

position. ICSI medium was slightly different depending on experimental experiment 

(refer to Sections 3.4.2.1.5 (e) and 3.4.2.2.2) 

 The holding microneedle was attached to the holder and adjusts to the centre of 

the microscope’s visual and brought it down using adjusting the knob to make it 

inserted into the mineral oil. The mineral oil was allowed to insert into the holding 

microneedle for equilibration to enhance the control within the needle before placed into 

the ICSI medium and PVP microdroplet. Due to this, the visual of microneedle also 

could be easy to see and the outline of microneedle was sharply focused to by adjusting 

the knob. After that, the ICSI microneedle went through the same procedure as that of 

the holding microneedle. Once both microneedles were equilibrated, they were aligned 

to make their tips parallel to the microscope stage under the low magnification (4x 

objective). The ICSI microneedle the tip was carefully touched to the holding 

microneedle or slowly inserted into the holding microneedle. This step was played for a 

few times to ensure the microneedles alignment is in good condition. Again, both 

microneedles were checked under 10x magnifications to assure the accurate alignment 

and parallel. 
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The ICSI microneedle was left into the PVP for a few times to allow 

equilibration to establish the capillary action. The X-, Y- and Z- movement along the 

bottom of the dish was checked also a smooth and gentle aspiration and expulsion also 

being checked. While holding microneedle in underwent equilibration, movement, 

aspiration and expulsion actions in capillary using the ICSI medium were performed.  

 

3.5.2.5  Procedure of ICSI 

The capacitated sperm were placed (1-2 µl) into the sperm suspension microdroplet and 

the MII oocytes into the ICSI medium (oocyte microdroplet). The sperm were inserted 

on the left side of sperm microdroplet. This would allow the sperm to swim towards the 

right side of the microdroplets for a few minutes. After sperm insertion and mixing, if 

the microdroplets of the sperm were not flattened, 1-2 µl of microdroplets was gently 

aspirated out to reduce the volume of medium. These would help the experimenter to 

aspirate the sperm because the sperm seem like queuing at the edge of the 

microdroplets. However, enough number of sperm was left for the ICSI procedure. For 

oocyte microdroplet, the number of oocyte per microdroplet was not more than 5 

oocytes. 

 ICSI was performed on warmer stage (38.5°C for goats experiment and 37°C for 

mice experiment) of the microscope with magnification of 10x and 20x objectives, 

respectively. ICSI procedure was started by aspirated the sperm or they would swim by 

themselves into the ICSI microneedle. Generally, the sperm stayed at the lowered of the 

edge of sperm microdroplet. Therefore, the aspiration of sperm could be occurred by 

faced the ICSI microneedle at this point. 

 Then, the sperm in the ICSI microneedle were focused and drawn into the PVP 

(10%) microdroplet. Here, the sperm movement was being slowed and easy to perform 
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the immobilisation through kinked the sperm tail using the spike of ICSI microneedle. 

The sperm could be assumed immobilised once the sperm was stopped moving. 

 Once the sperm was immobilised, a single sperm was aspirated the tail first into 

the ICSI microneedle again. Then, the MII oocyte was held by holding microneedle 

through firmly aspirated with the position of the polar body was at 6 or 12 o’clock. This 

could be achieved by rotating the oocyte at the tip of holding needle. Then, the sperm 

inside the ICSI microneedle was brought closed to the tip (20 µm). The ICSI 

microneedle was slowly advanced through the zona pelucida and into the ooplasm at 3 

o’clock position. A small amount of ooplasm (1-2 pl) was vigorously sucked in and out 

but gently break the oolemma. A sudden flux of ooplasm into the ICSI microneedle 

confirmed the oolemma breakage and would be easy for sperm injection.  

 A single sperm was inserted into the ooplasm with the minimum amount of PVP 

(<5 pl).  After sperm injection, the ICSI microneedle was gently withdrawn from the 

oocyte. Then, the oocyte was released from the holding microneedle.  The injected 

oocyte was allocated at the bottom of microdroplet. The non-injected oocytes would be 

maintained at the top of the microdroplet. Once all 5 oocytes were injected with the 

sperm, the oocytes were placed into calibrated droplet of TCM-199 with OGS (10%) 

(for goats) and WM (for mice) and kept into CO2 (5%) incubator before being treated 

with activation medium. The next batch of oocyte for ICSI would be inserted to another 

newly prepared oocyte microdroplet (ICSI medium). 
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3.5.3 Chemical Activation 

All injected oocytes were incubated into TCM-199 with OGS (10%) (for goats) and 

WM (for mice)  for at least 30  minutes before being activated with specific chemicals. 

The activation chemicals used were various depending on the experimental animals. 

 

3.5.3.1  Chemical activation for goat oocytes 

In goat experiment, the chemicals that had been used were calcium ionophore and 6-

DMAP. Microdroplets of activation medium were prepared (80 µl) with overlaid by 

mineral oil inside the Petri dish (35 mm) and should be equilibrated inside the CO2 (5%) 

incubator at least 3 hours before being used. All injected oocytes were activated in 

calcium ionophore (5 µm) inside the CO2 (5%) incubator for 5 minutes. After that the 

oocytes were washed 3x in 6-DMAP microdroplets to rinsed out the calcium ionophore 

medium before culture in 6-DMAP for another 4 to 5 hours also inside the CO2 (5%) 

incubator. 

 

3.5.3.2  Chemical activation for mouse oocytes 

For mice experiment, the chemicals used for activation were strontium hexahydrate 

containing cytochalasin B and CZB calcium free medium. The mice oocytes were 

cultured into this medium for 3 hours. 
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3.5.4 In Vitro Culture  (IVC)  

Culture medium for IVC was various depends on experimental animal, where the goat 

sample was using the KSOM while the mice sample was using the WM medium. The 

microdroplets of IVC (80 µm) was overlaid with mineral oil and equilibrated inside the 

CO2 (5%)  incubator Both animal samples were wash with the respective IVC medium 

(3x) before being cultured into the IVC medium. The culture was incubated at 38.5°C 

(goat) and 37°C (mice) and humidified air for 9 days. The embryos were evaluated at 

Day 2, 5, 7 and 9 for embryonic development. 

 

3.5.5 ICSI-derived Embryos using Hoechst Staining  

In order to ensure the embryonic development stage, the cleaved embryos were stained 

with Hoechst. The number of nuclei in the blastomeres was determined using 

epifluorescence microscope.  

 Generally, a few droplets of PBS (-) (100 µl) and fixative solution (100 µl) were 

made and overlaid with mineral oil on the Petri dish (35 mm or 60 mm). The cleaved 

embryos were washed in PBS (-) (5x) followed by in fixative solution (3x) on heated 

stage of stereomicroscope. Then, the embryos were placed to the last droplet of fixative 

solution for 5 minutes at 25°C.  Four small drops of Vaseline-wax were placed on the 

centre of the glass slide. After 5 minutes, the embryos were transferred on the slide and 

mounted with the coverslip. The excessive fixative solution was slowly aspirated out 

from the embryos before mounted with coverslip. The coverslip was sealed with 

adhesive (cutex), labeled on the side of slide and kept in refrigerator (4°C) before being 

examined under epifluorescence microscope.  
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3.6 EXPERIMENTAL DESIGN 

The main objective of this project was an attempt to investigate the effects of selected 

sperm and oocytes factors on ICSI performance in mice and goats.  

 

3.6.1 Effects of Sperm Factors on ICSI Performance in Mice (Experiment 1) 

The objectives of this experiment were (i) to study the effect of sperm capacitation 

chemicals on embryo development, (ii) to investigate the effect of sperm movement 

characteristics using different sperm capacitation chemicals on embryo development. 

Subsequently, the optimal of sperm capacitation chemicals and sperm movement were 

identified based on the embryo development. The collected sperm from epididymis 

were capacitated for 60 minutes either using Heparin (50 µg/ ml) or Theophylline (9 µg/ 

ml) as sperm capacitation chemicals. The sperm movement criteria (Rapid and Slow) on 

ICSI performance were also compared. Rapid sperm was scored by rapid (motile) 

movement and the Slow sperm was scored by locally motile movement (Giwercman et 

al., 2003). ICSI procedure and oocytes activation were carried out for both factors to 

determine the optimal ICSI-derived embryos’ developmental competence. The 

parameters such as oocytes maturation rate, embryo cleavage rate and embryo 

develomental rate between different grades of oocytes were also evaluated.  

 

3.6.2 Effects of Oocyte Factors on ICSI Performance in Mice (Experiment 2) 

The female mice were superovulated with PMSG and hCG in order to obtain COCs 

used in this experiment. The durations of post-hCG administration (13-15 hours vs. 16-

18 hours) on embryo development were investigated. The number of matured oocytes 

was determined by removing the cumulus cells (CCs) layer using the hyaluronidase 
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(0.1%). The matured oocytes (MII meiotic stage) with the presence of first polar body 

were selected for ICSI. The post-ICSI oocytes were activated and cultured inside the 

CO2 (5%) incubator at 37.5°C for 9 days. The parameters such as maturation rate, 

cleavage rate and embryo development rate were determined.  

 

3.6.3 Effects of Sperm Factors on ICSI Performance in Goat (Experiment 3) 

The objectives of this experiment were (i) to compare the effect of sperm capacitation 

chemicals on embryo development, and (ii) to evaluate the effect of sperm movement 

characteristic on embryo development. Subsequently, the optimal sperm capacitation 

chemicals treatment and, sperm movement on ICSI performance were investigated.

 The frozen sperm of Jermasia male goat were thawed (37.5°C) and underwent 

for sperm washing 15 minutes by centrifugation (200 x g). Prior to washing, the sperm 

motility was checked. After washing, the sperm pellet was isolated and followed by 

sperm capacitation (60 minutes), using sperm capacitation medium that consisted of 

either Heparin (50 µg/ ml) or Theophylline (9 µg/ ml) as the sperm capacitation 

chemicals. The sperm movement criteria (Rapid and Slow) on ICSI performance were 

also compared. Rapid sperm was scored by rapid (motile) movement and the Slow 

sperm was scored by locally motile movement (Giwercman et al., 2003).  ICSI 

procedure and oocytes activation were carried out for both factors. The parameters such 

as oocytes maturation rate, embryo cleavage rate and different embryo development rate 

between different grades of oocytes were investigated. 
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3.6.4 Effects of Oocyte Factors on ICSI Performance in Goat (Experiment 4) 

The aims of this experiment were (i) to investigate the effects of LOPU cycle on yield 

of oocytes and (ii) to evaluate the effects of IVM duration on maturation rate. A total of 

16 goats underwent at least three cycles of LOPU procedure for retrieval of the oocytes. 

 The goats were oestrus synchronised and superovulated before LOPU surgery 

was carried out (Section 3.4.3.1.1).   The number of oocytes retrieved and maturation 

rate performance from first, second and third cycles of LOPU were investigated. The 

retrieval oocytes (COCs) from LOPU were cultured into IVM medium for duration 

between 18 to 21 hours and 22 to 25 hours. The COCs were categorised according to 

different grades (A, B, C, D and E). ICSI procedure was carried out only in Grades A, B 

and C oocytes. Briefly, oocytes were removed from CCs using hyaluronidase (0.1%) to 

help in visual examination of matured oocytes. Only the matured oocytes (MII meiotic 

stage) were selected for ICSI procedure. The parameters such as number of retrieved 

oocytes, maturation rate and grades of oocytes were determined for the factors studied 

in these experiments.  
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3.7 STATISTICAL ANALYSIS 

The effects of mouse sperm capacitation chemicals and sperm movement characteristics 

(Experiment 1); mouse post-hCG duration (Experiment 2); goat sperm capacitation 

chemicals and sperm movement characteristics (Experiment 3); goats oocytes retrieval 

cycle (LOPU cycle), quality of oocytes and maturation duration (Experiment 4) were 

analysed by using one-way analysis of variance (ANOVA). The differences among the 

means obtained were determined usingDuncan’s Multiple range Test (DMRT). The 

analyses were performed by using SPSS statistical analysis programme. The data 

obtained from various experiments were presented as mean plus or minus standard error 

of means (mean±SEM) and at 5% significant level. 
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Figure 3.3: The represented diagram showed the flow chart of experimental design in this study. 
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Chapter 4 

4.0 RESULTS 

 

4.1 EFFECT OF SPERM CAPACITATION ON ICSI PERFORMANCE IN  

MICE (EXPERIMENT 1) 

As shown in Table 4.1, a total of 3077 cumulus oocytes complex (COC) were recovered 

from 120 donor mice. Out of these, 73.16% of oocytes were in MII stage (presence of 

polar body), 16.67% of oocytes were absent of polar body and 10.14% were in 

dysmorphic form (fragmented, disintegrated or degenerated). 

 Tables 4.2 show the embryonic development after ICSI for different sperm 

capacitation chemical treatments and sperm movements. Even though insignificance 

(P>0.05), generally the Heparin group gave higher cleavage rates than Theophylline 

group for all the developmental stages regardless of the sperm movement. Similarly, the 

Rapid group gave higher cleavage rates than Slow group regardless of the sperm 

capacitation chemical treatment (P>0.05). However, when disregard sperm movement 

(Table 4.3), the Heparin group gave significantly higher (P<0.05) cleavage rates than 

theophylline group at 2- and 4-cell stages (with values of 64.67±1.69% versus 

60.50±1.21% and 50.55±2.01% versus 45.09±1.60%, respectively). As for sperm 

movement, when disregard sperm capacitation chemical treatment (Table 4.4), there 

was no significant difference (P>0.05) in the cleavage rate at all stages of development 

(2-cell to morula stage). 
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Table 4.1: Number and percentages of oocytes obtained through oviduct oocyte retrieval in mice 

 

*Total no. of 

mice 

**Total no. 

of ovaries 
Total no. of oocytes 

per ovary  

Percent of oocytes with 

polar body 

Percent of oocytes 

without polar body  

Percent of dysmorphic 

oocytes 

120 224 
13.74 

(n=3077) 

73.16 

(n=2252) 

16.67 

(n=513) 

10.14 

(n=312) 

*   Total number of mice used for studies  

** Total number of ovaries was based on ovaries that contained oocyte 

 

 

 

 
 

Figure 4.1:  Percentage of oocytes obtained in mice. 
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Table 4.2: Cleavage rate (mean ± SEM) of ICSI derived embryos for different sperm capacitation chemical treatments and sperm  

       movements in mice 

 

Sperm capacitation 

chemical treatment 

Sperm 

movement 

*No. of 

injected oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

Heparin 

Rapid 
 

617 

 

65.43±1.90
az

 

(n=418) 

 

52.32±1.96
ay

 

(n=334) 

 

33.78±2.31
ax

 

(n=215) 

 

12.61±1.51
aw

 

(n=94) 

Slow 

 

547 

 

63.86±2.88
az

 

(n=367) 

48.67±3.59
ay

 

(n=287) 

29.83±3.36
ax

 

(n=174) 

10.78±1.75
aw

 

(n=78) 

Average 

(Total) 

 

1164 

 

64.67±1.69
z
 

(n=785) 

50.55±2.01
y
 

(n=621) 

31.86±2.02
x
 

(n=389) 

11.72±1.15
w
 

(n=172) 

Theophylline 

Rapid 
 

526 

 

61.39±1.37
az

 

(n=328) 

 

45.87±1.86
ay

 

(n=249) 

 

31.42±2.32
ax

 

(n=168) 

13.86±1.55
aw

 

(n=79) 

Slow 

 

 

562 

 

 

59.51±2.06
az

 

(n=344) 

44.23±2.72
ay

 

(n=260) 

28.43±3.05
ax

 

(n=175) 

11.91±1.62
aw

 

(n=76) 

Average 

(Total) 

 

 1088 

 

60.50±1.21
z
 

(n=672) 

 

45.09±1.60
y
 

(n=509) 

 

30.00±1.88
x
 

(n=343) 

12.93±1.12
w
 

(n=155) 

* No. of injected oocytes was based on total no. of oocyte used for ICSI (MII stage) 
a       Mean values within a column with same superscripts were not significantly different (P>0.05) 
wxyz  Mean value within row with diferent superscripts were significantly different (P<0.05 
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Table 4.3: Cleavage rate (mean ± SEM) of ICSI derived embryos for different sperm capacitation chemical treatments in mice 

Sperm capacitation 

chemical treatment 

*No. of injected 

oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

Heparin 
 

1164 

64.67±1.69
bz

 

(n=785) 

50.55±2.01
by

 

(n=621) 

31.86±2.02
ax

 

(n=389) 

11.72±1.15
aw

 

(n=172) 

Theophylline 

 

1088 

 

60.50±1.21
az

 

(n=672) 

 

45.09±1.60
ay

 

(n=509) 

 

30.00±1.88
ax

 

(n=343) 

12.93±1.12
aw

 

(n=155) 

Average 

(Total) 
2252 

62.56±1.05
z
 

(n=1457) 

47.78±1.31
y
 

(n=1130) 

30.92±1.37
x
 

(n=732) 
12.33±0.80

w
 

(n=327) 

*     Number of injected oocytes was based on total no. of oocyte used for ICSI (MII stage) 
ab     Mean values within a column with different superscripts were  significantly different (P<0.05) 
wxyz  Mean value within row with different superscripts were significantly different (P<0.05) 

 

 

 

 

 

 

 



114 

 

Table 4.4: Cleavage rate (mean ± SEM) of ICSI derived embryos for different sperm movements in mice 

Sperm capacitation 

chemical treatment 

*No. of injected 

oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

Rapid 

 

1143 

 

63.36±1.91
az

 

(n=746) 

49.02±1.43
ay

 

(n=583) 

32.57±1.63
ax

 

(n=383) 

13.25±1.07
aw

 

(n=173) 

Slow 
 

 1109 

61.68±1.78
az

 

(n=711) 

46.45±2.25
ay

 

(n=547) 

29.13±2.24
ax

 

(n=349) 
11.34±1.18

aw
 

(n=154) 

 

Average 

(Total) 

 

 2252 

62.56±1.05
z
 

(n=1457) 

47.78±1.31
y
 

(n=1130) 

30.92±1.37
x
 

(n=732) 
12.33±0.80

w
 

(n=327) 

*      Number of injected oocytes was based on total no. of oocyte used for ICSI (MII stage) 
a       Mean values within a column with same superscripts were not  significantly different (P>0.05) 
wxyz   Mean value within row with different superscripts were significantly different (P<0.05) 
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4.2 EFFECT OF OOCYTE FACTORS ON ICSI PERFORMANCE IN MICE      

(EXPERIMENT 2) 

The effects of post-hCG administration durations (13-15 hours and 16-18 hours) on the 

oocyte retrieval were evaluated in this experiment (Table 4.5). A total of 224 ovaries 

were obtained from 120 donor mice with total numbers of oocytes per ovary of 

13.91±0.61 (1557) and 13.57±0.54 (1520) for 13-15 hours and 16-18 hours durations, 

respectively.  There were significant differences between the post-hCG administration 

duration for percent for polar body presence and percent of polar body absence with 

values of 75.61±1.64% versus 67.37±1.50% and 12.50±1.55% versus 21.82±1.49%, 

respectively. However, there were no significance differences for the percent 

dysmorphic oocytes with the values of 11.88±1.16% versus 10.76±1.24%, respectively.  

Table 4.6 shows the cleavage rates of ICSI derived embryos for different post-

hCG administration durations. The cleavage rates at 2-, 4-, 8-cell and morula stages 

were significant higher (P<0.05) at 13-15 hours compared to 16-18 hours duration 

(67.95±1.06% versus 57.02±1.33%, 53.51±1.13% versus 41.90±1.98%, 39.40±1.01% 

versus 22.21±1.62%, and 14.83±1.09% versus 9.77±1.02%, in respectively). The 

cleavage rates were decreased in all cases from early to the later stages of embryonic 

development significantly (P<0.05). 
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Table 4.5: Number (mean ± SEM) and percent (mean ± SEM) of oocytes obtained through oviduct oocytes retrieval in mice 

Post-hCG 

duration 

*Total no. 

of mice 

**Total no. 

of ovaries 

Total no. of oocytes 

per ovary 

Percent of oocytes 

with polar body  

Percent of oocytes 

without polar body  

Percent of 

dysmorphic oocytes 

 

13-15 hours 60 112 
13.91±0.61

a
 

(n=1557) 

75.61±1.64
bz

 

(n=1208) 

12.50±1.55
ay

 

(n=177) 

11.88±1.16
ay

 

(n=173) 

16-18 hours 
60 112 

13.57±0.54
a
 

(n=1520) 

67.37±1.50
az

 

(n=1044) 

21.82±1.49
by

 

(n=336) 

10.76±1.24
ax

 

(n=139) 

Average 

(Total) (n=120) (n=224) 
13.74±0.41 

(n=3077) 

71.49±1.14
z
 

(n=2252) 

17.16±1.12
y
 

(n=513) 

11.32±0.85
x
 

(n=312) 

*     Total no. of mice used for studies  

**   Total no. of ovaries was based on ovaries that contained oocyte 
ab     Mean values within a column with different superscripts were significantly different (P<0.05) 
xyz    Mean value within row with different superscripts were significantly different (P<0.05) 
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Table 4.6: Cleavage rate (mean ± SEM) of ICSI derived embryos for different post-hCG duration in mice 

Post-hCG duration 
*No. of injected 

oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

13-15 hours 

 

 1208 

 

67.95±1.06
bz

 

(n=836) 

53.51±1.13
by

 

(n=662) 

39.40±1.01
bx

 

(n=481) 

14.83±1.09
bw

 

(n=200) 

16-18 hours 

 

1044 

 

57.02±1.33
az

 

(n=621) 

 

41.90±1.98
ay

 

(n=468) 

 

22.21±1.62
ax

 

(n=251) 

 

9.77±1.02
aw

 

(n=127) 

 

Average 

(Total) 

1126 

(n=2252) 

62.56±1.05
z
 

(n=1457) 

47.78±1.31
y
 

(n=1130) 

30.92±1.37
x
 

(n=732) 
12.33±0.80

w
 

(n=327) 

*     Number of injected oocytes was based on total no. of oocyte used for ICSI (MII stage) 
ab     Mean value within a column with different superscripts were  significantly different (P<0.05) 
wxyz  Mean value within row with different superscripts were significantly different (P<0.05) 
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Figure 4.2: Morphology of different oocyte quality obtained after oviduct oocyte     

                retrieval in mice.  (a) Present of polar body, (b) Absent of polar body   

                 and (c) Dysmorphic oocytes. 
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Figure 4.3: Morphology of different embryonic development stage in mice. (a) 2- 

                   cell embryo, (b) 4-cell embryo, (c) 8-cell embryo and (d) Morula.
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4.3 EFFECTS OF SPERM FACTORS ON ICSI PERFORMANCE IN GOAT 

(EXPERIMENT 3) 

This experiment was designed to evaluate the effect of two sperm factors (sperm 

capacitation chemicals treatment and sperm movement) on ICSI derived embryo 

developmental competency.  

A total of  445 cumulus oocytes complexes (COC) from Grades A, B, C, D and 

E were retrieved from 64 goat ovaries through LOPU procedure (Table 4.7). The 

respective percent oocytes recovered were 28.93±3.45%, 20.40±2.98%, 29.25±3.45%, 

15.41±3.08% and 6.02±2.07%. Correspondingly, the numbers of oocytes per ovary 

were 1.89±0.23, 1.44±0.19, 2.40±0.34, 0.98±0.22 and 0.28±0.08, respectively. Table 

4.8 shows the maturation rates of oocytes after LOPU according to grades of oocytes. 

Percent oocytes matured for Grades A, B, C, D, and E were 96.35±2.11%, 

87.59±4.69%, 84.40±2.78%, 51.09±9.59% and 4.17±4.17%, respectively. 

Correspondingly, numbers of matured oocytes per ovary were 1.80±0.22, 1.27±0.17, 

2.00±0.30, 0.59±0.16 and 0.02±0.02, respectively. Grades D and E of oocytes were 

omitted in this experiment due to the significantly lower maturation rates obtained 

compared with Grades A, B and C.  

 Table 4.9 shows the embryonic development after ICSI for different sperm 

capacitation chemical treatments and sperm movements. Even though insignificance 

(P>0.05), generally in Heparin group, Grade A oocytes oocytes group at 2-, 4- and 8-

cell stage of the Slow group gave higher embryonic development cleavage rates than 

Rapid group. In morula, the Rapid group was higher than Slow group. Grade B group, 

showed higher embryonic development rate at 2-cell stage from Slow group. 

Meanwhile, the Rapid group showed higher embryonic development cleavage rate at 4- 

and 8-cell stages. The Rapid group of Grade C oocytes showed higher cleavage rates for 
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all stages of embryonic development stages (2-, 4-, 8-cell and morula stages). When 

combined the grades, only in 4-cell stage embryonic development showed higher 

cleavage rate for Rapid group. The rest of embryonic cleavage rate (2-, 8- and morula 

cell stage) were highly showed in Slow group. 

In the Theophylline group, the Grade A oocytes group gave significantly higher 

when using Rapid compared to the Slow sperm movement at 2-, 4-, and 8-cell stage 

(with the values of 95.83±4.17% versus 63.27±9.10%, 83.33±12.60% versus 

47.96±9.92% and 77.08±12.96% versus 20.15±8.52%, respectively). In Group B 

oocytes group, only at 2-cell stage showed significantly different when Rapid group was 

compared with Slow sperm movement group (84.38±5.98% versus 50.00±11.89%). The 

Grade C oocyte group gave no significant difference (P>0.05) for all development rates.  

The combined grades oocytes group (A, B and C) also gave significant higher using 

Rapid than Slow sperm movement group at all developmental stage (2-, 4-, 8- and 

morula cell stage) (85.42±4.17% versus 54.35±6.20%, 71.39±6.49% versus 

42.28±6.31%, 57.43±7.63% versus 21.63±5.34% and 10.76±5.03% versus 0.88±0.62%, 

respectively). 

 When disregard the sperm movement (Table 4.10), generally the Theophylline 

group gave higher cleavage rates than Heparin group. However, both sperm capacitation 

chemicals showed no significant difference (P>0.05) in cleavage rate at all 

developmental stages. As for sperm movement, when disregard sperm capacitation 

chemical treatment (Table 4.11), there was no significant difference (P>0.05) at 2-cell 

stage cleavage rate. However, at other stages of development (4-, 8- and morula cell 

stage), the Rapid group gave significantly higher (P<0.05) than Slow group, where the 

respective values were 56.62±4.69% versus 41.80±4.49%, 39.51±4.70% versus 

24.24±4.05% and 9.21±2.85% versus 2.24±0.94%. 
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Table 4.7: Number (mean ± SEM) of oocytes obtained after LOPU according to grades of goat oocytes 

Grade Total no. of oocytes recovered *No. of oocytes per ovary Percent oocytes recovered 

A 119 1.89±0.23
cd

 28.93±3.45
c
 

B 92 1.44±0.19
bc

 20.40±2.98
bc

 

C 153 2.40±0.34
d
 29.25±3.45

c
 

D 63 0.98±0.22
b
 15.41±3.08

b
 

E 18 0.28±0.08
a
 6.02±2.07

a
 

Average 

(Total) 

89 

(n=445) 

1.40±0.11 20.00±1.44  

(100%) 

*    Number of oocytes was based on 64 ovaries for all grades of oocytes 
abcd Mean values within a column with different superscripts were significantly different (P>0.05) 
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Table 4.8: Maturation rates (mean ± SEM) of oocyte after LOPU according to grades of goat oocytes  

Grade Total no. of oocytes 

per ovary 

Total no. of oocytes 

matured 

*No. of oocytes matured 

per ovary 

Percent of oocytes matured 

 

A 

 

1.89±0.23
cd 

(n=119) 

 

115 1.80±0.22
cd

 96.35±2.11
c 

B 1.44±0.19
bc 

(n=92) 

 

81 1.27±0.17
c
 87.59±4.69

c
 

C 2.40±0.34
d 

(n=153) 

 

128 2.00±0.30
d
 84.40±2.78

c
 

D 0.98±0.22
b 

(n=63) 

 

38 0.59±0.16
b
 51.09±9.59

b
 

E 0.28±0.08
a 

(n=18) 

 

1 0.02±0.02
a
 4.17±4.17

a
 

Average 

(Total) 

1.40±0.11 

(n=445) 

72.5 

(n=363) 
1.13±0.10 

64.72±5.89 

(100%) 

*   Total number of oocytes matured per ovary was based on 64 ovaries for all grades of oocytes 
abcd Mean values within a column with different superscripts were significantly different (P>0.05) 
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Table 4.9: Cleavage rate (mean ± SEM) of ICSI derived embryos for different sperm capacitation chemicals treatments in goats 

Sperm capacitation 

chemical treatment 

Grade of 

oocyte 

Sperm 

movement 

*No. of 

injected 

oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

Heparin 

A Rapid 40 62.89±9.41
az

 49.56±9.48
ayz

 30.78±7.97
axy

 14.56±7.09
ax

 

 

 

Slow 

 

30 

(n=28) 

84.67±6.80
az

 

(n=23) 

(n=24) 

55.50±13.43
ayz

 

(n=18) 

(n=15) 

43.50±13.04
ay

 

(n=16) 

(n=6) 

8.25±5.14
ax

 

(n=3) 

Average 

(Total) 

 

 

35 

(n=70) 

71.60±6.53
z
 

(n=51) 

51.93±7.67
y
 

(n=42) 

35.87±7.03
y
 

(n=31) 

12.03±4.69
x
 

(n=9) 

B Rapid 13 
52.38±15.61

az
 

(n=7) 

47.62±15.61
az

 

(n=6) 

29.76±13.83
ayz

 

(n=4) 

0.00±0.00
y
 

(n=0) 

 Slow 25 
70.17±10.24

az
 

(n=16) 

43.50±10.98
ayz

 

(n=12) 

26.67±11.71
axy

 

(n=6) 

0.00±0.00
x
 

(n=0) 

Average 

(Total) 
 

19 

(n=38) 

62.84±8.78
z
 

(n=23) 

45.20±8.82
yz

 

(n=18) 

27.94±8.66
y
 

(n=10) 

0.00±0.00
x
 

(n=0) 

C Rapid 41 
63.18±8.70

az
 

(n=26) 

41.16±9.11
ay

 

(n=20) 

20.25±6.51
ax

 

(n=13) 

4.81±2.71
ax

 

(n=4) 

 Slow 35 
45.58±10.31

az
 

(n=19) 

26.26±8.18
ayz

 

(n=11) 

12.84±5.53
axy

 

(n=7) 

3.12±2.13
ax

 

(n=2) 

Average 

(Total) 
 

38 

(n=76) 

54.76±6.81
z
 

(n=45) 

34.03±6.22
y
 

(n=31) 

16.70±4.28
x
 

(n=20) 

4.00±1.71
x
 

(n=6) 

Combines 

grades 
Rapid 94 

60.83±5.93
az

 

(n=61) 

46.19±6.01
ay

 

(n=50) 

26.85±4.98
ax

 

(n=32) 

8.12±3.37
aw

 

(n=10) 

 Slow 90 
66.12±6.01

az
 

(n=58) 

41.25±6.47
ay

 

(n=41) 

27.19±6.22
ay

 

(n=29) 

3.77±1.86
ax

 

(n=5) 

Average 

(Total) 
 

92 

(n=184) 

63.35±4.20
z
 

(n=119) 

43.84±4.38
y
 

(n=91) 

27.01±3.91
x
 

(n=61) 

6.04±1.98
w
 

(n=15) 

Continued 
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Continued 

Sperm capacitation 

chemical treatment 

Grade of 

oocyte 

Sperm 

movement 

*No. of 

injected 

oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

Theophylline 

A Rapid 14 
95.83±4.17

bz
 

(n=13) 

83.33±12.60
bz

 

(n=10) 

77.08±12.96
bz

 

(n=9) 

18.75±13.15
ay

 

(n=2) 

 Slow 31 
63.27±9.10

az
 

(n=21) 

47.96±9.92
az

 

(n=16) 

20.15±8.52
ay

 

(n=8) 

1.02±1.02
ay

 

(n=1) 

Average 

(Total) 

 

 

 

22.5 

(n=45) 

75.11±6.81
z
 

(n=34) 

60.82±8.47
yz

 

(n=26) 

40.86±9.20
y
 

(n=17) 

7.47±4.98
x
 

(n=3) 

B Rapid 20 
84.38±5.98

bz
 

(n=16) 

63.54±11.78
az

 

(n=13) 

59.38±12.34
az

 

(n=12) 

7.29±4.84
ay

 

(n=2) 

 Slow 21 
50.00±11.89

az
 

(n=11) 

28.03±11.91
ayz

 

(n=6) 

25.00±12.15
ayz

 

(n=5) 

0.00±0.00
ay

 

(n=0) 

Average 

(Total) 
 

 20.5 

(n=41) 

64.47±8.21
z
 

(n=27) 

42.98±9.24
yz

 

(n=19) 

39.47±9.41
y
 

(n=17) 

3.07±2.13
x
 

(n=2) 

C Rapid 31 
76.04±9.50

az
 

(n=19) 

67.29±9.25
az

 

(n=16) 

35.83±11.46
ay

 

(n=8) 

6.25±6.25
ax

 

(n=2) 

 Slow 23 
46.67±12.12

az
 

(n=12) 

50.00±10.83
az

 

(n=12) 

20.00±6.94
ay

 

(n=6) 

1.67±1.67
ay

 

(n=1) 

Average 

(Total) 
 

 27 

(n=54) 

59.72±8.5
z
 

(n=31) 

57.69±7.38
z
 

(n=28) 

27.04±6.47
y
 

(n=14) 

3.70±2.88
x
 

(n=3) 

Combines 

grades 
Rapid 65 

85.42±4.17
bz

 

(n=48) 

71.39±6.49
byz

 

(n=39) 

57.43±7.63
by

 

(n=29) 

10.76±5.03
bx

 

(n=6) 

 Slow 75 
54.35±6.20

az
 

(n=44) 

42.28±6.31
az

 

(n=34) 

21.63±5.34
ay

 

(n=19) 

0.88±0.62
ax

 

(n=2) 

Average 

(Total) 
 

 70 

(n=140) 

66.99±4.49
z 

(n=92) 

54.12±4.91
y 

(n=73) 

36.19±4.97
x 

(n=48) 

4.90±2.15
w 

(n=8) 
*      Number of injected oocyte was based on MII stage oocyte that used for ICSI, in respectively grade 
ab     Mean values within a column with different superscripts were significantly different (P<0.05) 
wxyz  Mean value within row with different superscripts were significantly different (P<0.05) 
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Table 4.10: Summary of cleavage rate (mean ± SEM) of ICSI derived embryos for different sperm capacitation chemicals treatments in  

                 goats 

 

Sperm capacitation 

treatment 

*No. of injected 

oocytes  

Cleavage rate (%) 

2-cells  4-cells 8-cells Morula 

Heparin 
184 

 

63.35±4.20
az

 

(n=119) 

43.84±4.38
ay

 

(n=91) 

27.01±3.91
ax

 

(n=61) 

6.04±1.98
aw

 

(n=15) 

Theophylline 140 

 

66.99±4.49
az

 

(n=92) 

 

54.12±4.91
ay

 

(n=73) 

 

36.19±4.97
ax

 

(n=48) 

 

4.90±2.15
aw

 

(n=8) 

Average 
 162 

(n=324) 

65.08±3.06
z 

(n=211) 

48.73±3.30
y 

(n=164) 

31.38±3.14
x 

(n=109) 

5.50±1.45
w 

(n=23) 
*    Mean percentage of embryo development was based on oocytes used for ICSI  
a     Mean value within a column with same superscripts were  not significantly different (P>0.05) 
wxyz Mean value within row with different superscripts were significantly different (P<0.05) 
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Table 4.11: Summary of cleavage rate (mean ± SEM) of ICSI derived embryos for different sperm movements in goats 

Sperm capacitation 

treatment 

*No. of injected 

oocytes  

Cleavage rate (%) 

2-cells  4-cells 8-cells Morula 

Rapid 159 
71.00±4.17

az
 

(n=109) 

56.62±4.69
by

 

(n=89) 

39.51±4.70
bx

 

(n=61) 

9.21±2.85
bw

 

(n=16) 

Slow 
 

165 

 

59.88±4.36
az

 

(n=102) 

 

41.80±4.49
ay

 

(n=75) 

 

24.24±4.05
ax

 

(n=48) 

 

2.24±0.94
aw

 

(n=7) 

Average 
 162 

(n=324) 

65.08±3.06
z 

(n=211) 

48.73±3.30
y 

(n=164) 

31.38±3.14
x 

(n=109) 

5.50±1.45
w 

(n=23) 
*    Number of embryo development was based on oocytes used for ICSI 
ab    Mean value within a column with different superscripts were significantly different (P<0.05) 
wxyz Mean value within row with different superscripts were significantly different (P<0.05) 



128 

 

4.4 EFFECTS OF OOCYTE FACTORS ON ICSI PERFORMANCE IN  

            GOAT (EXPERIMENT 4)  

This experiment was divided into two parts: (i) to investigate the effects of LOPU cycle 

on yield of oocytes and (ii) to evaluate the effects of IVM duration on maturation rate 

and ICSI- derived embryonic development. 

 

4.4.1 The Effect of LOPU Cycle on Yield of Oocytes 

There were 3 repeated cycles of LOPU procedure performed using 16 donor goats. The 

oocytes obtained were classified based on COC layer criterion and was divided into 5 

grades, which were Grades A, B, C, D and E, respectively (Figure 4.4). 

Table 4.12 shows the number of oocytes obtained from Grades A, B, C, D and E 

for different oocyte recovery (OR) cycles. Generally, the number of oocytes recovered 

decreased when the cycle increased (OR1, OR2 and OR3) with the values of 5.47±0.67, 

3.94±0.44 and 3.09±0.50 respectively. The OR1 retrieved number was significantly 

higher (P<0.05) than OR2 and OR3. When analysed the each grades of oocytes, Grades 

B and D gave no significance difference (P>0.05) between the OR cycle. In Grade A, 

the number of oocytes obtained in OR1 and OR2 was significantly higher than OR3, 

which were 1.50±0.34 and 1.25±5.27 versus 0.56±0.13. In Grades C, the number of 

oocytes obtained in OR1 was significantly higher (P<0.05) than OR2 or OR 3, which 

were 2.41±0.36 versus 1.25±0.23 and 1.06±0.31, respectively. The Grade E gave higher 

significantly difference (P<0.05) in OR2 and OR3 compared to OR1 (0.22±0.07 and 

0.34±0.13 versus 0.03±0.03, respectively). 

Table 4.13 shows the oocyte recovery rate for different grades of oocytes. 

According to the results obtained, the recovery rates of oocytes for Grades A, B, C and 
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D were not significantly different (P>0.05) between the OR cycles (OR1, OR2 and 

OR3). Except in Grade E, the OR3 shows significantly higher oocytes recovery rate 

compared to OR1 (10.35±4.37% versus 0.26±0.26%, respectively). However, OR2 

recovery rate was not significantly different (P>0.05) from OR1 or OR3. 

When analysed the percent oocyte recovery for each grade per OR cycle, 

generally Grade C oocytes was higher in LOPU procedure. In OR1, the recovery rates 

of Grades D and E oocytes were not significantly different (P>0.05) (4.16±1.90% and 

0.26±0.26%, respectively). Grades A and B (24.78±4.73% and 21.39±4.31, 

respectively) were not significantly different to each other (P>0.05), but they were 

significantly higher (P<0.05) than Grades D and E. The C oocytes recovered were 

significantly higher compared to other grades, whereby the value of Grade C was 

40.04±5.22%. In OR2 cycle, the oocyte recovered in Grades A, B and C gave 

significantly higher results than Grades D and E, 29.36±5.27%, 21.95±5.01% and 

26.50±4.37% versus 7.69±2.40% and 8.30±3.64%, respectively. In OR3 cycle, there 

were no significant difference (P>0.05) for all grades of oocytes recovered.  
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Table 4.12: Number (mean ± SEM) of oocytes per ovary obtained after LOPU according grades for different OR cycle in goats 

OR cycle 

 

No. of 

ovaries 

No. of oocytes 

recovery per 

ovary 

No. of oocytes recovered per ovary  

 Grade A Grade B Grade C Grade D Grade E 

OR 1 32 
5.47±0.67

b
 

(n=175) 

1.50±0.34
by 

(n=48) 

1.25±0.27
ay 

(n=40) 

2.41±0.36
bz 

(n=77) 

0.28±0.13
ax 

(n=9) 

0.03±0.03
ax 

(n=1) 

OR 2 32 
3.94±0.44

a
 

(n=126) 

1.25±5.27
bz 

(n=40) 

0.94±0.22
az 

(n=30) 

1.25±0.23
az 

(n=40) 

0.28±0.08
ay 

(n=9) 

0.22±0.07
aby 

(n=7) 

OR 3 

 

32 

 

3.09±0.50
a
 

(n=99) 

0.56±0.13
ayz 

(n=18) 

0.66±0.20
ayz 

(n=21) 

1.06±0.31
az 

(n=36) 

0.41±0.15
ay 

(n=13) 

0.34±0.13
by 

(n=11) 

Average 

(Total) 

32 

(n=96) 

4.17±0.33 

(n=400) 

1.40±0.14
yz 

(n=106) 

0.95±0.13
y 

(n=91) 

1.57±0.19
z 

(n=153) 

0.32±0.07
x 

(n=31) 

0.2±0.05
x 

(n=19) 
ab Mean value within a column with different superscripts were significantly different (P<0.05) 
xyz Mean value within row with different superscripts were significantly different (P<0.05) 
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Table 4.13: Percentage (mean ± SEM) of oocytes obtained after LOPU according grades for different OR cycle in goats 

OR cycle 
No. of 

ovaries 

No. of oocytes 

recovery 

Percent oocytes recovery per ovary 

Grade A Grade B Grade C Grade D Grade E 

OR 1 32 
5.47±0.67

b
 

(n=175) 

24.78±4.73
ay 

(n=48) 

21.39±4.31
ay 

(n=40) 

40.04±5.22
az 

(n=77) 

4.16±1.90
ax 

(n=9) 

0.26±0.26
ax 

(n=1) 

OR 2 32 
3.94±0.44

a
 

(n=126) 

29.36±5.27
az 

(n=40) 

21.95±5.01
az 

(n=30) 

26.50±4.37
az 

(n=40) 

7.69±2.40
ay 

(n=9) 

8.30±3.64
aby 

(n=7) 

OR 3 

 

32 

 

3.09±0.50
a
 

(n=99) 

23.38±6.38
az 

(n=18) 

18.95±6.40
az 

(n=21) 

24.01±5.56
az 

(n=36) 

13.37±5.37
az 

(n=13) 

10.35±4.37
bz 

(n=11) 

Average 

(Total) 

32 

(n=96) 

4.17±0.33 

(n=400) 

25.84±3.15
yz 

(n=106) 

20.76±3.04
y 

(n=91) 

30.18±2.99
z 

(n=153) 

8.40±2.07
x 

(n=31) 

6.10±1.70
x 

(n=19) 
ab Mean value within a column with different superscripts were significantly different (P<0.05) 
xyz Mean value within row with different superscripts were significantly different (P<0.05) 
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4.4.2 The Effects of IVM Duration on Maturation Rate and ICSI- Derived  

Embryonic Development 

According to results obtained in Table 4.8, Grades D and E were shown to have low 

number of oocytes matured per ovary. Therefore, only oocytes from Grades A, B and C 

were selected for subsequent ICSI experiments. There were two different IVM durations 

(18-21 hours and 22- 25 hours) were assigned for the ICSI procedure. The cleavage 

rates for different grades of oocytes with respective IVM duration are depicted in Table 

4.14. A total of 327 matured oocytes this experiment were used for this experiment, in 

which 157 and 170 oocytes were used for 18-21 hours and 22-25 hours IVM duration, 

respectively. At the 18-21 hours IVM duration, Grade A oocytes showed significantly 

the highest (P<0.05) cleavage rates for all stages of development, followed by Grades B 

and C. At the 22-25 hours IVM duration, the cleavage rates for all grades of oocytes 

were not significantly different (P>0.05) among the grades.  

 Regardless of oocyte grades, no significant differences in maturation rates and 

cleavage rates for all stages embryonic development between 18-21 and 22-25 hours 

IVM durations. In addition, it was found that the first polar body formation for 18-21 

hours IVM duration was not clear and not fully visible as protrusion as those of 22-25 

hours IVM duration (Figure 4.5). 
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Table 4.14: Cleavage rate (mean ± SEM) of ICSI derived embryos at different IVM duration for different grades of goat oocytes 

IVM duration Grade of oocyte 
*No. of injected 

oocyte 

Cleavage rate (%) 

2-cell 4-cell 8-cell Morula 

18-21 hours 

A 
 

62 
59.20±7.23

bz
 

(n=42) 

47.41±7.15
bxz

 

(n=33) 

33.05±7.18
bx

 

(n=23) 

11.93±5.22
bx

 

(n=6) 

B 

 
32 

 

31.38±7.92
az

 

(n=20) 

 

20.46±6.17
ayz

 

(n=13) 

 

10.92±5.12
axy

 

(n=6) 

 

0.00±0.00
ax

 

(n=0) 

 

C 

 
63 

 

35.95±7.34
az

 

(n=34) 

 

24.45±5.89
az

 

(n=22) 

 

9.28±3.21
ay

 

(n=12) 

 

1.01±0.71
ay

 

(n=2) 

 

 

Average 

(Total) 

 

 

78.5 

(n=157) 

 

42.17±4.48
z
 

(n=96) 

30.78±3.88
y
 

(n=68) 

17.75±3.30
x
 

(n=41) 

4.31±1.83
w
 

(n=8) 

22-25 hours 

A 54 
57.52±8.02

az
 

(n=43) 

43.71±8.00
ayz

 

(n=37) 

31.24±7.18
ay

 

(n=26) 

3.98±1.78
ax

 

(n=6) 

 

B 

 

49 

41.11±6.99
az

 

(n=29) 

31.39±6.79
az

 

(n=24) 

26.94±6.25
az

 

(n=20) 

1.94±1.37
ay

 

(n=2) 

C 

 

67 

 

46.41±7.03
az

 

(n=44) 

37.06±6.44
az

 

(n=37) 

13.71±3.26
ay

 

(n=22) 

4.32±2.05
ay

 

(n=7) 

Average 

(Total) 

 

85 

(n=170) 

 

48.34±4.26
z
 

(n=116) 

37.39±4.09
y
 

(n=98) 

23.96±3.89
x
 

(n=68) 

3.41±1.01
w
 

(n=15) 

*     Number of injected oocyte was based on MII stage oocyte that used for ICSI, in respectively grade 
ab     Mean values within a column with different superscripts were significantly different (P<0.05) 
wxyz  Mean value within row with different superscripts were significantly different (P<0.05) 
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Table 4.15: Cleavage rate (mean ± SEM) of ICSI derived embryos at different IVM duration regardless grade of goat oocytes 

IVM duration 

*No. of injected 

oocytes  

*Maturation rate 
Cleavage rate (%) 

 2-cells  4-cells 8-cells Morula 

18-21 hours 

 

157 

 

97.34±7.86
a
 

(n=157/169) 

42.17±4.48
az

 

(n=96) 

 

30.78±3.88
ay

 

(n=68) 

 

17.75±3.30
ax

 

(n=41) 

 

4.31±1.83
aw

 

(n=8) 

 

22-25 hours 

 

170 

 

89.01±2.41
a
 

(n=170/195) 

48.34±4.26
az

 

(n=116) 

 

37.39±4.09
ay

 

(n=98) 

 

23.96±3.89
ax

 

(n=68) 

 

3.41±1.01
aw

 

(n=15) 

 

 

Average 

(Total) 

 

163.5 

(n=327) 

 

93.10±4.06 

(n=326/364) 

45.31±3.09
z 

(n=212) 

34.14±2.83
y 

(n=166) 

20.91±2.40
x 

(n=109) 

3.85±1.03
w 

(n=23) 

*    Number  of injected oocytes was based on oocytes used for ICSI 

**  (n=157/169): 156= Number of matured oocytes; 169= Number of oocytes recovered 
ab    Mean value within a column with different superscripts were  significantly different (P<0.05) 
wxyz Mean value within row with different superscripts were significantly different (P<0.05) 
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Figure 4.4: Morphology of different grade of goat oocytes. (a) Grade A, (b) Grade B,  

               (c) Grade C, (d) Grade D and (e) Grade E. 
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Figure 4.5: Morphological of matured goat oocyte with presents of first polar body. (a)       

         at IVM duration of 18-21 hours and (b) at IVM duration of  22-25 hours. 
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Figure 4.6:  Morphological of goat embryo development. (a) 2-cell embryo, (b) 4- 

              cell embryo, (c) 8 -ell embryo and (d) morula. 
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Figure 4.7:  Hoechst staining. (a) 2-cell embryo, (b) 4-cell embryo, (c) 8-cell embryo, 

                   (d) morula and (e) unfertilised oocyte. 
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Chapter 5 

5.0 DISCUSSION 

 

5.1 EFFECT OF SPERM FACTORS ON ICSI PERFORMANCE IN MICE 

(EXPERIMENT 1) 

Before beginning the ICSI experiment, the baseline data of oocytes showed that 73.16% 

of oocytes were in MII stage (i.e. presence of polar body), 16.67% absence of polar 

body and 10.14% dysmorphic form (i.e. fragmented, disintegrated or degenerated). 

Only the MII stages of oocytes were used in ICSI experiment.  

ICSI technique was mainly used to overcome motility and morphological 

deficiencies that may occur during traditional fertilisation (Goosens et al., 2003). The 

fertilisation processes such as capacitation, acrosome reaction and membrane fusion 

may bypass through ICSI technique. Chromatin remodeling will happen once the sperm 

nucleus undergoes several structural changes in ooplasmn. During this moment, the 

perinuclear material, acrosome and cell membrane were also together entering the 

ooplasmn (Ajduk et al., 2006). However, the chromatin remodeling might be interfered 

by perinuclear material, acrosome and cell membrane, even though these components 

can be disintegrated inside the ooplasmn (Ramalho-Santos et al., 2000; Katayama et al., 

2002; Sutovsky et al., 2003). Therefore, it has been suggested to have a full capacitation 

state before injecting the sperm for the occurrence of acrosome reactions in the 

ooplasmn (Sathananthan et al., 1997).  

 Heparin is a highly sulfated glycoaminoglycans that become natural inducer of 

sperm capacitation in cattles (Parish et al., 1989; Leclerc et al., 1992) and goats (Cox et 

al., 1994; Cognie et al., 1995). Heparin can induce the capacitation by reducing the 

intracellular calcium-mediator calmodulin (CaM) concentration from sperm cells. This 
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may reduce the Ca
2+

 pump activity and resulting increased back the intracellular Ca
2+

 

and activate the Ca
2+ 

dependent enzymes and subsequently bring the event of sperm 

capacitation. Theophylline is derived from methylxanthine has been used in human 

(Loughlin et al., 1992), mouse (Fisher et al., 1975), hamster (Cornwall et al., 1986), pig 

(Yoshioko et al., 2003) and cattle (Takahashi et al., 1993) for sperm capacitation 

inducer. Theophylline can enhance the sperm motility by raising cyclic AMP levels and 

produce abundant energy in sperm (Cornwall et al., 1986; Kajihara et al., 1990).  

Both sperm capacitation chemicals (Heparin and Theophylline) were used as 

treatments for mouse sperm capacitation studies. The results have shown that Heparin 

gave significantly higher (P<0.05) cleavage rates than Theophylline group at 2- and 4-

cell stages. This shows that Heparin gave better results as sperm capacitation chemicals 

at early stage of embryonic development compared to Theophylline. The later stages of 

embryonic development (8-cell and morula stages) were found to be not significantly 

different (P>0.05) among the two chemicals. It has been suggested that Heparin has the 

ability to speed up the cleavage rate compared to Theophylline at early stage of 

embryonic development in mice. Perhaps, it was reported that the developmental arrest 

at 5- to 8- cell stage on Day 3 and with a decrease in blastocyst formation on Day 5 

(Miller and Smith, 2001). They reported that there were associations between chemical 

activation with aberrant zygotic gene activation (in late paternal effect factor). This was 

suggested as to why the developmental rate of Heparin treated sperm gave good 

performance during early stage of development and not later stages of development. 

In a study by Kawakami et al. (1999), they showed that the percentage of motile 

sperm and hyperactivated sperm were increased by addition of Heparin and 

Theophylline. However, Theophylline gave a higher percentage of motile and 

hyperactivated sperm compared to Heparin. Both chemicals did not give effect on the 

percentage of acrosome reaction.  
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Based on results obtained by Kawakami et al. (1999), the acrosome reaction 

rates were not necessarily correlated with the percent of motile and hyperactivated 

sperm.  The motile and hyperactivated sperm are indicators of sperm capacitation. 

Capacitation is generally defined as a modification of the sperm surface that involves 

that mobilisation and/or removal of certain surface components from plasma membrane 

such as glycoproteins, decapacitation factor, acrosome-stabilising factor and acrosin 

inhibitor (Fraser, 1984 and 2008; Morales et al., 2003). The functional changes in sperm 

are preparing them to undergo acrosome reaction, promote the motility patterns and 

subsequently fertilised with the matured oocytes. During normal fertilisation, sperm 

nucleus decondensation and oocytes activation is occurred within ooplasmn and sperm 

sub-membrane components (Perry et al., 1999). In ICSI procedure, the sperm 

membrane breakdown by sperm penetration into oolemma was different with IVF and 

normal fertilisation. The sperm capacitation before ICSI is not sufficient compare to 

IVF and normal fertilisation because the sperm also capacitate when naturally passing 

through several natural barriers such as cumulus cells and zona pellucida. Thus, the 

insufficient of sperm capacitation process could contribute the persistence of sperm 

acrosome or its substructures and these might bring the insufficient sperm 

decondensation and prevent the importance of maternal nuclear proteins (Hewitson et 

al., 2000).  

In order to increase sperm membrane permeabilisation, acrosome reaction and 

sperm head decondensation following ICSI, there were several treatments have been 

used including freezing and thawing (Perreault et al., 1988), crushing the sperm tail 

with a micropipette (Keskintepe et al., 1997) or laser shot (Montag et al., 2000), 

removing the acrosome and tail by sonification (Keefer, 1989; Goto, 1993) and treated 

by various chemicals such as heparin (Izquierdo et al., 1998; Wei and Fukui, 1999, 

Kawakami, et al., 1999; Katska-Ksiazkiewicz et al., 2004), theophylline (Kawakami et 
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al., 1999; Ebner et al., 2011), calcium ionophore (Chen and Seidel, 1997; Wei and 

Fukui, 1999). 

 These studies also involved comparison between sperm capacitation chemical 

treatment (Heparin and Theophylline) and sperm movement (Rapid and Slow). Rapid 

sperm was score by rapid (motile) movement and the Slow sperm was score by locally 

motile movement (Giwercman et al., 2003). In this study, a normal morphology of 

sperm was selected to perform ICSI. This is to reduce any risk of defects effect from 

sperm abnormalities. Even though there has been reported that sperm morphological 

abnormality might not necessarily affecting the fertilisation and pregnancy rates after 

ICSI as long as the sperm is matured (from ejaculated sperm) (Mansour et al., 1995; 

Nagy et al., 1995), the precaution step through selecting normal morphology sperm has 

been taken.   

According to the results, even though insignificance (P>0.05), generally the 

Heparin group gave higher cleavage rates than Theophylline group for all the 

developmental stages regardless of the sperm movement. Similarly, the Rapid group 

gave higher cleavage rates than Slow group regardless of the sperm capacitation 

chemical treatment (P>0.05). As for sperm movement, when disregard sperm 

capacitation chemical treatment, there was no significant difference (P>0.05) in the 

embryonic development of cleavage rate at all stages of development (2-cell to morula 

stage). It can be inferred that the sperm movement with the normal morphology has 

same ability to perform ICSI-derived embryo. In addition, the sperm already capacitated 

with the sperm capacitation chemicals, either Heparin or Theophylline. It has been 

reported that the immotile sperm can show some motility after 2 to 3 hours of 

incubation (Nijs et al., 1996) which is in contrast to the results of presence study 

whereby sperm were incubated in the sperm capacitation chemicals treatment medium 

for 1 hour, similar to that of Kato and Nagao (2009). It was found that acrosome 
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reaction needs only 1 hour of incubation with Heparin or Theophylline. These also 

might lead both of sperm movement (Rapid and Slow) criteria obtained same 

opportunity to fertilise the matured oocyte. The slow sperm movement is not affecting 

the results of embryonic development which may be due to only the structure of the cell 

was defective but the nuclei were still alive for nuclear remodeling or decondensation to 

activate the oocytes for fertilisation and further embryonic development (Goto, 1997).   
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5.2 EFFECT OF OOCYTE FACTORS ON ICSI PERFORMANCE   IN MICE      

(EXPERIMENT 2) 

It was reported that the quality of oocytes produced by superovulation was affected by 

several factors such as dose and timing of gonadotrophin (Edgar et al., 1987; Vergara et 

al., 1997), weight (Hogan et al., 1986), age (Hogan et al., 1986; Ozgunen et al., 2001) 

and strain of mice (Goh, 2008;  Ainul Bahiyah, 2010). In this study, the timing of 

gonadotrophin becomes factor of interest. Most of previous studies, researchers chose 

the range of 13-15 hours of interval duration of oocytes collection with post-hCG 

administration such as at 13 hours (Hillier et al., 1985), 14 hours (Martin-Coello et al., 

2008), 14.5 hours (Vergara et al., 1997).  This duration were mainly chosen because 

generally, the mouse ovulation starts after 11 to 12 hours post-hCG administration 

(Hogan et al., 1986). 

In this experiment, two groups of post-hCG administration durations (13-15 

hours  and 16-18 hours) were evaluated to determine their effects on the total numbers 

of oocytes per ovary which were 13.91±0.61  and 13.57±0.54, respectively (P>0.05). 

There was no difference in the number of oocytes retrieved between the two post-hCG 

administration durations. However, percentage of polar body present was higher in 13-

15 hours group (75.61±1.64%) compared with 16-18 hours (67.37±1.50%). Conversely, 

the percent for polar body absent was significantly higher at 16-18 hours post-hCG 

administration duration compared with 13-15 hours duration with the values of 

12.50±1.55% versus 21.82±1.49%, respectively. This might be due to the aging of 

oocytes (post-maturity) at 16-18 hours. Matured oocytes (MII stage) should be fertilised 

within the window of optimal fertilisation, which may be different for  different species 

such as in mice (8-12 hours), rats (12-14 hours), rhesus monkeys and humans (<24 

hours) (Austin, 1974). The event of ovulation (first polar body or MII stage) and 
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fertilisation is optimal at 11-14 hours, while, the extrusion of second polar body is 

occured at 17-23 hours of post-hCG administration (Hogan et al., 1986). In addition, if 

the oocytes are not fertilised within the fertilisation window, it will undergo a time-

dependent deterioration in quality and this process is known as oocyte aging (Miao et 

al., 2009). The polar body absence was found in 16-18 hours post-hCG administration 

duration might be due to the oocytes started having physical changes, for examples, 

perivetelline space larger and the first polar body either started to degenerate or deviated 

from the MII spindle which was undergoing the process of aging (Miao et al., 2004). 

There was a few percentage of dysmorphic oocytes at both duration groups. 

Both of duration groups (13-15 hours and 16-18 hours) show no significant difference 

in percentage of dysmorphic oocytes. The presence of dysmorphic oocytes may be due 

to the exposure with hyaluronidase during cumulus cells removal. Hyaluronidase can 

activate the mouse oocytes (Kaufman, 1983) if inappropiate or higher concentration. 

However, in ICSI, the hyaluronidase concentration was reduced to 80 IU/ ml to avoid 

activation but for this case, the exposure time of oocytes to this chemical might initiate 

the oocytes to activate and becomes parthenotes or fragmented.  Other than that, the 

DNA fragmentation also could occur in the first polar body and oocyte cytoplasmn, 

indicating they were undergoing apoptotic changes (Fujino et al., 1996). Apoptosis is a 

morphological process that cause by ‘cellular suicide’ programme. Degenerating 

oocytes with cytoplasmic fragmentation were frequently found at oocyte retrieval 

(Wyllie, 1981). However, the reason why the cytoplasmic fragmentation occurs is still 

unclear (Fujino et al. 1996) 

In this study, only the oocytes with presence of polar body were used for ICSI 

experiments. the absence of polar body and dysmorphismn oocytes were discarded in 

order to reduce the risk of low quality embryonic development. This was because good 

quality oocytes would affect subsequent embryonic development after fertilisation 
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(Wang and Sun, 2007). The embryonic development cleavage rates at  2-, 4-, 8-cell and 

morula stages were significant higher (P<0.05) at 13-15 hours compared to 16-18 hours 

duration (67.95±1.06% versus 57.02±1.33%, 53.51±1.13% versus 41.90±1.98%, 

39.40±1.01% versus 22.21±1.62%, and 14.83±1.09% versus 9.77±1.02%, respectively). 

These results clearly showed that the post-hCG administration duration at 13-15 hours 

was the better duration for oocytes retrieval and embryonic development through ICSI 

procedure. Oocytes aging could have occurred at 16-18 hours duration. The oocyte 

aging before fertilisation may cause low embryonic development rates and also early 

pregnancy failure in several mammalian species (Wilcox et al., 1998). Thus, the use of 

aged oocyte should be minimised or avoided in order to obtain good embryonic 

development and pregnancy. 
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5.3 EFFECTS OF SPERM FACTORS ON ICSI PERFORMANCE IN GOAT 

(EXPERIMENT 3) 

This experiment was carried out to study the effect of two sperm factors (sperm 

capacitation chemicals treatment and sperm movement) on ICSI derived embryonic 

developmental competency. In order to optimise the embryonic developmental rate for 

these experiments, the quality of oocytes obtained from LOPU procedure were 

identified and only good quality of oocytes grades were selected for this study. 

Therefore, before start the ICSI studies, the baseline data of  oocytes were graded based 

on COCs layer criterion known as Grades A, B, C, D, and E, similarly done by Rahman 

(2008) and Kong (2010). Only Grades A, B and C oocytes were used compared to 

Grades D and E for ICSI experiment. The selection was done based on the maturation 

rate performance, where the maturation rates of Grades A, B, C were 96.35±2.11%, 

87.59±4.69% and 84.40±2.78%, while for the Grades D and E were 51.09±9.59% and 

4.17±4.17%, respectively.  

Sperm maturation process was occurred in male reproductive tract and become 

motile while transported in the epididymis (Yanagimachi, 1994). However, this 

maturation is not sufficient for fertilisation and they need to undergo the additional 

‘maturation’ process, termed ‘capacitation’ to acquire the ability to penetrate oocyte and 

fertilised in normal fertilsation process. This sperm capacitation process is requirements 

for triggering sperm acrosome reaction. Sperm acrosome reaction is a process of 

releasing the proteolytic enzyme to enable the sperm membrane permeabilisation and 

penetration through the oocyte zona pellucida. A full sperm capacitation state and 

acrosome reaction mechanism (Sathananthan et al., 1997) is not only required in normal 

fertilisation or IVF but also in ICSI procedure. This is because the insufficient of sperm 

capacitation process could contribute the persistence of sperm acrosome or its 
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substructures and these might bring the insufficient sperm decondensation and prevent 

the important of maternal nuclear proteins (Hewitson et al., 2000). 

In order to increase sperm capacitation, acrosome reaction and sperm head 

decondensation following ICSI, there were several treatments have been used including 

freezing and thawing (Perreault et al., 1988), crushing the sperm tail with a micropipette 

(Keskintepe et al., 1997) or laser shot (Montag et al., 2000), removing the acrosome and 

tail by sonification (Keefer, 1989; Goto, 1993) and treated by various chemicals such as 

heparin (Izquierdo et al., 1998; Wei and Fukui, 1999, Kawakami, et al., 1999; Katska-

Ksiazkiewicz et al., 2004), theophylline (Kawakami et al., 1999; Ebner et al., 2011), 

calcium ionophore (Chen and Seidel, 1997; Wei and Fukui, 1999). 

Heparin and Theophylline were used for sperm capcitation chemicals treatment 

in this experiment (this treatment also similarly conducted in Experiment 2 in mice 

experiment). Heparin is a highly sulfated glycoaminoglycans that become natural 

inducer of sperm capacitation in cattles (Parish et al., 1989; Leclerc et al., 1992) and 

goats (Cox et al., 1994; Cognie et al., 1995). Heparin can induce the capacitation by 

reducing the intracellular calcium-mediator calmodulin (CaM) concentration from 

sperm cells. This may reduce the Ca
2+

 pump activity and resulting increased back the 

intracellular Ca
2+

 and activate the Ca
2+ 

depend enzymes and subsequently bring the 

event of sperm capacitation. Theophylline is derived from methylxanthine have been 

used in human (Loughlin et al., 1992), mouse (Fisher et al., 1975), hamster (Cornwall et 

al., 1986), Pig (Yoshioko et al., 2003) and cattle (Takahashi et al., 1993) for sperm 

capacitation inducer. Theophylline can enhance the sperm motility by raising cyclic 

AMP levels and produce abundant energy in sperm (Cornwall et al., 1986; Kajihara et 

al., 1990). 

In the studies of both effect of sperm capacitation and sperm movement, 

generally, there were no significance different (P>0.05) in Heparin group. However, in 
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each grades of oocytes for sperm movement (Rapid and Slow) showed different pattern 

of embryonic development.  The slow sperm in Grade A oocytes group at 2-, 4- and 8-

cell stages gave higher embryonic development cleavage rates than Rapid group. In 

morula, the Rapid group was higher than Slow group. Grade B group, showed higher 

embryonic development rate at 2-cell stage from Slow group. Meanwhile, the Rapid 

group showed higher embryonic development cleavage rate at 4- and 8-cell stage. The 

Rapid group of Grade C oocytes showed higher cleavage rates for all stages of 

embryonic development rates (2-, 4-, 8-cell  and morula stages). When combined the 

grades (Grades A, B and C), only in 4-cell stage embryonic development showed higher 

cleavage rate for Rapid group. The rest of embryonic development cleavage rates (2-, 8-

cell and morula stages) were highly showed in Slow group. In overall discussion for 

Heparin group, most of the early stage of embryo development (2-cell stage) was higher 

when using Slow sperm movement for all grades of oocytes, except for Grade C. 

However, there were no significantly different analyses were found when comparing 

this parameter (Rapid and Slow). Therefore, it still can assume that, the Slow sperm has 

the ability to undergo same fertilisation capability. Goto (1997) has reported that slow 

sperm movement is not affecting the results of embryonic development may be due to 

only the structure of the cell is defect but the nuclei were still alive for nuclear 

remodeling or decondensation to activate the oocytes for fertilisation and further 

embryonic development (Goto, 1997).  However, there are still need more studies to 

support this statement because some of sperm chromatin remodeling and abnormalities 

should be identified to confirm the ability and effective of using Slow sperm for the 

successful of embryonic development and pregnancy. 

In Theophylline group, generally the results showed higher rates of embryonic 

development in all grades using Rapid sperm movement. The Grade A oocytes group 

gave significantly higher when using Rapid compared to the Slow sperm movement at 



150 

 

2-, 4-, and 8-cell stage (with the values of 95.83±4.17% versus 63.27±9.10%, 

83.33±12.60% versus 47.96±9.92% and 77.08±12.96% versus 20.15±8.52%, 

respectively). In Group B oocytes group, only at 2-cell stage showed significantly 

different when Rapid group was compared with Slow sperm movement group 

(84.38±5.98% versus 50.00±11.89%). The Grade C oocyte group gave no significant 

difference (P>0.05) for all embryonic developmental rates.  The combined grades 

oocytes group (Grades A, B and C) also gave significant higher using Rapid than Slow 

sperm movement group at all developmental stage (2-, 4-, 8-cell and morula stages) 

(85.42±4.17% versus 54.35±6.20%, 71.39±6.49% versus 42.28±6.31%, 57.43±7.63% 

versus 21.63±5.34% and 10.76±5.03% versus 0.88±0.62%, respectively).  According to 

the results, it may be concluded that in Theophylline group, the Rapid sperm movement 

gave better embryonic development cleavage rates at all stages.  

 When disregard the sperm movement, Theophylline group gave higher cleavage 

rates than Heparin group. However, both sperm capacitation chemicals showed no 

significant difference (P>0.05) in cleavage rate at all developmental stages. In 

agreement with Kawakami et al., (1999), Theophylline gave a higher percentage of 

motile and hyperactivated sperm compared to Heparin. However, it was not found any 

significance different of acrosome reaction rate (Kawakami et. al. 1999). This might be 

one of the reason why no significance different found of embryonic developmental rates 

in using of both sperm capacitation chemicals treatment.  

As for sperm movement, when disregard sperm capacitation chemical treatment, 

there was no significant difference (P>0.05) at 2-cell stage cleavage rate. However, at 

other stages of development (4-, 8-cell and morula stages), the Rapid group gave 

significantly higher (P<0.05) than Slow group, where the respective values were 

56.62±4.69% versus 41.80±4.49%, 39.51±4.70% versus 24.24±4.05% and 9.21±2.85% 

versus 2.24±0.94%. The embryonic developmental might be delay of cleavage speed at 
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early stage of embryo. However, the significance findings were dominantly showed in 

using Rapid sperm for later stage of development. It was reported that, early paternal 

effect may cause delay of cleavage speed and contribute of poor quality of embryo 

development (Menezo, 2006). However, in other report, the sperm defective is not 

directly associated with early paternal effects (Lee et al., 2009). The time of fertilisation 

is controlled in ICSI indicates that the early cleavage of embryos mainly influenced by 

some intrinsic factors within the embryo (Sakkas et al., 1998). Sperm become second 

important factors compared to oocyte for a successful of embryonic developmental. It 

can be assumed that later stage of development was significantly different may due to 

has any intrinsic factor of oocytes were fully trigger for further development.  

According to results obtained, the ability of both sperm capacitation chemicals 

treatment has same ability to fertilise and develop embryos. The Rapid sperm 

movement was clearly gave better choice for ICSI procedure, even the slow sperm also 

has the ability to fertilise and develop embryo.  
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5.4 EFFECTS OF OOCYTE FACTORS ON ICSI PERFORMANCE IN  

GOAT (EXPERIMENT 4)  

 

5.4.1 The Effect of LOPU Cycle on Yield of Oocytes 

Laparoscopic ovum pick-up (LOPU) is an alternative procedure in order to provide 

consistent quality of oocytes for IVP programme. LOPU is minimally invasive and 

faster post-operative recovery compared to the standard laparotomy (Koeman et al., 

2003; Tibary et al., 2005).  LOPU is reported to be an efficient method for oocytes 

provider (Baldassarre et al., 2002; Pierson et al., 2004, Abdullah et al., 2007, Rahman 

et al., 2008a and 2008b; Kong, 2010). LOPU allows repetition of the laparoscopic 

procedure more frequently and more times during the reproductive life of a valuable 

female (Baldassarre et al., 2007), ability of producing embryos and offspring from 

animal which not capable to reproduce by multiple ovulation-embryo transfer (MOET) 

and artificial insemination (AI), including prepubertal (Baldassarre and Karatzas, 2004) 

and aged goats (Baldassarre et al., 2007). The LOPU technique avoids several causes of 

the poor results related with superovulation, such as poor ovulation rate, early 

regression of corpus luteum (CL) and poor fertilisation (Baldassarre and Karatzas, 

2004).  

 LOPU procedure can be conducted for hormonal stimulated or unstimulated 

animals. In the present experiment, the 16 goats were used 3 times and stimulated with 

60 hours post-PMSG + hCG. Our previous study had shown that the 60 or 72 hours of 

post-FSH + hCG gave optimised yield of good quality of goats oocytes for IVM and 

embryo production (Abdullah et al., 2008).  The repeated oocyte recovery (OR) 

surgeries was conducted at 3 months interval.  
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Generally, the number of oocytes recovered decreased when the cycle increased 

(OR1, OR2 and OR3) with the values of 5.47±0.67, 3.94±0.44 and 3.09±0.50 

respectively. The OR1 retrieved number was significantly higher (P<0.05) than OR2 

and OR3. The total number of oocytes retrieved were decreased may be due to the 

repeated follicular punctured during the procedure might alter endocrine profiles 

slightly and subsequently cause minor morphological changes in ovaries (Petyim et al., 

2001). When analysed the each grades of oocytes, Grades B and D gave no significance 

difference (P>0.05) between the OR cycle. In Grade A, the number of oocytes obtained 

in OR1 and OR2 was significantly higher than OR3, which were 1.50±0.34 and 

1.25±5.27 versus 0.56±0.13. In Grades C, the number of oocytes obtained in OR1 was 

significantly higher (P<0.05) than OR2 or OR 3, which were 2.41±0.36 versus 

1.25±0.23 and 1.06±0.31, respectively. The Grade E gave higher significantly 

difference (P<0.05) in OR2 and OR3 compared to OR1 (0.22±0.07 and 0.34±0.13 

versus 0.03±0.03, respectively). When analysed by oocytes recovery rate, Grades A, B, 

C and D were not significantly different (P>0.05) between the OR cycles (OR1, OR2 

and OR3). Except in Grade E, the OR3 shows significantly higher oocytes recovery rate 

compared to OR1 (10.35±4.37% versus 0.26±0.26%, respectively). However, OR2 

recovery rate was not significantly different (P>0.05) from OR1 or OR3. This is in 

agreement with Pierson et al., (2004); Rahman et al., (2007).  According to their 

findings, LOPU can be repeated up to 5 times in the goats at different intervals and in 

different seasons with little or no important change in overall response. Therefore, 

LOPU was capable to be repeated more than 3 times. 

When analysed the percent oocyte recovery for each grade per OR cycle, 

generally Grade C oocytes was higher in LOPU procedure. In OR1, the recovery rates 

of Grades D and E oocytes were not significantly different (P>0.05) (4.16±1.90% and 

0.26±0.26%, respectively). Grades A and B (24.78±4.73% and 21.39±4.31, 
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respectively) were not significantly different to each other (P>0.05), but they were 

significantly higher (P<0.05) than Grades D and E. The C oocyte recovered was 

significantly higher compared to other grades, whereby the value of Grade C was 

40.04±5.22%. In OR2 cycle, the oocyte recovered in Grades A, B and C gave 

significantly higher results than Grades D and E, 29.36±5.27%, 21.95±5.01% and 

26.50±4.37% versus 7.69±2.40% and 8.30±3.64%, respectively. In OR3 cycle, there 

were no significant difference (P>0.05) for all grades of oocytes recovered. The Grade 

C oocytes were highly obtained followed by Grade A, B, D and finally, lowest yield 

was Grade E oocyte. This may be due to the oocytes were half ‘cook’ or matured during 

the time of ovum pick-up (OPU). It has been known that the cumulus cells could be 

easily loosened when going matured. In addition, the needle size and vacuum pressure 

during LOPU procedure could lead the loosened of cumulus cells. Therefore, the 

preservation of cumulus vestment in recovered oocytes was good (Baldassarre et al., 

1994 and 2007). The Grade E oocyte was increased by the increasing of OR cycle. This 

probably due to the effects of hormonal treatments repetition used for ovulation 

induction that generally followed by decreasing fertility in goats. It also has linked to 

the presence of anti-hormone antibodies (i.e. eCG antibodies or PMSG + hCG 

antibodies) that might be showed immune response to previous treatments (Roy et al., 

1999; Drion et al., 2001). It can be concluded that Grades A, B and C oocytes could be 

highly significantly retrieved in LOPU that could be used for ICSI experiments.  
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5.4.2 The Effects of IVM Duration on Maturation Rate and ICSI- Derived  

Embryonic Development 

Similar with Experiment 3, the Grades D and E have low number of oocytes matured 

per ovary. Therefore, only oocytes from Grades A, B and C were selected for 

subsequent ICSI experiments. Again, it believed that oocyte quality used will influence 

the in vitro embryo production in goats (Katska-Ksiazkiewicz et al., 2007) 

In previous studies in the same laboratory, Rahman (2008a) was conducting 

goats ICSI experiments using 27 hours of IVM duration with and without considering 

the oocyte quality. This was similarly studied with previous researcher (Wang et al., 

2003; Jimenez-Macedo et al., 2005, 2006, and 2007). While, Kong (2010) reported that 

the IVM duration at 22-25 hours gave better maturation rate compared at 26-29 hours 

(71.6% versus 38.7%, respectively). In other report showed maturation rate at 16-24 

hours gave 21.0% to 72.0% after the initiation of maturation process (Cognie et al., 

2003). In the present experiment, two different IVM durations (18-21 hours and 22- 25 

hours) were assigned for the ICSI procedure. It was similarly carried out by Kong 

(2010). The range of IVM duration at 18-21 hours was chosen because we hypothesised 

that the hormonal treated of donor goats (60 hours of post-PMSG + hCG) from LOPU 

procedure could give good quality of oocytes and subsequently enable to fertilised and 

developed. At this range of IVM duration it may has probability the oocytes was 

matured.  According to the results, even insignificance (P>0.05) of maturation rates in 

both IVM duration, generally at 18-21 hours IVM durations was higher than 22-25 

hours (97.34±7.86% versus 89.01±2.41%, respectively). This was inferred that the IVM 

duration at 18-21 hours has same ability to matured oocytes with at 22-25 hours. 

Moreover, in presence study it found that the maturation rates were improved than 

previous study by Kong (2010) at the 22-25 hours, where the maturation rates were 89.0 
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% versus 71.6%, respectively. In the IVM duration at 18-21 hours, Grade A oocytes 

showed significantly the highest (P<0.05) cleavage rates for all stages of development, 

followed by Grades B and C. This has shown that the oocyte quality via the role 

cumulus cells can promote necessary maturation for embryonic development. Previous 

studies obtained better maturation rate when culture better quality of oocytes with at 

least 4 complete layers (Jimenez-Macedo et al., 2005, 2006 and 2007), 2 and above 

complete layers (Keskintepe et al., 1997; Rho et al., 2001) or 1 to 2 complete layers 

(Martino et al., 1995; Wang et al., 2003) of cumulus cells. 

  At the 22-25 hours IVM duration, the cleavage rates for all grades of oocytes 

were not significantly different (P>0.05) among the grades. The cleavage rates at 2-cell 

stage for Grades A and B was generally found to be lowed compared than Kong (2010) 

(57.5% and 41.1% versus 64.5% and 64.5%, respectively). However, for Grade C, the 

cleavage rate at 2-cell stage was slightly higher in presence study compared than in 

Kong (2010) (46.4% versus 44.6%).  These differences might be due to the factors of 

number of samples used. When comparing with studied by Rahman (2008a) who used 

FSH + hCG treated donor goats, the cleavage rates of Grades A, B and C (84.0%, 

66.7% and 57.8%, respectively) were higher compared to presence studies. The 

difference between these experiments may be due to the types of hormone used that 

bring more effective by using FSH compared to PMSG (Armstrong et al., 1983, Nuti et 

al., 1987). In addition, the PMSG was found to influence to disrupt normal fertilisation 

(Moor et al., 1985) and also decrease the fertilisation, embryonic development and pre-

implantation stage of development (Miller and Armstrong, 1981; Evans and Armstrong, 

1983).  

 Regardless of oocyte grades, no significant differences in maturation rates and 

cleavage rates for all stages embryonic development between 18-21 and 22-25 hours 

IVM durations. These indicating that the IVM duration at 18-21 hours have same 
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fertilisation and embryonic developmental ability with 22-25 hours of IVM duration. 

Even though, there was insignificance in both IVM duration embryonic developmental, 

the 22-25 hours IVM duration were higher than at 18-21 hours in all embryonic 

development stages (2-cell to morula stages). It well known that the oocytes maturation 

were involved of nuclear and cytoplasmic maturity in order to obtain the success rate of 

ICSI (Kahraman et al., 2000).During conducting the experiments, the first polar body 

formation morphology for 18-21 hours IVM duration was not clear and not fully visible 

as protrusion as those of 22-25 hours IVM duration. This probably because the matured 

oocytes undergo 18-21 hours of IVM duration were ‘young’ or just early matured. 

However, this suggestion was still unclear and need more studies. In addition, the 

extrusion of first polar body was occurred before the oocyte able to become fertilised, 

that happened before the cytoplasm was completely maturated, then the resumption if 

meiosis might fail or be incomplete (Kubiak, 1989). It has been suggested that the 

formation of first polar body may reflect an asynchrony between nuclear and 

cytoplasmic maturation (Eichcnlaub-Riuer et al., 1995) that would effects the ability of 

cells to support pronuclear formation after ICSI. The maturation of nuclear is easier and 

faster than cytoplasmn (Kubiak, 1989; Krisher, 2004). The degree of cytoplasmn 

maturation will determines the developmental competence of IVM oocyte to undergo 

further embryonic development (Combelles et al., 2002; Inoue et al., 2008). If the 

oocytes were inadequate duration of IVM culture, the oocytes development can be 

impaired. The kinetics of immature and IVM oocytes were demonstrated during meiotic 

maturation and has a close relationship with spindle assembly. In human, the spindle 

configuration anomalies were related with reproduction failure (Szczygriet and 

Kurprisz, 2001). However, the spindle assembly and maturation duration has yet to be 

performed.  
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 However, if the oocytes were fast in vitro matured, extruded the first polar body 

early and has been completing the nuclear and cytoplasm maturation during IVM, the 

possibility to developing blastocyst stage is more clear (Dominko and First, 1992 and 

1997). The prolongation of metaphase II arrest before ICSI was lead to reduce the 

successful fertilisation and embryo development (First et al., 1998). 

 Therefore, according to these studies, it can be inferred that, the IVM duration 

for goats oocytes at 18-21 hours has same ability of embryonic developmental with at 

22-25 hours. The Grade A oocyte was obviously gave higher rate of maturation and 

better embryonic development compared. However, the Grades B and C also could be 

used for IVP programme (IVM and ICSI), in order to obtain good embryonic 

development. 

 

5.5 GENERAL DISCUSSION  

The sperm and oocyte factors related with conventional ICSI technique are being 

focused in the present study. From the findings of this study, it is feasible that ICSI can 

be used routinely as an alternative IVP procedure to produce embryonic development in 

mouse and goat, provided that optimisation of this procedure will be studied in detail in 

the future. Several factors that influence the outcomes of this study have been discussed 

in the previous section. It is well-known that ICSI technique was developed and applied 

as one of the ART to overcome the male infertility problems such as motility and 

abnormalities in human (Palermo et al., 1992). Similar attempts were made for mice 

(Kimura and Yanagimachi, 1995) and goats (Wang et al., 2003). Even though the sperm 

factors were not a major problem in ICSI, it can influence the embryonic development 

rate. It has been suggested that sperm need to be capacitated before carrying out the 

ICSI procedure in order to produce viable embryos (Sathananthan et al., 1997). In 
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addition, oocyte quality can influence the success of embryonic development (Wang 

and Sun, 2007). The aging factor by pre- and post-maturation of oocytes was studied in 

this research. From the findings of this study, embryonic development can be achieved 

from Heparin-sperm capacitation treatment, using any sperm movement (Rapid or 

Slow) and 13 to 15 hours of post-hCG administration oocytes. For goat study, LOPU is 

good procedure to provide consistent good oocytes quality (Grades A, B and C) and can 

be repeated using the same donor up to 3 times. Rapid sperm movement is a better 

choice for ICSI-embryonic development. Both sperm capacitation chemical treatments 

(Heparin and Theophyline) have the same potential to produce ICSI-embryonic 

development. 

 

5.5.1 Influence of Sperm and Oocytes Factors on In Vitro Production 

The requirement of sperm and oocyte is different for different types of in vitro 

production (IVP). According to present study, most of the experiments were carried out 

using intracytoplasmic sperm injection (ICSI) as a device of in vitro production. The 

success of embryo development in IVP is influenced by sperm and oocyte factors (Xia, 

1997; Dumoulin et al., 2000; Ebner et al., 2000; Tesarik et al., 2002). Previous reports 

claimed that sperm factors was not become a major detrimental effect on ICSI-derived 

embryo development as long the sperm nucleus has intact genetic integrity 

(Yanagimachi, 2005). It has been suggested that sperm factors is responsible for 

initiating the oocyte activation (William, 2002). For this case, an appropriate condition 

and complete sperm capacitation before ICSI is important in order to increase sperm 

permeabilisation, acrosome reaction and sperm head decondensation for fertilisation 

process. Various treatments could be used but the most practically sperm capacitation 

treatment is by chemical treatment. In this research, a single treatment of Heparin and 
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Theophylline had been compared and studied for this purpose. There was no previous 

studies did the same comparable in mouse and goat sperm, only reported in dog 

(Kawakami et al., 1999). It has been suggested that the sperm nuclei stability were 

different in species-species, probably due to the different disulfide bonding in sperm 

nuclei (Perreault et al., 1988). Therefore the pattern of results for mouse and goat study 

gave different finding in sperm capacitation chemicals treatments. The sperm movement 

(motility) reflects sperm vitality. Normally, the locally motile and immotile sperm were 

considered poor sperm and not being selected in normal fertilisation or IVF. However, 

in ICSI, this two sperm criteria have the potential to fertilise the oocytes might be due to 

sperm nuclei is still alive and just die as a cells (Goto et al., 1997). However, in other 

study, the normal morphology and motility may carry hidden defects that can interfere 

with the embryo development. Thus, especially in human, only the good sperm will be 

used for ICSI. Unfortunately, in this experiment, there was no study conducted on 

mechanism at molecular and ultrastructural level in order to identify and know the 

hidden sperm defect factor in using of particular sperm capacitation chemical and sperm 

movement criteria.  

 The oocyte factors with special reference to oocyte quality and aging have been 

studied in this research. The interesting part of this study is the mouse and goat 

experiments showed that the duration of post-hCG (mouse study) and IVM (goat study) 

oocyte aging by post-maturity could affect the yield of embryo and the oocyte should 

undergo equal nuclear and cytoplasmic maturation before performing ICSI. In mouse 

experiment, the same age of mouse oocytes retrieved at 13-15 hours of post-hCG 

administration duration gave good embryonic development. In addition this range of 

duration is within the optimal fertilisation window for mouse. In goat experiment, the 

good quality oocytes (Grades A, B and C) with full cumulus cells vestment obviously 

obtained from LOPU-hormonal treated donor (PMSG + hCG). The lower Grades of 
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oocytes (Grades D and E) were less obtained but will increase with the repeated number 

of LOPU cycle. The first LOPU cycle (OR1) gave higher yield of oocytes and then it 

will decrease for the next following LOPU cycle (OR2 and OR3). Based on the 

findings, the first LOPU cycle was significantly higher (P<0.05), while the second and 

third LOPU cycle were not significantly different from each other. However, OR2 and 

OR3 are still recommended to be used for the oocytes sources.  Therefore, it is practical 

assume that LOPU procedure can be repeated up to 3 times in the same donor.  

According to these results there might be some adverse effect of hormone used for the 

next LOPU cycle. Moreover, the interval between the next cycles, the good animal 

physiological preparation and post-LOPU treatment effects should be optimised for 

obtaining good and high yield of oocytes. However, some of the problems have to be 

solved such as the tissue adhesion cause by surgery can be reduced by the application of 

warm saline (~38.5⁰C), the animal were sedated and anaesthetised with particular 

reagent, time and dose, off-feed and water to prevent the donor vomiting during LOPU, 

good feeding and post treatment for donor after LOPU (refer Section 3.3.4). In IVM 

duration study, the findings show equal potential to produce embryo development at 

(18-21 hours and 22-25 hours), even though maturation rates found to be higher at 18-

21 hours. The Grades A, B and C were already considered as a good quality of oocytes. 

Therefore, no obvious differences of embryonic development at 22-25 hours of IVM 

duration. However, in group 18-21 hours of IVM duration, the Grade A oocyte showed 

higher embryonic development compared to others (Grades B and C). Probably, due to 

the Grade A with full cumulus cells vestment initiating earlier nuclear and cytoplasmic 

maturation and subsequently able to develop embryo. However, the ultrastructural and 

molecular study was not performed to observe the maturation mechanism and 

chromosome remodeling using the different quality of oocytes and IVM duration.  
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5.5.2 Intracytoplasmic Sperm Injection (ICSI)  

The preparation of ICSI microtools and procedural were generally based on previous in-

house laboratory research (Rahman, 2008a, b; Kong, 2010 and Ainul Bahiya 2010) 

unless otherwise stated. The procedural of ICSI in different species is the same except 

in term of medium used and microneedles size. Generally, 3 types of based medium 

used i) for sperm with sperm capacitation medium ii) hepes contained medium iii) 10% 

of PVP (Uehara and Yanagimachi, 1976). The arrangements of mediums on the dish 

were not specific. The media were placed in small microdroplet covered by mineral oil 

for the smooth microneedle handling. It has been found that the sperm were difficult to 

catch for immobilised because of the rapid movement of the sperm in the microdroplet. 

Therefore, in order to solve this problem, the microdroplets were prepared in longer or 

flatten shape. Through this, the sperm movement was limited in the microdroplet and 

subsequently, they were queuing at the edge of droplet. Later, the process of catch 

sperm or immobilised could be directly done in the droplet without placing in PVP. In 

hepes contained medium (for placing oocytes), the microdroplets were good in round 

shape to facility during handling oocyte manipulation (Keskinetepe et al., 1997; Wang 

et al., 2003; Jimenez-Macedo et al., 2005). Usually 3-5 oocytes were placed in one 

microdroplet (according to the oocyte grades). The injected oocyte will be placed down 

the microdroplet to separate the non-injected oocytes. This is practical to speed up the 

procedure. Extra microdroplets were made to spare the clean droplet and also for 

microneedle cleaning place. 

 Generally the mouse sperm size is smaller than goat sperm. However, because 

of the morphology of the sperm have ‘hook’and the goat sperm shape is round shape, 

the mouse inner diameter of ICSI microneedle were prepared slightly bigger than the 

real size (Ahmadi et al., 1995)  (4-8 µm: mice and 8-10 µm: goat). The outer diameter 

of holding microneedle was outer diameter (120-150 µm: mice and 150-180 µm: goat). 
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However, the inner diameter was 25-30 µm. During the making of microneedles, there 

were many problems encountered, for examples to obtain a good size of ICSI and 

holding microinjection, making spike for ICSI microinjection, bending the microneedle 

without close the hole of bending site in desire angle, the risk of broken microneedle 

and contamination. The process of making ICSI microneedle is much difficult 

(Yanagida et al., 2001) compared to holding microneedle.  The ICSI microneedle needs 

to make a straight cut at the tips of needle with the desire size. The straight cut will do 

by assist of heat-shock of touched glass bead. In this process, the experienced and 

patience were needed followed by manipulating the heat score of the glass bead. Next, 

the microneedle was grinded to make a bevel (45°) (Van Sterghem et al., 1993) for 2-3 

minutes. Then, the microneedle was allowed to be rinsed by hydrofluoric acid (10%, 5 

seconds), distilled water (10 seconds) and 70% alcohol (3-5 seconds). This was done to 

avoid contamination of glass debris from grinding process. Then, a short spike was 

making with heat touch with glass bead at the tips of bevel (Nagy et al., 1995; Palermo 

et al., 1996). The spike should not be too long because it will cause the inner diameter 

of the ICSI microneedle become small and long shape cause of heat effect. The inner 

size should be in round form. If not the sperm could not enter the microneedle. Last 

parts is bending process by placing the microneedle in horizontal position and apply the 

heat until they were bent at 25-30 degrees with microforge to allow a horizontal 

displacement on the microscope stage. Same procedure to bend the holding microneedle 

but the heat level is slightly higher than ICSI microneedle because of the diameter is 

bigger in holding microneedle. In order to prevent the contamination the microneedle 

were rinsed with alcohol (70%) and placed in individual holder. Then it will dried oven 

(60°C) and subsequently it will UV light sterilisation for 30 minutes before used. 

 During handling the ICSI procedure, the holding microneedle were set-up at 

micromanipulator first at correct position and followed by ICSI microneedle. Then both 
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of microneedles were immerged in mineral oil and the experimenter will align both 

microneedles and allowed the mineral oil equilibrating the inner pressure. Once the 

mineral oil stop entering the inner, the hepes contained medium (for allocating oocytes) 

were let to enter the ICSI microneedle. This was done to avoid high pressure during 

aspirating in and out the sperm during injection into the cytoplasmn. 

 The procedure of ICSI will start with catch the sperm to place the sperm into 

PVP (10%) for immobilization (Uehara and Yanagimachi, 1976). The sperm tail was 

score with rapid and gently keen by spike (Fishel et al., 1995; Van de Bergh et al., 

1995; Vanderzwalmen et al., 1998) or bevel of ICSI microneedle on the tail. Once the 

sperm were stop moving, the sperm was aspirated in the tail first in the ICSI 

microneedle with the minimal amount of PVP. For the information, some sperm was 

able to be immobilised in sperm microdroplet with the same immobilisation procedure. 

This step would help to reduced the time and avoid the PVP enter the ooplasmn. 

However, there were no comparison study was done for identify of this effect of this 

factor. After that, the immobilised sperm were injected into ooplasmn by gently rapid 

force of the injecting microneedle to the zona pellucida and subsequently the ooplasmn 

membrane (Esfandiari et al., 2005). Not to forget, the oocytes polar body position 

should be at 12 or 6 o’clock (Nagy et al., 1995; Joris et al., 1998). During injection the 

image of oocyte should be sharped and focused especially the membrane and polar body 

image. This will help the injection process occur at the correct placed and subsequently 

the sperm image inside the microneedle could be adjust and see, then the process of 

aspirating in ooplasmn and aspirating out the sperm inside the ooplasmn become 

smoothly (Vanderzwalmen et al., 1996; Calillo et al., 1998). Finally, gently the ICSI 

microneedle was withdrawn slowly from the oocyte without bring out the sperm out or 

damage the oocyte. In this part, the role of ICSI microneedle spike is important (Nagy et 

al., 1995; Palermo et al., 1996; Yanagida et al., 2001). The spike must be sharp and the 
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inner pressure of the microneedle is in well condition. In addition, the suction pressure 

of holding microneedle to hold the oocyte should not too high just enough to hold the 

oocyte in static placed and less movement.  

 In summary, the ICSI procedure itself could be a main influenced in order to 

obtain good ICSI procedure. These experiments were conducted using the conventional 

ICSI technique (Zhou et al., 2004; Jimenez-Macedo et al., 2005, 2006, 2007; Rahman 

2008a, b; Kong 2010; Ainul Bahiya, 2010). Even though, the application of piezo-

driven was widely used in mouse experiment (Kimura and Yanagimachi, 1995) or some 

in goat (wang et al., 2003). The application of conventional ICSI is still practical and 

just need more technical experienced, microneedles preparation improvement and 

preserved the good quality of sperm and oocytes for ICSI. The duration of the whole 

process should be minimised and try to handle it not more than 20 minutes. The longer 

time taken will make the samples become risk of death or degenerated (Keskinetepe et 

al., 1997). The ICSI of manipulation process was doing on the stage warmer to avoid 

the samples death (Keskinetepe et al, 1997; Wang et al., 2003; Jimenez-Macedo et al., 

2005). 
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5.5.3 Embryonic Development via ICSI 

ICSI procedure itself may lead the nuclear and cytoplasmn component (physical 

disruption) that necessary for oocyte continued development (Miller and Smith, 2001). 

In other issue,the post-ICSI oocytes were placed 30 minutes in equilibrated TCM 199+ 

Foetal bovine serum (FBS) (10%) before oocyte activation. This is the requirement 

duration to let the oocyte cytoskeleton and spindle to relax and recover back to normal 

form for further activation. In addition, the activation would begin 30 minutes after 

sperm injection (Dozortsev et al., 1995a and b). 

The actions of sperm factor on embryonic development are referred to paternal 

effect. The paternal effect is divided in to early and late paternal effect. The early 

paternal effect may delay the cleavage speed and increase the fragmentation in embryo 

development (Menezo, 2006). While, the late paternal effect may involve sperm 

aneuploidy, DNA damage, abnormal chromatin packaging that resulted from defective 

sperm (Borini et al., 2006). The sperm factor is not related in fertilising ability but it is 

associated with high rate of developmental arrest at 5- to 8-cell stages on Day 3 and 

decreased blastocyst formation on Day 5 in this cycle (Miller and Smith, 2001). 

Therefore, the good quality of sperm selection from earlier ICSI procedure influenced 

the results of ICSI-derived embryos. The hidden parameter that could not seen by naked 

eye should be investigated through ultrastructural or molecular experiment to confirm 

the quality of sperm used. 

Previous studies have achieved better embryo development when they were 

cultured in groups (well-in-drop, WID) compare than cultured individually (microdrop 

individual culture, MIC). (Keefer et al. 1994; Moessner and Dodson, 1995). However, 

this study used MIC because the small number of oocytes available and need to be 

identification after culture, especially in goat experiment. The mouse experiment culture 

was used WID because the large number of oocytes. Due to this aspect, in the findings 
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the mouse embryo developmental rates are much better than goat embryo 

developmental rates. 

Glucose in media was used as an energy substrate at the earlier stage of 

embryonic development. However, the cleavage stage embryos have a limited capacity 

to utilise glucose (Reiger et al., 1992; Thompson et al., 1996). Glucose in the culture 

medium has an adverse effect on embryo development and it is not required until Day 3 

or 4 of development (Kim et al., 1993). However, the granulose cell monolayers can 

utilise the glucose from culture medium and depleting the levels and give pyruvate in 

return (Teotia et al., 2001). It has been reported that glucose free medium (Lim et al., 

1993) were gave higher morula rate development (40% versus 22%) compared cultured 

glucose contained medium (Quinn, 1995).  Nevertheless, a high glucose concentration 

is also detrimental to embryo development (Thompson et al., 1996). The embryos 

culture medium should be changed or replaced on Day 3 using glucose free medium. In 

other hand, on the Day 2 or 3 development, the capable embryos, which attaining 

blastocyst stage embryos were recommended to be transferred to recipient (Palermo et 

al., 1998).  
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5.5.4 Future Direction 

This preliminary study covering the selected sperm and oocyte factors that related with 

LOPU, IVM and ICSI experiment. This research had been carried out in two different 

species, which are mice and goat. The pattern of embryonic development in both 

laboratory scale (mouse) and farm scale (goat) could be seen through this experiment. 

The author was experienced with some problems and most of the problems encountered 

were able to overcome. Thus, the presented results might be influenced by several 

factors, such as author’s learning curve; in terms of preparing the ICSI microtools, 

sperm and oocytes handling; mouse breeding management to obtain consistent healthy, 

weight, and age mouse for experiment; farm management (goat management) for pre- 

and post-LOPU experiment; and all regarding embryo culture media and system. Even 

though the findings in present study gave basis physiological aspect, this information 

could be beneficial in order to understand the process and mechanism of sperm and 

oocyte factors that affected ICSI-derived embryo development. The further study should 

be conducted at molecular or ultrastructural levels at small (laboratory) and also at large 

scale (farm). 

 The information obtained through this finding could be contributed and applied 

for the farm sectors. With the good knowledge and understanding of sperm and oocyte 

factors, it is not possible that ICSI technique could be widely applied together with 

other technique such as LOPU and ET, in order to make an efficient IVP and 

subsequently obtain good breed of offspring. Therefore, a detailed or extended research 

related with ICSI is good for being study in the future includes: the effects of sperm 

capacitation chemicals treatment in term of types chemicals used, concentration, 

toxicity, mechanism and adverse effect on ICSI experiment; the detailed effects and 

mechanismn of sperm motility and morphology on early and latest ICSI-embryo 

development; the effect of IVM duration related with LOPU-derived oocytes and the 
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effects of different oocytes quality and selection at different IVM duration; study the 

details of low quality of LOPU-derived oocytes (i.e dysmorphism, less or no COCs)  at 

ultrastructural and molecular level in goat; study the repeated goat LOPU adverse 

effects in order to obtained the good quality supplies, optimal interval repeated of 

LOPU cycle, ovarian physiology status of donor; the technical aspect of convensional 

ICSI microtools preparation and procedure could be improved by medium used and the 

optimal timing of ICSI experiment; the important of oocyte activation in term of types 

and the optimal timing of activation. Last but not least, the effect of manipulation or 

improvement of media for embryo developing and culture system that suitable for ICSI-

embryo development. 
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Chapter 6 

6.0 CONCLUSIONS 

 

 This study presents the in vitro development embryos via intracytoplasmic sperm 

injection (ICSI) with special reference to sperm and oocytes factors correlating with 

embryonic developmental performance in mouse and goat species. According to the 

findings, it can be inferred that: 

a) Mouse and goat embryos were produced from ICSI technique under the local 

setting of ABEL, University of Malaya, Malaysia. 

b) Mouse ICSI-embryonic development was improved by using Heparin as sperm 

capacitation chemical treatment. 

c) The sperm movement factor (Rapid and Slow) has same potential to produce 

mouse ICSI-derived embryos. 

d) The post-hCG administration duration at 13 to 15 hours gave good quality of 

matured oocytes and embryonic developmental rate compared with at 16-18 

hours duration. 

e) Sperm capacitation chemicals (Heparin and Theophylline) gave same potential 

of goat ICSI-embryonic development. 

f) Rapid sperm movement gave better goat ICSI-embryonic development 

compared to slow sperm movement.  

g) LOPU can be repeated up to 3 times in the same hormonal treated goat donor 

(60 hours of post-PMSG+hCG) without detrimental effect. 

h) Higher Grade C oocytes were obtained from LOPU compared to Grades A and 

B.  

i) Lower Grades D and E oocytes were obtained compared to Grades A, B and C. 
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j) OR1 gave better quantity and quality oocytes, followed by OR2 and OR3. 

k) Maturation rate of goat oocytes at 18 to 21 hours was higher than 22 to 25 hours 

of IVM duration.  However, both IVM durations had the same potential ICSI-

derived embryo development. 

l) Grade A oocytes gave higher cleavage rates at 18 to 21 hours compared to 

Grades B and C.  

m) The earlier selection of good oocyte quality factor (based on cumulus cells 

expansion) influenced the subsequent success of embryonic development. 

n) It can be concluded that: 

i) For mouse study, embryonic development can be achieved from 

Heparin-sperm capacitation treatment, using any sperm movement 

(Rapid or Slow) using the 13 to 15 hours of post-hCG administration 

oocytes. 

ii) For goat study, LOPU is good procedure to provide consistent good 

oocytes (Grades A, B and C) and can be repeated using the same donor 

up to 3 times. Rapid sperm movement is a better choice for ICSI-

embryonic development. Both sperm capacitation chemical treatments 

(Heparin and Theophyline) have the same potential to produce ICSI-

embryonic development. 
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APPENDICES 

APPENDIX 1: LIST OF MATERIALS 

 

Appendix Table 1.1: List of equipment and instruments 

Equipment/instrument Model no. Manufacturer 

Abrasive stone or oilstone - Hall’s Arkansas oilstones, USA 

Atraumatic grasping forceps PO951R Aesculap
 ®,

 Germany 

Autoclave HA-300MII Hirayama Hiclave, Japan 

Centrifuge D37520 Heraeus, Germany 

CIDR applicator - Pharmacia and Upjohn, New 

Zealand 

CO2 incubator HeraCell 240 Heraeus, Germany 

CO2 insufflator system PG001 Aesculap
®
, Germany 

Digital balance AB104 Mettler Toledo, Switzland 

Digital camera (X-Cam-α) - microLAMBDA Sdn Bhd, 

Malaysia 

Digital timer - Seiko, Japan 

Dissecting board - - 

Dissecting microscope SZH10 Olympus,Japan 

Flushing and aspiration system:   

(a) Aspiration system KMAR-5100 Cook, Australia 

(b) Flushing system KMAR-4000 Cook, Australia 

(c) Test tube heater system KFTH-1012 Cook, Australia 

(d) Pedal 6210-

725350B 

Herga Electric Ltd., Uk 

Heating stage (Thermoplate) HATS-

U55R30 

Tokai Hit, Japan 

Impulser sealer KF-300H Khind, Taiwan 

Inverted microscope IX71 Olympus, Japan 

Laminar flow cabinet HLF-120 German Sciences, Australia 

Laporoscopic camera system   

(a) Endoscopic camera system  PV431 Aesculap
®
, Germany 

(b) CCD camera PV430 Aesculap
®
, Germany 

(c) Pediatric Storz laparoscope  

     (7mm) 

PE688A Aesculap
®
, Germany 

(d) Light probe with fibre optic  

      cable 

OP913 Aesculap
®
, Germany 

(e) Light system (300 W) OP927 Aesculap
®
, Germany 

Liquid nitrogent tank (small) SC2/1V MVE, USA 

Microforge - Technical Products Internationals, 

USA 

Microgrinder EG-4 Narishige, Japan 

Micropipette dispenser - Eppendorf, Germany 

Micropuller dispenser P-97 Sutter Instrument Co., USA 

Narishige hydraulic manipulators ON3-99D Narishige, Japan 
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Oocyte pick-up needle FAS set C2 Gynetics Medical Products, 

Belgium 

Oven 40050-IP20 Memmert GmbH, Germany 

pH meter AL204 Metler Toledo 

Pipette pump PI-PUMP Glasfirn, Germany 

Refrigerator and freezer SR-21NME Samsung Electronics, Korea 

Spirit burner - Shanghai Machinery, China 

Stereomicroscope SZH10 Olympus Optical, Japan 

Surgical set - Aesculap
®
, Germany 

Surgical table - Syarikat Copens Enterprise, 

Malaysia 

Trocar and canula (5.5 mm &  

7.0 mm) 

EJ456, 

EJ457 

Aesculap
®
, Germany 

Ultrapure water purification 

system 

Milli-Q PF 

Plus 

Milipore, USA 

Vapour pressure osmometer 5520 Vapor Wescor, USA 

Verrus needle PG3 Cook, Australia 

Vortex mixer VTX-3000L LMS, Japan 

Water bath GMP-GC-19 Memmert GmbH, Germany 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



210 

 

Appendix Table 1.2: List of chemicals, reagents and media 

Chemicals, reagents and media Catalogue 

no. 

Manufacturer 

6-dimethylaminopurine (6-DMAP) D2629 Sigma-Aldrich, USA 

70% ethanol - Prepared from absolute ethanol 

Ethyl alcohol 99.8% (absolute ethanol) ET 150-50 System ChemAR
®
, Poland 

Hibiscrub (antiseptic) HK-06770 SSL International Plc, UK 

BME amino acids solution (50X) B6766 Sigma-Aldrich, USA 

Calcium chloride  C7902 Sigma-Aldrich, USA 

Calcium ionophore  I0634 Sigma-Aldrich, USA 

Calcium lactate 2376 Ajax Chem. Pty.Ltd. Australia 

Cleaning solution 7X
®

-PF - FlowLab
™

, Australia 

Cloprostenol (Estrumate
®
) - Schering-Plough, Australia 

Cysteamine M9768 Sigma-Aldrich, USA 

Dimethyl sulphoxide (DMSO) D5879 Sigma-Aldrich, USA 

Disinfectant Gigasept
®
 FF - Schülke & Mary GmbH, 

Germany 

Folligon
®
 (FSH) - Intervet International, Holland 

Gentamicin sulfate salt G3632 Sigma-Aldrich, USA 

Goat pellet feed - KMM Berhad, Malaysia 

Heparin H0777 Sigma-Aldrich, USA 

HEPES H7006 Sigma-Aldrich, USA 

Hydrochloric acids HY450-70 System ChemAR
®
, Poland 

Hydrofluoric acids 1301030 Hmbg Chemicals, Germany 

Hyaluronidase (from bovine testes) H4272 Sigma-Aldrich, USA 

Intravaginal progesterone release 

(CIDR) device  

- Pharmacia and Upjohn, New 

Zealand 

Ketamil injection (ketamine 

hydrochloride) 

L10077 Troy Laboratories, Australia 

K-Y Lubricating Jelly - Pharmedica Lab, south Africa 

L-glutamine G3126 Sigma-Aldrich, USA 

Liquid nitrogen - Mox Gases berhad, Malaysia 

Magnesium chloride hexahydrate M2393 Sigma-Aldrich, USA 

MEM (100x) M7145 Sigma-Aldrich, USA 

Mineral oil M8410 Sigma-Aldrich, USA 

Oestradiol-17β E4389 Sigma-Aldrich, USA 

Oestrus goat serum, heat-inactivated - In-house prepared 

Ovidrel
®
 PreFilled Syringe - Laboratories Serono, 

Switzerland 

Oxytetracycline (Tetrasol 20%) E388 Richter Pharma, Austria 

PBS Dulbecco A tablets BR0014G Oxoid, England 

Phenol Red solution (0.5%) 15100-043 Gibco BRL, USA 

Photassium chloride P5405 Sigma-Aldrich, USA 

Potassium hydrogen orthophosphate Prod29068 BDH Laboratory Supplies, 

England 

Polyvinylpyrollidone (PVP) 10% 10890001 Medicult, Denmark 

Sodium bicarbonate S5761 Sigma-Aldrich, USA 

Sodium chloride (NaCl) S5886 Sigma-Aldrich, USA 

Sodium DL-lactate (60% syrup) L4263 Sigma-Aldrich, USA 

Sodium Pyruvate P3662 Sigma-Aldrich, USA 
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TCM 199 M4530 Sigma-Aldrich, USA 

Weak iodine solution - ICN Biomedicals, USA 

Xylazine hydrochloride (Ilium Xylazil-

20) 

L10600 Troy Laboratories, USA 

 

 

Appendix Table 1.3: List of labware and disposable items 

Labwares and disposables Manufacturer 

Aluminium foil Reynolds Consumer Products, USA 

Autoclave disposable bag Megalab supplies, Malaysia 

Blades (Super Nacet) Gillette, USA 

Borosilicate glass tubing (Microcaps
®
) Drummond Scientific Company, 

USA 

Chromic catgut  Aesculap
®
, Germany 

Culture dish (35 mm, 60 mm) Nunc, Denmark 

Disposable glass Pasteur pipette Hirshmann
® 

Laborgerete, Germany 

Disposable hand tissues Megalab supplies, Malaysia 

Falcon
™

 conical tube Becton Dickinson, USA 

Falcon
™ 

polystyrene round bottom test tube Becton Dickinson, USA 

Glassware (beaker, measuring cyclinder etc.) Pyrex
®
, Japan 

Lens cleansing tissue (Kimswipe
®
 EX-L) Kimberly-Clark, USA 

Microcentrifuge tube Elkay, Costelloe 

Micropipette tips without filter Axygen Scientific, USA 

Microscope slide Sail Brand, China 

Microscope glass coverslip Hirshmann® Laborgerate, Germany 

Millex®-GS syringe driven filter Scheicher and Schuell, Germany 

Needle Terumocorporation, Japan 

Parafilm Pechiney Plastic Packaging, USA 

Schott bottle Duran, Germany 

Serogical pipette LP Italiana SPA, Italy 

Streile glove Ansell International, Malaysia 

Terumo venojector holder Terumo Corporation, Japan 

Vacutainer
® 

blood collection tubes  Becton Dickinson, USA 

Vacutainer
® 

needle Becton Dickinson, USA 

 

 

 

 

 



212 

 

APPENDICES 

APPENDIX 2: SUPPLEMENTARY FIGURES 

 

a) Mouse experiment 

 

Appendix Figure 2.1:  ICR mouse: hormone injection through intraperitoneal  

      injection (i.p.). 

 

 

 

Appendix Figure 2.2: Dissection area for obtain oviduct.  

Oviduct  

and 

 ovary 
Uterus 
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Appendix Figure 2.3: Arrow showed swollen area at oviduct that contained cumulus    

      oocytes complexes (COCs). 

 

 

 

Appendix Figure 2.4:  Cumulus oocytes complexes (COCs). 
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b) LOPU in goat 

 

Appendix Figure 2.5: Surgical instruments and consumables that involved during     

     LOPU procedure. 
 

 

Appendix Figure 2.6: Conducting LOPU procedure. 
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Appendix Figure 2.7: Ovary morphology observations through the LOPU monitor  

      system. 
 

 

 

 

 

 

 

 

 

 

 

 

Ovary 
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c) Microneedles preparation equipment 

 

Appendix Figure 2.8: Micropuller. 

 

 

Appendix Figure 2.9: Microphorge. 

 

 

Heat adjuster 
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Appendix Figure 2.10: Microgrinder for making bevel at the tips of ICSI microneedle. 

 

 

 

 

 

 

 

 

 

Microneedle 

were placed 

here at 45⁰ 
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APPENDICES 

APPENDIX 3: STATISTISTICAL DATA 

 

EFFECT OF SPERM FACTORS ON ICSI PERFORMANCE IN MICE  

(EXPERIMENT 1) 

 

 

Appendix Table 3.1: Effect of  sperm movement with Heparin on mouse embryo  

                                    cleavage rate 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum 

  Lower 

Bound 

Upper 

Bound 

two_cell rapid 19 65.4312 8.28457 1.90061 61.4382 69.4243 50.00 79.17 

slow 18 63.8568 12.22267 2.88091 57.7787 69.9350 28.57 81.82 

Total 37 64.6653 10.27134 1.68860 61.2407 68.0900 28.57 81.82 

four_cell rapid 19 52.3226 8.52431 1.95561 48.2140 56.4312 33.33 68.75 

slow 18 48.6736 15.21706 3.58670 41.1063 56.2408 .00 67.27 

Total 37 50.5474 12.21057 2.00741 46.4762 54.6186 .00 68.75 

eight_cell rapid 19 33.7849 10.06451 2.30896 28.9340 38.6359 11.11 52.17 

slow 18 29.8327 14.27167 3.36386 22.7356 36.9299 .00 50.00 

Total 37 31.8622 12.28170 2.01910 27.7673 35.9572 .00 52.17 

morula rapid 19 12.6066 6.59350 1.51265 9.4287 15.7846 .00 26.09 

slow 18 10.7822 7.40944 1.74642 7.0975 14.4668 .00 21.82 

Total 37 11.7191 6.96539 1.14510 9.3967 14.0414 .00 26.09 
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ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 22.911 1 22.911 .212 .648 

Within Groups 3775.108 35 107.860   

Total 3798.019 36    

four_cell Between Groups 123.079 1 123.079 .821 .371 

Within Groups 5244.450 35 149.841   

Total 5367.530 36    

eight_cell Between Groups 144.378 1 144.378 .956 .335 

Within Groups 5285.865 35 151.025   

Total 5430.243 36    

morula Between Groups 30.767 1 30.767 .628 .434 

Within Groups 1715.831 35 49.024   

Total 1746.599 36    

 

 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

rapid 2-cell 19 65.4312 8.28457 1.90061 61.4382 69.4243 50.00 79.17 

4-cell 19 52.3226 8.52431 1.95561 48.2140 56.4312 33.33 68.75 

8-cell 19 33.7849 10.06451 2.30896 28.9340 38.6359 11.11 52.17 

morula 19 12.6066 6.59350 1.51265 9.4287 15.7846 .00 26.09 

Total 76 41.0364 21.67404 2.48618 36.0836 45.9891 .00 79.17 

slow 2-cell 18 63.8568 12.22267 2.88091 57.7787 69.9350 28.57 81.82 

4-cell 18 48.6736 15.21706 3.58670 41.1063 56.2408 .00 67.27 

8-cell 18 29.8327 14.27167 3.36386 22.7356 36.9299 .00 50.00 

morula 18 10.7822 7.40944 1.74642 7.0975 14.4668 .00 21.82 

Total 72 38.2863 23.58277 2.77926 32.7446 43.8280 .00 81.82 
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ANOVA 

  Sum of Squares df Mean Square F Sig. 

rapid Between Groups 30083.121 3 10027.707 140.215 .000 

Within Groups 5149.195 72 71.517   

Total 35232.316 75    

slow Between Groups 28614.373 3 9538.124 59.657 .000 

Within Groups 10872.059 68 159.883   

Total 39486.432 71    

 

 

rapid 

Duncan
a
 

develope

ment N 

Subset for alpha = 0.05 

1 2 3 4 

morula 19 12.6066    

8-cell 19  33.7849   

4-cell 19   52.3226  

2-cell 19    65.4312 

Sig.  1.000 1.000 1.000 1.000 

 

slow 

Duncan
a
 

develope

ment N 

Subset for alpha = 0.05 

1 2 3 4 

morula 18 10.7822    

8-cell 18  29.8327   

4-cell 18   48.6736  

2-cell 18    63.8568 

Sig.  1.000 1.000 1.000 1.000 
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Appendix Table 3.2: Effect of  sperm movement with Theophylline on mouse embryo  

                                   cleavage rate 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

  Lower 

Bound 

Upper 

Bound 

two_cell rapid 20 61.3940 6.10987 1.36621 58.5345 64.2535 50.00 72.41 

slow 18 59.5086 8.75687 2.06401 55.1539 63.8633 44.44 75.00 

Total 38 60.5009 7.43724 1.20648 58.0564 62.9455 44.44 75.00 

four_cell rapid 20 45.8739 8.31214 1.85865 41.9837 49.7641 25.00 58.82 

slow 18 44.2284 11.53303 2.71836 38.4932 49.9636 11.11 60.00 

Total 38 45.0945 9.86336 1.60005 41.8525 48.3365 11.11 60.00 

eight_cell rapid 20 31.4178 10.35380 2.31518 26.5721 36.2635 12.50 48.28 

slow 18 28.4271 12.95566 3.05368 21.9844 34.8698 .00 42.86 

Total 38 30.0011 11.59566 1.88106 26.1897 33.8125 .00 48.28 

morula rapid 20 13.8555 6.92781 1.54911 10.6131 17.0978 .00 24.14 

slow 18 11.9063 6.87241 1.61984 8.4888 15.3239 .00 23.81 

Total 38 12.9322 6.87887 1.11590 10.6712 15.1932 .00 24.14 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 33.678 1 33.678 .602 .443 

Within Groups 2012.887 36 55.914   

Total 2046.565 37    

four_cell Between Groups 25.653 1 25.653 .258 .614 

Within Groups 3573.927 36 99.276   

Total 3599.580 37    

eight_cell Between Groups 84.737 1 84.737 .624 .435 

Within Groups 4890.258 36 135.840   

Total 4974.994 37    

morula Between Groups 35.991 1 35.991 .756 .390 

Within Groups 1714.807 36 47.634   

Total 1750.798 37    
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Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

rapid 2-cell 20 61.3940 6.10987 1.36621 58.5345 64.2535 50.00 72.41 

4-cell 20 45.8739 8.31214 1.85865 41.9837 49.7641 25.00 58.82 

8-cell 20 31.4178 10.35380 2.31518 26.5721 36.2635 12.50 48.28 

morula 20 13.8555 6.92781 1.54911 10.6131 17.0978 .00 24.14 

Total 80 38.1353 19.38306 2.16709 33.8218 42.4488 .00 72.41 

slow 2-cell 18 59.5086 8.75687 2.06401 55.1539 63.8633 44.44 75.00 

4-cell 18 44.2284 11.53303 2.71836 38.4932 49.9636 11.11 60.00 

8-cell 18 28.4271 12.95566 3.05368 21.9844 34.8698 .00 42.86 

morula 18 11.9063 6.87241 1.61984 8.4888 15.3239 .00 23.81 

Total 72 36.0176 20.51071 2.41721 31.1978 40.8374 .00 75.00 

 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

rapid Between Groups 24709.797 3 8236.599 125.933 .000 

Within Groups 4970.745 76 65.405   

Total 29680.542 79    

slow Between Groups 22647.815 3 7549.272 71.090 .000 

Within Groups 7221.134 68 106.193   

Total 29868.949 71    

 

rapid 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 4 

morula 20 13.8555    

8-cell 20  31.4178   

4-cell 20   45.8739  

2-cell 20    61.3940 

Sig.  1.000 1.000 1.000 1.000 
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slow 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 4 

morula 18 11.9063    

8-cell 18  28.4271   

4-cell 18   44.2284  

2-cell 18    59.5086 

Sig.  1.000 1.000 1.000 1.000 

 

 

Appendix Table 3.3: Effect of  sperm capacitation chemical treatments regardless of  

           sperm movement on mouse embryo cleavage rate 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell heparin 37 64.6653 10.27134 1.68860 61.2407 68.0900 28.57 81.82 

theophylline 38 60.5009 7.43724 1.20648 58.0564 62.9455 44.44 75.00 

Total 75 62.5553 9.13095 1.05435 60.4545 64.6562 28.57 81.82 

four_cell heparin 37 50.5474 12.21057 2.00741 46.4762 54.6186 .00 68.75 

theophylline 38 45.0945 9.86336 1.60005 41.8525 48.3365 11.11 60.00 

Total 75 47.7846 11.34504 1.31001 45.1743 50.3948 .00 68.75 

eight_cell heparin 37 31.8622 12.28170 2.01910 27.7673 35.9572 .00 52.17 

theophylline 38 30.0011 11.59566 1.88106 26.1897 33.8125 .00 48.28 

Total 75 30.9193 11.89491 1.37351 28.1825 33.6561 .00 52.17 

morula heparin 37 11.7191 6.96539 1.14510 9.3967 14.0414 .00 26.09 

theophylline 38 12.9322 6.87887 1.11590 10.6712 15.1932 .00 24.14 

Total 75 12.3337 6.90181 .79695 10.7457 13.9217 .00 26.09 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 325.109 1 325.109 4.061 .048 

Within Groups 5844.584 73 80.063   

Total 6169.693 74    
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four_cell Between Groups 557.420 1 557.420 4.538 .037 

Within Groups 8967.110 73 122.837   

Total 9524.529 74    

eight_cell Between Groups 64.934 1 64.934 .456 .502 

Within Groups 10405.237 73 142.537   

Total 10470.171 74    

morula Between Groups 27.590 1 27.590 .576 .450 

Within Groups 3497.397 73 47.910   

Total 3524.987 74    

 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimu

m 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

Heparin 2-cell 37 64.6653 10.27134 1.68860 61.2407 68.0900 28.57 81.82 

4-cell 37 50.5474 12.21057 2.00741 46.4762 54.6186 .00 68.75 

8-cell 37 31.8622 12.28170 2.01910 27.7673 35.9572 .00 52.17 

morula 37 11.7191 6.96539 1.14510 9.3967 14.0414 .00 26.09 

Total 14

8 

39.6985 22.58745 1.85668 36.0293 43.3677 .00 81.82 

Theophyllin

e 

2-cell 38 60.5009 7.43724 1.20648 58.0564 62.9455 44.44 75.00 

4-cell 38 45.0945 9.86336 1.60005 41.8525 48.3365 11.11 60.00 

8-cell 38 30.0011 11.59566 1.88106 26.1897 33.8125 .00 48.28 

morula 38 12.9322 6.87887 1.11590 10.6712 15.1932 .00 24.14 

Total 15

2 

37.1322 19.88700 1.61305 33.9451 40.3192 .00 75.00 

 

 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

Heparin Between Groups 58655.971 3 19551.990 172.281 .000 

Within Groups 16342.390 144 113.489   

Total 74998.361 147    
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Theophylline Between Groups 47347.499 3 15782.500 188.799 .000 

Within Groups 12371.937 148 83.594   

Total 59719.436 151    

 

Heparin 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 4 

morula 37 11.7191    

8-cell 37  31.8622   

4-cell 37   50.5474  

2-cell 37    64.6653 

Sig.  1.000 1.000 1.000 1.000 

 

Theophylline 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 4 

morula 38 12.9322    

8-cell 38  30.0011   

4-cell 38   45.0945  

2-cell 38    60.5009 

Sig.  1.000 1.000 1.000 1.000 
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Appendix Table 3.4: Effect of  sperm movement  regardless of  sperm capacitation  

           chemicals treatments on mouse embryo cleavage rate 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell rapid 39 63.3609 7.44013 1.19137 60.9491 65.7727 50.00 79.17 

slow 36 61.6827 10.70843 1.78474 58.0595 65.3059 28.57 81.82 

Total 75 62.5553 9.13095 1.05435 60.4545 64.6562 28.57 81.82 

four_cell rapid 39 49.0156 8.92348 1.42890 46.1229 51.9083 25.00 68.75 

slow 36 46.4510 13.49658 2.24943 41.8844 51.0176 .00 67.27 

Total 75 47.7846 11.34504 1.31001 45.1743 50.3948 .00 68.75 

eight_cell rapid 39 32.5710 10.14982 1.62527 29.2808 35.8612 11.11 52.17 

slow 36 29.1299 13.45233 2.24206 24.5783 33.6815 .00 50.00 

Total 75 30.9193 11.89491 1.37351 28.1825 33.6561 .00 52.17 

morula rapid 39 13.2471 6.70747 1.07406 11.0727 15.4214 .00 26.09 

slow 36 11.3443 7.06618 1.17770 8.9534 13.7351 .00 23.81 

Total 75 12.3337 6.90181 .79695 10.7457 13.9217 .00 26.09 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 52.719 1 52.719 .629 .430 

Within Groups 6116.974 73 83.794   

Total 6169.693 74    

four_cell Between Groups 123.127 1 123.127 .956 .331 

Within Groups 9401.402 73 128.786   

Total 9524.529 74    

eight_cell Between Groups 221.668 1 221.668 1.579 .213 

Within Groups 10248.503 73 140.390   

Total 10470.171 74    

morula Between Groups 67.778 1 67.778 1.431 .235 

Within Groups 3457.209 73 47.359   

Total 3524.987 74    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

rapid 2-cell 39 63.3609 7.44013 1.19137 60.9491 65.7727 50.00 79.17 

4-cell 39 49.0156 8.92348 1.42890 46.1229 51.9083 25.00 68.75 

8-cell 39 32.5710 10.14982 1.62527 29.2808 35.8612 11.11 52.17 

morula 39 13.2471 6.70747 1.07406 11.0727 15.4214 .00 26.09 

Total 156 39.5486 20.51606 1.64260 36.3039 42.7934 .00 79.17 

slow 2-cell 36 61.6827 10.70843 1.78474 58.0595 65.3059 28.57 81.82 

4-cell 36 46.4510 13.49658 2.24943 41.8844 51.0176 .00 67.27 

8-cell 36 29.1299 13.45233 2.24206 24.5783 33.6815 .00 50.00 

morula 36 11.3443 7.06618 1.17770 8.9534 13.7351 .00 23.81 

Total 144 37.1520 22.05218 1.83768 33.5194 40.7845 .00 81.82 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

rapid Between Groups 54487.134 3 18162.378 256.718 .000 

Within Groups 10753.736 152 70.748   

Total 65240.869 155    

slow Between Groups 51070.326 3 17023.442 129.033 .000 

Within Groups 18470.352 140 131.931   

Total 69540.678 143    

 

rapid 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 4 

morula 39 13.2471    

8-cell 39  32.5710   

4-cell 39   49.0156  

2-cell 39    63.3609 

Sig.  1.000 1.000 1.000 1.000 

 

 



228 

 

slow 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 4 

morula 36 11.3443    

8-cell 36  29.1299   

4-cell 36   46.4510  

2-cell 36    61.6827 

Sig.  1.000 1.000 1.000 1.000 
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EFFECT OF OOCYTE FACTORS ON ICSI PERFORMANCE   IN MICE     

(EXPERIMENT 2) 

 

Appendix Table 3.5: Effect of  post-hCG duration administration duration on mouse  

quality of oocytes retrieval 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence 

Interval for Mean 

Minimum Maximum 

  Lower 

Bound 

Upper 

Bound 

N_O_R 13-15 hours 112 13.9107 6.47317 .61166 12.6987 15.1228 2.00 30.00 

16-18 hours 112 13.5714 5.75117 .54343 12.4946 14.6483 2.00 30.00 

Total 224 13.7411 6.11144 .40834 12.9364 14.5458 2.00 30.00 

P_PB 13-15 hours 112 75.6145 17.32656 1.63721 72.3703 78.8587 .00 100.00 

16-18 hours 112 67.3746 15.88152 1.50066 64.4009 70.3482 25.00 100.00 

Total 224 71.4945 17.08882 1.14179 69.2444 73.7446 .00 100.00 

P_W_PB 13-15 hours 112 12.5006 16.45386 1.55474 9.4197 15.5814 .00 100.00 

16-18 hours 112 21.8209 15.74322 1.48759 18.8731 24.7687 .00 61.54 

Total 224 17.1607 16.73144 1.11792 14.9577 19.3638 .00 100.00 

P_Dysmorph

ic 

13-15 hours 112 11.8849 12.26514 1.15895 9.5884 14.1815 .00 55.56 

16-18 hours 112 10.7620 13.14980 1.24254 8.2999 13.2242 .00 75.00 

Total 224 11.3235 12.69910 .84849 9.6514 12.9956 .00 75.00 

 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

N_O_R Between Groups 6.446 1 6.446 .172 .679 

Within Groups 8322.536 222 37.489   

Total 8328.982 223    

P_PB Between Groups 3802.216 1 3802.216 13.765 .000 

Within Groups 61319.995 222 276.216   

Total 65122.211 223    

P_W_PB Between Groups 4864.649 1 4864.649 18.761 .000 

Within Groups 57562.215 222 259.289   

Total 62426.864 223    



230 

 

P_Dysmorphic Between Groups 70.612 1 70.612 .437 .509 

Within Groups 35891.952 222 161.675   

Total 35962.564 223    

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

13-15 hr PB 112 75.6145 17.32656 1.63721 72.3703 78.8587 .00 100.00 

W/PB 112 12.5006 16.45386 1.55474 9.4197 15.5814 .00 100.00 

dysmorphic 112 11.8849 12.26514 1.15895 9.5884 14.1815 .00 55.56 

Total 336 33.3333 33.69869 1.83841 29.7170 36.9496 .00 100.00 

16-18 hr PB 112 67.3746 15.88152 1.50066 64.4009 70.3482 25.00 100.00 

W/PB 112 21.8209 15.74322 1.48759 18.8731 24.7687 .00 61.54 

dysmorphic 112 10.7620 13.14980 1.24254 8.2999 13.2242 .00 75.00 

Total 336 33.3192 28.72369 1.56701 30.2368 36.4016 .00 100.00 

 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

13-15 hr Between Groups 300354.310 2 150177.155 624.547 .000 

Within Groups 80072.373 333 240.458   

Total 380426.683 335    

16-18 hr Between Groups 201690.035 2 100845.018 449.539 .000 

Within Groups 74701.789 333 224.330   

Total 276391.824 335    

 

 

13-15 hr 

Duncan
a
 

oocyte_quality N 

Subset for alpha = 0.05 

1 2 

dysmorphic 112 11.8849  

W/PB 112 12.5006  

PB 112  75.6145 

Sig.  .767 1.000 
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16-18 hr 

Duncan
a
 

oocyte_quality N 

Subset for alpha = 0.05 

1 2 3 

dysmorphic 112 10.7620   

W/PB 112  21.8209  

PB 112   67.3746 

Sig.  1.000 1.000 1.000 
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Appendix Table 3.6: Percentage of mouse oocyte quality retrievalregardless post-hCG  

duration administration duration 

 

Descriptives 

P_ALLduration 

 

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
 

Lower Bound Upper Bound 

PB 224 71.4945 17.08882 1.14179 69.2444 73.7446 .00 100.00 

W/PB 224 17.1607 16.73144 1.11792 14.9577 19.3638 .00 100.00 

Dysmorphic 224 11.3235 12.69910 .84849 9.6514 12.9956 .00 75.00 

Total 672 33.3262 31.28682 1.20692 30.9565 35.6960 .00 100.00 

 

ANOVA 

P_ALLduration 

 Sum of Squares df Mean Square F Sig. 

Between Groups 493306.902 2 246653.451 1009.171 .000 

Within Groups 163511.639 669 244.412   

Total 656818.541 671    

 

 

P_ALLduration 

Duncan
a
 

quality_Oocyte N 

Subset for alpha = 0.05 

1 2 3 

Dysmorphic 224 11.3235   

W/PB 224  17.1607  

PB 224   71.4945 

Sig.  1.000 1.000 1.000 
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EFFECTS OF SPERM FACTORS ON ICSI PERFORMANCE IN GOAT 

(EXPERIMENT 3) 

 

Appendix Table 3.7:  Effect of oocyte qualities on number  of  goat oocyte recovery 

   from LOPU 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

N_OR A 63 1.8889 1.84138 .23199 1.4251 2.3526 .00 8.00 

B 64 1.4375 1.50000 .18750 1.0628 1.8122 .00 5.00 

C 64 2.3906 2.73494 .34187 1.7075 3.0738 .00 11.00 

D 64 .9844 1.74112 .21764 .5495 1.4193 .00 8.00 

E 64 .2813 .62915 .07864 .1241 .4384 .00 3.00 

Total 319 1.3950 1.94922 .10914 1.1803 1.6097 .00 11.00 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

N_OR Between Groups 169.104 4 42.276 12.775 .000 

Within Groups 1039.128 314 3.309   

Total 1208.232 318    

 

N_OR 

Duncan
a,,b

 

Grade N 

Subset for alpha = 0.05 

1 2 3 4 

E 64 .2813    

D 64  .9844   

B 64  1.4375 1.4375  

A 63   1.8889 1.8889 

C 64    2.3906 

Sig.  1.000 .160 .162 .120 
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Appendix Table 3.8: Effect of  goat oocyte qualities on  percentage of oocyte recovery     

                                   from LOPU procedure 

 

Descriptives 

P_matured 

 

N Mean Std. Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
 

Lower Bound Upper Bound 

A 8 96.3480 5.97769 2.11343 91.3506 101.3455 83.33 100.00 

B 8 87.5919 12.92024 4.56800 76.7903 98.3935 62.50 100.00 

C 8 84.3974 7.84889 2.77500 77.8356 90.9592 75.00 100.00 

D 8 51.0872 27.13202 9.59262 28.4042 73.7701 .00 80.95 

E 8 4.1667 11.78511 4.16667 -5.6859 14.0193 .00 33.33 

Total 40 64.7182 37.23828 5.88789 52.8089 76.6276 .00 100.00 

 

 

ANOVA 

P_matured 

 Sum of Squares df Mean Square F Sig. 

Between Groups 46105.741 4 11526.435 50.585 .000 

Within Groups 7975.141 35 227.861   

Total 54080.882 39    

 

 

P_matured 

Duncan
a
 

grades N 

Subset for alpha = 0.05 

1 2 3 

E 8 4.1667   

D 8  51.0872  

C 8   84.3974 

B 8   87.5919 

A 8   96.3480 

Sig.  1.000 1.000 .143 
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Appendix Table 3.9: Effect of  sperm movement with Heparin on goat embryo   

cleavage rate for Grade A 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell Rapid 15 62.8889 36.46300 9.41471 42.6964 83.0814 .00 100.00 

Slow 10 84.6667 21.49935 6.79869 69.2870 100.0464 50.00 100.00 

Total 25 71.6000 32.67219 6.53444 58.1136 85.0864 .00 100.00 

four_cell Rapid 15 49.5556 36.72326 9.48191 29.2189 69.8922 .00 100.00 

Slow 10 55.5000 42.45586 13.42572 25.1289 85.8711 .00 100.00 

Total 25 51.9333 38.35953 7.67191 36.0993 67.7674 .00 100.00 

eight_cell Rapid 15 30.7778 30.86624 7.96963 13.6846 47.8709 .00 100.00 

Slow 10 43.5000 41.23442 13.03947 14.0027 72.9973 .00 100.00 

Total 25 35.8667 35.12583 7.02517 21.3674 50.3659 .00 100.00 

morula Rapid 15 14.5556 27.46185 7.09062 -.6523 29.7634 .00 100.00 

Slow 10 8.2500 16.24679 5.13769 -3.3723 19.8723 .00 50.00 

Total 25 12.0333 23.42749 4.68550 2.3629 21.7037 .00 100.00 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 2845.630 1 2845.630 2.874 .104 

Within Groups 22773.704 23 990.161   

Total 25619.333 24    

four_cell Between Groups 212.019 1 212.019 .139 .713 

Within Groups 35102.870 23 1526.212   

Total 35314.889 24    

eight_cell Between Groups 971.130 1 971.130 .780 .386 

Within Groups 28640.648 23 1245.246   

Total 29611.778 24    

morula Between Groups 238.560 1 238.560 .424 .521 

Within Groups 12933.773 23 562.338   

Total 13172.333 24    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 15 62.8889 36.46300 9.41471 42.6964 83.0814 .00 100.00 

4-cell 15 49.5556 36.72326 9.48191 29.2189 69.8922 .00 100.00 

8-cell 15 30.7778 30.86624 7.96963 13.6846 47.8709 .00 100.00 

morula 15 14.5556 27.46185 7.09062 -.6523 29.7634 .00 100.00 

Total 60 39.4444 37.18644 4.80075 29.8382 49.0507 .00 100.00 

Slow 2-cell 10 84.6667 21.49935 6.79869 69.2870 100.0464 50.00 100.00 

4-cell 10 55.5000 42.45586 13.42572 25.1289 85.8711 .00 100.00 

8-cell 10 43.5000 41.23442 13.03947 14.0027 72.9973 .00 100.00 

morula 10 8.2500 16.24679 5.13769 -3.3723 19.8723 .00 50.00 

Total 40 47.9792 41.77801 6.60568 34.6179 61.3404 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 20196.667 3 6732.222 6.141 .001 

Within Groups 61390.370 56 1096.257   

Total 81587.037 59    

Slow Between Groups 30010.052 3 10003.351 9.462 .000 

Within Groups 38060.625 36 1057.240   

Total 68070.677 39    
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Rapid 

Duncan
a
 

Development A N 

Subset for alpha = 0.05 

1 2 3 

morula 15 14.5556   

8-cell 15 30.7778 30.7778  

4-cell 15  49.5556 49.5556 

2-cell 15   62.8889 

Sig.  .185 .126 .275 

 

Slow 

Duncan
a
 

Development A N 

Subset for alpha = 0.05 

1 2 3 

morula 10 8.2500   

8-cell 10  43.5000  

4-cell 10  55.5000 55.5000 

2-cell 10   84.6667 

Sig.  1.000 .415 .052 
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Appendix Table 3.10: Effect of  sperm movement with Heparin on goat embryo   

        cleavage rate for Grade B 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

two_cell Rapid 7 52.3810 41.30798 15.61295 14.1774 90.5845 .00 100.00 

Slow 10 70.1667 32.37941 10.23927 47.0038 93.3295 .00 100.00 

Total 17 62.8431 36.20814 8.78176 44.2266 81.4596 .00 100.00 

four_cell Rapid 7 47.6190 41.30798 15.61295 14.1774 90.5845 .00 100.00 

Slow 10 43.5000 34.73400 10.98385 18.6528 68.3472 .00 100.00 

Total 17 47.1569 36.58971 8.87431 28.3442 65.9696 .00 100.00 

eight_cell Rapid 7 29.7619 36.59625 13.83208 -4.0840 63.6078 .00 100.00 

Slow 10 26.6667 37.01851 11.70628 .1852 53.1481 .00 100.00 

Total 17 27.9412 35.71458 8.66206 9.5784 46.3039 .00 100.00 

morula Rapid 7 .0000 .00000 .00000 .0000 .0000 .00 .00 

Slow 10 .0000 .00000 .00000 .0000 .0000 .00 .00 

Total 17 .0000 .00000 .00000 .0000 .0000 .00 .00 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 1302.542 1 1302.542 .993 .335 

Within Groups 19673.929 15 1311.595   

Total 20976.471 16    

four_cell Between Groups 324.764 1 324.764 .231 .638 

Within Groups 21096.151 15 1406.410   

Total 21420.915 16    

eight_cell Between Groups 39.449 1 39.449 .029 .867 

Within Groups 20369.048 15 1357.937   

Total 20408.497 16    

morula Between Groups .000 1 .000 . . 

Within Groups .000 15 .000   

Total .000 16    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 7 52.3810 41.30798 15.61295 14.1774 90.5845 .00 100.00 

4-cell 7 47.6190 41.30798 15.61295 9.4155 85.8226 .00 100.00 

8-cell 7 29.7619 36.59625 13.83208 -4.0840 63.6078 .00 100.00 

Morula 7 .0000 .00000 .00000 .0000 .0000 .00 .00 

Total 28 32.4405 38.64602 7.30341 17.4551 47.4258 .00 100.00 

Slow 2-cell 10 70.1667 32.37941 10.23927 47.0038 93.3295 .00 100.00 

4-cell 10 43.5000 34.73400 10.98385 18.6528 68.3472 .00 100.00 

8-cell 10 26.6667 37.01851 11.70628 .1852 53.1481 .00 100.00 

Morula 10 .0000 .00000 .00000 .0000 .0000 .00 .00 

Total 40 35.0833 38.78304 6.13214 22.6799 47.4868 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 11812.996 3 3937.665 3.315 .037 

Within Groups 28511.905 24 1187.996   

Total 40324.901 27    

Slow Between Groups 26033.611 3 8677.870 9.575 .000 

Within Groups 32627.222 36 906.312   

Total 58660.833 39    
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Rapid 

Duncan
a
 

Development B N 

Subset for alpha = 0.05 

1 2 

Morula 7 .0000  

8-cell 7 29.7619 29.7619 

4-cell 7  47.6190 

2-cell 7  52.3810 

Sig.  .119 .258 

 

 

Slow 

Duncan
a
 

Development 

B N 

Subset for alpha = 0.05 

1 2 3 

Morula 10 .0000   

8-cell 10 26.6667 26.6667  

4-cell 10  43.5000 43.5000 

2-cell 10   70.1667 

Sig.  .055 .219 .055 
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Appendix Table 3.11: Effect of  sperm movement with Heparin on goat embryo  

       cleavage rate for Grade C 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

two_cell Rapid 12 63.1845 30.15315 8.70446 44.0261 82.3429 .00 100.00 

Slow 11 45.5844 34.20565 10.31339 22.6047 68.5641 .00 100.00 

Total 23 54.7671 32.66871 6.81190 40.6401 68.8941 .00 100.00 

four_cell Rapid 12 41.1607 31.56291 9.11143 21.1066 61.2148 .00 100.00 

Slow 11 26.2554 27.11446 8.17532 8.0397 44.4712 .00 66.67 

Total 23 34.0321 29.83697 6.22144 21.1296 46.9346 .00 100.00 

eight_cell Rapid 12 20.2480 22.53862 6.50634 5.9277 34.5684 .00 57.14 

Slow 11 12.8355 18.33193 5.52728 .5199 25.1511 .00 42.86 

Total 23 16.7029 20.52030 4.27878 7.8293 25.5765 .00 57.14 

morula Rapid 12 4.8115 9.40284 2.71437 -1.1628 10.7858 .00 28.57 

Slow 11 3.1169 7.05136 2.12607 -1.6203 7.8541 .00 20.00 

Total 23 4.0010 8.21928 1.71384 .4468 7.5553 .00 28.57 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 1777.775 1 1777.775 1.720 .204 

Within Groups 21701.604 21 1033.410   

Total 23479.379 22    

four_cell Between Groups 1275.051 1 1275.051 1.462 .240 

Within Groups 18310.331 21 871.921   

Total 19585.383 22    

eight_cell Between Groups 315.339 1 315.339 .740 .399 

Within Groups 8948.477 21 426.118   

Total 9263.816 22    

morula Between Groups 16.481 1 16.481 .235 .633 

Within Groups 1469.764 21 69.989   

Total 1486.245 22    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 12 63.1845 30.15315 8.70446 44.0261 82.3429 .00 100.00 

4-cell 12 41.1607 31.56291 9.11143 21.1066 61.2148 .00 100.00 

8-cell 12 20.2480 22.53862 6.50634 5.9277 34.5684 .00 57.14 

morula 12 4.8115 9.40284 2.71437 -1.1628 10.7858 .00 28.57 

Total 48 32.3512 32.85003 4.74149 22.8125 41.8898 .00 100.00 

Slow 2-cell 11 45.5844 34.20565 10.31339 22.6047 68.5641 .00 100.00 

4-cell 11 26.2554 27.11446 8.17532 8.0397 44.4712 .00 66.67 

8-cell 11 12.8355 18.33193 5.52728 .5199 25.1511 .00 42.86 

morula 11 3.1169 7.05136 2.12607 -1.6203 7.8541 .00 20.00 

Total 44 21.9481 28.14982 4.24374 13.3897 30.5064 .00 100.00 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 23198.677 3 7732.892 12.364 .000 

Within Groups 27520.158 44 625.458   

Total 50718.835 47    

Slow Between Groups 11163.709 3 3721.236 6.497 .001 

Within Groups 22910.019 40 572.750   

Total 34073.727 43    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 12 63.1845 30.15315 8.70446 44.0261 82.3429 .00 100.00 

4-cell 12 41.1607 31.56291 9.11143 21.1066 61.2148 .00 100.00 

8-cell 12 20.2480 22.53862 6.50634 5.9277 34.5684 .00 57.14 

morula 12 4.8115 9.40284 2.71437 -1.1628 10.7858 .00 28.57 

Total 48 32.3512 32.85003 4.74149 22.8125 41.8898 .00 100.00 

Slow 2-cell 11 45.5844 34.20565 10.31339 22.6047 68.5641 .00 100.00 

4-cell 11 26.2554 27.11446 8.17532 8.0397 44.4712 .00 66.67 

8-cell 11 12.8355 18.33193 5.52728 .5199 25.1511 .00 42.86 

morula 11 3.1169 7.05136 2.12607 -1.6203 7.8541 .00 20.00 

Total 44 21.9481 28.14982 4.24374 13.3897 30.5064 .00 100.00 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 23198.677 3 7732.892 12.364 .000 

Within Groups 27520.158 44 625.458   

Total 50718.835 47    

Slow Between Groups 11163.709 3 3721.236 6.497 .001 

Within Groups 22910.019 40 572.750   

Total 34073.727 43    
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Rapid 

Duncan
a
 

Developement 

C N 

Subset for alpha = 0.05 

1 2 3 

morula 12 4.8115   

8-cell 12 20.2480   

4-cell 12  41.1607  

2-cell 12   63.1845 

Sig.  .138 1.000 1.000 

 

Slow 

Duncan
a
 

Developement 

C N 

Subset for alpha = 0.05 

1 2 3 

morula 11 3.1169   

8-cell 11 12.8355 12.8355  

4-cell 11  26.2554 26.2554 

2-cell 11   45.5844 

Sig.  .347 .196 .065 
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Appendix Table 3.12: Effect of  sperm movement with Heparin on goat embryo  

      cleavage rate for Combined Grades (A, B and C) 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

two_cell Rapid 34 60.8298 34.58978 5.93210 48.7609 72.8988 .00 100.00 

Slow 31 66.1214 33.43574 6.00524 53.8570 78.3857 .00 100.00 

Total 65 63.3535 33.88294 4.20266 54.9577 71.7493 .00 100.00 

four_cell Rapid 34 46.1940 35.06037 6.01280 33.9608 58.4271 .00 100.00 

Slow 31 41.2519 36.04948 6.47468 28.0289 54.4750 .00 100.00 

Total 65 43.8370 35.34375 4.38385 35.0792 52.5947 .00 100.00 

eight_cell Rapid 34 26.8522 29.01178 4.97548 16.7296 36.9749 .00 100.00 

Slow 31 27.1889 34.60535 6.21530 14.4956 39.8823 .00 100.00 

Total 65 27.0128 31.54939 3.91322 19.1953 34.8304 .00 100.00 

morula Rapid 34 8.1197 19.65215 3.37032 1.2628 14.9767 .00 100.00 

Slow 31 3.7673 10.36077 1.86085 -.0331 7.5676 .00 50.00 

Total 65 6.0440 15.94541 1.97778 2.0929 9.9950 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 454.034 1 454.034 .392 .534 

Within Groups 73021.408 63 1159.070   

Total 73475.441 64    

four_cell Between Groups 396.043 1 396.043 .314 .577 

Within Groups 79551.541 63 1262.723   

Total 79947.584 64    

eight_cell Between Groups 1.838 1 1.838 .002 .966 

Within Groups 63701.442 63 1011.134   

Total 63703.280 64    

morula Between Groups 307.184 1 307.184 1.212 .275 

Within Groups 15965.202 63 253.416   

Total 16272.386 64    
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Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 34 60.8298 34.58978 5.93210 48.7609 72.8988 .00 100.00 

4-cell 34 46.1940 35.06037 6.01280 33.9608 58.4271 .00 100.00 

8-cell 34 26.8522 29.01178 4.97548 16.7296 36.9749 .00 100.00 

morula 34 8.1197 19.65215 3.37032 1.2628 14.9767 .00 100.00 

Total 136 35.4989 35.93227 3.08117 29.4053 41.5925 .00 100.00 

Slow 2-cell 31 66.1214 33.43574 6.00524 53.8570 78.3857 .00 100.00 

4-cell 31 41.2519 36.04948 6.47468 28.0289 54.4750 .00 100.00 

8-cell 31 27.1889 34.60535 6.21530 14.4956 39.8823 .00 100.00 

morula 31 3.7673 10.36077 1.86085 -.0331 7.5676 .00 50.00 

Total 124 34.5824 37.72146 3.38749 27.8770 41.2877 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 53734.398 3 17911.466 19.610 .000 

Within Groups 120567.912 132 913.393   

Total 174302.311 135    

Slow Between Groups 63346.106 3 21115.369 22.690 .000 

Within Groups 111671.680 120 930.597   

Total 175017.786 123    
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Rapid 

Duncan
a
 

Development 

Com Grade N 

Subset for alpha = 0.05 

1 2 3 4 

morula 34 8.1197    

8-cell 34  26.8522   

4-cell 34   46.1940  

2-cell 34    60.8298 

Sig.  1.000 1.000 1.000 1.000 

 

Slow 

Duncan
a
 

Development 

Com Grade N 

Subset for alpha = 0.05 

1 2 3 

morula 31 3.7673   

8-cell 31  27.1889  

4-cell 31  41.2519  

2-cell 31   66.1214 

Sig.  1.000 .072 1.000 
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Appendix Table 3.13: Effect of  sperm movement with Theophylline on goat embryo  

      cleavage  rate for Grade A 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

two_cell Rapid 8 95.8333 11.78511 4.16667 85.9807 105.6859 66.67 100.00 

Slow 14 63.2653 34.03839 9.09714 43.6121 82.9185 .00 100.00 

Total 22 75.1082 31.94786 6.81131 60.9433 89.2731 .00 100.00 

four_cell Rapid 8 83.3333 35.63483 12.59882 53.5419 113.1248 .00 100.00 

Slow 14 47.9592 37.10782 9.91748 26.5338 69.3846 .00 100.00 

Total 22 60.8225 39.73734 8.47203 43.2040 78.4411 .00 100.00 

eight_cell Rapid 8 77.0833 36.66396 12.96267 46.4315 107.7352 .00 100.00 

Slow 14 20.1531 31.87025 8.51768 1.7517 38.5544 .00 100.00 

Total 22 40.8550 43.15747 9.20120 21.7200 59.9899 .00 100.00 

morula Rapid 8 18.7500 37.20119 13.15261 -12.3510 49.8510 .00 100.00 

Slow 14 1.0204 3.81802 1.02041 -1.1840 3.2249 .00 14.29 

Total 22 7.4675 23.37813 4.98423 -2.8977 17.8328 .00 100.00 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 5399.807 1 5399.807 6.735 .017 

Within Groups 16034.176 20 801.709   

Total 21433.983 21    

four_cell Between Groups 6370.410 1 6370.410 4.756 .041 

Within Groups 26789.764 20 1339.488   

Total 33160.173 21    

eight_cell Between Groups 16499.921 1 16499.921 14.593 .001 

Within Groups 22613.986 20 1130.699   

Total 39113.907 21    

morula Between Groups 1600.268 1 1600.268 3.240 .087 

Within Groups 9877.004 20 493.850   

Total 11477.273 21    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

Rapid 2-cell 8 95.8333 11.78511 4.16667 85.9807 105.6859 66.67 100.00 

4-cell 8 83.3333 35.63483 12.59882 53.5419 113.1248 .00 100.00 

8-cell 8 77.0833 36.66396 12.96267 46.4315 107.7352 .00 100.00 

morula 8 18.7500 37.20119 13.15261 -12.3510 49.8510 .00 100.00 

Total 32 68.7500 42.91151 7.58576 53.2788 84.2212 .00 100.00 

Slow 2-cell 14 63.2653 34.03839 9.09714 43.6121 82.9185 .00 100.00 

4-cell 14 47.9592 37.10782 9.91748 26.5338 69.3846 .00 100.00 

8-cell 14 20.1531 31.87025 8.51768 1.7517 38.5544 .00 100.00 

morula 14 1.0204 3.81802 1.02041 -1.1840 3.2249 .00 14.29 

Total 56 33.0995 37.88526 5.06263 22.9538 43.2452 .00 100.00 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 28125.000 3 9375.000 9.065 .000 

Within Groups 28958.333 28 1034.226   

Total 57083.333 31    

Slow Between Groups 32584.503 3 10861.501 12.184 .000 

Within Groups 46356.596 52 891.473   

Total 78941.099 55    
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Rapid 

Duncan
a
 

Development A N 

Subset for alpha = 0.05 

1 2 

morula 8 18.7500  

8-cell 8  77.0833 

4-cell 8  83.3333 

2-cell 8  95.8333 

Sig.  1.000 .281 

 

 

Slow 

Duncan
a
 

Development A N 

Subset for alpha = 0.05 

1 2 

morula 14 1.0204  

8-cell 14 20.1531  

4-cell 14  47.9592 

2-cell 14  63.2653 

Sig.  .096 .181 
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Appendix Table 3.14: Effect of  sperm movement with Theophylline on goat embryo  

 cleavage  rate for Grade B 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell Rapid 8 84.3750 16.92508 5.98392 70.2253 98.5247 66.67 100.00 

Slow 11 50.0000 39.44053 11.89177 23.5035 76.4965 .00 100.00 

Total 19 64.4737 35.77214 8.20669 47.2321 81.7153 .00 100.00 

four_cell Rapid 8 63.5417 33.31473 11.77853 35.6899 91.3935 .00 100.00 

Slow 11 28.0303 39.48852 11.90624 1.5016 54.5591 .00 100.00 

Total 19 42.9825 40.27904 9.24065 23.5686 62.3963 .00 100.00 

eight_cell Rapid 8 59.3750 34.91415 12.34402 30.1860 88.5640 .00 100.00 

Slow 11 25.0000 40.31129 12.15431 -2.0815 52.0815 .00 100.00 

Total 19 39.4737 40.99854 9.40571 19.7130 59.2343 .00 100.00 

morula Rapid 8 7.2917 13.68400 4.83803 -4.1484 18.7318 .00 33.33 

Slow 11 .0000 .00000 .00000 .0000 .0000 .00 .00 

Total 19 3.0702 9.30059 2.13370 -1.4126 7.5529 .00 33.33 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 5472.862 1 5472.862 5.298 .034 

Within Groups 17560.764 17 1032.986   

Total 23033.626 18    

four_cell Between Groups 5840.685 1 5840.685 4.250 .055 

Within Groups 23362.532 17 1374.267   

Total 29203.216 18    

eight_cell Between Groups 5472.862 1 5472.862 3.754 .069 

Within Groups 24782.986 17 1457.823   

Total 30255.848 18    

morula Between Groups 246.254 1 246.254 3.194 .092 

Within Groups 1310.764 17 77.104   

Total 1557.018 18    

 

 



252 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

rapid 2-cell 8 84.3750 16.92508 5.98392 70.2253 98.5247 66.67 100.00 

4-cell 8 63.5417 33.31473 11.77853 35.6899 91.3935 .00 100.00 

8-cell 8 59.3750 34.91415 12.34402 30.1860 88.5640 .00 100.00 

morula 8 7.2917 13.68400 4.83803 -4.1484 18.7318 .00 33.33 

Total 32 53.6458 38.27236 6.76566 39.8472 67.4445 .00 100.00 

slow 2-cell 11 50.0000 39.44053 11.89177 23.5035 76.4965 .00 100.00 

4-cell 11 28.0303 39.48852 11.90624 1.5016 54.5591 .00 100.00 

8-cell 11 25.0000 40.31129 12.15431 -2.0815 52.0815 .00 100.00 

morula 11 .0000 .00000 .00000 .0000 .0000 .00 .00 

Total 44 25.7576 37.73369 5.68857 14.2855 37.2297 .00 100.00 

 

 

 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

rapid Between Groups 25789.931 3 8596.644 12.270 .000 

Within Groups 19618.056 28 700.645   

Total 45407.986 31    

slow Between Groups 13825.758 3 4608.586 3.889 .016 

Within Groups 47398.990 40 1184.975   

Total 61224.747 43    
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rapid 

Duncan
a
 

Development B N 

Subset for alpha = 0.05 

1 2 

morula 8 7.2917  

8-cell 8  59.3750 

4-cell 8  63.5417 

2-cell 8  84.3750 

Sig.  1.000 .084 

 

 

slow 

Duncan
a
 

Development B N 

Subset for alpha = 0.05 

1 2 

morula 11 .0000  

8-cell 11 25.0000 25.0000 

4-cell 11 28.0303 28.0303 

2-cell 11  50.0000 

Sig.  .078 .115 
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Appendix Table 3.15: Effect of  sperm movement with Theophylline on goat embryo  

       cleavage rate for Grade C 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell Rapid 8 76.0417 26.87327 9.50114 53.5751 98.5083 20.00 100.00 

Slow 10 46.6667 38.32931 12.12079 19.2475 74.0858 .00 100.00 

Total 18 59.7222 36.06571 8.50077 41.7872 77.6573 .00 100.00 

four_cell Rapid 8 67.2917 26.15487 9.24714 45.4256 89.1577 20.00 100.00 

Slow 10 50.0000 34.24674 10.82977 25.5014 74.4986 .00 100.00 

Total 18 57.6852 31.31716 7.38152 42.1115 73.2588 .00 100.00 

eight_cell Rapid 8 35.8333 32.40370 11.45644 8.7432 62.9235 .00 100.00 

Slow 10 20.0000 21.94269 6.93889 4.3031 35.6969 .00 50.00 

Total 18 27.0370 27.43713 6.46699 13.3929 40.6812 .00 100.00 

morula Rapid 8 6.2500 17.67767 6.25000 -8.5289 21.0289 .00 50.00 

Slow 10 1.6667 5.27046 1.66667 -2.1036 5.4369 .00 16.67 

Total 18 3.7037 12.20141 2.87590 -2.3639 9.7713 .00 50.00 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 3835.069 1 3835.069 3.357 .086 

Within Groups 18277.431 16 1142.339   

Total 22112.500 17    

four_cell Between Groups 1328.897 1 1328.897 1.386 .256 

Within Groups 15344.097 16 959.006   

Total 16672.994 17    

eight_cell Between Groups 1114.198 1 1114.198 1.526 .235 

Within Groups 11683.333 16 730.208   

Total 12797.531 17    

morula Between Groups 93.364 1 93.364 .613 .445 

Within Groups 2437.500 16 152.344   

Total 2530.864 17    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

rapid 2-cell 8 76.0417 26.87327 9.50114 53.5751 98.5083 20.00 100.00 

4-cell 8 67.2917 26.15487 9.24714 45.4256 89.1577 20.00 100.00 

8-cell 8 35.8333 32.40370 11.45644 8.7432 62.9235 .00 100.00 

morula 8 6.2500 17.67767 6.25000 -8.5289 21.0289 .00 50.00 

Total 32 46.3542 37.54194 6.63654 32.8189 59.8895 .00 100.00 

slow 2-cell 10 46.6667 38.32931 12.12079 19.2475 74.0858 .00 100.00 

4-cell 10 50.0000 34.24674 10.82977 25.5014 74.4986 .00 100.00 

8-cell 10 20.0000 21.94269 6.93889 4.3031 35.6969 .00 50.00 

morula 10 1.6667 5.27046 1.66667 -2.1036 5.4369 .00 16.67 

Total 40 29.5833 33.64967 5.32048 18.8216 40.3450 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

rapid Between Groups 24310.069 3 8103.356 11.707 .000 

Within Groups 19381.250 28 692.187   

Total 43691.319 31    

slow Between Groups 15798.611 3 5266.204 6.685 .001 

Within Groups 28361.111 36 787.809   

Total 44159.722 39    

 

 

 

 

 

 

 

 

 

 



256 

 

rapid 

Duncan
a
 

Development C N 

Subset for alpha = 0.05 

1 2 3 

morula 8 6.2500   

8-cell 8  35.8333  

4-cell 8   67.2917 

2-cell 8   76.0417 

Sig.  1.000 1.000 .511 

 

 

slow 

Duncan
a
 

Development C N 

Subset for alpha = 0.05 

1 2 

morula 10 1.6667  

8-cell 10 20.0000  

2-cell 10  46.6667 

4-cell 10  50.0000 

Sig.  .153 .792 
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Appendix Table 3.16: Effect of  sperm movement with Theophylline on goat embryo  

      cleavage rate for Combine Grades (A, B and C) 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

two_cell Rapid 24 85.4167 20.44345 4.17300 76.7842 94.0492 20.00 100.00 

Slow 35 54.3537 36.68265 6.20050 41.7528 66.9547 .00 100.00 

Total 59 66.9895 34.51664 4.49368 57.9944 75.9846 .00 100.00 

four_cell Rapid 24 71.3889 31.77011 6.48505 57.9735 84.8042 .00 100.00 

Slow 35 42.2789 37.31069 6.30666 29.4622 55.0956 .00 100.00 

Total 59 54.1203 37.74012 4.91334 44.2851 63.9554 .00 100.00 

eight_cell Rapid 24 57.4306 37.38421 7.63102 41.6446 73.2165 .00 100.00 

Slow 35 21.6327 31.60865 5.34284 10.7747 32.4906 .00 100.00 

Total 59 36.1945 38.13743 4.96507 26.2558 46.1332 .00 100.00 

morula Rapid 24 10.7639 24.63246 5.02808 .3625 21.1653 .00 100.00 

Slow 35 .8844 3.65613 .61800 -.3716 2.1403 .00 16.67 

Total 59 4.9031 16.50473 2.14873 .6020 9.2043 .00 100.00 
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ANOVA 

  
Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 13737.635 1 13737.635 14.144 .000 

Within Groups 55363.472 57 971.289   

Total 69101.107 58    

four_cell Between Groups 12064.547 1 12064.547 9.748 .003 

Within Groups 70545.800 57 1237.646   

Total 82610.346 58    

eight_cell Between Groups 18244.940 1 18244.940 15.730 .000 

Within Groups 66113.959 57 1159.894   

Total 84358.899 58    

morula Between Groups 1389.634 1 1389.634 5.497 .023 

Within Groups 14409.926 57 252.806   

Total 15799.560 58    

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 24 85.4167 20.44345 4.17300 76.7842 94.0492 20.00 100.00 

4-cell 24 71.3889 31.77011 6.48505 57.9735 84.8042 .00 100.00 

8-cell 24 57.4306 37.38421 7.63102 41.6446 73.2165 .00 100.00 

morula 24 10.7639 24.63246 5.02808 .3625 21.1653 .00 100.00 

Total 96 56.2500 40.33196 4.11636 48.0780 64.4220 .00 100.00 

Slow 2-cell 35 54.3537 36.68265 6.20050 41.7528 66.9547 .00 100.00 

4-cell 35 42.2789 37.31069 6.30666 29.4622 55.0956 .00 100.00 

8-cell 35 21.6327 31.60865 5.34284 10.7747 32.4906 .00 100.00 

morula 35 .8844 3.65613 .61800 -.3716 2.1403 .00 16.67 

Total 140 29.7874 36.54662 3.08875 23.6804 35.8944 .00 100.00 
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ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 75606.250 3 25202.083 29.376 .000 

Within Groups 78927.083 92 857.903   

Total 154533.333 95    

Slow Between Groups 58150.014 3 19383.338 20.675 .000 

Within Groups 127506.074 136 937.545   

Total 185656.088 139    

 

 

Rapid 

Duncan
a
 

Development 

ABC N 

Subset for alpha = 0.05 

1 2 3 

morula 24 10.7639   

8-cell 24  57.4306  

4-cell 24  71.3889 71.3889 

2-cell 24   85.4167 

Sig.  1.000 .102 .101 

 

 

Slow 

Duncan
a
 

Development 

ABC N 

Subset for alpha = 0.05 

1 2 3 

morula 35 .8844   

8-cell 35  21.6327  

4-cell 35   42.2789 

2-cell 35   54.3537 

Sig.  1.000 1.000 .101 
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Appendix Table 3.17: Effect of  sperm movement on goat embryo cleavage rate  

        regardless sperm  capacitation chemical treatment 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell Rapid 58 71.0037 31.78886 4.17408 62.6452 79.3622 .00 100.00 

Slow 66 59.8810 35.42400 4.36039 51.1726 68.5893 .00 100.00 

Total 124 65.0835 34.09521 3.06184 59.0228 71.1442 .00 100.00 

four_cell Rapid 58 56.6195 35.71578 4.68971 47.2285 66.0104 .00 100.00 

Slow 66 41.7965 36.44496 4.48606 32.8372 50.7558 .00 100.00 

Total 124 48.7298 36.71782 3.29736 42.2029 55.2568 .00 100.00 

eight_cell Rapid 58 39.5053 35.80523 4.70146 30.0908 48.9198 .00 100.00 

Slow 66 24.2424 32.91085 4.05105 16.1519 32.3329 .00 100.00 

Total 124 31.3815 34.99936 3.14304 25.1601 37.6030 .00 100.00 

morula Rapid 58 9.2139 21.68298 2.84711 3.5126 14.9151 .00 100.00 

Slow 66 2.2385 7.65756 .94258 .3560 4.1209 .00 50.00 

Total 124 5.5012 16.15781 1.45101 2.6290 8.3733 .00 100.00 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 3819.214 1 3819.214 3.348 .070 

Within Groups 139166.216 122 1140.707   

Total 142985.430 123    

four_cell Between Groups 6782.938 1 6782.938 5.203 .024 

Within Groups 159045.427 122 1303.651   

Total 165828.365 123    

eight_cell Between Groups 7191.592 1 7191.592 6.115 .015 

Within Groups 143477.875 122 1176.048   

Total 150669.468 123    

morula Between Groups 1502.072 1 1502.072 5.987 .016 

Within Groups 30610.124 122 250.903   

Total 32112.196 123    
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Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

Rapid 2-cell 58 71.0037 31.78886 4.17408 62.6452 79.3622 .00 100.00 

4-cell 58 56.6195 35.71578 4.68971 47.2285 66.0104 .00 100.00 

8-cell 58 39.5053 35.80523 4.70146 30.0908 48.9198 .00 100.00 

morula 58 9.2139 21.68298 2.84711 3.5126 14.9151 .00 100.00 

Total 232 44.0856 39.09520 2.56673 39.0284 49.1428 .00 100.00 

Slow 2-cell 66 59.8810 35.42400 4.36039 51.1726 68.5893 .00 100.00 

4-cell 66 41.7965 36.44496 4.48606 32.8372 50.7558 .00 100.00 

8-cell 66 24.2424 32.91085 4.05105 16.1519 32.3329 .00 100.00 

morula 66 2.2385 7.65756 .94258 .3560 4.1209 .00 50.00 

Total 264 32.0396 37.10973 2.28395 27.5424 36.5367 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

Rapid Between Groups 122884.450 3 40961.483 40.573 .000 

Within Groups 230183.923 228 1009.579   

Total 353068.373 231    

Slow Between Groups 120070.028 3 40023.343 42.980 .000 

Within Groups 242115.719 260 931.214   

Total 362185.748 263    
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Rapid 

Duncan
a
 

 N 

Subset for alpha = 0.05 

1 2 3 4 

morula 58 9.2139    

8-cell 58  39.5053   

4-cell 58   56.6195  

2-cell 58    71.0037 

Sig.  1.000 1.000 1.000 1.000 

 

 

Slow 

Duncan
a
 

 N 

Subset for alpha = 0.05 

1 2 3 4 

morula 66 2.2385    

8-cell 66  24.2424   

4-cell 66   41.7965  

2-cell 66    59.8810 

Sig.  1.000 1.000 1.000 1.000 
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EFFECT OF OOCYTE FACTORS ON ICSI PERFORMANCE   IN GOAT 

(EXPERIMENT 4) 
 

4.4.1 The Effect of LOPU Cycle on Yield of Oocytes 

Appendix Table 3.18:  Number of oocyte qualities  in different cycles of LOPU 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

A C1 32 1.5000 1.90076 .33601 .8147 2.1853 .00 9.00 

C2 32 1.2500 1.16398 .20576 .8303 1.6697 .00 4.00 

C3 32 .5625 .75935 .13424 .2887 .8363 .00 3.00 

Total 96 1.1042 1.40285 .14318 .8199 1.3884 .00 9.00 

B C1 32 1.2500 1.52400 .26941 .7005 1.7995 .00 6.00 

C2 32 .9375 1.24272 .21968 .4895 1.3855 .00 5.00 

C3 32 .6563 1.12478 .19883 .2507 1.0618 .00 5.00 

Total 96 .9479 1.31685 .13440 .6811 1.2147 .00 6.00 

C C1 32 2.4063 2.06131 .36439 1.6631 3.1494 .00 8.00 

C2 32 1.2500 1.31982 .23331 .7742 1.7258 .00 5.00 

C3 32 1.0625 1.75862 .31088 .4285 1.6965 .00 8.00 

Total 96 1.5729 1.82235 .18599 1.2037 1.9422 .00 8.00 

D C1 32 .2813 .68318 .12077 .0349 .5276 .00 3.00 

C2 32 .2813 .45680 .08075 .1166 .4459 .00 1.00 

C3 32 .4063 .87471 .15463 .0909 .7216 .00 4.00 

Total 96 .3229 .68817 .07024 .1835 .4624 .00 4.00 

E C1 32 .0313 .17678 .03125 -.0325 .0950 .00 1.00 

C2 32 .2188 .42001 .07425 .0673 .3702 .00 1.00 

C3 32 .3438 .74528 .13175 .0750 .6125 .00 3.00 

Total 96 .1979 .51544 .05261 .0935 .3024 .00 3.00 
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ANOVA 

  
Sum of Squares df Mean Square F Sig. 

A Between Groups 15.083 2 7.542 4.081 .020 

Within Groups 171.875 93 1.848   

Total 186.958 95    

B Between Groups 5.646 2 2.823 1.650 .198 

Within Groups 159.094 93 1.711   

Total 164.740 95    

C Between Groups 33.896 2 16.948 5.597 .005 

Within Groups 281.594 93 3.028   

Total 315.490 95    

D Between Groups .333 2 .167 .347 .708 

Within Groups 44.656 93 .480   

Total 44.990 95    

E Between Groups 1.583 2 .792 3.112 .049 

Within Groups 23.656 93 .254   

Total 25.240 95    

 

A 

Duncan
a
 

OR_cycle N 

Subset for alpha = 0.05 

1 2 

C3 32 .5625  

C2 32  1.2500 

C1 32  1.5000 

Sig.  1.000 .464 
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B 

Duncan
a
 

OR_cycle N 

Subset for alpha = 0.05 

1 

C3 32 .6563 

C2 32 .9375 

C1 32 1.2500 

Sig.  .089 

 

 

C 

Duncan
a
 

OR_cycle N 

Subset for alpha = 0.05 

1 2 

C3 32 1.0625  

C2 32 1.2500  

C1 32  2.4063 

Sig.  .667 1.000 

 

 

D 

Duncan
a
 

OR_cycle N 

Subset for alpha = 0.05 

1 

C1 32 .2813 

C2 32 .2813 

C3 32 .4063 

Sig.  .501 
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E 

Duncan
a
 

OR_cycle N 

Subset for alpha = 0.05 

1 2 

C1 32 .0313  

C2 32 .2188 .2188 

C3 32  .3438 

Sig.  .140 .324 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

OR1 A 32 1.5000 1.90076 .33601 .8147 2.1853 .00 9.00 

B 32 1.2500 1.52400 .26941 .7005 1.7995 .00 6.00 

C 32 2.4063 2.06131 .36439 1.6631 3.1494 .00 8.00 

D 32 .2813 .68318 .12077 .0349 .5276 .00 3.00 

E 32 .0313 .17678 .03125 -.0325 .0950 .00 1.00 

Total 160 1.0938 1.68156 .13294 .8312 1.3563 .00 9.00 

OR2 A 32 1.2500 1.16398 .20576 .8303 1.6697 .00 4.00 

B 32 .9375 1.24272 .21968 .4895 1.3855 .00 5.00 

C 32 1.2500 1.31982 .23331 .7742 1.7258 .00 5.00 

D 32 .2813 .45680 .08075 .1166 .4459 .00 1.00 

E 32 .2188 .42001 .07425 .0673 .3702 .00 1.00 

Total 160 .7875 1.08962 .08614 .6174 .9576 .00 5.00 

OR3 A 32 .5625 .75935 .13424 .2887 .8363 .00 3.00 

B 32 .6563 1.12478 .19883 .2507 1.0618 .00 5.00 

C 32 1.0625 1.75862 .31088 .4285 1.6965 .00 8.00 

D 32 .4063 .87471 .15463 .0909 .7216 .00 4.00 

E 32 .3438 .74528 .13175 .0750 .6125 .00 3.00 

Total 160 .6063 1.13324 .08959 .4293 .7832 .00 8.00 

 

 

 

ANOVA 
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  Sum of Squares df Mean Square F Sig. 

OR1 Between Groups 118.438 4 29.609 13.859 .000 

Within Groups 331.156 155 2.136   

Total 449.594 159    

OR2 Between Groups 32.963 4 8.241 8.198 .000 

Within Groups 155.813 155 1.005   

Total 188.775 159    

OR3 Between Groups 10.288 4 2.572 2.056 .089 

Within Groups 193.906 155 1.251   

Total 204.194 159    

 

OR1 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 3 

E 32 .0313   

D 32 .2813   

B 32  1.2500  

A 32  1.5000  

C 32   2.4063 

Sig.  .495 .495 1.000 

 

OR2 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 

E 32 .2188  

D 32 .2813  

B 32  .9375 

A 32  1.2500 

C 32  1.2500 

Sig.  .803 .243 

 

OR3 
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Grades N 

Subset for alpha = 0.05 

1 2 

E 32 .3438  

D 32 .4063  

A 32 .5625 .5625 

B 32 .6563 .6563 

C 32  1.0625 

Sig.  .315 .093 

 

 

 

Appendix Table 3.19: Number of different oocyte qualities regardless cycles of LOPU  

  procedure 

 

Descriptives 

OR123 

 

N Mean Std. Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
 

Lower Bound Upper Bound 

A 96 1.1042 1.40285 .14318 .8199 1.3884 .00 9.00 

B 96 .9479 1.31685 .13440 .6811 1.2147 .00 6.00 

C 96 1.5729 1.82235 .18599 1.2037 1.9422 .00 8.00 

D 96 .3229 .68817 .07024 .1835 .4624 .00 4.00 

E 96 .1979 .51544 .05261 .0935 .3024 .00 3.00 

Total 480 .8292 1.34148 .06123 .7089 .9495 .00 9.00 

 

ANOVA 

OR123 

 
Sum of Squares df Mean Square F Sig. 

Between Groups 124.575 4 31.144 20.061 .000 

Within Groups 737.417 475 1.552   

Total 861.992 479    

 

 

OR 123 

Duncan
a
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Grades N 

Subset for alpha = 0.05 

1 2 3 

E 96 .1979   

D 96 .3229   

B 96  .9479  

A 96  1.1042  

C 96   1.5729 

Sig.  .487 .385 1.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Table 3.20: Percentage of different  oocyte qualities from LOPU procedure 

 

Descriptives 
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N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

OR1 A 32 24.7764 26.75673 4.72997 15.1295 34.4232 .00 100.00 

B 32 21.3915 24.35372 4.30517 12.6110 30.1719 .00 100.00 

C 32 40.0390 29.50933 5.21656 29.3997 50.6782 .00 100.00 

D 32 4.1578 10.77477 1.90473 .2731 8.0425 .00 42.86 

E 32 .2604 1.47314 .26042 -.2707 .7915 .00 8.33 

Total 160 18.1250 25.67581 2.02985 14.1161 22.1339 .00 100.00 

OR2 A 32 29.3552 29.78853 5.26592 18.6152 40.0951 .00 100.00 

B 32 21.9469 28.36754 5.01472 11.7193 32.1745 .00 100.00 

C 32 26.4980 24.70578 4.36741 17.5906 35.4054 .00 100.00 

D 32 7.6860 13.57287 2.39937 2.7925 12.5796 .00 50.00 

E 32 8.2639 20.63448 3.64769 .8244 15.7034 .00 100.00 

Total 160 18.7500 25.52210 2.01770 14.7651 22.7349 .00 100.00 

OR3 A 32 23.3774 36.07166 6.37663 10.3722 36.3826 .00 100.00 

B 32 18.9503 36.19381 6.39822 5.9011 31.9996 .00 166.67 

C 32 24.0064 31.46690 5.56261 12.6614 35.3514 .00 100.00 

D 32 13.3681 30.35891 5.36675 2.4225 24.3136 .00 100.00 

E 32 10.3472 24.69356 4.36525 1.4442 19.2502 .00 100.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

OR1 Between Groups 33579.457 4 8394.864 18.265 .000 
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Within Groups 71240.869 155 459.619   

Total 104820.326 159    

OR2 Between Groups 13282.938 4 3320.735 5.701 .000 

Within Groups 90286.084 155 582.491   

Total 103569.022 159    

OR3 Between Groups 4669.311 4 1167.328 1.137 .341 

Within Groups 159115.493 155 1026.552   

Total 163784.804 159    

 

OR1 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 3 

E 32 .2604   

D 32 4.1578   

B 32  21.3915  

A 32  24.7764  

C 32   40.0390 

Sig.  .468 .529 1.000 

 

 

 

OR2 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 

D 32 7.6860  

E 32 8.2639  

B 32  21.9469 

C 32  26.4980 

A 32  29.3552 

Sig.  .924 .251 

 

OR3 

Duncan
a
 

Grades N 

Subset for alpha 

= 0.05 
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1 

E 32 10.3472 

D 32 13.3681 

B 32 18.9503 

A 32 23.3774 

C 32 24.0064 

Sig.  .133 

 

 

 

 

 

Appendix Table 3.21: Percentage of different oocyte qualities regardless cycles of 

       LOPU  procedure 

 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

A OR1 32 24.7764 26.75673 4.72997 15.1295 34.4232 .00 100.00 

OR2 32 29.3552 29.78853 5.26592 18.6152 40.0951 .00 100.00 

OR3 32 23.3774 36.07166 6.37663 10.3722 36.3826 .00 100.00 

Total 96 25.8363 30.89259 3.15296 19.5769 32.0957 .00 100.00 

B OR1 32 21.3915 24.35372 4.30517 12.6110 30.1719 .00 100.00 

OR2 32 21.9469 28.36754 5.01472 11.7193 32.1745 .00 100.00 

OR3 32 18.9503 36.19381 6.39822 5.9011 31.9996 .00 166.67 

Total 96 20.7629 29.75423 3.03678 14.7341 26.7917 .00 166.67 

C OR1 32 40.0390 29.50933 5.21656 29.3997 50.6782 .00 100.00 

OR2 32 26.4980 24.70578 4.36741 17.5906 35.4054 .00 100.00 

OR3 32 24.0064 31.46690 5.56261 12.6614 35.3514 .00 100.00 

Total 96 30.1811 29.26744 2.98710 24.2510 36.1113 .00 100.00 

D OR1 32 4.1578 10.77477 1.90473 .2731 8.0425 .00 42.86 

OR2 32 7.6860 13.57287 2.39937 2.7925 12.5796 .00 50.00 

OR3 32 13.3681 30.35891 5.36675 2.4225 24.3136 .00 100.00 

Total 96 8.4040 20.32977 2.07490 4.2848 12.5231 .00 100.00 

E OR1 32 .2604 1.47314 .26042 -.2707 .7915 .00 8.33 

OR2 32 7.6860 13.57287 2.39937 2.7925 12.5796 .00 50.00 
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OR3 32 10.3472 24.69356 4.36525 1.4442 19.2502 .00 100.00 

Total 96 6.0979 16.67967 1.70236 2.7183 9.4775 .00 100.00 

 

 

 

ANOVA 

  
Sum of Squares df Mean Square F Sig. 

A Between Groups 625.664 2 312.832 .323 .725 

Within Groups 90037.767 93 968.148   

Total 90663.431 95    

B Between Groups 162.638 2 81.319 .090 .914 

Within Groups 83942.212 93 902.604   

Total 84104.850 95    

C Between Groups 4763.814 2 2381.907 2.891 .061 

Within Groups 76611.591 93 823.781   

Total 81375.405 95    

D Between Groups 1382.003 2 691.002 1.696 .189 

Within Groups 37881.441 93 407.327   

Total 39263.445 95    

E Between Groups 1748.962 2 874.481 3.295 .041 

Within Groups 24681.117 93 265.388   

Total 26430.079 95    

 

 

 

 

 

 

A 

Duncan
a
 

cycle N 

Subset for alpha = 0.05 

1 

OR3 32 23.3774 

OR1 32 24.7764 

OR2 32 29.3552 
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Sig.  .474 

 

 

B 

Duncan
a
 

cycle N 

Subset for alpha = 0.05 

1 

OR3 32 18.9503 

OR1 32 21.3915 

OR2 32 21.9469 

Sig.  .710 

 

 

C 

Duncan
a
 

cycle N 

Subset for alpha = 0.05 

1 2 

OR3 32 24.0064  

OR2 32 26.4980 26.4980 

OR1 32  40.0390 

Sig.  .729 .062 
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D 

Duncan
a
 

cycle N 

Subset for alpha = 0.05 

1 

OR1 32 4.1578 

OR2 32 7.6860 

OR3 32 13.3681 

Sig.  .087 

 

E 

Duncan
a
 

cycle N 

Subset for alpha = 0.05 

1 2 

OR1 32 .2604  

OR2 32 7.6860 7.6860 

OR3 32  10.3472 

Sig.  .071 .515 
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4.4.2 The Effects of IVM Duration on Maturation Rate and ICSI- Derived  

  Embryonic Development 

 

Appendix Table 3.22: Effect of 18 to 21 hours IVM duration from different grades of  

      oocytes on goat embryo cleavage rate 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

A 2-cell 29 59.1954 38.91796 7.22688 44.3918 73.9990 .00 100.00 

4-cell 29 47.4138 38.51815 7.15264 32.7623 62.0653 .00 100.00 

8-cell 29 33.0460 38.67105 7.18103 18.3363 47.7557 .00 100.00 

morula 29 11.9253 28.12167 5.22206 1.2284 22.6222 .00 100.00 

Total 116 37.8951 39.99916 3.71383 30.5387 45.2515 .00 100.00 

B 2-cell 29 31.3793 42.62719 7.91567 15.1648 47.5938 .00 100.00 

4-cell 29 20.4598 33.22272 6.16930 7.8225 33.0970 .00 100.00 

8-cell 29 10.9195 27.55797 5.11739 .4370 21.4020 .00 100.00 

morula 29 .0000 .00000 .00000 .0000 .0000 .00 .00 

Total 116 15.6897 32.12000 2.98227 9.7824 21.5970 .00 100.00 

C 2-cell 29 35.9483 39.53457 7.34139 20.9101 50.9864 .00 100.00 

4-cell 29 24.4540 31.69820 5.88621 12.3967 36.5114 .00 100.00 

8-cell 29 9.2816 17.27423 3.20774 2.7108 15.8524 .00 50.00 

morula 29 1.0057 3.80175 .70597 -.4404 2.4519 .00 16.67 

Total 116 17.6724 29.74885 2.76211 12.2012 23.1436 .00 100.00 

 

 

 

 

 

 

 

 

 

 

 

 



277 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

A Between Groups 36025.353 3 12008.451 9.090 .000 

Within Groups 147966.954 112 1321.134   

Total 183992.307 115    

B Between Groups 15597.318 3 5199.106 5.651 .001 

Within Groups 103047.510 112 920.067   

Total 118644.828 115    

C Between Groups 21117.241 3 7039.080 9.774 .000 

Within Groups 80657.088 112 720.153   

Total 101774.330 115    

 

A 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 

morula 29 11.9253   

8-cell 29  33.0460  

4-cell 29  47.4138 47.4138 

2-cell 29   59.1954 

Sig.  1.000 .135 .220 

 

 

B 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 3 

morula 29 .0000   

8-cell 29 10.9195 10.9195  

4-cell 29  20.4598 20.4598 

2-cell 29   31.3793 

Sig.  .173 .234 .173 
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C 

Duncan
a
 

developm

ent N 

Subset for alpha = 0.05 

1 2 

morula 29 1.0057  

8-cell 29 9.2816  

4-cell 29  24.4540 

2-cell 29  35.9483 

Sig.  .243 .106 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell A 29 59.1954 38.91796 7.22688 44.3918 73.9990 .00 100.00 

B 29 31.3793 42.62719 7.91567 15.1648 47.5938 .00 100.00 

C 29 35.9483 39.53457 7.34139 20.9101 50.9864 .00 100.00 

Total 87 42.1743 41.75733 4.47686 33.2746 51.0740 .00 100.00 

four_cell A 29 47.4138 38.51815 7.15264 32.7623 62.0653 .00 100.00 

B 29 20.4598 33.22272 6.16930 7.8225 33.0970 .00 100.00 

C 29 24.4540 31.69820 5.88621 12.3967 36.5114 .00 100.00 

Total 87 30.7759 36.22505 3.88373 23.0553 38.4965 .00 100.00 

eight_cell A 29 33.0460 38.67105 7.18103 18.3363 47.7557 .00 100.00 

B 29 10.9195 27.55797 5.11739 .4370 21.4020 .00 100.00 

C 29 9.2816 17.27423 3.20774 2.7108 15.8524 .00 50.00 

Total 87 17.7490 30.82393 3.30467 11.1796 24.3185 .00 100.00 

morula A 29 11.9253 28.12167 5.22206 1.2284 22.6222 .00 100.00 

B 29 .0000 .00000 .00000 .0000 .0000 .00 .00 

C 29 1.0057 3.80175 .70597 -.4404 2.4519 .00 16.67 

Total 87 4.3103 17.07882 1.83104 .6704 7.9503 .00 100.00 
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ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 12905.380 2 6452.690 3.955 .023 

Within Groups 137050.670 84 1631.556   

Total 149956.050 86    

four_cell Between Groups 12273.036 2 6136.518 5.125 .008 

Within Groups 100580.843 84 1197.391   

Total 112853.879 86    

eight_cell Between Groups 10217.736 2 5108.868 6.003 .004 

Within Groups 71492.146 84 851.097   

Total 81709.882 86    

morula Between Groups 2537.117 2 1268.558 4.726 .011 

Within Groups 22547.893 84 268.427   

Total 25085.010 86    

 

two_cell 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 

B 29 31.3793  

C 29 35.9483  

A 29  59.1954 

Sig.  .668 1.000 

 

 

four_cell 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 

B 29 20.4598  

C 29 24.4540  

A 29  47.4138 

Sig.  .661 1.000 
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eight_cell 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 

C 29 9.2816  

B 29 10.9195  

A 29  33.0460 

Sig.  .831 1.000 

 

morula 

Duncan
a
 

Grades N 

Subset for alpha = 0.05 

1 2 

B 29 .0000  

C 29 1.0057  

A 29  11.9253 

Sig.  .816 1.000 
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Appendix Table 3.23: Effect of  22 to 25 hours IVM duration from different grades of  

      oocytes on goat embryo cleavage rate 

 

 

Descriptives 

 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum Maximum   Lower Bound Upper Bound 

two_cell A 30 57.5238 43.95424 8.02491 41.1110 73.9366 .00 100.00 

B 30 41.1111 38.27790 6.98856 26.8179 55.4043 .00 100.00 

C 30 46.4048 38.47910 7.02529 32.0364 60.7731 .00 100.00 

Total 90 48.3466 40.45624 4.26446 39.8732 56.8200 .00 100.00 

four_cell A 30 43.7143 43.83507 8.00315 27.3460 60.0826 .00 100.00 

B 30 31.3889 37.18310 6.78867 17.5045 45.2733 .00 100.00 

C 30 37.0635 35.28518 6.44216 23.8878 50.2392 .00 100.00 

Total 90 37.3889 38.83248 4.09330 29.2556 45.5222 .00 100.00 

eight_cell A 30 31.2381 39.30024 7.17521 16.5631 45.9130 .00 100.00 

B 30 26.9444 35.73820 6.52487 13.5996 40.2893 .00 100.00 

C 30 13.7103 17.87208 3.26298 7.0368 20.3839 .00 57.14 

Total 90 23.9643 32.86011 3.46376 17.0819 30.8467 .00 100.00 

morula A 30 3.9762 9.74640 1.77944 .3368 7.6156 .00 40.00 

B 30 1.9444 7.48028 1.36571 -.8487 4.7376 .00 33.33 

C 30 4.3175 11.20187 2.04517 .1346 8.5003 .00 50.00 

Total 90 3.4127 9.54892 1.00654 1.4127 5.4127 .00 50.00 
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ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 4210.326 2 2105.163 1.295 .279 

Within Groups 141456.608 87 1625.938   

Total 145666.934 89    

four_cell Between Groups 2283.496 2 1141.748 .753 .474 

Within Groups 131925.059 87 1516.380   

Total 134208.554 89    

eight_cell Between Groups 5008.005 2 2504.003 2.391 .097 

Within Groups 91093.028 87 1047.046   

Total 96101.033 89    

morula Between Groups 98.757 2 49.378 .536 .587 

Within Groups 8016.436 87 92.143   

Total 8115.193 89    

 

two_cell 

Duncan
a
 

grades N 

Subset for alpha = 0.05 

1 

B 30 41.1111 

C 30 46.4048 

A 30 57.5238 

Sig.  .140 

 

four_cell 

Duncan
a
 

grades N 

Subset for alpha = 0.05 

1 

B 30 31.3889 

C 30 37.0635 

A 30 43.7143 

Sig.  .252 

 

eight_cell 
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Duncan
a
 

grades N 

Subset for alpha = 0.05 

1 2 

C 30 13.7103  

B 30 26.9444 26.9444 

A 30  31.2381 

Sig.  .117 .609 

 

morula 

Duncan
a
 

grades N 

Subset for alpha = 

0.05 

1 

B 30 1.9444 

A 30 3.9762 

C 30 4.3175 

Sig.  .372 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



284 

 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

A 2-cell 30 57.5238 43.95424 8.02491 41.1110 73.9366 .00 100.00 

4-cell 30 43.7143 43.83507 8.00315 27.3460 60.0826 .00 100.00 

8-cell 30 31.2381 39.30024 7.17521 16.5631 45.9130 .00 100.00 

morula 30 3.9762 9.74640 1.77944 .3368 7.6156 .00 40.00 

Total 120 34.1131 41.60630 3.79812 26.5924 41.6337 .00 100.00 

B 2-cell 30 41.1111 38.27790 6.98856 26.8179 55.4043 .00 100.00 

4-cell 30 31.3889 37.18310 6.78867 17.5045 45.2733 .00 100.00 

8-cell 30 26.9444 35.73820 6.52487 13.5996 40.2893 .00 100.00 

morula 30 1.9444 7.48028 1.36571 -.8487 4.7376 .00 33.33 

Total 120 25.3472 35.06356 3.20085 19.0092 31.6852 .00 100.00 

C 2-cell 30 46.4048 38.47910 7.02529 32.0364 60.7731 .00 100.00 

4-cell 30 37.0635 35.28518 6.44216 23.8878 50.2392 .00 100.00 

8-cell 30 13.7103 17.87208 3.26298 7.0368 20.3839 .00 57.14 

morula 30 4.3175 11.20187 2.04517 .1346 8.5003 .00 50.00 

Total 120 25.3740 32.62950 2.97865 19.4760 31.2720 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

A Between Groups 46702.292 3 15567.431 11.336 .000 

Within Groups 159296.684 116 1373.247   

Total 205998.975 119    

B Between Groups 25057.292 3 8352.431 7.991 .000 

Within Groups 121247.685 116 1045.239   

Total 146304.977 119    

C Between Groups 34750.696 3 11583.565 14.614 .000 

Within Groups 91946.762 116 792.644   

Total 126697.457 119    
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A 

Duncan
a
 

develop

emnt N 

Subset for alpha = 0.05 

1 2 3 

morula 30 3.9762   

8-cell 30  31.2381  

4-cell 30  43.7143 43.7143 

2-cell 30   57.5238 

Sig.  1.000 .195 .152 

 

B 

Duncan
a
 

developem

nt N 

Subset for alpha = 0.05 

1 2 

morula 30 1.9444  

8-cell 30  26.9444 

4-cell 30  31.3889 

2-cell 30  41.1111 

Sig.  1.000 .112 

 

 

C 

Duncan
a
 

developem

nt N 

Subset for alpha = 0.05 

1 2 

morula 30 4.3175  

8-cell 30 13.7103  

4-cell 30  37.0635 

2-cell 30  46.4048 

Sig.  .199 .201 
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Appendix Table 3.24: Effect of  different  IVM duration from on goat embryo clevage   

    rate  regardless grades of oocytes 

Descriptives 

  

N Mean 

Std. 

Deviation Std. Error 

95% Confidence Interval for 

Mean 

Minimum Maximum 
  

Lower Bound Upper Bound 

hours_18 2-cell 87 42.1743 41.75733 4.47686 33.2746 51.0740 .00 100.00 

4-cell 87 30.7759 36.22505 3.88373 23.0553 38.4965 .00 100.00 

8-cell 87 17.7490 30.82393 3.30467 11.1796 24.3185 .00 100.00 

morula 87 4.3103 17.07882 1.83104 .6704 7.9503 .00 100.00 

Total 348 23.7524 35.58658 1.90764 20.0004 27.5044 .00 100.00 

hours_22 2-cell 90 48.3466 40.45624 4.26446 39.8732 56.8200 .00 100.00 

4-cell 90 37.3889 38.83248 4.09330 29.2556 45.5222 .00 100.00 

8-cell 90 23.9643 32.86011 3.46376 17.0819 30.8467 .00 100.00 

morula 90 3.4127 9.54892 1.00654 1.4127 5.4127 .00 50.00 

Total 360 28.2781 36.76053 1.93745 24.4679 32.0883 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

hours_18 Between Groups 69837.538 3 23279.179 21.666 .000 

Within Groups 369604.821 344 1074.433   

Total 439442.359 347    

hours_22 Between Groups 101038.211 3 33679.404 31.216 .000 

Within Groups 384091.715 356 1078.909   

Total 485129.925 359    
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18-21 hours 

Duncan
a
 

development N 

Subset for alpha = 0.05 

1 2 3 4 

morula 87 4.3103    

8-cell 87  17.7490   

4-cell 87   30.7759  

2-cell 87    42.1743 

Sig.  1.000 1.000 1.000 1.000 

 

22-25 hours 

Duncan
a
 

development N 

Subset for alpha = 0.05 

1 2 3 4 

morula 90 3.4127    

8-cell 90  23.9643   

4-cell 90   37.3889  

2-cell 90    48.3466 

Sig.  1.000 1.000 1.000 1.000 

 

 

Descriptives 

  

N Mean 

Std. 

Deviation 

Std. 

Error 

95% Confidence Interval 

for Mean 

Minimum 

Maximu

m 

  Lower 

Bound 

Upper 

Bound 

two_cell 18-21 

hours 

87 42.1743 41.75733 4.47686 33.2746 51.0740 .00 100.00 

22-25 

hours 

90 48.3466 40.45624 4.26446 39.8732 56.8200 .00 100.00 

Total 177 45.3128 41.10051 3.08930 39.2159 51.4096 .00 100.00 

four_cell 18-21 

hours 

87 30.7759 36.22505 3.88373 23.0553 38.4965 .00 100.00 

22-25 

hours 

90 37.3889 38.83248 4.09330 29.2556 45.5222 .00 100.00 

Total 177 34.1384 37.61324 2.82718 28.5589 39.7180 .00 100.00 
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eight_cel

l 

18-21 

hours 

87 17.7490 30.82393 3.30467 11.1796 24.3185 .00 100.00 

22-25 

hours 

90 23.9643 32.86011 3.46376 17.0819 30.8467 .00 100.00 

Total 177 20.9093 31.93742 2.40056 16.1717 25.6469 .00 100.00 

morula 18-21 

hours 

87 4.3103 17.07882 1.83104 .6704 7.9503 .00 100.00 

22-25 

hours 

90 3.4127 9.54892 1.00654 1.4127 5.4127 .00 50.00 

Total 177 3.8539 13.74191 1.03291 1.8154 5.8924 .00 100.00 

 

 

ANOVA 

  Sum of Squares df Mean Square F Sig. 

two_cell Between Groups 1685.283 1 1685.283 .998 .319 

Within Groups 295622.985 175 1689.274   

Total 297308.268 176    

four_cell Between Groups 1934.591 1 1934.591 1.370 .243 

Within Groups 247062.434 175 1411.785   

Total 248997.024 176    

eight_cell Between Groups 1708.853 1 1708.853 1.682 .196 

Within Groups 177810.915 175 1016.062   

Total 179519.768 176    

morula Between Groups 35.645 1 35.645 .188 .665 

Within Groups 33200.202 175 189.715   

Total 33235.847 176    
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Sperm motility is correlated with

intracytoplasmic sperm injection (ICSI)

outcomes as motility reflects sperm vitality

to result in successful fertilisation and

subsequent developmental competence

(Goto, 1997). Due to lack of information as

well as controversial issues regarding the

sperm and ICSI performance relationship,

therefore, it is timely to study factors such

as sperm motility characteristics relating to

ICSI performance in order to clarify the

underlying factors so that this technique can

be applied integrative with other

technologies in advance farm management

for the goat industry.

Therefore, the objective of this study

was to produce embryos via ICSI technique

using slow and rapid movement of sperm in

goats.

1) Montag, M., V. Tok, S.L. Liow, A.

Bongso and S.C. Ng, 1992. In

vitro decondensation of mammalian

sperm and subsequent formation of

pronuclei-like structures for

micromanipulation. Mol. Reprod.

Develop., 33: 338-346.

2) Goto, K., 1997. Current status and future

of micromanipulation-assisted

fertilization in animals and human. J.

Reprod. Dev., 43: 107-119.

3) Wakayama T, et al., 1998. Production of

normal offspring from mouse oocytes

injected with spermatozoa cryopreserved

with or without cryoprotection. Journal of

Reproduction and Fertility 112 11–17 .

4) Zhou, J.B., Y.G. Wu, D. Han, L.Q. Liu,

X.W. Tan and N. Liu et al., 2004. Effects

of sperm and oocyte quality control on

intracytoplasmic sperm injection (ICSI) in

goats. Shi Yan Sheng Wu Xue Bao, 37:

367-374.

In conclusion, both rapid and slow movement

sperm could be used to produce goat embryos

using ICSI procedure with rapid sperm

movement gives better ICSI performance than

slow movement.
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a b c

Fig. 2: Different grades of oocyte (a – c) based on cumulus

cells complexes (COCs) layers criteria.

Fig. 1: LOPU procedure to obtain the 

oocytes.

In vitro maturation (IVM) for 24 hours

Sperm washing and capacitation with 

heparin for 60 minutes

Fig. 3: ICSI procedure. 

ICSI was conducted using two different

categories of the sperm movement:

1) Rapid movement = identified by fast

movement (>70%) and progressively

motility (forward movement)

2) Slow movement = identified by slow

movement (<50%) and non-progressively

motility (undirected movement)

In vitro culture 

(observed the development for 7 consecutive 

days

The results have shown that the percentage of cleaved

oocytes in rapid sperm movement was higher than that

of slow movement group (69.23% vs. 64.44%,

respectively). The embryos developed in vitro until the

morula stage (13.46% vs 2.22%, respectively). There

was one embryo successfully developed until

blastocysts stage from the rapid movement sperm

(1.92%). The sperm that been used are in good

morphology (no morphology defect). Therefore, both

rapid and slow sperm movement shows the embryos

development.

In this study, the immobilisation

technique prior to ICSI procedure will

brake the plasma membrane and is

important for oocyte activation, lead the

sperm nuclear decondensation (Montag

et al., 1992). Normally sperm are

considered when their plasma

membranes are severely damaged or lost.

However, there has been reported that

viable embryos were obtained from dead

sperm from a number of species by using

frozen-thawed without cryoprotectant

(Wakayama et al., 1998) and also

together preserved and treated with

Triton-X 100 by Zhou et al., (2004).

Even those reports are regarding the

immotile sperm, via these findings, the

slow sperm movement was been focused

in this study. There has been shows that

the slow sperm also may produce the

viable embryos but the survival rate to

morula is lower than using the rapid

sperm movement.

Sperm 

movement 

Grade No. of 

matured 

oocytes

(injected 

oocytes)

Embryo development rate (n)

Cleavage 

rate 

(2-cells 

stage)

4-cells 8-cells 16-cells Morula

Rapid A 24 70.83* 

(17)

70.83

(17)

45.83

(11)

25.00

(6)

16.67

(4)

B 8 50.00

(4)

50.00

(4)

50.00

(4)

25.00

(2)

0.00

(0)

C 20 74.00

(15)

75.00

(11)

30.00

(6)

20.00

(4)

15.00

(3)

Total 52 69.23** 

(36)

61.53

(32)

40.38 

(21)

23.07 

(12)

13.40 

(7)

Slow A 10 90.00

(9)

70.00

(7)

30.00

(3)

20.00

(2)

10.00

(1)

B 13 53.85

(7)

46.15

(6)

23.08

(3)

7.69

(1)

0.00

(0)

C 22 59.09

(13)

45.45

(10)

27.27

(6)

9.09

(2)

0.00

(0)

Total 45 64.44 

(29)

51.11 

(23)

26.67 

(12)

11.11 

(5)

2.22 

(1)

*   mean percentage of embryo development was based on  total  no. of oocytes of 

each grade per treatment.

**mean percentage of embryo development was based on total no. of matured 

oocytes per treatment.

Table 1: Embryo development rate from different sperm 

movement 
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LOPU is less invasive surgical for oocytes
recovery from antral follicles which were
seen as ‘pimple-like’ protrusion on the
ovarian surface. In Malaysia, the source of
ovary for obtain oocyte from abattoir is
limited. Therefore, LOPU is better
alternative to obtain oocytes from does
(1,2,and 3). However, it is no certain
whether the quantity and quality of oocytes
obtained from LOPU is comparable to that
of abattoir source.

Grade of

oocytes

OR cycle number (n) Total

C1 C2 C3

A 45.3*

(48)

37.7 

(40)

17.0 

(18)

26.5 

(106)

B 44.0*

(40)

33.0 

(30)

23.1 

(21)

22.8 

(91)

C 49.7*

(77)

25.8 

(40)

24.5 

(38)

38.8 

(155)

D 31.0 

(9)

31.0 

(9)

37.9*

(11)

7.3   

(29)

E 5.2   

(1)

36.8 

(7)

57.9* 

(11)

4.8   

(19)

Total 43.8 

(175)

31.5 

(126)

24.8 

(99)

400

Table 1: Percentage of different grades of oocytes 
retrieved from different OR cycle 

Grade of 

oocytes

Side of ovary (n)

Left Right

A 27.5 (57) 25.4 (49)

B 24.6 (51) 20.7 (40)

C 37.1 (77) 40.4 (78)

D 4.3 (9) 10.4 (20)

E 6.3 (13) 3.1 (6)

TOTAL 51.8 (207) 48.3 (193)

Table 2: Percentage of different grades of oocytes  
retrieved from left and right ovaries

Figure 2: Different grades of oocyte (a – e) based 
on COCs layers criteria.Figure 1: LOPU procedure showing surgical 

instrument. 

The does were synchronized using CIDR
insertion for 14 days after which LOPU was
carried out 66 hr 0f post-PMSG and 60 hr of
post-Ovidrel. The results showed that higher
percentage of Grades C oocytes were obtained
compared to other grades. This is probably
due to the oocytes already partially undergone
maturation process thereby a few layers of
cumulus cells were already loosen. It was
noted that Grades A, B and C oocytes were
highly obtained from first OR, while high
percentages of Grades D and E oocytes were
obtained from third OR cycle.
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Institute of Biological Sciences Mini Farm, University of
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OBJECTIVES

a) To determine grades of oocytes
obtained from different OR cycle from
LOPU.

b) To compare different grades of
oocytes retrieved from left and right
ovaries.

CONCLUSIONS

LOPU procedure for goat oocyte retrieval
could be at least up to three times.
However, the developmental competence
of oocyte obtained is yet to be determined
before it can be recommended for
reproduction of in vitro embryos using
different reproductive techniques.

b c

d e

a
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