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CHAPTER ONE 

INTRODUCTION 

1.1 Introduction 

        The differential equations (DE) appear naturally in many areas of science and 

humanities. Ordinary differential equations (ODE) have found a wide range of 

application in biological, physical, social and engineering systems which are dynamic in 

character. They can be used effectively to analyze the evolutionary trend of such systems, 

they also aid in the formulation of these systems and the qualitative examination of their 

stability and adaptability to external stimuli. Many phenomena in different branches of 

sciences are interpreted in terms of second order DE and their solutions. For example, the 

so–called Emden-Fowler differential equation arises in the study of gas dynamics and 

fluid mechanics. This equation appears also in the study of chemically reacting systems. 

       Since the classic work of Atkinson (1955), there has much interest in the problem of 

determining oscillation criteria for second order non-linear DE. The study of the 

oscillation of second–order nonlinear ODE’s with alternating coefficients is of special 

interest because of the fact that many physical systems are modeled by second order 

nonlinear ODE. Some of the most important and useful tests have involved the average 

behavior of the integral of the alternating coefficient. These tests have been motivated by 

the averaging criterion of Kameneve (1978) and its generalizations. The use of averaging 

functions in the study of oscillation dates back to the work of Wintner (1949) and    

Hartman (1952). 

     Although differential equations of second-order have been studied extensively, the 

study of qualitative behavior of third-order differential equations has received 
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considerably less attention in the literature, however certain results for third-order 

differential equations have been known for a long time and their applications in 

mathematical modeling in biology and physics. In 1961 Hanan (1961) studied the 

oscillation and non-oscillation of two different types of third order differential equations 

and gave definitions of two types of the solutions. The paper was the starting point for 

many investigations to the asymptotic behavior of third-order equations. 

       The purpose of this thesis is to study the problem of oscillation of second order non-

linear ordinary differential equations of the form 

                   

  )1.1()(,)()()),(()()()( txtHtxtrtxgtqtxtr 















 




 

and oscillation of second non-linear equations with damping term of the form 

)2.1(,)(),(,)())(()()),(()()()()())(()( 
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where hr ,  and q are continuous functions on the interval   )(,0,, 00 trtt  is a positive 

function and   RRC , , g  is continuously differentiable function on the real line R 

except possibly at 0 with   0)( xxg  and 0)(  kxg  for all 0x ,   is a continuous 

function on RxR with 0),(  vuu  for all 0u  and ),(),( vuvu    for any 

),0(   and H  is a continuous function on  ,0t ×R×R with 

)())(())(),(,( tptxgtxtxtH 


 for all x 0 and .0tt   

       The thesis also deals study of problem of oscillation of third order non-linear 

equations of the form
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where q  and r  are defined as above, 1g  is continuously differentiable function on the 

real line R except possibly at 0 with 0)(1 yyg  and 0)(1  kyg  for all ,0y f  is a 

continuous function on R  and  ,: 01 tH ×R×R×RR is a continuous function such 

that )()(),,,( 11 tpygzyxtH   for all y 0  and 0tt  .  

       We list some basic definitions and Elementary results which will be needed in the 

next chapters.  

1.2 The Basic Definitions  

Definition 1.2.1  

        A point 0t is called a zero of the solution )(tx of the differential equation 

if 0)( x . 

Definition 1.2.2  

       A solution )(tx  of the differential equation is said to be oscillatory if it has arbitrary 

large zeros. Otherwise it is said to be non-oscillatory. 

Definition 1.2.3  

      Differential equation is called oscillatory if all its solutions are oscillatory. Otherwise 

it is called non oscillatory.  

Definition 1.2.4   

       The differential equations (1.1) and (1.2) are called 
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 (1)  Sub-linear if the function g satisfies that    
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  (2)   Super-linear if the function g satisfies that   
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(3)    A mixed type if the function g satisfies that   
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1.3 Elementary Results 

         The following theorems play an important role in the theory of oscillation of the 

solutions of the linear differential equations: 

1.3.1 Sturm’s Comparison Theorem (Bartle (1970)) 

          Let )(),( 21 tqtq and )(tr be continuous functions on ),( ba and 0)( tr on ).,( ba  

Assume that )(1 tx and )(2 tx  are real solutions of  

                                     

)4.1(0)()()()( 1 
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and 
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)5.1(0)()()()( 2 











txtqtxtr

 

respectively on ),( ba . Further, let )()( 12 tqtq   for ),( bat . Then, between any two 

consecutive zeros 21 , tt  of )(1 tx  in ),,( ba  there exists at least one of )(2 tx  unless 

)()( 21 tqtq   on ],[ 21 tt .  Moreover, in this case the conclusion is still true if the solution 

)(2 tx  is linearly independent of ).(1 tx  

1.3.2 Sturm’s Separation Theorem (Bartle (1970))   

         If )(1 tx and )(2 tx  are linearly independent solutions of the equation  

)6.1(.0)()()()( 











txtqtxtr  

Then, between any two consecutive zeros of ),(1 tx  there is precisely one zero of )(2 tx . 

Therefore the solutions of the second order linear differential equations are either all 

oscillatory or all   non-oscillatory. The story of non-linear equations is not the same. The 

nonlinear differential equations may have both oscillatory solutions. 

         The importance of classification of the second order differential equations into 

oscillatory categories is due to the following well-known fact: A non – trivial solution of 

the second order ordinary differential equation must change its sign whenever it vanishes, 

since )(tx  and )(tx


  cannot vanish simultaneously (in this case the zeros of )(tx  are said to 

be isolated).  

        The following theorem is quite useful element of our study in the following 

chapters:  
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1.3.3 The Bonnet
'
s Theorem (Ross (1984))     

        Suppose that h is a continuous function on [a,b],   is a non- negative function and 

an increasing function on the interval [a,b]. Then there exists a point c in [a,b] such that                                   

.)()()()( 

b

a

b

c

dsshbdsshs   

If    is a decreasing function on [a,b], then there exists a point c  in [a,b] such that  

 

b

a

c

a

dsshadsshs )()()()(   

This theorem is a part of the second mean value theorem of integrals (Ross (1984)). 

 

1.4 Riccati Technique   

         In the study of oscillation theory of differential equations, there are two techniques 

which are used to reduce the higher-order equations to the first-order Riccati equation or 

inequality. The first one is the Riccati transformation technique. The second one is called 

the generalized Riccati technique. This technique can introduce some new oscillation 

criteria and can be applied to different equations which cannot be covered by the results 

established by the Riccati technique.  

Riccati Transformation Technique:  

(1) If )(tx  is a non-vanishing solution of equation (1.6) on the interval (a,b), then    

)()()()( txtxtrt


  is a solution of  
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   )7.1(),(0)()()()( 21 batforttrtqt  


         

(2)  If )(t  is a solution of equation (1.7) on (a,b), then  
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is a non-vanishing solution of equation (1.6) on (a,b). 

 

1.5 Applications Of Oscillatory Differential Equations     

        Ordinary differential equations have a variety of applications in science, 

mechanical engineering, aerospace engineering and physical systems, we explore three 

of them: Undamped simple pendulum, damped simple pendulum and a half cylinder 

rolling on a horizontal plane. 

 

Example 1.1 

        Consider a pendulum with mass m at the end of a rigid rod of length L attached to 

say a fixed frictionless pivot which allows the pendulum to move freely under gravity in 

the vertical plane as illustrated in Figure 1.1. The angular equation of motion of the 

pendulum is given as a nonlinear differential equation 

 

)8.1(,0sin
2

2

 


K
dt

d
  

where K = g/L. 
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       Figure 1.1: Simple pendulum 

 

 

         

 

The numerical solutions curves of the equation (1.8) when m=100, g =9.81 and L=1 and 

for different initial angles π/3 and π/10 with zero initial velocity are  

 

Figure 1.2: Numerical solutions of 0sin/ 22   Kdtd
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Example 1.2 

           As in example 1.1, we consider the motion of a simple pendulum that subject to a 

frictional force or damping force. We assume that the damping coefficient , so the 

nonlinear differential equation represents this motion as follows: 

 

)9.1(,0sin
2

2

 





K
dt

d

dt

d
 

  

The numerical solution curve of equation (1.9) when 1.0  is 

 

   Figure 1.3: Numerical solution of 0sin// 22   Kdtddtd  
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Example 1.3 

         The general governing differential equation of motion of the half cylinder rolling 

on a horizontal plane is 

)).(cos()())(cos()())(sin(2
2

3
22

txEtxtxmErtxtxmEr
mr













 



10 
 

The numerical solution curve of this equation when m =4, 
3

4rE  and r = 0.1 is  

 

 

   Figure 1.4: Solution curve of half cylinder rolling on a horizontal plane. 
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1.6 Thesis Organization 

         Besides the introductory chapter (chapter 1) about the oscillation of second and 

third order non-linear ordinary differential equations, the thesis is organized as follows:  

    Chapter 2: This chapter will contain the literature review of the main results of the 

oscillation of second and third order ordinary differential equations which are given in 

the literature.  

    Chapter 3: This chapter is devoted to study of the oscillation of the second order 

equation (1.1) and contains some oscillation criteria for oscillation equation (1.1). The 

oscillation results obtained will be illustrated by some examples and their numerical 

solutions that are found by using Runge Kutta method of fourth order.  

    Chapter 4: This chapter is devoted to study of the oscillation of the second order 

equation with damping term (1.2). Some sufficient conditions for oscillation equation 

(1.2) will be given in this chapter. The oscillation results obtained will be illustrated by 

some examples and their numerical solutions that are found by using Runge Kutta 

method of fourth order. 

    Chapter 5: this chapter is concerned with oscillation of third order ordinary 

differential equation (1.3) and includes oscillation results for oscillation of equation 

(1.3) and an illustrative example with its numerical solution obtained by using Runge 

Kutta method of fourth order for these results presented.    

    Chapter 6:  This chapter contains the conclusion with suggestions for future work 

and references. 
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CHAPTER TWO 

LITERATURE REVIEW 

       

         In this Chapter, we will review the literature within the context of our study of 

oscillations of ODEs of the 2
nd

 Order and the 3
rd

 Order. We will see that most of the 

previous oscillation results depend on the behavior of the integral of the coefficients and 

a reduction of order of the ODEs and using the Riccati technique to establish some 

sufficient conditions. Our results improve and extend almost of these existing results in 

the literature. 

 

2.1 Oscillations Of Second Order Differential Equations 

          Oscillatory and non-oscillatory behavior of solutions for various classes of second 

order has been studied extensively in literature as Atkinson (1955), Bihari (1963), Bhatia 

(1966), Grace (1992), Ayanlar & Tiryaki (2000), Elabbasy et al. (2005), Lee & Yeh 

(2007), Berkani (2008), Remili (2010).  Various researchers have studied particular cases 

of the equations (1.1) and (1.2).  These particular cases can be classified as follows:  

The homogeneous linear equations 

               

)2.2(.0)()()()(

)1.2(.0)()()(
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The homogeneous non-linear equations 

            
)7.2(.0))(()()())(()(

)6.2(.0))(()()()(

)5.2(.0))(,)(()()(

)4.2(.0))(()()(

)3.2(.0,0)(sgn)()()(
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The homogeneous non-linear equations with damping term 

              

)10.2(.0))(()()()()())(()(

)9.2(.0))(()()()()()(

)8.2(.0))(()()()()(
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The non-homogeneous non-linear equations 

             
)12.2().())(()()())(()(

)11.2()).(),(,())(,()()(
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The non-homogeneous non-linear equations with damping term 

              

)13.2(),())(()()()()())(()( tHtxgtqtxthtxtxtr 














 

where, the functions  ,,,,, qghr  and H are defined as in the equation (1.2).  
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     The investigation of the oscillation of (1.1) and (1.2) may be done by following many 

criteria. Many of these criteria depend on determining integral tests involving the 

function q to obtain oscillation criteria. 

For convenience of writing, we adopt the following notations: 


is written, it is to be 

assumed that   





t

t
lim  and that this limit exists in the extended real numbers. 

 

2.1.1 Oscillation Of Homogenous Linear Equations     

2.1.1.1 Oscillation Of Equations Of Type (2.1)  

         This  section  is  devoted  to  the  oscillation  criteria  for  the  second  order  linear  

differential equation of  the  form  (2.1) . The  oscillation  of  equation  (2.1)  has brought  

the  attention  of  many  authors as Wintner (1949), Kamenev (1978), Philos (1983) and 

Yan (1986), since  the  early  paper  by  Fite (1918).  Among  the  numerous  papers  

dealing  with  this  subject  we  refer  in  particular  to  the  following :  

Theorem 2.1.1 Fite (1918)   

         If 0)( tq for all 0tt   and  






0

,)(
t

dssq

 

then, every solution of the equation (2.1) is oscillatory. The  following  theorem  

extended  the  result  of  Fite (1918)  to  an  equation  in  which q  is of  arbitrary sign. 
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Theorem 2.1.2 Wintner (1949) 

         Suppose that   

.)(
1

lim

0 0

 
dsduuq

t

t

t

s

t
t

 

Then, every solution of the equation (2.1) is oscillatory. 

Example 2.1.1  

          Consider the following differential equation   

  .0,0)(cos32)( 


ttxttx  

Theorem 2.1.2 ensures that the given equation is oscillatory, however Theorem 2.1.1 

fails.  

Hartman (1952) also studied the equation (2.1) and improved Wintner’s result (1949) by 

proving the condition given in Theorem 2.1.3. 

Theorem 2.1.3 Hartman (1952) 

        Suppose that 

,)(
1

suplim)(
1

inflim

0 00 0

   


dsduuq
t

dsduuq
t

t

t

s

tt

t

t

s

tt

 

 then, equation (2.1) is oscillatory. In the  following,  Kamenev (1978)  has  proved  a  

new  integral  criterion  for  the  oscillation of  the differential equation (2.1) based on the 

use of the n
th

  primitive  of  the  coefficient q(t) which  has  Wintner
’
s  result (1949)   as  

a  particular case.  
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Theorem 2.1.4 Kamenev (1978) 

         The equation (2.1) is oscillatory if   

  ,)(
1

suplim

0

1

1







dssqst
t

t

t

n

n
t

 

for some integer 3n . Philos (1983) improved the above Kamenev’s result (1978). 

Theorem 2.1.5 Philos (1983)   

         Let   be  a  positive  continuously  differentiable  function  on  the  interval  

 ,0t such that 
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for some integer ,3n  

  .)()(
1

suplim)(

0

1

1







dssqsst
t

ii

t

t

n

n
t

  

Then, every solution of the equation (2.1) is oscillatory. 

Remark 2.1.1: By setting 1)( t  in the above Theorem 2.1.5, Theorem 2.1.5 leads to 

Kamenev’s Result (1978) (Theorem 2.1.4). 

Yan (1986) presented another new oscillation theorem for equation (2.1). 

Theorem 2.1.6 Yan (1986)  

         Suppose that there exists an integer 3n   with   

  .)(
1

suplim

0

1

1







dssqst
t

t

t

n

n
t

 



17 
 

Let )(t  be a continuous function on  ,0t  with 

  .)()(
1

inflim
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Then equation (2.1) is oscillatory if  




 

0
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t

dss  

where   0,0,)(max)( tttt  . 

Also, Philos (1989) extended the Kamenev’s result (1978) as follows  

Theorem 2.1.7 Philos (1989)  

        Let H and h be two continuous functions     0:,:, tststDHh R and H 

has a continuous and non-positive partial derivative on D with respect to the second 

variable such that 0),( ttH  for ,0tt  00),( tstforstH 
 
and 

.),(),(),(),( DstallforstHsthstH
s





  

Then, equation (2.1) is oscillatory if   
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Also, Philos (1989) extended and improved Yan’s result (1986) in the following theorem: 

Theorem 2.1.8 Philos (1989)  

         Let H and h be as in Theorem 2.1.7, moreover, suppose that   











 ),(

),(
infliminf0

0
0 ttH
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tts
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Assume that )(t as in Theorem 2.1.6 with 

.)(
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t

dss  

Then, the equation (2.1) is oscillatory if 
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2.1.1.2 Oscillation Of Equation Of Type (2.2) 

         This section is devoted to the study of the oscillation of the equation of type (2.2). It 

is interesting to discuss conditions for the alternating coefficient )(tq  which are sufficient 

for all solutions of equation (2.2) to be oscillated. An interesting case is that of finding 

oscillations criteria of equation (2.2) which involve the average behavior of the integral 

of q. The problem has received the attention of many authors in recent years as Moore 
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(1955) and Popa (1981). Among numerous papers dealing with such averaging 

techniques of the oscillation of equations of type (2.2), we mention the following:                

Moore (1955) gave the following oscillation criteria for equations of type (2.2). 

Theorem 2.1.9 Moore (1955) 

         Suppose that the function   satisfies   0)(,,0

2  ttC   






0
)()( 2

t
ssr

ds


 

and 

.)()()()()(

0


 



























t

dssqsssrs   

Then, equation (2.2) is oscillatory. 

     In fact, Popa (1981) extended Kamenev’s oscillation criterion (1978) to apply on 

equation of the form (2.2). He proved the following two theorems: 

Theorem 2.1.10 Popa (1981) 

         If r(t) is bounded above and  

,)()(
1

suplim

0

1

1   




t

t

n

n
t

dssqst
t

 

where n is an integer and ,2n  then, the equation (2.2) is oscillatory. 
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Theorem 2.1.11 Popa (1981)   

      If 
)(

)(

tr

tr


 is bounded and  

,
)(

)(
)(

1
suplim

0

1

1   




t

t

n

n
t

ds
sr

sq
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 where n is an integer and ,2n  then the equation (2.2) is oscillatory. 

 

2.1.2 Oscillation Of Homogenous Nonlinear Equations 

2.1.2.1 Oscillation Of Equations Of Types (2.3) and (2.4) 

         This section is devoted to the oscillation criteria for the second order nonlinear 

differential equations of the form (2.3) and (2.4). The oscillation of equation (2.4) has 

brought the attention of many authors since the earliest work by Atkinson (1955). The 

equation (2.3) is also known Emden-Fowler equation (EF). Clearly equation (EF) is 

sub-linear if 1  and super linear if 1 . 

       The oscillation problem for second order nonlinear differential equation is of 

particular interest. Many physical systems are modeled by nonlinear ordinary 

differential equations. For example, equation (EF) arises in the study of gas dynamics 

and fluid mechanics, nuclear physics and chemically reacting systems. The study of 

Emden–Fowler equation originates from earlier theorems concerning gaseous dynamics 

in astrophysics around the turn of the century. For more details for the equation we refer 

to the paper by Wong (1973) for a detailed account of second order nonlinear oscillation 

and its physical motivation. There has recently been an increase in studying the 
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oscillation for equations (2.4) and (EF). We list some of more important oscillation 

criteria as follows.  

       The following theorem gives the necessary and sufficient conditions for oscillation 

of equation (2.4) with ,...3,2,1,)( 12   nxxg n
 

Theorem 2.1.12 Atkinson (1955)  

         Suppose that 0)( tq  on  ,0t  and 

,...2,1,)( 12   nxxg n
, 

 The equation (2.4) is oscillatory if 

.)(

0




t

dsssq

 

Waltman (1965) extended Wintner's result (1949) for the equation (2.4) without any 

restriction on the sign of )(tq . 

Theorem 2.1.13 Waltman (1965) 

         Suppose that  

,...2,1,)( 12   nxxg n
 

and 

.)(

0




t

dssq  
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Then every solution of equation (2.4) is oscillatory. Kiguradze (1967) established the 

following theorem for the Emden–Fowler equation (2.3). 

Theorem 2.1.14 Kiguradze (1967) 

         The equation (2.3) is oscillatory for 1  if  




dttqt )()(  

for a continuous, positive and concave function )(t . Wong (1973) extended Wintner's 

oscillation criteria (1949) to apply on the equation (2.3). 

Theorem 2.1.15 Wong (1973) 

         Let  1  . Equation (2.3) is oscillatory if  

0,)(inflim
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Onose (1975) proved the theorem of Wong (1973) (Theorem 2.1.15) for the sublinear 

Emden–Fowler differential equation and also study the extension of Wong's result 

(1973) to the more general super-linear differential equation of the form equation (2.4) 

as in the following three theorems: 
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Theorem 2.1.16 Onose (1975)  

         Suppose that 

(1)   ,0,)(inflim

0
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tt

dssq  

(2)   ,)(suplim

0

 


t

tt

dssq  

(3)     
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t
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dudsuq
t

0 0

.)(
1

suplim  

Then, the equation (2.3) is oscillatory for 10    . 

Theorem 2.1.17 Onose (1975) 

         Assume that  

(1)   ,0)(inflim
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dssq  

(2)   .)(suplim
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t

tt

dssq  

Then, the equation (2.4) is oscillatory. 

Theorem 2.1.18 Onose (1975) 

         Suppose that 

(1)   ,0,)(inflim
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dssq  
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(2)   .)(suplim

0 0

 


t

t

s

tt

dudsuq  

Then, the equation (2.4) is oscillatory. 

Yeh (1982) established new integral criteria for the equation (2.4) which has Wintner's 

result (1949) as a particular case. 

Theorem 2.1.29 Yeh (1982) 

         Suppose that  
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for some integer n > 2. Then, the equation (2.4) is oscillatory. 

Philos (1984) gave a new oscillation criteria for the differential equation (2-3) if 

10   . 

Theorem 2.1.20 Philos (1984) 

         Let   be a positive continuous differentiable function on the interval  ,0t  such 

that  

  .0)()()( 0

2

ttallfortttt 


  

Then, the equation (2.3) is oscillatory if 
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for some integer 2n . 
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Philos (1985) improved Onose’s result (1975) for equation (2.4).  

Theorem 2.1.21 Philos (1985) 

         Suppose that   be a positive twice continuously differentiable function on  ,0t   

such that 

 


,0)(0)( 0tontandt  , 

,)()(lim

0

 


t

t
t

dssqs  
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 Then, the equation (2.4) is oscillatory.  

Wong and Yeh (1992) improved Wong's result (1973) for equation (2.3) to the more 

general equation (2.4). 

Theorem 2.1.22 Wong and Yeh (1992) 

         Suppose that  

0)(inflim 


t

Tt

dssq  

 for large 0tT   and there exists a positive concave function   on  ,0t  such that  
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for some .0 Then the super-linear differential equation (2.4) is oscillatory.  

Theorem 2.1.23 Philos and Purnaras (1992) 

          Suppose that  
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Then, the super-linear differential equation (2.4) is oscillatory. 

 

2.1.2.2 Oscillation Of Equations Of Type (2.5) 

         This section is devoted to the oscillation criteria for half-linear second order 

differential equations of the form (2.5). The oscillation of the equation has brought the 

attention of some authors since the early paper by Bihari (1963). 

Theorem 2.1.24 Bihari (1963) 

         If 0tt0 q(t)  allfor  and  

,)(

0





t

dssq  
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then, every solution of the equation (2.5) is oscillatory. The following theorem extended 

the result of Bihari (1963) to an equation in which q is of arbitrary sign. 

Theorem 2.1.25 Kartsatos (1968) 

         Suppose that 

(i)  There exists a constant 0* B such that  

 




m

B
s

ds
mG

0
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),1(
)( for all m R, 

 (ii)  .)(

0
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dssq  

Then, every solution of equation (2.5) is oscillatory. 

 

2.1.2.3 Oscillation Of Equations Of Type (2.6) 

         This section is devoted to the oscillation criteria for the second order nonlinear 

differential equation of the form (2.6). Bhatia (1966) presented the following oscillation 

criteria for the general equation (2.6) which contains as a special case of Waltman's 

result (1965) for the nonlinear case. 

Theorem 2.1.26 Bhatia (1966)   

         Suppose that  

(1)   ,
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ds
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Then, the equation (2.6) is oscillatory. 

E. M. Elabbasy (1996) improved and extended the results of Philos (1983) to the 

equation (2.6). 

Theorem 2.1.27 E. M. Elabbasy (1996) 

         Suppose that  
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where     ,0,: 0t  is continuously differentiable function such that  

    .0)()(0)()(,0)()(,0)( 















ttrandttrttrt   

Then, the equation (2.6) is oscillatory. 

 

2.1.2.4 Oscillation Of Equations Of Type (2.7) 

        Oscillation of the equations of type (2.7) has been considered by many authors who 

presented some oscillation criteria for solutions of the equation (2.7). Grace (1992) 
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studied the equation (2.7) and gave some sufficient conditions for oscillation of 

equation (2.7) in some theorems for example the following two theorems: 

Theorem 2.1.28 Grace (1992) 

        Suppose that 
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Moreover, there exists a differentiable function     ,0,: 0t
 
and the functions 

Hh, are defined as in Philos’s result (1989) (in Theorem 2.1.7). Moreover, suppose that 
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If there exists a continuous function )(t on  ,0t  such that 
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for every large ,0tT   and 
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where  ,0,)(max)( tt  then, the equation (2.7) is oscillatory. 
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Theorem 2.1.29 Grace (1992) 

        Suppose that the condition (1) from Theorem 2.1.28 holds and functions ,, Hh  

are defined as in Theorem 2.1.28 and .0))()((0)( 0ttforttrandt  


   

Moreover, suppose that  
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dssqs
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t ssr
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Then, the equation (2.7) is oscillatory if the conditions (4) and (5) hold. 

 

2.1.3 Oscillation Of Homogenous Nonlinear Equations With Damping 

Term 

 2.1.3.1 Oscillation Of Equations Of Type (2.8) 

       In last three decades, oscillation of nonlinear differential equations with damping 

term has become an important area of research due to the fact that such equations 

appear in many real life problems. Oscillation of non-linear equation (2.8) has been 

considered by many authors, for example Yeh (1982) considered the equation (2.8) and 

 presented some oscillation criteria for equation (2.8). 
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Theorem 2.1.30 Yeh (1982) 

        Suppose that 
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for some integer ,3n  are sufficient conditions for the oscillation of equation (2.8). 

 

2.1.3.2 Oscillation Of Equations Of Type (2.9) 

        This section is devoted to the oscillation criteria for the second order nonlinear 

differential equation with damping term of the form (2.9). Nagabuchi and Yamamoto 

(1988) have extended and improved the result of Yeh (1982) for equation (2.8) to the 

equation (2.9).  

Theorem 2.1.31 Nagabuchi and Yamamoto (1988) 

         The equation (2.9) is oscillatory if there exists a continuously differentiable 

function )(t  on  ,0t

 

and a constant   ,1
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Grace (1992) established some oscillation conditions for equation (2.9) in some three 

theorems for example, the following theorem:

 



32 
 

Theorem 2.1.32 Grace (1992) 

        Let 00)(  xforkxg and the functions ,, Hh  are defined as in Theorem 

2.1.28 such that the conditions (1) and (2) from Theorem 2.1.29 and 

0)()()()()(1 


tthttrt  and .0)( 01 ttfort 


  Then, the superlinear equation 

(2.9) is oscillatory if there exists a continuous function )(t on  ,0t  such that the 

condition (5) from Theorem 2.1.28 and  
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for every large 0tT   and .)()()()()()()(1 ttrtthttrt  











  

Kirane and Rogovchenko (2001) were concerned with the problem of oscillation of 

nonlinear second order equation with damping (2.9) and presented some oscillation 

theorems for solutions of (2.9). One among the theorems is the next one.

 

Theorem 2.1.33 Kirane and Rogovchenko (2001) 

        Assume that 

.00
)(

 xfork
x

xg

 

Suppose further that the functions ,, Hh  are defined as in Theorem 2.1.28 and there 

exists a function      ,0;,0

1 tCf such that 
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Then, the equation (2.9) is oscillatory.  

Elabbasy, et al. (2005) have studied the oscillatory behavior of equation (2.9) and 

improved a number of existing oscillation criteria. 

Theorem 2.1.34 Elabbasy, et al. (2005) 

        Assume that the condition (1) from Theorem 2.1.29 holds and there exists 

    ,0,: 0t such that  
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Then, the equation (2.9) is oscillatory. 



34 
 

Lu and Meng (2007) have considered the equation (2.9) and given several oscillation 

conditions. They improved and extended result of Philos (1989) and result of Yu 

(1993). They needed the following lemma to simplify proofs of their results. First they 

recalled a class functions defined on   .:, 0tststD   A function  RDCH ,  is 

said to belong the class W  if 

(1) 0),( ttH , for 0tt   and 0),( stH
 
when ;st   

(2)  ),( stH  has partial derivatives on D such that 

.),(),(),(),(,),(),(),( 21 DstallforstHsthstH
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for some  .,, 1
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Lemma 2.1.1 Lu and Meng (2007) 

        Let   RtCAAA ,,,, 0210   with ,02 A  and   RtCw ,,0
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Theorem 2.1.35 Lu and Meng (2007) 
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where 
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Then, the equation (2.9) is oscillatory. 

Rogovchenko and Tuncay (2008) have considered the nonlinear equation (2.9) and 

established some sufficient conditions for oscillation of solution of equation (2.9) by 

giving many theorems for example, the following theorem:   
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Theorem 2.1.36 Rogovchenko and Tuncay (2008) 

           Suppose that )(xg exists and  .00)(  xforkxg   

Suppose, further, that there exists a function   RtC ,,0
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,1  

,),()()(
4

)(),(
),(

1
suplim 2

0













dssthsrsv
k

sstH
ttH

t

Tt




 

where 






















 

t

ds
skr

sh
sksv

)(2

)(
)(2exp)( 

  

and   .)()()()()()()()()( 2 
 tsrtthttkrtqtvs   Then, the equation (2.9) is 

oscillatory. 

 

2.1.3.3 Oscillation Of Equations Of Type (2.10) 

         Oscillatory behavior of nonlinear second order differential equation with damping 

(2.10) has been studied by many authors. Grace (1992) considered the equation (2.10), 

presented some oscillation results for equation (2.10) and extended and improved a 

number of previously known oscillation results. 

Theorem 2.1.37 Grace (1992)  

        Suppose that the condition (1) from Theorem 2.1.28 holds. Moreover, assume that 

the functions h,  and H are defined as in Theorem 2.1.28 and  
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then, superlinear equation (2.10) is oscillatory. 

Theorem 2.1.38 Grace (1992) 

          Suppose that the condition (1) from Theorem 1.5.28 holds and 
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Let the functions h,  and H are defined as in Theorem 2.1.28 such that the condition 

(1) from Theorem 2.1.37 holds and  
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then, superlinear equation (2.10) is oscillatory. 

Rogovchenko and Tuncay (2007) were concerned with equation (2.10) and obtained 

some oscillation criteria for oscillation of equation (2.10). They gave some oscillation 

theorems and proved these theorems by using their following lemma which is a 

particular case of Tiryaki and Zafer’s lemma 1.1 (2005). 
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Let   .:,  tsstD  A function ),( stH  belongs to the class W if 
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Lemma 2.1.2 Rogovchenko and Tuncay (2007) 
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Theorem 2.1.39 Rogovchenko and Tuncay (2007) 

         Let g  be continuously differentiable and satisfy for all ,Rx   
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Assume that, for all ,Rx  
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Then, every solution of the equation (2.10) has at least one zero in (a,b). 

 

2.1.4 Oscillation Of Nonhomogeneous Nonlinear Equations  

 2.1.4.1 Oscillation Of Equations Of Type (2.11) 

          This section is devoted to study the oscillation of equation (2.11). Many authors 

are concerned with the oscillation criteria of solutions of the homogeneous second order 
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nonlinear differential equations. However, few authors studied the non-homogeneous 

equations. Greaf, et al. (1978) considered the non-homogeneous equation (2.11) and 

gave some oscillation sufficient conditions for this for the non-homogeneous equation, 

for instance, the next three theorems.  

Theorem 2.1.40 Greaf, et al. (1978)     

         Suppose that  
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Then, all solutions of equation (2.11) are oscillatory. 

Example 2.1.2 

           Consider the differential equation: 
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Theorem 2.1.40 ensures that the given equation is oscillatory. 

Theorem 2.1.41 Greaf, et al. (1978) 

         Suppose that the condition (1) from Theorem 2.1.40 holds and 
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Then, the superlinear differential equation (2.11) is oscillatory. 

Theorem 2.1.42 Greaf, et al. (1978) 

         Suppose that  
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for every constant M, then the sub-linear differential equation (2.11) is oscillatory. 

Example 2.1.3 

         Consider the differential equation  
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Theorem 2.1.42 ensures that the given equation is oscillatory. 

Remili (2010) was concerned with non-homogeneous nonlinear equation (2.11) and 

presented oscillation criteria for equation (2.11) which contain results of Greaf, et al. 

(1978) as particular case. Two theorems are presented here. 
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Theorem 2.1.43 Remili (2010) 

       Let )(t be a positive continuously differentiable function on  ,T
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Theorem 2.1.44 Remili (2010) 

        If the condition (1) from Theorem 2.1.43 holds and )(t is defined as Theorem 

2.1.43 such that 
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Then, the super linear differential equation (2.11) is oscillatory. 
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2.1.4.2 Oscillation Of Equation Of Type (2.12) 

        Oscillation of solutions of the nonhomogeneous non-linear equation (2.12) has been 

studied by many authors. Manojlovic (1991) has considered the nonhomogeneous non-

linear equation (2.12) and established some oscillation theorems for solutions of this 

equation. For example the following theorem: 

Define the sets      000 :,,:, tststDtststD   and introduce the function 

)(DCH  which satisfies the following conditions: 

(1) 0),( ttH  for ,0tt    0),( stH
 
for ,),( 0Dst   

(2) H has a continuous and non-positive partial derivative on 0D with respect to the 

second variable, as well as a continuous function RDh 0:  such that  
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Theorem 2.1.45 Manojlovic (1991) 
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for every 0tT   and any positive constants K and L. Then, any solution of equation 

(2.12) is either oscillatory or satisfies .0)(inflim 
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2.1.5 Oscillation Of Non-homogeneous Nonlinear Equations With 

Damping Term 

2.1.5.1 Oscillation Of Equations Of Type (2.13) 

        This section is devoted to study the oscillation of equation (2.13). Many authors are 

concerned with the oscillation criteria of solutions of the non-homogeneous non-linear 

second order equations with damping term. Berkani (2008) considered the equation 

(2.13) and presented some sufficient condition for all solutions of equation (2.13) to be 

oscillatory. 

Theorem 2.1.46 Berkani (2008) 

        Assume that for some constants 1CC, K,  and for all ,0x  
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Suppose further there exists a continuous function )(tu  such that 

,0)()()(  cubuau )(tu  is differentiable on the open set ),(),( bcca   and satisfies 

the inequalities  
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Then, every solution of equation (2.13) has a zero in  .,ba   

 

2.2 oscillation Of Third Order Differential Equations 

          In the relevant literature, until now, oscillatory and non-oscillatory behavior of 

solutions for various classes of linear and non-linear third order differential equations has 

been the subject of intensive investigations for many authors. There are many papers 

dealing with particular cases of the equations (1.3). These particular cases can be 

classified as follows: 

The homogeneous linear equations are given below 
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The non-homogeneous linear equations is given below 
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The homogeneous non-linear equations are given below 
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        The paper which was presented by Hanan (1961) was the starting point for many 

investigations to asymptotic behavior of third order equations. 

 

2.2.1 Oscillation Of Homogenous Linear Equations     

2.2.1.1 Oscillation Of Equations Of Type (2.14) 

       This section is devoted to the oscillation criteria for the third order linear differential 

equation of the form (2.14). Hanan (1961) considered the equation (2.14) presented the 

following oscillation criteria for equation (2.14): 

Theorem 2.2.1 Hanan (1961)   

           The equation (2.14) is non-oscillatory if  
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and the equation (2.14) is oscillatory if  
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Later, in 2001, Adamets and Lomtatidze (2001) also studied oscillatory properties  os 

solutions of the equation (2.14) where q is eventually of one sign  0, . 

Mehri (1976) considered the third equation (2.14) and presented the following 

oscillation result. 

Theorem 2.2.2 Mehri (1976) 

          The equation (2.14) is oscillatory if 
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2.2.1.2 Oscillation Of Equations Of Type (2.15) 

          This section is devoted to the oscillation criteria for the equation of the form 

(2.15). Hanan (1961) also derived some oscillation criteria for equation (2.15) and 

proved the following theorem: 

Theorem 2.2.3 Hanan (1961) 

          If ,0)()(2  tbtc  and there exists a number 10  k

 

such that 
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Then, the equation (2.15) is oscillatory. Lazer (1966) studied oscillation of equation 

(2.15) and proved the following: 

Theorem 2.2.4 Lazer (1966) 

          Assumed that if 0)( tb  and   
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Then, the equation (2.15) is oscillatory. 

 

2.2.1.3 Oscillation of Equations of type (2.16) 

          This section is devoted to the oscillation criteria for the equation of the form 

(2.16). Parhi and Das (1993) considered the linear equation (2.16) and presented the 

following theorem: 

Theorem 2.2.5 Parhi and Das (1993) 

           Supposed that 0)(),()(,0)(,0)(,0)(  tctbtatctbta and proved that if  
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then, the equation (2.16) is oscillatory. 

Theorem 2.2.6 Parhi and Das (1993) 

          Supposed that )()(,0)(,0)(,0)( tbtatctbta  and proved that if  
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then, the equation (2.16) is oscillatory.
 

 

2.2.2 Oscillation Of Non-homogenous Linear Equations     

2.2.2.1 Oscillation Of Equations Of Type (2.17) 

          This section is devoted to the oscillation criteria for the equations of the form 

(2.17). Das (1995) studied the equation (2.17) and established some new oscillation 

criteria for the equation (2.17). 

Theorem 2.2.7 Das (1995) 

          Supposed that 0)(,0)(),()(,0)(,0)(,0)(,0)(  tftftbtatctctbta  

and proved that if  
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then, every solution of equation (2.17) oscillates. 

 

2.2.3 Oscillation Of Homogenous Non-linear Equations     

2.2.3.1 Oscillation Of Equations Of Types (2.18) and (2.19)  

           This section is devoted to the oscillation criteria for third order non-linear 

equations of the form (2.18) and (2.19). Waltman (1966) considered the equations (2.18) 

and (2.19) and established two theorems for oscillation. 

Theorem 2.2.8 Waltman (1966) 

          Supposed that the equation (2.18) is oscillatory if )(tb  and )(tc  are continuous 

functions and ,0)(  tb is a ratio of two odd positive integers and  

 

t

t

dssQBtA

0

,0)(  

for large t, where ,A  B  and .)()(
0


t

dssctQ

  

Theorem 2.2.9 Waltman (1966) 

          Supposed that the equation (2.19) is oscillatory if )(tb  and )(tc  are positive 

continuous functions such that 0/)(,0)()(  kuuftbtkc  and 
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  .)()(

0





t

dssbskcs  

       Heidel (1968) also considered the non-linear third order equation (2.18) and 

investigated the behavior of non-oscillatory and oscillatory of solutions of equation 

(2.18). He proved the following oscillation theorem: 

Theorem 2.2.10 Heidel (1968) 

          Proved that if 0)(,0)(  tctb  and ,0)(
2
2

 tb
t

 

,10,)(

0

2 


 

t

dsscs  

  ,)(2)(

0

4






t

dsscsbs  

then, the equation (2.18) is oscillatory. 

 

2.2.3.2 Oscillation Of Equations Of Type (2.20) 

          This section is devoted to the oscillation criteria for third order non-linear 

equations of the form (2.20). Ramili (2007) studied non-oscillatory for the third order 

non-linear equation (2.20) and presented the following: 

Theorem 2.2.11 Ramili (2007) 

          Supposed that 0)(2)()( 2  ufufuf for every ,0u  
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then, every solution of equation (2.20) is non-oscillatory. 
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CHAPTER THREE 

 OSCILLATION OF SECOND ORDER NONLINEAR 

ORDINARY DIFFERENTIAL EQUATIONS WITH 

ALTERNATING COFFICIENTS 

3.1 Introduction 

     In this chapter, we are concerned with the problem of oscillation of second order 

non-linear ordinary differential equation of the form  

     
  )1.1(,)(,)()()),(()()()( txtHtxtrtxgtqtxtr 
















 




 

where q  and r  are continuous functions on the interval   )(,0,, 00 trtt  is a positive 

function, g  is continuously differentiable function on the real line R except possibly at 0 

with 0)( xxg  and 0)(  kxg  for all ,0x   is a continuous function on RxR with 

0),(  vuu  for all 0u  and ),(),( vuvu    for any ),0(   and H  is a 

continuous function on  ,0t ×R with )())(())(,( tptxgtxtH   for all x 0  and 0tt  .  

 

3.2 Second Order Nonlinear ODE Of Type (1.1) 

 

     In this chapter, we present the results of our study of finding the sufficient conditions 

for oscillation of solutions of ordinary differential equations of second order of type 

(1.1).  The present oscillation results have among other finding extended and improved 

many previous oscillation results, for examples, such as the works of Bihari (1963), 
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Kartsatos (1968), Philos and Purnaras (1992), Philos (1989), El-abbasy (1996), and El-

Abbasy, et al. (2005).  We have established some new sufficient conditions which 

guarantee that our differential equations are oscillatory. A number of theorems and 

illustrative examples for oscillation differential equation of type (1.1) are shown. 

Further, a number of numerical examples are given to illustrate the theorems. These 

numerical examples are computed by using Runge Kutta of fourth order function in 

Matlab version 2009. The present results are compared with existing results to explain 

the motivation of proposed research study. 

 

 

 3.3 Oscillation Theorems  

Theorem 3.3.1: Suppose that 

(1)     ),,0(,
1

),1(

1
0

0




C
Cv

 

(2)      ),0(,
),1(

1
)( **

0




  BBds
s

mG

m

 for every m  R, 

(3)     ,,)()( 00 tTdsspsqC
T




 

where     ,0,: 0tp , then every solution of equation (1.1) is oscillatory. 

Proof 

    Without loss of generality, we assume that there exists a solution 0)( tx of 

equation (1.1) such that 0)( tx on  ,T for some .00  tT  Define    

.,
))((

)()(
)( Tt

txg

txtr
t 
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This and the equation (1.1) imply  

  .,)(,1)()()( Ttttqtpt 
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By the condition (1), we have 
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Integrate from T to t and from condition (2), we obtain 
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Thus, we have  

  ,)()(0 


T

dsspsqC  

which contradicts to the condition (3).  Hence, the proof is completed. 

 

Example 3.3.1 

      Consider the differential equation 

  

  0,
)(cos)(

)(cos31)(
3













t
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txtx
txttxt  

 

Here    uvuxxgttqttr  ),(,)(,cos31)(,)( and  

).(
1)(cos

))((

))(,(
33

tp
tt

tx
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txtH
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All conditions of Theorem 3.3.1 are satisfied and hence every solution of the given 

equation is oscillatory. To demonstrate that our result in Theorem 3.3.1 is true, we also 

find the numerical solution of the given differential equation in Example 3.3.1 using 

the Runge Kutta method of fourth order (RK4) for different step sizes h. 

 We have  

xxxxxtfx 99.3cos),,( 


 

 

 

with initial conditions ,1)1( x 5.0)1( 


x  on the chosen interval [1,50] and finding 

the values of  the functions  r, q and  f  where we consider )()())(,( xltftxtH  at t=1  

n =750, n =1500, n=2250 and n=3000 and the step sizes h =0.065, h =0.032, h =0.021  

and h = 0.016. 
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Figure 3.1(a): Solution curves of ODE 3.1. 
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Figure 3.1 (b): Solution curves of ODE 3.1. 
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Remark 3.3.1: Theorem 3.3.1 is the extension of the results of Bihari (1963) and the 

results of Kartsatos (1968) who have studied the equation (2.5) as mentioned in chapter 

two. Our result can be applied on their equation, but their oscillation results cannot be 

applied on the given equation in Example 3.3.1 because their equation is aparticular 
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case of our equation when ,1)( tr  ),())(( txtxg   

))(),(())()()),((( txtxtxtrtxg


 and 0))(,( txtH . 

 

Theorem 3.3.2 

       If the conditions (1) and (2) hold and assume that   be a positive continuous 

differentiable function on the interval [t0,∞) with (t)  is a decreasing function on the 

interval [t0,∞) and such that  

(4)     ,)()()(lim 0 

t

T
t

dsspsqCs  

where  p: [t0,∞)(0,∞), then, every solution of equation (1.1)  is oscillatory.

 

Proof 

      Without loss of generality, we assume that there exists a solution 0)( tx of 

equation (1.1) such that 0)( tx on  ,T for some .00  tT  Define 

 
.,

)(

)()()(
)( Tt

txg

txtrt
t 




  

Thus and (1.1) imply 

 

  .,)(
)(

)(
)()(,1)()()()(

)(

)(
)( Ttt

t

t
tttqttpt

t

t
t 
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After dividing the last inequality by   ,0)()(,1  tt  integrating from T to t and 

using condition (1), we obtain 



60 
 

               
 

 
.,

)()(,1

)()()(
)()()( 00 Ttds

ss

sss
CdsspsqCs

t

T

t

T




 





   (3.3.1) 

 

By the Bonnet’s theorem, we see that for each t ≥ T, there exists at[T,t]  such that 
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From the inequality (3.3.2) in inequality (3.3.1), we have 
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which contradicts to the condition (4). Hence the proof is completed. 

 

Example 3.3.2 

            Consider the following differential equation  
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Taking 
5

5 1
)(

t

t
t


  such that 

  .)()()(lim 0 

t

T
t

dsspsqCs  

 

We get all conditions of Theorem 3.3.2 are satisfied and hence every solution of the 

given equation is oscillatory. The numerical solutions of the given differential equation 

are found out using the Runge Kutta method of fourth order (RK4) for different step 

sizes h. 

 We have 
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with initial conditions 5.0)1( x , 0)1( 


x on the chosen interval  [1,50] and finding 

the values of  the functions  r, q and  f  where we consider )()())(,( xltftxtH   at t=1,  

n =2250, n =2500, n=2750 and n=3000 and the step sizes h =0.0217, h =0.0196,         

h =0.0178 and h = 0.0163. 
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Figure 3.2 (a): Solutions curves of ODE 3.2 

1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

t

N
um

er
ic

al
 s

ol
ut

io
ns

 x
(t)

 

 
x1(t)

x2(t)

x3(t)

x4(t)

 

 

Figure 3.2 (b): Solutions curves of ODE 3.2 
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Remark 3.3.2 

         Theorem 3.3.2 extends results of Bihari (1963) and Kartsatos (1968), who have 

studied the equation (1.1) when ,1)( tr  ),())(( txtxg   

))(),(())()()),((( txtxtxtrtxg


 and .0))(,( txtH  Also, Theorem 3.3.2 is the 



64 
 

extension of El-Abbasy (2005) who studied the equation (2.6) which is a special case 

of the equation (1.1) as mentioned in chapter two. Our result can be applied on their 

equation, but their oscillation results cannot be applied on the given equation in 

Example 3.3.2 because their equations are particular cases of the equation (1.1). 

Theorem 3.3.2 is the extension of Theorem 3.3.1 as well. 

 

Theorem 3.3.3  

      Suppose that condition (1) holds and 

(5)     .0,0)(  tallfortq  

Furthermore, suppose that there exists a positive continuous differentiable function  on 

the interval  ,0t  with 0)( 


t and 0))()(( 


trt  such that condition (4) holds and 

(6)   

 

.
)()(

0

0

ttforevery
ssr

ds

t





 

Then every solution of superlinear equation (1.1) is oscillatory. 

Proof 

       If )(tx  is oscillatory on   ,0,, 0  tTT then )(tx


 is oscillatory on  ,T  and if 

)(tx


 is oscillatory on  ,,T  then, )(tx


 is oscillatory on  .,T

 

Without loss of 

generality, we may assume that there exists a solution x(t) of equation (1.1) such that 

  ,0)( Tontx  for some .00 tT  We have three cases of )(tx


: 

(i) .0)( Tteveryfortx 


 

(ii) .0)( Tteveryfortx 


 

 

(iii) )(tx


is oscillatory. 
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If 0)( 


tx for 0, tTTt   and we define   

.,
))((

)()()(
)( Tt

txg

txtrt
t 




  

This and (1.1) imply  

  .,
))((

)()()(
)()(,1)()()()()( Tt

txg

txtrt
tttqttptt 


 

  

From condition (1), we have 

  .,
))((

)()()(
)()()()( 0 Tt

txg

txtrt
tptqCtt 


 

  

Integrate the last inequality from T to t, we obtain    

                          

  .
))((

)()()(
)()()()()( 0 ds

sxg

sxsrs
dsspsqCsTt

t

T

t

T








         (3.3.3) 

By Bonnet’s theorem since )()( trt


 is non-increasing, for a fixed ,Tt  there exists 

 tTt , such that 

.
)(

)()(
))((

)(
)()(

))((

)()()(
)(

)(










tt x

TxT

t

T
ug

du
TrTds

sxg

sx
TrTds

sxg

sxsrs





 

Since 0)()( 


trt  and the equation (1.1) is superlinear, we have 

 














)(

)(
)(

).()(,
)(

)()(,0

)(

tx

Tx
t

Tx

t

Txxif
ug

du

Txxif

ug

du
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We have 

                                                
 

,
)(

)(
)()( Ads

sxg

sx
srs

t

T

 




                                (3.3.4) 

where .
)(

)()(
)(





Tx

ug

du
TrTA   

Thus, from (3.3.4) in (3.3.3), we obtain 

  .)()()()()( 0 

t

T

dsspsqCsATt   

By the condition (4), we get 0)( t , then, 0)( 


tx  for ., 11 TTTt   This is a 

contradiction. 

If 0)( 


tx  for every .2 TTt   The condition (4) implies that there exists 23 TT   such 

that 

  .0)()()( 30

3

TtallfordsspsqCs

t

T

   

Thus, from equation (1.1) multiplied by ),(t we obtain 

                  .),()()()()(,1)()()()()()( 3Tttptxgttttqtxgttxtrt 













 

By condition (1), we have 

 .)()())(()()()()( 0 tptqCtxgttxtrt 
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Integrate the last inequality from 3T  to t, we obtain 

 

 

.),()()(

)()()()())((

)()()())(()()()()()()()()()(

3333

0333

33

33

TtTxTrT

dudsupuCqusxsxg

dsspsqCstxgdssxsrsTxTrTtxtrt

s

T

t

T

t

T

t

T























 

Integrate the last inequality divided by )()( ttr  from 3T  to t and by condition (6), we 

have  

,
)()(

)()()()()(

3

3333  
 t

T
ssr

ds
TxTrTTxtx


  

as ,t contradicting the fact 0)( tx for all t .T  Thus, we have )(tx


 is oscillatory 

and this leads to (1.1) is oscillatory. Hence the proof is completed. 

 

 Example 3.3.3 

            Consider the following differential equation 

 

.0,
))(sin()(

)(16)(3

)(
)(9)(

1
3

5

2

10

15
5 




































 






t
t

txtx

ttxttx

tx
txttx

t

t
 

      We have ,
)1(

)(
t

t
tr


 ,9)( ttq  ,)( 5xxg   

)(
1))(sin(

))((

))(,(

63
),(

3322

3

tp
tt

tx

txg

txtH
and

vu

u
uvu 


  for all .00  tandx   
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Taking tt )( such that  

  .
1

9lim)()()(lim

00

300 







  

t

t
t

t

t
t

ds
s

sCsdsspsqCs  

   All conditions of Theorem 3.3.3 are satisfied, then, the given equation is oscillatory. 

Also the numerical solutions of the given differential equation are computed using the 

Runge Kutta method of fourth order (RK4) for different steps sizes h.  

    We have 

                         )

)(24)(3

)(
)((5.4sin)(5.0))(),(,()(

2
10

15
55

txtx

tx
txxtxtxtxtftx









   

with initial conditions 0)1(,5.0)1( 


xx on the chosen interval [1,50] and finding the 

values of the functions  r, q and f  where we consider )()(),( xltfxtH  at t=1, n =2250, 

n =2500, n=2750 and n=3000 and the step sizes h =0.0217, h =0.0196, h =0.0178  and 

h = 0.01 
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Figure 3.3(a): Solutions curves of ODE 3.3. 
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Figure 3.3(b): Solutions curves of ODE 3.3 
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Remark 3.3.3 

          Theorem 3.3.3 extends result of Philos (1983) who has studied the equation (1.1) 

as ,1)( tr ),())(( txtxg  ))(())()()),((( txgtxtrtxg 


and 0))(,( txtH , result of 
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Bhatia (1966) who has considered the equation (1.1) 

as ))(())()()),((( txgtxtrtxg 


and 0))(,( txtH , and  result of Philos and Punaras 

(1992) who have studied the equation (1.1) as 

,1)( tr ))(())()()),((( txgtxtrtxg 


and .0))(,( txtH  Our result can be applied on 

their equations (2.1), (2.6) and (2.4) respectively, but their oscillation results cannot be 

applied on the given equation in Example 3.3.3 because their equations are particular 

cases of our equation (1.1).  

 

Theorem 3.3.4 

        Suppose that the conditions (1), (5) and (6) hold and there exists a continuously 

differentiable function  which is defined as Theorem 3.3.3 such that 
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Then, every solution of equation (1.1) is oscillatory. 

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.1) such that   ,0)( Tontx  for some .00  tT  Define   
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This, conditions (1), (5) and the equation (1.1) imply  
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We multiply the last inequality (3.3.5) by )(t and integrate form T to t, we have  
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By the condition (7), we get 
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and there exists TT 1
such that 0)( 



tx for .1Tt  The condition (7) also implies that 

there exists 12 TT  such that 
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Multiplying equation (1.1) by )(t and by conditions (1) and (5), we have  
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Integrate the last inequality from T2 to t, we obtain  
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By the Bonnet
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Dividing the last inequality by )()( trt , integrate from T2 to t and the condition (6), we 

obtain 
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which is a contradiction to the fact that 0)( tx  for .Tt   Hence the proof is 

completed. 

 

Example 3.3.4 

          Consider the following differential equation 
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    All conditions of Theorem 3.3.4 are satisfied.  Thus, the given equation is oscillatory. 

We also compute the numerical solutions of the given differential equation using the 

Runge Kutta method of fourth order (RK4) for different step sizes h. 
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 We have    
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with initial conditions 0)1(,5.0)1( 


xx on the chosen interval [1,50] and finding the 

values of the functions r, q and  f  where we consider )()(),( xltfxtH  at t=1, n =2250, 

n =2500, n=2750 and n=3000 and the step sizes h =0.0217, h =0.0196, h =0.0178  and 

h = 0.016. 
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Figure 3.4(a): Solutions curves of ODE 3.4 
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Figure 3.4(b): Solutions curves of ODE 3.4. 
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Remark 3.3.4 

         Theorem 3.3.4 is the extension of the results of Bihari (1963) and the results of 

Kartsatos (1968) who have studied the equation (1.1) as 

,1)( tr ),())(( txtxg  ))(),(())()()),((( txtxtxtrtxg


 and 0))(,( txtH  and 

results of El-abbasy (2000) who has studied the equation (1.1) 

as ))(())()()),((( txgtxtrtxg 


and .0))(,( txtH  Our result can be applied on their 

equations (2.5) and (2.6) respectively, but their oscillation results cannot be applied on 

the given equation in Example 3.3.4 because their equations are particular cases of our 

equation (1.1). 

 

Theorem 3.3.5: Suppose that the conditions (1) and (5) hold and there exists 

continuously differentiable function  is defined as in Theorem 3.3.3
 
such that the 

condition (6) holds and 
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Then, every solution of superlinear equation (1.1) is oscillatory. 

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.1) such that   ,0)( Tontx for some .00  tT  Define 
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We multiply the last inequality by )(t and integrate form T to t, we have 

  dss
sr

s
kssdsspsqCs

Txg

TxTrT

txg

txtrt
t

T

t

T

 












)(
)(

)(
)()()()()(

))((

)()()(

))((

)()()( 2

0 





 

.
)(2

)()(
)()(

))((

)()()(
1

tk

trt
ttand

Txg

TxTrT
CLet











 

Thus, we obtain

   

       

 

 

)7.3.3(.)(

)(4

)()(
)()()(

)(2

)()(
)(

)(

)(
)()()(

))((

)()()(

1

2

01

2

2

01





























































t

T

t

T

t

T

t

T

dssC

ds
sk

srs
spsqCsC

ds
sk

srs
s

sr

s
kdsspsqCsC

txg

txtrt
















 



80 
 

From inequality (3.3.7), we have 
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We divide the last inequality )()( trt and integrate from T1 to t, we obtain
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This contradicts condition (10). 
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Case 2: If )(tx


is oscillatory, then there exists a sequence n  in  ,T such that 

.0)( 


nx  Choose N large enough so that (9) holds. Then from inequality (3.3.7), we 
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which contradicts the fact that )(tx


oscillates. 

 Case 3: If 0)( 


tx for TTt  2 , the condition (9) implies that there exists 

23 TT  such that 
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Multiplying the equation (1.1) by )(t and from the condition (1), for ,3Tt   we have 
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Integrate the last inequality from T3 to t, we obtain 
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Dividing the last inequality by )()( trt  and integrate from T3 to t we obtain 
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which is a contradiction to the fact that 0)( tx for .Tt   Hence, the proof  is 

completed. 
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Taking 04)( t such that 
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All conditions of Theorem 3.3.5 are satisfied and hence every solution of the given 

equation is oscillatory. To demonstrate that our result in Theorem 3.3.5 is true we also 

find the numerical solution of the given differential equation in Example 3.3.5 using the 

Runge Kutta method of fourth order. 

 We have  
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with initial conditions 1)1(,1)1( 


xx on the chosen interval  50,1  and finding the 

values the functions  r, q and  f  where we consider )()(),( xltfxtH   at  t=1, n=980 

and h=0.05. 
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Table 3.5: Numerical solution of ODE 3.5 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5: Solution curve of ODE 3.5 
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Remark 3.3.5 

       Theorem 3.3.5 extends result of Wong and Yeh (1992), result of Philos (1989), 

result of Onose (1975) and result of Philos and Purnaras (1992) who have studied the 

special case of the equation (1.1) as ,1)( tr ))(())()()),((( txgtxtrtxg 


 and 

0))(,( txtH  and result of E. M. Elabbasy (2000) who has studied the special case of 

the equation (1.1) as ))(())()()),((( txgtxtrtxg 


 and .0))(,( txtH  Our result can be 

applied on their equations (2.4) and (2.9) ,as mentioned in Chapter Two, but their 

oscillation results cannot be applied on the given equation in Example 3.3.5 because 

their equations are  particular cases of our equation (1.1). 

 

Theorem 3.3.6 

            Suppose that the conditions (1) and (5) hold. Assume that there exists 

continuously differentiable function  is defined as in Theorem 3.3.3 such that 

condition (6) holds and       
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  and    .,0,: 0 tp
 
Then, every 

solution of equation (1.1) is oscillatory.  

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.1) such that   ,0)( Tontx for some .00  tT  We define the function 

)(t  as 
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Thus, we have                
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Also, from the inequality (3.3.9) divided by ),(t  we have 
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Further, by using the Schwarz’s inequality, for ,Tt   we obtain
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By condition (11), the last inequality becomes 
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Dividing the last inequality by t and taking the limit superior on both sides, we obtain 
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which contradicts condition (13). 

Case 2: If ,0)( 1 TTtfortx 


then, from (3.3.10), we get 
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Also, from the last inequality, we obtain 
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Hence, the proof is completed. 
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       All conditions of Theorem 3.3.6 are satisfied and hence every solution of the given 

equation is oscillatory. To demonstrate that our result in Theorem 3.3.6 is true, we also 

find the numerical solution of the given differential equation in Example 3.3.6 using the 

Runge Kutta method of fourth order.  

We have  
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with initial conditions 1)1(,5.0)1( 


xx on the chosen interval  50,1  and finding the 

values the functions r, q and  f  where we consider )()(),( xltfxtH  at t=1, n=980 and 

h=0.05. 
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Table 3.6: Numerical solution of ODE 3.6 

 

 

 

 

 

 

 

 

Figure 3.6: Solution curve of ODE 3.6 
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Remark 3.3.6: Theorem 3.3.6 extends result of Popa (1981) for the equation (2.2), 

result of Wong (1973) for the equation (2.3), results of Onose (1975), Philos (1985) and 

Yeh (1982) for the equation (2.4) and result of E. Elabbasy (2000) for the equation 

(2.6). Our result can be applied on their equations (2.2), (2.3), (2.4) and (2.6) 

respectively, but their previous oscillation results cannot be applied on the given 

equation in Example 3.3.6 because their equations are particular cases of our equation 

(1.1).  

Theorem 3.3.7: Suppose, in addition to the condition (1) holds that 
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where,     ,0,: 0tp . Then, every solution of superlinear equation (1.1) is 

oscillatory. 
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Proof 

      Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.1) such that   .0,0)( 0  tTsomeforTontx
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By Bonnet’s theorem, since )(t  is a non-decreasing function on the 

interval  ,,0 t there exists  tTT ,1  such that 
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Using the inequality (3.3.15) in the inequality (3.3.14), we have 
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 Taking the limit superior on both sides, by condition (14) and since the equation (1.1) is 

superlinear, we have 
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tas , which contradicts to the condition (16). Hence the proof is completed.  
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Example 3.3.7  

   Consider the following differential equation  
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     All conditions of Theorem 3.3.7 are satisfied and hence every solution of the given 

equation is oscillatory. The numerical solution of the given differential equation using 

Runge Kutta method of fourth order (RK4) is as follows: 

 We have 
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with initial conditions 1)1(,5.0)1( 


xx  on the chosen interval  50,1  and finding the 

values of the functions r, q and  f  where we consider )()())(,( xltftxtH   at t=1 

n=980 and h=0.05. 
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Table 3.7: Numerical solution of ODE 3.7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: Solution curve of ODE 3.7 
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Remark 3.3.7: Theorem 3.3.7 extends results of Bihari (1963) and Kartsatos (1968) 

who have studied the equation (2.5) as mentioned in chapter two. Our result can be 

applied on their equation, but their oscillation results cannot be applied on the given 

equation in Example 3.3.7 because their equation is a particular case of our equation 

(1.1) when ,1)( tr ),())(( txtxg  ))(),(())()()),((( txtxtxtrtxg


  and 

0))(,( txtH . 

Theorem 3.3.8: Suppose, in addition to the condition (5) holds that  
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 where     ,0,: 0tp , then, every solution of superlinear equation (1.1) is 

oscillatory. 

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.1) such that   0,0)( 0  tTsomeforTontx .
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Integrate the last inequality from T to t, we obtain 
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Integrate the last inequality from T to t, we have 
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Dividing the last inequality by t and taking the limit superior on both sides, we obtain 
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tas , which contradicts to the condition (19). Hence the proof is completed. 
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       Consider the following differential equation  
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Here 
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     All conditions of Theorem 3.3.8 are satisfied and hence every solution of the given 

equation is oscillatory. The numerical solution of the given equation using the Runge 

Kutta method of fourth order (RK4) is as follows: 

 We have 
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with initial conditions 1)1(,1)1( 


xx  on the chosen interval  50,1  and finding the 

values of the functions  r, q and  f  where we consider )()())(,( xltftxtH   at t=1, 

n=980 and h=0.05. 
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Table 3.8: Numerical solution of ODE 3.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Solution curve of ODE 3.8 

0 5 10 15 20 25 30 35 40 45 50
-1.5

-1

-0.5

0

0.5

1

1.5

t

N
um

er
ic

al
 s

ol
ut

io
n 

x(
t)

 

 

k tk x(tk) 

1 

80 

181 

226 

321 

421 

475 

521 

581 

661 

761 

821 

955 

981 

1 

4.95 

10 

12.25 

17 

22 

24.7 

27 

30 

34 

39 

42 

48.7 

50 

1 

-0.02069572 

0.20451305 

-0.00138478 

0.11785698 

-0.04991059 

0.36339219 

-0.21766245 

0.86993097 

-0.10477736 

0.06293869 

-0.71934519 

0.05390472 

1.15722428 



104 
 

Remark 3.3.8:  

       Theorem 3.3.8 extends results of Bihari (1963), Kartsatos (1968) who have studied 

the equation (1.1) as ,1)( tr  ),())(( txtxg   ))(),(())()()),((( txtxtxtrtxg


  
and .0))(,( txtH  Also, Theorem 3.3.8 extends results of Elabbasy (2000) who has 

considered the equation (1.1) as ))(())()()),((( txgtxtrtxg 


 and .0))(,( txtH  Our 

result can be applied on their equations (2.5) and (2.6), but their oscillation results 

cannot be applied on the given equation in Example 3.3.8 because their equations are 

particular cases of our equation (1.1).  

Theorem 3.3.9: Suppose that the conditions (1) and (5) hold. Moreover, assume that 

there exist a differentiable function     ,0,: 0t  and the continuous functions 

  0:),(:, tststDHh R, H has a continuous and non-positive partial derivative 

on D with respect to the second variable such that  
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Then, every solution of equation (1.1) is oscillatory. 

Proof 

       Without loss of generality, we assume that there exists a solution x(t) of equation 

(1.1) such that   0,0)( 0  tTsomeforTontx . We define the function )(t  as     
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Integrate the last inequality multiplied by ),( stH  from T to t, we have 
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Dividing the last inequality by ),( TtH , taking the limit superior as t  and by 
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which contradicts to the condition (21). Hence, the proof is completed.

 

Example 3.3.9: Consider the differential equation 
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We have 
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     All conditions of Theorem 3.3.9 are satisfied, then, the given equation is oscillatory. 

Also the numerical solution of the given differential equation is computed using the 

Runge Kutta method of fourth order. 

 We have 
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with initial conditions 5.0)1(,1)1( 


xx  on the chosen interval  50,1  and  finding the  

values of the functions r, q and f  where we consider )()(),( xltfxtH  at t=1, n=980 

and h= 0.05.

 

 

Table 3.9: Numerical solution of ODE 3.9 
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                                                 Figure 3.9: Solution curve of ODE 3.9 
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Remark 3.3.9: Theorem 3.3.9 extends Kamenev’s result (1978) and Philos’s result 

(1989) who have studied a special case of the equation (1.1) as 

,1)( tr ),())(( txtxg  ))(())()()),((( txgtxtrtxg 


and 0))(,( txtH . Our result 

can be applied on their equation however; their results cannot be applied to the given  

equation in Example 3.3.9. 

Theorem 3.3.10 

      Suppose, in addition to the conditions (1), (5) and (20) hold that there exist 

continuous functions h and H are defined as in Theorem 3.3.9 and suppose that  
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where  0),(max)( tt  , then every solution of equation (1.1) is oscillatory. 
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     Without loss of generality, we may assume that there exists a solution x(t) of equation 
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This shows that 

                                   ,)()( TteveryforTT                                               (3.3.18) 

and 

.),(
)()(

2

1
)(

)()(

),(

),(

1
inflim

2

 











t

T
t

dsst
k

srs
s

srs

stkH

TtH






 

Hence, 

)19.3.3(.)(),(),(
),(

1
)(

)()(

),(

),(

1
inflim

),(
)()(

2

1
)(

)()(

),(

),(

1
inflim

0 0

0

0

2

0

2

0


























 







t

t

t

t
t

t

t
t

dssstHst
ttH

dss
srs

stkH

ttH

dsst
k

srs
s

srs

stkH

ttH










 

Define     

0

2

0

,)(
)()(

),(

),(

1
)(

0

ttdss
srs

stkH

ttH
tU

t

t

  


 

and  

.,)(),(),(
),(

1
)( 0

0
0

ttdssstHst
ttH

tV

t

t

  

 

Then, (3.3.19) becomes 

                                     .)()(inflim 


tVtU
t

                                                       (3.3.20) 

 



112 
 

Now, suppose that  
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Provided that n is sufficiently large. Thus  
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which contradicts to the condition (20). Thus, inequality (3.3.21) fails and hence  
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    All conditions of Theorem 3.3.10 are satisfied. Thus, the given equation is 

oscillatory. We also compute the numerical solution of the given differential equation 

using the Runge Kutta method of fourth order (RK4). We have 
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with initial conditions 5.0)1(,1)1( 


xx  on the chosen interval  50,1 and finding the 

values of the functions r, q and  f  where we consider )()(),( xltfxtH  at t=1, n=980  

and h=0.05. 
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Table 3.10: Numerical solution of ODE 3.10 

 

 

 

 

 

 

       

 

 

 

 

 

 

 

 

Figure 3.10: Solution curve of ODE 3.10. 
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Remark 3.3.10 

        Theorem 3.3.10 extends and improves the results of Philos (1989) and results of 

Yan (1986) who have studied the equation (1.1) 

,1)( tr ),())(( txtxg  ))(())()()),((( txgtxtrtxg 


and 0))(,( txtH , as mentioned 

in Chapter Two. Our result can be applied on their equation (2.1), but their oscillation 

results cannot be applied on the given equation in Example 3.3.10.  

 

Theorem 3.3.11 

         Suppose in addition to the condition (1) and (2) hold that assume that there exists 

  be a positive continuous differentiable function on the interval  ,0t  with )(t  is 

increasing on the interval  ,0t and such that  
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 where     ,0,: 0tp , then, every solution of equation (1.1) is oscillatory. 

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 
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By Bonnet’s theorem, we see that for each ,Tt  there exists  tTT ,1  such that 
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Using the inequality (3.3.29) in the inequality (3.3.28), we have 
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By condition (2), dividing the last inequality by )(t and taking the limit superior on both 

sides, we obtain 
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,tas  which contradicts to the condition (25). Hence the proof is completed.
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      All conditions of Theorem 3.3.11 are satisfied and hence, every solution of the given 

equation is oscillatory. To demonstrate that our result in Theorem 3.3.11 is true we also 

find the numerical solution of the given differential equation in Example 3.3.11 using 

the Runge Kutta method of fourth order (RK4).  

We have 

xxxtxtxtftx 99.3)sin())(),(,()( 3 


 

 

with initial conditions 5.0)1(,1)1( 


xx  on the chosen interval  50,1  and finding the 

values of the functions  r, q and  f  where we consider )()())(,( xltftxtH   at  t=1,  

n=980 and h=0.05. 

 

Table 3.11: Numerical solution of ODE 3.11 
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Figure 3.11: Solution curve of ODE 3.11 
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Remark 3.3.11 

        Theorem 3.3.11 is the extension of the results of Bihari (1963), Kartsatos (1968) 

who have studied the equation (1.1) as ,1)( tr ),())(( txtxg   

))(),(())()()),((( txtxtxtrtxg


  and 0))(,( txtH  and results of Wintiner (1949) 

and Kamenev (1978) who have studied the equation (1.1) as ,1)( tr  ),())(( txtxg   

))(())()()),((( txgtxtrtxg 


and ,0))(,( txtH as mentioned in Chapter Two. Our 

result can be applied on their equations, but their oscillation results cannot be applied 

on the given equation in Example 3.3.11 because their equations are particular cases of 

our equation (1.1). 

 

Theorem 3.3.12: Suppose, in addition to the condition (2) holds that 
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where     ,0,: 0tp and *k is a positive constant, then, every solution of equation 

(1.1) is oscillatory. 
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      Without loss of generality, we may assume that there exists a solution x(t) of 
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Thus, we have 
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By Bonnet’s theorem, we see that for each ,Tt  there exists  tTat , such that 
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From inequality (3.3.31) in inequality (3.3.30), the condition (2) and taking the limit 

superior on both sides, we obtain  
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tas , which contradicts to the condition (28). Hence the proof is completed. 
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Example 3.3.12 

         Consider the following differential equation 
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We get all conditions of Theorem 3.3.12 are satisfied and hence, every solution of the 

given equation is oscillatory. The numerical solution of the given differential equation is 

found out using the Runge Kutta method of fourth order (RK4). We have  
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xx  on the chosen interval  50,1  and finding the 

values of  the functions r, q and  f  where we consider   )()()(, xltftxtH   at t=1, 

n=980 and h=0.05. 
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Table 3.12: Numerical solution of ODE 3.12 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12: Solution curve of ODE 3.12 
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Remark 3.3.12 

     Theorem 3.3.12 extends and improves the results of Bihari (1963) and the results of 

Kartsatos (1966) who have studied the equation (2.5) as mentioned in chapter two. Our 

result can be applied on their equation, but their oscillation results cannot be applied on 

the given equation in Example 3.3.12 because their equation is a particular case of our 

equation (1.1) when ,1)( tr ),())(( txtxg  ))(),(())()()),((( txtxtxtrtxg


 and 

0))(,( txtH . 
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3.4 Conclusion 

          In this section, oscillation of second order nonlinear differential equation with 

alternating coefficients of type (1.1) has been investigated. Some oscillation results have 

been presented. These results contain the sufficient conditions for oscillation of 

solutions of the equation of type (1.1) which have been derived by using the generalized 

Riccati technique. Our results extend and improve many previous results that have been 

obtained before, for example, such as the works of Fite (1918), Wintner (1949), 

Atkinson (1955), Bihari (1963), Kartsatos (1968), Philos (1989), Philos and Purnaras 

(1992), El-abbasy (1996), and El-abbasy et al. (2005). All these previous results have 

been studied for particular cases of the equation (1.1) whereas our sufficient conditions 

have been derived for the generalized equation (1.1). A number of theorems and 

illustrative examples for oscillation differential equation of type (1.1) are given. Further, 

a number of numerical examples are given to illustrate the theorems which are 

computed by using Runge Kutta of fourth order function in Matlab version 2009. The 

present results are compared with existing results to explain the motivation of proposed 

research study. 
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CHAPTER FOUR 

OSCILLATION THEOREMS FOR SECOND ORDER 

NONLINEAR DIFFERENTIAL EQUATIONS 

 WITH DAMPING 

          

4.1 Introduction 

            In this chapter, we consider the second order nonlinear ordinary differential 

equation of the form  

)2.1()),(),(,())())(()()),((()()()()())(()( txtxtHtxtxtrtxgtqtxthtxtxtr















 

where hr , and q  are continuous functions on the interval   ),(,,0

 RRCt
 
and 

)(tr is a positive function. g is a continuous function for   ,x , continuously 

differentiable and satisfies 0)( xxg  and 0)(  kxg  for all 0x . The function   is 

a continuous function on RxR with 0),(  vuu  for all u 0  and 

),(),( vuvu   for any ),0(   and H is a continuous function on  ,0t ×R×R 

with )())(())(),(,( tptxgtxtxtH 


 for all x 0 and 0tt  . 
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4.2 Second Order Nonlinear ODE With Damping Term of Type (1.2) 

 

             We consider a problem of finding the sufficient conditions for oscillation of 

solutions of ordinary differential equations of second order. The obtained oscillation 

results are motivated extended and improved many previous oscillation results, for 

examples, Bihari (1963), Kartsatos (1968), Greaf, et al. (1978), Grace (1992), Elabbasy 

et al. (2005), Lu & Meng (2007), Berkani (2008) and Remili (2010).  Some new 

sufficient conditions are established which guarantee that our differential equations are 

oscillatory. A number of theorems and illustrative examples for oscillation differential 

equation (1.2) are given. Also, a number of numerical examples are given to illustrate 

the theorems. These numerical examples are computed by using Runge Kutta of fourth 

order in Matlab. The obtained results are compared with existing results to explain the 

motivation of proposed research study. 

 

4.3 Oscillation Theorems 

        We state and prove here our oscillation theorems. 

Theorem 4.3.1: Suppose that  
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 where     ,0,: 0tp , then, every solution of equation (1.2) is oscillatory. 
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By condition (1) and since 0))()(,1(  tt   then, there exists a positive constant C0 

such that 0))()(,1( Ctt   thus, 
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Integrate the last inequality from T to t, we obtain 
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Since )(t  in the first integral in R. H. S. of the inequality (4.3.3) is an increasing 

function and by applying the Bonnet’s theorem, we see that for each ,Tt  there exists 

 tTT ,1   such that 
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From the second integral in R. H. S. of (4.3.3), we have 
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From inequalities (4.3.4) and (4.3.5) in inequality (4.3.3), we have 
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,tas which contradicts to the condition (3). Hence the proof is completed.  
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Example 4.3.1 

          Consider the differential equation 
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     All conditions of Theorem 4.3.1 are satisfied and hence every solution of the given 

equation is oscillatory. To demonstrate that our result in Theorem 4.3.1 is true, we also 

find the numerical solutions of the given differential equation in Example 4.3.1 using 

the Runge Kutta method (RK4) for different steps sizes. 

 We have 
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with initial conditions 1)1(,1)1( 


xx  on the chosen interval  50,1 , the functions 

0)(,1)(  thx  and finding the values of the functions  r, q and  f , where we 

consider ),()(),,(


 xxltfxxtH  at  t=1, n =2250, n =2500, n=2750 and n=3000 and 

the steps sizes h =0.021, h =0.019, h =0.017  and h = 0.016.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



135 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T
a

b
le

 4
.1

: 
C

o
m

p
ar

is
o
n

 o
f 

th
e 

n
u

m
er

ic
al

 s
o
lu

ti
o
n

s 
o

f 
O

D
E

 4
.1

 w
it

h
 d

if
fe

re
n

t 
st

ep
s 

si
ze

s 

E
r
ro

r 
%

 

0
 

0
.0

0
0
0

0
1
8

6
 

0
.0

0
0
1

3
9
5

8
 

0
.0

0
0
0

2
2
9

9
 

0
.0

0
0
0

0
5
4

3
 

0
.0

0
0
0

0
7
3

9
 

0
.0

0
0
0

0
0
8

6
 

0
.0

0
0
0

0
9
8

7
 

0
.0

0
0
0

0
1
8

6
 

0
.0

0
0
0

0
1
0

4
 

0
.0

0
0
0

0
1
8

2
 

0
 

0
.0

0
0
0

1
5
4

1
 

0
.0

0
0
0

0
4
9

7
 

0
.0

0
0
0

0
5
1

9
 

  
  
  

  
  
  

  
  

 

0
 

0
.0

0
0
0

0
0
0

2
 

0
.0

0
0
0

0
0
0

7
 

0
.0

0
0
0

0
0
0

7
 

0
.0

0
0
0

0
0
0

5
 

0
.0

0
0
0

0
0
0

6
 

0
.0

0
0
0

0
0
0

1
 

0
.0

0
0
0

0
0
0

6
 

0
.0

0
0
0

0
0
0

2
 

0
.0

0
0
0

0
0
0

1
 

0
.0

0
0
0

0
0
0

2
 

0
 

0
.0

0
0
0

0
0
0

2
 

0
.0

0
0
0

0
0
0

5
 

0
.0

0
0
0

0
0
0

5
 

                  

E
r
ro

r 
%

 

0
 

0
.0

0
0
0

0
2
7

9
 

0
.0

0
0
3

1
9
0

6
 

0
.0

0
0
0

5
5
8

5
 

0
.0

0
0
0

1
4
1

3
 

0
.0

0
0
0

1
8
4

8
 

0
.0

0
0
0

0
2
5

8
 

0
.0

0
0
0

1
9
7

5
 

0
.0

0
0
0

0
1
8

6
 

0
.0

0
0
0

0
2
0

8
 

0
.0

0
0
0

0
2
7

3
 

0
.0

0
0
0

5
4
7

7
 

0
.0

0
0
0

8
4
7

5
 

0
.0

0
0
0

1
6
9

2
 

0
.0

0
0
0

1
5
5

8
 

 

 

 

0
 

0
.0

0
0
0

0
0
0

3
 

0
.0

0
0
0

0
0
1

6
 

0
.0

0
0
0

0
0
1

7
 

0
.0

0
0
0

0
0
1

3
 

0
.0

0
0
0

0
0
1

5
 

0
.0

0
0
0

0
0
0

3
 

0
.0

0
0
0

0
0
1

2
 

0
.0

0
0
0

0
0
0

2
 

0
.0

0
0
0

0
0
0

2
 

0
.0

0
0
0

0
0
0

3
 

0
.0

0
0
0

0
0
0

7
 

0
.0

0
0
0

0
0
1

1
 

0
.0

0
0
0

0
0
1

7
 

0
.0

0
0
0

0
0
1

5
 

 

E
r
ro

r 
%

 

0
 

0
.0

0
0
0

0
5
5

8
 

0
.0

0
0
6

1
8
1

8
 

0
.0

0
0
1

0
8
4

1
 

0
.0

0
0
0

2
6
1

0
 

0
.0

0
0
0

3
4
5

0
 

0
.0

0
0
0

0
5
1

7
 

0
.0

0
0
0

3
2
9

2
 

0
.0

0
0
0

0
0
9

3
 

0
.0

0
0
0

0
1
0

4
 

0
.0

0
0
0

0
2
7

3
 

0
.0

0
0
2

1
9
1

0
 

0
.0

0
0
2

9
2
8

0
 

0
.0

0
0
0

4
1
8

2
 

0
.0

0
0
0

4
2
6

0
 

 

 

0
 

0
.0

0
0
0

0
0
0

6
 

0
.0

0
0
0

0
0
3

1
 

0
.0

0
0
0

0
0
3

3
 

0
.0

0
0
0

0
0
2

4
 

0
.0

0
0
0

0
0
2

8
 

0
.0

0
0
0

0
0
0

6
 

0
.0

0
0
0

0
0
2

0
 

0
.0

0
0
0

0
0
0

1
 

0
.0

0
0
0

0
0
0

1
 

0
.0

0
0
0

0
0
0

3
 

0
.0

0
0
0

0
0
2

8
 

0
.0

0
0
0

0
0
3

8
 

0
.0

0
0
0

0
0
4

2
 

0
.0

0
0
0

0
0
4

1
 

 

h
=

0
.0

1
6
 

x
4
(t

k
) 

1
 

-1
.0

7
3

9
4
9

8
4
 

0
.0

5
0
1

4
6
9

4
 

-0
.3

0
4

3
8
3

3
7
 

0
.9

1
9
4

9
0
8

9
 

-0
.8

1
1

5
9
1

3
0
 

-1
.1

5
9

6
7
5

7
3
 

0
.6

0
7
3

5
8
2

0
 

1
.0

7
0
2

3
9
1

0
 

-0
.9

6
1

4
1
8

2
2
 

1
.0

9
8
0

8
6
5

4
 

-0
.1

2
7

7
9
0

2
9
 

-0
.1

2
9

7
7
8

6
3
 

-1
.0

0
4

1
5
9

2
1
 

-0
.9

6
2

4
3
9

3
7
 

  
h

=
0
.0

1
7
 

x
3
(t

k
) 

1
 

-1
.0

7
3

9
4
9

8
2
 

0
.0

5
0
1

4
6
8

7
 

-0
.3

0
4

3
8
3

3
0
 

0
.9

1
9
4

9
0
8

4
 

-0
.8

1
1

5
9
1

2
4
 

-1
.1

5
9

6
7
5

7
2
 

0
.6

0
7
3

5
8
2

6
 

1
.0

7
0
2

3
9
1

2
 

-0
.9

6
1

4
1
8

2
3
 

1
.0

9
8
0

8
6
5

2
 

-0
.1

2
7

7
9
0

2
9
 

-0
.1

2
9

7
7
8

6
5
 

-1
.0

0
4

1
5
9

1
6
 

-0
.9

6
2

4
3
9

4
2
 

h
=

0
.0

1
9
 

x
2
(t

k
) 

1
 

-1
.0

7
3

9
4
9

8
1
 

0
.0

5
0
1

4
6
7

8
 

-0
.3

0
4

3
8
3

2
0
 

0
.9

1
9
4

9
0
7

6
 

-0
.8

1
1

5
9
1

1
5
 

-1
.1

5
9

6
7
5

7
0
 

0
.6

0
7
3

5
8
3

2
 

1
.0

7
0
2

3
9
1

2
 

-0
.9

6
1

4
1
8

2
4
 

1
.0

9
8
0

8
6
5

1
 

-0
.1

2
7

7
9
0

2
2
 

-0
.1

2
9

7
7
8

7
4
 

-1
.0

0
4

1
5
9

0
4
 

-0
.9

6
2

4
3
9

5
2
 

h
=

0
.0

2
1
 

x
1
(t

k
) 

1
 

-1
.0

7
3

9
4
9

7
8
 

0
.0

5
0
1

4
6
6

3
 

-0
.3

0
4

3
8
3

0
4
 

0
.9

1
9
4

9
0
6

5
 

-0
.8

1
1

5
9
1

0
2
 

-1
.1

5
9

6
7
5

6
7
 

0
.6

0
7
3

5
8
4

0
 

1
.0

7
0
2

3
9
1

1
 

-0
.9

6
1

4
1
8

2
1
 

1
.0

9
8
0

8
6
5

1
 

-0
.1

2
7

7
9
0

0
1
 

-0
.1

2
9

7
7
9

0
1
 

-1
.0

0
4

1
5
8

7
9
 

-0
.9

6
2

4
3
9

7
8
 

 t k
 

1
 

5
.9

 

1
0
.8

 

1
2
.7

6
 

1
8
.6

4
 

2
0
.4

0
4
 

2
4
.5

2
 

2
7
.0

6
8
 

3
0
.4

 

3
2
.3

6
 

3
7
.2

6
 

4
0
.2

 

4
2
.1

6
 

4
7
.0

6
 

5
0
 

 



136 
 

Figure 4.1(a): Solution curves of ODE 4.1 
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Figure 4.1(b): Solution curves of ODE 4.1 
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Remark 4.3.1: Theorem 4.3.1 is the extension of the results of Bihari (1963), Kartsatos 

(1968), who have studied the equation (1.2) when ,1)( tr ,0)(,1))((  thtx  
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),())(( txtxg  ))(),(())())(()()),((( txtxtxtxtrtxg


 and 0))(),(,( 


txtxtH  and 

results of Kamenev (1978) and Wintiner (1949) who have studied the equation (1.2) as 

,1)( tr ,0)(,1))((  thtx ),())(( txtxg  ))(())())(()()),((( txgtxtxtrtxg 


and

0))(),(,( 


txtxtH . Our result can be applied on their equations, but their oscillation 

results cannot be applied on the given equation in Example 4.3.1 because their equations 

are particular cases of our equation (1.2). 

Theorem 4.3.2: Suppose, in addition to the conditions (1) and (2) hold that 
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Assume that   be a positive continuous differentiable function on the interval  ,0t  
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and

 
    ,0,: 0tp , then, every solution of 

the equation (1.2) is oscillatory. 

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.2) such that   ,0)( Tontx  for some .00  tT  From inequality (4.3.2) 

and by conditions (1) and (6), we have    
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Integrate the last inequality from T to t, we obtain 
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Since )(t is a decreasing function and by the Bonnet’s theorem, we see that for each 
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From inequality (4.3.7) in inequality (4.3.6), condition (2) and taking the limit superior 

on both sides, we obtain 
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,tas which contradicts to the condition (7). Hence the proof is completed. 
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     All conditions of Theorem 4.3.2 are satisfied and hence every solution of the given 

equation is oscillatory. The numerical solutions of the given differential equation are 

found out using the Runge Kutta method of fourth order (RK4) for different steps sizes. 

We have  
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with initial conditions 1)1(,5.0)1( 


xx  on the chosen interval  50,1 , the functions 

0)(1)(  thandx  and finding the values of  the functions r, q and  f  where we 

consider ),()(),,(


 xxltfxxtH  at t=1, n =2250, n =2500, n=2750 and n=3000 and the 

steps sizes h =0.021, h =0.019, h =0.017  and  h = 0.016. 
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Figure 4.2(a): Solution curves of ODE 4.2 

1 2 3 4 5 6 7 8 9 10
-1.5

-1

-0.5

0

0.5

1

1.5

t

N
um

er
ic

al
 s

ol
ut

io
ns

 x
(t

)

 

 

x1(t)

x2(t)

x3(t)

x4(t)

 

 

 

 

Figure 4.2(b): Solution curves of ODE 4.2 
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Remark 4.3.2:  

          Theorem 4.3.2 is the extension of the results of Bihari (1963) and Kartsatos 

(1968) who have studied the equation (1.2) when 

,1)( tr ,0)(,1))((  thtx ),())(( txtxg 

))(),(())())(()()),((( txtxtxtxtrtxg


 and .0))(),(,( 


txtxtH  Our result can be 

applied on their equation, but their oscillation results cannot be applied on the given 

equation in Example 4.3.2 because their equation are particular cases of our equation 

(1.2). 

Theorem 4.3.3 

            Suppose, in addition to the conditions (1) and (4) hold that 

(8) 0)( tq for .0tt    

(9)    .0
)(

)(











allfor
ug

duu
 

Assume that there exist a differentiable function     ,0,: 0t  such that 

  0


r and 

,
)(

)()(

)(

)()(1
suplim)10(

0 0

2

1

2

  




















t

t

s

t
t

duds
ura

uhu

u

uru

t







  .)()()(
1

suplim)11(

0 0

0  


t

t

s

t
t

dudsupuqCu
t

  

Then, every solution of equation (1.2) is oscillatory. 
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Proof 

         Without loss of generality, we assume that there exists a solution x(t) of equation 

(1.2) such that   ,0)( Tontx for some 00  tT . From the inequality (4.3.1) and 

condition (1), we have   
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Integrate the last inequality from T to t, we have  
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Since  )()( trt is a non-increasing function and by the Bonnet’s theorem, we see that 

for each Tt  , there exists  tTt , such that
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Dividing the last inequality by t , taking the limit superior as  t , we obtain  
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which contradicts to the condition (11). Hence the proof is completed.
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Example 4.3.3 

     Consider the differential equation 
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It follows from Theorem 4.3.3 that the given equation is oscillatory. The numerical 

solutions of the given differential equation are found out using the Runge Kutta method 

of fourth order (RK4) for different steps sizes. 

 We have  
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xx  on the chosen interval  50,1 , the functions 

0)(1)(  thandx and finding the values of  the functions r, q and  f  where we 

consider ),()(),,(


 xxltfxxtH  at t=1, n =2250, n =2500, n=2750 and n=3000 and the 

steps sizes h =0.021, h =0.019, h =0.017  and  h = 0.016. 
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Figure 4.3(a): Solution curve of ODE 4.3 
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Figure 4.3(b): Solution curve of ODE 4.3 
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Theorem 4.3.4 

        Suppose that conditions (1) and (8) hold and 

(12)    .0)( 0ttforth   
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Furthermore, suppose that there exists a positive continuous differentiable function  on 

the interval  ,0t  with ,0)( 


t  ,0))()(( 


trt 0))()()()(( 2 


thttrta  and 

0))()()()(( 2  


thttrta   such that 

(13)   
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Then, every solution of super-linear equation (1.2) is oscillatory. 

Proof 

      If )(tx  is oscillatory on   ,0,, 0  tTT
 
then, )(tx



 is oscillatory on  ,T  and if 

)(tx


 is oscillatory on  ,,T  then, )(tx


 is oscillatory on  .,T

 

Without loss of 

generality, we may assume that there exists a solution x(t) of equation (1.2) such that 

  ,0)( Tontx .for some 00  tT  We have three cases of )(tx
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(i) .0)( Tteveryfortx 
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Then, by equation (1.2) and condition (1), we get 
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Integrate the last inequality from T to t, we obtain   
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We have 
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Thus, from (4.3.10) in (4.3.9), we obtain 

  

t

T

dsspsqCsATt .)()()()()( 01   

By the condition (14), we get 0)( t , then, 0)( 
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contradiction. 

If 0)( 
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Integrate the last inequality from 3T to t and by condition (1), we obtain 
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Integrate the last inequality divided by )()( trt  from 3T  to t and by condition (13), we 
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as ,t contradicting the fact 0)( tx for all t .T  Thus, we have )(tx


 is oscillatory 

and this leads to (1.2) is oscillatory. Hence the proof is completed. 
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       All conditions of Theorem 4.3.4 are satisfied. Then the given equation is 

oscillatory. Also the numerical solutions of the given differential equation are computed 

using the Runge Kutta method of fourth order (RK4) for different steps sizes. 

 We have 
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with initial conditions 1)1(,5.0)1( 


xx  on the chosen interval  50,1 , the functions 

1)(  x  and 0)( th and the finding the values of the functions  r, q and f  where we 

consider ),()(),,(


 xxltfxxtH  at t=1, n =2250, n =2500, n=2750 and n=3000 and the 

steps sizes h =0.021, h =0.019, h =0.017  and  h = 0.016. 
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Figure 4.4(a): Solution curve of ODE 4.4 
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Figure 4.4(b): Solution curve of ODE 4.4 
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Remark 4.3.3 

           Theorem 4.3.4 extends results of Grace (1992) and El-abbasy et al. (2005), who 

have studied the equation (1.2) as 

,1))((  tx ))(())())(()()),((( txgtxtxtrtxg 


and 0))(),(,( 


txtxtH . Our result 

can be applied on their equation, but their oscillation results cannot be applied on the 

given equation in Example 4.3.4 because their equation is a particular case of our 

equation (1.2). 

Theorem 4.3.5: Suppose that the conditions (1), (8), (12) and (13) hold and there exists 

a continuously differentiable function     ,0,: 0t such that 
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 . Then, every solution of superlinear 

equation (1.2) is oscillatory. 

Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.2) such that   ,0)( Tontx  for some .00  tT  Define   
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This, condition (8) and (1.2) imply 
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We multiply the last inequality (4.3.11) by )(t and integrate form T to t, we have 
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Thus, for ,Tt   we have 
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The second integral in R. H. S. of the inequality (4.3.12) is bounded from above. This 

can be by using the Bonnet’s Theorem, for all ,Tt  there exists  tTat ,  such that 
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Integrate the last inequality from T2 to t, we obtain 
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Dividing the last inequality by )()( trt , integrate from T2 to t and the condition (7), we 

obtain 

,,
)()(

)())(()()()()(

2

2222222  


tas
srs

ds
TxTxTrTTxatxa

t

T


  

which is a contradiction to the fact that x(t) >0 for tT . Hence the proof is completed. 
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Example 4.2.5 

        Consider the following differential equation 
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      All conditions of Theorem 4.3.5 are satisfied and hence every solution of the given 

equation is oscillatory. We also compute the numerical solution of the given differential 

equation using the Runge Kutta method of fourth order (RK4). We have    
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with initial conditions 1)1(,5.0)1( 


xx on the chosen interval  50,1 , the functions 

1)(  x and 0)( th and finding the values of the functions  r, q and  f  where we 

consider ),()(),,(


 xxltfxxtH  at  t=1,  n=980 and h=0.05. 

Table 4.5: Numerical solution of ODE 4.5 
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Figure 4.5: Solution curve of ODE 4.5 
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Remark 4.3.4 

         Theorem 4.3.5 is the extension of the results of Greaf, et al. (1978) and Remili 

(2010) who have studied the equation (1.2) 

when ,1))((  tx 0)( th and .))(,())())(()()),((( txttxtxtrtxg 


Our result can 

be applied on their equation, but their oscillation results cannot be applied on the given 

equation in Example 4.3.5 because their equation is a particular case of our equation 

(1.2). 

Theorem 4.3.6 

         Suppose, in addition to the conditions (1), (8) and (9) hold that  

(16)     0,
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sr

ds

T
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(17)  There exists a constant *B  such that   
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where     ,0,: 0tp . Then, every solution of super-linear equation (1.2) is 

oscillatory. 

Proof 

        Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.2) such that 0)( tx  on  ,T  for some .00  tT   
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Thus for ,Tt   we have 
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Integrate from T to t, we obtain 
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From the second integral in R. H. S. of (4.3.14), we have
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By the Bonnet’s Theorem, since )(t  is a non-decreasing function on the interval 

 ,,0 t  there exists  tTT ,1  such that 
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From inequalities (4.3.16) and (4.3.15) in inequality (4.3.14), we have 
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  Integrating the last inequality divided by )()( trt  from T to t, taking the limit superior 

on both sides and by conditions (16) and (17), we have 
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tas , which contradicts to the condition (18). Hence the proof is completed.

 

 



168 
 

Example 4.3.6 

         Consider the following differential equation 
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     All conditions of Theorem 4.3.6 are satisfied and hence every solution of the given 

equation is oscillatory. The numerical solution of the given differential equation is 

found out using the Runge Kutta method of fourth order (RK4). We have 
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with initial conditions 1)1(,5.0)1( 


xx  on the chosen interval  50,1 , 

0)(,1)(  thx  and finding the values of the functions  r, q and  f where we consider 

),()(),,(


 xxltfxxtH  at t=1 n=980 and h=0.05. 

 

Table 4.6: Numerical solution of ODE 4.6 
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Figure 4.6: Solution curve of ODE 4.6 
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Remark 4.3.5 

        Theorem 4.3.6 is the extension of the results of Bihari (1963) and Kartsatos (1968), 

who have studied the equation (1.2) when ,1)( tr ,0)(,1))((  thtx  

),())(( txtxg  ))(),(())())(()()),((( txtxtxtxtrtxg


 and .0))(),(,( 


txtxtH Our 

result can be applied on their equation, but their oscillation results cannot be applied on 

the given equation in Example 4.3.6 because their equation is a particular case of our 

equation (1.2). 

Theorem 4.3.7 

      Suppose in addition to the conditions (1), (8) and (12) hold that there exists 

continuously differentiable function     ,0,: 0t  such that ,0)( 


t condition 

(13) holds and   
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Then, every solution of superlinear equation (1.2) is oscillatory. 

Proof:  Without loss of generality, we may assume that there exists a solution x(t) of 
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We multiply the last inequality by )(t and integrate from T  to t,  we have 
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From inequality (4.3.19), we have 
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Now, we consider three cases for )(tx
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This contradicts condition (20). 
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is oscillatory, then there exists a sequence n  in  ,T such 
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Choose M large enough so that (19) holds. Then from inequality (4.3.19), 

we have
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Integrate the last inequality from T3 to t, we obtain 
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which is a contradiction to the fact that 0)( tx  for .Tt   Hence the proof is 

completed. 

 

Example 4.3.7 

     Consider the following differential equation 
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       All conditions of Theorem 4.3.7 are satisfied and hence every solution of the given 

equation is oscillatory. To demonstrate that our result in Theorem 4.3.7 is true, we also 

find the numerical solution of the given differential equation in Example 4.3.7 using the 

Runge Kutta method of fourth order. 

 We have  
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Table 4.7: Numerical solution of ODE 4.7 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Solution curve of ODE 4.7 
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Remark 4.3.6: Theorem 4.3.7 extends Result of Wong and Yeh (1992), Result of 

Philos (1985), Result of Onose (1975), Result of Philos and Purnaras who have studied 

the equation (1.2) as ,1)( tr ,0)(,1))((  thtx ))(())())(()()),((( txgtxtxtrtxg 


 

and 0))(),(,( 


txtxtH  and Result of Elabbasy, et al. (2005) who have studied the 

equation (1.1) as ,1))((  tx ))(())())(()()),((( txgtxtxtrtxg 


 and 

0))(),(,( 


txtxtH . Also, Theorem 4.3.7 extends and improves the results of Greaf, et 

al. (1978) and Remili (2010) who have considered the equation (1.2) as ,1))((  tx  

0)( th and .))(,())())(()()),((( txttxtxtrtxg 


 Our result can be applied on their 

equations, but their oscillation results cannot be applied on the given equation in 

Example 4.3.7 because their equations are particular cases of our equation (1.2). 

 

Theorem 4.3.8 

        Suppose, in addition to the conditions (1), (8) and (12) hold that there exists the 
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Then, every solution of superlinear equation (1.2) is oscillatory.  
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Proof 

        Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.2) such that   ,0)( Tontx for some .00  tT  

From the inequality (4.3.19) divided by )(t , we have
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Further, by using the Schwarz
’
s inequality, for ,Tt   we obtain 
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.
2

)(
2

)( 222222

2

t
k

Na
Tt

k

Na
dss

k

Na
dss

t

T

t

T


    

Then, 

.
2))(()(

)()(
)(

)(2

))(()(
)()( 2 t

k

Na
ds

sxsr

shs
s

sk

sxsr
sdss

t

T

t

T





 





















 



 

Thus, for Tt   we have 
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Integrate the inequality (4.3.20) and from the inequality (4.3.22), we obtain 
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Dividing the last inequality by t and taking the limit superior on both sides, we obtain 
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which contradicts the condition (23). 

Case 2: If ,0)( 1 TTtfortx 


then, from (4.3.20), we get 
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Integrate the inequality, dividing by t and taking the limit superior on both sides, we get 
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Since the equation (1.2) is superlinear, we have 
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We consider a 23 TT   such that 
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Integrate the last inequality from 3T  to t , we have 
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By condition (1) and the last inequality, we obtain       
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Hence the proof is completed. 
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 Taking 5)( t  such that
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   All conditions of Theorem 4.3.8 are satisfied and hence every solution of the given 

equation is oscillatory. The numerical solution of the given differential equation using 

the Runge Kutta method of fourth order (RK4) is as follows: 

 We have 
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1)(  x  and 0)( th  and finding the values of the functions  r, q and  f  where we 

consider ))(),(()())(),(,( txtxltftxtxtH


  at t=1,  n=980 and h=0.05. 
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Table 4.8: Numerical solution of ODE 4.8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Solution curve of ODE 4.8 
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Remark 4.3.7 

         Theorem 4.3.8 is the extension of the results of Greaf, et al. (1978) and Remili 

(2010) who have studied the equation (1.2) when ,1))((  tx 0)( th            

and .))(,())())(()()),((( txttxtxtrtxg 


 Also, Theorem 4.3.8 extends and 

improves results of Grace (1992) and Elabbasy, et al. (2005) who have                   

studied the equation (1.2) as ,1))((  tx ))(())())(()()),((( txgtxtxtrtxg 


 and 

0))(),(,( 


txtxtH . Our result can be applied on their equations, but their oscillation 

results cannot be applied on the given equation in Example 4.3.8 because their 

equations are particular cases of our equation (1.2). 

Theorem 4.3.9 

         Suppose, in addition to the conditions (8), (9) and (12) hold that  
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 where,     ,0,: 0tp , then every solution of superlinear equation (1.2) is 

oscillatory. 
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Proof: Without loss of generality, we may assume that there exists a solution x(t) of 

equation (1.2) such that   ,0)( Tontx  for some .00  tT   

By (4.3.17), conditions (8) and (25), we obtain 
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By condition (24) and the Bonnet’s Theorem, we see that for each Tt  , there exists 

 tTT ,2   such that 

   
.

)(

)(
)()(

)(

)())((
)()(

)(

)())((
)()(

)(

)( 22











tx

Tx

t

T

t

T
ug

duu
tqtrds

sxg

sxsx
tqtrds

sxg

sxsx
sqsr  

Since 0)()( tqtr  and the condition (9), we have 

                                
 

,)()(
)(

)())((
)()( 3 tqtrAds

sxg

sxsx
sqsr

t

T








                                (4.3.26) 

where .
)(

)(
inf

)(

)(

3

2






tx

Tx
ug

duu
A  

From inequalities (4.3.25) and (4.3.26), the inequality (4.3.24) becomes 

 
).()()()(

)(

)())(()(
321 tqtrAdsspThAA

txg

txtxtr
t

T








 

Integrate the last inequality from T to t, we have 

                   
 

.)()()()))(((
)(

)())(()(
321   













t

T

s

T

t

T

dsduupsqsrATtThAAds
sxg

sxsxsr

 

Since )(tr is positive and non-increasing for ,Tt   the condition (24) and by Bonnet’s 

Theorem, there exists  tTt ,
 
such that 

     
),(

)(
)(

)(

))((
)(

)(

)())(()(
4

)(

)(

TrA
ug

duu
Trds

sxg

sx
Trds

sxg

sxsxsr tt x

TxT

t

T















 



190 
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Dividing the last inequality by t and taking the limit superior on both sides, we obtain
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Example 4.3.9 

         Consider the following differential equation  
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       All conditions of Theorem 4.3.9 are satisfied and hence every solution of the given 

equation is oscillatory. The numerical solution of the given differential equation using 

the Runge Kutta method of fourth order (RK4) is as follows: 

 We have 




























)()(

)(
)(

1)(

))(cos()(
))(),(,()(

2

10

15
5

2

7

txtx

tx
tx

tx

txtx
txtxtftx

 

 

with initial conditions 1)1(,1)1( 


xx  on the chosen interval  50,1 , the function 

0)( th  and finding the values of the functions  r, q and  f  where we consider 

))(),(()())(),(,( txtxltftxtxtH


 at t=1,  n=980 and  h=0.05. 

 

Table 4.9: Numerical solution of ODE 4.9 

 

 

 

 

 

 

 

 

 

 

 

k tk x(tk) 

1 

81 
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232 

321 

405 
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521 

579 

627 
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781 

829 

921 

981 

1 

5 

10.15 

12.55 

17 

21.2 

24 

27 

29.9 

32.3 

37.45 

40 

42.4 

47 

50 

1 

-0.10579952 

0.10131997 

-0.0022419 

0.60071833 

1.20586650 

-1.08911367 

0.53416290 

-0.05451221 

0.15360619 

-0.05346404 

0.12804823 

-0.02894594 

0.40081430 

0.19478376 
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Figure 4.9: Solution curve of ODE 4.9 
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Remark 4.3.8: 

          Theorem 4.3.9 is the extension of the results of Bihari (1963), Kartsatos (1968), 

who have studied the equation (1.2) when ,1)( tr ,0)(,1))((  thtx  

),())(( txtxg  ))(),(())())(()()),((( txtxtxtxtrtxg


 and 0))(),(,( 


txtxtH  and 

results of Kamenev (1978) and Wintiner (1949) who have studied the equation (1.2) as 

,1)( tr ,1))((  tx  ,0)( th  ),())(( txtxg  ))(())())(()()),((( txgtxtxtrtxg 


 

and 0))(),(,( 


txtxtH . Our result can be applied on their equations, but their 

oscillation results cannot be applied on the given equation in Example 4.3.9 because 

their equations are particular cases of our equation (1.2).
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Theorem 4.3.10 

         Suppose the conditions (1), (4) and (8) hold. Moreover, assume that there exists a 

differentiable function     0)()(,,0,: 0   tht  for 0tt   and the continuous 

functions   0:),(:, tststDHh R, H has a continuous and non-positive partial 

derivative on D with respect to the second variable such that  
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where     ,0,: 0tp
 

and 0C  is a positive constant, then, every solution of 

superlinear equation (1.2) is oscillatory. 

Proof 

      Without loss of generality, we assume that there exists a solution x(t) of equation 

(1.2) such that   0,0)( 0  tTsomeforTontx . We define the function   as     
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From )(t , Eq. (1.2), condition (1) and since ,0))()(,1(  tt  then, there exists a 

positive constant 0C  such that 0))()(,1( Ctt   , we have 
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Integrating the last inequality multiplied by ),( stH  from T to t, we have 
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From the first integral in the R. H. S. for ,Tt  we have  
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Since H has a continuous and non-positive partial derivative on D with respect to the 

second variable and h  is non-increasing. The second integral in the R. H. S. is by 

using the Bonnet’s theorem twice as follows: for ,Tt  there exists  tTat ,  such that 
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and  tt aTb ,  such that 
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Since H and )(t are positive functions, by condition (4) and the equation (1.2) is 

superlinear, we have  
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Thus, from (4.3.28) and (4.3.29), the inequality (4.3.27) becomes 
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Since 0)()(),(1 ThTTtHA  and for ,Tt  we have  
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Dividing the last inequality by ),( TtH , taking the limit superior and by condition (28), 

we obtain  
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which contradicts to the condition (29). Hence, the proof is completed.

 

 

Theorem 4.3.11 

        Suppose, in addition to the conditions (1), (4), (8) and (28) hold that there exist 

continuous functions h and H are defined as in Theorem 4.3.10 and   
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is a positive constant and a 

differentiable function   ),0(,: 0 t  and 
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where  0),(max)( tt  , then, every solution of superlinear equation (1.2) is 

oscillatory. 

Proof 

      Without loss of generality, we may assume that there exists a solution )(tx of 

equation (1.2) such that    ,0)( Tontx  for some .00  tT  

 Dividing inequality (4.3.30) by ),( TtH and taking the limit superior as ,t  we 

obtain 
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Then, by condition (30) we can easily see that 
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Let us consider a sequence  
,...3,2,1nnT in   


n

n
Twitht lim,0  and such that  
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By inequality (4.3.33), there exists a constant N such that 

                                             ,...3,2,1,)()(  nNTVTU nn                                  (4.3.36) 

From inequality (4.3.35), we have 
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which, contradicts to the condition (32), hence the proof is completed. 
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       All conditions of Theorem 4.3.11 are satisfied, thus, the given equation is 

oscillatory. We also compute the numerical solution of the given differential equation 

using the Runge Kutta method of fourth order (RK4). We have 
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with initial conditions 5.0)1(,1)1( 


xx  on the chosen interval [1,50] , the functions 

1)(  x  and 0)( th  and finding the values of the functions r, q and  f  where we 

consider ),()(),,(


 xxltfxxtH  at t=1, n=980  and h=0.05. 

 

Table 4.10: Numerical solution of ODE 4.10 
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Figure 4.10: Solution curve of ODE 4.10 
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Remark 4.3.9 

        Theorem 4.3.10 and Theorem 4.3.11 extend and improve Results of Kamenev 

(1978), Results of Philos (1989) and Results of Yan (1986) who studied the equation 

(1.2) as )())())(()()),(((,0)(,1))((,1)( txtxtxtrtxgthtxtr 


 and 

.0))(),(,( 


txtxtH  Our result can be applied on their equation, but their oscillation 

results cannot be applied on the given equation in Example 4.3.10 because their 

equation is particular case of our equation (1.2).  

 

     We need the following lemma which will significantly simplify the proof of our next 

Theorem. 

Let  },:),{( 0tststD  we say that a function ),( RDCH   belongs to the class W if 

(1) 0),( ttH for 0tt   and 0),( stH  when ;st    
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The proof of this lemma is similar to that of Lu and Meng (2007) and hence will be 

omitted. 

Theorem 4.3.12 

         Suppose in addition to the condition (8) holds that  1)(  x  for x R and assume 

that there exist      ,, Tbac  and WH
 
such that   
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and the function  is defined as in Theorem 4.3.10. Then, every solution of equation 

(1.2) is oscillatory. 

Proof 

       Without loss of generality, we assume that there exists a solution )(tx  of equation 

(1.2) such that   .0,0)( 0  tTsomeforTontx
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This and (1.2) imply 
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From the last inequality and by lemma 4.3.1, we conclude that for any  bac ,  and 
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which contradicts (33). Thus, the equation (1.2) is oscillatory. 

Remark 4.3.10        

         Theorem 4.3.12 is the extension of results of Lu and Meng (2007) who have 

studied the equation (1.2) when ,1))((  tx ))(())())(()()),((( txgtxtxtrtxg 


 and 

.0))(),(,( 


txtxtH  Our result can be applied on their equation, but their oscillation 

results cannot be applied on our equation (1.2) because their equation is a particular 

case of our equation (1.2). 
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4.4 Conclusion 

 

          In this section, the problem of finding the sufficient conditions for oscillation of 

solutions of ordinary differential equations of second order with damping term of type 

(1.2) is considered. We present some oscillation results that contain the sufficient 

conditions for oscillation of solutions of the equation of type (1.2). These sufficient 

conditions have been derived by using the generalized Riccati technique. Our results 

extend and improve many previous results that have been obtained before, for example, 

such as the works of Fite (1918), Wintner (1949), Atkinson (1955), Bihari (1963), 

Kartsatos (1968), Greaf, et al. (1978), Grace (1992), Elabbasy et al. (2005), Lu & Meng 

(2007), Berkani (2008), and Remili (2010).  All these previous results have been studied 

for particular cases of the equation (1.2) whereas our sufficient conditions have been 

derived for the generalized equation (1.2). A number of theorems and illustrative 

examples for oscillation differential equation of type (1.2) are given. Further, a number 

of numerical examples are given to illustrate the theorems which are computed by using 

Runge Kutta of fourth order function in Matlab version 2009. The present results are 

compared with existing results to explain the motivation of proposed research study.  

 

 

 

 

 

 



209 
 

CHAPTER FIVE 

 OSCILLATION OF THIRD ORDER NONLINEAR 

ORDINARY DIFFERENTIAL EQUATIONS 

 

5.1 Introduction 

       In this chapter, we are concerned with the problem of oscillation of third order non-

linear ordinary differential equation of the form 

)3.1()),(),(),(,())(()())(()( 1 txtxtxtHtxgtqtxftr













  

  
where q  and r  are continuous functions on the interval   )(,0,, 00 trtt  is a positive 

function, 
1g  is continuously differentiable function on the real line R except possibly at 0 

with 0)(1 yyg  and 0)(1  kyg  for all ,0y f  is a continuous function on R  and 

 ,: 0tH ×R×R×RR is a continuous function such that )()(),,,( 1 tpygzyxtH   for 

all y 0  and 0tt  .  

 

5.2 Third Order Nonlinear ODE Of Type (1.3) 

     

         In this chapter, we present the oscillation results of our study of finding the 

sufficient conditions for oscillation of solutions of ordinary differential equations of 

third order of type (1.3). The present oscillation results have among other finding 

extended and improved many previous oscillation results, for examples, such as the 
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works of Hanan (1961), Lazer (1966), Jones (1973), Mehri (1976), Parhi & Das (1990), 

Parhi & Das (1993), Adamets & Lomtatidze (2001) and Remili (2007).  We have 

established some new sufficient conditions which guarantee that our differential 

equations are oscillatory. A number of theorems and an illustrative example for 

oscillation differential equation of type (1.3) are shown. Further, a numerical example is 

given to illustrate the theorems. This numerical example is computed by using Runge 

Kutta of fourth order function in Matlab version 2009. The present results are compared 

with existing results to explain the motivation of proposed research study. 

 

5.3 Oscillation Theorems 

 

Theorem 5.2.1 

      Suppose that 
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dsduupuq
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where     ,0,: 0tp . Then, every solution of equation (1.3) is oscillatory. 

Proof 

    Without loss of generality, we assume that there exists a solution 0)( tx of 

equation (1.3) such that 0)( tx and 0)( 


tx on  ,T for some .00  tT  Define    
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This and (1.3) and condition (2), we have  
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Integrate the last inequality from T to t and also by condition (2), we have 
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Integrate (5.3.1) divided by )(tr  from T to t, we obtain 
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By condition (1), we obtain 
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Thus, the inequality (5.3.2) becomes 
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By condition (3) and taking the limit superior on both sides, we have 
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as ,t which contradicts to the condition (4).  Hence, the proof is completed. 

 

Theorem 5.3.2 

         Suppose, in addition to the conditions (1) and (2) hold that there exists the 

differentiable function     ,0,: 0t and 0


  such that  
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Then, every solution of equation (1.3) is oscillatory. 

 

Proof 

       Without loss of generality, we assume that there exists a solution 0)( tx of 

equation (1.3) such that 0)( tx and 0)( 


tx on  ,T for some .00  tT  Define    
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This, (1.3) and the condition (2), we have  
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Integrate the last inequality, we get 
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From the second integral in the R. H. S., we have 
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From (5.3.4) in (5.3.3), we obtain 

  .
)(

)()(
)()()()(

))((

))(()()(
2

3

1

























t

T

ds
s

srs
kspsqsT

txg

txftrt







 

 



214 
 

By condition (2) and integrating the last inequality divided by )()( trt , we obtain 
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By using the condition (1) and as in Theorem 5.3.1 the first integral in the L. H. S. is 

bounded and the condition (5), then, we get 

 

  ,)(
)(

)()(
)()()(

)()(

1
112

2

3 





















AkMTdsdu
u

uru
kupuqu

srs

s

T

t

T








 

 

as ,t which contradicts to the condition (6).  Hence, the proof is completed. 

 

Theorem 5.3.3 

 

      Suppose, in addition to the conditions (1) and (2) hold that there exists the 

differentiable function     ,0,: 0t , 0)(,0  
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then, every solution of equation (1.3) is oscillatory. 
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Proof: Without loss of generality, we assume that there exists a solution 0)( tx of 

equation (1.3) such that 0)( tx and 0)( 


tx on  ,T for some .00  tT  Define    
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This and the equation (1.3), we have 
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By the condition (2), we have 
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Integrating (5.3.5) from T to t, we get 
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 is a decreasing function, then by the Bonnet’s Theorem there exists a 

 tTat ,  such that the first integral in the R. H. S. becomes 
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By condition (1), we have 
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From (5.3.7) in (5.3.6), we get 
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We have two cases for the integral 

.)(
)()(

1 2 dss
srs

t

T

 


 

Case 1:  

dss
srs

T




)(
)()(

1 2


 is finite. 

Thus, there exists a positive constant B such that 

.)(
)()(

1 2 TtforBdss
srs

t

T

 


 

 

 



217 
 

Thus, (5.3.8) becomes 
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From (5.3.10) in (5.3.9), we obtain 
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Dividing the last inequality by t and taking the limit superior on both sides, we have 
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 by condition ,))((1 ktxg 


 

we get
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Integrating (5.3.5), from (5.3.7) and condition (8), it follows that here exists a constant 
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By (5.3.12), we get 
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From the last inequality and condition (2), we obtain 
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Example 5.3.3 

          

      Consider the following differential equation 
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        All conditions of Theorem 5.3.3 are satisfied, thus, the given equation is 

oscillatory. We also compute the numerical solution of the given differential equation 

using Runge Kutta method of fourth order. We have 
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with initial conditions 0)1(,1)1(,5.0)1( 


xxx  on the chosen interval [1,50] and 

finding the values of the functions r, q and  f  where we consider 

).,,()(),,,(


 xxxltgxxxtH  

 

Table 5.1: Numerical solution of ODE 5.1 
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1 

80 

181 

221 

321 

379 

461 

521 

615 

721 

800 

868 

929 

981 

1 

4.954 

10.009 

12.011 

17.016 

20.92 

24.023 

27.026 

31.731 

37.036 

40.99 

44.444 

47.447 

50 

0.5 

-0.01467758 

0.76997118 

-0.77145176 

1.56655689 

-0.02744315 

-0.93017943 

1.21756203 

-0.02268732 

0.41913726 

1.92358434 

-0.00644259 

-1.29549185 

-0.45092350 



222 
 

 

Figure 5.1: Solution curve of ODE 5.1
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Remark 5.3.1 

        Our theorems extend and improve the obtained results by Hanan (1961) and 

Adamets and Lomtatidze (2001) for the equation (2.14), results of Lazer [1966] and 

Jones (1973) for the equation (2.15) and result of Kiguradze (1992) for the equation 

(2.18), as mentioned in Chapter Two. Our results can be applied on their equations but, 

their oscillation results cannot be applied on the equation (1.3) because their equations 

are special cases of the equation (1.3). 
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5.4 Conclusion 

          In this section, we present the oscillation results of our study of finding the 

sufficient conditions for oscillation of solutions of ordinary differential equations of 

third order of type (1.3). Some oscillation have been introduced which contain the 

sufficient conditions for oscillation of solutions of the equation of type (1.3). These 

sufficient conditions have been established by using the generalized Riccati technique. 

Our results extend and improve many previous results that have been obtained before, 

for example, such as the works of Hanan (1961), Lazer (1966), Jones (1973), Mehri 

(1976), Parhi & Das (1990), Parhi & Das (1993), Adamets & Lomtatidze (2001) and 

Remili (2007). All these previous results have been studied for particular cases of the 

equation (1.3) whereas our sufficient conditions have been derived for the generalized 

equation (1.3). A number of theorems and an illustrative example for oscillation 

differential equation of type (1.3) are given. Further, the numerical example is given to 

illustrate the theorem which is computed by using Runge Kutta of fourth order function 

in Matlab version 2009. The present results are compared with existing results to 

explain the motivation of proposed research study.       
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CHAPTER SIX 

 

CONCLUSION AND FUTURE WORK 

 

6.1 Conclusion         

            

           Over the past three decades, there have been many studies which have dealt with 

the oscillatory properties of nonlinear ordinary differential equations. The problem of 

finding oscillation criteria for second order nonlinear differential equations has received 

a great deal of attention in the 20 years from the publication of the classic paper by 

Atkinson (1955). The study of the oscillation of second order nonlinear ordinary 

differential equations with alternating coefficients is of special interest because of the 

fact that many physical systems are modeled by second order nonlinear ordinary 

differential equations. 

 

          In this thesis, we are concerned with oscillation behavior of solutions of non-

linear ordinary differential equations of second order and third order with variable 

coefficients. The main results are presented in chapter three, chapter four and five. 

Oscillation of second order nonlinear differential equation with alternating coefficients 

of type (1.1) has been investigated in chapter three. The present oscillation results 

contain the sufficient conditions for oscillation of solutions of the equation of type (1.1) 

which have been derived by using the generalized Riccati technique. Our results extend 

and improve many previous results that have been obtained before, for example, such as 

the works of Fite (1918), Wintner (1949), Philos (1989) for the equation (2.1), Atkinson 

(1955) for the equation (2.4), Bihari (1963), Kartsatos (1968) for equation (2.5), 
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Elabbasy (1996) for the equation (2.6), and Elabbasy et al. (2005) for the equation (2.9). 

All these previous results have been studied for particular cases of the equation (1.1) 

whereas our sufficient conditions have been derived for the generalized equation (1.1).  

A number of oscillation theorems differential equation of type (1.1) are given. Further, a 

number of numerical examples are given to illustrate the theorems which are computed 

by using Runge Kutta of fourth order function in Matlab version 2009. The present 

results are compared with existing results to explain the motivation of our oscillation 

results for equation (1.1).  

 

          In chapter four, the problem of finding the sufficient conditions for oscillation of 

solutions of ordinary differential equations of second order with damping term of type 

(1.2) is considered. The present oscillation results contain the sufficient conditions for 

oscillation of solutions of the equation of type (1.2). These sufficient conditions have 

been derived by using the generalized Riccati technique. Our results extend and 

improve many previous results that have been obtained before, for example, such as the 

works of Fite (1918), Wintner (1949) for the equation (2.1), Atkinson (1955) for the 

equation (2.4), Bihari (1963), Kartsatos (1968) for equation (2.5), Greaf, et al. (1978), 

Grace (1992), Elabbasy et al. (2005), Lu & Meng (2007), Berkani (2008), and Remili 

(2010).  All these previous results have been studied for particular cases of the equation 

(1.2) (as mentioned in chapter two) whereas our sufficient conditions have been derived 

for the generalized equation (1.2). A number of theorems and illustrative examples for 

oscillation differential equation of type (1.2) are given. Further, a number of numerical 

examples are given to illustrate the theorems which are computed by using Runge Kutta 

of fourth order function in Matlab version 2009. The present results are compared with 

existing results to explain the motivation of our oscillation results for the equation (1.2). 
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            Therefore, we present the oscillation results of our study of finding the sufficient 

conditions for oscillation of solutions of ordinary differential equations of third order of 

type (1.3) in chapter five. Some oscillation results have been introduced which contain 

the sufficient conditions for oscillation of solutions of the equation of type (1.3). These 

sufficient conditions have been established by using the generalized Riccati technique. 

The present results extend and improve many previous results that have been obtained 

before, for example, such as the works of Hanan (1961), Lazer (1966), Jones (1973), 

Mehri (1976), Parhi & Das (1990), Parhi & Das (1993), Adamets & Lomtatidze (2001) 

and Remili (2007). All these previous results have been studied for particular cases of 

the equation (1.3) (as mentioned in chapter two) whereas our sufficient conditions have 

been derived for the generalized equation (1.3). A number of theorems and an 

illustrative example for oscillation differential equation of type (1.3) are given. Further, 

the numerical example is given to illustrate the theorem which is computed by using 

Runge Kutta of fourth order function in Matlab version 2009. The present results are 

compared with existing results to explain the motivation of proposed research study.  

We compare our results with other previous oscillation results in the literature to show 

that our oscillation results are more general where our sufficient conditions are derived 

to more general equations. These results can be applied to many particular cases of our 

general equations but many previous oscillation results cannot applied to  our equations 

since all terms of our equations are not included  in their studies.  This is the main 

advantage of our research work.   
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6.2 Future Work 

 

         Many phenomena in different branches of sciences are interpreted in terms of 

second order differential equations and their solutions. In future, this research work will 

be continued to the study of oscillation behavior of the higher nonlinear ordinary 

differential equations and also partial differential equations. 
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