CHAPTER ONE

INTRODUCTION

1.1 Introduction

The differential equations (DE) appear naturally in many areas of science and
humanities. Ordinary differential equations (ODE) have found a wide range of
application in biological, physical, social and engineering systems which are dynamic in
character. They can be used effectively to analyze the evolutionary trend of such systems,
they also aid in the formulation of these systems and the qualitative examination of their
stability and adaptability to external stimuli. Many phenomena in different branches of
sciences are interpreted in terms of second order DE and their solutions. For example, the
so—called Emden-Fowler differential equation arises in the study of gas dynamics and

fluid mechanics. This equation appears also in the study of chemically reacting systems.

Since the classic work of Atkinson (1955), there has much interest in the problem of
determining oscillation criteria for second order non-linear DE. The study of the
oscillation of second—order nonlinear ODE’s with alternating coefficients is of special
interest because of the fact that many physical systems are modeled by second order
nonlinear ODE. Some of the most important and useful tests have involved the average
behavior of the integral of the alternating coefficient. These tests have been motivated by
the averaging criterion of Kameneve (1978) and its generalizations. The use of averaging
functions in the study of oscillation dates back to the work of Wintner (1949) and

Hartman (1952).

Although differential equations of second-order have been studied extensively, the

study of qualitative behavior of third-order differential equations has received
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considerably less attention in the literature, however certain results for third-order
differential equations have been known for a long time and their applications in
mathematical modeling in biology and physics. In 1961 Hanan (1961) studied the
oscillation and non-oscillation of two different types of third order differential equations
and gave definitions of two types of the solutions. The paper was the starting point for

many investigations to the asymptotic behavior of third-order equations.

The purpose of this thesis is to study the problem of oscillation of second order non-

linear ordinary differential equations of the form

(r(t)ia)] +q(t)d>(g(x(t»,r(t)i<t)j T0) w1

and oscillation of second non-linear equations with damping term of the form
[rOPOE)0 | +hORO a0 SO0 ~H[tx0x0 | @)

where r,h andqare continuous functions on the interval [to,oo), t, >0, r(t) is a positive

function and ¥ eC(R,R+), g is continuously differentiable function on the real line R
except possibly at 0 with  xg(x) >0 and g'(x) >k >0 forall x=0, @ is a continuous
function on RxR with ud(u,v) >0 for all u=0 and ®(Au, Av) = Ad(u,v) for any

Ae(w) and H is a continuous function on [t,,0)xRxR  with

H (&, x(0), x(0)/g () < p(t) forall X#0and t>t,.

The thesis also deals study of problem of oscillation of third order non-linear

equations of the form



[r(t) f ('x'(t))j 09, (x(V) = H(t,x(t),%(t)&(t)), )

where ¢ and r are defined as above, g, is continuously differentiable function on the
real line R except possibly at 0 with yg,(y) >0 and g;(y)>k >0 forally=0, f isa
continuous function on R and H,: [to,oo)xRxRxR_>R Is a continuous function such

that H,(t,x,y,2)/9,(y) < p(t) forall y=0 and t>t,.

We list some basic definitions and Elementary results which will be needed in the

next chapters.
1.2 The Basic Definitions

Definition 1.2.1

A point t=7 >0 is called a zero of the solution X(t) of the differential equation

ifx(r) =0.
Definition 1.2.2

A solution x(t) of the differential equation is said to be oscillatory if it has arbitrary

large zeros. Otherwise it is said to be non-oscillatory.
Definition 1.2.3

Differential equation is called oscillatory if all its solutions are oscillatory. Otherwise

it is called non oscillatory.
Definition 1.2.4

The differential equations (1.1) and (1.2) are called



(1) Sub-linear if the function g satisfies that

0<jd—“<oo and 0< [0 <o foralle>0

0 g(U) 0 g(U)

(2) Super-linear if the function g satisfies that

0<jd—“)<oo and 0< [0 <o forall &> 0
u

2 9( °g(u)

(3) A mixed type if the function g satisfies that

0< d—u<oo and O<]‘
Og(u) og(u)

< o,

1.3 Elementary Results

The following theorems play an important role in the theory of oscillation of the

solutions of the linear differential equations:
1.3.1 Sturm’s Comparison Theorem (Bartle (1970))

Let q,(t),q,(t)and r(t)be continuous functions on (a,b)and r(t) >0 on (a,b).

Assume that x, (t)and x, (t) are real solutions of
(r(t) >.<(t)).+q1(t) x(t) = 0 (L.4)

and



(r(t)i(t)) 10, (t) X(®) = 0 (L5)

respectively on (a,b). Further, let q,(t) >q,(t) for te(a,b). Then, between any two
consecutive zeros t,,t, of x,(t) in (a,b), there exists at least one of x,(t) unless
g,(t) =q,(t) on [t,,t,]. Moreover, in this case the conclusion is still true if the solution

X, (t) is linearly independent of x, (t).
1.3.2 Sturm’s Separation Theorem (Bartle (1970))

If x,(t)and x, (t) are linearly independent solutions of the equation

(r(t) ).<(t)j.+q(t) x(t) = 0. (1.6)

Then, between any two consecutive zeros of x,(t), there is precisely one zero of x, (t).
Therefore the solutions of the second order linear differential equations are either all

oscillatory or all non-oscillatory. The story of non-linear equations is not the same. The

nonlinear differential equations may have both oscillatory solutions.

The importance of classification of the second order differential equations into
oscillatory categories is due to the following well-known fact: A non — trivial solution of

the second order ordinary differential equation must change its sign whenever it vanishes,
since X(t) and x(t) cannot vanish simultaneously (in this case the zeros of x(t) are said to

be isolated).

The following theorem is quite useful element of our study in the following

chapters:



1.3.3 The Bonnet's Theorem (Ross (1984))

Suppose that h is a continuous function on [a,b], o is a non- negative function and

an increasing function on the interval [a,b]. Then there exists a point ¢ in [a,b] such that
b b
j o(s)h(s) ds = p(b) j h(s)ds.

If p isadecreasing function on [a,b], then there exists a point ¢ in [a,b] such that

j p(s)h(s) ds = p(a) j h(s) ds

This theorem is a part of the second mean value theorem of integrals (Ross (1984)).

1.4 Riccati Technique

In the study of oscillation theory of differential equations, there are two techniques
which are used to reduce the higher-order equations to the first-order Riccati equation or
inequality. The first one is the Riccati transformation technique. The second one is called
the generalized Riccati technique. This technique can introduce some new oscillation
criteria and can be applied to different equations which cannot be covered by the results

established by the Riccati technique.
Riccati Transformation Technique:

(1) If x(t) is a non-vanishing solution of equation (1.6) on the interval (a,b), then

o(t) = r(t) x(©)/x(t) is a solution of



o) +qt) +r D) =0 forte(ab) 1.7)

(2) If w(t) is a solution of equation (1.7) on (a,b), then

b
J.w(s)r'l(s)ds}

X(t) = eL

is a non-vanishing solution of equation (1.6) on (a,b).

1.5 Applications Of Oscillatory Differential Equations

Ordinary differential equations have a variety of applications in science,
mechanical engineering, aerospace engineering and physical systems, we explore three
of them: Undamped simple pendulum, damped simple pendulum and a half cylinder

rolling on a horizontal plane.

Example 1.1

Consider a pendulum with mass m at the end of a rigid rod of length L attached to
say a fixed frictionless pivot which allows the pendulum to move freely under gravity in
the vertical plane as illustrated in Figure 1.1. The angular equation of motion of the

pendulum is given as a nonlinear differential equation

2

9+ Ksing =0, 2.8)

t2

where K = g/L.



Figure 1.1: Simple pendulum
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The numerical solutions curves of the equation (1.8) when m=100, g =9.81 and L=1 and

for different initial angles /3 and /10 with zero initial velocity are

Figure 1.2: Numerical solutions of d°8/dt® + Ksin@=0
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Example 1.2
As in example 1.1, we consider the motion of a simple pendulum that subject to a
frictional force or damping force. We assume that the damping coefficient «,so the

nonlinear differential equation represents this motion as follows:

+a—t+ Ksing =0, 2.9

The numerical solution curve of equation (1.9) when «=0.1is

Figure 1.3: Numerical solution of d?@/dt®* + ¢d@/dt + Ksin@=0
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Example 1.3
The general governing differential equation of motion of the half cylinder rolling

on a horizontal plane is

2

(3”;“ —szrsin(xa»J'X'(t)-mErcos(x(t»% (6 = /B cos(x(V),




The numerical solution curve of this equation when m =4, E = 4%ﬂ andr=0.11is

Figure 1.4: Solution curve of half cylinder rolling on a horizontal plane.

Beta

Time(t)

10



1.6 Thesis Organization

Besides the introductory chapter (chapter 1) about the oscillation of second and

third order non-linear ordinary differential equations, the thesis is organized as follows:

Chapter 2: This chapter will contain the literature review of the main results of the
oscillation of second and third order ordinary differential equations which are given in

the literature.

Chapter 3: This chapter is devoted to study of the oscillation of the second order
equation (1.1) and contains some oscillation criteria for oscillation equation (1.1). The
oscillation results obtained will be illustrated by some examples and their numerical

solutions that are found by using Runge Kutta method of fourth order.

Chapter 4: This chapter is devoted to study of the oscillation of the second order
equation with damping term (1.2). Some sufficient conditions for oscillation equation
(1.2) will be given in this chapter. The oscillation results obtained will be illustrated by
some examples and their numerical solutions that are found by using Runge Kutta

method of fourth order.

Chapter 5: this chapter is concerned with oscillation of third order ordinary
differential equation (1.3) and includes oscillation results for oscillation of equation
(1.3) and an illustrative example with its numerical solution obtained by using Runge

Kutta method of fourth order for these results presented.

Chapter 6: This chapter contains the conclusion with suggestions for future work

and references.
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CHAPTER TWO

LITERATURE REVIEW

In this Chapter, we will review the literature within the context of our study of
oscillations of ODEs of the 2™ Order and the 3™ Order. We will see that most of the
previous oscillation results depend on the behavior of the integral of the coefficients and
a reduction of order of the ODEs and using the Riccati technique to establish some
sufficient conditions. Our results improve and extend almost of these existing results in

the literature.

2.1 Oscillations Of Second Order Differential Equations

Oscillatory and non-oscillatory behavior of solutions for various classes of second
order has been studied extensively in literature as Atkinson (1955), Bihari (1963), Bhatia
(1966), Grace (1992), Ayanlar & Tiryaki (2000), Elabbasy et al. (2005), Lee & Yeh
(2007), Berkani (2008), Remili (2010). Various researchers have studied particular cases

of the equations (1.1) and (1.2). These particular cases can be classified as follows:

The homogeneous linear equations

X()+q(O)X(t) = 0. 2.1)

(r(t) ;((t)). +q(t) x(t) = 0, (2.2)

12



The homogeneous non-linear equations

X(t) + g@O)[x()] 7son x(t)=0, 7 > 0. (2.3)
X(t) +a(®)a(x(t)) =O0. (2.4)
X (1) + q(t) DX(), (1)) = O. (2.5)
(r(t) ﬂt)) + 400 g(x(®) =0. (26)
(r(t)?(x(t))%(t)j + q(t) g(x(1)=0. 27)

The homogeneous non-linear equations with damping term

X(t)+h(t) x(t) + 1) g (x(t)) = 0. (2.8)
(r(t) i(t)j +h(®) X() + 4O (X)) = 0. (2.9)
(r(t)‘P(x(t));((t)j +h(t) x(t) + q(t) g(x(t))=0. (2.10)

The non-homogeneous non-linear equations

(r(t) ;((t)j. LD(t, X(1) = H(t x(), X(1)). (2.12)

(r(t)\?(x(t» i(t)j + 4 g(x(®) = H. (2.12)

The non-homogeneous non-linear equations with damping term
(r(t)?(x(t))i(t)) +h®) X + 4OI(X() = H(), (2.13)

where, the functions r, ¥, h,g,q, ® and H are defined as in the equation (1.2).
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The investigation of the oscillation of (1.1) and (1.2) may be done by following many
criteria. Many of these criteria depend on determining integral tests involving the

function g to obtain oscillation criteria.

For convenience of writing, we adopt the following notations: j is written, it is to be

© t
assumed that J: lim I and that this limit exists in the extended real numbers.

t—>w

2.1.1 Oscillation Of Homogenous Linear Equations

2.1.1.1 Oscillation Of Equations Of Type (2.1)

This section is devoted to the oscillation criteria for the second order linear
differential equation of the form (2.1) . The oscillation of equation (2.1) has brought
the attention of many authors as Wintner (1949), Kamenev (1978), Philos (1983) and
Yan (1986), since the early paper by Fite (1918). Among the numerous papers

dealing with this subject we refer in particular to the following :

Theorem 2.1.1 Fite (1918)

If q(t) >Oforallt>t, and

Jats) ds= o,

t

then, every solution of the equation (2.1) is oscillatory. The following theorem

extended the result of Fite (1918) to an equation in which q is of arbitrary sign.

14



Theorem 2.1.2 Wintner (1949)

Suppose that

!ilpo% ﬁq(u) duds = oo,

to to
Then, every solution of the equation (2.1) is oscillatory.
Example 2.1.1

Consider the following differential equation

X(t) + (2—-3cost)x(t) =0, t> 0.

Theorem 2.1.2 ensures that the given equation is oscillatory, however Theorem 2.1.1

fails.

Hartman (1952) also studied the equation (2.1) and improved Wintner’s result (1949) by

proving the condition given in Theorem 2.1.3.
Theorem 2.1.3 Hartman (1952)

Suppose that

T : 17
—oo < liminf = ”q(u) duds< IlrtrstupE ”q(u) du ds<oo,

t—oo t t t t o

then, equation (2.1) is oscillatory. In the following, Kamenev (1978) has proved a
new integral criterion for the oscillation of the differential equation (2.1) based on the
use of the n™ primitive of the coefficient q(t) which has Wintner's result (1949) as

a particular case.

15



Theorem 2.1.4 Kamenev (1978)

The equation (2.1) is oscillatory if

t
limsup tni_lj‘(t —s)"q(s) ds = oo,
)

t—o0

for some integer n > 3. Philos (1983) improved the above Kamenev’s result (1978).

Theorem 2.1.5 Philos (1983)

Let p be a positive continuously differentiable function on the interval

[t,,0) such that

(i) Iirp s;uptnilj' (t ;ﬁzg_s{m -1 p(s)—(t—5s) /.3 (s)} ds < cofor some integer n > 3,

1

tn—l

(i) limsup (t—s)""p(s) q(s) ds = .

t—o0

& e

Then, every solution of the equation (2.1) is oscillatory.

Remark 2.1.1: By setting po(t) =1 in the above Theorem 2.1.5, Theorem 2.1.5 leads to

Kamenev’s Result (1978) (Theorem 2.1.4).

Yan (1986) presented another new oscillation theorem for equation (2.1).
Theorem 2.1.6 Yan (1986)

Suppose that there exists an integer n >3 with

t—o

t
limsup tnilj'(t —s)"q(s) ds <co.
to

16



Let Q(t) be a continuous function on [t,,c0) with

t
Iiminfﬂi_lj(t—s)"‘l q(s) ds> Q(T) for every T > t,.
to

t—w

Then equation (2.1) is oscillatory if

TQ+(S) ds = oo,

to
where Q_ (t)=max {Q(t),0}, t >t,.
Also, Philos (1989) extended the Kamenev’s result (1978) as follows

Theorem 2.1.7 Philos (1989)

Let H and h be two continuous functions h,H :D = {(t,s):t >s>t,}—>R and H
has a continuous and non-positive partial derivative on D with respect to the second

variable such that H(t,t) =0 fort > t,, H(t,s) > 0 for t >s>t, and

- %H(t,s) — h(t,s)JH(s) for all (t,s) e D.

Then, equation (2.1) is oscillatory if

t

I[H(t,s)q(s) —%hz(t,s)j ds— oo,

to

limsup
t—o0 H (t,to)

17



Also, Philos (1989) extended and improved Yan’s result (1986) in the following theorem:

Theorem 2.1.8 Philos (1989)

Let H and h be as in Theorem 2.1.7, moreover, suppose that

0 <inf | fiminf 2 &S | < o
52t t—>o0 H (t, tO)

and

. 1
limsup

t
jhz(t,s) ds< oo.
t—oo H(t,to) t

Assume that Q(t) as in Theorem 2.1.6 with

[Q2(s)ds = o.
to

Then, the equation (2.1) is oscillatory if

) 1 1
limsu H(t,s)g(s)—=h?(t,s ds >Q for every T > t,.
prH(t,T)j( (t,s)a(s)— h*( )j (T) yT >t

2.1.1.2 Oscillation Of Equation Of Type (2.2)

This section is devoted to the study of the oscillation of the equation of type (2.2). It
is interesting to discuss conditions for the alternating coefficient q(t) which are sufficient
for all solutions of equation (2.2) to be oscillated. An interesting case is that of finding
oscillations criteria of equation (2.2) which involve the average behavior of the integral

of g. The problem has received the attention of many authors in recent years as Moore
18



(1955) and Popa (1981). Among numerous papers dealing with such averaging
techniques of the oscillation of equations of type (2.2), we mention the following:

Moore (1955) gave the following oscillation criteria for equations of type (2.2).

Theorem 2.1.9 Moore (1955)

Suppose that the function o satisfies p e Cz[to,oo) , p(t) >0

Tods -
J r(s)p®(s)

to

and

Tp(s)([r(s),}(s))' : p(s)q(s)jds —

Then, equation (2.2) is oscillatory.

In fact, Popa (1981) extended Kamenev’s oscillation criterion (1978) to apply on

equation of the form (2.2). He proved the following two theorems:
Theorem 2.1.10 Popa (1981)

If r(t) is bounded above and

t
lim sup L j(t—s)"‘lq(s)dSZw,

n-1
t—o0 t t

0

where n is an integer and n > 2, then, the equation (2.2) is oscillatory.

19



Theorem 2.1.11 Popa (1981)

If @ is bounded and
r(t)

lim sup il .t[(t —s)"* %ds =0,

t—ow t

where n is an integer and n > 2, then the equation (2.2) is oscillatory.

2.1.2 Oscillation Of Homogenous Nonlinear Equations

2.1.2.1 Oscillation Of Equations Of Types (2.3) and (2.4)

This section is devoted to the oscillation criteria for the second order nonlinear
differential equations of the form (2.3) and (2.4). The oscillation of equation (2.4) has
brought the attention of many authors since the earliest work by Atkinson (1955). The
equation (2.3) is also known Emden-Fowler equation (EF). Clearly equation (EF) is

sub-linear if ¥ <1 and super linear if y >1.

The oscillation problem for second order nonlinear differential equation is of
particular interest. Many physical systems are modeled by nonlinear ordinary
differential equations. For example, equation (EF) arises in the study of gas dynamics
and fluid mechanics, nuclear physics and chemically reacting systems. The study of
Emden—Fowler equation originates from earlier theorems concerning gaseous dynamics
in astrophysics around the turn of the century. For more details for the equation we refer
to the paper by Wong (1973) for a detailed account of second order nonlinear oscillation

and its physical motivation. There has recently been an increase in studying the
20



oscillation for equations (2.4) and (EF). We list some of more important oscillation

criteria as follows.

The following theorem gives the necessary and sufficient conditions for oscillation

of equation (2.4) with g(x) = x*"*, n=123,...
Theorem 2.1.12 Atkinson (1955)

Suppose that q(t) >0 on [t,,0) and

g(x)=x"" ,n=12,...,

The equation (2.4) is oscillatory if

qu(s)ds =0,

t

Waltman (1965) extended Wintner's result (1949) for the equation (2.4) without any

restriction on the sign of q(t).

Theorem 2.1.13 Waltman (1965)

Suppose that
g(x) =x*", n=1.2,...

and

Tq(s)ds = o0,

21



Then every solution of equation (2.4) is oscillatory. Kiguradze (1967) established the

following theorem for the Emden—Fowler equation (2.3).
Theorem 2.1.14 Kiguradze (1967)

The equation (2.3) is oscillatory for y >1 if
J P dt = oo
for a continuous, positive and concave function p(t) . Wong (1973) extended Wintner's
oscillation criteria (1949) to apply on the equation (2.3).

Theorem 2.1.15 Wong (1973)

Let » >1.Equation (2.3) is oscillatory if

t
liminf [q(s)ds =—2>—o, 2>0
to

t—owo

and

t

lim sup}j(t —s)q(s)ds = .
t—o0 t t

Onose (1975) proved the theorem of Wong (1973) (Theorem 2.1.15) for the sublinear

Emden—Fowler differential equation and also study the extension of Wong's result

(1973) to the more general super-linear differential equation of the form equation (2.4)

as in the following three theorems:

22



Theorem 2.1.16 Onose (1975)

Suppose that

t—o0

t
(1) liminf [q(s)ds > -1 >0, 1 >0,
to

(2) lim suqu(s) ds = oo,

t—oo

(3) lim sup}j‘jq(u) duds = co.

t—ow t t G

Then, the equation (2.3) is oscillatory for 0 <y <1 .

Theorem 2.1.17 Onose (1975)

Assume that

(1) liminf jq(s) ds >0,

t—o0

(2) lim supj.q(s)ds =0,

t—oo

Then, the equation (2.4) is oscillatory.
Theorem 2.1.18 Onose (1975)

Suppose that

t—oo

t
(1) liminf J.q(s) ds >—-1>-0w, 1>0,
to

23



(2) lim supjj'q(u)duds = o0,

t—o0

Then, the equation (2.4) is oscillatory.

Yeh (1982) established new integral criteria for the equation (2.4) which has Wintner's

result (1949) as a particular case.
Theorem 2.1.29 Yeh (1982)

Suppose that

t
lim suptnil j(t —s)"*q(s)ds = oo,

t—o0 t

for some integer n > 2. Then, the equation (2.4) is oscillatory.

Philos (1984) gave a new oscillation criteria for the differential equation (2-3) if

O<y<l.
Theorem 2.1.20 Philos (1984)

Let o be a positive continuous differentiable function on the interval [to,oo) such

that

2

() p) +(t—7)p <0 forallt>t,.

Then, the equation (2.3) is oscillatory if

t
lim suptnil.[(t —s)"* p(s)q(s) ds = oo for some integern>2.

t—o0 t

24



Philos (1985) improved Onose’s result (1975) for equation (2.4).

Theorem 2.1.21 Philos (1985)

Suppose that o be a positive twice continuously differentiable function on [to,oo)

such that
p()=0 and p)<0 on [t o),
t
lim [ p(s)a(s)ds > —,
t
and

t
lim sup% [t=s)p(s)a(s)ds = co.
t—owo t

Then, the equation (2.4) is oscillatory.

Wong and Yeh (1992) improved Wong's result (1973) for equation (2.3) to the more

general equation (2.4).
Theorem 2.1.22 Wong and Yeh (1992)

Suppose that

t
lim inf jq(s) ds>0

t—oo T

for large T >t, and there exists a positive concave function p on [to,oo) such that

25



t

lim suptiﬁj'(t —s)’ p(s)q(s)ds = oo,

t—o0 t

for some S > 0.Then the super-linear differential equation (2.4) is oscillatory.

Theorem 2.1.23 Philos and Purnaras (1992)

Suppose that

t
(1) liminf tni_lj'(t —s)"*q(s) ds > —o for some integer n>1,

t—o0 t

(2) limsup }_t[

t—o0 t

Uq(u) du} ds = oo.

to\lo

Then, the super-linear differential equation (2.4) is oscillatory.

2.1.2.2 Oscillation Of Equations Of Type (2.5)

This section is devoted to the oscillation criteria for half-linear second order
differential equations of the form (2.5). The oscillation of the equation has brought the

attention of some authors since the early paper by Bihari (1963).

Theorem 2.1.24 Bihari (1963)

If q(t)>0 forallt>t, and

Jats)ds =,

26



then, every solution of the equation (2.5) is oscillatory. The following theorem extended

the result of Bihari (1963) to an equation in which q is of arbitrary sign.
Theorem 2.1.25 Kartsatos (1968)

Suppose that

(i) There exists a constant B™ > 0 such that

G(m) = 05 - B forall MeR,
5 @)

(i) Tq(s)ds = oo,

Then, every solution of equation (2.5) is oscillatory.

2.1.2.3 Oscillation Of Equations Of Type (2.6)

This section is devoted to the oscillation criteria for the second order nonlinear
differential equation of the form (2.6). Bhatia (1966) presented the following oscillation
criteria for the general equation (2.6) which contains as a special case of Waltman's

result (1965) for the nonlinear case.
Theorem 2.1.26 Bhatia (1966)

Suppose that

ds
= 0

ol

@ |
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(2) Tq(s) ds = oo,

Then, the equation (2.6) is oscillatory.

E. M. Elabbasy (1996) improved and extended the results of Philos (1983) to the

equation (2.6).
Theorem 2.1.27 E. M. Elabbasy (1996)

Suppose that

(1) liminf j'p(s)q(s)ds > —o0,

t—oo

t—oo t t
o \ lo

2
t(s
(2) lim sup}JUp(u)q(u)duJ ds = oo,
t
where p:[t,,00)— (0,0) is continuously differentiable function such that

p020,(p0) 20, (O <0 and (1) o0 <0

Then, the equation (2.6) is oscillatory.

2.1.2.4 Oscillation Of Equations Of Type (2.7)

Oscillation of the equations of type (2.7) has been considered by many authors who

presented some oscillation criteria for solutions of the equation (2.7). Grace (1992)
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studied the equation (2.7) and gave some sufficient conditions for oscillation of

equation (2.7) in some theorems for example the following two theorems:
Theorem 2.1.28 Grace (1992)

Suppose that

@ 9™,

=22 >k>0 for x=0,

¥ (x)

Moreover, there exists a differentiable function p:[t,,0)— (0,0) and the functions

h, H are defined as in Philos’s result (1989) (in Theorem 2.1.7). Moreover, suppose that

@ o<inf |timinf D& oo
2o | e H(E )

3) limsu
( ) t—oo p H(t,to)

to

j.I’(S)p(s) h(t,s)—@m ds< oo.
p(s)

If there exists a continuous function Q(t) on [to,oo) such that

@ fimswp s | H(ts)p(s)q(s)r(si’k)(s){h(t,s)%\/H(t,s)] ds> (1),

0

foreverylarge T > t,, and

I
KRR FEe

fo

where Q, (t)=max {Q(t),0}, then, the equation (2.7) is oscillatory.
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Theorem 2.1.29 Grace (1992)

Suppose that the condition (1) from Theorem 2.1.28 holds and functions h,H, p

are defined as in Theorem 2.1.28 and p(t) >0 and (r(t) p(t))” <0 for t>t,.

Moreover, suppose that

@) liminf j.p(s)q(s)ds> —o0,

t—o0

and

. T ds
@ il "

to

Then, the equation (2.7) is oscillatory if the conditions (4) and (5) hold.

2.1.3 Oscillation Of Homogenous Nonlinear Equations With Damping

Term

2.1.3.1 Oscillation Of Equations Of Type (2.8)

In last three decades, oscillation of nonlinear differential equations with damping
term has become an important area of research due to the fact that such equations
appear in many real life problems. Oscillation of non-linear equation (2.8) has been

considered by many authors, for example Yeh (1982) considered the equation (2.8) and

presented some oscillation criteria for equation (2.8).
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Theorem 2.1.30 Yeh (1982)

Suppose that

t—owo

t
lim supJ' (t—s)"*sq(s)ds = oo,
to

Iim%js[(t—s)(h(s)—£)+n—l} (t—s)"*ds <o
ot n

for some integer n >3, are sufficient conditions for the oscillation of equation (2.8).

2.1.3.2 Oscillation Of Equations Of Type (2.9)

This section is devoted to the oscillation criteria for the second order nonlinear
differential equation with damping term of the form (2.9). Nagabuchi and Yamamoto
(1988) have extended and improved the result of Yeh (1982) for equation (2.8) to the

equation (2.9).
Theorem 2.1.31 Nagabuchi and Yamamoto (1988)

The equation (2.9) is oscillatory if there exists a continuously differentiable

function p(t) on [t,,o0) and a constant & e (1, %) such that

2

p(s)h(s) +ap(s)—(t—5) /3(3)

r(s)

imsup-_- | (t—s)%(s)q(s)—ﬂ(t—s)

t—owo

x(t— “‘2@ =00
(t—9) (s)ds :

Grace (1992) established some oscillation conditions for equation (2.9) in some three

theorems for example, the following theorem:
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Theorem 2.1.32 Grace (1992)

Let g'(X)>k >0 for x=0and the functions h,H, p are defined as in Theorem
2.1.28 such that the conditions (1) and (2) from Theorem 2.1.29 and
7, (t) = r(t);)(t)—h(t)p(t)ZOand ;./l(t) <0 fort>t,. Then, the superlinear equation
(2.9) is oscillatory if there exists a continuous function Q(t)on [to,oo) such that the

condition (5) from Theorem 2.1.28 and

Iir:liff H(tl,T) I[H(t,s)p(s)q(s)—%(h(t,s)—y(s),m(t,s) )2} ds>Q(T),

foreverylarge T > t, and y,(t) = (r(t);)(t)—h(t)p(t))/r(t)p(t).

Kirane and Rogovchenko (2001) were concerned with the problem of oscillation of
nonlinear second order equation with damping (2.9) and presented some oscillation

theorems for solutions of (2.9). One among the theorems is the next one.
Theorem 2.1.33 Kirane and Rogovchenko (2001)

Assume that

w2k>0 for x # 0.
X

Suppose further that the functions h,H, o are defined as in Theorem 2.1.28 and there

exists a function f e C*([t,,0);(0,0))such that
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mswi s ([ -

(h(t.5)-Q*(t, )7 (s} A L.5) )Z}ds =0,

where

w(s) = p)ka(s)~h(s) F ()~ [r() F (S)] +1(8) F2(5) ~h(s) p(s)) o(s) = exp(~2]  (u)dlu)

and

Q(t,s) =h(t,s) +h(s)(r(s)) *(H(t, 9))"*.

Then, the equation (2.9) is oscillatory.

Elabbasy, et al. (2005) have studied the oscillatory behavior of equation (2.9) and

improved a number of existing oscillation criteria.
Theorem 2.1.34 Elabbasy, et al. (2005)

Assume that the condition (1) from Theorem 2.1.29 holds and there exists

P! [t0 ,00) = (0,00)such that

p(t) 20, (rH)p)" 2 0,(r)p1)™ <0, [r()p(t) - pHh®] <O,

t—oo t t
oLl

t| s
lim sup} J{J‘p(u)q(u)du} ds = oo,
t
Then, the equation (2.9) is oscillatory.
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Lu and Meng (2007) have considered the equation (2.9) and given several oscillation
conditions. They improved and extended result of Philos (1989) and result of Yu

(1993). They needed the following lemma to simplify proofs of their results. First they
recalled a class functions defined on D = {(t,s):t >s>t,}. A function H e C(D,R) is

said to belong the class W if
(1) H(t,t)=0,for t>t, and H(t,s) > 0 when t #s;

(2) H(t,s) has partial derivatives on D such that
%H(t,s) =h,(t,s)yH(t,s), — %H(t,s) =—h,(t,s)yH(t,s) for all (t,s) e D.

for some h;,h, e L,

Ioc(D’ R)
Lemma 2.1.1 Lu and Meng (2007)

Let A, A,A, eC(t,,©)R) with A, >0, andweC([t,,0)R). If there exists
(a,b)c[t,,0) and c e (a,b) such that

W< —A (S)+A (S)W—A, (W2, s  (a,b),

then

1 b
NG C)ﬂH(b $)A,(S) - ——— D2(b,5) [ds

E H (s, a)AJ(s)—LCD (s, a)}ds+ Az( )

H(c.a) 4A,(s)

forevery H eW,

where
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@, (s,a)=h,(s,a)+ A(s)yH(s,a) and @, (b,s)=h,(b,s)—A(s)yH(b,s)
Theorem 2.1.35 Lu and Meng (2007)

Suppose that there exists a function p e C'[[t,,),(0,0)] such that the condition

(1) from Theorem 2.1.29 is satisfied, and

£(t) >0, E(t) <0, t>t,, Tn(s)ds —

-1

where £(t) = r(t) p(t) - h(®)p(t). 7(t) =~ (t) O’ vt T]= ﬂ(t)(fﬂ(s)dsj :

If for every T >t,, there exists an interval (a,b)c[T,c), and that there exists

(a,b), H eW and for any constant D >0 such that

j{H(S,a)p(s)q(s)— R (s,a)} ds +

H(ca 4DV[s,t,]

1
H(b,c)

1
4DV[s,t,]

j {H (b, s) p(s)a(s) - D2 (b, s)}ds >0,

where

D, (s,a) =hy(s,a) + S(s)n(s)yH(s,a) and @, (b,s) =h, (b,s) - &(s)n(s)yH(b,s).
Then, the equation (2.9) is oscillatory.

Rogovchenko and Tuncay (2008) have considered the nonlinear equation (2.9) and
established some sufficient conditions for oscillation of solution of equation (2.9) by

giving many theorems for example, the following theorem:
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Theorem 2.1.36 Rogovchenko and Tuncay (2008)

Suppose that g'(x)existsand g'(x) >k >0 for x =0.

Suppose, further, that there exists a function o e C*([t,,0),R) such that, for some

p=1

t

Iirtn sup-— D) j [H (t, Sy (s) —ﬁv(s)r(s)hz(t,s)}ds — o,

where v(s) = exp (— ZkEf[a(s) - %)ds}

and z//(s):v(t)(q(t)+kr(t)az(t)—h(t)a(t)—[r(s)a(t)]'). Then, the equation (2.9) is

oscillatory.

2.1.3.3 Oscillation Of Equations Of Type (2.10)

Oscillatory behavior of nonlinear second order differential equation with damping
(2.10) has been studied by many authors. Grace (1992) considered the equation (2.10),
presented some oscillation results for equation (2.10) and extended and improved a

number of previously known oscillation results.
Theorem 2.1.37 Grace (1992)

Suppose that the condition (1) from Theorem 2.1.28 holds. Moreover, assume that

the functions p,h and H are defined as in Theorem 2.1.28 and

(1) h(t) <0, (h(t)p(t))" =0 for t > t,.
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"rPSwUpH(tlt) I H(t,s)p(s)q(s)%[h(t,s)%,ma,s)] ds = oo,

then, superlinear equation (2.10) is oscillatory.
Theorem 2.1.38 Grace (1992)

Suppose that the condition (1) from Theorem 1.5.28 holds and

o0 —00

deu«o and deu < 0.
g(u) g(u)

Let the functions p,h and H are defined as in Theorem 2.1.28 such that the condition

(1) from Theorem 2.1.37 holds and

p(t) >0 and [r(t) ,;)(t)j. <0 fort>t,.

. 1
lim sup

‘ r(s)p(s) - .
SUD T {[H(ts)ﬂs)q(s)—Th (t,s)}ds_ |

then, superlinear equation (2.10) is oscillatory.

Rogovchenko and Tuncay (2007) were concerned with equation (2.10) and obtained
some oscillation criteria for oscillation of equation (2.10). They gave some oscillation
theorems and proved these theorems by using their following lemma which is a

particular case of Tiryaki and Zafer’s lemma 1.1 (2005).
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Let D = {(t,s):—o0 < s<t<oo}. Afunction H (t,s) belongs to the class W if
(1) H eCc(D,[0,)),
(2) H(t,t) =0, for t >ty and H(t,s) > 0 for —oco< s<t <o0;

() H(t,s) has continuous partial derivatives oH/otand oH/os satisfying

%H(t,s) =h(t,s)yH({t,s), — %H(t,s) =—h,(t,s)yH(t,s),

where h,h, e

Ioc(D’ R)
Lemma 2.1.2 Rogovchenko and Tuncay (2007)

Suppose that a function U € Cl(D, R) satisfies the inequality

U (t) < —a(t) - AU (1),

for all t e (a,b) c[t,,o0), where the functions « e C([t,,o),R), e C([t,,),(0,0)).

Then, for any ¢ € (a,b)and forany H eW,

1 ¢ 1, 1 b L
He.a) ﬂa(s)H(s,a) “150) h, (s,a)}ds+ H 0.0 _[[a(s)H (b,s) —%h2 (b,s)}ds <0

Theorem 2.1.39 Rogovchenko and Tuncay (2007)

Let g be continuously differentiable and satisfy for all x € R,

g'(x) >k >0.
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Assume that, for all x e R,

0<C<VY¥Y(x)<C,.

Suppose also that there exists a function o eC*([t,,0),R) such that, for

someH €W and c € (a,b),

H (i a) J [Q(S)H (s.2) ‘%V(S)F(S)hf (s, a)}ds
1 7 C, 2
5 (0.0) I{ﬁﬂ(S)H(b,S)—Ev(s)r(S)h2 (b,s)}ds >0,
where
_ L o®ke®-h@) (1 1)h()
- _V(t){q(t) 7O C,r(t) {Cl C)4kr(t)}
and

~[Eh(s)—2ka(s)
V(t) =exp |:J.st:|

Then, every solution of the equation (2.10) has at least one zero in (a,b).

2.1.4 Oscillation Of Nonhomogeneous Nonlinear Equations

2.1.4.1 Oscillation Of Equations Of Type (2.11)

This section is devoted to study the oscillation of equation (2.11). Many authors

are concerned with the oscillation criteria of solutions of the homogeneous second order
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nonlinear differential equations. However, few authors studied the non-homogeneous

equations. Greaf, et al. (1978) considered the non-homogeneous equation (2.11) and

gave some oscillation sufficient conditions for this for the non-homogeneous equation,

for instance, the next three theorems.
Theorem 2.1.40 Greaf, et al. (1978)

Suppose that

(1) jr(s) ,

@ [(a)- p(s)s -

Then, all solutions of equation (2.11) are oscillatory.
Example 2.1.2

Consider the differential equation:

sint x’ (t)
(x(t)/t j +(3+2costjx t) = W,t>0

Theorem 2.1.40 ensures that the given equation is oscillatory.
Theorem 2.1.41 Greaf, et al. (1978)

Suppose that the condition (1) from Theorem 2.1.40 holds and

o0

(D) [(a(s)- p(s))ds <o,

f
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(2) lim me‘ q(s) — p(s))ds > 0 forall large T 21,

t—owo

3) I() (q(u) — p(u))duds = co.

Then, the superlinear differential equation (2.11) is oscillatory.
Theorem 2.1.42 Greaf, et al. (1978)

Suppose that

00 S

M .
IJ; r(s) % _I r(s) tJO-(Q(u) — p(u))duds = —oo,

to

for every constant M, then the sub-linear differential equation (2.11) is oscillatory.
Example 2.1.3

Consider the differential equation

SN L X
(t x(t)) +(§+costjx t) = %((t)hl)’bo’

Theorem 2.1.42 ensures that the given equation is oscillatory.

Remili (2010) was concerned with non-homogeneous nonlinear equation (2.11) and
presented oscillation criteria for equation (2.11) which contain results of Greaf, et al.

(1978) as particular case. Two theorems are presented here.
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Theorem 2.1.43 Remili (2010)

Let p(t)be a positive continuously differentiable function on[T,w0) such that

;0 >0on [T,oo). Equation (2-11) is oscillatory if

¢t ds
@ 'E“I PG

(2) T R(s)ds = oo,

1 P
&K pt)

where R(t) = p(®)[q(t) - p(t)]—
Theorem 2.1.44 Remili (2010)

If the condition (1) from Theorem 2.1.43 holds and p(t)is defined as Theorem

2.1.43 such that

@ [ O - pE)ds <,

t
2) liminf { | R(s)ds} >0 forall large T >t,,

t—oo T

t

3 lim j @T R(u)duds = oo.

)

Then, the super linear differential equation (2.11) is oscillatory.
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2.1.4.2 Oscillation Of Equation Of Type (2.12)

Oscillation of solutions of the nonhomogeneous non-linear equation (2.12) has been
studied by many authors. Manojlovic (1991) has considered the nonhomogeneous non-
linear equation (2.12) and established some oscillation theorems for solutions of this

equation. For example the following theorem:

Define the sets D, = {(t,s):t >s>t,}, D={(t,s):t >s>t,} and introduce the function

H e C(D) which satisfies the following conditions:
(1) H(t,t)=0 for t >t,, H(t,s) >0 for (t,s) € D,,

(2) H has a continuous and non-positive partial derivative on D,with respect to the

second variable, as well as a continuous function h: D, — R such that

- %H(t,s) — h(t,s)JH(ts) for (t,5) € D,.

Theorem 2.1.45 Manojlovic (1991)

Suppose that for any A, >0 there exists A, >0 such that

g'(x)
Yoo > 2, for [x| > 4.

Suppose, furthermore, that

t
jr(s)hz(t,s)ds <oo for tt,,

to
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t

[[Ht.9)(a(s) - KIH(S))- Lr(s)h?(t,9) Bs=o

T

limsup
t—w H (t,T)

for every T >t and any positive constants K and L. Then, any solution of equation

(2.12) is either oscillatory or satisfies lim inf |x(t)| = 0.

2.1.5 Oscillation Of Non-homogeneous Nonlinear Equations With

Damping Term
2.1.5.1 Oscillation Of Equations Of Type (2.13)

This section is devoted to study the oscillation of equation (2.13). Many authors are
concerned with the oscillation criteria of solutions of the non-homogeneous non-linear
second order equations with damping term. Berkani (2008) considered the equation
(2.13) and presented some sufficient condition for all solutions of equation (2.13) to be

oscillatory.
Theorem 2.1.46 Berkani (2008)

Assume that for some constants K, C,C, and for all x #0,

0<C<¥(x)<C,.
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Suppose  further there exists a continuous function u(t) such that
u(a) =u(b) =u(c) =0, u(t) is differentiable on the open set (a,c)U(c,b) and satisfies

the inequalities

ﬂ\/ Ka(s)H|(s)| - %((ss))juz (s)—2C,r(s)(u'(s))® }dsz 0

D Sy O

and

[[ [Ka(s)H|(s)| - %%Ju 2(s)—2C,r(s)(u’(s)) }ds > 0.

O e T

Then, every solution of equation (2.13) has a zero in [a, b].

2.2 oscillation Of Third Order Differential Equations

In the relevant literature, until now, oscillatory and non-oscillatory behavior of
solutions for various classes of linear and non-linear third order differential equations has
been the subject of intensive investigations for many authors. There are many papers
dealing with particular cases of the equations (1.3). These particular cases can be

classified as follows:

The homogeneous linear equations are given below

X () +q(O)x(t) = 0. (2.14)
X (£) +b(t) x(t) + c(t)x(t) = 0. (2.15)

X (t)+ a(t) x(t) +b(t) x(t) + c(t)x(t) =O. (2.16)
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The non-homogeneous linear equations is given below

X (t)+ a(t) X(t)+ b(t) X(t) + ct)x(t) = f (¢). (2.17)

The homogeneous non-linear equations are given below

X (t)+b(t) X(t) + c(t)x“ (t) = 0. (2.18)
X (£)+b(t) X(t) + c(t) f (x(t)) = 0. (2.19)
X (t)+q(t) f (x(t)) = 0. (2.20)

The paper which was presented by Hanan (1961) was the starting point for many

investigations to asymptotic behavior of third order equations.

2.2.1 Oscillation Of Homogenous Linear Equations

2.2.1.1 Oscillation Of Equations Of Type (2.14)

This section is devoted to the oscillation criteria for the third order linear differential
equation of the form (2.14). Hanan (1961) considered the equation (2.14) presented the

following oscillation criteria for equation (2.14):
Theorem 2.2.1 Hanan (1961)

The equation (2.14) is non-oscillatory if

Iszq(s) ds < o,

to

or
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limsup t*q(t) <

2
t—owo 3\/5 ’
and the equation (2.14) is oscillatory if

liminf t3q(t) > i.

t—o0 3\/§

Later, in 2001, Adamets and Lomtatidze (2001) also studied oscillatory properties 0s

solutions of the equation (2.14) where q is eventually of one sign [0,oo).

Mehri (1976) considered the third equation (2.14) and presented the following

oscillation result.
Theorem 2.2.2 Mehri (1976)

The equation (2.14) is oscillatory if

Tq(s) ds =co.

to

2.2.1.2 Oscillation Of Equations Of Type (2.15)

This section is devoted to the oscillation criteria for the equation of the form
(2.15). Hanan (1961) also derived some oscillation criteria for equation (2.15) and

proved the following theorem:
Theorem 2.2.3 Hanan (1961)

If 2c(t) —b’(t) >0, and there exists a number 0 < k <1 such that
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liminf t2b(t) > k

t—o0

and

liminf t3c(t) >k,

t—o0

Then, the equation (2.15) is oscillatory. Lazer (1966) studied oscillation of equation

(2.15) and proved the following:
Theorem 2.2.4 Lazer (1966)

Assumed that if b(t) <0 and

T{c(s) - % (- b(t))g } ds =oo,

to

Then, the equation (2.15) is oscillatory.

2.2.1.3 Oscillation of Equations of type (2.16)

This section is devoted to the oscillation criteria for the equation of the form
(2.16). Parhi and Das (1993) considered the linear equation (2.16) and presented the

following theorem:
Theorem 2.2.5 Parhi and Das (1993)

Supposed that a(t) >0, b(t) <0,c(t) >0,a’(t) >b(t), c(t) > 0and proved that if
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3

| 2a°(s) a(s)b(s) 2 (a’(s) 2 o
tJ;—27 +¢(s) - 3 —3\@[ 3 —b(S)J ds =co,

then, the equation (2.16) is oscillatory.

Theorem 2.2.6 Parhi and Das (1993)

Supposed that a(t) <0, b(t) <0,c(t) >0,a’(t) > b(t) and proved that if

<l 2a%(s) as)b(s) 2 (a%(s) |
122 8 o) - 2 —3@[ . —b(s)+a(s)] ds=o0,

to

then, the equation (2.16) is oscillatory.

2.2.2 Oscillation Of Non-homogenous Linear Equations

2.2.2.1 Oscillation Of Equations Of Type (2.17)

This section is devoted to the oscillation criteria for the equations of the form
(2.17). Das (1995) studied the equation (2.17) and established some new oscillation

criteria for the equation (2.17).
Theorem 2.2.7 Das (1995)
Supposed that a(t) >0, b(t) <0,c(t) >0,c'(t) >0, a'(t) >b(t), f(t)>0, f'(t) <0

and proved that if

49



T 2a°(s) C(S)_a(s)(b(s)—a'(s))_ 2 (a’(s)
3

I 3Bl 3 —(b(S)—a’(s))j ds=oo,

then, every solution of equation (2.17) oscillates.

2.2.3 Oscillation Of Homogenous Non-linear Equations

2.2.3.1 Oscillation Of Equations Of Types (2.18) and (2.19)

This section is devoted to the oscillation criteria for third order non-linear
equations of the form (2.18) and (2.19). Waltman (1966) considered the equations (2.18)

and (2.19) and established two theorems for oscillation.
Theorem 2.2.8 Waltman (1966)
Supposed that the equation (2.18) is oscillatory if b(t) and c(t) are continuous

functions and b’(t) <0, «is a ratio of two odd positive integers and

A+ Bt — jQ(s)ds <0,

to
t
for large t, where A, B and Q(t):jc(s)ds.
0

Theorem 2.2.9 Waltman (1966)

Supposed that the equation (2.19) is oscillatory if b(t) and c(t) are positive

continuous functions such that kc(t) —b’(t) >0, f(u)/u>k >0 and
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00

[ slke(s) —b'(s)]ds =oe.

to

Heidel (1968) also considered the non-linear third order equation (2.18) and
investigated the behavior of non-oscillatory and oscillatory of solutions of equation

(2.18). He proved the following oscillation theorem:

Theorem 2.2.10 Heidel (1968)
Proved that if b(t) <0, c(t) <0 and — t% <b(t) <0,

0

jsz’“c(s) ds=-m,0<a <],
to

Ts“[b’(s) —2¢(s)]ds = oo,

t

then, the equation (2.18) is oscillatory.

2.2.3.2 Oscillation Of Equations Of Type (2.20)

This section is devoted to the oscillation criteria for third order non-linear
equations of the form (2.20). Ramili (2007) studied non-oscillatory for the third order

non-linear equation (2.20) and presented the following:

Theorem 2.2.11 Ramili (2007)

Supposed that f(u) f"(u) —2f'%(u) <Ofor every u>0,
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liminf T R(s)q(s) ds > —oxo,

t—o0

lim sup} j i R(s)q(s) ds = oo,

t—ow t ToTo

then, every solution of equation (2.20) is non-oscillatory.
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CHAPTER THREE
OSCILLATION OF SECOND ORDER NONLINEAR
ORDINARY DIFFERENTIAL EQUATIONS WITH

ALTERNATING COFFICIENTS

3.1 Introduction

In this chapter, we are concerned with the problem of oscillation of second order

non-linear ordinary differential equation of the form

(r(t)i(t)j +q(t)<1>(g(x<t»,r(t> i(t)] - H(tx(D) w1

where ¢ and r are continuous functions on the interval [to,oo), t, >0, r(t) is a positive
function, g is continuously differentiable function on the real line R except possibly at 0
withxg(x) >0 and g'(x) >k >0 for all x=0, ® is a continuous function on RxR with
ud(u,v) >0 for all u=0 and ®(Au, Av) = Ad(u,v) for any A€ (0,0) and H is a

continuous function on [to,oo)XR with H(t, x(t))/g(x(t)) < p(t) forall X0 and t>t,.

3.2 Second Order Nonlinear ODE Of Type (1.1)

In this chapter, we present the results of our study of finding the sufficient conditions
for oscillation of solutions of ordinary differential equations of second order of type
(1.1). The present oscillation results have among other finding extended and improved

many previous oscillation results, for examples, such as the works of Bihari (1963),
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Kartsatos (1968), Philos and Purnaras (1992), Philos (1989), El-abbasy (1996), and El-
Abbasy, et al. (2005). We have established some new sufficient conditions which
guarantee that our differential equations are oscillatory. A number of theorems and
illustrative examples for oscillation differential equation of type (1.1) are shown.
Further, a number of numerical examples are given to illustrate the theorems. These
numerical examples are computed by using Runge Kutta of fourth order function in
Matlab version 2009. The present results are compared with existing results to explain

the motivation of proposed research study.

3.3 Oscillation Theorems

Theorem 3.3.1: Suppose that

1 1

(1) DLY) < C—O,C0 € (0,0),
Tl .
2 G(m) :!;@(1, S)ds >-B", B €(0,) foreverym e R,

@ [lcoa(s)- p)lds =, T =1,

where p:|t,,0)— (0,c0), then every solution of equation (1.1) is oscillatory.

Proof

Without loss of generality, we assume that there exists a solution x(t) >0 of

equation (1.1) such that x(t) > 0on [T,w)for some T >t, >0. Define

F(t) X(t) o1

“O="3x)’
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This and the equation (1.1) imply

()< p(t) — )DL (), t=T.

ot) pt)
oL (D)~ oL o) O 1=T.

By the condition (1), we have

ot) 1
DL alD) C—p(t) q(), t=T.

Integrate from T to t and from condition (2), we obtain

; a)(s)

[C.(5) = PO)lds = C, [ " 1585 =-CiB(0(9) + C,G(@(T) £ C,B” +CoG(aT))

—u_,ﬁ
4

H

/-\

\./

Thus, we have

[C,a(s) - p(s)]ds < oo,

which contradicts to the condition (3). Hence, the proof is completed.

Example 3.3.1

Consider the differential equation

X(t) cos x(t)

(t ;((t)). +(1+3cost)x(t) = t>0

Here r(t)=t, q(t) = (1+3cost), g(x) =x, ®(u,v) =u and

H(t, x(t)) oS x(t)

ox) <=0
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All conditions of Theorem 3.3.1 are satisfied and hence every solution of the given
equation is oscillatory. To demonstrate that our result in Theorem 3.3.1 is true, we also
find the numerical solution of the given differential equation in Example 3.3.1 using
the Runge Kutta method of fourth order (RK4) for different step sizes h.

We have

.>2= f(t,x, >.<) = X CO0S X —3.99x

with initial conditions x(1) =1, ;<(1) =-0.5 on the chosen interval [1,50] and finding
the values of the functions r, q and f where we consider H(t,x(t)) = f (t)I(x)at t=1

n =750, n =1500, n=2250 and n=3000 and the step sizes h =0.065, h =0.032, h =0.021

and h = 0.016.
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Figure 3.1(a): Solution curves of ODE 3.1.
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Figure 3.1 (b): Solution curves of ODE 3.1.
x1(t)
1.5¢ T T T T T T T T X2(t)
x3(t)
xX4(t)
1r- -
< 0.5f u
[%2)
j o
=]
3
Y
©
2
>
§ -0.5
1 -
_15 C r r r r r r r r r I
(o] 5 10 15 20 25 30 35 40 45 50

Remark 3.3.1: Theorem 3.3.1 is the extension of the results of Bihari (1963) and the
results of Kartsatos (1968) who have studied the equation (2.5) as mentioned in chapter
two. Our result can be applied on their equation, but their oscillation results cannot be

applied on the given equation in Example 3.3.1 because their equation is aparticular
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case of our equation when r(t)=1, g(x(t)) = x(t),

D(g(x(t), F(t) x(1) = D(X(t), x(1) and H (t, x(t)) =O.

Theorem 3.3.2
If the conditions (1) and (2) hold and assume that o be a positive continuous
differentiable function on the interval [to,00) with p(t) is a decreasing function on the

interval [to,0) and such that
t

(@) 1lim [ p(s)[Coa(s) ~ p(s)]ds =0,
)

where p: [to,00)—(0,%0), then, every solution of equation (1.1) is oscillatory.
Proof

Without loss of generality, we assume that there exists a solution X(t) > 0of

equation (1.1) such that X(t) > 0on [T,«)for some T >t, >0. Define

_ p®r)x()
w(t) = —g(x(t)) ,E>T.

Thus and (1.1) imply
[p(t) @J < pOPO - POIOPL o) p0) + 2D o(t), t>T.
o(t) p(b)
Thus, we obtain

p(t)(%] < p()p) - pOAMPL o(t)/ (1), t2T.

After dividing the last inequality by ®(1 w(t)/o(t))> 0, integrating from T to t and

using condition (1), we obtain

59



¢ [PO@(s)/ ()
jp(s) Coq(s) - p(s)] ds < —C j Do) o) = 2T (3D

By the Bonnet’s theorem, we see that for each t > T, there exists a;e[T,t] such that

p()@(8)/ ()" 4 (@(s)/ p(8))" 4
I oL als) pls) © mj O a(s) p(8) (332)

From the inequality (3.3.2) in inequality (3.3.1), we have

t o@)p@) o(a )J (COU)H
Co - d —_CO T _C t ©
J p(s)[C,a(s) - p(s)] ds < —C, p( )[H(T)L(T) oL u) U){ [ (a,) ’ p(T)

<C,p(T)B’ +Cop(T)G( (r)]
p(T)

which contradicts to the condition (4). Hence the proof is completed.

Example 3.3.2

Consider the following differential equation

(tsi(t)j}(t”jtﬂ] ems KO | 200G |,
t°+1 X2 (t) + (£ X(t))? ('[ +1 )

5 5 3
" +4t" cost g(x) =x°,®(u,v) =u+ u

Here r(t) =t3,q(t) = ,
® ) t° +1 u® +v?2

and

H(t,x(t)  2t°sin((x(t)) 20
g(x(t) - ('[10 +t5) < (tlo +t5) = p(t).
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t°> +1
t5

Taking p(t) = such that

lim [ p(s)[C,a(s) - p(s)]ds = co.

We get all conditions of Theorem 3.3.2 are satisfied and hence every solution of the
given equation is oscillatory. The numerical solutions of the given differential equation
are found out using the Runge Kutta method of fourth order (RK4) for different step
sizes h.

We have

X = £t x(), X)) = ° O)sin(x(0) + 249 () + ——O__
X8 (t) + x(t)

with initial conditions x(l):—0.5,>.<(1)=00n the chosen interval [1,50] and finding
the values of the functions r, g and f where we consider H(t, x(t)) = f (t)I(x) at t=1,

n =2250, n =2500, n=2750 and n=3000 and the step sizes h =0.0217, h =0.0196,

h =0.0178 and h = 0.0163.
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Figure 3.2 (a): Solutions curves of ODE 3.2
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Figure 3.2 (b): Solutions curves of ODE 3.2
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Remark 3.3.2

Theorem 3.3.2 extends results of Bihari (1963) and Kartsatos (1968), who have

studied the equation (1.2) when r(t)=1, g(x(t)) = x(b),

Dd(g(X(V)), r(t) X(t)) = D(x(t), x(t) and H (t,x(t)) =0. Also, Theorem 3.3.2 is the
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extension of El-Abbasy (2005) who studied the equation (2.6) which is a special case
of the equation (1.1) as mentioned in chapter two. Our result can be applied on their
equation, but their oscillation results cannot be applied on the given equation in
Example 3.3.2 because their equations are particular cases of the equation (1.1).

Theorem 3.3.2 is the extension of Theorem 3.3.1 as well.

Theorem 3.3.3
Suppose that condition (1) holds and

(5) q()>0, forallt>0.

Furthermore, suppose that there exists a positive continuous differentiable function p on

the interval [to,oo) with ,;)(t) >0and (,.o(t)r(t))' < 0 such that condition (4) holds and

T ds
6) |————=o forevery t>t,.
t{r (s)p(s) ’

Then every solution of superlinear equation (1.1) is oscillatory.

Proof

If x(t) is oscillatory on [T,oo), T >t,20,then ;<(t) is oscillatory on [T,c0) and if

x(t) is oscillatory on [T,c0), then, x(t) is oscillatory on [T,c0). Without loss of

generality, we may assume that there exists a solution x(t) of equation (1.1) such that

X(t)>0 on [T,0) for some T >t, > 0. We have three cases of X(t):

(1) >.<(t) >0 foreveryt>T.
(i) >.<(t)< 0 foreveryt>T.

(iiii) x(t) is oscillatory.
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If ;<(t)> Ofort>T, T >t, and we define

pOrt) x(t) T

“0="0x0)

This and (1.1) imply

. PO M) X()
o)< p(t) p(t) - PP o (t)/ p(t))+ TR

From condition (1), we have

PO X(t) T

e c ~
o(t)< - pM[Coa(t) - pt)]+ g(x(t))

Integrate the last inequality from T to t, we obtain

o0 = o)~ POIC,A) - (5 ds+j%ds. 333)

By Bonnet’s theorem since ;)(t)r(t) is non-increasing, for a fixed t>T,there exists

B € [T,t]such that

POFEXS) . _ * eryrerytXE) “o
1 O mrm!g(x(s» =M (T)X(IT) )

Since ;o(t)r(t) >0 and the equation (1.1) is superlinear, we have

0 L ifx(B)<x(T)

x(B) d
AU T qu

— if X > X(T).
i 9() J 5w (B) = x(T)
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We have

X(s)
X(S

ds <A, 3.34
@) = (334

0 < [ p(9F(S)

. * du
h A= ke
where p(T)r(r)x(jT o

Thus, from (3.3.4) in (3.3.3), we obtain
o(t) < o(T)+ A - [ p(s)[Coa(s) - p(s)]ds.

By the condition (4), we getw(t) <0, then, >.<(t)<0 for t>T,, T,>T. This is a

contradiction.

If ;<(t)< 0 forevery t>T,>T. The condition (4) implies that there exists T, > T, such

that
j P(S)(C,q(s) - p(s))ds =0 forall t>T,.
Thus, from equation (1.1) multiplied by p(t), we obtain
PO FOXO |+ POIOROPEL ) 20)2 PO, =T,

By condition (1), we have

p(t)(r(o i(t)j < pOIXWO)Coa) - p(t)).
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Integrate the last inequality from T, to t, we obtain

POFR)XW) < p(T,)F(T,)X(T) + [ p(E)F(9) x(s)ds — g(x(1) [ ()(C,a(s) - p(s)) ds
+[9'(x(8)) X(5) [ p(u)(Cau) — p(u))duds

< p(Tr(T)X(T,), t=T,.

Integrate the last inequality divided by r(t) o(t) from T, to t and by condition (6), we

have

X(t) < X(Ty) + p(T)r (T;) (T3>I 0 (S)

as t — oo, contradicting the fact x(t) > Ofor all t>T. Thus, we have ;<(t) is oscillatory

and this leads to (1.1) is oscillatory. Hence the proof is completed.

Example 3.3.3

Consider the following differential equation

(ﬂx(t)) vot |+ X°(t) | X@sine)
3x1°(t) + 6((t F1)X(t) /t) t

(t+1)

We have r(t) = , q(t) =9t, g(x) = x°,

u’ and H (t, x(t)) sm(x(t))

O(u,v) =u+— > 5
3u” +6v g(x(t)) t

=p(t) forallx=0and t > 0.
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Taking p(t) =t such that
t t 1
!mtj‘p(s)(coq(s) — p(s))ds :!mtjs(%os —s—3j ds = oo,

All conditions of Theorem 3.3.3 are satisfied, then, the given equation is oscillatory.
Also the numerical solutions of the given differential equation are computed using the

Runge Kutta method of fourth order (RK4) for different steps sizes h.

We have

X = £ (6 X(0), X)) = 051 (Q)sin x - 456¢ (1) + — O

3x30(t) + 24X (t)

with initial conditions x(1) = 0.5, ;<(1) =0on the chosen interval [1,50] and finding the
values of the functions r, g and f where we consider H(t, x) = f (t)I(x)at t=1, n =2250,

n =2500, n=2750 and n=3000 and the step sizes h =0.0217, h =0.0196, h =0.0178 and

h=0.01
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Figure 3.3(a): Solutions curves of ODE 3.3.

0.5 3

0.2~

0.1~

0.1

Numerical solutions X(t)
o
|

-0.2 -

0.4+

-0.5 .

Figure 3.3(b): Solutions curves of ODE 3.3
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Remark 3.3.3
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Theorem 3.3.3 extends result of Philos (1983) who has studied the equation (1.1)

as r(t)=1, g(x(t)) = x(t), ®(g(x()),r(t) ;((t))zg(x(t)) and H(t,x(t)) =0, result of
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Bhatia (1966) who has considered the equation (1.1)

as d)(g(x(t)),r(t)>°<(t)) = g(x(t)) and H(t,x(t)) =0, and result of Philos and Punaras

(1992) who have studied the equation (1.2) as

rit)=1 d(g(x(t)),r() >°<(t)) = g(x(t)) and H(t,x(t)) =0. Our result can be applied on
their equations (2.1), (2.6) and (2.4) respectively, but their oscillation results cannot be
applied on the given equation in Example 3.3.3 because their equations are particular

cases of our equation (1.1).

Theorem 3.3.4
Suppose that the conditions (1), (5) and (6) hold and there exists a continuously

differentiable function p which is defined as Theorem 3.3.3 such that

(7) T‘P(s) ds = oo,

to

POF(H)

where ¥ (t) = p(O(Coa(t) - pW) =7 -

Then, every solution of equation (1.1) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t)>0 on [T,oo) for some T >t, >0. Define

oft) = FOXO () =T
g(x(t))

71



This, conditions (1), (5) and the equation (1.1) imply

Kr(t)x (t) o1

, (3.3.5)
g9’ (x(¥)

[r(t) X0

. (X(t»] < —(Cyqt) - pt)) -

We multiply the last inequality (3.3.5) by p(t) and integrate form T to t, we have

A<, _j P(S)(Coq(s) - p(s)) s +Hi)(s)w(s) K20’ o

where

o _ PMIrMXT)
YT xm)

p(Or (1) X(t) ‘ c o) o (e |
WSCI —JP(S)(Coq(S)— p(s)) ds _!k@ n (3){m] ] ds

p(8)(Co(s) — p(s))—~ L) | g

<C, —
' 4kp(s)

—_—

t
<C, - [¥(s)ds,
T

pH)r(t)

where 7(t) = o(t) - 2Kolt)

By the condition (7), we get

i POFOXO _
oo g(Xx(1))
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and there exists T, > T such that ;<(t) <0 for t>T,.The condition (7) also implies that

there exists T, > T, such that

jp(s) Cod(s)— p(s)) ds =0 and j Coa(s) - p(s)) ds=0  for t>T,.

l 2

Multiplying equation (1.1) by p(t) and by conditions (1) and (5), we have

p(t)(r(t) i(t)) +CopMICO)IN < POIHW) P, t2T,.

Integrate the last inequality from T, to t, we obtain

POFD)XE)< ATINT,)X(T,) + [ p()F(S) x(s)ds — g(x(®) [ p(S)(Cot(S) — P(s))ds

+[g'(x()x(9) | pu)(Ca(u) - p(u)) duds, t>T,.

T T,

By the Bonnet's theorem, for t > T, there exists 7, € [Tz,t] such that

POFO X <p(T)r(T,)XT,)+ pT)IFT,)X() - X(T,)] - g(x) [ p(s)(Cars) - p(s)) ds
+ [ 9'(x(8)) X(9) [ p(u)(Ca(w) — p(u))duds

<p(T)r(T)X(T,), t=T,.

Dividing the last inequality by p(t)r(t) , integrate from T, to t and the condition (6), we

obtain

X(t) < X(T,) + p(T,)r(T,) X(T,) j )r(sﬁ‘”’ as t — o,
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which is a contradiction to the fact that x(t) > 0 for t > T. Hence the proof is

completed.

Example 3.3.4

Consider the following differential equation

(% i(t)j. ] () + O XOsn®)
t : t
5x'%(t) + S(X(t) /t3j

We note here

5

1
r(t) zt—gfq(t) =t°, g(x) =x°, (D(U'V)=U+m,

H (€, x(t)) _ sin(x(t)) <1 p(t) forall x=0andt>0.
g(x(1)) ot

Taking p(t) =t and

[w(s)ds - T{p@)(coq(s) - p(s))—%} ds = oo

t

All conditions of Theorem 3.3.4 are satisfied. Thus, the given equation is oscillatory.
We also compute the numerical solutions of the given differential equation using the

Runge Kutta method of fourth order (RK4) for different step sizes h.
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We have

X15 (t)

5x2(t) +8x (1)

X(t) = f(t,x(t), x(1) = X3 () sin(x(t)) = | x*(t) +

with initial conditions x(1) =—0.5, >°<(1) =0on the chosen interval [1,50] and finding the
values of the functions r, g and f where we consider H(t,x) = f (t)I(x)at t=1, n =2250,

n =2500, n=2750 and n=3000 and the step sizes h =0.0217, h =0.0196, h =0.0178 and

h =0.016.
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Numerical solutions x(t)

-1.5

Numerical solutions x(t)

Figure 3.4(a): Solutions curves of ODE 3.4
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x2(t)

1.5

0.5

-1.5

Figure 3.4(b): Solutions curves of ODE 3.4.
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Remark 3.3.4
Theorem 3.3.4 is the extension of the results of Bihari (1963) and the results of

Kartsatos (1968) who have studied the equation (1.1 as

rt) =1 g(x(®) = x(t), PG(XD),r®)x®) = D), xt)and  H(tx(1)=0 and

results of El-abbasy (2000) who has studied the equation (1.1)

as d)(g(x(t)),r(t)>°<(t)) = g(x(t)) and H(t, x(t)) =0. Our result can be applied on their
equations (2.5) and (2.6) respectively, but their oscillation results cannot be applied on
the given equation in Example 3.3.4 because their equations are particular cases of our

equation (1.1).

Theorem 3.3.5: Suppose that the conditions (1) and (5) hold and there exists

continuously differentiable function pis defined as in Theorem 3.3.3 such that the

condition (6) holds and

®  [pG)Coa(s) - p(s))ds <o,

to

t—o

(9) lim inf{[‘{’(s) ds} >0 forall large t,
to

t

@ tj p(s)r(s)

I‘P(u)duds = o0,

Then, every solution of superlinear equation (1.1) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t)>0 on [T,oo) for some T >t, >0. Define
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r(v) X(t) t>T.

O 5
This and (1.1) imply
- rx . ) _kr(t);<2(t)
a)(t)(g(x(t))} < p(t) - q(t)@(L w(t)) 22 (x(0) T, (3.3.6)

From condition (1), for t > T, we have

o2

(x| e att)— o] KTOX ©
[g(x(t»} =GP0z )t

We multiply the last inequality by p(t) and integrate form T to t, we have

PO M) _ pMrM)xT) | (. o
oo 9(x(T)) ‘J”(s)(coq(s)‘p(s))d“ﬂ/?(s)w@)—k@w (s)} ds

PO 4 1y — oy - 2OTO).

Let C, =
g(x(T)) 2kp(t) -

Thus, we obtain

PO (1) p)| s | pE(E)
g(x(t)) O Ip(s) Cua(e) = P(9) do - Ik (){ ®) [ka(s)}JdS

IN

c,-[| ptsr(c oq(s)p(s»%} ds

T

C, - [¥(s)ds. (33.7)

T
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From inequality (3.3.7), we have

P(eyis< 20D _pOrOx)
i o) 9(x1)

Now, we consider three cases for x(t)

Case 1: If ;<(t) >0 fort>T, >T, then we get

j"{’(s)dss p(M)r(T,) >.<(rl) _pM)r() X(t) |
9(x(T,)) g(x(t))

Thus, for all t>T,, we obtain

Faregs< LOTOXO
o)

We divide the last inequality p(t) r(t) and integrate from T; to t, we obtain

T‘P(u)dudsﬁ jﬂds.

;‘- p(s)r(s) s 7 9(x(s))

Since the equation (1.1) is superlinear, we get

t

Tj pE)r(s) ]

x(t)

X9 Y du
frnes< <.11(x(s»o's‘x(£)g(u)<

This contradicts condition (10).
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Case 2: If ;<(t) is oscillatory, then there exists a sequence 7, in [T,co)such that

;((rn) =0.Choose N large enough so that (9) holds. Then from inequality (3.3.7), we

have
OO sy
o) )
So
Iin:;yp%g C.+ Iin;iup{— :jn\y(s)ds} ~C, ~lim inf {;[‘P(s)ds} <0,

which contradicts the fact that >.<(t) oscillates.

Case 3: If ;<(t)<0 for t>T,>T, the condition (9) implies that there exists

T, 2 T,such that

j.p(s)(COq(s)— p(s))ds>0 for t>T,.

T3

Multiplying the equation (1.1) by p(t) and from the condition (1), for t > T,, we have

p(t)(r(t) %a)j +Cop®ID)IM = POIXW)PE), LT,

Integrate the last inequality from T3 to t, we obtain
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POFE) XV < AT (T X(T,) + [ p(S)r(S) x(s)ds — g(x(®) [ p(S)(Coa(s) - P(s))ds

+ [ 9'(s) X(9) ] PU)(Cya(u) - pu))duds, =T,

< p(T,)r (T3 X(T3) ~ 9 (X(0) [ p()(Coa(S) - P(s))ds
+[ (N XO) | PW)(Coa(u) - p))duds, tT,

< p(T)r(T)X(Ty), t=T,.

Dividing the last inequality by p(t)r(t) and integrate from T; to t we obtain

ds N
p(s)r(s)

—oo, ast—w

X(t) < X(T,) + p(T)r(T3) X(Ty) |

which is a contradiction to the fact thatx(t)>Ofor t>T. Hence, the proof

completed.

Example 3.3.5

Consider the following differential equation

[;((t)/tj.+i x> (t) _ X >0
' 2x28(t)+(>.((t)/tj x )+l

Here r(t) =Ut, q(t)=1/t*, g(x)=x’, cI)(u,v):U"’/(Zu4 +v“) and

HEx®) _ x*()

=—— <0=p(t) forall x=0andt>0.
gix(®)  x'(H)+1

is
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Taking po(t) =4 > 0such that

< 0

)

L — ~ PR || _2Cc
(2) !mmf{jxy(s)ds}_tﬂgqmep(s) C,q(s) - p(s)) To) }ds}—t02>0

® jp(s) C4a(5) - p()) ds = 2

t

t

i

j ¥ (u) duds = lim t
o= p(s ) (s)

T[p( )(Coa(u) - p(U))—M}duds .

p(S 4kp(u)

All conditions of Theorem 3.3.5 are satisfied and hence every solution of the given
equation is oscillatory. To demonstrate that our result in Theorem 3.3.5 is true we also
find the numerical solution of the given differential equation in Example 3.3.5 using the

Runge Kutta method of fourth order.

We have

11 35

'>Z(t)=f(t,x(t),§<(t))=—xj‘ X

o4
2x% +x (1)

with initial conditions x(1) =1, ;<(1)=1on the chosen interval [1,50] and finding the

values the functions r, g and f where we consider H(t,x)= f(t)I(x) at t=1, n=980

and h=0.05.
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Numerical solution x(t)

15

0.5

-0.5

-1.5
0

Table 3.5: Numerical solution of ODE 3.5

k ty X(tk)
1 1 1
81 5 -0.22568469

182 10.5 | 0.13417542
261 14 -1.09294017
321 17 1.14607460
397 20.8 0.11187711
461 24 -0.76853441
521 27 1.16599637
581 30 -1.06554696
702 36.3 0.13116006
801 41 -0.35706690
921 47 0.53245699
981 50 -0.97421735

Figure 3.5: Solution curve of ODE 3.5
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Remark 3.3.5
Theorem 3.3.5 extends result of Wong and Yeh (1992), result of Philos (1989),

result of Onose (1975) and result of Philos and Purnaras (1992) who have studied the

special case of the equation (1.1) as r(t)=1 q)(g(x(t)),r(t);(t))zg(x(t)) and

H(t, x(t))=0 and result of E. M. Elabbasy (2000) who has studied the special case of

the equation (1.1) asd(g(x(t)), r(t) ;<(t)) =g(x(t)) and H(t, x(t))=0. Our result can be
applied on their equations (2.4) and (2.9) ,as mentioned in Chapter Two, but their
oscillation results cannot be applied on the given equation in Example 3.3.5 because

their equations are particular cases of our equation (1.1).

Theorem 3.3.6
Suppose that the conditions (1) and (5) hold. Assume that there exists

continuously differentiable function pis defined as in Theorem 3.3.3 such that

condition (6) holds and

r(t)
11 — ] € vaa
(11) p(t)</3t,6’ (0,0)

t
(12)  liminf j ¥(s)ds > —oofor all large t.
T

(13)  lim Sup%j%i‘?(u)duds = o0,

t—o

2
where P(t) = p(t)(C,q(t) - p(t))—%r(g) and p:[t,,o) = (0,%). Then, every
0
solution of equation (1.1) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t)>0 on [T,oo)for some T >t, > 0. We define the function

o(t) as
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r(t) x(t) x(t)

“O= 3’

This, the equation (1.1) and condition (1), we obtain

r(t) X(1) ) r(t)g’(x(1)) x(t)
[g(x(t»] ~CaO-PO- ey T

We integrate the last inequality multiplied by p(t) form T to t, we have

POt X(t) L p(s)r () X(s)
TR jp(s) Co(s) — p(s)) ds + [0 5 s
) j p(5)r(s)g'(X(1)) x(s) 339
1 gt(x(s) > =
where
_pMrMxT)
ST

Thus, we have

PO (1)

a(x(D) <C, —jp(S)(Coq(S)—p(s) ) ds - H K26 )a)z(s) p(s)a)(s):|

t o0 . [pore)|
Jp(s) Cy(s) - p(s)) ds — jk [ (S){W”ds

p(t)r(t)
2kp(t)

where 7(t) = o(t) -
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Thus, we have

pOIXM) _ . tkp(s)
qu_!\}l@ds_}[wn (s) ds.

Also, from the inequality (3.3.9) divided by p(t), we have

j ()ds_

Ok p(t)

Now, we have three cases for x(t).

Case 1: If >.<(t) is oscillatory, then, there exists a sequence 7, in [T,

lim z, =ocand such that X(T ) =0.Then, from the inequality (3.3.9), we have

t—ow

Ikp()

" 2(s) ds <C, — I‘P(s)ds

Hence, by the condition (12), we get

n°(s) ds < .

T ko(s)

T

This gives, for a positive constant N

T p(s)

T

n®(s) ds<N forevery t>T.

(3.3.9)

(3.3.10)

(3.3.11)
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Further, by using the Schwarz’s inequality, for t > T, we obtain

P [1® ko(S) 2 gsf TS g < N F 1)
J() “Jkp() ‘ I() 7 Ikp(s) i Ip(s)

T

t 2
—|n(s) ds =
.

By condition (11), the last inequality becomes

2

N i NGB 2 12y NB.,
<~ psds = —2(t? -T?) < —t
kﬂl T )< o

—t (s) ds

Then,
t t p(S)r(S) g
- J n(s) ds=—£ o(s) - (S) \/; t.

Thus, for t>T, we have

- j w(s)ds < \/%t (3.3.12)

Integrate the inequality (3.3.10) and from (3.3.12), we obtain

Y (u)duds < Clj‘i - j w(s)ds
< &K 't e

Dividing the last inequality by t and taking the limit superior on both sides, we obtain

—He—
: ‘
> | P
N—r
He—s 0

imsup j—j\y(u)duds_ Cm+ /% <o,
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which contradicts condition (13).

Case 2: If ;<(t) >0 for t>T, >T, then, from (3.3.10), we get

1
p(t)

; C
Y(s)ds < —1-.
Jred=

Integrate the last inequality, dividing by t and taking the limit superior on both sides, we

get

Iimsup}jij@’(u)duds< G, <
t>e 1 T P(S) T - p(Tl) ,

which also contradicts condition (13).

Case 3: if ;<(t) <0 for t>T, >T. Then from inequality (3.3.8), we have

pOrH X N _ B p(s)r(s)g’(x(s));i(s)
WSQ TJ;P(S)(Coq(S) p(s)) ds TJ; 02 (x(5)) ds.

ERUCHEG) X(s)
FEEE)

Now, we have two cases for If this integral is finite, in

this case, we can get a contradiction by the procedure of case (1). If this integral is

infinite, from condition (12), we obtain

PO ., j LS9 ) Xs) o
0@ T h g

Also, from the last inequality, we obtain
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ICLOKGIIPSIN jp(s)r(s)g'(x(s»?(s) N

g(x(t)) 7, 9°(x(s))

SN CLOLEOEOM
I E 0 B

(3.3.13)

where N"=—(C, + 4).

We consider a T; =T, such that

NYEN VOLOTIEC) XS) 4o o
SR )

Hence, for all t >T,, we get

POTOXO) _ | -, jms)r(s)g'(x(s»'xz(s) ol
A I R E)

From the last inequality, we get

POOTXO X /| -, jp(s)r(s)g'(x@»'xz(s) MPCORC)
9*(X(1) SO EECR)

Integrate the last inequality from T, to t, we have

. N*+jp(s)r(s)g'(x(s»'x2<s)ds I N*+jp(s)r(s)g'(x(s))'x2(s) N /N Zm{g(x@»}
SECO o) 7 oy
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Thus,

N ZLOLICT () ¥(8)g » IO (g
SEHeE) 0@

From (3.3.13), we have

_pONOX0 | 9T 1
TCO I T0 R

Since N,g(x(T,)) >0.Thus, from the last inequality, we obtain

X(t) < X(T;) = N, g (x (T))j (S)r(s) 2T,

which leads to lim x(t) = —eo, Which is a contradiction to the fact that x(t) >0 for t>T.
t—oo

Hence, the proof is completed.
Example 3.3.6

Consider the following differential equation

(t% i(t)). F(t°+2)| Xe) + X0 _|= Xg(t)fi“t t>0.
2x3 (1) +(t% x(t)j

We have r(t) =t’, q(t) =t° + 2, g(x) = X°, d(u,v)=u + 5
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H(t, x(t)) sint

(x(1)) 8 is_ p(t) forall x=0 and t > 0. Taking p(t) =5such that
g(x

’ ) %
=o0 and =t4 <t 1
{ PO p() L

lim mf{j‘l’(s)ds}— lim mf{j'[p(s)(coq(s)_ 0(s))- P (S)r(squ}

- ] 4kp(s)

t—w T

t
=lim inf{jco(s3 +2)—i8ds}=oo > —oo,
S

limsup= I—I‘P(u)duds—llm sup- j ()S{ Oq(u)—p(u))—'Ozlfu—)(lrj()u)}duds
t—ow t—ow0 p

= lim sup- ”C (u’ +2)——duds—

t—o0

All conditions of Theorem 3.3.6 are satisfied and hence every solution of the given
equation is oscillatory. To demonstrate that our result in Theorem 3.3.6 is true, we also

find the numerical solution of the given differential equation in Example 3.3.6 using the

Runge Kutta method of fourth order.

We have

21

X(t) = f(tx(t), x(t) = x* =3 x* +

6

2x18 4 X (t)

with initial conditions x(1) =0.5, ;<(1)=10n the chosen interval [1,50] and finding the

values the functions r, g and f where we consider H(t,x) = f (t)I(x)at t=1, n=980 and

h=0.05.
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Numerical solution x(t)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Table 3.6: Numerical solution of ODE 3.6

k e x(t)
1 0.5
81 5 | -0.11388331
181 | 10 | 0.29975744
222 | 12.05 | -0.04307199
313 | 16.6 | 0.00691001
405 | 21.25 | -0.04618202
461 | 24 | 0.45734920
251 | 27 | -0.95229708
581 | 30 | 041341535
682 | 35.05 | -0.05082571
821 | 42 | 0.10467651
016 | 48.8| -0.00391035
981 | 50 | -0.95114725

Figure 3.6: Solution curve of ODE 3.6
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Remark 3.3.6: Theorem 3.3.6 extends result of Popa (1981) for the equation (2.2),
result of Wong (1973) for the equation (2.3), results of Onose (1975), Philos (1985) and
Yeh (1982) for the equation (2.4) and result of E. Elabbasy (2000) for the equation
(2.6). Our result can be applied on their equations (2.2), (2.3), (2.4) and (2.6)
respectively, but their previous oscillation results cannot be applied on the given
equation in Example 3.3.6 because their equations are particular cases of our equation

(1.1).

Theorem 3.3.7: Suppose, in addition to the condition (1) holds that

T ds
14 ——<k, ,k 0.
(14) L(S) kg >

(15) There exists a constant B™ such that

T ds . .
G(m) :;[(D(l,s) >B'm, B" e (—»,0) and meR.

Furthermore, suppose that there exists a positive continuous differentiable function p
on the interval [tO,OO) with p(t) is a non-decreasing function on the interval [tO,OO) such

that

(16)  lim sup | [ pu)[Coa(u) - p(u)]duds =,

1
r(s)o(s)

Where,p:[to,oo)—>(0,00). Then, every solution of superlinear equation (1.1) is

oscillatory.
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Proof

Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t) >0 on [T,oo) for some T >t, > 0. Define

_ pOr® ()
o(t) = —g(x(t)) ,U>T.

Thus and (1.1) imply

p()

ot) < p(t) p(t) - pOAW DL, a(t)/ p(t) +—= o) ot), t=T.
Thus, we have
p(t) (%J < pt)p(t) - oA DL, w(t)/p(1)), t=T.

Dividing the last inequality by ®(1, a)(t)/p(t))> 0 and by condition (1), we obtain

PO®)/PO) |+

Coa(t) - p(t) [<—C L
POICAM PO I==Ca 0]

Integrate from T to t, we have

ps)(@(s)/p(s))
j p(s)[C,a(s) - p(s)]ds < —C j D9 o) ds t>T (3.3.14)

By Bonnet’s theorem, since p(t) IS a non-decreasing function on the

interval [t,, o), there exists T, €[T,t|such that
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p(s)((s)/ p(s)) (o(s)/ p(3))
I DL w(s)/ p(s)) ”I DL w(s)/ p(S)) o (3319

Using the inequality (3.3.15) in the inequality (3.3.14), we have

o(t)/p(t) du
o(T)/p(Ty) (D(l’ U)
w(Tl)J/.p(Tl) du o(t)/p() du }
+
> OLu) § o)

<c, Gw(m) c, (w(oJ
< Corll) (p(m PO o

[ p(S)Coa(s) - p(s)] ds <~Cop(t)

< _Cop(t){_

Thus, by condition (15), we obtain

%) —-C,B o(t).

1

IP(S)[Coq(S) - p(S)]dS < Cop(t)G(

Integrating the last inequality divided by po(t) r(t) from Tto t, we obtain

fp(u) Coq(u) — p(u)|duds < ce{a’m)Jj S ~C,B’| X(G) g

l r(s) p(s)d (T) T 9(X(s))

Taking the limit superior on both sides, by condition (14) and since the equation (1.1) is

superlinear, we have

lim supj

t—0o

¥ j W)[C,a(u) - p(u)]du ds<I|msup{kC G(w((%;j COB*::-))%}<OO,

as t — oo, which contradicts to the condition (16). Hence the proof is completed.
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Example 3.3.7

Consider the following differential equation

(tz i(t)j. +1° x'(t) _x'() CSX ¢>o0.

x6(t)+(§<(t)/t2j2 v

3

We note that r(t) =t?, q(t)=t°, g(x)=x>and ®(u,v) = such that

u® +v?

j(1+ s2)ds :j—lds =-m>—()m,thus, B=-1,BeR and forallmeR.

T ds
e !
H(t x(t) _cosx _ 1

g(x) t7 "t

=p(t), forallt>0 and x#0. Let p(t)=t*such that

t

IlrtrstupJ. (S;O o1 j pW)[C,a(u)— p(u) duds—llriswu H"I |:Cu - }duds—

All conditions of Theorem 3.3.7 are satisfied and hence every solution of the given
equation is oscillatory. The numerical solution of the given differential equation using
Runge Kutta method of fourth order (RK4) is as follows:

We have
X° ()
o2
x® () +x (t)

X(t) = f(t, x(t), p = x(t) = x*(t) cos(x(t)) —

with initial conditions x(1) =0.5, ;<(1)=1 on the chosen interval [1,50] and finding the
values of the functions r, g and f where we consider H(t,x(t))=f({t)I(X) at t=1

n=980 and h=0.05.
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Numerical solution x(t)

1.5

0.5

-0.5

-1.5

Table 3.7: Numerical solution of ODE 3.7

Kk ti X(tx)

1 1 05

81 5 -1.23206499
181 10 0.40954827
221 12 -1.50525503
321 17 0.02833177
381 20 -0.33103118
521 27 0.04981132
586 30.3 -0.04300197
661 34 0.43117751
721 37 -0.12794647
821 42 1.46730560
917 46.6 -0.18820133
981 50 0.09644083

Figure 3.7: Solution curve of ODE 3.7
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Remark 3.3.7: Theorem 3.3.7 extends results of Bihari (1963) and Kartsatos (1968)
who have studied the equation (2.5) as mentioned in chapter two. Our result can be
applied on their equation, but their oscillation results cannot be applied on the given

equation in Example 3.3.7 because their equation is a particular case of our equation

(1.1)  when rit)=1 g(x(t)) = x(), CI)(g(x(t)),r(t);((t))E(D(x(t),;((t)) and

H(t,x(t))=0.
Theorem 3.3.8: Suppose, in addition to the condition (5) holds that
a7 |.’(t) <0 forallt>t,and (r(t)q(t))" =0 forallt>t,.

(18) ®(,v) =v forallv=0.

t—o0 t

(19) limsup }j{Azr(s)q(s)—j p(u)du}ds — o,

where p:[to,oo)—>(0,00), then, every solution of superlinear equation (1.1) is

oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t) >0 on [T,oo) for someT >t;, >0. Define

r()x()
o(t) = —g(x(t)) L E>T.

From o(t), equation (1.1) and condition (18), we get

rO X |
[ g(x(t))] < p(t) —qt)o(t).
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Integrate the last inequality from T to t, we obtain

F(t) X(t) X(s)
W60) <A+ j p(s)ds — j r(s)q(s) —— 2~ 36 ds, (3.3.16)

where

r(T) X(T)

A5

By condition (17) and the Bonnet’s Theorem, we see that for each t >T, there exists

T,e [T,t]such that

t ).((S) o t ).((S) . x(t)
1 a) S 5y = OO j T 5 (t)q(t)x(lz) o

Since r(t)q(t) > 0 and the equation (1.1) is superlinear, we have

O g 0 ,1f x(t) < x(T,)
x(L)g(U j —u) if x(t) > x(T,).

x(T3)

Thus, it follows that

t X(s) L gy
J r(s)q(s)mds > A,r(t)q(t), where A, =inf o

Thus, the inequality (3.3.16) becomes

r) x(t)

W) <A j p(s)ds - A,r(®)a(t).
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Integrate the last inequality from T to t, we have

j r(s)X(s)

ol = AT j Azr(S)q(s)—j o(u)du |ds

Since r(t)is positive and non-increasing for t > T, the equation (1.1) is superlinear and

by Bonnet’s theorem, there exists £, € [t,T]Such that

tr(s))'((s) x(B,) ) _ fxw‘)d_u
-[g(x(s)) (r)x(.[) u)>A3r(T) where A, =in Xg[)g(u)'

Thus, for t>T,we have

—_—

[AQF(S)Q(S) —f p(U)dU}dS <A@E-T)-Ar(T).
T
Dividing the last inequality by t and taking the limit superior on both sides, we obtain

limsup= I{Azr(s)q(s) J‘p(u)du}ds<llmsup Al(l— ) IimsupAarT(T)<oo

t—o0 t—o0 t—o0

as t — oo, which contradicts to the condition (19). Hence the proof is completed.
Example 3.3.8

Consider the following differential equation

doh) vl s XEO | X Oeosx)
( j X (1) +()’((t) /t) t*(x*(t)+1)
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Here

3

rt) =Ut, qt) =t*, g(x) = x°, d(u,v) =u+——— and
u” +v

H(t, x(t)) _ x*(t) cos(x(t)) L

o) - ey Sp PO forallt>0andx=0.

lim sup%j‘{AQr(s)q(s) —j p(u)du}ds = lim sup}j'{Ags3 - Gj.g—ﬂds =0

t—o0 t t—w t

All conditions of Theorem 3.3.8 are satisfied and hence every solution of the given
equation is oscillatory. The numerical solution of the given equation using the Runge
Kutta method of fourth order (RK4) is as follows:

We have

X(t) = f(t,X(t),;(t»zw_(xs(mx%/ (x“’(tm (t)D

with initial conditions x(1) =1, ;<(1) =1 on the chosen interval [1,50] and finding the
values of the functions r, g and f where we consider H(t, x(t))= f(t)I(x) at t=1,

n=980 and h=0.05.
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Numerical solution x(t)

1.5¢

0.5

-0.5

-1.5°

Table 3.8: Numerical solution of ODE 3.8

k tx X(ti)

1 1 1
80 | 4.95 -0.02069572
181 10 0.20451305
226 | 12.25 -0.00138478
321 17 0.11785698
421 | 22 -0.04991059
475 | 24.7 0.36339219
521 27 -0.21766245
581 30 0.86993097
661 34 -0.10477736
761 | 39 0.06293869
821 42 -0.71934519
955 | 48.7 0.05390472
981 50 1.15722428

Figure 3.8: Solution curve of ODE 3.8
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Remark 3.3.8:

Theorem 3.3.8 extends results of Bihari (1963), Kartsatos (1968) who have studied
the equation (1.1) as r(t)=1, g(x(t)) = x(t), D(g(x(t)),r(t) ;<(t))zd>(x(t),;<(t))
and H(t,x(t)) =0. Also, Theorem 3.3.8 extends results of Elabbasy (2000) who has
considered the equation (1.1) as ®(g(x(t)), r(t) >.<(t)) = g(x(t)) and H(t, x(t)) =0. Our
result can be applied on their equations (2.5) and (2.6), but their oscillation results

cannot be applied on the given equation in Example 3.3.8 because their equations are

particular cases of our equation (1.1).

Theorem 3.3.9: Suppose that the conditions (1) and (5) hold. Moreover, assume that

there exist a differentiable function p:[to,oo)—>(0, oo) and the continuous functions

h,H:D= {(t, S):it>s> to}—>R, H has a continuous and non-positive partial derivative

on D with respect to the second variable such that

H(t,t)=0 for t>t , H(t,s)>0 for t>s>t,.

_% H(t,s) = h(t,s)JH(t,S) V(ts)eD.

(20) If limsup et )_t[r(s)p(s)az(t,s)ds < o0,

where o(t,s) = h(t,s)—@,/H(t,s) :
p(s)

(21)  limsup 1

e H(G L) tj H(t.5)2(5)(Coa(s) ~ p(s))ds ==
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Then, every solution of equation (1.1) is oscillatory.
Proof

Without loss of generality, we assume that there exists a solution x(t) of equation

(1.1) such that x(t) >0 on [T, o) for some T >t,>0. We define the function o(t) as

ot) = PO ) x(t) X(t)

Tolkw)

This and the equation (1.1) imply

,0( ) k 2
oft) < pO) p(t) - PO DL, V(D) + 22 ) o(t) - (t)r(t)w ), t>T,

where v(t) = o(t)/p(t).

Then, by condition (1), we have forall t>T

c p(t) _
o) < POPO ~Cop®IV + £ Tt (t) ®"

w2 (t), t>T.

Integrate the last inequality multiplied by H (t,s) from T to t, we have

_t[H (t,5)2()(C,q(5) = p(s))ds < H (t, T)o(T) —H—% H (t,s)}w(s)dwj% H(t, s)o(s)ds

T

kH(t,s)
! FORCG

<HET)o(T) - j{kH(t S) 2 (s) 4ot s) YR s)w(s)}

(S)r(s)
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where o (t,s) =h(t,s) - %,/H (t,s).
P

Hence, we have

J H (t,5)(5)(C,a(s) - p(s)) ds < H(t, T)a(T) - 1 { /%w(s) +% /wg(t,s)} ds

+ j%az (t,s)ds. (3.3.17)

Then, for t >T, we have

th (t,5)0(s)(C,a(s) — p(s))ds < H(t, T)a(T) + 4—1kjr(s)p(s)0'2 (t,s) ds,t>T.

Dividing the last inequality by H(t,T), taking the limit superior ast o and by

condition (20), we obtain

[H(t,5) p(5)(Coa(s) - p(s))ds < (T)

T

: 1
limsup
t—oo H (t,T)

t

j r(s)p(s)o’ (t,s) ds < oo,

T

+ilimsup
4k e H(T)

which contradicts to the condition (21). Hence, the proof is completed.

Example 3.3.9: Consider the differential equation

(;((t)/tzj. +1° X3(t) + X == Xs(t)tcfs X(t), t>0.
4x° () + (x(t)/tzj
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We have

r(t):l, q(t) =t°, g(x)= x>, d(u,v) =u +L and
t* 4u® +v°

H (t, x(t)) COS(X(t))

o) v =pl).

Let H(t,s)=(t-s)* >0 Vt>s>t, >0, then,

%H(t,s)=—2(t —s) and thus h(t,s) =-2.

Taking p(t) =t such that

t

(] Iirlswup H(t,to){[r(s)p(s)gz(t,s)ds= "TiUp jr(s)p(s [h(t S)— 3 1/H(t,s)} ds
. 1 2 ‘o4
:Ilrlswup T !(—Z—E(t—s)] dS:?<oo
(2) limsup L tfH(t s) p(s)(C,q(s) - p(s))ds = limsup L 't[( —s) ( s —ij ds
e HET): ° o (t-T)%3 s’

= 00,

All conditions of Theorem 3.3.9 are satisfied, then, the given equation is oscillatory.
Also the numerical solution of the given differential equation is computed using the

Runge Kutta method of fourth order.

We have

X = (6 X0, X(0) =x* () cos(x(D) - x3(t)+L(t.)z

AXP(t)+x (t)
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with initial conditions x(1) = -1, ;<(1) = 0.5 on the chosen interval [1,50] and finding the

values of the functions r, g and f where we consider H(t, x) = f (t)I(x)at t=1, n=980

and h=0.05.

Table 3.9: Numerical solution of ODE 3.9

k tk X(ty)

1 1 -1

81 5 0.50348046
226 | 12.25 -0.00392170
321 17 1.05359426
381 20 -0.89282510
461 24 1.06448349
521 27 -1.07378290
581 30 0.93949122
661 34 -1.04029283
721 37 1.08568566
781 40 -0.98145745
841 43 0.77568867
921 47 -1.08892372
981 50 1.01773294
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Figure 3.9: Solution curve of ODE 3.9

1.5. T T T T T T T T T

Numerical solution x(t)
o
I
1

-0.5+~ -

_1. 5 C r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50

Remark 3.3.9: Theorem 3.3.9 extends Kamenev’s result (1978) and Philos’s result

(1989) who have studied a special case of the equation (1.1) as

rit)=1, g(x(t)) = x(t), ®(g(x(t)),r(t) ;<(t)) =g(x(t)) and H(t,x(t))=0. Our result
can be applied on their equation however; their results cannot be applied to the given

equation in Example 3.3.9.
Theorem 3.3.10

Suppose, in addition to the conditions (1), (5) and (20) hold that there exist

continuous functions hand H are defined as in Theorem 3.3.9 and suppose that

22)  o<inf|liminf 2&S) <
s2ty| t—oo H(t1to)

If there exists a continuous function € on [to,oo) such that
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. 1 ¢
23 limsu
( ) t—oo pH(t,T)T

[H (9P((CA(S) - )~ TS o™ s)}ds > Q(T)

for T >t,, where o(t,s) =h(t,s) - %JH (t,s), k is a positive constant and a
Yo,

differentiable function p: [to : oo) — (0, 0) and

Ao
@) [ e

where Q. (t) = max{Q(t),O}, then every solution of equation (1.1) is oscillatory.

Proof

Without loss of generality, we may assume that there exists a solution x(t) of equation
(1.1) such that x(t) >0 on [T,o0) for some T >t, >0. Dividing inequality (3.3.17) by

H (t, T) and taking the limit superior as t — oo, we obtain

imsup—— [H 9PSC.AE) -~ PS) - PO s)}ds < o(T)

t—o H(t,T)T
. 1 [kHEs) 1 [p)r(s) 2
_|.rpiup LT ! { /p(s)r(s)”(s)+5‘/ ” a(t,s)} ds

1 [kAs) 1 [p(s)r(s) 2
Sa)(T)—Ilmlan(LT) ﬂ p(s)r(s)”(8)+5 ” a(t,s))} ds.

t—oo

By condition (23), we get

1 Y [kA@s) 1 [p(s)r(s) i
o(T) 2 Q(T) + liminf H(ﬂ)ﬂ /p(s)r(s)“’(s)+§ /T O'(t,s)} ds.
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This shows that

o(T)>Q(T) forevery t>T, (3.3.18)

and

liminf [/kH(ts o(s) + 1/”(5)“3 (ts)} ds < oo,
t>o0 H(t T) 11\ p(s)r(s)

Hence,

oo > liminf ! j{ / KH(s) a)(s)+1,/ma(t,s)} ds
e H(tt) |V p(s)r(s) 2 k

. 1 ¢ kH(,s) ,
Z!mm{H(t,to) ! T (s)ds + H( 0l j o(t,s)H(t, s)a)(s)ds} (3.3.19)

Define
1t kH(ts)
vo= H(t,to)tj () © Dt
and
TH@LL O)Ia(t .$)\H(t,8)a(s)ds, t>1,.

Then, (3.3.19) becomes

liminf [U®)+V ()] <. (3.3.20)
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Now, suppose that

T—Qigi—ds:al (3.3.21)
p(s)r(s)

)

Then, by condition (22) we can easily see that

limU () = . (3.3.22)

Let us consider a sequence {T,} _,,, in [ty,o0) with limT, =co and such that

mnp(n)+va;ﬂ=ymnﬁ@uo+vaﬂ.
By inequality (3.3.20) there exists a constant N such that
U, )+V(T,)<N, n=123.. (3.3.23)

From inequality (3.3.22), we have

limu(T,) =o. (3.3.24)

And hence inequality (3.3.23) gives

limV (T,) = . (3.3.25)

n—oo

By taking into account inequality (3.3.24), from inequality (3.3.23), we obtain

V@) _ N1

ue,) u@,) 2
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Provided that n is sufficiently large. Thus

which by inequality (3.3.25) and inequality (3.3.23) we have

hmVZCI')
e U(T,)

(3.3.26)

On the other hand by Schwarz’s inequality, we have

vz(Tn)szé t){j (T, s)J/H(T,, s)a)(s)ds:l

% p(s)r(s) 1 FkH(T,9) ,
t{ (T”’S)dSHH(r t)I TOr GG

<

[Ha t

p(S)r(s)
I

H(T 5, (T, s)dsxU (T,).

Thus, we have

Vi) Ip(s)r(s)
u(,) H(fn,t) k

2(T,,s)ds for large n.

By inequality (3.3.26), we have

T,

%I jr(s)p(s)a (T.,s)ds= oo,

= H(Tn’ o)

Consequently,

limsu p
o H(t,t 0)

j r(s)p(s)o (t,s)ds = oo,
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which contradicts to the condition (20). Thus, inequality (3.3.21) fails and hence

T m ds < o
Lr)p0)

Hence from inequality (3.3.18), we have

T Q% (s) [ O)

ds SJ'
r(s)p(s) i r(s)p(s)

ds< oo

to

which, contradicts to the condition (24). Hence the proof is completed.

Example 3.3.10

Consider the following differential equation

o] s 0| e
9x125(t) + G{X(%}
1 1 . u'
We note that r(t) ==, q(t) =, g(x) =x",®(U,vV) =u+———, and
t t 9u™* +6v

H(t,x(t)):_xz(t)sinzx(t)<_ X (t)
g(x(t)) (x*®O+) O+

<0=p(t) forallt>t,.

We let H(t,s)=(t—s)* >0 forallt>s>t,, thus

aﬁ H(t,s) =—-2(t —s) = h(t,s)/H(t,s) forallt >t, > 0. Taking p(t) =6 such that
S
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t t

; 2 i ,0(5)
Ilrismup e 1 r(s)p(s)o (t, s)ds = Ilriswup TRy J r(s)p(s)[h(t,s) ,/ H(t,s) }
=Iimsup j ds=0< o,
inf{liminf m} mf(llmlnf (t-s)’ j inf(2) =1,
s2ty | t—>o H ’to) sty |t ( ) s>t,
thus O<inf{|iminf H S)} o,
> ( , O)
imsup o | [H(t $)p(5)(C,a(s) - p(s))—%c#(t,s)}ds

= limsup

t
(t-s)> 6 3C, _3C
lim [|6C, 57— — [ds=—2>"—"%.
H(t,T)T s ks T? 4T

s2ds = co.

0 2 2 o
Set Qq)zsc(;’ na _3Co g IQ +(8) 4o 3C0
47 7 1(s)p(s) 32 3

All conditions of Theorem 3.3.10 are satisfied. Thus, the given equation is
oscillatory. We also compute the numerical solution of the given differential equation

using the Runge Kutta method of fourth order (RK4). We have

- x*(t)sin®(x) _
X (t) +1

X13(t)
9x125(t) + G(Q(t)jm

X(t) = f(t, x(t), x(t) = X' (t) +

with initial conditions x(1) = -1, ;<(1) =0.5 on the chosen interval [1,50]and finding the

values of the functions r, g and f where we consider H(t, x) = f (t)I(x)at t=1, n=980

and h=0.05.
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Numerical solution x(t)

1.5

0.5

-0.5

-1.5

Table 3.10: Numerical solution of ODE 3.10

Kk t X(tx)
1 -1
81 5 0.76515384
181 10 -0.14404191
221 12 1.02261405
321 17 -0.56631036
381 20 0.93295032
461 24 -0.96790375
561 27 0.94270152
581 30 -0.57991575
661 34 0.55142239
721 37 -0.15874611
798 | 40.9 0.06496234
921 47 -0.93061112
981 50 0.97197772

Figure 3.10: Solution curve of ODE 3.10.
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Remark 3.3.10

Theorem 3.3.10 extends and improves the results of Philos (1989) and results of

Yan (1986) who have studied the equation (1.1)

r)=1 g(x(t)) = x(t), ®(g(x(t)),r(t) >.<(t)) = g(x(t)) and H(t,x(t)) =0, as mentioned
in Chapter Two. Our result can be applied on their equation (2.1), but their oscillation

results cannot be applied on the given equation in Example 3.3.10.

Theorem 3.3.11

Suppose in addition to the condition (1) and (2) hold that assume that there exists

o be a positive continuous differentiable function on the interval [tO,OO) with p(t) is

increasing on the interval [to,oo)and such that

1

(25)  limsup o jp(s>[coq(s> — p(s)]ds = oo,

t—w
where p:[t,,%0)— (0,0), then, every solution of equation (1.1) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t) >0 on [T,oo) for some T >t, > 0. Define

_POrOXO -
O g T

Thus and equation (1.1) imply
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/7() k 2
o(t) < p(t) p(t) — PRI, @(t)/ p(1)) + o0 o(t)— (t)r(t)a) ), t=T.

Thus, we have

o*(t),t>T. (3.3.27)

p(t)( @j < pM)p(t) — pOAODPA, o(t)/ p(1) -

k
p(t) pMr(t)

Dividing the last inequality by d(1, a(t)/ p(t))> 0, we have

M)/ p®) _  pt)pE)

< - =T
o, o)/ p(t)) ~ O o)/ p(t)) pHa(), t=

By condition (1), fort > T, we obtain

Cop®(@®)/p®) |1

HICoa(t) — pt) |<-
pM®)[Coa(t) - pt) ] < DL w(t)/ p(t))

Integrate the last inequality from T to t, we obtain

)@(s)/ p(s))’

Lals) p(s)) ds ,t>T. (3.3.28)

Ipﬁ)oma p@ﬂm__cjp@

By Bonnet’s theorem, we see that for eacht > T, there exists T, € [T,t]such that

Ip@ﬁdﬁhﬁ$ <>I (2(9)/ ). (3329)
DL o(5)) p(5)) 3 0(9) p(S)
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Using the inequality (3.3.29) in the inequality (3.3.28), we have

oV)/p®)
Ip(s) Coq(5) - POl < —Coplt )I @) 0O g5 ¢ py [

(L w(s)/p(s)) o’ (u(Tl)/p(Tl)q)(l’u).

By condition (2), dividing the last inequality by po(t) and taking the limit superior on both

sides, we obtain

oWy,
Ilmsup—_[p(s) C,a(s)— p(s)] ds <-C, limsup .
or oo PLY)

—C. lim sup| - w(T1)j.P(T1) du . o(t)/p(t) du
0 0 (D(l, ) 0 (D(l, U)

u
<C,lim sup(G( () ]+ B*] < oo,
t—o0 p(M))

t—o0

as t — oo, Which contradicts to the condition (25). Hence the proof is completed.

Example 3.3.11: Consider the differential equation
. . 3 3 -
(tx(t)) J{t +t32costJX3(t) _X (t)ts:n X(t) 0.

Here r(t) =t, q(t) —t+t3—COSt g(x) =x®, ®(u,v)=u and

Ht X(t)) sin f(t) = p(t) forallt>0and x = 0. Taking p(t) =t such that
o) Tt

3
Ilmsup—_[p(s) C,q(s)— p(s)) s_Ilmsup Is (COS +3200COSS—%j ds = o,

S S

t—o0 t—oo
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All conditions of Theorem 3.3.11 are satisfied and hence, every solution of the given

equation is oscillatory. To demonstrate that our result in Theorem 3.3.11 is true we also

find the numerical solution of the given differential equation in Example 3.3.11 using

the Runge Kutta method of fourth order (RK4).

We have

X(t) = f(t,x(0), X(t)) = x° sin(x) — 3.99x

with initial conditions x(1) =1, >.<(1) =-0.5 on the chosen interval [1,50] and finding the

values of the functions r, g and f where we consider H(t,x(t)) = f(t)I(x) at t=1,

n=980 and h=0.05.

Table 3.11: Numerical solution of ODE 3.11

k tx X(ti)

1 1 1

81 5 -0.18505453
181 10 0.72315333
221 | 12 -0.94485686
321 | 17 1.00637880
400 | 20.95 -0.15920533
461 24 0.23724881
529 | 274 -0.14883373
581 | 30 0.86387004
661 34 -0.50741992
719 | 36.9 0.06342616
785 | 40.2 -0.12804230
911 | 46.5 0.07913369
981 50 -0.48477630
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Figure 3.11: Solution curve of ODE 3.11
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Remark 3.3.11

Theorem 3.3.11 is the extension of the results of Bihari (1963), Kartsatos (1968)

who have studied the equation (1.1) as rt)=1 g(x(t)) = x(t),

D(g(x(t), r(t) x(1) = D(x(t), x(t)) and H(t,x(t) =0 and results of Wintiner (1949)

and Kamenev (1978) who have studied the equation (1.1) as r(t)=1, g(x(t)) = x(t),

d(g(x(t)), r(t) >.<(t)) = g(x(t)) and H(t, x(t)) = 0,as mentioned in Chapter Two. Our
result can be applied on their equations, but their oscillation results cannot be applied
on the given equation in Example 3.3.11 because their equations are particular cases of

our equation (1.1).

Theorem 3.3.12: Suppose, in addition to the condition (2) holds that

(26) — C, >0,
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<v forallv 0.

(27)

Assume that p be a positive continuous differentiable function on the interval [to,oo)

with p(t) is a decreasing function on the interval [to,oo)and such that

(28) nmsupjp<s>[q<s>— =P (s)}ds—

t—w

where p:[t,,0)—(0,c0)and k’is a positive constant, then, every solution of equation

(1.1) is oscillatory.
Proof

Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.1) such that x(t) >0 on [ ) for some T >t, > 0.By conditions (26) and

(27) and from inequality (3.3.27) divided by ®(1, o(t)/ o(t))> 0, we have

p(t)(a)(t)/,D(t)). < p)a(t) — pt)q(t) — *

K
oML a()/ p(t) re)

where k™ =k/C,.

Integrate the last inequality from T to t, we obtain

o(3) a)(s)/p(s) t - ~
I . 0(s) ) I pya(sHs = L(s)p(s)w v p(s)w(s)} *
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Thus, we have

e s romom{[ et 5

+ W j r(s)p(s) p?(s)ds.

Then, we get

(S)e(s)/ p(s))'
J (9) 2) e @070 o=~ LN 2O (3330

By Bonnet’s theorem, we see that for each t > T, there exists a, € [T,t]such that

(253,
(L a(s)/ p(s))

jp(s) (@(s)/p())" 4

(L o(s)/ p(S)) ——pUﬁ

(3.3.31)

From inequality (3.3.31) in inequality (3.3.30), the condition (2) and taking the limit
superior on both sides, we obtain
o(@)/p@) g

limsup p(s)[q(s)——r(s)p (s)}ds< o(T)limsup —
o / o i @)

o(T)/p(T) o(a)/p(a)
. du du
<—p(MI — - -
A Irpiu{ -([ ®(L,u) ’ J; d)(l,u)}

: o(T) o(a,)
Spaﬁhwiw{GLpGWJ_G[pQJ}]

< p(T) Iirpﬁswup(G(;)—((_::;J + B*J <o

as t — oo, which contradicts to the condition (28). Hence the proof is completed.
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Example 3.3.12

Consider the following differential equation

: ’ 5 5 27 9 .
25x(t) N t +§1t cost X (1) + X' (t) : _X (t)sLn(x(t))’t>0l
" +1 " +1 18 . 5 t
X (t) + 2x(t)/(t +1)
2 t® + 4t° cost o u?
Here r(t) =———, qt) =———, g(X)=x",®(u,v) =u + and
H(t, x(t)) sin(x(t)) _ 1 t5+1
= <—=p(t) forallt >0and x #0. Let p(t) = >0
such that
‘ 1 ) £s°+1/s°+4s°coss 1 ( 2 V1
lims S S)— r(s s) |[ds =lims —— — |ds
IHwUpI'O( )[q( ) ak” (8P )} IHwUpl s° { s°+1 4k [35+1J 52}

= 00,

We get all conditions of Theorem 3.3.12 are satisfied and hence, every solution of the
given equation is oscillatory. The numerical solution of the given differential equation is

found out using the Runge Kutta method of fourth order (RK4). We have

X27 (t)

X (t) + x(t)

X(t) = f(t, (1), x(t)) = x° (t) sin(x(t)) — 42.49| x°(t) +

with initial conditions x(1) =-0.5, ;<(1) =1 on the chosen interval [1,50] and finding the

values of the functions r, g and f where we consider H(t,x(t)): f@)I(x) at t=1,

n=980 and h=0.05.
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Numerical solution x(t)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Table 3.12: Numerical solution of ODE 3.12

k | t x(t)

1 1 05

83 | 5.1 0.02786237
191 | 105 | -0.06638742
226 |12.25|  0.03073821
333 | 176 | -0.01683783
381 | 20 0.62716312
479 | 249 |  -0.16418655
521 | 27 0.47451786
581 | 30 -0.10418323
661 | 34 0.31823882
721 | 37 -0.26359395
821 | 42 0.63188040
921 | 47 -0.75244510
981 | 50 -0.19568525

Figure 3.12: Solution curve of ODE 3.12

50
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Remark 3.3.12

Theorem 3.3.12 extends and improves the results of Bihari (1963) and the results of
Kartsatos (1966) who have studied the equation (2.5) as mentioned in chapter two. Our
result can be applied on their equation, but their oscillation results cannot be applied on

the given equation in Example 3.3.12 because their equation is a particular case of our

equation (L1) when r(®)=1 g(x(t))=x(t), D(g(x(),r(t)x(t)) = D(X(t), x(t)) and

H(t, x(t))=0.
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3.4 Conclusion

In this section, oscillation of second order nonlinear differential equation with
alternating coefficients of type (1.1) has been investigated. Some oscillation results have
been presented. These results contain the sufficient conditions for oscillation of
solutions of the equation of type (1.1) which have been derived by using the generalized
Riccati technique. Our results extend and improve many previous results that have been
obtained before, for example, such as the works of Fite (1918), Wintner (1949),
Atkinson (1955), Bihari (1963), Kartsatos (1968), Philos (1989), Philos and Purnaras
(1992), El-abbasy (1996), and El-abbasy et al. (2005). All these previous results have
been studied for particular cases of the equation (1.1) whereas our sufficient conditions
have been derived for the generalized equation (1.1). A number of theorems and
illustrative examples for oscillation differential equation of type (1.1) are given. Further,
a number of numerical examples are given to illustrate the theorems which are
computed by using Runge Kutta of fourth order function in Matlab version 2009. The
present results are compared with existing results to explain the motivation of proposed

research study.
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CHAPTER FOUR
OSCILLATION THEOREMS FOR SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS

WITH DAMPING

4.1 Introduction

In this chapter, we consider the second order nonlinear ordinary differential

equation of the form

[r(t)?(x(t» i(t)j +h(t) X(D) + gODGXO), FOPO) X(M) = HE O x(M),  @1.2)

where r,h and q are continuous functions on the interval [to,oo),\PeC(R, R*) and
r(t)is a positive function. g is a continuous function for XE(—O0,00), continuously
differentiable and satisfies xg(x) >0 and g'(xX) >k >0 for all x =0. The function ® is
a continuous function on RxR with ud(u,v)>0 for all uz0 and

®(Au, Av) = AD(u,Vv) for any A € (0,0) and H is a continuous function on [to,oo)XRXR

with H (t, x(t), x(0)/g(x() < p(t) for all X #0and t>t, .
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4.2 Second Order Nonlinear ODE With Damping Term of Type (1.2)

We consider a problem of finding the sufficient conditions for oscillation of
solutions of ordinary differential equations of second order. The obtained oscillation
results are motivated extended and improved many previous oscillation results, for
examples, Bihari (1963), Kartsatos (1968), Greaf, et al. (1978), Grace (1992), Elabbasy
et al. (2005), Lu & Meng (2007), Berkani (2008) and Remili (2010). Some new
sufficient conditions are established which guarantee that our differential equations are
oscillatory. A number of theorems and illustrative examples for oscillation differential
equation (1.2) are given. Also, a number of numerical examples are given to illustrate
the theorems. These numerical examples are computed by using Runge Kutta of fourth
order in Matlab. The obtained results are compared with existing results to explain the

motivation of proposed research study.

4.3 Oscillation Theorems

We state and prove here our oscillation theorems.

Theorem 4.3.1: Suppose that

(1) a&a<¥(Xx)<a,, a,a,>0andfor xeR,

T ds . s
(2) G(m)= >—-B, B >0forevery meR.
-([cb(l,s)

Assume that there exists a positive continuous differentiable function o on the

interval [t,, ), p(t) is an increasing function on the interval [t,,c0)and such that
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. 1 _ h(s) e
(3) nrpiupwip(s)[coq(s)—p(s) —4a*r(s)}ds— ,

where p:[t,,o0) = (0,0), then, every solution of equation (1.2) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t) >0 on [T,oo) forevery T >t, >0. Define

o) - LOTO¥COIXO L
g(x())

By equation (1.2) and condition (1), we obtain

' PO X(1) p(t)
o) < pORO -2 - PO )/ o)+ S0l

~ k,o(t)l’(t)‘P(X(t));( ® (4.3.1)
92(x(t))

Thus, we have

o)) i PONOXE  koOrOPO) % ©
pm(%J < PP - POAOPL. 0/ p0) -7 TS oo T

Dividing the last inequality by ®(1, o(t)/ p(t))> 0, we have

pPO®/pM) . p)p() PO (1)

_ t t _
oL o)/ p0)  oLe®/p®) © 090 (L o(t)/ p(1))g (X(t))

akepOrmx @ 432
oL o) p®)g* (xO)) e
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By condition (1) and since ®(1, o(t)/p(t)) >0 then, there exists a positive constant Cq

1 i Then, fort>T, we

< .
(L a(t)/p(t)) C,

such that ®(, w(t)/p(t)) >C, thus, 0<

obtain

Cop®(@®)/ PO Cop®NOX®) Corkp®r®)x (©
oL a®)/pt) DL at)/ p)axt) L aolt)/ pt))a®(x(t)

p(t)(Coa(t) — p(t))< -

Integrate the last inequality from T to t, we obtain

J@(s)/ ()" 4
(L o(s)/p(s))

IS OLON O MU CI{O NS (T W
J O, (s)/p(s)) X(S) | PLw(S)/p(s)) 97 (X)) | 33

jp(s) Coa(s) - p(s))ds< —C J‘P(S

Since p(t) in the first integral in R. H. S. of the inequality (4.3.3) is an increasing

function and by applying the Bonnet’s theorem, we see that for each t > T, there exists

e [T,t] such that

p(s)((s)/ p(s))’ (@(s)/ p(s))
j (L w(s)/p(s)) ()I 1w(s)/p(s)) > (4:34)
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From the second integral in R. H. S. of (4.3.3), we have

[ EECLE XS) |, ake®r(s)  x(9) |,
1| L)/ p()) 9(x(5) DL w(s)/p(s)) 9% (x(5))

| J akp()r(s)  x(s) 1 J p(s) o | ds
1| VL a(s)/p(s) 90X() - 2\ akr(s)o(Le(s)/ p(s))

Co 1 p(s)h*(s)
4a.k 1 r(s)@(L w(s)/ p(s))

1 p(s)h(s)
l 5 ds, (4.3.5)

where a” =ak.

From inequalities (4.3.4) and (4.3.5) in inequality (4.3.3), we have

h*(s) Vgg<_ (@(9)/p()
()JS “o ()I oL o(s) p(s))

w(t)/P(t) du

o(Ty)/p(Ty) CD(l’ U) |

| p(s)( LOREOR

<—Cyp(t)

By condition (2), the last inequality divided by p(t) and taking the limit superior on both

sides, we obtain

z o(t)/p(t)
h?(s) j . J du

ds <-C, limsup
a’r(s) or - oiipy L U)

o(Ty)/p(Ty) o(t)/p(t)
<-C, lim sup| - j d_u+ .[ _du
> oLu) 3 DdLu)

<C, lim sup G(w(Tl) —G[a)(t)j}
oo | o) Lp(t)

<C, lim sup G(ﬂ} B*] <o,
P(T.)

nmsup— ] p<s)[ 0405~ P(5) -

t—w

t—oo

as t — oo, Which contradicts to the condition (3). Hence the proof is completed.
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Example 4.3.1

Consider the differential equation

(x t)+2° ()j x(t) ( +3costJ ()_2t2x5(:)co4s(x(t))1t>0.
2(t)+1 t? (t"+t%)

We have r(t) =1, h(t):t%, q(t) = t+t3—COSt, g(x) = x>, ®(u,v)=u and
@ w00=2 92 6and 1<w()=1+— - <2 forall x<R.
x?(t)+1 x2(t) +1

H (t, x(t), x(t)) 2t? cos(x(t))
(2) g(x(t)) = o) _t p(t) forallt>0andx=0.

Taking p(t) =t® such that

© nmsup—jp(s)[ 0(8) -~ p(s) L) st

t—wo 4 r()
) 1¢ ,(C,s*+3C,coss 2 1
= limsup—= | s?| =2 0 - -~ _lds=w
prtzl ( s s* 4a sﬁJ

All conditions of Theorem 4.3.1 are satisfied and hence every solution of the given
equation is oscillatory. To demonstrate that our result in Theorem 4.3.1 is true, we also
find the numerical solutions of the given differential equation in Example 4.3.1 using

the Runge Kutta method (RK4) for different steps sizes.

We have

X(t) = £ (t, X(t), X(t) = X° cos(X) —3.9x °
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with initial conditions x(1) =1 x() =1 on the chosen interval [150], the functions

Y(x)=1, h(t)=0 and finding the values of the functions r, q and f , where we

consider H(t,x,x) = f(t)I(x,x) at t=1, n =2250, n =2500, n=2750 and n=3000 and

the steps sizes h =0.021, h =0.019, h =0.017 and h = 0.016.
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Figure 4.1(a): Solution curves of ODE 4.1
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Figure 4.1(b): Solution curves of ODE 4.1
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Remark 4.3.1: Theorem 4.3.1 is the extension of the results of Bihari (1963), Kartsatos

(1968), who have studied the equation (1.2) when r(t)=1, W(x(t))=1 h(t) =0,

136



g(xX(1) = X(t), P(G(X®)), r{t)F(X(1)) x(t)) = D(x(t), x(t) and  H (t, x(t), x(t)) =0 and

results of Kamenev (1978) and Wintiner (1949) who have studied the equation (1.2) as
r() =1 WX®) =1 h) =0, g(x(t) =x(), D(GXD),rt) ¥(x®) X)) = g(x(t)) and

H(t,x(t),;<(t)) =0. Our result can be applied on their equations, but their oscillation
results cannot be applied on the given equation in Example 4.3.1 because their equations

are particular cases of our equation (1.2).

Theorem 4.3.2: Suppose, in addition to the conditions (1) and (2) hold that
(4) h(t)>0, forallt>t,.

(5) d@ELv)<C,C, >0 for veR",

<v forallveR".

(6)

d(,v)

Assume that o be a positive continuous differentiable function on the interval [t,,)

with p(t) is a decreasing function on the interval [to,oo)and such that

™ Iimsupjp(s{q(s) Pk, (s)}ds — oo,

t—oo

where k, =a,C, /4k, k, =a,/4ka’C, and p:[t,,00)—(0,:0), then, every solution of

the equation (1.2) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t) >0 on [T,oo) for some T >t, >0. From inequality (4.3.2)

and by conditions (1) and (6), we have
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pO(@®)/ o) ( B h(t) ] o
(L o)/ p(t)) <[P0 r() ¥ (x(t) DL w(t)/ p(t)) (t) - p(t)a(t)
Kk

a,p(t)r®eQ ot)/ p(t)

)a)z(t).

Integrate the last inequality from T to t, we obtain

pE)@()/p()) 4o . _|
[t oy <l s

t

N J k o) (PO =) HE PO 05) p(5))| o
1V a,p()r(s)@(L w(s)/ p(s)) 2,Jk/2,p(5)r ()DL a(s)/ p(s))

a, ! ) h(s) 2
| el at)s (S))[p(s) (TN w(s)/p(s))j *

Since (L, w(s)/p(s))>C, and by conditions (4) and (5), we get

P)@($)/p(8))" 4o - | a, | 2y, N6
J 12(3)//)(5)) s—lp(soq(s)dswjp(s)(clr(s)p )+ ¢, (S)j .

Thus,

‘ s RO eSS o)
Jr (S){ ~k Zr(sJ j DL als) p(5) (439

Since p(t)is a decreasing function and by the Bonnet’s theorem, we see that for each

t >T, there exists a, <[T,t] such that

p)@($)/P(9)" 4 (@(s)/p(s))"
I 1w(s)/p(s)) T (T)I (L w(s)/ p(s)) “ (437
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From inequality (4.3.7) in inequality (4.3.6), condition (2) and taking the limit superior

on both sides, we obtain

h ( ) o(a)/p(ay) dU
ds< T)lim su —_
)} —p(T) p mn

20 (T)/p(T)

w(T)/p(T) dU w(at)/p(at) du
I ®(Lu ®(1,u)

lim supjp(s){

t—o

—p(T)lim sup| —

t—>w 0

Sp(l')limsup( J

tow

as t — oo, Which contradicts to the condition (7). Hence the proof is completed.

Example 4.3.2

Consider the following differential equation

( (x* () +4) * (t)J e X(t){t +4t° cost] )+ x7(t) X (t)sm(x(t))
(x*+3) F+1 o [P0 +4) t
T+ (t)
(x*(t)+3)
Here r(t) =t°, h(t) =t?, q(t):ﬂ%, g(x)=x", d(u, v)_u+u U:V :

X (t)+4 4 for all x e Rand H(t,x(t),;((t)) sm(x(t))

(t) 3 3 g(X(t)) tg = p(t) for all

1<¥Y(x)=

t+1

t>0and x=0. Let p(t) =—— ,,z.y(t)——E forallt >0 and such that

Ilmsupjp(s) q(s) —k,r(s)p*(s) -k, h((s))}ds—llmsupj‘

t—>o t—ow

k, k
S +1{s +A5fs Coss K Ky ds
S

+1 s’ s°

= 00,
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All conditions of Theorem 4.3.2 are satisfied and hence every solution of the given
equation is oscillatory. The numerical solutions of the given differential equation are
found out using the Runge Kutta method of fourth order (RK4) for different steps sizes.

We have

X(1) = f (t, X(0), X() = X° (1) sin(x(t)) — 2.49 ﬁa)+__liﬂ%__.

X2+ x (t)

with initial conditions x(1) = 0.5, x() =1 on the chosen interval [150], the functions

Y(x)=1and h(t)=0 and finding the values of the functions r, g and f where we

consider H(t, x, ;<) = f () I(x, >.<) at t=1, n =2250, n =2500, n=2750 and n=3000 and the

steps sizes h =0.021, h =0.019, h =0.017 and h = 0.016.
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Numerical solutions x(t)

Figure 4.2(a): Solution curves of ODE 4.2
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Figure 4.2(b): Solution curves of ODE 4.2
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Remark 4.3.2:

Theorem 4.3.2 is the extension of the results of Bihari (1963) and Kartsatos

(1968) who have studied the equation (1.2) when

rit) =1 Y(x(t))=1 h(t) =0, g(x(t)) = x(t),
D(g(x(t)), rt)¥(x(t)) >°<(t)) z(D(x(t),;((t)) and H(t,x(t),i(t))so. Our result can be

applied on their equation, but their oscillation results cannot be applied on the given
equation in Example 4.3.2 because their equation are particular cases of our equation

(1.2).
Theorem 4.3.3

Suppose, in addition to the conditions (1) and (4) hold that

(8) q(t) >O0for t >1t,.

]M<oo for all ¢ >0.

9
©) & 9)

Assume that there exist a differentiable function p:[t,,0)—(0,00) such that

(pr) <oand

! ”[pgg;;w PO <

1) limsup j J £ €.~ p(e) s =

t0 f

Then, every solution of equation (1.2) is oscillatory.
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Proof
Without loss of generality, we assume that there exists a solution x(t) of equation
(1.2) such that x(t) >0 on [T,c0)for some T >t, >0. From the inequality (4.3.1) and

condition (1), we have

é)(t)Sp(t)p(t)—% ot) - pOIODE w(t)/p(t))+pg; oft) - maﬂt).

Since @ (1, w(t)/p(t)) > C,and integrating the last inequality from T to t we have

o) = (M) - [ P(9(C,(5) - P))ds - L‘ 5O {ﬁ O e (s))}"(”]"&

Then, for t>T and by the condition (4), we have

PO PHOIXE) _ - | ) a, | p(s)  hs) 2
o) oM Jp(s)[coq(s) pOds +2 jp(s)r(s)[p(s) r(S)T(X(S))J ds

t °2(s)r(s) (s)h*(s)
< a)(T)—I,O(S)[Coq s)]ds+ a0 j[ ) + pafr(s) ]ds.

Integrate the last inequality from T to t, we have

J‘p(s)r(s)(‘{’xg)()s)) X(8) ds < o(T)(t-T) _IIP(U)[COq(u) — p(u)]duds

L& [ pWIr)  pwh’ )
! J{ o) 1) ]duds (4.3.8)

k
Since (p(t)r(t))is a non-increasing function and by the Bonnet’s theorem, we see that

for eacht > T , there exists /3, € [T,t]such that
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p<s)r(s>\11(x(s»x(s)d T \P(x(s))x(s)d _ e u)du
I I(x(s)) A )I o) PO ] o
Since p(t)r(t) >0 and the condition (9), we have
t x(8)
J p(s)r(s)%ds > A, where A, = inf p(T)r(T)X(L%.

Thus, the inequality (4.3.8) becomes

|

——_

pW)[Cya(u) — p(u)]duds < w(T)(t -T) - A3+Z1 ﬂ{pw)rw) e (U)Jd uds.

p(u) a;r(u)

Dividing the last inequality byt taking the limit superior as t — oo, we obtain

lim sup= j j p(U)(Cya(u) - p(u))duds<Ilmsupa)(T)(l—ﬂ]

t—o t—oo

I|m sup= ” (u)r(u) p(u)h () duds < o
t pu) a’r(u) ’

which contradicts to the condition (11). Hence the proof is completed.
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Example 4.3.3

Consider the differential equation

®+2) .Y x(t) ). x5 (1) X (t)sm(x(t))
Lm () +1° X (t)+ tlo

0 | () +2)X() 2
X (t)+[ ts(xz(t)+2)}

3

Here r(t) = i>O h(t)_— q(t) =t g(x) =x>,d(u,v) =u+ 2u o
us+v
2 2
‘P(x)zxz(t)+2>0and 1§‘P(x):X2(t)+2:1+ 5 1 <2 forallxeR and
x“(t)+1 X“(t)+1 X“(t)+1

0< T‘P(x)dx <+j3°2dx _ 1
w90 L x 2

;<o forall ¢ > 0.

H (Lg)E)((t()t’)))((t)) _ S'nt(i(o(t)) <-— =p(t) forallt>0 andx = 0.

Taking p(t) =t* >0 for t >0, /.)(t) =4t > 0 and (p(t)r(t)) = _t% <0 forallt>0.

@ lim sup = ”[p(u)r(u)+p(u)h(u)}duds_llmsup ”(—Jruijduds

L T (u) a’r(u) o Lo
ECHNE S
3, 7t
1
(2) limsup = ”p(u) C,q(u) - p(u)]du ds =limsup= ”u ( uTj duds =

t—o0 to 1 t—oo t t
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It follows from Theorem 4.3.3 that the given equation is oscillatory. The numerical
solutions of the given differential equation are found out using the Runge Kutta method

of fourth order (RK4) for different steps sizes.

We have

;0)=f(an)ia»::x%osnmia»_.xsa)+___£fﬁ%f_

XO(t)+x (1)

with initial conditions x(1) = 0.5, ;<(1) =1 on the chosen interval [1,50], the functions

Y(x)=1and h(t) =0and finding the values of the functions r, g and f where we

consider H(t, x, ;<) = f () 1(x, >.<) at t=1, n =2250, n =2500, n=2750 and n=3000 and the

steps sizes h =0.021, h =0.019, h =0.017 and h = 0.016.
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Figure 4.3(a): Solution curve of ODE 4.3
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Figure 4.3(b): Solution curve of ODE 4.3
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Theorem 4.3.4

Suppose that conditions (1) and (8) hold and

(12) h(t)<0 fort>t,.
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Furthermore, suppose that there exists a positive continuous differentiable function p on
the interval [t,,0) with p(t) >0, (p(O)r®)” <0, (a, PH)r(t) — pON(E) = 0and

(a, POr(E) — p(th()* <0 such that

ds

= oo, forevery t>t,.
r(s)o(s)

19 |

14) tim [ p(s)[Ca(s) ~ p(s)]ds =<

Then, every solution of super-linear equation (1.2) is oscillatory.

Proof

If x(t) is oscillatory on [T,oo), T2>t,20, then, ;<(t) is oscillatory on [T,oo) and if

>.<(t) is oscillatory on [T,c0), then, ;(t) is oscillatory on [T,c0). Without loss of

generality, we may assume that there exists a solution x(t) of equation (1.2) such that

x(t)>0 on [T,0).for some T >t, >0 We have three cases of >.<(t) ;

(i) x(t)>0 foreveryt>T.
(i) ;<(t)<0 foreveryt >T.

(iii) x(t) is oscillatory.
If ;<(t)> Ofort>T, T >t, and we define

POrOYMXO . 1

W=k

150



Then, by equation (1.2) and condition (1), we get

< o) o(e) . LONOXO e 3 pOrOXO
o) < pOPO - A - pOAOR ) p(0) + 5 TS

Since  ®(L, w(t)/p(t)) >0, then, there exists a positive constant Cp, such

that (L, e(t)/p(t)) > C, >0 for t > T, we have

X(t)

o) 2P0, - POL+ 22 S0~ 0N |

Integrate the last inequality from T to t, we obtain

o(t) < o) [ pENC.a(s) - ps)]ds + I[azé(s)r(s)—p(s)h(s)j ((()»d (4:3.9)

Since (a, ,(.)(t)r(t) — p(t)h(t)) is a non-increasing and by Bonnet’s Theorem for a

fixedt > T, there exists 4, [T ,t] such that

X(s)
9(x(s))

. Boo
ds{azp(T)r(T)—p(r)h(r)jj (Xx(z»ds

9

[ (az PN(S) - p(s)h(s)j

=(a2 P(TYN(T) - p(r)h(r)j

Since (a, ;)(t)r(t) — p(t)h(t)) > 0 and the equation (1.2) is superlinear, we have

0 if X < X(T
B 4y i (B,)<x(T)

—< du :
X(J;) g(u) me Fx(B,) = X(T).
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We have

—oo<| [az P(S)r(s) - p(s)h(s)jg(%z))ds <A, (4.3.10)

du

where A = (az P (T) —,o(T)h(T)jX I 50
Thus, from (4.3.10) in (4.3.9), we obtain

ot) < o(T)+ A - [ p(s)[Cou(s) — p(s)] ds.

By the condition (14), we get w(t) <0, then, >.<(t) <0 fort>T,, T, >T. Thisisa

contradiction.

If >.<(t)< 0 forevery t>T,>T, the condition (14) implies that there exists T, 2T, such

that
t
j p®)[C,a(s) - p(s)]ds =0 forall t>T,.
T3

Thus, from equation (1.2) multiplied by po(t), we obtain

p(t)(r(t)w(x(t)) i(t)) + PO X(V) + O (XO)IOOL &) p0) < pOIXO)PE), t 2T,

By condition (12), we have

p(t>(r(t)\P<x(t» %(t)j < pOYXMNC.a) - p®)]
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Integrate the last inequality from T, to t and by condition (1), we obtain

8,0(r(t) X(t) < p(T)r (T, ¥(X(T)) X(T,) +2, j PN (S) X(5)ds - j 9(x())P(5)(C,a(5) - p(s))Ks

< p(T,)r(T) ¥ ((T,)) X(T,) +aij P(S)r(S) X(5)ds - g(x j p(s)(Ca(s)— p(s)Hs

+ [ 9D X(6) [ PW(Cu) - p(u)) uds,

T

< p(T)r(T)¥(XT) X(T,), t=T

Integrate the last inequality divided by p(t)r(t) from T, to t and by condition (13), we

have

a,X(t) < a,X(T,) + p(T)r (T,) ¥(X(T,)) (Ts)f [(S)p (s)

as t — oo, contradicting the fact x(t) > Ofor all t>T. Thus, we have x(t) is oscillatory

and this leads to (1.2) is oscillatory. Hence the proof is completed.
Example 4.3.4

Consider the following differential equation

[(x (t)+5) “)J %t(2t>+9t E+ x() _EOsinGE) (o

t(x* (t) +4) ) -\ t?
. +E{(x 0+ x(t)]
t(x“(t) +4)
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1 1 u’
We have r(t) == ,h(t)=——, q(t) =9t, g(x)=x>, ®(u,v)=u+——— and
t) . ®) e q(t) g(x) (u,v) u+3u2+6v2

@ HE X, x0) = (t>st'3n(x(t)> HG;S(){);(O) smg(t))_t

p(t) forall x =0
andt>0.

2) W(xX) = Xz(t”f’l S oand1<w()= X ®*5 _ 1

5 = <E for all xeR.
X (t) + X“(t)+4 X (t)+4 4

Taking  p(t) =2t>0, p(t) = 2> 0, (PM)r(L) =% >0, (pOr ()" = —t% <0,

@, pOr(t) - p(ON(D)) =% >0, (a, pOr) = pthE)* = —%2 >0 forall t>0 such

that

t t
ji |imj§=|im 9 _himL—t,)=co,
% p(s)r(s) t—)ooto 2 t—)oot 2 t—)oo2

0

© I p(s)r(s) o

4) !ijgjp(S)(Coq(s)— p(s)) ds =lim jzs(9cos—s—j ds = Ilm[BC s° + ﬂ — o,

tow

All conditions of Theorem 4.3.4 are satisfied. Then the given equation is
oscillatory. Also the numerical solutions of the given differential equation are computed

using the Runge Kutta method of fourth order (RK4) for different steps sizes.

We have

X() = f(t, x(1), (1)) = x° @©)sin(x(t)) — 9| x° (t) + ><15(t).2
3x(t) +6x (t)
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with initial conditions x(1) = 0.5, ;<(1)=1 on the chosen interval [1,50], the functions

Y(x)=1 and h(t) =0and the finding the values of the functions r, q and f where we

consider H(t, x, >.<) = () I(x, ;<) at t=1, n =2250, n =2500, n=2750 and n=3000 and the

steps sizes h =0.021, h =0.019, h =0.017 and h = 0.016.
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Numerical solutions x(t)

Numerical solutions x(t)
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Figure 4.4(a): Solution curve of ODE 4.4
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Figure 4.4(b): Solution curve of ODE 4.4
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Remark 4.3.3

Theorem 4.3.4 extends results of Grace (1992) and El-abbasy et al. (2005), who

have studied the equation (1.2) as

Y(xt) =1 D(g(x(t)),r(t)¥(x(t)) ;<(t))zg(x(t)) and H(t,X(t),;((t))EO. Our result
can be applied on their equation, but their oscillation results cannot be applied on the
given equation in Example 4.3.4 because their equation is a particular case of our

equation (1.2).

Theorem 4.3.5: Suppose that the conditions (1), (8), (12) and (13) hold and there exists

a  continuously differentiable  function  p:[t,,0) —(0,00) such  that

(p(Oh(®)* <0, p)r(t) =0, (/.J(t)r(t)j.so on [t,,) and

1) Jo@)ds=m=

)

o2
where Q(t):p(t)(COq(t)—p(t))—%r(g). Then, every solution of superlinear
02

equation (1.2) is oscillatory.

Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t)>0 on [T,oo) for some T >t, >0. Define

PPNICLICO L
9(x()

This, condition (8) and (1.2) imply
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r(t)\P(X(t))).((t) . B 3 _h(t)).((t)_kr(t)‘{l(x(t));(z(t)
[ 3(x®) j <-[Cya(t) - p(t)] 9 (x(®) 2 (x(t)) =T, (4.3.11)

We multiply the last inequality (4.3.11) by p(t) and integrate form T to t, we have

POF O (X)) X(1) L p(s)h(s) X(s)
S0} <C, jp(s) C,oq(s) - p(s)) d j—g( o

+] {p(s) o(s) - p((s)) Z(s)}

where ¢, - LDIM¥M)X(T).

g(x(T))
Thus
pOF()Y(X(D) (1) p(s)h(s)x(s)
T00) <C, jp(s) C,q(s) - p(s)) d j 106)
LK pO)] o |3 pO)E)
Ja v {" ©) { 2ko(s) Nds

where 7(t) = o(t) — 2Ko(t)

Thus, for t >T, we have

POO¥O) ¢ | o p () |, AN
100) <C14p( 5)(C,0(6) - p(s)) - " ) ] 1 106) ds. (4.3.12)

The second integral in R. H. S. of the inequality (4.3.12) is bounded from above. This

can be by using the Bonnet’s Theorem, for all t > T, there exists a, € [T,t] such that
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x(ar)

PO (s, )
1 D) ”mj g™~ " (T)JT) )

Since (— p(t)h(t)) >0 and the equation (1.2) is superlinear, we have

—o0< j p(s)h(s) —— () ds <B (4.3.13)

9(x(s))

where B, :—p(l')h(T)T du
(i 9(u)

By inequality (4.3.13) and the condition (15), the inequality (4.3.12) becomes

p(t)r(t)‘P(X(S));((t)<c +B —jQ(s) ds.
gx@®)

By the condition (15), we have

i POTOPOIXE
Se o g()

Thus, there exists T, > T such that ;<(t) <0 for t>T,. The condition (15) also implies

that there exists T, > T, such that
T, t
[ PG)Coa(s) - p(s)lds =0 and [ p(s)[Coa(s) - p(s)]ds=0  for t=>T,.
T T,

Multiplying equation (1.2) by p(t), from the conditions (12) and (8), we have

p(t)(r(tmx(t» %(t)j +Cop®Y(xM)At) < POIHWO) ). t2T,,
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where 0<C, = min ®(1, a(t)).

w(t)eR

Integrate the last inequality from T, to t, we obtain

POFOP(XO) X< TN (T, (X(T,)X(T,) + j PN ()P (x($)) X(s)ds

—g(x(t))jp(s)( o0(s) — p(s))ds + j 9'(x( s))xs)jp(u) Co0(u) - p(u))duds.

2 T2 T2

By the condition (1) and the Bonnet's Theorem, for t > T, there exists », €[T,,t] such

that

2,p(Or (O X(0) <p(T, (TP (T, ) X(T,) + 2, p(T,)r(T ()~ X(T,)] - 9(x(0) | (S)(Cals) - p(s))ds

T

+ [ 0'04s) X6) plu)(Cau) - p))duds, t>T,.

T T

Thus

2, p(O)r () X(t) < p(T,)r(T,)P(X(T,)) X(T,), t = T,.

Dividing the last inequality by po(t)r(t), integrate from T, to t and the condition (7), we

obtain

00, as t — oo,

a,x(t) < a,x(T,) + p(T,)r (T,) ¥ (X(T,)) X(T,) J e )r( )~

which is a contradiction to the fact that x(t) >0 for t>T . Hence the proof is completed.
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Example 4.2.5

Consider the following differential equation

5x12(t)+8( x(O+2 i(t)]
e+ )

We note that

u5

r(t)=t13, h(t) = —t2, q(t) =t%, g(x) = x°, @(u,v):u+m,

XS X(B)  H(EX(D),X(0) _sin(@x(®) _ 1

H(LXOx(0) = 2 s, SRR S

= p(t) for

6
all x¢0andt>0.‘P(x):X6+i and 1<W(x) <2 forall xeR
x° +

Taking p(t) =t, p(t)r(t) =t13 >0, (p(ON(H)" =-3t* <0and (;.)(t)r(t)j. - (tisj - ;—43 <0

forall t >0 and

ds  _ jszds = o,
2 O1{C) I

@ TQ(s)ds = T{p(s)(COQ(S)_ p“”‘%}ds

R 1 1
=|[s|C,s® - |-=——|ds
{[[{ 0 55} 2ks“j

Cs® 1 1]
= +—+ = o0,
5 3s° 6ks®

t
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All conditions of Theorem 4.3.5 are satisfied and hence every solution of the given
equation is oscillatory. We also compute the numerical solution of the given differential

equation using the Runge Kutta method of fourth order (RK4). We have

X(@®) = T (& x(0), x(1)) = x* (1) sin(x(t) x(t)) - x%”it)4

52(t) +8x (1)

with initial conditions x(1) = —0.5, x(1) =Lon the chosen interval [150], the functions

Y(x)=1and h(t) =0and finding the values of the functions r, g and f where we

consider H(t,x,x) = f(t)I(x,x) at t=1, n=980 and h=0.05.

Table 4.5: Numerical solution of ODE 4.5

k tx X(ty)

1 1 -0.5
62 4.05 | 0.22021420
181 10 -1.39354243
221 12 1.53595848
321 | 17 | -1.01339800
381 20 2.04072897
461 24 2.19425748
561 | 29 | -0.01291195
603 | 31.1 | 0.14141788
685 | 35.2 | 0.10102608
726 | 37.25 | -0.08118400
781 40 1.86554418
821 42 -1.78419073
933 | 47.6 | 0.28301496
981 50 -1.28617425
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Figure 4.5: Solution curve of ODE 4.5
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Remark 4.3.4
Theorem 4.3.5 is the extension of the results of Greaf, et al. (1978) and Remili

(2010) who have studied the equation (1.2)

when W(x(t)) =1, h(t) =0and d(g(x(t)), r(t)¥(x(t)) ;<(t)) = O(t, x(t)).Our result can
be applied on their equation, but their oscillation results cannot be applied on the given

equation in Example 4.3.5 because their equation is a particular case of our equation

(1.2).
Theorem 4.3.6

Suppose, in addition to the conditions (1), (8) and (9) hold that

< ds
16 ——<k,, k, >0.
(16) L(S) k>
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(17) There exists a constant B” such that

G(m) :I s >B'm, B" <0, for every meR.
5 @(1,s)

Furthermore, suppose that there exists a positive continuous differentiable function p
on the interval [t,,0) with p(t) is a non-decreasing function on the interval [t,, %) such

that

(18)  limsup j () o1 [ ot ){ od(U) = p(U) -~ ()}duds=oo

t—o (U)

where p:[to,oo)—>(0,00). Then, every solution of super-linear equation (1.2) is

oscillatory.
Proof

Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that X(t) >0 on [T,) for some T >t,>0.

Define

POIOYOXD |

“O=" )

This and by condition (1) and equation (1.2), we have

o0 < oo PONOXO o0t iy i) + 20 ()—""""“’r“)X O o1

g(x(v)) p(t) g°(x(t))
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Thus for t > T, we have

o) (L p(t)h(t)X(t) akp(t)r(t)x ® s71
p(t)( (t)J < p(M)pt) - p(HAOPL o)/ p(1)) - J(x) )

Dividing the last inequality by ®(1, a(t)/ o(t))> 0, then, there exists a positive constant

Co such that (L, w(t)/p(t)) >C, then, 0< ! <i. Thus, for t>T, we

(L a(t)/ p(t) C,

obtain

Cop®@®)/p0)  Cop®NMXE)  Coakp(t)r(t) ()
£)(Cou(t) - p(t) )< - - - 2
PUC0O-PO)< oL a)/pt)  OLa)/pM)a(xt) L aot)/ pt)g’(x(1)

Integrate from T to t, we obtain

J@(s)/£(s))" 4
L.o(s)/ ()

o f|pOne x5 aker() XS) e (4314
ﬂ@lw(s)/p(s))g(x(s>>+<1>(1 o5/ p) sy [~ ¢

I P(9IC,a(s) - p(s)]ds < -C Jp(s

From the second integral in R. H. S. of (4.3.14), we have

(La(s)/p(s) 9(x(s) 2 akr(s)D(La(s)/ p(s) 4ak 3 ®(L,o(s)/ p(s))r(s
L p(s)h’*(s)
34—a*£ o ds (4.3.15)

where 8" =aKk.
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By the Bonnet’s Theorem, since p(t) is a non-decreasing function on the interval

[t,,0), there exists T, [T, t]such that

p(s)(@(s)/ p(s)) (@(s)/ p(s))"
J DL w(s)/ p(s)) ()I (L w(s)/ p(s)) o (4:3.10)

From inequalities (4.3.16) and (4.3.15) in inequality (4.3.14), we have

t = ogs)- ) g (@) pE) Y gy
jp(s) Cod(s) = P(8) = = " } <-C, ()Tj Do) (S) = CW(DMJM 6.0)
w(T1)/P(T1) o(t)/p(t) du
°"“{ | ey ") —@@,u)}

) o)
<C,p(H)G c,
Pl ( )J e ( (t)J

By the condition (17), we obtain

| p(s){coq(@ -5 }ds < cop(t)e[“’gln ~C,Ba(1)

ar(s) 1

Integrating the last inequality divided by p(t) r(t) from T to t, taking the limit superior

on both sides and by conditions (16) and (17), we have

L MO ol | ds
'"li”pj Do | 0RO r()}dmlmliup{c G(p(n)j! r(s)}
_ VO w(u)du

- C,B o0,

{'"Lz“p e }

as t — oo, which contradicts to the condition (18). Hence the proof is completed.
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Example 4.3.6

Consider the following differential equation

X 0+2) ) x(t) x? (t) X3 (t) cos(x(t))
R R . z |- Tt
xs(t)+((x4(t)+2) x(t)/tz(x4(t)+1)j

x*(t)+2

>0 and
(t)+l

We note that r(t) =t?, h(t):tis, q(t) =t°, g(x) = x%, ¥(x )—

3

1<¥(x)<2 forall xeR and ®(u,v)=—
us+v

such that

2

I(1+ s?)ds > I(—l)ds =-m>-m,B=-1,BeRand
CD(l s) 3 5

forallmeR.

@ HEXO. X(t) _ cos(x() _
g(x(v) t’

t—_p(t) forallt >0 and x = 0.

Let p(t) =t*such that

® nmsupj ()1()ip(u)[coq<u)—p(u)— hw }duds

tm 4a r(u)

1 1
= lim ==
i Hs;jup.f Iu {C u® RARPRTG }du ds

6 11 t
= limsup COS——L7—;*8+(COT+12+1*)/555 = o,
toso0 66 14s 96a s 11 2T 4a’T T
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All conditions of Theorem 4.3.6 are satisfied and hence every solution of the given

equation is oscillatory. The numerical solution of the given differential equation is

found out using the Runge Kutta method of fourth order (RK4). We have

X(t) = F (¢ X(8), X(1)) = x* () cos(x(t)) - ————2—
X)) +x (t)

with initial conditions x(1)=05, x()=1 on the chosen interval [1,50],

Y(x) =1, h(t)=0 and finding the values of the functions r, q and f where we consider

H(t,x %) = f(t)I(x,x) at t=1 n=980 and h=0.05.

Table 4.6: Numerical solution of ODE 4.6

k tx X(ty)
1 1 0.5

81 5 |-1.23206499
181 10 | 0.40954827
221 12 | -1.50525503
321 17 | 0.02833177
381 20 |-0.33103118
461 24 | -0.35258529
521 27 | 0.04981132
587 | 30.3 | -0.43001970
653 | 33.6 | 0.03619157
721 37 |-0.12794647
781 40 | -0.17456968
821 42 | 1.46730560
921 47 | 0.20608737
981 50 | 0.09644083
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Figure 4.6: Solution curve of ODE 4.6
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Remark 4.3.5

Theorem 4.3.6 is the extension of the results of Bihari (1963) and Kartsatos (1968),

who have studied the equation (1.2) when r(t)=1 W¥(x(t)) =1 h(t) =0,

g(x(t)) = x(t), D(g(x(®)), rt)¥(x(t)) x(t)) = @(x(t), x(t)) and  H (t, x(t), x(t)) = 0. Our
result can be applied on their equation, but their oscillation results cannot be applied on
the given equation in Example 4.3.6 because their equation is a particular case of our

equation (1.2).

Theorem 4.3.7

Suppose in addition to the conditions (1), (8) and (12) hold that there exists

continuously differentiable function p:[t,,c0)—(0,00) such that H(t) > 0, condition

(13) holds and
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(19) lim mf{J'Q (s) ds] > 0 for all large t,

t—>ow

t

(20)  lim j

t—owo

p(s) ! j Q, (u)duds = oo,

where Q, (t) = p(t)(C,q(t) - p(t))— a, r(t)[ t) - p(t)h(t)j

4k p(t) a,r(t)

Then, every solution of superlinear equation (1.2) is oscillatory.
Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t)>0 on [T,oo) for some T >t, > 0. Define

rOYW)XO | o
ax(®)

a(t) =

This and (1.2) imply

g(x(¥) 9°(x(1)

{r(t)‘}'(X(t))X(t)J < p(t)- h(t) x(t) )DL o) rY(x®))g’ (X(t))x ® t>7.(4317)

(x(®)

Since ®(L, w(t)/p(t)) >0, then there exists a positive constant C, such that

D, w(t)/ p(t)) > C,, thus, we have

[r(t)kv(x(t»i(oj (- o) MO OO O

g(x(v) g(x(t)) 9° (x(1))

We multiply the last inequality by p(t) and integrate from T tot, we have

171



POrOYO)XQ) _ . | ) p(s)N(S) X(5)
G j p(5)(C,a(s) - p(s)) ds j—( @)

S

. j PN PE)XS) 4 J PO PHENTKE) X () ds, (4318)
TO) ] 0°(x(5)

where ¢, = LOIMYONXT)
9(x(T))

Thus, for we have

POFOYO)XE) _ . | ) K
g(x(t)) <G, J p(5)(Cya(s) - p(s)) ds j

<C, - p(s)(C(s) - p(s)) ds

ols) oy (% P
TR (p ©) r(s)?(x(s))]w(s)] s

ko) [ POV [t pehE) )

[eee |0 a4z (" © r(s)\P(x(s))j]dS

<C,- [y (s)ds— :pr ((z)) 7(s)ds

<C, —le(s)ds, (4.3.19)

where 7(t) = o(t) - M[ o(t) — M]

2kp(t) r)w(x) )

From inequality (4.3.19), we have

rMPETNXT) _ pOrOPXO)X()
g(x(T) g(x(1))

jgl(s)dss p(T
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Now, we consider three cases for ;<(t) .
Case 1: If >.((t)>0 for t>T, >T, then, we get

PIIFT)YANXT,) _ pOrOP(O)XO)
g(x(T,) 9(x(0)

t
j Q,(s)ds<
Tl

Thus, forall t>T,, we obtain

fo, (s LOTOFC) X(t).
AT

Integrate the last inequality divided by po(t) r(t) from T; to t and by condition (1), we

obtain

X(s)
9(x(s))

ds.

t 1 ) t
le o j Q, (u)duds< a, Tj

Since the equation (1.2) is superlinear, we get

t 1 © x(t) du
| [o,ududs<a, [ ——<wx.
L p()r(s) FNT0)

This contradicts condition (20).

Case 2: If x(t)is oscillatory, then there exists a sequence z, in [T,w)such

that ).((z'n) =0. Choose M large enough so that (19) holds. Then from inequality (4.3.19),

we have
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POFOYXO)XO _ -
0@

— j'Ql(s)ds.

So

Iimsupp(t)r(t)\y(x(t))X(t)SCT + limsup —j.Ql(s)ds =C_ —Iliminf j.Ql(s)ds <0,
t—so0 g(x(t)) " t—o0 ; " oo |

which contradicts the fact that x(t) oscillates.

Case 3: If ;<(t) <0 for t>T, >T, the condition (19) implies that there exists T, > T,

such that
t
J'(Coq(s) —p(s))ds>0 fort>T,.
T3
Multiplying the equation (1.2) by p(t) and by condition (12), we have

p(t)(f(t)‘l’(x(t)) ;(t)j +Cop(a(x®a®) < pOg(x(®) p(t), =Ty,

where 0<C, = min O o(t)).

o(t)eR

Integrate the last inequality from T3 to t, we obtain
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t

POFOP(XO)XO< p(T,)r(T)P(T,) XT,)+2, [ p(5)r(8) X(S)ds - g (1) [ £()(Coa(s) - p(s)) s

Ty Ty

+ [ 909 X(9) [ p)(Catw) - p)duds, t=T,

Ty T

< p(T)r(T) P (X(T,)) X(T,), t2T,,
By condition (1), the last inequality divided by p(t)r(t) and integrate from Ts to t, we

obtain

ds
pS)r(s)

— —00, ast — oo,

a,X(t) < ,X(T,) + p(Ty)r (T ¥ (X(T, ) X(Ty) |

which is a contradiction to the fact that x(t) >0 for t >T. Hence the proof is

completed.

Example 4.3.7

Consider the following differential equation

R L TR
2x%°(t) + {t(xz(t)+5) X(t)j

Here we have

r(t) :%, h(t) =0, q(t) :tiz, g(x)=x", d(u,v) =u5/(2u4 +v4),‘P(x) =

2
xz(t)+6 20
X“(t)+5

H(tx@,X(1) _ x*(t)cos’ (x(1)

<0=p(t) forall t>0and x=0.
g(x()) X' () +1 PO .

and
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Taking p(t)=4 and

® Iirpigf{f@(s)ds}qu@f{j[p(s) Ca(s) - p(s))- 2 r((s))( (5)- pfz'(“s(;)H }

=lim inf{j

t—ow

}_—>OT>O
(2) !ilpoj ! _[Q(u)duds

J p(s)r(s)
a, r(u) p)h(u)
[p( u)(C,a(u) - p(u))- m ()[ (u) - T ) Hduds

t

1
gtyore)

= lim ET[ }duds_—llm[Ct Coty]=0

t—w

All conditions of Theorem 4.3.7 are satisfied and hence every solution of the given
equation is oscillatory. To demonstrate that our result in Theorem 4.3.7 is true, we also
find the numerical solution of the given differential equation in Example 4.3.7 using the

Runge Kutta method of fourth order.

We have

X cos (x(t)) x%

1 o
+ 2x% +x (1)

x(t) = f(t,x(t), x(t))

with initial conditions x(1) =1 x(1) =lon the chosen interval [150], the function

Y(x)=1 and finding the values of the functions r, q and f where we consider

H{(t,x,x) = f (t)1(x, x)at t=1, n=980 and h=0.05.
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Numerical solution x(t)

1.5¢

0.5

-0.5

-1.5°

Table 4.7: Numerical solution of ODE 4.7

k tk X(ty)
1 1
81 5 -0.38710915
195 | 10.75| 0.02100274
250 | 13.45 | -0.04535638
321 17 | 0.94181375
381 | 20 |-1.21862863
461 24 | 0.11404729
521 27 | 0.12824333
581 30 | -0.55051467
624 | 31.15 | 0.01009389
721 37 | -0.50610435
781 40 | 0.17389288
821 42 | -0.86814628
921 47 | -1.19426955
981 50 | 0.89817500

Figure 4.7: Solution curve of ODE 4.7

25 30 35

40

45

50
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Remark 4.3.6: Theorem 4.3.7 extends Result of Wong and Yeh (1992), Result of

Philos (1985), Result of Onose (1975), Result of Philos and Purnaras who have studied
the equation (1.2) as r(t) =1, W(x(t)) =1 h(t) =0, D(G(X(D)), r)¥(x(®) X(1) = G(X(1))
and H(t,x(t),x(t)) =0 and Result of Elabbasy, et al. (2005) who have studied the
equation  (L1) as  P(x(t) =L ®(g(x®).rAPM) (M) = g(xt)  and

H(t,x(t),>°<(t)) =0. Also, Theorem 4.3.7 extends and improves the results of Greaf, et

al. (1978) and Remili (2010) who have considered the equation (1.2) as W(x(t)) =1,

h(t) = 0and ®(g(x(t)), r(t)‘P(x(t))>.<(t)) = d(t,x(t)). Our result can be applied on their
equations, but their oscillation results cannot be applied on the given equation in

Example 4.3.7 because their equations are particular cases of our equation (1.2).

Theorem 4.3.8

Suppose, in addition to the conditions (1), (8) and (12) hold that there exists the

function p such that (ph)” <0, condition (13) holds and

r(t)
(21) %Sﬁt,ﬂ>0.

t
(22)  liminf IQl(s) ds > —oo for all large t.
T

t—o0

t—oo t

: 1¢ 1 %
(23) lim sup—lﬁ}[ﬂl(u)duds = oo,

Then, every solution of superlinear equation (1.2) is oscillatory.
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Proof

Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t)>0 on [T, c0)for someT >t, > 0.

From the inequality (4.3.19) divided by p(t) , we have

le (s)ds <L — (t). (4.3.20)

1
p(t) p(t)

Now, we have three cases for x(t) .

Case 1. If x(t)is oscillatory, then, there exists a sequencerz, in [T,oo) with

lim z, =coand such that ;((rn) =0.Then, from the inequality (4.3.20), we have

t—w

T ko(s)

2 n
n°(s) ds <C, — | Q,(s)ds.
Ja,r(s) ! -T[ '

Hence, by the condition (22), we get

T ko(s)

—221%(s) ds < oo
2 a,r(s)

This gives, for a positive constant N

Imnz(s) ds< N forevery t>T. (4.3.21)
]

a,r(s)
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Further, by using the Schwarz s inequality, for t > T, we obtain

kp(s azr(s) t o ko(s) a r(s) r(s)
a r(s ko(s) ds‘ SJ azr(s) (s )dsj ) -[ s

o "k o)

By the condition (22), the last inequality becomes

aZNﬂ( T )<a2Nﬂt2
2k 2k

Then,

(0(5) ds =[] sy TOYEE 1) pONE ) |y [aNF
2kp(s) r(s)¥(x(s)) Vo2

Thus, for t >T we have
t
~Jols)ds < |22 (4.3.22)
: 2k

Integrate the inequality (4.3.20) and from the inequality (4.3.22), we obtain

j%le(u)duds < Clj% - j' w(s)ds

1 (t T) a Nﬂ 1 + aZNﬂ t
p() 2k o(T) 2k |

Dividing the last inequality by t and taking the limit superior on both sides, we obtain

t S
lim sup} jijgl(u)dudss ¢ |, j2NE
o 13 p(5)1 o(T) 2k
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which contradicts the condition (23).

Case 2: If ;<(t) >0 fort>T, >T, then, from (4.3.20), we get

C,
ds <
()T{Q By

Integrate the inequality, dividing by t and taking the limit superior on both sides, we get

t

lim sup} I%jﬂl(u)duds <

oo U5 p(S)5 p(T,

< o0

which also contradicts the condition (23).

Case 3: If >.<(t) <0 for t>T, >T, from inequality (4.3.18), we have

POF )P (x(D) X(t) L p(s)h(s) X(s)
oo 6T jp(s) Coa(s) - p(s)) d j—(s)) ds

I P(S)r(s)¥(x(s))g'(x(s)) X(S)
9 (x(s))

Since p(t)h(t) is non-increasing and by Bonnet’s Theorem for a fixedt >T,, there

exists e, €[T,,t] such that

()ds
g(x(s))

X(S)
g(x(s ))

j p(S)h(s) ~p(T,)h(T,) j

X(a,

= —p(T,)h(T,
p( )(r)xiz) @

Since the equation (1.2) is superlinear, we have

181



K@) g 0 1 X(e,) < X(T,)
[ 9@ T2 x> xm)
X 9 (u)

x(T3) g

and (- p(t)h(t))=>0, it follows that

X(s)
jp() (5) 5 ey & < B Where By = p(Tz)h(rz)x(L) '

Hence, we have

POFOPO) X0 _ PSP KX (9) 4
oo G j p(3)(Cyd(s) - p(s)) ds— j )

o2

Now, we have two cases for _t[p (s)r(s)\P(gx(?))()(g))(x(s))x (s) ds: If this

integral is

finite, in this case, we can get a contradiction by the procedure of case (1). If this

integral is infinite, from condition (22), we obtain

POIOYXONX®) o g, Ip(s)r(s)\l!(x(s))g (DX (O
9(x() *(x(5))

Also, from the last inequality, we obtain

_ pMr)wx) X(t) Ip(s)r(s)‘P(X(S))g (X(S) X (S) (4.3.23)
g(x() 9° (x(s))

where N* = —(C, + B, + ).
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We consider a T, > T, such that

SETOY LOLORICOLY (DX () o
1 9° (x(s))

Hence, for all t>T,, we get

OO (X(1) X(t) <IN +jp(5)r(s)‘1’(x(5))g (X(S))X ©) 4
g(x(t)) B 9° (x(s)

From the last inequality, we get

PO P (X(E) X (1) N’ +jp(S)f(S)‘I’(X(S))@l (X(S))X (8) 4 [<_ 9’ (XV) >.<(t).
g°(x(1)) i g°(x(s)) S g(x)

Integrate the last inequality from T, to t, we have

In N*+j'p(8)r(5)‘1’(x(5))9 (X(5) X (S)d/ {Q(X(T ))} ST
T, 9° (x(s)) g(x(1)) ’

Thus,

N e jp(s)r(s)‘y(x(s»g (X)X S N, 9T o
9% (x(s)) g(x®) "7

From (4.3.23), we have

_p(t)r(t)‘I’(X(t));((t) >N, 90(Ta)) o1
g(x(t)) T B
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By condition (1) and the last inequality, we obtain

N 1

= sorm T

Since N,g(x(T;)) >0, thus, from the last inequality, we obtain

NGO b ds
a, 1006

x(t) < X(T,) -

which leads to lim x(t) = —oo, which is a contradiction to the fact that x(t)>0 for t >T.

t—w

Hence the proof is completed.

Example 4.3.8

Consider the following differential equation

[t%(;(zt(t)?);((t)]+ (t*+2)x°(t)+ (t* +2)x* (1) — =x3(t)sti£(>'<(t)),t>ol
e+ | L OO+ X0)

(x*(t) +3)
We have

x* +4
x* +3

r(t) _th, ht) =0, qt) =t*+2, g(x)=x°, ¥(x) = and 1< ¥(x) sg for all

7
xeR. ®(u,v)=u+

2us +ve'

H (¢, x(1), x(t)) _ sin(x(®) _ is = p(t) forallx=0andt>0.

g(x(t)) t° t
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Taking p(t) =5 such that

@ fim igf{ | Ql(s)ds}ﬁ lim inf{ I {p(s)(coq@) - p(s))—j—;%(b(s) ‘%] H

t
=5lim inf{_[co(s3 +2) —igds}:ow—oo.
t—oow T S

(L] imsen LT (coa- o)) 22105y - 2 )
) nrlswup-iﬁigl(u)duds_nrlswupt ! p(s)ﬂ(coq(u) p(u)) o (u)(p(u) ) j]duds
1ts \ 1 .
:“Tiwdﬂc‘)(u +2)—u—8}duds_ .

All conditions of Theorem 4.3.8 are satisfied and hence every solution of the given
equation is oscillatory. The numerical solution of the given differential equation using

the Runge Kutta method of fourth order (RK4) is as follows:

We have

X(t) = F (6 x(1), X(1)) = x* @) sin(x(t)) -3 xs(t)+Lt)6

2x8 (1) + x (t)

with initial conditions x(1) =0.5, ;((1)=1 on the chosen interval [1,50], the function

Y(x)=1 and h(t)=0 and finding the values of the functions r, q and f where we

consider H(t, x(t), x(®) = f (®)1(x(t), x(t)) at t=1, n=980 and h=0.05.
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Numerical solution x(t)

0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

-0.8

Table 4.8: Numerical solution of ODE 4.8

k | t x(t)
1 1 1
71 | 45 |-0.13945104
181 | 10 | 0.89757769
221 | 12 |-0.84742563
322 | 17.05 | 0.05022124
381 | 20 |-0.93139166
461 | 24 |-0.89616464
521 | 27 | 0.38338342
581 | 30 | 0.64126671
641 | 33 | -0.5028129
734 | 37.65 | 0.03915567
781 | 40 |-0.40817452
821 | 42 | 0.27436989
881 | 45 |-0.83142722
981 | 50 | 0.02214472

Figure 4.8: Solution curve of ODE 4.8

50
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Remark 4.3.7

Theorem 4.3.8 is the extension of the results of Greaf, et al. (1978) and Remili

(2010) who have studied the equation (1.2) when W(x(t))=1 h(t)=0

and CD(g(x(t)),r(t)‘P(x(t))>°<(t))ECD(t,x(t)). Also, Theorem 4.3.8 extends and

improves results of Grace (1992) and Elabbasy, et al. (2005) who have
studied the equation (1.2) as W(x(t)) =1, ®(g(x(t)),r(t)W¥Y(x(t)) >.<(t))zg(x(t)) and

H(t,x(t),>.<(t)) =0. Our result can be applied on their equations, but their oscillation

results cannot be applied on the given equation in Example 4.3.8 because their

equations are particular cases of our equation (1.2).
Theorem 4.3.9

Suppose, in addition to the conditions (8), (9) and (12) hold that

(24) F(t) <0 forallt>t,and (r(t)q(t))* >0 forallt>t,.

(25) h(t)<0 forall t >0.

(26) @(,v)=v forallv=0.

t—oo t

@7) lim sup}j.[Azr(s)q(s) -j p(u)du}ds — o,

where, p:[t,,0)—(0,:0), then every solution of superlinear equation (1.2) is

oscillatory.
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Proof: Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t) >0 on [T,oo) forsome T >t, > 0.

By (4.3.17), conditions (8) and (25), we obtain

() P (() X(1) . t_h(t)’.‘(t)_ t)ol(t
[ o(x(0) ]< O gxmy IO

Integrate the last inequality from T to t, we obtain

(¥ () X YOS
o) <A j p(s)ds - j h(s) —— ( ( jds- j &IOS * (4.3.24)
where A = r(r)\Pg:g;; X(T) .

By the Bonnet’s theorem, we see that for each t > T, there exists «, [T, t]such that

x(e)

h(s)x(s) <s)
I g(x(s)) ()I (T)X([)g (u)

Since the equation (1.2) is superlinear, so we have

. 0 Lif x(a) <x(T)
I‘d_u< (-3 i e = x(T)
90w () 2 X(T).
L h(s) X(s)
- ds<—h(T)A, , 4.3.25
I g =N~ (4529
where A, = .T au

x(T)m '
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By condition (24) and the Bonnet’s Theorem, we see that for each t >T , there exists

T, €[T,t] such that

‘ PEDX) 4o v \P(x(s»x(s) g rtvat [ FWdu
jr(s)q(s) ) r()q()j o) r()q()x(L )
Since r(t)q(t) > 0 and the condition (9), we have
[ r(s)q(s)%z)s)x)(s)ds > Ar(t)ac), (4.3.26)
Y w(u)du
h = inf .
where A, =in X(L ()

From inequalities (4.3.25) and (4.3.26), the inequality (4.3.24) becomes

()P (X)) X() :
o) e () +j p(s)ds — A,r ().

Integrate the last inequality from T to t, we have

Ir(s)qf&g;x@)d <(A — ATt -T)- j A;r(s)a(s) - I p(u)du |d

Since r(t)is positive and non-increasing for t > T, the condition (24) and by Bonnet’s

Theorem, there exists /3, < [T,t] such that

ErOYXEOXE) 4 _ o7y [ LX) Hl), P,
o) ™ g™ ] gy 2 A
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x(5,)
where A, =inf j Fu)du

x(T) g(U) .

Thus, for t > T we have

[ ——

{ASF(S)q(S) —I p(U)dU}ds < (A —ANM)E-T) —A,r(T).
T
Dividing the last inequality by t and taking the limit superior on both sides, we obtain

limsup = I{Agr(s)q(s) J‘p(u)du}ds<llmsup (A - Azh(T))(l——)—Ilmsup t(r)<oo

t—ow t—o0 t—o0

as t — oo, which contradicts to the condition (27). Hence the proof is completed.
Example 4.3.9

Consider the following differential equation

(%i(t)j' _x@ -+t e — X0 X0 cos(x(t)
t : e 1)
x1°(t)+(x(t)/tj

We note that r(t)=%, Y(x)=1 forall xeR, h(t)=-t, q(t)=t*and g(x)=x".

3 H (t x(t), () _ X2 (1) COS(X(t))
d(u,v)=u+u /(u +Vv?), (x(t)) =M 1D t =p(t) forall t>0and

x#0, and

limsup = I{Aglr(s)q(s) J‘p(u)du}ds_llmsup I[Ass —GJdU} = 0,

t—w
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All conditions of Theorem 4.3.9 are satisfied and hence every solution of the given
equation is oscillatory. The numerical solution of the given differential equation using
the Runge Kutta method of fourth order (RK4) is as follows:

We have

X’ (t) cos(x(t))

5 X' (1)
X2 (t) +1 Q5

X°(t)+ X (t)

X(®) = f(t, x(0), x(¥)) =

with initial conditions x(1) =1 x(1) =1 on the chosen interval [150], the function

h(t)=0 and finding the values of the functions r, g and f where we consider

H(t, x(t), x(t) = f (©)1(x(t), x(t)) at t=1, n=980 and h=0.05.

Table 4.9: Numerical solution of ODE 4.9

k tk X(ty)

1 1 1

81 5 ]-0.10579952
184 |10.15| 0.10131997
232 | 12.55| -0.0022419
321 17 | 0.60071833
405 | 21.2 | 1.20586650
461 24 | -1.08911367
521 27 | 0.53416290
579 29.9 | -0.05451221
627 | 32.3 | 0.15360619
730 | 37.45 | -0.05346404
781 40 | 0.12804823
829 42.4 | -0.02894594
921 47 | 0.40081430
981 50 | 0.19478376
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Figure 4.9: Solution curve of ODE 4.9

1.5 5 5 5 5 5 5 5 5 5

Numerical solution x(t)
o
I

-0.5- T

-1.5

Remark 4.3.8:
Theorem 4.3.9 is the extension of the results of Bihari (1963), Kartsatos (1968),

who have studied the equation (1.2) when r(t)=1 W¥(x(t)) =1 h(t) =0,

g(x(1) = x(t), D(G(XD), F(O)F(X(1) X(t)) = D(xX(t), x(t) and H (t, x(t), x(t)) =0 and

results of Kamenev (1978) and Wintiner (1949) who have studied the equation (1.2) as

rB=1 P®)=1 h®)=0, g(x(t)=x(), DGX().rH)FXB)x(t)) = g((V)

and H(t,x(t),>.<(t))so. Our result can be applied on their equations, but their

oscillation results cannot be applied on the given equation in Example 4.3.9 because

their equations are particular cases of our equation (1.2).
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Theorem 4.3.10

Suppose the conditions (1), (4) and (8) hold. Moreover, assume that there exists a

differentiable function p:[t,,)— (0,0), (ph)"(t) <0 for t>t, and the continuous
functions h,H : D ={(t,s):t>s>t,}—R, H has a continuous and non-positive partial

derivative on D with respect to the second variable such that

H(t,t)=0 for t>t , H(t,s)>0 for t>s>t,.

‘% H(t,s) = h(t,s)JHs) forall(t,s)eD.

t

j r(s)p(s) o (t, s)ds < oo,

)

28 limsu
( ) t—oo p H(t,to)

where o(t,s) = h(t,s)—%,/H(t,s) .
Yo,

(29)  limsup 1

oo H(t,t,) t.[ H(t, S)p(S)(COq(S) - p(S))ds = 00,

where p:[t,,0)—[0,00) and C, is a positive constant, then, every solution of
superlinear equation (1.2) is oscillatory.
Proof

Without loss of generality, we assume that there exists a solution x(t) of equation

(1.2) such that x(t) > 0 on [T,) for some T >t, > 0. We define the function @ as
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o) - LOTOYEEXO o
g(x(®)

Froma(t), Eq. (1.2), condition (1) and since ®(1, w(t)/p(t)) > 0,then, there exists a

positive constant C, such that ®(1, w(t)/p(t)) > C,, we have

") < ot p(t)h(t)X(t) ‘ (V) k 21) t>T.
a(t) < p(t)p() - J(x(®) Cop(t)a(t) + o0 o(t) - 2p(t)r(t)w() >

Integrating the last inequality multiplied by H(t,s) from T to t, we have

j H (t,s) 0(5)(C,a(s) - p(s))ds < _Tj H (t,s) (s)ds _j H(t, s)gp((XS()Sf;gs) X(8) 4o

L () L KH(ts)
+ I g Hts)e(s)ds —lmw (s)ds. (4.3.27)

From the first integral in the R. H. S. for t > T, we have

- 't[ H(t,s) a.)(s)ds =H{tT)o(T)- j[— % Hit, s)}a)(s)ds

T T

H(t,T)a(T) - jh JH(ES) o(s)ds, t>T. (4.3.28)

Since H has a continuous and non-positive partial derivative on D with respect to the
second variable and ph is non-increasing. The second integral in the R. H. S. is by

using the Bonnet’s theorem twice as follows: for t > T, there exists a, [T,t] such that

h(s) X(S)

H (t,9)p(s)h(s) X(5) ds = H(t, T)I F P(8)
9(x(s))

g(x(s))

—H—

194



and b, [T, a,] such that

. . -
HeT) [ 2EONSXE) 4o 1) p(T)h X() g
CO[ = oy @~ REDAOMMI ey
=H(tT) (T)h(T)X(jb) au

IR TS

Since H and p(t)are positive functions, by condition (4) and the equation (1.2) is
superlinear, we have

0 JF x(b,) < x(T);

x(by) du
= if x(b,) = x(T).

— <
i 9(U)

<
Je—3
(@]
—~ | &
cC | <
~

Thus, it follows that

FHESPONSXE) g _ o 1y [ LONOXE) 4o pme T o 4329

l 306 S = ()j 1) s AH(T)p(MN(T),  ( )
@) g

h | —.

where A =in x(T)g(u)

Thus, from (4.3.28) and (4.3.29), the inequality (4.3.27) becomes

[H(t:9)p(s)(Coa(s) -~ p(s))ds < H(E,T)o(T) — AH (L, T)p(T)h(T)

J.{ k;((st rs()s) {h(t s) — p(s) \/H(t s)J\/H(t S)a)(s)]ds

T

Since AH(t,T)o(T)h(T) >0and for t >T,we have
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[H(t.9)p(8)(C,a(s) - p(s))ds < H (L T)ao(T) - | [% o (s)+a(t,s),/H(t,s)a)(s)}ds

where o(t,s) = h(t,s) - p(s),/H(t S).

Hence, we have

jH (t,5)p(s)(C,a(s) - p(s))ds < H(t, T)e(T) + j%za,s)ds

_j{ /%W(S)% /wa(t,s)} ds. (4.3.30)

Then, for t > T, we have
j-H(t,s)p(s) (C,a(s) - p(s))ds < H(t, T)a(T) +%jr(s)p(s)az(t,s) ds,t >T.

Dividing the last inequality by H(t, T), taking the limit superior and by condition (28),

we obtain
Iirtn swup j (t,5) p(5)(C,a(s) — p(s))ds < w(T) + 22 m I|r:1 sup T j r(s)p(s)o2(t,s)ds < oo,

which contradicts to the condition (29). Hence, the proof is completed.

Theorem 4.3.11

Suppose, in addition to the conditions (1), (4), (8) and (28) hold that there exist

continuous functions h and H are defined as in Theorem 4.3.10 and
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(30)  0<inf|liminf &S | <
sl e H(LT,)

If there exists a continuous function €2 on [to,oo) such that

(31) lim sup

t—o0

J {H (t:5)P(5)(Cotl(s) ~ P() - S 1(8)P(5) o s)}ds >Q(T)

for T >t,, where a(t,s):h(t,s)—%,/H(t,s), k is a positive constant and a
o(s

differentiable function p:[t,,o0) — (0,0) and

T Q? () 4
T p(S)r(S)

where Q+(t):max{Q(t),O}, then, every solution of superlinear equation (1.2) is

oscillatory.
Proof

Without loss of generality, we may assume that there exists a solution x(t) of

equation (1.2) such that x(t) >0 on [T, o) for some T >t, > 0.

Dividing inequality (4.3.30) by H(t,T)and taking the limit superior as t —o0, we

obtain
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imsup_ (tlT) [ [H (£:5)P(5)(Cotl(5) ~ P9~ 3 PO (S) "t s)}ds < o(T)

2

. 1 ¢ | KH(t,s) 1 [a,p(s)r(s)
~limsup T ! [\/ 2 oore O 2 « U(t’s)} os
o 1 ¢ kH(t,s) 1 [a,p(s)r(s) ’
< a)(T)—Ilrlef H(ﬂ)ﬂ /azp(s)r(s)a)(s)+51/ ” G(t,s)):l ds

By condition (31), we get

1 Y [kArs) 1 [a,p()r(s) ’
co(I')ZQ(I')letrLTf H(ﬂ)ﬂ /azp(s)r(s)a)(s)+ 2‘/—k O'(t,s)} ds.

This shows that

o(T)>Q(T) foreveryt>T, (4.3.31)
and
liminf —— j{/ KH(L.5) a)(s)+1‘/wa(t,8)} ds < oo,
5o HET) 7| Va,p(s)r(s) 2 k
Hence,
1 Y kAs) 1 [a,p(3)r(s) ’
0> IlrtrLTf H(t,to)t{{ /azp(s)r(s)w(s,)+§,/T O'(t,s)} ds
o 1 ¢ kH(ts) 1
> Ilrtrl T]{H(t,to) tj IO (s)ds+— 0 tj a(t,s)q/H(t,s)a)(s)ds}. (4.3.32)
Define
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o’ (s)ds, t >t,

U@ =L JkH(t,s)

H(tt) ; p(S)r(s)

and

j o(t,s)JH(t,s)o(s)ds, t>t,.

H(t t) s,

Then, (4.3.32) becomes

liminf[U (t) +V (t)] < . (4.3.33)
Now, suppose that
T L ORI (4.3.34)
o p(S)r(S)

Then, by condition (30) we can easily see that

limU (t) = co. (4.3.35)

t—ow

Let us consider a sequence {T, },,,, in [t,,o) with limT, =oo and such that

nN—o0

Ilm[U(T )+V (T,)]=liminf[U (t) +V (t)].

towo
By inequality (4.3.33), there exists a constant N such that

U(T,)+V(T,)<N, n=123,.. (4.3.36)

From inequality (4.3.35), we have
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limu(T,) = o, (4.3.37)

and hence inequality (4.3.36) gives

limV (T, ) = . (4.3.38)

n—oo

By taking into account inequality (4.3.37), from inequality (4.3.36), we obtain

V@) N1
U(f) U(f) 2

provided that n is sufficiently large. Thus

V() _ 1
ua) 2’

which by inequality (4.3.38) and inequality (4.3.37) we have

im Y T) _

4.3.39
n—o U(T ) ( )

On the other hand by Schwarz’s inequality, we have

V2(T) = e (Tn,t )@'G(Tn,s),/H(Tn,s)a)(s)dS}
{ 1 I"%p(s)r(s) Gz(Tn,s)dSH 1T KHLS) oo
H(Tn't ) k H(Tnlto) to azr(s)p(s)
_ 1 zp(S)r(S) y
_H(Tmto)to ” o?(T,,s)dsxU (T,).

Thus, we have
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VET) . 1 Fap(s)r(s)
U(rn) - H(I-n’to)t0 k

o’ (T, ,s)ds for large n.

By inequality (4.3.39), we have

.
a, ..

> anmjr(s)p(s)a (T.,s)ds=oo.
Consequently,
Iirtrstup (1’ o) j r(s)p(s)o (t, s)ds = oo

which contradicts to the condition (28), Thus inequality (4.3.34) fails and hence

o0

jw_(s)d S<om
' 1(s)p(s)

Hence from inequality (4.3.31), we have

[ 4o ja’z(@ s<o
@00 S 00

which, contradicts to the condition (32), hence the proof is completed.

Example 4.3.10

Consider the following differential equation

B R et TP S
Ox%5(0) + ((x 0+2) ()J
£ () +1)
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Here we note

L gpy- K0+ R N TP U
rt)=—,¥(x)= 0E0) 1] forall x e R, h(t)_tz , q(t) e g(x)=x", d(u,v) u+9u18+6v18
and H(t,x(t),x(t)) __X (t)sinz(;<(t)) <— x*(1) <0=p(t) forallt>t,.

gx®))  C®+) T (xP(t)+D)

Let H(t,s)=(t—s)*>>0 forallt>s>t,,thus

62 H(t,s) =-2(t—s) =h(t,s)\/H(t,s) forallt >t, >0. Taking p(t) =6 such that
S

jr(s)p(s)az(t,s)ds:Iimsup ! jr(s)p(s)[h(t,s) ’O(S)JH(tsJ ds

limsup
t—ow H(t’T)T tow H(t,T)T
t
= limsup 24 I ds =0 < o,
t—o (—)

inf{lim inf H3) } _ inf{lim inf ((tt ‘ts)z } =inf(1) =1,

D N H(t’to) 2| o0 - 0)2 s>t
thus 0 < inf| timinf 2GS 1o
sl e H(E )
t
imsup -] [H(t $)p(5)(C,a(s) - p(s))—%a%,s)}ds
t—w T
t
= limsup Zj 6C (t—ss) —1—26 ds:ﬁ>gcg.
oo (t=T) 3 s ks T 4T
3C 3C
Set Q(T) = 4Tg °
2 2 ©
I Q- (8) 45— 3C0 [s2d5— oo
r(s)p(s) 32
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All conditions of Theorem 4.3.11 are satisfied, thus, the given equation is
oscillatory. We also compute the numerical solution of the given differential equation

using the Runge Kutta method of fourth order (RK4). We have

X133(t)

9x25 (1) + e(i(t)j

—xE (©)sin® (x(1)

x*(t) +1 X+

X(®) = f(t,x(t), x(t)) =

with initial conditions x(1) = -1, >'<(1) =0.5 on the chosen interval [1,50] , the functions

Y(x)=1 and h(t)=0 and finding the values of the functions r, g and f where we

consider H(t, x, ;<) = f(@)I(x, ;<) at t=1, n=980 and h=0.05.

Table 4.10: Numerical solution of ODE 4.10

k tk X(tx)
1 1 -1
81 5 0.59598105
161 9 -0.15335506
221 | 12 0.45164375
301| 16 | -0.00824951
381 | 20 | -0.43550908
461 | 24 0.87072286
521 | 27 | -0.58206656
581 | 30 | 0.28505118
642 | 33.05 | -0.02507562
721 | 37 0.43312716
781 | 40 | -0.13643410
821 | 42 | -0.89118231
925 | 74.2 | -0.43426037
981 | 50 | -0.01036663
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Figure 4.10: Solution curve of ODE 4.10

1.5 T T 5 5 5 T T T 5

0.5 -

Numerical solution x(t)
o
I
1

_1'5 r r r r r r r r r

Remark 4.3.9
Theorem 4.3.10 and Theorem 4.3.11 extend and improve Results of Kamenev

(1978), Results of Philos (1989) and Results of Yan (1986) who studied the equation
(1.2) as r(t) =1, W(x(t)) =1, h(t) = 0,d(g(x(t)), r(t) ¥ (x(t)) ;<(t)) = Xx(t) and

H(t,x(t),>.<(t)) =0. Our result can be applied on their equation, but their oscillation

results cannot be applied on the given equation in Example 4.3.10 because their

equation is particular case of our equation (1.2).

We need the following lemma which will significantly simplify the proof of our next

Theorem.

Let D={(t,s):t>s>t,}, we say that a function H € C(D,R) belongs to the class W if

(1) H(t,t)=0for t>t, and H(t,s) >0 when t#s;
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(2) H(t,s) has partial derivatives on D such that

%H(t,s) =h (6 sWH (L),

1

gH(t,s) =-h,(t,s)\yH(t,S), for all (t,s) € D,andsome h;,h, L
S

(D,R).

Lemma 4.3.1: Let A,,A,A, eC(lt,,0),R)with A, >0 and zeC'([ty, ) R). If

there exist (a,b) < [t,,o0) and ¢ e (a,b) such that

7’ <-A(s)+A(s)z—A,(s)z%, s e(a,b),

then,

- j{H(s,a)p<s)Ao(s)—Lnf(s,a)}ds

He.2) 47, (5)
1 ¢ «
"Hb,0) J {H (b.c)p(s)As(8) = O (b,s)}dss 0,

forall H eW where
m(s.a) = | (s.a) - A(s)yH (s, a)

and

7,(0,5) = |, (b,5)— A (s)VH(b,5) |

(4.3.40)

(4.3.41)
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The proof of this lemma is similar to that of Lu and Meng (2007) and hence will be

omitted.
Theorem 4.3.12

Suppose in addition to the condition (8) holds that W (x) =1 for x eR and assume

that there exist ce(a,b)c(T,0) and H eW such that

c

k 2
(33) ca iH(S a) p(s)(C,a(s) - p(S))—mm (s,a)}ds
1 % k ,
4 0.0 !{H (b,c)p(s)(Coa(s) - P(S))—mﬂz (b, S)}d5>0,
where

p(t) _h(t)
m(t,a)=|h(t,a)- { 0 (t)}/H(t,a),

na(0,0) = hz(b,t)[@@] H(,0

pt) r(t)

and the function pis defined as in Theorem 4.3.10. Then, every solution of equation

(1.2) is oscillatory.
Proof

Without loss of generality, we assume that there exists a solution x(t) of equation

(1.2) such that x(t) >0 on [T,c0) for some T >t, > 0. We define the function  as

Or) ()

_P
a(t) = g(x(t)) LT,
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This and (1.2) imply

2 o) - A0 0) + 2D o) - (1), t>T

r(t) p(t) (t) (®)

a(t) < p(t) p(t) -

where v, (t) = o(t)/ p(t).

Since @(1,v, (t)) > 0then there exists C,such that ®(1,v, (t)) > C,, we have

o’ (), t>T.

p(t)  r(t)

() <-p®)(act) P(t))+[ ] © p(t) ®

From the last inequality and by lemma 4.3.1, we conclude that for any CE(a,b) and

HeW

c

j {H (5,2)p(s)(C,a(s) - P(S))-

’ a

<
apE)rs) " (S’a)}ds

- | {H(b 0)p(5)(C,a(s) - P(S)) -

"HEb.

k
ds<0,
oo™ ® )}S

which contradicts (33). Thus, the equation (1.2) is oscillatory.

Remark 4.3.10

Theorem 4.3.12 is the extension of results of Lu and Meng (2007) who have
studied the equation (1.2) when W (x(t)) =1, ®(g(x(t)),r(t)¥(x(t)) ;((t)) = g(x(t)) and

H(t,x(t),;<(t)) =0. Our result can be applied on their equation, but their oscillation

results cannot be applied on our equation (1.2) because their equation is a particular

case of our equation (1.2).
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4.4 Conclusion

In this section, the problem of finding the sufficient conditions for oscillation of
solutions of ordinary differential equations of second order with damping term of type
(1.2) is considered. We present some oscillation results that contain the sufficient
conditions for oscillation of solutions of the equation of type (1.2). These sufficient
conditions have been derived by using the generalized Riccati technique. Our results
extend and improve many previous results that have been obtained before, for example,
such as the works of Fite (1918), Wintner (1949), Atkinson (1955), Bihari (1963),
Kartsatos (1968), Greaf, et al. (1978), Grace (1992), Elabbasy et al. (2005), Lu & Meng
(2007), Berkani (2008), and Remili (2010). All these previous results have been studied
for particular cases of the equation (1.2) whereas our sufficient conditions have been
derived for the generalized equation (1.2). A number of theorems and illustrative
examples for oscillation differential equation of type (1.2) are given. Further, a number
of numerical examples are given to illustrate the theorems which are computed by using
Runge Kutta of fourth order function in Matlab version 2009. The present results are

compared with existing results to explain the motivation of proposed research study.
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CHAPTER FIVE
OSCILLATION OF THIRD ORDER NONLINEAR

ORDINARY DIFFERENTIAL EQUATIONS

5.1 Introduction

In this chapter, we are concerned with the problem of oscillation of third order non-

linear ordinary differential equation of the form

(r(t)f('x'(t»j £, (XO) =H € X(1), X0, X)) 13)

where g and r are continuous functions on the interval [to,oo), t, 20, r(t) isa positive
function, g, is continuously differentiable function on the real line R except possibly at 0

with yg,(y) >0 and g,(y)>k >0 forally =0, f is a continuous function on R and
H: [to,oo)XRXRXR—>R is a continuous function such that H(t,x,y,z)/g,(y) < p(t) for

all y=0 and t=>t;.

5.2 Third Order Nonlinear ODE Of Type (1.3)

In this chapter, we present the oscillation results of our study of finding the
sufficient conditions for oscillation of solutions of ordinary differential equations of
third order of type (1.3). The present oscillation results have among other finding

extended and improved many previous oscillation results, for examples, such as the
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works of Hanan (1961), Lazer (1966), Jones (1973), Mehri (1976), Parhi & Das (1990),
Parhi & Das (1993), Adamets & Lomtatidze (2001) and Remili (2007). We have
established some new sufficient conditions which guarantee that our differential
equations are oscillatory. A number of theorems and an illustrative example for
oscillation differential equation of type (1.3) are shown. Further, a numerical example is
given to illustrate the theorems. This numerical example is computed by using Runge
Kutta of fourth order function in Matlab version 2009. The present results are compared

with existing results to explain the motivation of proposed research study.

5.3 Oscillation Theorems

Theorem 5.2.1

Suppose that

<o forall £ >0,

O<] du

isglu

(2) 0<k; < ()<k forall z=0,
z

(3) E—Ml, forall T>t,,

1 r(s)

S

(4) IImSUpj jq(u) p(u))duds = oo

t—oo T
where p: ['[O,oo)—> (0,0). Then, every solution of equation (1.3) is oscillatory.

Proof

Without loss of generality, we assume that there exists a solution x(t) > 0 of

equation (1.3) such that x(t) > 0and ;<(t) >0on [T,oo)for some T >t, >0. Define
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r(t) f (x(1))
g, (X(1))

o(t) = JE>T.

This and (1.3) and condition (2), we have

cl)(t){M] <p-q(t), t>T.
0, (X(t)

Integrate the last inequality from T to t and also by condition (2), we have

KrOX0 1) fig(e)- pphs, =T (53
ACO N

Integrate (5.3.1) divided by r(t) from T to t, we obtain

k, Xe)ds < tis )duds, t>T. 5.3.2
Ig(x(s» (r)j 11 () I r(s)!q(“) P))duds, t> (532)

By condition (1), we obtain

@ 4y 0 Lif x(t) < x(T)
o | [ i x> xm)
) B

X(T)

This follows that

j&ds > A,
™ 9,(x(8))

where A =inf I

X(T)

gl(u) '
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Thus, the inequality (5.3.2) becomes

L1
['®

—qe—_

(a(u) - p(u))duds < w(r)f%—klAl, t>T.

By condition (3) and taking the limit superior on both sides, we have

lim supj _[ q(u) — p(u))duds < I|m sup{a)(T) M, —k;A} < x,

tow
as t — oo, which contradicts to the condition (4). Hence, the proof is completed.

Theorem 5.3.2

Suppose, in addition to the conditions (1) and (2) hold that there exists the

differentiable function p:t,,0)—(0,c0)and p>0 such that

T ds
() -[r(s)p(s) , forall T>t,,

[ » W)
6 K, _
© [ Paw) - pw)-lo 270 duds -

Then, every solution of equation (1.3) is oscillatory.

Proof

Without loss of generality, we assume that there exists a solution x(t) > 0 of

equation (1.3) such that x(t) > 0and ;<(t) >0on [T,oo)for some T >t, >0. Define
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PO f (X(1))
0, (X(1)

o(t) = J1>T.

This, (1.3) and the condition (2), we have

, PO X() _ kkp(Or®) X (t)
9, (x(V) 07 (x(t))

o)< pt) pt) - pOa(H) + =

Integrate the last inequality, we get

POIOTO) < ry - p(s)(a(s) - p(s»ds-j{w; (s —M'x’(s)}ds. (533
0, (X(0) T RO 0, (X(5)

From the second integral in the R. H. S., we have

_j PO (5) 52y ,z;(s)r(s);('(s) j Jkp @ =k, K, P(9)T) N
| gA(x() 0,(X(5)) T gl(x(s)) 2Kk p(s)

< | > ()9,
YAy P

L) )
<k, I e d (5.3.4)

2

where Kk, )
4kkl

From (5.3.4) in (5.3.3), we obtain

PO T0O) )| s (a(e) - p(s) -k, 20 |
9, (x(1)) T PE)
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By condition (2) and integrating the last inequality divided by p(t)r(t) , we obtain

.2

RO 1 WACLOI
igl(x(s» o) Foor e )I PN ~PU)—a gy ek

By using the condition (1) and as in Theorem 5.3.1 the first integral in the L. H. S. is

bounded and the condition (5), then, we get

t

J (s)r(s)J PU)(a) - p)) -k, p (u)r(u) duds <o(T)M, —k;A <o,

p(u)

as t — oo, which contradicts to the condition (6). Hence, the proof is completed.

Theorem 5.3.3

Suppose, in addition to the conditions (1) and (2) hold that there exists the

differentiable function p:[t,,)— (0,), p>0, (pr)* <0and (/.) r)* <0such that

Tt ds
) I PE)I(s)

8)  liminf j 2(s)(q(s) — p(s))ds > oo,

t—o0 T

(9)  limsup- j jp(u) Gu) ~ p(u)Huds =<,

t—w

then, every solution of equation (1.3) is oscillatory.
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Proof: Without loss of generality, we assume that there exists a solution x(t) > 0 of

equation (1.3) such that x(t) >0and x(t) >0on [ )for some T >t, >0. Define

PO f (x() T
0, (X(1)

w(t) =

This and the equation (1.3), we have

POF(L) f (X(1) _p@Or)f (X)X Vg, ( ©)
9. (x(®) 07 (x(t))

o) <p(t) p(t) - p(Ha(t) +

By the condition (2), we have

. k, POIOXM)  gi(x®)
t)<- p(t)(a(t) - p(t ~ t),t>T. 535
()<~ p)(a(t) - )+ . GO) K p0r )" (1), t= (5.3.5)

Integrating (5.3.5) from T to t, we get

jp(s) a(s) - p(s))ds <o(T)—a(t) +k, jp(s)r(s)x(s) kit = _W¥(3)ds. (5.3.6)
T g,(X(9)) K, 1 p(9)r(s)

Since p(t)r(t)is a decreasing function, then by the Bonnet’s Theorem there exists a

e[T,t] such that the first integral in the R. H. S. becomes

. . o
K, J' P(S)r(.S) X(8)4s _ k (Tr(T) J'
T g,(x(s)) X(T)

1(U)
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By condition (1), we have

x(a1) dU 0 1If ;((at)<X(T)’
L pMr(T .
ke (TN )I o) zp(r)r(T)j G @)=,
X(T)
Hence
X(a,)
0 <k, p(T)r(T) j 0= (5.3.7)

X(T)

where A, =k, o(T)r(T) J

X(T)

(U)

From (5.3.7) in (5.3.6), we get

jp(s) 0(s) - P($))ds <a(T) - w(t)+A2——j O(S)ds (538)

(S)r( )
We have two cases for the integral

t

1 2
lp(s)r(s) @*(s)ds.

Case 1:

0

1
Lo

®*(s)ds is finite.

Thus, there exists a positive constant B such that

t

.[ L w*(s)ds< B fort>T.
7 P(s)r(s)
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Thus, (5.3.8) becomes

[P(5)(a(s) - p(s))ds <A, -o(t), t>T,

where A, = o(T) + A, +KkB/K,.

Integrating the last inequality from T to t, we get

e~

[ )9 - pw)duds <At -T)- jw(s)ds (5.39)

By using the Schwarz’s inequality, we obtain

ot ds <[ (s)os =‘j Jp‘%(\/p()( j )() dsjp(s)r(s)ds

<B j o(s)r(s)ds. (5.3.10)

From (5.3.10) in (5.3.9), we obtain

—_—
| S—

p(u)(a(u) - p(u))duds <A, (t=T) +B[ p(s)r(s)ds

<A (t=T)+Bp(T)r(T)(-T).

Dividing the last inequality by t and taking the limit superior on both sides, we have

t—oowo t—oo

lim sup~- Hp(u) q(u) — p(u))duds <lim sup{A3 + Bp(l’)r(T)(l_I)} o,

as t — oo, which contradicts to the condition (9).

Case 2: If the integral

w®(s)ds is infinite,

1 (s)r(s)
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by condition g{()°<(t)) >k, we get

7 g{(X(s) »?
Tp(s)r(s) (s)ds = (5.3.11)

Integrating (5.3.5), from (5.3.7) and condition (8), it follows that here exists a constant

A4 such that

— o) > A3+ 91(())‘5?))) w*(s) ds, (5.3.12)

where A, =o(T)+ A, +A,.

From (5.3.11), we get w(t)is negative on [T,oo). Furthermore, we choose a T, > T such

that

1% g/(X(s)
I G O®

Thus, for t >T,, we have

g;(i(t»cf(t{ JERTHEO) 2()dS] LG (D)

K, p(O)r () K, 1 P(S)r(s) K, g, (x(t))
OO
g, (X(t))
Thus
m{AS *I Gi(X6) 2(s)ds} /Ae > log =522 0,(1)
$)r(s) 9, (x(t))
Hence
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15 g{(x(s) 0,(x(T))
= | 21\ ds > _—— = =,
At k, 2 p(s)r(s) o (s)ds = A gl(;((t))

By (5.3.12), we get

g, (x (M)
9, (X()

—o(t)2 A =———T——

From the last inequality and condition (2), we obtain

Kk, x(t .
X(0) < ~AG, (X(T,)) (t) ©

Integrate from T, to t and condition (7), we have

K, X(t) <k, X(T,) — Asgl(x(Tl))j G ()—)—oo,as t— o0,

this contradicts to the assumption that >'<(t) > 0. This completes the proof of Theorem

5.3.3.

Example 5.3.3

Consider the following differential equation

[t%;(t)j. =2 OIEO)

.5 . . '6

We have r(t)=ti4,q(t)=t“and g(;<)=x ,Xg(x) =x >0forall >.<>0 and
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g(u) 45t

1) FR@)=x® and 0<1< X 1 5 foran X 20,
X(t)

X (t)sin?(x(t)) o

(2) H(t (1), X(t), X(1)) = 5

H (t, x(t), X(t), °>Z(t)) sin (x(t))
0, (X(1)) r

_t = p(t) for all >.<¢Oand t>0.

Taking p(t) :tz,;)(t) =2t,(pr)"(t) = —% <0and (,.o r)(t) = _tlz <0for t > Osuch that

(4) liminf jp(s) q(s) — p(s))ds = liminf _[s ( sl jds =00 > —0,

t—w toow

(5) limsup= ”p(u) q(u)— p(u))duds = limsup ﬁuz(u“—%jduds

t—oo tow

T® 1 6T’
_Ilmsup 2 e |8 3 7~ =0,
to> 42 6t 6 6T 7

All conditions of Theorem 5.3.3 are satisfied, thus, the given equation is

oscillatory. We also compute the numerical solution of the given differential equation

using Runge Kutta method of fourth order. We have

X(©) = F(t, (1), X(t), X(V)) =

X OO’ (W) 7
t? ’
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with initial conditions x(1) =0.5, ;<(1) =-1, ;(1) =0 on the chosen interval [1,50] and

finding the values of the functions

H(t, x, x,X) = g(®) (X, X, X).

Table 5.1: Numerical solution of ODE 5.1

r

g and

tk

X(tx)

80
181
221
321
379
461
521
615
721
800
868
929
981

1
4.954
10.009
12.011
17.016
20.92
24.023
27.026
31.731
37.036
40.99
44.444
47.447
50

0.5
-0.01467758
0.76997118
-0.77145176
1.56655689
-0.02744315
-0.93017943
1.21756203
-0.02268732
0.41913726
1.92358434
-0.00644259
-1.29549185
-0.45092350

f

where we consider
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Figure 5.1: Solution curve of ODE 5.1

Numerical solution x(t)

_15 r r r r r r r r r
0 5 10 15 20 25 30 35 40 45 50

Remark 5.3.1

Our theorems extend and improve the obtained results by Hanan (1961) and
Adamets and Lomtatidze (2001) for the equation (2.14), results of Lazer [1966] and
Jones (1973) for the equation (2.15) and result of Kiguradze (1992) for the equation
(2.18), as mentioned in Chapter Two. Our results can be applied on their equations but,
their oscillation results cannot be applied on the equation (1.3) because their equations

are special cases of the equation (1.3).
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5.4 Conclusion

In this section, we present the oscillation results of our study of finding the
sufficient conditions for oscillation of solutions of ordinary differential equations of
third order of type (1.3). Some oscillation have been introduced which contain the
sufficient conditions for oscillation of solutions of the equation of type (1.3). These
sufficient conditions have been established by using the generalized Riccati technique.
Our results extend and improve many previous results that have been obtained before,
for example, such as the works of Hanan (1961), Lazer (1966), Jones (1973), Mehri
(1976), Parhi & Das (1990), Parhi & Das (1993), Adamets & Lomtatidze (2001) and
Remili (2007). All these previous results have been studied for particular cases of the
equation (1.3) whereas our sufficient conditions have been derived for the generalized
equation (1.3). A number of theorems and an illustrative example for oscillation
differential equation of type (1.3) are given. Further, the numerical example is given to
illustrate the theorem which is computed by using Runge Kutta of fourth order function
in Matlab version 2009. The present results are compared with existing results to

explain the motivation of proposed research study.
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CHAPTER SIX

CONCLUSION AND FUTURE WORK

6.1 Conclusion

Over the past three decades, there have been many studies which have dealt with
the oscillatory properties of nonlinear ordinary differential equations. The problem of
finding oscillation criteria for second order nonlinear differential equations has received
a great deal of attention in the 20 years from the publication of the classic paper by
Atkinson (1955). The study of the oscillation of second order nonlinear ordinary
differential equations with alternating coefficients is of special interest because of the
fact that many physical systems are modeled by second order nonlinear ordinary

differential equations.

In this thesis, we are concerned with oscillation behavior of solutions of non-
linear ordinary differential equations of second order and third order with variable
coefficients. The main results are presented in chapter three, chapter four and five.
Oscillation of second order nonlinear differential equation with alternating coefficients
of type (1.1) has been investigated in chapter three. The present oscillation results
contain the sufficient conditions for oscillation of solutions of the equation of type (1.1)
which have been derived by using the generalized Riccati technique. Our results extend
and improve many previous results that have been obtained before, for example, such as
the works of Fite (1918), Wintner (1949), Philos (1989) for the equation (2.1), Atkinson

(1955) for the equation (2.4), Bihari (1963), Kartsatos (1968) for equation (2.5),
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Elabbasy (1996) for the equation (2.6), and Elabbasy et al. (2005) for the equation (2.9).
All these previous results have been studied for particular cases of the equation (1.1)
whereas our sufficient conditions have been derived for the generalized equation (1.1).
A number of oscillation theorems differential equation of type (1.1) are given. Further, a
number of numerical examples are given to illustrate the theorems which are computed
by using Runge Kutta of fourth order function in Matlab version 2009. The present
results are compared with existing results to explain the motivation of our oscillation

results for equation (1.1).

In chapter four, the problem of finding the sufficient conditions for oscillation of
solutions of ordinary differential equations of second order with damping term of type
(1.2) is considered. The present oscillation results contain the sufficient conditions for
oscillation of solutions of the equation of type (1.2). These sufficient conditions have
been derived by using the generalized Riccati technique. Our results extend and
improve many previous results that have been obtained before, for example, such as the
works of Fite (1918), Wintner (1949) for the equation (2.1), Atkinson (1955) for the
equation (2.4), Bihari (1963), Kartsatos (1968) for equation (2.5), Greaf, et al. (1978),
Grace (1992), Elabbasy et al. (2005), Lu & Meng (2007), Berkani (2008), and Remili
(2010). All these previous results have been studied for particular cases of the equation
(1.2) (as mentioned in chapter two) whereas our sufficient conditions have been derived
for the generalized equation (1.2). A number of theorems and illustrative examples for
oscillation differential equation of type (1.2) are given. Further, a number of numerical
examples are given to illustrate the theorems which are computed by using Runge Kutta
of fourth order function in Matlab version 2009. The present results are compared with

existing results to explain the motivation of our oscillation results for the equation (1.2).
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Therefore, we present the oscillation results of our study of finding the sufficient
conditions for oscillation of solutions of ordinary differential equations of third order of
type (1.3) in chapter five. Some oscillation results have been introduced which contain
the sufficient conditions for oscillation of solutions of the equation of type (1.3). These
sufficient conditions have been established by using the generalized Riccati technique.
The present results extend and improve many previous results that have been obtained
before, for example, such as the works of Hanan (1961), Lazer (1966), Jones (1973),
Mehri (1976), Parhi & Das (1990), Parhi & Das (1993), Adamets & Lomtatidze (2001)
and Remili (2007). All these previous results have been studied for particular cases of
the equation (1.3) (as mentioned in chapter two) whereas our sufficient conditions have
been derived for the generalized equation (1.3). A number of theorems and an
illustrative example for oscillation differential equation of type (1.3) are given. Further,
the numerical example is given to illustrate the theorem which is computed by using
Runge Kutta of fourth order function in Matlab version 2009. The present results are
compared with existing results to explain the motivation of proposed research study.
We compare our results with other previous oscillation results in the literature to show
that our oscillation results are more general where our sufficient conditions are derived
to more general equations. These results can be applied to many particular cases of our
general equations but many previous oscillation results cannot applied to our equations
since all terms of our equations are not included in their studies. This is the main

advantage of our research work.
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6.2 Future Work

Many phenomena in different branches of sciences are interpreted in terms of
second order differential equations and their solutions. In future, this research work will
be continued to the study of oscillation behavior of the higher nonlinear ordinary

differential equations and also partial differential equations.
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