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ABSTRACT

The starlikeness of integral transform Vλf(z) =
∫ 1

0
λ(t)f(tz)

t
dt was first studied by

Fournier and Ruscheweyh in 1994. This investigation is extended to starlikeness and

convexity of order δ where δ ∈ (0, 1
2
]. Making use the class introduced by Rosihan et

al. (2012b), we determine the starlikeness and convexity of order δ for the integral

transforms Vλf using the concept of duality and Herglotz formula. In addition, a

sufficient condition for Vλf to be starlike and convex functions order δ and some

applications of certain operators are also looked at. Furthermore, these properties

are obtained for the integral transform Vλf(z) = z
∫ 1

0
λ(t)1−ρtz

1−tz dt ∗ f(z) (ρ < 1)

using the similar manner.

Recently, using the theory of differential subordination, properties of 1+βzp′(z), 1+

βz p
′(z)
p(z)

and 1 + βz p
′(z)
p2(z)

subordinated to certain classes have been studied by many

authors. In 1996, Sokól and Stankiewicz introduced the class SL? which contains

function associated with the right-half of the lemniscate of Bernoulli. By considering

the class of Janowski starlike functions and a class defined via the Cassinian curve,

a class closely related to the SL?, we obtain conditions on β using the differential

subordination concept. Furthermore, the Briot-Bouquet differential subordination

is used in obtaining the inclusion theorems for classes defined by Dziok-Srivastava

operator and generalised multiplier transformations.

The extremal problems of multivalent and univalent harmonic functions have

been discussed intensively by numerous authors. Motivated by Ahuja and Jahangiri

(2001), new classes are introduced using certain operators. Coefficient conditions,

extreme points, convex combination and distortion upper and lower bounds are de-

termined for each of the classes.

Finally, some miscellaneous problems were also investigated which include preser-

vation of certain operators to be in Hardy space as well as the preservation of the

Jung-Kim-Srivastava operators for a new introduced class of functions. Suggestion

problems for future research are also discussed.
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ABSTRAK

Penjelmaan kamiran bak-bintang Vλf(z) =
∫ 1

0
λ(t)f(tz)

t
dt mula diselidiki oleh

Fournier dan Ruscheweyh pada tahun 1994. Kajian ini telah diperkembangkan

kepada sifat bak-bintang dan sifat cembung peringkat δ dengan δ ∈ (0, 1
2
]. Menggu-

nakan kelas yang diperkenalkan oleh Rosihan et al. (2012b), sifat bak-bintang dan

cembung peringkat δ bagi penjelmaan kamiran Vλf dikaji dengan menggunakan kon-

sep kedualan dan formula Herglotz. Di samping itu, syarat cukup bagi penjelmaan

kamiran Vλf supaya menjadi fungsi bak-bintang dan fungsi cembung peringkat δ

dan beberapa penggunaan operator-operator tertentu yang berkaitan dengan pen-

jelmaan kamiran Vλf juga dilihat. Selanjutnya, sifat-sifat tersebut turut diperolehi

untuk penjelmaan kamiran Vλf(z) = z
∫ 1

0
λ(t)1−ρtz

1−tz dt ∗ f(z) (ρ < 1) dengan meng-

gunakan kaedah yang serupa.

Akhir-akhir ini, dengan menggunakan teori subordinasi kebezaan, sifat-sifat bagi

1 + βzp′(z), 1 + βz p
′(z)
p(z)

dan 1 + βz p
′(z)
p2(z)

subordinat kepada kelas-kelas tertentu telah

diteliti oleh kebanyakan pengkaji. Pada tahun 1996, Sokól dan Stankiewicz telah

memperkenalkan kelas SL? yang terkandung di dalam lemniskat Bernoulli baha-

gian kanan. Dengan mempertimbangkan kelas fungsi bak-bintang Janowski dan

kelas yang berada di dalam lengkuk Cassini yang mempunyai kaitan rapat den-

gan kelas SL?, syarat β diperolehi dengan menggunakan konsep subordinasi ke-

bezaan. Seterusnya, subordinasi kebezaan Briot-Bouquet digunakan untuk mem-

perolehi teorem-teorem rangkuman bagi kelas-kelas yang ditakrifkan oleh operator

Dziok-Srivastava dan penjelmaan pengganda teritlak.

Masalah ekstremum bagi fungsi harmonik multivalen dan univalen telah dibin-

cangkan secara intensif oleh para penyelidik. Bermotivasikan Ahuja dan Jahangiri

(2001), kelas-kelas baru diperkenalkan dengan mempertimbangkan beberapa oper-

ator tertentu. Syarat-syarat pekali, titik-titik ekstrem, kombinasi cembung serta

batas atas dan bawah herotan ditentukan untuk setiap kelas.

Tesis ini diakhiri dengan penyelidikan terhadap pelbagai masalah yang meli-

batkan pengawetan operator-operator tertentu dalam ruang Hardy dan juga pen-

gawetan bagi operator Jung-Kim-Srivastava dalam kelas yang baru diperkenalkan.

Cadangan masalah-masalah untuk kajian selanjutnya juga turut dibincangkan.
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

Complex analysis and geometric function theory play an important role in Mathe-

matics and Physics. Complex analysis or better known as the theory of functions

of a complex variable, was rigorously investigated in the 19th century. It deals with

the study of the sets and functions in the complex plane. It is particularly con-

cerned with the analytic functions of complex variables and the theory of conformal

mappings. These theories are useful in many branches of mathematics such as num-

ber theory and applied mathematics, as well as in physics including hydrodynamic,

thermodynamics, eletrical engineering and others. Geometric properties of analytic

functions are studied in geometric function theory and Riemann mapping theorem

is the fundamental result of this theory.

Since analytic functions are the central components in complex analysis due to

their interesting properties, we give its definition first.

Definition 1.1. (Duren, 1983) A complex-valued function f of a complex variable

z is differentiable at a point z0 ∈ C if f ′(z0) = limz→z0
f(z)−f(z0)

z−z0 exists at z0. A

function f is analytic at z0 if it is differentiable at every point in some neighborhood

of z0.

A power series represents an analytic function of z in its region of convergence.

A complex-valued function f of a complex variable has a Taylor series expansion

f(z) =
∑∞

n=0 An(z − z0)n where An = f (n)(z0)
n!

and is convergent in some open disk

1



centered at z0.

Univalent function theory is classified under the broader area of geometric func-

tion theory. One of the basic result in the theory of univalent functions in one

variable is the Riemann mapping theorem. As early as 1851, the Riemann mapping

theorem initiated by Bernhard Riemann(1826-1866) states that for every simply

connected domain G which is proper subset of the complex plane C, can be mapped

conformally onto the unit disk D = {z ∈ C : |z| < 1}. Moreover if z0 is a given

point in G, then there exist a unique function f which maps G conformally onto

D such that f(z0) = 0 and f ′(z) > 0 (Graham and Kohr, 2003), (Duren, 1983)

and (Pommerenke, 1975). In view of the Riemann mapping theorem, it suffices to

consider the unit disk D rather than a general simply connected domain.

Definition 1.2. (Duren, 1983) A function f is said to be univalent (schlicht or

one-to-one) in a domain E ⊂ C if the conditions f(z1) = f(z2) for all points z1 and

z2 in E imply that z1 = z2. The function f is locally univalent at a point z0 ∈ E if

it is univalent in some neighborhood of z0.

The definition for p-valent (multivalent of order p) in D is given as follows:

Definition 1.3. (Goodman, 1983) A function f is p-valent (multivalent of order p)

in D if for each w0 (infinity included) the equation f(z) = w0 has at most p roots

in D (the roots are counted with their multiplicities) and there are some w1 so that

f(z) = w1 has exactly p roots in D.

The inverse mapping theorem implies that if f is locally univalent then f ′(z) 6= 0.

There are univalent functions but not analytic, for example f(z) = 1
z
. Conversely,

the function f(z) = ez is an analytic function but not univalent. We are interested

2



in univalent functions that are also analytic. An analytic univalent function is called

a conformal mapping because of its angle preserving property. The theory of con-

formal mapping is a shift of emphasis from the function theoretical to the geometric

side of problem.

Consider a Maclaurin series expansion that is convergent in D,

g(z) =
∞∑
n=0

anz
n = a0 + a1z

1 + a2z
2 + · · ·

f(z) =
g(z)− a0

a1

= z + a2z
2 + · · · = z +

∞∑
n=2

anz
n, a1 6= 0. (1.1)

The above process is called the normalisation of function with f(0) = 0 and f ′(0) =

1. The reason for introducing this normalisation is to eliminate unnecessary param-

eters, which simplifies the statement of the results (Pommerenke, 1975). Observe

that if g is univalent in D then the translation of the image domain of g(z) − a0

is univalent in D. Since g is univalent in D then a1 = g′(0) 6= 0. Thus we may

divide by a1 so that gives f(z) = g(z)−a0
a1

. Since multiplication by 1
a1

rotates and

stretches the image domain, then for g is univalent in D would imply the function

f is univalent in D.

Definition 1.4. (Goodman, 1983, p. 15) A function of the form (1.1) is said to

be normalised. If f(z) is univalent and has the form (1.1), it is called a normalised

univalent function.

LetA denote the class of all analytic functions f in the form (1.1) and normalised

by f(0) = 0 = f ′(0) − 1. Let S ⊂ A be the class of functions f that are analytic

and normalised univalent functions in the unit disk D. One of the most important

example of a function in S is the Koebe function

κ(z) =
z

(1− z)2
= z + 2z2 + 3z3 + · · ·+ nzn + · · · =

∞∑
n=1

nzn , z ∈ D

3



which we can also write as

κ(z) =
1

4

[(
1 + z

1− z

)2

− 1

]
.

In Figure 1.1 (Goodman, 1983), the sequence of mappings used in building the

Koebe functions is shown.The function w = 1+z
1−z maps D univalently onto the right

halfplane Re{w} > 0. Then the function g(z) = w2(z) takes this half-plane onto

the entire plane minus the part of the negative real axis from −1
4

to infinity so that

the Koebe function κ(z) = 1
4

(g(z)− 1) is established.

Figure 1.1: The mapping of Koebe functions

Ludwig Bieberbach (1916) proved that the coefficient |a2| ≤ 2 if f in S. Since

4



the equality occurs for a2 = 2, the Koebe function is called an extremal function of

S where the extremal function refers to a function for which equality occurs.

1.2 Subclasses of univalent functions

Due to Koebe function, most researchers are motivated to study and introduce sub-

classes of S. The well known subclasses of S are classes of starlike functions, S?,

convex functions, C and close-to-convex functions, K.

The class of starlike functions in D was presented by Alexander (1915), and

studied by Nevanlinna in 1921.

Definition 1.5. (Duren, 1983) A set E ⊂ C is said to be starlike with respect to

a point w0 ∈ E if the linear segment joining w0 to every other point w ∈ E lies

entirely in E. If a function f maps D onto a domain that is starlike with respect to

w0, then f is called a starlike function with respect to w0. For w0 = 0, the function

f is said a starlike function.

The Koebe function is a starlike function and the domain κ(D) is starlike with

respect to each w0 > −1
4
. Figure 1.2 (Graham and Kohr, 2003) describes the image

for a starlike function.

Alexander (1915) also presented the class of convex functions in D and later

studied by Gronwall (1916) and Löwner (1917).

Definition 1.6. (Duren, 1983) The set E ⊂ C is said to be convex if the linear

segment joining any two points of E lies entirely in E. If a function f maps D onto

a convex domain then f is said to be a convex function.

The image of a convex function is shown in Figure 1.3 (Graham and Kohr, 2003).

5



Figure 1.2: The image of starlikeness

The Möbius function Mo(z) ≡ 1+z
1−z is a convex function because it maps D onto a

half-plane. Any circular disk or any half-plane is a convex set (Goodman, 1983).

Figure 1.3: The image of convexity

The following theorems give an analytic description of starlike and convex func-

tions.

Theorem 1.1. (Duren, 1983) Let f be analytic in D with f(0) = 0,

f ′(0) = 1. Then a function f ∈ S? if and only if

Re

{
zf ′(z)

f(z)

}
> 0, (z ∈ D)

6



Further, a function f ∈ C if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0, (z ∈ D).

The concepts of functions starlike of order γ, S∗(γ) and convex of order γ, C(γ)

were introduced by Robertson in 1936. The theorem of these classes are given below.

Theorem 1.2. f ∈ S∗(γ) if

Re

{
zf ′(z)

f(z)

}
> γ (z ∈ D, 0 ≤ γ < 1),

and a function f ∈ C(γ) if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> γ (z ∈ D, 0 ≤ γ < 1).

The relationship between starlike and convex function was first noticed by Alexan-

der in 1915.

Theorem 1.3. Suppose that f ′(z) 6= 0 in D. Then f is convex in D if and only if

zf ′(z) is starlike in D.

As an example, consider a function

f(z) =
z

1− z
= z +

∞∑
n=2

zn

which maps D onto the half-plane Re w > −1
2
. Thus the function f is a convex

function in D which implies the function

zf ′(z) =
z

(1− z)2
(1.2)

is starlike in D. Recognize that the right side of (1.2) is the Koebe function.

The definition of the close-to convex functions was given due to Kaplan (1952).
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Definition 1.7. Let f ∈ S. The function f is said close-to convex function in D if

there exists a convex function g in D such that

Re

{
f ′(z)

g′(z)

}
> 0, z ∈ D

or

Re

{
zf ′(z)

h(z)

}
> 0, z ∈ D

where h is a starlike function in D.

Most of these subclasses have both an analytic and a geometric characterization.

These classes are related with functions of positive real part in D which is called

Carathéodory class and denoted by P .

Definition 1.8. (Goodman, 1983) The set P is the set of all functions of the form

f(z) = 1+
∑∞

n=1 anz
n that are analytic in D and such that for z ∈ D, Re{f(z)} > 0.

In the class P , the Möbius function

Mo(z) ≡ 1 + z

1− z
= 1 + 2z + 2z2 + · · · = 1 + 2

∞∑
n=1

zn

plays a central role as the Koebe function for the class S. This function is analytic

and univalent in D, it maps D onto the half-plane.

The classR is the class of analytic functions whose derivative has a positive real part.

Properties for this class have been obtained by many and in particular introduced

and studied by MacGregor (1962). Formally, we have

Definition 1.9. Let f ∈ S and z ∈ D, f is said to be in R if Re {f ′(z)} > 0 and

if f satisfying Re {f ′(z)} > γ, (0 ≤ γ < 1) then f ∈ R(γ).

8



1.3 Generalised hypergeometric functions, convolution and operators

The Bieberbach conjecture remained open for a long time and was surprisingly

proved by Louis de Branges in 1984 using hypergeometric functions (de Branges,

1985). The implication of this discovery, theory on hypergeometric functions was

developed [Koepf (2007) and Shanmugam (2007)] and various properties of classes

were obtained via operators and generalised hypergeometric functions.

Representation of a function g(z) = 1
(1−z)a , a ∈ C as a geometric series

1

(1− z)a
=
∞∑
n=0

(a)n
n!

zn

leads us to define a function

1F1(b, c; z) = 1 +
bz

c
+
b(b+ 1)z2

c(c+ 1)2!
+
b(b+ 1)(b+ 2)z3

c(c+ 1)(c+ 2)3!
+ · · ·

=
∞∑
n=0

(b)n
(c)nn!

zn (1.3)

where b and c are complex numbers with c 6= 0,−1,−2, . . . and (λ)n is the Pochham-

mer symbol defined, in terms of gamma function by

(λ)n :=
Γ(λ+ n)

Γ(λ)
=


1 , n = 0, λ 6= 0

λ(λ+ 1)(λ+ 2) · · · (λ+ n− 1) , n = 1, 2, 3, . . .

The function (1.3) is called a confluent (Kummer) hypergeometric function. This

function is analytic and satisfies Kummer’s differential equation

zw′′(z) + [c− z]w′(z)− aw(z) = 0.
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Further, (1.3) can be generalised as

2F1(a, b; c; z) = 1 +
abz

c
+
a(a+ 1)b(b+ 1)z2

c(c+ 1)2!
+ · · ·

=
∞∑
n=0

(a)n(b)n
(c)nn!

zn , a, b, c ∈ C(c 6= 0,−1,−2, . . .)

and is called the Gaussian hypergeometric function which is analytic and satisfies

the hypergeometric differential equation

z(1− z)w′′(z) + [c− (a+ b+ 1)z]w′(z)− abw(z) = 0.

More generally, for complex or real parameters

αi(i = 1, 2, . . . , l) and βj ∈ C\{0,−1,−2, . . .} (j = 1, 2, . . . ,m),

the generalised hypergeometric function lFm(α1, . . . , αl; β1, . . . , βm; z) is given as

lFm(α1, . . . , αl; β1, . . . , βm; z) =
∞∑
n=0

(α1)n . . . (αl)n
(β1)n . . . (βm)nn!

zn

(l ≤ m+ 1; l,m ∈ N0 := N ∪ {0}; z ∈ D).

An operator is a type of function which acts on functions to produce other

functions. In calculus, there are three typical types of operators: integral operators,

differential operators and convolution. The convolution is a mathematical operation

on two functions ϕ and ψ in order to produce a third function.

Definition 1.10. Let ϕ(z) =
∑∞

n=0 anz
n and ψ(z) =

∑∞
n=0 bnz

n are analytic func-

tions, then the convolution of these functions is

ϕ(z) ∗ ψ(z) =
∞∑
n=0

anbnz
n = ψ(z) ∗ ϕ(z).

The convolution is also called the Hadamard product.
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Corresponding to the generalised hypergeometric functions and using the con-

volution, for f in the form (1.1), Dziok and Srivastava (1999) initiated to introduce

the operator

H l,m (α1, . . . , αl; β1, . . . , βm) f(z) = z lFm(α1, . . . , αl; β1, . . . , βm; z) ∗ f(z)

= z +
∞∑
n=2

(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1(n− 1)!
anz

n

= z +
∞∑
n=2

φn[α1]anz
n

where φn[α1] = (α1)n−1...(αl)n−1

(β1)n−1...(βm)n−1(n−1)!
,

αi(i = 1, 2, . . . , l) and βj ∈ C\{0,−1,−2, . . .}(j = 1, 2, . . . ,m)

are complex or real parameters. For convenience we write

H l,m [α1] f(z) := H l,m (α1, . . . , αl; β1, . . . , βm) f(z).

The Dziok-Srivastava operator includes well known operators such as:

i) Hohlov operator (Hohlov, 1978)

H2,1(a, b; c)f(z) ≡ Ha,b,cf(z) = z +
∞∑
n=2

(a)n−1(b)n−1

(c)n−1(n− 1)!
anz

n

where a, b, c,∈ C and c 6= 0,−1,−2, . . ..

ii) Carlson-Shaffer operator (Carlson & Shaffer, 1984)

H2,1(b, 1; c)f(z) ≡ L(b, c)f(z)

= z +
∞∑
n=2

(b)n−1

(c)n−1(n− 1)!
anz

n, b, c ∈ C, c 6= 0,−1,−2, . . .

iii) Ruscheweyh derivative operator (Ruscheweyh, 1975b)

H2,1(µ+ 1, 1; 1)f(z) ≡ Dµf(z) = z +
∞∑
n=2

(µ+ 1)n−1

(n− 1)!
anz

n , (µ ≥ −1).
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iv) Bernardi integral operator (Generalised Bernardi-Libera-Livington integral op-

erator) [(Bernardi, 1969), (Libera, 1965) and (Livington, 1966)]

H2,1(c+ 1, 1; c+ 2)f(z) ≡ Fc(z) = z +
∞∑
n=2

(c+ 1)n−1

(c+ 2)n−2

anz
n , (c > −1).

Motivated by Ruscheweyh derivative operator, Noor (1999) introduced new op-

erator by setting

fµ(z) =
z

(1− z)µ+1
, (µ ∈ N0)

and defining f ‡µ in terms of the convolution as

fµ(z) ∗ f ‡µ(z) =
z

(1− z)2
, (z ∈ D).

Then, Noor operator is defined by Iµf(z) =
(
f ‡µ ∗ f

)
(z). Choi, Saigo and Srivastava

(2002) generalised the operator Iµ for ξ > 0, µ > −1 and obtained Iµ,ξ f(z) =

(fµ,ξ ∗f) (z). Then, using the generalised hypergeometric functions, Kwon and Cho

(2007) established an operator using the similar manner as Noor (1999) and Choi

et al. (2002). The Kwon-Cho operator is given as

H l,m
λ [α1] f(z) =

∞∑
n=0

(λ)n(β1)n . . . (βm)n
(α1)n . . . (αl)nn!

an+1z
n+1 , (a1 = 1 , λ > 0).

For special cases, the Noor operator, Choi-Saigo-Srivastava operator and Kwon-Cho

operator are equivalent to the Dziok-Srivastava operator.

i) H2,1(2, 1;µ+ 1)f(z) ≡ Iµf(z) = z +
∑∞

n=2
(2)n−1

(µ+1)n−1
anz

n

ii) H2,1(ξ, 1;µ+ 1)f(z) ≡ Iµ,ξ f(z) = z +
∑∞

n=2
(ξ)n−1

(µ+1)n−1
anz

n

iii) For l = m+ 1, λ = 1, β1 = 1 and β2 = α1, . . . βm+1 = αl,

H l,m [α1] f(z) ≡ H l,m
λ [α1] f(z).
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Besides that, we provide some definitions of other operators that are used in this

study.

i) Jung-Kim-Srivastava operator (Jung et al.,1993)

Jνf(z) = z +
∞∑
n=2

(
ν + 1

ν + n

)
anz

n, ν > −1

and

`νµf(z) = z +
Γ(ν + µ+ 1)

Γ(µ+ 1)

∞∑
n=2

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n, ν > 0, µ > −1.

ii) Generalised Sǎlǎgean operator (Al-Oboudi, 2004)

Genaralised Sǎlǎgean operator was introduced by Al-Oboudi (2004) as follows:

Dk
λf(z) = z +

∞∑
n=2

[1 + (n− 1)λ]k anz
n, λ ≥ 0, k ∈ N0 = {0, 1, 2, . . .} .

For λ = 1, the Al-Oboudi operator is reduced to Sǎlǎgean operator (Sǎlǎgean, 1983)

iii) Cǎtaş multiplier transformations (Cǎtaş, 2008)

For any real numbers k and λ where k ≥ 0, λ ≥ 0, c ≥ 0, Cǎtaş defined the multiplier

transformations I(k, λ, c)f(z) by the following series:

I(k, λ, c)f(z) = z +
∞∑
n=2

[
1 + λ(n− 1) + c

1 + c

]k
anz

n. (1.4)

1.4 Duality principle

The concept of duality associated with convolution for a function f in A was devel-

oped by Ruscheweyh (1975a) and the basic results of Ruscheweyh’s duality theory

can be found in the book (Ruscheweyh, 1982). Here, some basic concepts and re-

sults from this theory are given. Let A0 = {g : g(z) = f(z)
z
, f ∈ A}, g(0) = 1 and

13



for a subset B ⊂ A0, the dual set is defined as

B∗ = {g ∈ A0 : (f ∗ g)(z) 6= 0, z ∈ D, for all f ∈ B}

and (B∗)∗ = B∗∗ is called the second dual or dual hull of B.

Theorem 1.4. (Ruscheweyh, 1982) Let

B =

{
1 + xz

1 + yz
: |x| = |y| = 1

}
.

Then B∗∗ = H where

H =
{
g ∈ A0 : ∃φ ∈ R such that Re eiφ[g(z)] > 0, z ∈ D

}
.

Theorem 1.5. (Ruscheweyh, 1975a) Let

B =

{
β + (1− β)

(
1 + xz

1 + yz

)
: |x| = |y| = 1

}
, β ∈ R, β 6= 1.

Then

(i) B∗∗ = {g ∈ A0 : ∃φ ∈ R such that Re eiφ[g(z)− β] > 0, z ∈ D.

(ii) If Γ1 and Γ2 are two continuous linear functionals on B with 0 /∈ Γ2(B), then

for every g ∈ B∗∗ we can find Θ ∈ B such that Γ1(g)
Γ2(g)

= Γ1(Θ)
Γ2(Θ)

.

These theorems have many applications to classes of functions which are defined

using properties like bounded real part, starlikeness, convexity, close-to-convexity,

univalence and other properties. The application of Herglotz formula [(Herglotz,

1911), (Rudin, 1973), (Hallenbeck and MacGregor, 1974)] is involved in proving the

theorems. The definition of Herglotz formula is stated for all f ∈ P , there exists a

probability measure ξ on the interval[0, 2π] so that

f(z) = 1 + 2

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ) ,

∫ 2π

0

dζ(θ) = 1.
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The extreme points of P are the function f(z) = 1+z
1−z . The class P ⊂ A0 is defined

by

P = {g ∈ A0 : Re[g(z)] > 0, z ∈ D} .

The result from Ruscheweyh (1982, p. 23) is stated in the following lemma.

Lemma 1.1. (Duality Theorem) The dual of the class P is

P∗ =

{
g ∈ A0 : Re[g(z)] >

1

2
, z ∈ D

}
.

1.5 Differential subordination

In the theory of complex-valued functions, there are numerous characterisation of

function which are determined by a differential condition. As a simple example, the

Noshiro-Warschawski theorem stated:

Theorem 1.6. If f is analytic in the unit disk D, then Re[f ′(z)] > 0 implies f is

univalent in D.

The real-valued techniques were used in the complex plane since most of the known

differential implications dealt with real-valued inequalities. Alternatively, a differen-

tial inequality in a real variable concept was replaced with its complex analogue by

Miller and Mocanu in 1981 and called the differential subordination.

Definition 1.11. An analytic function f is subordinate to an analytic function g,

written f(z) ≺ g(z)(z ∈ D), if there exists an analytic function w in D such that

w(0) = 0 and |w(z)| < 1 for |z| < 1 and f(z) = g(w(z)). In particular, if g is

univalent in D, then f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(D) ⊂ g(D).

The subordination can be illustrated as in Figure 1.4 (Graham and Kohr, 2003).

15



Figure 1.4: Subordination of f and g

The subordination principle can be used to characterize classes of analytic func-

tions. For examples:

i) f ∈ P if and only if f(z) ≺ 1 + z

1− z
,

because the function 1+z
1−z is a univalent function maps D conformally onto the

right-half plane.

ii) f ∈ S? ⇔ zf ′(z)

f(z)
∈ P ⇔ zf ′(z)

f(z)
≺ 1 + z

1− z
.

iii) f ∈ C ⇔ 1 +
zf ′′(z)

f ′(z)
∈ P ⇔ zf ′′(z)

f ′(z)
≺ 2z

1− z
.

iv) f ∈ S?(γ)⇔ zf ′(z)

f(z)
≺ 1 + (1− 2γ)z

1− z
, (0 ≤ γ < 1).

v) f ∈ C(γ)⇔ zf ′′(z)

f ′(z)
≺ 2(1− γ)z

1− z
, (0 ≤ γ < 1).

Furthermore, we give some definitions of other classes which are used in our

study. Firstly, we denote S?[A,B] as the class of Janowski starlike functions by

Janowski (1973) consisting of functions f ∈ A satisfying

zf ′(z)

f(z)
≺ 1 + Az

1 +Bz
(−1 ≤ B < A ≤ 1).
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For c ∈ (0, 1], Aouf et al. (2011) defined the class S?(qc) as:

S?(qc) =

{
f ∈ A :

∣∣∣∣∣
[
zf ′(z)

f(z)

]2

− 1

∣∣∣∣∣ < c, z ∈ D

}
.

It can be established that

f ∈ S?(qc)⇔
zf ′(z)

f(z)
≺
√

1 + cz (z ∈ D).

Denote Θc as the set of all points on the right half-plane such that the product of

the distances from each point to the focuses −1 and 1 is less than c;

Θc :=
{
w ∈ C : Re w > 0,

∣∣w2 − 1
∣∣ < c

}
thus the boundary ∂Θc is the right loop of the Cassinian ovals. Geometrically, a

function f ∈ S?(qc) if w = zf ′(z)
f(z)

is in the interior of the right half of the Cassinian

ovals (x2 + y2)2 − 2(x2 − y2) = c2 − 1. Particularly, for c = 1, the right half of the

lemniscate of Bernoulli (x2+y2)2−2(x2−y2) = 0 is obtained and S?(q1) ≡ SL?. The

class of SL? was introduced by Sokól and Stankiewicz in 1996 which is consisting

normalised analytic functions f in D satisfying the condition

∣∣∣∣[ zf ′(z)f(z)

]2

− 1

∣∣∣∣ < 1, z ∈

D. a function f ∈ SL? if zf ′(z)
f(z)

is in the interior of the right half of the lemniscate

of Bernoulli. The illustration of this class is shown in Figure 1.5 (Sokól, 2009b). A

function in the class SL? is called Sokól-Stankiewicz starlike function. Alternatively,

we can also write

f ∈ SL? ⇔ zf ′(z)

f(z)
≺
√

1 + z .

Some properties of functions in class SL? have been studied by (Rosihan et al.,

2012c), (Sokól, 2009a), (Sokól, 2008) and (Sokól, 2007).
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Figure 1.5: The graph of the interior of the right half of the lemniscate of Bernoulli.

Let N be the class of all analytic and univalent functions φ in D and for which

φ(D) is convex with φ(0) = 1 and Re {φ(z)} > 0 for z ∈ D. For φ, ψ ∈ N , Ma and

Minda (Ma and Minda, 1992) studied the subclasses S?(φ), C(φ) and K(φ, ψ) of the

class A. These classes are defined using the principle of subordination as follows:

S?(φ) :=

{
f : f ∈ A and

zf ′(z)

f(z)
≺ φ(z) in D

}

C(φ) :=

{
f : f ∈ A and 1 +

zf ′′(z)

f ′(z)
≺ φ(z) in D

}

K(φ, ψ) :=

{
f : f ∈ A and ∃g ∈ S?(φ) such that

zf ′(z)

g(z)
≺ ψ(z) in D

}
Obviously, we have the following relationships for special choices φ and ψ:

S?
(

1 + z

1− z

)
= S?, C

(
1 + z

1− z

)
= C,

K
(

1 + z

1− z
,

1 + z

1− z

)
= K, S?

(
1 + Az

1 +Bz

)
= S?[A,B].
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1.6 Harmonic functions

A continuous function f = u+ iv is said to be a complex-valued harmonic function

in a complex domain E ⊂ C if both u and v are real harmonic in E. A real-valued

function u(x, y) is harmonic if satisfies the Laplace equation
(
δ2

δx2
+ δ2

δy2

)
u = 0

.There is an interrelation between harmonic functions and analytic functions. In

any simply connected domain E we write f = h + ḡ where h and g are analytic

in E. Respectively, h and g are called the analytic part and co-analytic part of

f . The function f = h + ḡ is said to be harmonic univalent in D if the mapping

z → f(z) is orientation preserving, harmonic and univalent in D. This mapping is

orientation preserving and locally univalent in D if and only if the Jacobian of f,

Jf (z) = |h′(z)|2 − |g′(z)|2 > 0 in D (Lewy, 1936).

From the perspective of geometric function theory, Clunie and Sheil-Small (1984)

initiated the study on these functions by introducing the class SH consisting of nor-

malised complex-valued harmonic univalent functions f defined on the open unit

disk D = {z : z ∈ C, |z| < 1}. Necessary and sufficient conditions for f to be locally

univalent and sense-preserving in D were obtained. Coefficient bounds for functions

in SH were determined. Since then, various subclasses of SH were investigated by

several authors [for examples see (Al-Shaqsi and Maslina, 2008), (Chandrashekar

et.al, 2009), (Jahangiri,1999), (Murugusundaramoorthy et.al, 2009), (Murugusun-

daramoorty, 2003) and (Rosy et.al, 2001)]. Note that the class SH reduces to the

class of normalised analytic univalent functions if the co-analytic part of f is iden-

tically to zero(g ≡ 0). Duren(2004) gives an informed literature on harmonic map-
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pings. Let SH denote the class of univalent harmonic functions f = h+ ḡ where

h(z) = z +
∞∑
n=2

anz
n , g(z) =

∞∑
n=1

bnz
n (1.5)

and S?H(γ) denote the class of univalent harmonic starlike functions of order γ (0 ≤

γ < 1). The function f of the form (1.5) is in S?H(γ) if (Sheil-Small, 1990)

∂

∂θ

(
argf

(
reiθ
))

= Im

{
∂
∂θ
f
(
reiθ
)

f (reiθ)

}
= Re

{
zh′(z)− zg′(z)

h(z) + g(z)

}
≥ γ. (1.6)

Multivalent harmonic functions in the unit disk D were investigated by Duren,

Hengartner and Laugesen (1996) via the argument principle. For p ≥ 1, let SH(p)

denote the class of multivalent harmonic functions f = h+ ḡ where

h(z) = zp +
∞∑
n=2

an+p−1z
n+p−1 , g(z) =

∞∑
n=1

bn+p−1z
n+p−1 (1.7)

Lastly, let S?S denote the class of starlike functions with respect to symmetric

points. This class was introduced by Sakaguchi (1959) where f satisfying

Re

{
zf ′(z)

f(z)− f(−z)

}
> 0, z ∈ D.

Then, Ahuja and Jahangiri (2004) studied the class of harmonic starlike functions

of order γ with respect to symmetric points, S?HS(γ) and satisfying the condition

Im

{
2 ∂
∂θ
f
(
reiθ
)

f (reiθ)− f (−reiθ)

}
= Re

2
[
zh′(z)− zg′(z)

]
h(z) + g(z)

 ≥ γ (0 ≤ γ < 1). (1.8)

1.7 Scope of thesis

This thesis has six chapters. The basic concepts and some known results are given

in chapter one. The subsections are designed to prepare the back ground for re-

quirement in the subsequent chapters of the thesis.
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The main part of this thesis is treated in chapter two. Using duality concept,

the integral transform Vλf and Vλf are considered as an important components.

The starlikeness and convexity of order δ for integral transform Vλf and Vλf are

determined for f in a class Wβ(α, γ). This result is used in obtaining a sufficient

condition for Vλf which leads to several applications for specific choices of λ.

The purpose of chapter three is to discuss some applications of differential sub-

ordination for certain classes. This chapter gives a combination treatment of results

concerning the right-half of the lemniscate of Bernoulli and generalisation of multi-

plier transformations. The Dziok-Srivastava operator is also considered in getting

some inclusion theorems.

Some extremal problems such as coefficient bounds, extreme points, convex com-

bination and distortion upper and lower bounds for multivalent and univalent har-

monic functions are obtained in chapter four. New classes are established using a

generalisation of certain operator. A starlike function with respect to symmetric

points is also studied.

In chapter five, we investigate some miscellaneous problems such as a preserva-

tion of certain operators for a class of Hardy space. Besides that, we use the convex

null sequence in showing the preservation of these operators. Lastly, in chapter six

we suggest some problems for future research.
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CHAPTER 2

STARLIKENESS AND CONVEXITY OF INTEGRAL

TRANSFORMS USING DUALITY

In the field of geometric function theory, there have been many approaches to solving

research problems and obtaining results. Ruscheweyh (1975a) introduced the con-

cept of duality which since then has been progressively utilised to establish results.

Recently, this utilisation is much more intensive [see (Rosihan et al., 2012a), (Rosi-

han et al., 2012b) and (Ponnusamy and Ronning, 2008)]. The duality technique is

a powerful method and is widely used in getting results on starlikeness, convexity

as well as other properties where other methods have failed. This chapter focuses

on starlike and convex properties of certain integral transforms using the duality

technique for analytic functions in a certain class of analytic functions.

2.1 Introduction

For some φ ∈ R, a class Wβ(α, γ) where α ≥ 0, γ ≥ 0 and β < 1 was given by

Rosihan et al. (2012b) as:

Wβ(α, γ) :=

{
f ∈ A : Re eiφ

[
(1− α + 2γ)

f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z)− β

]
> 0

}
(z ∈ D)

and unified the following classes:

(i) α = 1, γ = 0,

Wβ(1, 0) ≡ P(β) := {f ∈ A : Re eiφ [f ′(z)− β] > 0, z ∈ D}

(Fournier and Ruscheweyh, 1994).
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(ii) α ≥ 0, γ = 0,

Wβ(α, 0) ≡ Pα(β) :=

{
f ∈ A : Re eiφ

[
(1− α)

f(z)

z
+ αf ′(z)− β

]
> 0

}

(Kim and Ronning, 2001).

(iii) α = 1 + 2γ, γ ≥ 0,

Wβ(1 + 2γ, γ) ≡ Rγ(β) := {f ∈ A : Re eiφ [f ′(z) + γzf ′′(z)− β] > 0}

(Ponnusamy and Ronning, 2008).

In 1994, for f ∈ A, Fournier and Ruscheweyh introduced the integral operator

F (z) = Vλ(f)(z) :=

∫ 1

0

λ(t)
f(tz)

t
dt (2.1)

where λ is a nonnegative real-valued integrable function satisfying the condition∫ 1

0
λ(t)dt = 1. The integral transform Vλ(f) in the form (2.1) reduces to various

well-known operators for specific choices of λ. For examples:

(i) λ(t) := (1 + c)tc, c > −1 gives the Bernardi integral operator.

(ii) λ(t) := (a+1)p

Γ(p)
ta
(
log 1

t

)p−1
, a > −1, p ≥ 0 gives the Komatu operator (Komatu,

1990),

K(z) =
(a+ 1)p

Γ(p)

∫ 1

0

ta−1

(
log

1

t

)p−1

f(tz)dt.

In fact, for p = 1 the Komatu operator becomes the Bernardi operator.

(iii) The integral transform Vλ(f) can be expressed as [see (Kiryakova et al., 1998),

(Kim and Ronning, 2001)]:

23



Vλ(f) = H(a,b,c)(f)(z)

=
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)

∫ 1

0

tb−1(1− t)c−a−b

× 2F1(c− a, 1− a, c− a− b+ 1; 1− t)f(tz)

t
dt

(a > 0, b > 0 and c > a+ b− 1)

where

λ(t) =
Γ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
tb−1(1− t)c−a−b2F1(c−a, 1−a; c−a−b+1; 1− t)

and H(a,b,c)(f) is the Hohlov operator.

For operators other than (2.1), a long list of references can be found in the mono-

graph of Miller and Mocanu (2000). Problems on the integral transform Vλ(f) for

special choices of λ have been recognized in a number of earlier papers by various

authors [see e.g. (Rosihan, 1994), (Mocanu, 1986), (Nunokawa, 1991), (Nunokawa

and Thomas, 1992), (Ponnusamy, 1994), (Raghavendar and Swaminathan, 2012),

(Singh and Singh, 1989), (Singh and Singh, 1982) and (Singh and Singh, 1981)].

There are authors [see (Rosihan and Singh, 1995), (Anbu Durai and Parvatham,

2005) and (Balasubramanian et al., 2007b)] who studied the integral transform

Vλf(z) defined as:

Vλf(z) = z

∫ 1

0

λ(t)
1− ρtz
1− tz

dt ∗ f(z) (ρ < 1).

The integral transform Vλf(z) can be written as a generalisation of Vλf(z) as

Vλf(z) = ρz + (1− ρ)Vλf(z).
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The theory of subordination has been used as the typical method in handling

problems of starlikeness and convexity of the integral transforms Vλf and Vλf .

However the method of differential subordination does not give sharp results. Since

the duality technique seems to work best in the sense that it gives sharp estimates

of the parameter β, starlikeness of the integral transform Vλ(f) was first studied by

Fournier and Ruscheweyh (1994) for a function f in the class defined by

P(β) := {g ∈ A0 : ∃φ ∈ R such that Re eiφ [g(z)− β] > 0}.

Then, these properties were extended to starlikeness of order δ, δ ∈ (0, 1
2
] by Pon-

nusamy and Ronning (1997). Furthermore, the starlikeness of integral transform

Vλ(f) for a function f in the classes Pα(β) and Rγ(β) respectively were studied in

(Kim and Ronning, 2001) and (Ponnusamy and Ronning, 2008). The convexity of

this integral transform over P(β) was investigated by Rosihan and Singh in 1995.

For the class Pα(β), the property of convexity was discussed by Choi, Kim and Saigo

(2002) and was extended to convexity of order δ (0 ≤ δ ≤ 1
2
) by Balasubramanian

et al. (2007b). Since, there have been integral transforms being investigated using

the duality technique [see (Aghalary et al., 2008), (Sokól, 2010)].

Rosihan et. al. studied the starlikeness and convexity of Vλ(f) in (Rosihan et

al., 2012b) and (Rosihan et al., 2012a) using duality concept for a function f in the

class Wβ(α, γ). In this section, we continue the study of the integral transform of

the form (2.1) to be starlike and convex of order δ for f ∈ Wβ(α, γ) where conditions

on β and λ are determined for this to be true. Besides that, a sufficient condition

for the integral transform Vλ(f) to be starlike and convex of order δ is obtained .

In addition, the starlikeness and convexity of order δ for the integral transform Vλf

are also investigated.
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2.2 Starlikeness of order δ for integral transforms Vλ(f)

In Rosihan et al. (2012b), the following properties have been obtained. These prop-

erties are needed in the sequel.

Let µ ≥ 0 and ν ≥ 0 satisfying µ + ν = α − γ and µν = γ. When γ = 0, then

µ is chosen to be 0, ν = α ≥ 0. When α = 1 + 2γ, (i) for γ > 0 then choosing

µ = 1, ν = γ and (ii) for γ = 0 then µ = 0, ν = α = 1.

Let g be the solution of the initial-value problem satisfying g(0) = 1 and

d

dt
t
1
ν

[1 + g(t)]

2
=
t
1
ν
−1

µν

∫ 1

0

s
1
µ
−1[1− δ(1 + st)]

(1− δ)(1 + st)2
ds , γ > 0 (2.2)

It is easy to verify that the solution is given by

g(t) =
2t−

1
ν

µν(1− δ)

∫ t

0

∫ 1

0

s
1
µ
−1w

1
ν
−1[1− δ(1 + sw)]

(1 + sw)2
dsdw − 1 (2.3)

and can be expressed in series form as follows:

g(t) = 1 +
2

(1− δ)

∞∑
n=1

(−1)n(n+ 1− δ)tn

[1 + nµ][1 + nν]
. (2.4)

Remark 2.1. For γ = 0, α ≥ 0, (Balasubramaniam et al., 2004)

d

dt
t
1
ν

[1 + g(t)]

2
=
t

1
α
−1[1− δ(1 + t)]

α(1− δ)(1 + t)2

and the solution g is given as:

g(t) =
2t−

1
α

α(1− δ)
=

∫ t

0

u
1
α
−1 1− δ(1 + δ)

(1 + u)2
du− 1.

Using the function g given in (2.2) and condition β, we obtain the first result so

that the integral transform Vλ(f) is starlike of order δ.
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Theorem 2.1. Let µ ≥ 0, ν ≥ 0 and β < 1 be constants such that µ + ν =

α− γ, µν = γ and

β

1− β
= −

∫ 1

0

λ(t)g(t)dt (2.5)

where g is defined in (2.2). Assume the functions

Λν(t) =

∫ 1

t

λ(x)

x
1
ν

dx , ν > 0 (2.6)

and

Πµ,ν(t) =



∫ 1

t
Λν(x)x

1
ν
− 1
µ
−1dx γ > 0 (µ > 0, ν > 0)

Λα(t) , γ = 0, (µ = 0, ν = α > 0)

(2.7)

satisfying the conditions t
1
ν Λν(t) → 0 and t

1
µΠµ,ν(t) → 0 as t → 0+. For f ∈

Wβ(α, γ) and

h(z) =
z
(
1 + ε+2δ−1

2−2δ
z
)

(1− z)2
, |ε| = 1, (2.8)

the integral transform F (z) = Vλ(f)(z) ∈ S?(δ), 0 ≤ δ ≤ 1
2

if and only if


Re
∫ 1

0
Πµ,ν(t)t

1
µ
−1
[
h(tz)
tz
− 1−δ(1+t)

(1−δ)(1+t)2

]
dt ≥ 0 , γ > 0

Re
∫ 1

0
Λα(t)t

1
α
−1
[
h(tz)
tz
− 1−δ(1+t)

(1−δ)(1+t)2

]
dt ≥ 0 , γ = 0.

The value of β is sharp.

Proof. Since the case γ = 0 (µ = 0, ν = α) corresponds to Theorem 1.2 in (Bala-

subramaniam et al., 2004), it is sufficient to consider the case γ > 0.
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For f ∈ Wβ(α, γ), we define

H(z) = (1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z).

Then for some φ ∈ R we have Re eiφ
[
H(z)−β

1−β

]
> 0 and

(1− α + 2γ)f(z)
z

+ (α− 2γ)f ′(z) + γzf ′′(z)− β
1− β

∈ P

which implies there is a probability measure ζ on [0, 2π] so that with the Herglotz

representation, we can write

H(z)− β
1− β

= 1 + 2

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ) ,

∫ 2π

0

dζ(θ) = 1.

H(z) = 1 + 2(1− β)

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ).

It can also be shown that H(z) = 1 +
∑∞

n=1 an+1(nν + 1)(nµ+ 1)zn. Thus

1+
∞∑
n=2

an[(n−1)ν+1][(n−1)µ+1]zn−1 = 1+2(1−β)

∫ 2π

0

∞∑
n=2

zn−1e−i(n−1)θdζ(θ).

Note that an = 2(1−β)
[(n−1)ν+1][(n−1)µ+1]

∫ 2π

0
e−i(n−1)θdζ(θ) and hence

f(z) = z +
∞∑
n=2

2(1− β)zn

[(n− 1)ν + 1][(n− 1)µ+ 1]

∫ 2π

0

e−i(n−1)θdζ(θ) (2.9)

f(z)

z
= 1 +

∞∑
n=2

2(1− β)zn−1

[(n− 1)ν + 1][(n− 1)µ+ 1]

∫ 2π

0

e−i(n−1)θdζ(θ). (2.10)

A well-known result from the theory of convolution in (Ruscheweyh, 1982):

F ∈ S?(δ) if and only if
F (z)

z
∗ h(z)

z
6= 0, z ∈ D
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where h is given by (2.8). Hence F ∈ S?(δ) if and only if

0 6= 1

z

∫ 1

0

λ(t)
f(tz)

t
dt ∗ h(z)

z

=

∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ h(z)

z

=

∫ 1

0

λ(t)

1− tz
dt ∗ 1 +

∞∑
n=2

2(1− β)zn−1

[(n− 1)ν + 1][(n− 1)µ+ 1]

∫ 2π

0

e−i(n−1)θdζ(θ) ∗ h(z)

z

=

∫ 1

0

λ(t)
h(tz)

tz
dt ∗ 1 +

∞∑
n=1

(1− β)zn

(nν + 1)(nµ+ 1)
∗ 1 + 2

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ).

Since 1 + 2
∫ 2π

0

∑∞
n=1 z

ne−inθdζ(θ) ∈ P , application of the Duality Theorem in

Ruscheweyh (1982) gives

Re

[∫ 1

0

λ(t)
h(tz)

tz
dt ∗ 1 +

∞∑
n=1

(1− β)zn

(nν + 1)(nµ+ 1)

]
>

1

2

Re

[∫ 1

0

(1− β)λ(t)
h(tz)

tz
dt+ β − 1

2
∗ 1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

]
> 0.

Note that since (1− β)
∫ 1

0
λ(t)[1− g(t)]dt = 1, we obtain

Re

∫ 1

0

(1− β)λ(t)
h(tz)

tz
dt+ β −

(1− β)
∫ 1

0
λ(t)[1− g(t)]dt

2
∗

1 +
∞∑
n=1

zn

(nν + 1)(nµ+ 1)
> 0
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Re(1− β)

∫ 1

0

λ(t)

[
h(tz)

tz
− 1 + g(t)

2

]
dt ∗ 1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)
> 0

Re

∫ 1

0

λ(t)

[
∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h(tz)

tz
− 1 + g(t)

2

]
dt > 0

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

dηdξ

1− ηνξµz
∗ h(tz)

tz
− 1 + g(t)

2

]
dt > 0

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

h(tzηνξµ)dηdξ

tzηνξµ
− 1 + g(t)

2

]
dt > 0.

Making the change of variables u = ην and v = ξµ, the inequality reduces to

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

h(tzuv)

tzuv

u
1
ν
−1v

1
µ
−1

µν
dudv − 1 + g(t)

2

]
dt > 0

and by letting tu = w, we have

Re

∫ 1

0

λ(t)

t
1
ν

[∫ t

0

∫ 1

0

h(wzv)

wzv
w

1
ν
−1v

1
µ
−1dvdw − µνt

1
ν [1 + g(t)]

2

]
dt > 0.

In view of the fact that Λ′ν(t) = −λ(t)

t
1
ν

, integrating by parts with respect to t and

using (2.2) we obtain

Re

∫ 1

0

Λν(t)

[∫ 1

0

h(tzv)

tzv
t
1
ν
−1v

1
µ
−1dv − t

1
ν
−1

∫ 1

0

s
1
µ
−1[1− δ(1 + st)]

(1− δ)(1 + st)2
ds

]
dt ≥ 0.

The change of variables tv = w and st = η reduces the inequality to

Re

∫ 1

0

Λν(t)t
1
ν
− 1
µ
−1

[∫ t

0

h(wz)

wz
w

1
µ
−1dw −

∫ t

0

η
1
µ
−1[1− δ(1 + η)]

(1− δ)(1 + η)2
dη

]
dt ≥ 0.
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Integration by parts with respect to t yields

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

]
dt ≥ 0.

Next, we proceed to verify the sharpness. Suppose f0 ∈ Wβ(α, γ) is the solution of

(1− α + 2γ)
f(z)

z
+ (α− 2γ)f ′(z) + γzf ′′(z) = β + (1− β)

1 + z

1− z
,

from (2.9), we obtain

f0(z) = z +
∞∑
n=2

2(1− β)zn

[(n− 1)µ+ 1][(n− 1)ν + 1]
.

Thus

F (z) = Vλ(f)(z) = z + 2(1− β)
∞∑
n=2

τn z
n

[(n− 1)µ+ 1][(n− 1)ν + 1]

where τn =
∫ 1

0
λ(t)tn−1dt.

Substituting (2.4) into (2.5), we have

β

1− β
= −

∫ 1

0

λ(t)

{
1 +

2

(1− δ)

∞∑
n=2

(−1)n−1(n− δ)tn−1

[(n− 1)µ+ 1][(n− 1)ν + 1]

}
dt

β

1− β
= −1− 2

(1− δ)

∞∑
n=2

(−1)n−1(n− δ)τn
[(n− 1)µ+ 1][(n− 1)ν + 1]

δ − 1

2(1− β)
=
∞∑
n=2

n(−1)n−1τn
[(n− 1)µ+ 1][(n− 1)ν + 1]

− δ
∞∑
n=2

(−1)n−1τn
[(n− 1)µ+ 1][(n− 1)ν + 1]

.
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Hence

∞∑
n=2

n(−1)n−1τn
[(n− 1)µ+ 1][(n− 1)ν + 1]

=
δ − 1

2(1− β)
+δ

∞∑
n=2

(−1)n−1τn
[(n− 1)µ+ 1][(n− 1)ν + 1]

.

(2.11)

We see that for z = −1,

F (−1) = −1 + 2(1− β)
∞∑
n=2

(−1)nτn
[(n− 1)µ+ 1][(n− 1)ν + 1]

and

F ′(−1) = 1 + 2(1− β)
∞∑
n=2

nτn (−1)n−1

[(n− 1)µ+ 1][(n− 1)ν + 1]
. (2.12)

Substituting RHS of (2.11) into (2.12), we have

F ′(−1) = 1 + 2(1− β)

[
δ − 1

2(1− β)
+ δ

∞∑
n=2

(−1)n−1τn
[(n− 1)µ+ 1][(n− 1)ν + 1]

]

= δ − 2δ(1− β)
∞∑
n=2

(−1)nτn
[(n− 1)µ+ 1][(n− 1)ν + 1]

= −δ

[
−1 + 2(1− β)

∞∑
n=2

(−1)nτn
[(n− 1)µ+ 1][(n− 1)ν + 1]

]

= −δF (−1)
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therefore zF ′(z)
F (z)

at z = −1 equals δ. This implies that the result is sharp for the

order of starlikeness. This completes the proof.

In the next result, we determine a sufficient condition for Vλ(f) to be a starlike

function of order δ.

Theorem 2.2. Let Πµ,ν and Λν be as given in Theorem 2.1. Assume that both Πµ,ν

and Λν are integrable on [0, 1] and positive on (0, 1). Furthermore, for µ ≥ 1, the

function

Πµ,ν(t)

(1 + t)(1− t)1+2δ
(0 ≤ δ ≤ 1

2
) (2.13)

is decreasing on (0, 1). If β satisfies (2.5) and f ∈ Wβ(α, γ) then Vλ(f) ∈ S?(δ).

Proof. To verify the theorem above, we use a result earlier obtained by Ponnusamy

and Ronning (1997, p. 281). This together with (2.13) and the fact that t
1
µ
−1 is

decreasing on (0, 1) for µ ≥ 1, suggest that

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

]
dt ≥ 0.

The desired conclusion now follows from Theorem 2.1.

Our next result is an application of Theorem 2.2. First, we establish that the

function

p(t) =
Πµ,ν(t)

(1 + t)(1− t)1+2δ

is decreasing in the interval (0, 1). Note that p′(t) ≤ 0 for t ∈ (0, 1) is equivalent to

the inequality
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q(t) = Πµ,ν(t)−
(1− t2)Λν(t)t

1
ν
− 1
µ
−1

2[t+ δ(1 + t)]
≤ 0

and q(1) = 0.

We note that if q(t) is increasing on (0, 1) then p(t) is decreasing on (0, 1). Therefore,

we obtain

q′(t) = − t
1
ν
− 1
µ
−1(1 + t)

2[t+ δ(1 + t)]2
∆(t)

where

∆(t) = −[t+ δ(1 + t)](1− t)λ(t)t−
1
ν

+ Λν(t)

[
[t+ δ(1 + t)]

(1− t)
t

(
1

ν
− 1

µ
− 1

)
− [1− t− δ(1 + t)](1 + 2δ)

]

Our aim is to show that if ∆(t) ≤ 0 then q′(t) ≥ 0. Let

A(t) = λ(t)t−
1
ν

X(t) = [t+ δ(1 + t)](1− t)

Y (t) = X(t)

(
1

ν
− 1

µ
− 1

)
+ Z(t)

Z(t) = −t[1− t− δ(1 + t)](1 + 2δ);
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then ∆(t) = −A(t)X(t) + Y (t)
t

∫ 1

t
A(y)dy.

(i) If Y (t) ≤ 0 on (0, 1) then ∆(t) ≤ 0 on (0, 1) thus the result follows.

(ii) If Y (t) ≥ 0, ∆(t) = Y (t)
t
B(t) where

B(t) = −A(t)X(t)
t

Y (t)
+

∫ 1

t

A(y)dy and B(1) = 0.

In this case, we propose to show ∆(t) ≤ 0. It suffices to show that B(t) is an

increasing function of t. Simple calculation shows that

B′(t) = −λ(t)t−
1
ν

{[
−1

ν
+
tλ′(t)

λ(t)

]
X(t)

Y (t)
+

[
tX(t)

Y (t)

]′
+ 1

}

B′(t) ≥ 0 means

[
−1

ν
+
tλ′(t)

λ(t)

]
X(t)

Y (t)
+

[
tX(t)

Y (t)

]′
+ 1 ≤ 0

hence the following expression is obtained:

tλ′(t)

λ(t)
≤ 1

ν
− Y (t)

X(t)

([
tX(t)

Y (t)

]′
+ 1

)
. (2.14)

Now, we determine conditions on ν and µ using the inequality (2.14) so that
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∆(t) ≤ 0 for 0 ≤ δ ≤ 1
2
. In the first case, considering δ = 0, we have

X(t) = t(1− t)

Y (t) = t(1− t)
(

1

ν
− 1

µ
− 2

)
.

Y (t) ≤ 0 if 1
ν
− 1

µ
− 2 ≤ 0 or ν ≥ µ

2µ+1
.

If 0 ≤ ν < µ
2µ+1

then Y (t) > 0 on (0, 1) and tλ′(t)
λ(t)
≤ 1 + 1

µ
which leads to the result

of Rosihan et al. (2012b).

Next, for 0 < δ ≤ 1
2
, we derive the inequality (2.14) as

Y 2(t)

[
Y (t) (tX ′(t) +X(t))− tX(t)Y ′(t)

Y 2(t)
+ 1

]
≤
(

1

ν
− tλ′(t)

λ(t)

)
X(t)Y (t)

and

Y (t) [tX ′(t) +X(t)]− tX(t)Y ′(t) + Y 2(t) ≤
(

1

ν
− tλ′(t)

λ(t)

)
X(t)Y (t). (2.15)

Since Y (t) = X(t)
(

1
ν
− 1

µ
− 1
)

+ Z(t), substituting Y (t) into (2.15) we have

(
1

ν
− 1

µ
− 1

)
X(t) [X(t) + Z(t)]

−
[(

1 +
1

µ

)
− tλ′(t)

λ(t)

]
X(t)

[
X(t)

(
1

ν
− 1

µ
− 1

)
+ Z(t)

]
≤ tX(t)Z ′(t)− Z(t)[tX(t)]′ − Z2(t). (2.16)

Set D(t) = t(1 + δ)− (1− δ) = [t+ δ(1 + t)− 1] and write

X(t) = (1− t)[D(t) + 1]

Z(t) = tD(t)(1 + 2δ).
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Simple computation shows that tX(t)Z ′(t) − Z(t)[tX(t)]′ − Z2(t) = 2δt2(1 +

2δ)(1−D2(t)) is nonnegative on (0, 1). Similarly, it can be verified that D2(t) ≤ 1

and also that X(t) and [X(t) + Z(t)] are nonnegative on the interval (0, 1).

Thus, the inequality (2.16) holds if ν ≥ µ
µ+1

where Y (t) > 0. With the restriction

ν ≥ µ
µ+1

for 0 < δ ≤ 1
2
, we obtain the condition tλ′(t)

λ(t)
≤ 1 + 1

µ
.

Remark 2.2. The problem concerning the condition on λ for 0 < ν < µ
µ+1

remains

open since the calculations become more complicated.

Theorem 2.3 states the conclusion of the above discussion and gives the following

result.

Theorem 2.3. Let λ be a nonnegative real-valued integrable function on [0, 1]. Let

f ∈ Wβ(α, γ) with ν ≥ µ
µ+1

and β < 1 satisfying

β

1− β
= −

∫ 1

0

λ(t)g(t)dt

where g is defined by (2.2) and δ ∈ (0, 1
2
]. If λ satisfies

tλ′(t)

λ(t)
≤ 1 +

1

µ
(µ ≥ 1, γ > 0) (2.17)

then F (z) = Vλ(f)(z) ∈ S?(δ).

Remark 2.3. Taking α = 1 + 2γ, γ > 0 and µ = 1 in Theorem 2.3 yields Theorem

3.1 in (Balasubramaniam et al., 2007a) and for µ < 1, the conditions obtained will

be complicated.
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2.3 Applications to certain integral transforms

In this subsection, we present results for various cases of λ. As examples, we con-

sider three operators defined by Bernardi (1969), Komatu (1990) and Hohlov (1978).

i) Bernardi integral operator

Theorem 2.4. Let ν ≥ µ
µ+1

, δ ∈ (0, 1
2
]. Let c > −1 and β < 1 satisfy

β

1− β
= −(c+ 1)

∫ 1

0

tcg(t)dt

where g is defined by (2.3). Let f ∈ Wβ(α, γ) and

Fc[f(z)] = Vλ(f)(z) = (1 + c)

∫ 1

0

tc−1f(tz)dt;

if c ≤ 1 + 1
µ

(µ ≥ 1, γ > 0) then Fcf ∈ S?(δ).

Proof. Since λ(t) := (1 + c)tc, simple computation gives tλ′(t)
λ(t)

= c. By hypothesis of

Theorem 2.4, c ≤ 1 + 1
µ

thus the result follows from Theorem 2.3.

Remark 2.4. When α = 1 + 2γ, γ > 0, µ = 1, Theorem 2.4 yields [Corollary 4.1,

Balasubramaniam et al. ( 2007a)]

ii) Komatu operator

Theorem 2.5. Let −1 < a, p ≥ 1, α > 0, ν ≥ µ
µ+1

and β < 1 satisfy

β

1− β
= −(1 + a)p

Γ(p)

∫ 1

0

ta
(
log

1

t

)p−1

g(t)d(t)

where g is given by (2.3). Let f ∈ Wβ(α, γ) and δ ∈ (0, 1
2
]. Then the function
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defined by

K(z) =
(1 + a)p

Γ(p)

∫ 1

0

(
log

1

t

)p−1

ta−1f(tz)dt

belongs to S?(δ) if a ≤ 1 + 1
µ

(µ ≥ 1, γ > 0).

Proof. To prove Theorem 2.5, it suffices to verify inequality (2.17). Since tλ′(t)
λ(t)

=

a− p−1

log 1
t

the inequality (2.17) is equivalent to

a− p− 1

log 1
t

≤ 1 +
1

µ

which implies

0 ≤
(

1 +
1

µ
− a
)

+
p− 1

log 1
t

. (2.18)

Since p ≥ 1 and log
(

1
t

)
> 0 for t ∈ (0, 1), the inequality (2.18) holds by the

hypothesis.

Now, define Φ as Φ(1− t) = 1 +
∑∞

n=1 bn(1− t)n, bn ≥ 0 for n ≥ 1 with

λ(t) = κtb−1(1− t)c−a−bΦ(1− t)

where κ is a constant chosen such that
∫ 1

0
λ(t)dt = 1. Finally, we give our last

theorem.

iii) General result for certain operators

Theorem 2.6. Let a, b, c, α, γ > 0, ν ≥ µ
µ+1

and β < 1 satisfy

β

1− β
= −κ

∫ 1

0

tb−1(1− t)c−a−bΦ(1− t)g(t)dt
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where κ is a constant such that κ
∫ 1

0
tb−1(1− t)c−a−bΦ(1− t)dt = 1 and g is given by

(2.3). For δ ∈ (0, 1
2
], if f ∈ Wβ(α, γ) then the function

Vλ(f)(z) = κ

∫ 1

0

tb−1(1− t)c−a−bΦ(1− t)f(tz)

t
dt

belongs to S?(δ) whenever a, b, c are related by the conditions b ≤ 2+ 1
µ

and c ≥ a+b.

Proof. It can be verified that

tλ′(t)

λ(t)
= −tΦ

′(1− t)
Φ(1− t)

− t(c− a− b)
1− t

+ b− 1.

Thus, the inequality (2.17) is equivalent to

1 +
1

µ
− b+ 1 +

t(c− a− b)
1− t

+ t
Φ′(1− t)
Φ(1− t)

≥ 0

[(
2 +

1

µ

)
− b
]

+
t(c− a− b)

1− t
+ t

Φ′(1− t)
Φ(1− t)

≥ 0

and holds true using the hypothesis.

Remark 2.5. For a special case by choosing Φ(1−t) = F (c−a, 1−a, c−a−b+1; 1−t)

and κ = Γ(c)
Γ(a)Γ(b)Γ(c−a−b+1)

where c + 1 − a − b > 0, the integral operator Vλ(f)(z)

reduces to the Hohlov operator.

2.4 Convexity of order δ for Vλf

We start our discussion by considering the function q which is the solution of the

initial-value problem satisfying q(0) = 1 and

d

dt
t
1
ν q(t) =

t
1
ν − 1

µν

∫ 1

0

s
1
µ
−1 [(1− δ)− (1 + δ)st]

(1− δ)(1 + st)3
ds , γ ≥ 0. (2.19)
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It can be verified that the solution q is given by

q(t) =
t−

1
ν

µν(1− δ)

∫ t

0

∫ 1

0

s
1
µ
−1w

1
ν
−1 [(1− δ)− (1 + δ)sw)]

(1 + sw)3
ds dw. (2.20)

Our next result determines condition on the convexity of Vλf .

Theorem 2.7. Let µ ≥ 0, ν ≥ 0 and β < 1 be constants such that µ + ν =

α− γ, µν = γ and

β − 1
2

1− β
= −

∫ 1

0

λ(t)q(t)dt (2.21)

where q is defined in (2.20). Assume the functions Λν(t) and Πµ,ν(t) which are

respectively defined in (2.6) and (2.7) and satisfy the conditions t
1
ν Λν(t) → 0 and

t
1
µΠµ,ν(t) → 0 as t → 0+. For f ∈ Wβ(α, γ) and h is given by (2.8), the integral

transform F (z) = Vλf(z) ∈ C(δ), 0 ≤ δ ≤ 1
2

if and only if

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h′(tz)− (1− δ)− (1 + δ)t

(1− δ)(1 + t)3

]
dt ≥ 0 , γ ≥ 0.

Proof. The case γ = 0 (µ = 0, ν = α) has been discussed by Balasubramanian et al.

(2007b). Thus, it is sufficient to consider the case γ > 0.

It is well known that (Robertson, 1936), F ∈ C(δ) if and only if zF ′ ∈ S?(δ). Thus

0 6= 1

z
[zF ′(z) ∗ h(z)]

where h is defined by (2.8). Let f ∈ Wβ(α, γ). Then using the theory of convolution
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(Ruscheweyh, 1982) and f(z)
z

is given by (2.10),

0 6= 1

z
[F (z) ∗ zh′(z)]

=
1

z

[∫ 1

0

λ(t)
f(tz)

t
dt ∗ zh′(z)

]

=

∫ 1

0

λ(t)

1− tz
dt ∗ f(z)

z
∗ h′(z)

=

∫ 1

0

λ(t)

1− tz
dt ∗ 1 +

∞∑
n=2

2(1− β)zn−1

[(n− 1)ν + 1][(n− 1)µ+ 1]

∫ 2π

0

e−i(n−1)θdζ(θ) ∗ h′(z)

=

∫ 1

0

λ(t)h′(tz)dt ∗ 1 +
∞∑
n=1

(1− β)zn

(nν + 1)(nµ+ 1)
∗ 1 + 2

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ).

Since 1+2
∫ 2π

0

∑∞
n=1 z

ne−inθdζ(θ) ∈ P , application of the Duality Theorem (Ruscheweyh,

1982) gives
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Re

[∫ 1

0

λ(t)h′(tz)dt ∗ 1 +
∞∑
n=1

(1− β)zn

(nν + 1)(nµ+ 1)

]
>

1

2

Re

[{∫ 1

0

(1− β)λ(t)h′(tz)dt+ β − 1

2

}
∗

{
1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

}]
> 0

Re

[{∫ 1

0

λ(t)h′(tz)dt+
β − 1

2

1− β

}
∗

{
1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

}]
> 0

Re

[{∫ 1

0

λ(t)h′(tz)dt−
∫ 1

0

λ(t)q(t)dt

}
∗

{
1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

}]
> 0

Re

∫ 1

0

λ(t)

[
∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h′(z)− q(t)

]
dt > 0

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

dηdξ

1− ηνξµz
∗ h′(z)− q(t)

]
dt > 0

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

h′(tzηνξµ)dηdξ − q(t)
]
dt > 0.

Making the change of variables u = ην and v = ξµ, the inequality reduces to

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

h′(tzuv)
u

1
ν
−1v

1
µ
−1

µν
dudv − q(t)

]
dt > 0
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and by letting tu = w, we have

Re

∫ 1

0

λ(t)

t
1
ν

[∫ t

0

∫ 1

0

h′(wzv)w
1
ν
−1v

1
µ
−1dvdw − µνt

1
ν q(t)

]
dt > 0.

Using integration by parts with respect to t and (2.19) we have

Re

∫ 1

0

Λν(t)

[∫ 1

0

h′(tzv)t
1
ν
−1v

1
µ
−1dv − t

1
ν
−1

∫ 1

0

s
1
µ
−1[(1− δ)− (1 + δ)st]

(1− δ)(1 + st)3
ds

]
dt ≥ 0.

The change of variables tv = w and st = η reduces the inequality to

Re

∫ 1

0

Λν(t)t
1
ν
− 1
µ
−1

[∫ t

0

h′(wz)w
1
µ
−1dw −

∫ t

0

η
1
µ
−1[(1− δ)− (1 + δ)η]

(1− δ)(1 + η)3
dη

]
dt ≥ 0.

Integration by parts with respect to t yields

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h′(tz)− (1− δ)− (1 + δ)t

(1− δ)(1 + t)3

]
dt ≥ 0.

Before we proceed to the next result, we provide the following lemma given by

Ponnusamy and Ronning in 1997 [Theorem 2.3, p. 268].

Lemma 2.1. Assume Λ is integrable on [0, 1] and positive on (0, 1). Assume further

that

Λ(t)

(1 + t)(1− t)1+2δ
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is decreasing on (0, 1). Then LΛ(Kδ) = 0 for 0 ≤ δ ≤ 1
2

where

LΛ(h) = inf

∫ 1

0

Λ(t)

[
Re

h(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

]
dt (z ∈ D)

and LΛ(Kδ) = inf LΛ(h) (h ∈ Kδ).

Theorem 2.8. Let Πµ,ν and Λν be as given in Theorem 2.1 where both Πµ,ν and Λν

are integrable on [0, 1] and positive on (0, 1). Furthermore, for µ ≥ 1, the function(
1− 1

µ

)
Πµ,ν(t) + Λν(t)t

1
ν
− 1
µ

(1 + t)(1− t)1+2δ
(0 ≤ δ ≤ 1

2
)

is decreasing on (0, 1). If β satisfies (2.21) and f ∈ Wβ(α, γ) then Vλf ∈ C(δ).

Proof. It can be verified that

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h′(tz)− (1− δ)− (1 + δ)t

(1− δ)(1 + t)3

]
dt

= Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1 d

dt

[
h(tz)

z
− t[1− δ(1 + t)]

(1− δ)(1 + t)2

]
dt

then integration by parts gives

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1 d

dt

[
h(tz)

z
− t[1− δ(1 + t)]

(1− δ)(1 + t)2

]
dt

= Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

{(
1− 1

µ

)
Πµ,ν(t) + Λν(t)t

1
ν
− 1
µ

}[
h(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

]
.

Since t
1
µ
−1 is decreasing on (0, 1) for µ ≥ 1, together with the hypotheses of Theorem

2.8 and Lemma 2.1 give

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h′(tz)− (1− δ)− (1 + δ)t

(1− δ)(1 + t)3

]
dt ≥ 0.

Hence, the conclusion follows from Theorem 2.7.
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2.5 Starlikeness and convexity of order δ for integral transform Vλf

First, we determine the starlikeness of order δ for the integral transform Vλf where

f ∈ Wβ(α, γ).

Theorem 2.9. Let δ ∈ [0, 1
2
], ρ < 1 and β < 1 be constants. Let

F (z) = Vλf(z) = z

∫ 1

0

λ(t)
1− ρtz
1− tz

dt ∗ f(z)

and

1

2(1− β)(1− ρ)
=

∫ 1

0

λ(t)

(
1− g(t)

2

)
dt

where g is defined by (2.3). For f ∈ Wβ(α, γ), Vλf ∈ S?(δ) if and only if

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

]
dt ≥ 0 , γ > 0.

Proof. By the theory of convolution given by Ruscheweyh (1982), together with

(2.10) we have

F (z) ∈ S?(δ)⇔ F (z)

z
∗ h(z)

z
6= 0,
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where h is given in (2.8). Thus

0 6=
∫ 1

0

λ(t)
1− ρtz
1− tz

dt ∗ f(z)

z
∗ h(z)

z

=

∫ 1

0

λ(t)(1− ρtz)
h(tz)

tz
dt∗

1 +
∞∑
n=2

2(1− β)zn−1

[(n− 1)ν + 1][(n− 1)µ+ 1]

∫ 2π

0

e−i(n−1)θdζ(θ)

=

∫ 1

0

λ(t)(1− β)(1− ρtz)
h(tz)

tz
dt+ β ∗ 1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

∗ 1 + 2

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ)

=

∫ 1

0

λ(t)

{
(1− β)(1− ρ)

h(tz)

tz
+ 1− (1− β)(1− ρ)

}
dt

∗ 1 +
∞∑
n=1

zn

(nν + 1)(nµ+ 1)
∗ 1 + 2

∫ 2π

0

∞∑
n=1

zne−inθdζ(θ).

Application of the Herglotz formula and the Duality Theorem give

Re

∫ 1

0

λ(t)

{
(1− β)(1− ρ)

h(tz)

tz
+ 1− (1− β)(1− ρ)

}
dt∗

1 +
∞∑
n=1

zn

(nν + 1)(nµ+ 1)
>

1

2

Re

∫ 1

0

λ(t)(1− β)(1− ρ)

{
h(tz)

tz
+

1

(1− β)(1− ρ)
− 1− 1

2(1− β)(1− ρ)

}
dt

∗ 1 +
∞∑
n=1

zn

(nν + 1)(nµ+ 1)
> 0

Re

∫ 1

0

λ(t)

{
h(tz)

tz
−
(

1− 1

2(1− β)(1− ρ)

)}
dt∗

1 +
∞∑
n=1

zn

(nν + 1)(nµ+ 1)
> 0
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Re

∫ 1

0

λ(t)

{
h(tz)

tz
−

(
1−

∫ 1

0
λ(t)[1− g(t)]dt

2

)}
dt∗

1 +
∞∑
n=1

zn

(nν + 1)(nµ+ 1)
> 0

Re

[∫ 1

0

λ(t)

{
h(tz)

tz
−
(

1 + g(t)

2

)}
dt ∗ 1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

]
> 0

Re

∫ 1

0

λ(t)

[
∞∑
n=0

zn

(nν + 1)(nµ+ 1)
∗ h(tz)

tz
− 1 + g(t)

2

]
dt > 0

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

dηdξ

1− ηνξµz
∗ h(tz)

tz
− 1 + g(t)

2

]
dt > 0

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

h(tzηνξµ)dηdξ

tzηνξµ
− 1 + g(t)

2

]
dt > 0.

By letting u = ην and v = ξµ, the inequality is reduced to

Re

∫ 1

0

λ(t)

[∫ 1

0

∫ 1

0

h(tzuv)

tzuv

u
1
ν
−1v

1
µ
−1

µν
dudv − 1 + g(t)

2

]
dt > 0

and for tu = w, the inequality becomes

Re

∫ 1

0

λ(t)

t
1
ν

[∫ t

0

∫ 1

0

h(wzv)

wzv
w

1
ν
−1v

1
µ
−1dvdw − µνt

1
ν [1 + g(t)]

2

]
dt > 0.

Using integration by parts with respect to t and by substituting (2.2), we obtain

Re

∫ 1

0

Λν(t)

[∫ 1

0

h(tzv)

tzv
t
1
ν
−1v

1
µ
−1dv − t

1
ν
−1

∫ 1

0

s
1
µ
−1[1− δ(1 + st)]

(1− δ)(1 + st)2
ds

]
dt ≥ 0.
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Making the change of variables tv = w, st = η and integrating by parts with respect

to t we have

Re

∫ 1

0

Λν(t)t
1
ν
− 1
µ
−1

[∫ t

0

h(wz)

wz
w

1
µ
−1dw −

∫ t

0

η
1
µ
−1[1− δ(1 + η)]

(1− δ)(1 + η)2
dη

]
dt ≥ 0.

and

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h(tz)

tz
− 1− δ(1 + t)

(1− δ)(1 + t)2

]
dt ≥ 0.

Next, let f ∈ Wβ(α, γ) then we obtain the convexity of order δ for Vλf .

Theorem 2.10. Let δ ∈ [0, 1
2
], ρ < 1 and β < 1 be constants. Let

F (z) = Vλf(z) = z

∫ 1

0

λ(t)
1− ρtz
1− tz

dt ∗ f(z)

and

1

2(1− β)(1− ρ)
=

∫ 1

0

λ(t) [1− q(t)] dt (2.22)

where q is defined by (2.20). For f ∈ Wβ(α, γ), Vλf ∈ C(δ) if and only if

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h′(tz)− (1− δ)− (1 + δ)t

(1− δ)(1 + t)3

]
dt ≥ 0 , γ > 0.

Proof. The idea of the proof is similar as in Theorem 2.7. Using F (z) = Vλf(z), it

suffices to verify

Re

[∫ 1

0

λ(t)

{
h′(tz)−

(
1− 1

2(1− β)(1− ρ)

)}
dt ∗ 1 +

∞∑
n=1

zn

(nν + 1)(nµ+ 1)

]
> 0
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Then, by substituting (2.22) together with the change of some variables and using

integration by parts, we obtain the condition

Re

∫ 1

0

Πµ,ν(t)t
1
µ
−1

[
h′(tz)− (1− δ)− (1 + δ)t

(1− δ)(1 + t)3

]
dt ≥ 0 , γ > 0

as a result.
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CHAPTER 3

PROPERTIES OF FUNCTIONS FOR CLASSES DEFINED BY

SUBORDINATION

In this chapter, properties of functions using differential subordination method as-

sociated with certain classes are presented. Ali et al. (2012c) studied conditions

on β such that 1 + βzp′(z) ≺
√

1 + z implies p(z) ≺
√

1 + z. Similar results are

also obtained for expressions of the form 1 + βzp′(z)
p(z)

and 1 + βzp′(z)
p2(z)

. We determine

these properties for classes involving the Janowski starlike functions and the Cassini

curve in obtaining the condition on β. Furthermore, for f ∈ A to be in the class of

Sokól-Stankiewicz starlike functions if f satisfying
∣∣∣ zf ′(z)f(z)

− 1
∣∣∣ < 1 (z ∈ D). Based

on this condition, we extend to α-convex and convex classes. Some applications for

these classes are considered. In addition, some inclusion results for classes defined

by the Dziok-Srivastava operator and the generalised multiplier transformations are

determined using the Briot-Bouquet differential subordinations.

3.1 Properties of Janowski starlike functions

Quite a number of authors [see Nunokawa et al. (1997), Nunokawa et al. (2003),

Obradovic and Owa (1988), Ravichandran and Maslina (2003) and Ravichandran et

al. (2005)] have intensively studied properties of functions involving the expression[(
1 + zf ′′(z)

f ′(z)

)(
f(z)
zf ′(z)

)]
which can also be expressed as

[
1+

zf ′′(z)
f ′(z)

zf ′(z)
f(z)

]
. The properties of

starlikeness for functions in the class

Gb :=

{
f ∈ A :

∣∣∣∣∣1 + zf ′′(z)
f ′(z)

zf ′(z)
f(z)

− 1

∣∣∣∣∣ < b , 0 < b ≤ 1, z ∈ D

}
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has been obtained by Silverman (1999). Obradovic̄ and Tuneski (2000) showed that

Gb ⊂ S?[0,−b] ⊂ S?
(

2
1+
√

1+8b

)
and the inclusion conditions of Gb ⊂ S?[A,B] was

obtained by Tuneski (2003). Rosihan et al. (2007) unified the properties obtained

in Tuneski (2003) by considering the general analytic function p(z) as zf ′(z)
f(z)

. The

condition is given as follows:

1 +
zp′(z)

p2(z)
≺ 1 + bz ⇒ p(z) ≺ 1 + Az

1 +Bz
.

Also, the authors considered the expression given by Frasin and Maslina (2001);

[zf(z)]′′

f ′(z)
− 2zf ′(z)

f(z)
≺ (1− α)z

2− α
⇒
∣∣∣∣z2f ′(z)

f 2(z)
− 1

∣∣∣∣ < 1− α.

and further generalised in the following manner: 1 + βzp′(z)
p(z)

≺ 1+Dz
1+Ez

⇒ p(z) ≺ 1+Az
1+Bz

for p(z) = z2f ′(z)
[f(z)]2

, f ∈ A. Another special case of the above implications can be

found in Ponnusamy and Rajasekaran (1995).

There are several interesting results related to the above implications. Previ-

ously, the criterion for a normalised analytic function to be univalent using the

result 1 + zp′(z) ≺ 1 + z implies p(z) ≺ 1 + z where p(z) is analytic in D and

p(0) = 1 has been studied by Nunokawa et al. in 1989. Then in 2007, Rosihan

et al. determined conditions A,B,D and E so that when 1 + βzp′(z) , 1 + βzp′(z)
p(z)

and 1 + βzp′(z)
p2(z)

are subordinated to 1+Dz
1+Ez

, the relation p(z) ≺ 1+Az
1+Bz

holds true. Some

applications using these properties have been obtained for analytic functions in the

class of Janowski starlike functions. Recently, Rosihan et al. (2012c) considered the

class of Sokól and Stankiewicz starlike functions to obtain conditions on β. Moti-

vated by these studies, we determine conditions on β by considering the classes of

Janowski starlike functions associated with the class of Sokól-Stankiewicz starlike

functions.
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The following lemma is needed in proving our results.

Lemma 3.1. (Miller & Mocanu, 2000: p. 135) Let q be univalent in D and let ϕ be

analytic in a domain containing q(D). Let zq′(z)ϕ[q(z)] be starlike. If p is analytic

in D, p(0) = q(0) and satisfies zp′(z)ϕ[p(z)] ≺ zq′(z)ϕ[q(z)] then p ≺ q and q is the

best dominant.

We now derive some theorems as the results.

Theorem 3.1. Let p be an analytic function on D and p(0) = 1.

Let β0 = 2
√

2|D−E|
(1−|E|) where −1 < E < 1, |D| ≤ 1 and D 6= E.

If

1 + βzp′(z) ≺ 1 +Dz

1 + Ez
(β ≥ β0)

then

p(z) ≺
√

1 + z .

Proof. Let q(z) =
√

1 + z with q(0) = 1, q : D→ C. q(D) is a convex set and hence

q is a convex function. Thus zq′(z) is starlike with respect to 0.

From Lemma 3.1,

1 + βzp′(z) ≺ 1 + βzq′(z)⇒ p(z) ≺ q(z).

To prove our result, it suffices to show

s(z) =
1 +Dz

1 + Ez
≺ 1 + βzq′(z) = 1 +

βz

2
√

1 + z
= h(z).

Since s−1(w) = w−1
D−Ew ,

s−1[h(z)] =
βz

2
√

1 + z(D − E)− βEz
.
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For z = eiθ, θ ∈ [−π, π] ,

|s−1[h(z)]| = |s−1[h(eiθ)]|

=
β

|2
√

1 + eiθ(D − E)− βEeiθ|

≥ β

2|
√

1 + eiθ||(D − E)|+ β|E|

=
β

2
√

2|cos θ
2
||(D − E)|+ β|E|

.

It can be shown that the above expression is minimum when θ = 0 .

Thus

|s−1[h(z)]| ≥ β

2
√

2|(D − E)|+ β|E|
≥ 1

for β ≥ 2
√

2|(D−E)|
(1−|E|) . Therefore D ⊂ s−1[h(D)] or s(D) ⊂ h(D) implies s(z) ≺ h(z)

and proves the result.

The above result is applied to determine sufficient condition for f ∈ A to satisfy

the condition

∣∣∣∣( zf ′(z)f(z)

)2

− 1

∣∣∣∣ < 1.

Corollary 3.1. Let β0 = 2
√

2|D−E|
(1−|E|) where −1 < E < 1 , |D| ≤ 1, D 6= E and

f ∈ A.

i) If f satisfies the following

1 + β
zf ′(z)

f(z)

(
zf
′′
(z)

f ′(z)
− zf ′(z)

f(z)
+ 1

)
≺ 1 +Dz

1 + Ez
(β ≥ β0)
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then f ∈ SL? .

ii) If 1 + βzf
′′
(z) ≺ 1+Dz

1+Ez
(β ≥ β0) then f ′(z) ≺

√
1 + z .

Proof. Define p(z) = zf ′(z)
f(z)

and using Theorem 3.1, the first part of Corollary 3.1

is proved. The second part of our results in Corollary 3.1 can be derived by taking

p(z) = f ′(z).

Using a similar manner, we obtain the second theorem.

Theorem 3.2. Let p be an analytic function in D and p(0) = 1. Let β0 =

4|D−E|
(1−|E|) , − 1 < E < 1, |D| ≤ 1 and D 6= E.

1 + β
zp′(z)

p(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺

√
1 + z (β ≥ β0).

Proof. Let q(z) =
√

1 + z , q(0) = 1. Elementary calculation will show that βzq′(z)
q(z)

=

βz
2(1+z)

is starlike. Thus, Lemma 3.1 can be applied as

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)
⇒ p(z) ≺ q(z).

Next, we prove the subordination

s(z) =
1 +Dz

1 + Ez
≺ 1 + β

zq′(z)

q(z)
= 1 +

βz

2(1 + z)
= h(z).

s−1[h(z)] =
βz

2(1 + z)(D − E)− βEz
.

For z = eiθ, θ ∈ [−π, π] ,
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|s−1[h(z)]| = |s−1[h(eiθ)]|

=
β

|2(1 + eiθ)(D − E)− βEeiθ|

≥ β

|2(1 + eiθ)||(D − E)|+ β|E|

=
β

4|cos θ
2
||(D − E)|+ β|E|

.

A straight forward computation verifies that the above expression is minimum when

θ = 0 .

Then

|s−1[h(z)]| ≥ β

4|(D − E)|+ β|E|
≥ 1

for β ≥ 4|(D−E)|
(1−|E|) . Hence s(D) ⊂ h(D) implies s(z) ≺ h(z).

Corollary 3.2. Let β0 = 4|D−E|
(1−|E|) ,−1 < E < 1, |D| ≤ 1 and D 6= E ,

i)

1 + β

[
1 +

zf
′′
(z)

f ′(z)
− zf ′(z)

f(z)

]
≺ 1 +Dz

1 + Ez
⇒ f ∈ SL? (β ≥ β0).

ii)

1 + β

[
(zf(z))

′′

f ′(z)
− 2zf ′(z)

f(z)

]
≺ 1 +Dz

1 + Ez
⇒ z2f ′(z)

f 2(z)
≺
√

1 + z (β ≥ β0).

Proof. Letting p(z) = zf ′(z)
f(z)

in (i) and p(z) = z2f ′(z)
f2(z)

in (ii) and applying Theorem

3.2, the results are proved.
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Theorem 3.3. Let β0 = 4
√

2|D−E|
(1−|E|) , − 1 < E < 1, |D| ≤ 1 and D 6= E.

1 + β
zp′(z)

p2(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺

√
1 + z (β ≥ β0).

Proof. Let q(z) =
√

1 + z, which implies zq′(z)
q2(z)

is starlike.

Using Lemma 3.1,

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)
⇒ p(z) ≺ q(z) .

Next, let h(z) = 1 + β zq
′(z)

q2(z)
= 1 + βz

2(1+z)
3
2

s−1[h(z)] =
βz

2(1 + z)
3
2 (D − E)− βEz

.

For z = eiθ, θ ∈ [−π, π] ,

|s−1[h(z)]| = |s−1[h(eiθ)]|

=
β

|2(1 + eiθ)
3
2 (D − E)− βEeiθ|

≥ β

|2(1 + eiθ)
3
2 ||(D − E)|+ β|E|

=
β

2|(2cos θ
2
)
3
2 ||(D − E)|+ β|E|

.

As in previous case, the above expression is minimum when θ = 0 .

Then

|s−1[h(z)]| ≥ β

4
√

2|(D − E)|+ β|E|
≥ 1
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for β ≥ 4
√

2|(D−E)|
(1−|E|) . Hence D ⊂ s−1[h(D)] implies s(z) ≺ h(z).

Corollary 3.3. Let β0 = 4
√

2|D−E|
(1−|E|) , − 1 < E < 1, |D| ≤ 1, D 6= E and f ∈ A ,

1− β + β

1 + zf
′′

(z)
f ′(z)

zf ′(z)
f(z)

 ≺ 1 +Dz

1 + Ez
⇒ f ∈ SL? (β ≥ β0).

Proof. By taking p(z) = zf ′(z)
f(z)

in Theorem 3.3, the result is obtained.

Since SL? ⊂ SS?(1
2
), the last theorem gives a result for

(
1+Az
1+Bz

)α
.

Theorem 3.4. Let p be an analytic function in D and p(0) = 1. Let β0 =

|1+A||1+B||D−E|
α|A−B|(1−|E|) , − 1 < E < 1, |D| ≤ 1, D 6= E and −1 ≤ B < A ≤ 1.

1 + β
zp′(z)

p(z)
≺ 1 +Dz

1 + Ez
⇒ p(z) ≺

(
1 + Az

1 +Bz

)α
(β ≥ β0 , 0 < α ≤ 1).

Proof. Let q(z) =
(

1+Az
1+Bz

)α
, then

βzq′(z)

q(z)
=

βαz(A−B)

(1 + Az)(1 +Bz)
= Q(z).

It can easily be verified that Q(z) is starlike. By Lemma 3.1, we prove the subordi-

nation

s(z) =
1 +Dz

1 + Ez
≺ 1 + β

zq′(z)

q(z)
= 1 +

βαz(A−B)

(1 + Az)(1 +Bz)
= h(z).

Since s−1(w) = w−1
D−Ew

|s−1[h(z)]| =
∣∣∣∣ βαz(A−B)

[(1 + Az)(1 +Bz)(D − E)]− βαzE(A−B)

∣∣∣∣

≥ |βαz(A−B)|
|[(1 + Az)(1 +Bz)(D − E)]|+ |βαzE(A−B)|

.
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For z = eiθ, θ ∈ [−π, π] ,

|s−1[h(eiθ)]| ≥ βα|(A−B)|
|[(1 + Aeiθ)(1 +Beiθ)(D − E)]|+ βα|E(A−B)|

with minimum value being attained at θ = 0.

Hence

|s−1[h(eiθ)]| ≥ βα|(A−B)|
|[(1 + A)(1 +B)(D − E)]|+ βα|E(A−B)|

≥ 1

for β ≥ |[(1+A)(1+B)(D−E)]|
α|A−B|(1−|E|) implies s(z) ≺ h(z) and the result is obtained.

Remark 3.1. Theorem 3.4 is reduced to Theorem 3.2 when α = 1
2
, A = 1 and

B = 0.

Finally, we state the next obvious result.

Corollary 3.4. Let β0 = |1+A||1+B||D−E|
α|A−B|(1−|E|) , − 1 < E < 1, |D| ≤ 1, D 6= E and

−1 ≤ B < A ≤ 1. Then

1 + β

[
1 +

zf
′′
(z)

f ′(z)
− zf ′(z)

f(z)

]
≺ 1 +Dz

1 + Ez
⇒ zf ′(z)

f(z)
≺
(

1 + Az

1 +Bz

)α
.

3.2 Properties of functions involving Cassini curve

With a similar method as in section 3.1, we investigate the lower bound of β for a

function in the region of Cassini curve.

Theorem 3.5. Let p be an analytic function on D, p(0) = 1 and β0 = 2
√

2(
√
c+ 1−

1) where c ∈ (0, 1]. If the function p satisfies the subordination

1 + βzp′(z) ≺
√

1 + cz (β ≥ β0)
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then

p(z) ≺
√

1 + z .

The lower bound β0 is best possible.

Proof. Define the function q : D → C by q(z) =
√

1 + z with q(0) = 1. Since

q(D) = {w : |w2 − 1| < 1} is the interior of the right half of the lemniscate of

Bernoulli, q(D) is a convex set and hence q is a convex function. The Alexander’s

Theorem showed that zq′(z) is starlike function with respect to 0. It follows from

Lemma 3.1 that

1 + βzp′(z) ≺ 1 + βzq′(z)⇒ p(z) ≺ q(z).

To prove our result, it suffices to show

s(z) =
√

1 + cz ≺ 1 + βzq′(z) = 1 +
βz

2
√

1 + z
= h(z).

Suppose s(z) =
√

1 + cz = w. Then we have

s−1(w) =
w2 − 1

c

s−1[h(z)] =

[
1 + βz

2
√

1+z

]2

− 1

c

=
1 + 2

(
βz

2
√

1+z

)
+
(

βz
2
√

1+z

)2

− 1

c

=
1

c

[
βz

2
√

1 + z

] [
2 +

βz

2
√

1 + z

]
.

60



For z = eiθ (θ ∈ (−π, π)) , we obtain

|s−1[h(z)]| = |s−1[h(eiθ)]| =
∣∣∣∣1c
[

βeiθ

2
√

1 + eiθ

] [
2 +

βeiθ

2
√

1 + eiθ

]∣∣∣∣ .

Since the above expression is minimum when
∣∣∣2√1 + eiθ

∣∣∣ = 2
√

2 cos θ
2

is maximum

and this occurs at θ = 0,

|s−1[h(z)]| ≥ 1

c

[
β

2
√

2

] [
2 +

β

2
√

2

]
=

1

c

[(
1 +

β

2
√

2

)2

− 1

]
≥ 1

for β ≥ 2
√

2(
√
c+ 1 − 1). Hence D ⊂ s−1[h(D)] or s(D) ⊂ h(D) which implies

s(z) ≺ h(z) and this proves the result.

By taking p(z) = zf ′(z)
f(z)

and p(z) = f ′(z), we have the following result using

Theorem 3.5.

Corollary 3.5. Let β0 = 2
√

2(
√
c+ 1− 1) where c ∈ (0, 1] and f ∈ A.

i) If f satisfies the following

1 + β
zf ′(z)

f(z)

(
zf
′′
(z)

f ′(z)
− zf ′(z)

f(z)
+ 1

)
≺
√

1 + cz (β ≥ β0)

then f ∈ SL? .

ii) If 1 + βzf
′′
(z) ≺

√
1 + cz (β ≥ β0) then f ′(z) ≺

√
1 + z .

Theorem 3.6. Let β0 = 4(
√
c+ 1− 1) and c ∈ (0, 1]. If

1 + β
zp′(z)

p(z)
≺
√

1 + cz then p(z) ≺
√

1 + z (β ≥ β0),

then the lower bound β0 is best possible.
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Proof. Let q(z) =
√

1 + z , q(0) = 1. Elementary calculation will show that βzq′(z)
q(z)

=

βz
2(1+z)

is starlike. Application of Lemma 3.1 will deduce

1 + β
zp′(z)

p(z)
≺ 1 + β

zq′(z)

q(z)
⇒ p(z) ≺ q(z),

provided we show that

s(z) =
√

1 + cz ≺ 1 + β
zq′(z)

q(z)
= 1 +

βz

2(1 + z)
= h(z).

Easily

s−1[h(z)] =

[
1 + βz

2(1+z)

]2

− 1

c

=
1

c

[
2βz

2(1 + z)
+

(
βz

2(1 + z)

)2
]
.

For z = eiθ, θ ∈ (−π, π) ,

|s−1[h(eiθ)]| =

∣∣∣∣∣1c
[

2βeiθ

2(1 + eiθ)
+

(
βeiθ

2(1 + eiθ)

)2
]∣∣∣∣∣

=

∣∣∣∣1c
[

βeiθ

2(1 + eiθ)

] [
2 +

βeiθ

2(1 + eiθ)

]∣∣∣∣ .

Since max
∣∣1 + eiθ

∣∣ = 2 cos θ
2
, this implies the minimum of the above expression is

attained at θ = 0.

Then |s−1[h(z)]| ≥ β
4c

[
2 + β

4

]
= 1

c

[(
1 + β

4

)2 − 1
]
≥ 1 for β ≥ 4(

√
c+ 1− 1). Hence

s(z) ≺ h(z)
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Applying Theorem 3.6 and letting p(z) = zf ′(z)
f(z)

in (i) and p(z) = z2f ′(z)
f2(z)

in (ii), the

following results are obtained.

Corollary 3.6. Let β0 = 4(
√
c+ 1− 1) and f ∈ A. i)

1 + β

[
1 +

zf
′′
(z)

f ′(z)
− zf ′(z)

f(z)

]
≺
√

1 + cz ⇒ f ∈ SL? (β ≥ β0).

ii)

1 + β

[
(zf(z))

′′

f ′(z)
− 2zf ′(z)

f(z)

]
≺
√

1 + cz ⇒ z2f ′(z)

f 2(z)
≺
√

1 + z (β ≥ β0).

Theorem 3.7. Let β0 = 4
√

2(
√
c+ 1− 1). If

1 + β
zp′(z)

p2(z)
≺
√

1 + cz ⇒ p(z) ≺
√

1 + z (β ≥ β0),

then the lower bound β0 is best possible.

Proof. For q(z) =
√

1 + z, zq′(z)
q2(z)

is starlike. Lemma 3.1 can then imply the following

relation

1 + β
zp′(z)

p2(z)
≺ 1 + β

zq′(z)

q2(z)
⇒ p(z) ≺ q(z) .

Writing h(z) = 1 + β zq
′(z)

q2(z)
= 1 + βz

2(1+z)
3
2

we then have

s−1[h(z)] =

[
1 + βz

2(1+z)
3
2

]2

− 1

c

=
1

c

[
βz

2(1 + z)
3
2

(
2 +

βz

2(1 + z)
3
2

)]
.

In a similar manner to previous cases, for z = eiθ, θ ∈ (−π, π) ;
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|s−1[h(z)]| ≥ 1
c

[(
1 + β

4
√

2

)2

− 1

]
≥ 1 for β ≥ 4

√
2(
√
c+ 1 − 1). Hence D ⊂

s−1[h(D)] implies s(z) ≺ h(z).

By setting p(z) = zf ′(z)
f(z)

in Theorem 3.7, we have the following corollary.

Corollary 3.7. Let β0 = 4
√

2(
√
c+ 1− 1) and f ∈ A ,

1− β + β

1 + zf
′′

(z)
f ′(z)

zf ′(z)
f(z)

 ≺ √1 + cz ⇒ f ∈ SL? (β ≥ β0).

Remark 3.2. For the special case of c = 1, all the above theorems and corollaries

are reduced to the results obtained by Rosihan et al. (2012c).

3.3 Properties of certain analytic classes

Let SL(α) and SLc denote the classes of α-convex and convex functions which

respectively satisfy | [J(α, f(z))]2 − 1| < 1 and

∣∣∣∣[1 + zf ′′(z)
f ′(z)

]2

− 1

∣∣∣∣ < 1 (z ∈ D)

where

J(α, f(z)) = (1− α)
zf ′(z)

f(z)
+ α

[
1 +

zf ′′(z)

f ′(z)

]
, α ≥ 0.

It is obvious that f ∈ SL(α) ⇔ J(α, f(z)) ≺
√

1 + z and f ∈ SLc ⇔ 1 + zf ′′(z)
f ′(z)

≺
√

1 + z . These classes are generalised from the definition of the class SL?. Using

results given in section 3.1, properties of functions in the classes SL(α) and SLc are

obtained.

Corollary 3.8. Let β0 = 2
√

2(|D−E|)
1−|E| , |E| < 1 , |D| ≤ 1 , D 6= E, β ≥ β0 and

f ∈ A. If f satisfies

(i)

1 + β
zf ′′(z)

f ′(z)

{
z[f ′′(z)]′

f ′′(z)
− zf ′′(z)

f ′(z)
+ 1

}
≺ 1 +Dz

1 + Ez
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then f ∈ SLc; and

(ii)

1+β

{
(1− α)

zf ′(z)

f(z)

(
zf
′′
(z)

f ′(z)
− zf ′(z)

f(z)
+ 1

)
+ α

zf ′′(z)

f ′(z)

(
z[f ′′(z)]′

f ′′(z)
− zf ′′(z)

f ′(z)
+ 1

)}
≺ 1 +Dz

1 + Ez

then f ∈ SL(α).

Proof. (i) Let p(z) = 1 + zf ′′(z)
f ′(z)

. Then

zp′(z) =
z2[f ′′(z)]′

f ′(z)
+
zf ′′(z)

f ′(z)
− z2[f ′′(z)]2

[f ′(z)]2

=
zf ′′(z)

f ′(z)

{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}
,

and applying Theorem 3.1 gives 1 + zf ′′(z)
f ′(z)

≺ 1+Dz
1+Ez

, hence f ∈ SLc.

(ii) With p(z) = (1− α)
[
zf ′(z)
f(z)

]
+ α

[
1 + zf ′′(z)

f ′(z)

]
, we have

p′(z) = (1− α)

{
f(z)[zf ′′(z) + f ′(z)]− z[f ′(z)]2

[f(z)]2

}
+ α

{
f ′(z)[z(f ′′(z))′ + f ′′(z)]− z[f ′′(z)]2

[f ′(z)]2

}

= (1− α)
f ′(z)

f(z)

{
zf
′′
(z)

f ′(z)
+ 1− zf ′(z)

f(z)

}
+ α

f ′′(z)

f ′(z)

{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}

and from Theorem 3.1, the result implies f ∈ SL(α).

Corollary 3.9. Let β0 = 4|D−E|
(1−|E|) and f ∈ A.

(i) If

1 + β
zf ′′(z)

[f ′(z) + zf ′′(z)]

{
z[f ′′(z)]′

f ′′(z)
− zf ′′(z)

f ′(z)
+ 1

}
≺ 1 +Dz

1 + Ez
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then f ∈ SLc.

(ii) If

1 +

β

 (1− α)zf ′(z)
[
1− zf ′(z)

f(z)
+ zf

′′
(z)

f ′(z)

]
(1− α)zf ′(z) + αf(z)

[
1 + zf ′′(z)

f ′(z)

] +
αzf ′′(z)

[
1− zf ′′(z)

f ′(z)
+ z[f ′′(z)]′

f ′′(z)

]
(1− α)f ′(z) zf

′(z)
f(z)

+ α[f ′(z) + zf ′′(z)]


≺ 1 +Dz

1 + Ez

then f ∈ SL(α).

Proof. (i) For p(z) = 1 + zf ′′(z)
f ′(z)

,

zp′(z)

p(z)
=
zf ′′(z)

f ′(z)

[
f ′(z)− zf ′′(z)

f ′(z)

] [
f ′(z)

f ′(z) + zf ′′(z)

]
+

[
z2 [f ′′(z)]′

f ′(z)

] [
f ′(z)

f ′(z) + zf ′′(z)

]

=
zf ′′(z)

[f ′(z) + zf ′′(z)]
− [zf ′′(z)]2

f ′(z)[f ′(z) + zf ′′(z)]
+

z2[f ′′(z)]′

[f ′(z) + zf ′′(z)]

=
zf ′′(z)

[f ′(z) + zf ′′(z)]

{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}

and based on Theorem 3.2, f ∈ SLc.
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(ii) Let p(z) = (1− α)
[
zf ′(z)
f(z)

]
+ α

[
1 + zf ′′(z)

f ′(z)

]
.

p′(z)

p(z)
=

(1− α)f
′(z)
f(z)

{
zf
′′

(z)
f ′(z)

+ 1− zf ′(z)
f(z)

}
+ α f

′′(z)
f ′(z)

{
z[f ′′(z)]′(z)

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}
(1− α)

[
zf ′(z)
f(z)

]
+ α

[
1 + zf ′′(z)

f ′(z)

]

=
(1− α)f ′(z)

{
zf ′′(z) + f ′(z)− zf ′(z)f ′(z)

f(z)

}
f ′(z)

{
(1− α)zf ′(z) + αf(z)

(
1 + zf ′′(z)

f ′(z)

)}

+
αf ′′(z)f(z)

{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}
f(z)

{
(1− α)f ′(z) zf

′(z)
f(z)

+ α[f ′(z) + zf ′′(z)]
}

=
(1− α)f ′(z)

{
zf ′′(z)
f ′(z)

+ f ′(z)
f ′(z)
− z[f ′(z)]2

f ′(z)f(z)

}
(1− α)zf ′(z) + αf(z)

[
1 + zf ′′(z)

f ′(z)

] +

αf ′′(z)f(z)
f(z)

{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}
(1− α)f ′(z) zf

′(z)
f(z)

+ α[f ′(z) + zf ′′(z)]

=
(1− α)f ′(z)

{
zf ′′(z)
f ′(z)

+ 1− zf ′(z)]
f(z)

}
(1− α)zf ′(z) + αf(z)

[
1 + zf ′′(z)

f ′(z)

]+

αf ′′(z)
{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}
(1− α)f ′(z) zf

′(z)
f(z)

+ α[f ′(z) + zf ′′(z)]
.

Applying Theorem 3.2, f ∈ SL(α).

Corollary 3.10. Let β0 = 4
√

2|D−E|
(1−|E|) and f ∈ A.

(i)

1 + β
zf ′(z)f ′′(z)

[f ′(z) + zf ′′(z)]2

{
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

}
≺ 1 +Dz

1 + Ez
⇒ f ∈ SLc.

(ii)
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1 + βz(1− α)[f ′(z)]3f(z)
[
zf
′′

(z)
f ′(z)

+ 1− zf ′(z)
f(z)

]
+ α[f(z)]2f ′(z)f ′′(z)

[
z[f ′′(z)]′

f ′′(z)
+ 1− zf ′′(z)

f ′(z)

]
[(1− α)f ′(z)zf ′(z) + αf(z)[f ′(z) + zf ′′(z)]]2


≺ 1 +Dz

1 + Ez
⇒ f ∈ SL(α).

Proof. (i) Using Theorem 3.3 with p(z) = 1 + zf ′′(z)
f ′(z)

, we obtain the result.

(ii) Similarly, set p(z) = (1− α)
[
zf ′(z)
f(z)

]
+ α

[
1 + zf ′′(z)

f ′(z)

]
.

Remark 3.3. For α = 0 and α = 1, Corollary 3.8 (ii), Corollary 3.9 (ii) and

Corollary 3.10 (ii) give the results f ∈ SL? and f ∈ SLc.

Our discussion is continued by introducing new classes defined by Dziok-Srivastava

operator and generalised multiplier transformations. Inclusion theorems are deter-

mined using Briot-Bouquet differential subordinations. There were some authors

introduced new classes using certain operators and Briot-Bouquet differential sub-

ordinations method [see Kanas (1995), Choi et al. (2002a), Cho and Kim (2006)

and Kwon and Cho (2007)].

3.4 Classes of function defined by Dziok-Srivastava operator

Using the Dziok-Srivastava operator, we generalise new classes from Sokól-Stankiewicz

and Janowski strongly starlike functions. Classes denoted by SL∗[α1], H(α1;A,B;λ)(λ ∈

(0, 1]) and SLc[α1] are introduced and defined below:

SL∗[α1] :=

{
f : f ∈ S,

z
[
H l,m[α1]f(z)

]′
H l,m[α1]f(z)

≺
√

1 + z , z ∈ D

}
,

H(α1;A,B;λ) :=

{
f : f ∈ S,

z
[
H l,m[α1]f(z)

]′
H l,m[α1]f(z)

≺
(

1 + Az

1 +Bz

)λ
, z ∈ D

}
,

SLc[α1] :=

{
f : f ∈ S, 1 +

z
[
H l,m[α1]f(z)

]′′
[H l,m[α1]f(z)]′

≺
√

1 + z , z ∈ D

}
.
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Quite trivially, the Alexander’s Theorem is also observed for the SLc[α1] and

SL?[α1]

f ∈ SLc[α1]⇔ zf ′(z) ∈ SL∗[α1]. (3.1)

In proving our results, the following lemmas will be required.

Lemma 3.2. (Enigenberg et al., 1983) Let h be convex in D, with Re [βh(z) + γ] >

0. If p is analytic in D with p(0) = h(0) = 1, then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z)⇒ p(z) ≺ h(z).

Lemma 3.3. (Kanas, 1995) Let λ ∈ (0, 1] be fixed, β, σ ∈ C, Arg β ∈
(

(λ−1)π
2

, (1−λ)π
2

)
and Re σ ≥ 0. Let p be analytic function such that p(0) = 1 and p(z) 6= −σ

β
(z ∈ D).

If

∣∣∣∣Arg{p(z) +
zp′(z)

βp(z) + σ

}∣∣∣∣ < λπ

2
,

then |Arg p(z)| < λπ
2

.

We prove now the inclusion theorem for the class SL?[α1] using the Dziok-

Srivastava operator. It is easily to verify that

α1H
l,m[α1 + 1]f(z) = z

[
H l,m[α1]f(z)

]′
+ (α1 − 1)H l,m[α1]f(z). (3.2)

Theorem 3.8. Let α1 ≥ 1 and Re{(α1 − 1) +
√

(1 + z)} > 0. Then SL?[α1 + 1] ⊂

SL?[α1].

Proof. If f ∈ SL?[α1 + 1] then

z
[
H l,m[α1 + 1]f(z)

]′
H l,m[α1 + 1]f(z)

≺
√

1 + z
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and from (3.2) we have

α1H
l,m[α1 + 1]f(z)

H l,m[α1]f(z)
=
z
[
H l,m[α1f(z)

]′
H l,m[α1]f(z)

+ (α1 − 1).

After differentiating this equation and then rearranging it, we have

z
[
H l,m[α1 + 1]f(z)

]′
H l,m[α1 + 1]f(z)

=
z
[
H l,m[α1]f(z)

]′
H l,m[α1]f(z)

+

z

(
z[Hl,m[α1]f(z)]

′

Hl,m[α1]f(z)

)′
z[Hl,m[α1]f(z)]

′

Hl,m[α1]f(z)
+ α1 − 1

. (3.3)

Letting p(z) =
z[Hl,m[α1]f(z)]

′

Hl,m[α1]f(z)
and h(z) =

√
1 + z, it is clear that h is convex in D

and p(0) = h(0).

Since
z[Hl,m[α1+1]f(z)]

′

Hl,m[α1+1]f(z)
≺
√

1 + z, applying Lemma 3.2 with β = 1 and γ = α1 − 1

proves
z[Hl,m[α1]f(z)]

′

Hl,m[α1]f(z)
≺
√

1 + z. Thus f ∈ SL?[α1].

Next, Bernardi operator and Jung-Kim-Srivastava operators are shown to be

preserved for the class SL?[α1]. The results are stated in Theorem 3.9-3.11.

Theorem 3.9. If for z ∈ D, Re
{
c+
√

1 + z
}
> 0 and f ∈ SL?[α1] then Fcf ∈

SL?[α1].

Proof. Since the Bernardi operator satisfies the relation cFc[f(z)] + z (Fc[f(z)])′ =

(c+ 1)f(z), it can be established that

c
(
H l,m[α1]Fc[f(z)]

)
+ z

(
H l,m[α1]Fc[f(z)]

)′
= (c+ 1)H l,m[α1]f(z) (3.4)

which upon rewriting gives

(c+ 1)H l,m[α1]f(z)

H l,m[α1]Fc[f(z)]
=
z
(
H l,m[α1]Fc[f(z)]

)′
H l,m[α1]Fc[f(z)]

+ c.

Differentiating both sides in the above equation and using the hypothesis that f ∈
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SL?[α1], we have the following relation

z
[
H l,m[α1]f(z)

]′
H l,m[α1]f(z)

=
z
(
H l,m[α1]Fc[f(z)]

)′
H l,m[α1]Fc[f(z)]

+

z

(
z(Hl,m[α1]Fc[f(z)])

′

Hl,m[α1]Fc[f(z)]

)′
z(Hl,m[α1]Fc[f(z)])

′

Hl,m[α1]Fc[f(z)]
+ c

≺
√

1 + z.

(3.5)

As before, by letting p(z) =
z(Hl,m[α1]Fc[f(z)])

′

Hl,m[α1]Fc[f(z)]
and h(z) =

√
1 + z. Lemma 3.2 implies

z(Hl,m[α1]Fc[f(z)])
′

Hl,m[α1]Fc[f(z)]
≺
√

1 + z and this completes the proof.

Recall that two of Jung-Kim-Srivastava operators are defined as:

P νf(z) = z +
∞∑
n=2

(
2

n+ 1

)ν
anz

n

and

`νµf(z) = z +
Γ(ν + µ+ 1)

Γ(µ+ 1)

∞∑
n=2

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n.

Using these operators, we obtain the next results.

Theorem 3.10. Suppose for z ∈ D, Re{1 +
√

1 + z} > 0 and P ν−1f(z) ∈ SL?[α1].

Then P νf(z) ∈ SL?[α1] (ν > 1).

Proof. It can be derived

z
[
H l,m[α1]P νf(z)

]′
= 2

[
H l,m[α1]P ν−1f(z)

]
−H l,m[α1]P νf(z)

and rearranging the equation gives

z
[
H l,m[α1]P νf(z)

]′
H l,m[α1]P νf(z)

=
2
[
H l,m[α1]P ν−1f(z)

]
H l,m[α1]P νf(z)

− 1.

Differentiating both sides, we obtain

z
[
H l,m[α1]P ν−1f(z)

]′
H l,m[α1]P ν−1f(z)

= p(z) +
zp′(z)

p(z) + 1
≺
√

1 + z

where p(z) =
z[Hl,m[α1]P νf(z)]

′

Hl,m[α1]P νf(z)
. Using Lemma 3.2 with β = γ = 1 implies the

result.
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Theorem 3.11. Let Re{(ν + µ − 1) +
√

1 + z} > 0 for ν > 1 and µ > −1. If

`ν−1
µ f(z) ∈ SL?[α1] then `νµf(z) ∈ SL?[α1].

Proof. Since z
[
H l,m[α1]`νµf(z)

]′
= (ν+µ)

[
H l,m[α1]`ν−1

µ f(z)
]
−(ν+µ−1)H l,m[α1]`νµf(z),

z
[
H l,m[α1]`νµf(z)

]′
H l,m[α1]`νµf(z)

=
(ν + µ)

[
H l,m[α1]`ν−1

µ f(z)
]

H l,m[α1]`νµf(z)
− (ν + µ− 1).

From the differentiation of the above equation, we have

z
[
H l,m[α1]`ν−1

µ f(z)
]′

H l,m[α1]`ν−1
µ f(z)

= p(z) +
zp′(z)

p(z) + (ν + µ− 1)
.

The hypothesis of the theorem and Lemma 3.2 give the result by letting p(z) =

z[Hl,m[α1]`νµf(z)]
′

Hl,m[α1]`νµf(z)
with β = 1 and γ = ν + µ− 1.

Furthermore, inclusion theorems and preservation properties for the classes

H(α1;A,B;λ) and SLc[α1] are shown in the following results.

Theorem 3.12. Let λ ∈ (0, 1] and Re (α1−1) ≥ 0, H(α1+1;A,B;λ) ⊂ H(α1;A,B;λ).

Proof. The proof is trivial. Since the Dziok-Srivastava operator satisfies (3.3) and

f ∈ H(α1 + 1;A,B;λ),

∣∣∣∣∣Arg
(
z
[
H l,m[α1 + 1]f(z)

]′
H l,m[α1 + 1]f(z)

)∣∣∣∣∣ < λπ

2
.

Therefore applying Lemma 3.3 with p(z) =
z[Hl,m[α1]f(z)]

′

Hl,m[α1]f(z)
, β = 1 and σ = α1 − 1

gives

|Arg p(z)| =

∣∣∣∣∣Arg
(
z
[
H l,m[α1]f(z)

]′
H l,m[α1]f(z)

)∣∣∣∣∣ < λπ

2
.

Hence f ∈ H(α1;A,B;λ).
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Theorem 3.13. Suppose λ ∈ (0, 1] and Re c ≥ 0. If f ∈ H(α1;A,B;λ) then

Fcf ∈ H(α1;A,B;λ).

Proof. The proof follows easily since Fcf satisfies the equation (3.4) and with p(z) =

z(Hl,m[α1]Fc[f(z)])
′

Hl,m[α1]Fc[f(z)]
in Lemma 3.3 (β = 1 and σ = c) results

|Arg p(z)| =

∣∣∣∣∣Arg
(
z
(
H l,m[α1]Fc[f(z)]

)′
H l,m[α1]Fc[f(z)]

)∣∣∣∣∣ < λπ

2
.

Remark 3.4. In a similar manner as in previous theorems, it can easily be shown

that

P ν−1f(z) ∈ H(α1;A,B;λ)⇒ P νf(z) ∈ H(α1;A,B;λ)

and

`ν−1
µ f(z) ∈ H(α1;A,B;λ)⇒ `νµf(z) ∈ H(α1;A,B;λ).

Remark 3.5. For λ = 1
2
, A = 1 and B = 0, Theorem 3.12 and Theorem 3.13 reduce

to Theorem 3.8 and Theorem 3.9.

Theorem 3.14. Let α1 ≥ 1. Then SLc[α1 + 1] ⊂ SLc[α1].

Proof. Using (3.1) and Theorem 3.8, we can easily deduce our result.

f(z) ∈ SLc[α1 + 1]⇔ zf ′(z) ∈ SL?[α1 + 1]

⇒ zf ′(z) ∈ SL?[α1]⇔ H l,m[α1] [zf(z)]′ ∈ SL?

⇔ z
[
H l,m[α1]f(z)

]′ ∈ SL? ⇔ H l,m[α1]f(z) ∈ SLc

⇔ f ∈ SLc[α1].

Theorem 3.15. If f ∈ SLc[α1] then Fcf ∈ SLc[α1].
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Proof. By applying Theorem 3.9, it follows that

f ∈ SLc[α1]⇔ zf ′(z) ∈ SL?[α1]

⇒ Fc[zf
′(z)] ∈ SL?[α1]⇔ z (Fc[f(z)])′ ∈ SL?[α1]

⇔ Fcf ∈ SLc[α1].

3.5 Subclasses of analytic functions associated with generalised

multiplier transformations

Recently, some properties of functions using the multiplier transformations have

been studied by Cǎtaş et al. (2008), Cǎtaş (2009), Cho and Noor (2012), El-Ashwah

et al. (2010) and Lupaş (2010). Using the convolution, we extend the multiplier

transformation in (1.4) to be a unified operator. The approach used is similar to

Noor’s (Noor, 1999), except we generalise and extend to include powers and use the

multiplier Cǎtaş as basis instead of the Ruscheweyh operator.

Set the function

fk,c(z) = z +
∞∑
n=2

[
1 + c

1 + λ(n− 1) + c

]k
zn (k, λ ∈ R, k ≥ 0, λ ≥ 0, c ≥ 0)

and note that for λ = 1, fk,c(z) is the generalised polylogarithm functions discussed

in Mondal and Swaminathan (2010). A new function fµk,c(z) is defined in terms of

the Hadamard product(or convolution) as follows:

fk,c(z) ∗ fµk,c(z) =
z

(1− z)µ
(µ > 0).

Motivated by Cho and Kim (2006), Choi et al. (2002a), Kwon and Cho (2007) and
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analogous to (1.4), the following operator is introduced:

Ikc (λ, µ)f(z) = fµk,c ∗ f(z)

= z +
∞∑
n=2

(µ)n−1

(n− 1)!

[
1 + λ(n− 1) + c

1 + c

]k
anz

n.

The operator Ikc (λ, µ)f unifies other previously defined operators. For examples;

(i) Ikc (λ, 1)f is the I1(δ, λ, l)f given in Cǎtaş (2008)

(ii) Ikc (1, 1)f is the Ikc f given in Cho and Srivastava (2003).

Also, for any integer k,

(iii) Ik0 (λ, 1)f(z) ≡ Dk
λf(z) given in Al-Oboudi (2004)

(iv) Ik0 (1, 1)f(z) ≡ Dkf(z) given in Sǎlǎgean (1983)

(v) Ik1 (1, 1)f(z) ≡ Ikf(z) given in Uralegaddi and Somanatha (1992).

The following relations are easily derived using the definition:

(1 + c)Ik+1
c (λ, µ)f(z) = (1− λ+ c)Ikc (λ, µ)f(z) + λz

[
Ikc (λ, µ)f(z)

]′
(3.6)

and

µIkc (λ, µ+ 1)f(z) = z
[
Ikc (λ, µ)f(z)

]′
+ (µ− 1)Ikc (λ, µ)f(z). (3.7)

Using Ma and Minda (1992) classes and the generalised multiplier transformations

Ikc (λ, µ)f , new classes Skc (λ, µ;φ), Ck
c (λ, µ;φ) and Kk

c (λ, µ;φ, ψ) are introduced and

defined as below:
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Skc (λ, µ;φ) :=
{
f ∈ A : Ikc (λ, µ)f(z) ∈ S?(φ)

}

Ck
c (λ, µ;φ) :=

{
f ∈ A : Ikc (λ, µ)f(z) ∈ C(φ)

}

Kk
c (λ, µ;φ, ψ) :=

{
f ∈ A : Ikc (λ, µ)f(z) ∈ K(φ, ψ)

}
.

It can be shown easily that

f(z) ∈ Ck
c (λ, µ;φ)⇔ zf ′(z) ∈ Skc (λ, µ;φ). (3.8)

Lemma 3.2 and the following lemma are needed in proving results;

Lemma 3.4. (Miller and Mocanu, 1981) Let φ be convex univalent in D and ω be

analytic in D with Re{ω(z)} ≥ 0. If p is analytic in D and p(0) = φ(0), then

p(z) + ω(z)zp′(z) ≺ φ(z)⇒ p(z) ≺ φ(z).

3.5.1 Inclusion properties involving Ikc (λ, µ)f

Some results on inclusion theorems are given;

Theorem 3.16. For any real numbers k and λ where k ≥ 0, λ ≥ 0 and c ≥ 0. Let

φ ∈ N and Re
{
φ(z) + 1−λ+c

λ

}
> 0. Then Sk+1

c (λ, µ;φ) ⊂ Skc (λ, µ;φ) (µ > 0).

Proof. Let f ∈ Sk+1
c (λ, µ;φ) and set p(z) =

z[Ikc (λ,µ)f(z)]
′

Ikc (λ,µ)f(z)
where p is analytic in D

with p(0) = 1. Rearranging (3.6), we have

(1 + c)Ik+1
c (λ, µ)f(z)

Ikc (λ, µ)f(z)
= (1− λ+ c) +

λz
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)f(z)

. (3.9)
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Next, differentiating (3.9) and multiplying by z gives

z
[
Ik+1
c (λ, µ)f(z)

]′
Ik+1
c (λ, µ)f(z)

=
z
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)f(z)

+

z

(
z[Ikc (λ,µ)f(z)]

′

Ikc (λ,µ)f(z)

)′
z[Ikc (λ,µ)f(z)]

′

Ikc (λ,µ)f(z)
+ (1−λ+c)

λ

= p(z) +
zp′(z)

p(z) + (1−λ+c)
λ

.

Since
z[Ik+1

c (λ,µ)f(z)]
′

Ik+1
c (λ,µ)f(z)

≺ φ(z) and applying Lemma 3.2, it follows that p ≺ φ. Thus

f ∈ Skc (λ, µ;φ).

Theorem 3.17. Let k, λ ∈ R, k ≥ 0, λ ≥ 0 and µ ≥ 1. Then Skc (λ, µ + 1;φ) ⊂

Skc (λ, µ;φ) (c ≥ 0;φ ∈ N).

Proof. Let f ∈ Skc (λ, µ+ 1;φ). From (3.7) we obtain

µIkc (λ, µ+ 1)f(z)

Ikc (λ, µ)
=
z
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)

+ (µ− 1). (3.10)

Making use of the differentiation on both sides in (3.10) and setting p(z) =
z[Ikc (λ,µ)f(z)]

′

Ikc (λ,µ)f(z)
,

we get

z
[
Ikc (λ, µ+ 1)f(z)

]′
Ikc (λ, µ+ 1)f(z)

= p(z) +
zp′(z)

p(z) + (µ− 1)
≺ φ(z).

Since µ ≥ 1 and Re {φ(z) + (µ− 1)} > 0, using Lemma 3.2 we conclude that

f ∈ Skc (λ, µ;φ).

Corollary 3.11. Let λ ≥ 0, µ ≥ 1 and −1 ≤ B < A ≤ 1. Then S?k+1,c [µ;A,B] ⊂

S?k,c [µ;A,B] and S?k,c [µ+ 1;A,B] ⊂ S?k,c [µ;A,B].

Next, we obtain inclusion theorems for class of convex functions defined by gen-

eralised multiplier transformations using the result of Theorem 3.16 and Theorem

3.17.
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Theorem 3.18. Let λ ≥ 0. Then Ck+1
c (λ, µ;φ) ⊂ Ck

c (λ, µ;φ) and Ck
c (λ, µ+ 1;φ) ⊂

Ck
c (λ, µ;φ).

Proof. Using (3.8) and Theorem 3.16, we observe that

f(z) ∈ Ck+1
c (λ, µ;φ)⇔ zf ′(z) ∈ Sk+1

c (λ, µ;φ)

⇒ zf ′(z) ∈ Skc (λ, µ;φ)

⇔ Ikc (λ, µ)zf ′(z) ∈ S?(φ)

⇔ z
[
Ikc (λ, µ)f(z)

]′ ∈ S?(φ)

⇔ Ikc (λ, µ)f(z) ∈ C(φ)

⇔ f ∈ Ck
c (λ, µ;φ).

To prove the second part of Theorem, using the similar manner and applying The-

orem 3.17 the result is obtained.

Finally, we use Lemma 3.4 to prove the following theorem;

Theorem 3.19. Let λ ≥ 0, c ≥ 0 and Re{1−λ+c
λ
} > 0. Then Kk+1

c (λ, µ;φ, ψ) ⊂

Kk
c (λ, µ;φ, ψ) and Kk

c (λ, µ+ 1;φ, ψ) ⊂ Kk
c (λ, µ;φ, ψ) (φ, ψ ∈ N).

Proof. Let f ∈ Kk+1
c (λ, µ;φ, ψ). In view of the definition of the classKk+1

c (λ, µ;φ, ψ),

there is a function g ∈ Sk+1
c (λ, µ;φ) such that

z
[
Ik+1
c (λ, µ)f(z)

]′
Ik+1
c (λ, µ)g(z)

≺ ψ(z).

Apply Theorem 3.16, we have g ∈ Skc (λ, µ;φ). Let q(z) =
z[Ikc (λ,µ)g(z)]

′

Ikc (λ,µ)g(z)
≺ φ(z).

Letting the analytic function p with p(0) = 1 as:

p(z) =
z
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)g(z)

. (3.11)
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Then, rearranging and differentiating (3.11) we have

[
Ikc (λ, µ)zf ′(z)

]′
Ikc (λ, µ)g(z)

=
p(z)

[
Ikc (λ, µ)g(z)

]′
Ikc (λ, µ)g(z)

+ p′(z). (3.12)

Making use of (3.6), (3.11), (3.12) and q(z), we obtain

z
[
Ik+1
c (λ, µ)f(z)

]′
Ik+1
c (λ, µ)g(z)

=

[
Ik+1
c (λ, µ)zf ′(z)

]
Ik+1
c (λ, µ)g(z)

=
(1− λ+ c)Ikc (λ, µ)zf ′(z) + λz

[
Ikc (λ, µ)zf ′(z)

]′
(1− λ+ c)Ikc (λ, µ)g(z) + λz [Ikc (λ, µ)g(z)]′

=

(1−λ+c)Ikc (λ,µ)zf ′(z)
Ikc (λ,µ)g(z)

+
λz[Ikc (λ,µ)zf ′(z)]

′

Ikc (λ,µ)g(z)

(1− λ+ c) +
λz[Ikc (λ,µ)g(z)]

′

Ikc (λ,µ)g(z)

=
(1− λ+ c)p(z) + λ [p(z)q(z) + p′(z)]

(1− λ+ c) + λq(z)

= p(z) +
zp′(z)

q(z) + (1−λ+c)
λ

≺ ψ(z).

Since q(z) ≺ φ(z) and Re{1−λ+c
λ
} > 0, Re{q(z) + (1−λ+c)

λ
} > 0. Using Lemma

3.4, we conclude that p(z) ≺ ψ(z) and thus f ∈ Kk
c (λ, µ;φ, ψ). By using a similar

manner and (3.7), we obtain the second result.

3.5.2 Inclusion properties involving Fcf

In this section, we determine properties of Bernardi operator and satisfies the fol-

lowing:

cIkc (λ, µ)Fc[f(z)] + z
[
Ikc (λ, µ)Fc[f(z)]

]′
= (c+ 1)Ikc (λ, µ)f(z). (3.13)

Theorem 3.20. If f ∈ Skc (λ, µ;φ) then Fcf ∈ Skc (λ, µ;φ).
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Proof. Let f ∈ Skc (λ, µ;φ) then
z[Ikc (λ,µ)f(z)]

′

Ikc (λ,µ)f(z)
≺ φ(z).

Taking the differentiation on both sides of (3.13) and multiplying by z, we obtain

z
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)f(z)

=
z
[
Ikc (λ, µ)Fc[f(z)]

]′
Ikc (λ, µ)Fc[f(z)]

+

z

(
z[Ikc (λ,µ)Fc[f(z)]]

′

Ikc (λ,µ)Fc[f(z)]

)′
z[Ikc (λ,µ)Fc[f(z)]]

′

Ikc (λ,µ)Fc[f(z)]
+ c

.

Setting p(z) =
z[Ikc (λ,µ)Fc[f(z)]]

′

Ikc (λ,µ)Fc[f(z)]
, we have

z
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)f(z)

= p(z) +
zp′(z)

p(z) + c
.

Lemma 3.2 implies
z[Ikc (λ,µ)Fc[f(z)]]

′

Ikc (λ,µ)Fc[f(z)]
≺ φ(z). Hence Fcf ∈ Skc (λ, µ;φ).

Theorem 3.21. If f ∈ Ck
c (λ, µ;φ) then Fcf ∈ Ck

c (λ, µ;φ).

Proof. By using (3.8) and Theorem 3.20, we have

f ∈ Ck
c (λ, µ;φ)⇔ zf ′(z) ∈ Skc (λ, µ;φ)⇒ Fc[zf

′(z)] ∈ Skc (λ, µ;φ)

⇔ z [Fc[f(z)]]′ ∈ Skc (λ, µ;φ)⇔ Fc[f(z)] ∈ Ck
c (λ, µ;φ).

Theorem 3.22. If φ, ψ ∈ N and f ∈ Kk
c (λ, µ;φ, ψ) then Fcf ∈ Kk

c (λ, µ;φ, ψ).

Proof. Iff ∈ Kk
c (λ, µ;φ, ψ) then there exists function g ∈ Skc (λ, µ;φ) such that

z[Ikc (λ,µ)f(z)]
′

Ikc (λ,µ)g(z)
≺ ψ(z). Since g ∈ Skc (λ, µ;φ), from Theorem 3.20, Fc[f(z)] ∈ Skc (λ, µ;φ).

Then let

q(z) =
z
[
Ikc (λ, µ)Fc[g(z)]

]′
Ikc (λ, µ)Fc[g(z)]

≺ φ(z). (3.14)

Set

p(z) =
z
[
Ikc (λ, µ)Fc[f(z)]

]′
Ikc (λ, µ)Fc[g(z)]

. (3.15)
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By rearranging and differentiating (3.15), we obtain

[
Ikc (λ, µ)Fc[zf

′(z)]
]′

Ikc (λ, µ)Fc[g(z)]
=
p(z)

[
Ikc (λ, µ)Fc[g(z)]

]′
Ikc (λ, µ)Fc[g(z)]

+

[
Ikc (λ, µ)Fc[g(z)]

]
p′(z)

Ikc (λ, µ)Fc[g(z)]
.

Making use of (3.13), (3.15) and (3.14), it can be derived that

z
[
Ikc (λ, µ)f(z)

]′
Ikc (λ, µ)g(z)

= p(z) +
zp′(z)

c+ q(z)
.

Hence, applying Lemma 3.4 we conclude that p(z) ≺ ψ(z) and it follows that Fcf ∈

Kk
c (λ, µ;φ, ψ).
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CHAPTER 4

MULTIVALENT AND UNIVALENT HARMONIC FUNCTIONS

Ahuja and Jahangiri (2001) discussed and studied the class of multivalent harmonic

functions and multivalent harmonic functions starlike order γ, S∗H(p, γ), p ≥ 1

where 0 ≤ γ < 1. Since then, there are authors [see (Ahuja et al., 2009), (Jahangiri

et al., 2009), (Rosihan et al., 2009), (Subramanian et al., 2012) and (Sharma and

Khan, 2009)] introduced subclasses of multivalent harmonic functions using linear

operators. For univalent harmonic functions, new subclasses defined by linear opera-

tors were obtained by Dixit et al. (2009), Murugusundaramoorthy et al. (2009) and

Rosy et al. (2001). Furthermore, subclasses of univalent harmonic functions with

respect to symmetric points were studied by Murugusundaramoorty et al. (2011)

and Guney (2007). In this chapter, new subclasses of multivalent and univalent

harmonic functions starlike of order γ using certain operators are introduced. Prop-

erties of functions in these classes are studied. Generally, we determine the extremal

problems via coefficient conditions in all sections.

4.1 Multivalent harmonic functions defined by Dziok-Srivastava

operator

Al-Kharsani and Al-Khal (2007) introduced a class of univalent harmonic functions

starlike of order γ using the Dziok-Srivastava operator and studied some extremal

problems. Now, we define subclasses of multivalent harmonic functions starlike of

order γ using the same operator. We determine a sufficient condition bound, con-

volution condition, extreme points, convex combination and distortion bounds.
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First, we define the Dziok-Srivastava operator for multivalent harmonic functions

f = h+ ḡ given by (1.7) as follows:

H l,m
p [α1] f(z) = H l,m

p [α1]h(z) +H l,m
p [α1] g(z)

where

H l,m
p [α1]h(z) = zp+

∑∞
n=2 φnan+p−1z

n+p−1 , H l,m
p [α1] g(z) =

∑∞
n=1 φnbn+p−1z

n+p−1

and

φn =
(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1(n− 1)!
. (4.1)

α1, ..., αl, β1, ..., βm are positive real numbers such that l ≤ m+ 1.

Denote by S∗H(p, α1, γ), the class of multivalent harmonic functions satisfying

Re


z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

)
 ≥ pγ (4.2)

for p ≥ 1, 0 ≤ γ < 1, |z| = r < 1.

Note that S∗H(1, α1, γ) ≡ S∗H(α1, γ) is the class defined by Al-Kharsani and Al-Khal

(2007). In the case of l = m+ 1 and α2 = β1, . . . , αl = βm, S?H(p, 1, γ) ≡ S?H(p, γ)

is investigated in Ahuja and Jahangiri (2001) and S?H(1, 1, γ) ≡ S?H(γ) is the class

introduced by Jahangiri (1999).

Further T ∗H(p, α1, γ), p ≥ 1 denotes the class of functions f = h+ḡ ∈ S∗H(p, α1, γ)

where h and g are functions of the form

h(z) = zp −
∞∑
n=2

|an+p−1|zn+p−1 , g(z) =
∞∑
n=1

|bn+p−1|zn+p−1. (4.3)
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Necessary coefficient conditions for the harmonic starlike functions and harmonic

convex functions can be found in Clunie and Sheil-Small (1984) and Sheil-Small

(1990). Now we derive sufficient coefficient bound for the class S∗H(p, α1, γ).

Theorem 4.1. Let f = h+ḡ be given by (1.7) and
∏l

i=1 (αi)n−1 ≥
∏m

j=1 (βj)n−1 (n−

1)!. If

∞∑
n=2

{
n+ p (1− γ)− 1

p (1− γ)
|an+p−1|+

n+ p (1 + γ)− 1

p (1− γ)
|bn+p−1|

}
|φn| ≤ 1− 1 + γ

1− γ
|bp|

(4.4)

where |bp| < 1−γ
1+γ

, 0 ≤ γ < 1 and φn is given by (4.1) then the harmonic function

f is orientation preserving in D and f ∈ S∗H(p, α1, γ).

Proof. The inequality |h′(z)| ≥ |g′(z)| is enough to show that f is orientation pre-

serving. Note that

|h′(z)| ≥ p |z|p−1 −
∞∑
n=2

(n+ p− 1)|an+p−1||z|n+p−2

= p|z|p−1

{
1−

∞∑
n=2

(n+ p− 1)

p
|an+p−1||z|n−1

}

≥ p|z|p−1

{
1−

∞∑
n=2

(n+ p− 1)

p
|an+p−1|

}

≥ |z|p−1

{
1−

∞∑
n=2

(n+ p (1− γ)− 1)

p (1− γ)
|φn||an+p−1|

}
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By the hypothesis, since |φn| ≥ 1 and by (4.4),

|h′(z)| ≥ |z|p−1

{
1 + γ

1− γ
|bp|+

∞∑
n=2

(n+ p (1 + γ)− 1)

p (1− γ)
|φn||bn+p−1|

}

= |z|p−1

{
∞∑
n=1

(n+ p (1 + γ)− 1)

p (1− γ)
|φn||bn+p−1|

}

≥ |z|p−1

{
∞∑
n=1

(n+ p− 1)|bn+p−1|

}

≥ |z|p−1

{
∞∑
n=1

(n+ p− 1)|bn+p−1||z|n−1

}

=
∞∑
n=1

(n+ p− 1)|bn+p−1||z|n+p−2

= |g′(z)|.

Thus, f is orientation preserving in D.

Next, we prove f ∈ S∗H(p, α1, γ) by establishing the equation (4.2). First, let

w(z) =
z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) =
A(z)

B(z)

where

A(z) = z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
B(z) =

(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

)
.
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Now

|A(z) + p (1− γ)B(z)| − |A(z)− p (1 + γ)B(z)|

≥ (2p− pγ)|zp| −
∞∑
n=2

(n+ 2p− pγ − 1)|φnan+p−1z
n+p−1|

−
∞∑
n=1

(n+ pγ − 1)|φnbn+p−1zn+p−1| − pγ|zp|

−
∞∑
n=2

(n− pγ − 1)|φnan+p−1z
n+p−1|

−
∞∑
n=1

(n+ 2p+ pγ − 1)|φnbn+p−1zn+p−1|

= 2p (1− γ)|zp| −
∞∑
n=2

(2n+ 2p− 2pγ − 2)|φn||an+p−1||zn+p−1|

−
∞∑
n=1

(2n+ 2p+ 2pγ − 2)|φn||bn+p−1||zn+p−1|

= 2p (1− γ)|zp|{
1−

∞∑
n=2

(n+ p− pγ − 1)

p (1− γ)
|φn||an+p−1||zn−1| −

∞∑
n=1

(n+ p+ pγ − 1)

p (1− γ)
|φn||bn+p−1||zn−1|

}

≥ 2p (1− γ)|zp|{
1−

∞∑
n=2

(n+ p− pγ − 1)

p (1− γ)
|φn||an+p−1| −

∞∑
n=1

(n+ p+ pγ − 1)

p (1− γ)
|φn||bn+p−1|

}

= 2p (1− γ)|zp|{
1− 1 + γ

1− γ
|bp| −

(
∞∑
n=2

[
(n+ p− pγ − 1)

p (1− γ)
|an+p−1|+

(n+ p+ pγ − 1)

p (1− γ)
|bn+p−1|

]
|φn|

)}

The last expression is non-negative by (4.4). Since Re w ≥ pγ if and only if |A(z) +

p (1− γ)B(z)| ≥ |A(z)− p (1 + γ)B(z)|, f ∈ S∗H(p, α1, γ).
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For
∑∞

n=1 (|xn+p−1|+ |ȳn+p−1|) = 1 and xp = 0, the function

f1(z) = zp +
∞∑
n=2

p (1− γ)

[n+ p(1− γ)− 1]|φn|
xn+p−1z

n+p−1+

∞∑
n=1

p(1− γ)

[n+ p(1 + γ)− 1]|φn|
ȳn+p−1z̄

n+p−1 (4.5)

shows equality in the coefficient bound given by (4.4) is attained. For the function

f1 defined in (4.5) the coefficients are

an+p−1 = p (1−γ)
[n+p(1−γ)−1]|φn|xn+p−1 and bn+p−1 = p(1−γ)

[n+p(1+γ)−1]|φn| ȳn+p−1,

and since the equation (4.4) holds, this implies f1 ∈ S∗H(p, α1, γ).

To show that the converse need not be true, consider the function

f(z) = zp +
p(1− γ)

[1 + p(1− γ)]φ2

zp+1 +
γ − 1

2(1 + γ)
z̄p.

It can be shown that

Re


z
[
zp + p(1−γ)

[1+p(1−γ)]
zp+1

]′
− z̄

[
(γ−1)
2(1+γ)

z̄p
]′

zp + p(1−γ)
[1+p(1−γ)]

zp+1 + (γ−1)
2(1+γ)

z̄p

 ≥ pγ

(p ≥ 1, 0 ≤ γ < 1)

thus f ∈ S∗p(p, α1, γ) but

∞∑
n=2

n+ p(1− γ)− 1

p(1− γ)
|an+p−1||φn|+

∞∑
n=1

n+ p(1 + γ)− 1

p(1− γ)
|bn+p−1||φn|

= 1+p(1−γ)
p(1−γ)

∣∣∣ p(1−γ)
[1+p(1−γ)]φ2

∣∣∣ |φ2|+ 1+γ
1−γ

∣∣∣ γ−1
2(1+γ)

∣∣∣ > 1.

The next result provides a convolution condition for f to be in the class S∗H(p, α1, γ).

Theorem 4.2. f ∈ S∗H(p, α1, γ) if and only if

H l,m
p [α1]h(z) ∗

[
2p(1− γ)zp + (ξ − 2p+ 2pγ + 1)zp+1

(1− z)2

]

− H l,m
p [α1] g(z)∗

[
2p(ξ + γ)z̄p + (ξ − 2pξ − 2pγ + 1)z̄p+1

(1− z̄)2

]
6= 0, |ξ| = 1, z ∈ D.
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Proof. A necessary and sufficient condition for f ∈ S∗H(p, α1, γ) is given by (4.2)

and we have

Re

 1

p(1− γ)

z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ


 ≥ 0.

Since

1

p(1− γ)

z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ


= 1

at z = 0, the above required condition is equivalent to

1

p(1− γ)

z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ

 6= ξ − 1

ξ + 1
, (4.6)

|ξ| = 1, ξ 6= −1, 0 < |z| < 1.

Simple algebraic manipulation in (4.6) yields

0 6= (ξ + 1)

{
z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
− pγH l,m

p [α1]h(z)− pγH l,m
p [α1] g(z)

}
− (ξ − 1)p(1− γ)H l,m

p [α1]h(z)− (ξ − 1)p(1− γ)H l,m
p [α1] g(z)

= H l,m
p [α1]h(z) ∗

{
(ξ + 1)

(
zp

(1− z)2
− (1− p)zp

(1− z)

)
− (2pγ + pξ − p)zp

(1− z)

}

− H l,m
p [α1] g(z) ∗

{
(ξ̄ + 1)

(
zp

(1− z)2
− (1− p)zp

(1− z)

)
+

(2pγ + pξ̄ − p)zp
(1− z)

}
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= H l,m
p [α1]h(z) ∗

[
2p(1− γ)zp + (ξ − 2p+ 2pγ + 1)zp+1

(1− z)2

]
− H l,m

p [α1] g(z) ∗
[

2p(ξ + γ)z̄p + (ξ − 2pξ − 2pγ + 1)z̄p+1

(1− z̄)2

]
.

The coefficient bound for the class T ∗H(p, α1, γ) is determined in the following

theorem. Furthermore, we use the coefficient condition to obtain extreme points,

convex combination and distortion upper and lower bounds.

Theorem 4.3. Let f = h + ḡ be given by (4.3). Then f ∈ T ∗H(p, α1, γ) if and only

if

∞∑
n=2

{
n+ p (1− γ)− 1

p (1− γ)
|an+p−1|+

n+ p (1 + γ)− 1

p (1− γ)
|bn+p−1|

}
|φn| ≤ 1− 1 + γ

1− γ
|bp|

(4.7)

where |bp| < 1−γ
1+γ

, 0 ≤ γ < 1 and φn is given by (4.1).

Proof. Since T ?H(p, α1, γ) ⊂ S?H(p, α1, γ), sufficiency part follows from Theorem 4.1.

To prove the necessity part, suppose that f ∈ T ?H(p, α1, γ). Then we obtain

Re

 1

p(1− γ)

z
(
H l,m
p [α1]h(z)

)′ − z (H l,m
p [α1] g(z)

)′
(
H l,m
p [α1]h(z)

)
+
(
H l,m
p [α1] g(z)

) − pγ




= Re

{
zp −

∑∞
n=2

(n+p(1−γ)−1)
p(1−γ)

|an+p−1|φnzn+p−1 −
∑∞

n=1
n+p(1+γ)−1)

p(1−γ)
|b̄n+p−1|φ̄nz̄n+p−1

zp −
∑∞

n=2 |an+p−1|φnzn+p−1 +
∑∞

n=1 |b̄n+p−1|φ̄nz̄n+p−1

}
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≥ 0

The condition must hold for all values of z, |z| = r < 1. Choosing the values of z on

the positive specific values, 0 ≤ z = r < 1 , and φn is real, we have

1−
(∑∞

n=2
(n+p(1−γ)−1)

p(1−γ)
|an+p−1|φnrn−1 +

∑∞
n=1

n+p(1+γ)−1)
p(1−γ)

|bn+p−1|φnrn−1
)

1−
∑∞

n=2 |an+p−1|φnrn−1 +
∑∞

n=1 |bn+p−1|φnrn−1
≥ 0

(4.8)

Letting r → 1− and if the condition (4.7) does not hold, then the numerator in

(4.8) is negative. There exists a z0 = r0 ∈ (0, 1) such that (4.8) is negative and this

contradicts the required condition for f ∈ T ∗H(p, α1, γ).

Let clco T ∗H(p, α1, γ) denotes the closed convex hull of T ∗H(p, α1, γ). Now we

determine the extreme points of clco T ∗H(p, α1, γ).

Theorem 4.4. Let f be given by (4.3). Then f ∈ clco T ∗H(p, α1, γ) if and only if f

can be expressed in the form

f =
∞∑
n=1

(Xn+p−1hn+p−1 + Yn+p−1gn+p−1) (4.9)

where

hp = zp, hn+p−1(z) = zp − p(1− γ)

[n+ p(1− γ)− 1]|φn|
zn+p−1 (n = 2, 3, ...),

gn+p−1(z) = zp +
p(1− γ)

[n+ p(1 + γ)− 1]|φn|
z̄n+p−1 (n = 1, 2, 3, ...),

φn is given by (4.1) and
∑∞

n=1 (Xn+p−1 + Yn+p−1) = 1, with Xn+p−1 ≥ 0, Yn+p−1 ≥ 0.

In particular, the extreme points of T ∗H(p, α1, γ) are hn+p−1 and gn+p−1.
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Proof. Let f be of the form (4.9). Then we have

f(z) = Xphp +
∞∑
n=2

Xn+p−1

(
zp − p(1− γ)

[n+ p(1− γ)− 1] |φn|
zn+p−1

)

+
∞∑
n=1

Yn+p−1

(
zp +

p(1− γ)

[n+ p(1 + γ)− 1] |φn|
z̄n+p−1

)

f(z) = zp −
∞∑
n=2

p(1− γ)

[n+ p(1− γ)− 1] |φn|
Xn+p−1z

n+p−1

+
∞∑
n=1

p(1− γ)

[n+ p(1 + γ)− 1] |φn|
Yn+p−1z̄

n+p−1.

Furthermore, let

|an+p−1| = p(1−γ)
[n+p(1−γ)−1]|φn|Xn+p−1 and |bn+p−1| = p(1−γ)

[n+p(1+γ)−1]|φn|Yn+p−1.

Then

∞∑
n=2

[n+ p (1− γ)− 1] |φn|
p (1− γ)

|an+p−1|+
∞∑
n=1

[n+ p (1 + γ)− 1] |φn|
p (1− γ)

|bn+p−1|

=
∞∑
n=2

[n+ p (1− γ)− 1] |φn|
p (1− γ)

(
p(1− γ)

[n+ p(1− γ)− 1] |φn|
Xn+p−1

)

+
∞∑
n=1

[n+ p (1 + γ)− 1] |φn|
p (1− γ)

(
p(1− γ)

[n+ p(1 + γ)− 1] |φn|
Yn+p−1

)

=
∞∑
n=2

Xn+p−1 +
∞∑
n=1

Yn+p−1

= 1−Xp ≤ 1.

Thus f ∈ clco T ∗H(p, α1, γ).

Conversely, suppose that f ∈ clco T ∗H(p, α1, γ). Set

Xn+p−1 =
[n+ p (1− γ)− 1]|φn||an+p−1|

p (1− γ)
(n = 2, 3, ...),
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Yn+p−1 =
[n+ p (1 + γ)− 1]|φn||bn+p−1|

p (1− γ)
(n = 1, 2, ...),

and define Xp = 1−
∑∞

n=2Xn+p−1 −
∑∞

n=1 Yn+p−1. Then

f(z) = zp −
∞∑
n=2

|an+p−1|zn+p−1 +
∞∑
n=1

|bn+p−1|z̄n+p−1

= zp −
∞∑
n=2

p (1− γ)Xn+p−1

[n+ p (1− γ)− 1]|φn|
zn+p−1

+
∞∑
n=1

p (1− γ)Yn+p−1

[n+ p (1 + γ)− 1]|φn|
z̄n+p−1

= Xpz
p +

∞∑
n=2

Xn+p−1

(
zp − p (1− γ)

[n+ p (1− γ)− 1]|φn|
zn+p−1

)

+
∞∑
n=1

Yn+p−1

(
zp +

p (1− γ)

[n+ p (1 + γ)− 1]|φn|
z̄n+p−1

)

=
∞∑
n=1

(Xn+p−1hn+p−1 + Yn+p−1gn+p−1)

as required.

Theorem 4.5. The class T ∗H(p, α1, γ) is closed under convex combination.

Proof. For i = 1, 2, 3, ..., suppose that fi(z) ∈ T ∗H(p, α1, γ) where fi is given by

fi(z) = zp −
∞∑
n=2

|ain+p−1|zn+p−1 +
∞∑
n=1

|bin+p−1 |z̄n+p−1

By Theorem 4.3,

∞∑
n=2

n+ p (1− γ)− 1

p (1− γ)
|φn||ain+p−1|+

∞∑
n=1

n+ p (1 + γ)− 1

p (1− γ)
|φn||bin+p−1| ≤ 1. (4.10)

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = zp −
∞∑
n=2

(
∞∑
i=1

ti|ain+p−1|zn+p−1

)
+
∞∑
n=1

(
∞∑
i=1

ti|bin+p−1|z̄n+p−1

)
.
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Then, by (4.10)

∞∑
n=2

(
[n+ p (1− γ)− 1]|φn|

p (1− γ)

)(∣∣∣∣∣
∞∑
i=1

ti|ain+p−1|

∣∣∣∣∣
)

+
∞∑
n=1

(
[n+ p (1 + γ)− 1]|φn|

p (1− γ)

)(∣∣∣∣∣
∞∑
i=1

ti|bin+p−1|

∣∣∣∣∣
)

=
∞∑
i=1

ti{
∞∑
n=2

[n+ p (1− γ)− 1]|φn|
p (1− γ)

|ain+p−1|+
∞∑
n=1

[n+ p (1 + γ)− 1]]|φn|
p (1− γ)

|bin+p−1|

}

≤
∞∑
i=1

ti (1) = 1.

Hence,
∑∞

i=1 tifi(z) ∈ T ∗H(p, α1, γ).

In the last theorem below we give distortion inequalities for f in the class

T ∗H(p, α1, γ).

Theorem 4.6. If f ∈ T ∗H(p, α1, γ) with φn ≥ φ2, then for |z| = r < 1,

|f(z)| ≤ (1 + |bp|) rp + rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}
and

|f(z)| ≥ (1− |bp|) rp − rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}
.

Proof. Since

p (1− γ) + 1

p (1− γ)
|φ2|

∞∑
n=2

(|an+p−1|+ |bn+p−1|)

≤
∞∑
n=2

n+ p (1− γ)− 1

p (1− γ)
(|an+p−1|+ |bn+p−1|) |φn|

≤
∞∑
n=2

(
n+ p (1− γ)− 1

p (1− γ)
|an+p−1|+

n+ p (1 + γ)− 1

p (1− γ)
|bn+p−1|

)
|φn|,

the result of Theorem 4.3 gives

∞∑
n=2

(|an+p−1|+ |bn+p−1|) ≤
p (1− γ)

[p (1− γ) + 1]|φ2|

{
1− 1 + γ

1− γ
|bp|
}
. (4.11)
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Next, again since f ∈ T ∗H(p, α1, γ), we have from (4.11) and |z| = r that

|f(z)| =

∣∣∣∣∣zp −
∞∑
n=2

|an+p−1|zn+p−1 +
∞∑
n=1

|bn+p−1|z̄n+p−1

∣∣∣∣∣
≤ |zp|+

∞∑
n=2

|an+p−1| |z|n+p−1 +
∞∑
n=1

|bn+p−1| |z̄|n+p−1

= rp +
∞∑
n=2

|an+p−1|rn+p−1 +
∞∑
n=1

|bn+p−1|rn+p−1

≤ (1 + |bp|)rp +

(
∞∑
n=2

(|an+p−1|+ |bn+p−1|)

)
rp+1

≤ (1 + |bp|)rp + rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}

which gives the first result.

In a similar manner, we obtain the following lower bound.

|f(z)| ≥ rp −
∞∑
n=2

|an+p−1|rn+p−1 −
∞∑
n=1

|bn+p−1|rn+p−1

= (1− |bp|)rp −
∞∑
n=2

(|an+p−1|+ |bn+p−1|) rn+p−1

≥ (1− |bp|)rp − rp+1

{
p (1− γ)

[p (1− γ) + 1]|φ2|
− p (1 + γ)|bp|

[p (1− γ) + 1]|φ2|

}
.

4.2 Subclasses of univalent harmonic functions

In 1983, Sǎlǎgean introduced an operatorDkf(z) = z+
∑∞

n=2 n
kanz

n, k = 0, 1, 2, . . ..

Then, Al-Oboudi (2004) derived the generalised Sǎlǎgean operator as:

Dk
λf(z) = z +

∞∑
n=2

[1 + (n− 1)λ]k anz
n

where λ ≥ 0, k ∈ N0 = {0, 1, 2, . . .} and f(z) = z +
∑∞

n=2 anz
n.
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Combining the generalised hypergeometric functions and the generalised Sǎlǎgean

operator, we establish the operator Hk
λ defined as below:

Hk
λ(α1, . . . , αl; β1, . . . , βm; z) = zlFm(α1, . . . , αl; β1, . . . , βm; z) ∗Dk

λf(z)

= z +
∞∑
n=2

Φk
n,λanz

n

where

Φk
n,λ =

[1 + (n− 1)λ]k (α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1(n− 1)!
, (4.12)

α1, ..., αl, β1, ..., βm are positive real numbers such that l ≤ m + 1. For convenience

we write Hk
λ(α1, . . . , αl; β1, . . . , βm; z) = Hk

λf(z).

Observe that when k = 0, the linear operator Hk
λf(z) reduces to the Dziok-Srivastava

operator (Dziok and Srivastava, 1999) which includes well known operators such as

the Hohlov operator (Hohlov, 1978), Carlson-Shaffer operator (Carlson and Shaffer,

1984), Ruscheweyh derivative operator (Ruscheweyh, 1975b) and the generalised

Bernadi-Libera-Livington integral operator (Bernadi, 1969), (Libera, 1965), (Liv-

ington, 1966).

Also for the case k = 0, Hk
λ(1, 2;µ + 1) ≡ Iµf(z)[Noor operator (Noor, 1999)],

Hk
λ(1, ζ;µ + 1) ≡ Iµ,ζf(z)[Choi-Saigo-Srivastava operator (Choi et al., 2002)] and

Hk
λ(µ, 1, β1, . . . , βm;α1, . . . , αl) ≡ H l,m

µ [α1] f(z)[Kwon-Cho operator (Kwon and Cho,

2007)].

Furthermore, in the case α2 = β1, . . . , αl = βm, the operator Hk
λf(z) reduces to the

Sǎlǎgean operator (λ = α1 = 1) (Salagean, 1983), generalising Sǎlǎgean operator

(α1 = 1) (Al-Oboudi, 2004) and Ruscheweyh derivative operator (k = 1, α1 = µ+1)
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(Maslina and Al-Shaqsi, 2006).

The operator Hk
λf(z) for harmonic functions f = h+ ḡ given by (1.5) is defined

as

Hk
λf(z) = Hk

λh(z) + Hk
λg(z)

where Hk
λh(z) = z +

∑∞
n=2 Φk

n,λanz
n and Hk

λg(z) =
∑∞

n=1 Φk
n,λbnz

n.

Two classes using the operator Hk
λf are introduced. For 0 ≤ γ < 1, λ ≥ 0, let

S?H(λ, k, α1, γ) denote the class of univalent harmonic functions starlike of order γ

satisfying

Re

{
z
(
Hk
λf(z)

)′
Hk
λf(z)

}
= Re

z
(
Hk
λh(z)

)′ − z (Hk
λg(z)

)′
Hk
λh(z) + Hk

λg(z)

 ≥ γ

where
[
Hk
λf(z)

]′
= ∂

∂θ

[
Hk
λf(reiθ)

]
.

Further denote T ?H(λ, k, α1, γ) as the class of functions f = h+ḡ ∈ S?H(λ, k, α1, γ)

such that h and g are of the form

h(z) = z −
∞∑
n=2

|an|zn , g(z) =
∞∑
n=1

|bn|zn. (4.13)

Theorem 4.7. If f is of the form (1.5) and

[1 + (n− 1)λ]k
l∏

i=1

(αi)n−1 ≥
m∏
j=1

(βj)n−1 (n− 1)!.

If

∞∑
n=2

{
n− γ
1− γ

|an|+
n+ γ

1− γ
|bn|
}
|Φk

n,λ| ≤ 1− 1 + γ

1− γ
|b1| (4.14)

where |b1| < 1−γ
1+γ

, 0 ≤ γ < 1 and Φk
n,λ is given by (4.12),

then the harmonic function f is orientation preserving in D and f ∈ S?H(λ, k, α1, γ).
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Proof. By differentiation of h and the hypothesis of the theorem, |Φk
n,λ| ≥ 1, we

obtain

|h′(z)| =

∣∣∣∣∣1 +
∞∑
n=2

nanz
n−1

∣∣∣∣∣
≥ 1−

∞∑
n=2

n|an||z|n−1

≥ 1−
∞∑
n=2

n− γ
1− γ

|an||Φk
n,λ|

≥
∞∑
n=2

n+ γ

1− γ
|bn||Φk

n,λ|

≥
∞∑
n=1

nbnz
n−1

= |g′(z)|

which implies f is orientation preserving in D.

To prove f ∈ S?H(λ, k, α1, γ), let

w =
z
(
Hk
λh(z)

)′ − z (Hk
λg(z)

)′
Hk
λh(z) + Hk

λg(z)
=
A(z)

B(z)
,

where

A(z) = z +
∞∑
n=2

nΦk
n,λanz

n −
∞∑
n=1

nΦk
n,λbnz

n

and

B(z) = z +
∞∑
n=2

Φk
n,λanz

n +
∞∑
n=1

Φk
n,λbnz

n.

Notice that Re w ≥ γ if and only if |A(z) + (1 − γ)B(z)| ≥ |A(z) − (1 + γ)B(z)|.

Thus
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|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (2− γ)|z| −
∞∑
n=2

(n+ 1− γ)|Φk
n,λ||an||zn| −

∞∑
n=1

(n− 1 + γ)|Φk
n,λ||bn||zn| − γ|z|

−
∞∑
n=2

(n− 1− γ)|Φk
n,λ||an||zn| −

∞∑
n=1

(n+ 1 + γ)|Φk
n,λ||bn||zn|

= 2(1− γ)|z| −
∞∑
n=2

(2n− 2γ)|Φk
n,λ||an||zn| −

∞∑
n=1

(2n+ 2γ)|Φk
n,λ||bn||zn|

= 2(1−γ)|z|−
∞∑
n=2

2(n− γ)(1− γ)

1− γ
|Φk

n,λ||an||zn|−
∞∑
n=1

2(n+ γ)(1− γ)

1− γ
|Φk

n,λ||bn||zn|

= 2(1− γ)|z|

{
1−

∞∑
n=2

n− γ
1− γ

|Φk
n,λ||an||zn−1| −

∞∑
n=1

n+ γ

1− γ
|Φk

n,λ||bn||zn−1|

}

≥ 2(1− γ)|z|

{
1−

∞∑
n=2

n− γ
1− γ

|Φk
n,λ||an| −

∞∑
n=1

n+ γ

1− γ
|Φk

n,λ||bn|

}

= 2(1− γ)|z|

{
1− 1 + γ

1− γ
|b1| −

∞∑
n=2

(
n− γ
1− γ

|an|+
n+ γ

1− γ
|bn|
)
|Φk

n,λ|

}

This last expression is non-negative by (4.14), and thus f ∈ S?H(λ, k, α1, γ).

The result on distortion bounds for f in the class S?H(λ, k, α1, γ) is given in the

following theorem.

Theorem 4.8. If f ∈ S?H(λ, k, α1, γ) with Φk
n,λ ≥ Φk

2,λ then for |z| = r < 1,

|f(z)| ≤ (1 + |b1|) r + r2

{
1− γ

(2− γ)|Φk
2,λ|
− (1 + γ)|b1|

(2− γ)|Φk
2,λ|

}

and

|f(z)| ≥ (1− |b1|) r − r2

{
1− γ

(2− γ)|Φk
2,λ|
− (1 + γ)|b1|

(2− γ)|Φk
2,λ|

}
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Proof. Since

2− γ
1− γ

∞∑
n=2

(|an|+ |bn|) |Φk
2,λ| ≤

∞∑
n=2

n− γ
1− γ

(|an|+ |bn|) |Φk
n,λ|

≤
∞∑
n=2

n− γ
1− γ

|an||Φk
n,λ|+

n+ γ

1− γ
|bn||Φk

n,λ|

≤
{

1− 1 + γ

1− γ
|b1|
}
,

for 0 < |z| = r < 1, we prove the result by considering the above inequality.

|f(z)| =

∣∣∣∣∣z +
∞∑
n=2

|an|zn +
∞∑
n=1

|bn|z̄n
∣∣∣∣∣

≤ |z|+
∞∑
n=2

|an| |z|n +
∞∑
n=1

|bn| |z̄|n

= (1 + |b1|)|z|+
∞∑
n=2

(|an|+ |bn|) |z|n

≤ (1 + |b1|)|z|+
∞∑
n=2

(|an|+ |bn|) |z|2

= (1 + |b1|)r + r2

{
∞∑
n=2

(|an|+ |bn|)

}

≤ (1 + |b1|)r + r2

{
1− γ

(2− γ)|Φk
2,λ|
− 1 + γ

(2− γ)|Φk
2,λ|
|b1|

}
.

The lower bound of f can be derived using a similar manner.

|f(z)| ≥ |z| −
∞∑
n=2

|an| |z|n −
∞∑
n=1

|bn| |z|n

≥ (1− |b1|)|z| −
∞∑
n=2

(|an|+ |bn|) |z|2

≥ (1− |b1|)r − r2

{
1− γ

(2− γ)|Φk
2,λ|
− 1 + γ

(2− γ)|Φk
2,λ|
|b1|

}
.

Next, we prove the hypothesis in Theorem 4.7 is a necessary and sufficient con-

dition for f to be in the class T ?H(λ, k, α1, γ).
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Theorem 4.9. Let f = h+ ḡ be given by (4.13), f ∈ T ?H(λ, k, α1, γ) if and only if

∞∑
n=2

{
n− γ
1− γ

|an|+
n+ γ

1− γ
|bn|
}
|Φk

n,λ| ≤ 1− 1 + γ

1− γ
|b1| (4.15)

where |b1| < 1−γ
1+γ

, 0 ≤ γ < 1 and Φk
n,λ is given by (4.12).

Proof. In view of the fact that T ?H(λ, k, α1, γ) ⊂ S?H(λ, k, α1, γ), the ’if’ part follows

from Theorem 4.7. For ’only if’ part, assume that f ∈ T ?H(λ, k, α1, γ). Therefore,

we have

Re

z
(
Hk
λh(z)

)′ − z (Hk
λg(z)

)′
Hk
λh(z) + Hk

λg(z)
− γ



= Re

{
1

1− γ

(
z −

∑∞
n=2 nΦk

n,λ|an|zn −
∑∞

n=1 nΦk
n,λ|bn|zn

z −
∑∞

n=2 Φk
n,λ|an|zn +

∑∞
n=1 Φk

n,λ|bn|zn
− γ

)}

= Re

{
z −

∑∞
n=2

n−γ
1−γΦk

n,λ|an|zn −
∑∞

n=1
n+γ
1−γΦk

n,λ|bn|zn

z −
∑∞

n=2 Φk
n,λ|an|zn +

∑∞
n=1 Φk

n,λ|bn|zn

}

≥ 0.

The same condition as in previous case, the above inequality reduces to

1−
∑∞

n=2
n−γ
1−γΦk

n,λ|an|rn−1 −
∑∞

n=1
n+γ
1−γΦk

n,λ|bn|rn−1

1−
∑∞

n=2 Φk
n,λ|an|rn−1 +

∑∞
n=1 Φk

n,λ|bn|rn−1
≥ 0

and the result follows by letting r → 1− along real axis.

The following result gives extreme points of clco T ?H(λ, k, α1, γ) where

clco T ?H(λ, k, α1, γ) denotes the closed convex hull of T ∗H(λ, k, α1, γ).

Theorem 4.10. Let f = h+ ḡ be given by (4.13). Then f ∈ clco T ?H(λ, k, α1, γ) if

and only if f can be expressed in the form

f =
∞∑
n=1

(Xnhn + Yngn) (4.16)
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where

h1(z) = z, hn(z) = z − 1− γ
(n− γ)|Φk

n,λ|
zn (n = 2, 3, ...),

gn(z) = z +
1− γ

(n+ γ)|Φk
n,λ|

z̄n (n = 1, 2, 3, ...),

Φk
n,λ is given by (4.12) and

∑∞
n=1 (Xn + Yn) = 1, with Xn ≥ 0, Yn ≥ 0. In particular

the extreme points of T ?H(λ, k, α1, γ) are hn and gn.

Proof. Let f be of the form (4.16). Then we have

f(z) =
∞∑
n=1

(Xn + Yn) z −
∞∑
n=2

1− γ
(n− γ)|Φk

n,λ|
Xnz

n +
∞∑
n=1

1− γ
(n+ γ)|Φk

n,λ|
Ynz̄

n

= z −
∞∑
n=2

1− γ
(n− γ)|Φk

n,λ|
Xnz

n +
∞∑
n=1

1− γ
(n+ γ)|Φk

n,λ|
Ynz̄

n.

Furthermore, let |an| = 1−γ
(n−γ)|Φkn,λ|

Xn and |bn| = 1−γ
(n+γ)|Φkn,λ|

Yn.

Applying Theorem 4.9, gives

∞∑
n=2

(n− γ)|Φk
n,λ|

1− γ
|an|+

∞∑
n=1

(n+ γ)|Φk
n,λ|

1− γ
|bn|

=
∞∑
n=2

(n− γ)|Φk
n,λ|

1− γ
1− γ

(n− γ)|Φk
n,λ|

Xn

+
∞∑
n=1

(n+ γ)|Φk
n,λ|

1− γ
1− γ

(n+ γ)|Φk
n,λ|

Yn

=
∞∑
n=2

Xn +
∞∑
n=1

Yn

= 1−X1 ≤ 1.
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Thus f ∈ clco T ?H(λ, k, α1, γ).

Conversely, let f ∈ clco T ?H(λ, k, α1, γ). Setting

Xn =
(n− γ)|Φk

n,λ||an|
1− γ

(n = 2, 3, ...),

Yn =
(n+ γ)|Φk

n,λ||bn|
1− γ

(n = 1, 2, ...)

and define X1 = 1−
∑∞

n=2Xn −
∑∞

n=1 Yn.

Thus,

f(z) = z −
∞∑
n=2

|an|zn +
∞∑
n=1

|bn|z̄n

f(z) = z −
∞∑
n=2

(1− γ)Xn

(n− γ)|Φk
n,λ|

zn +
∞∑
n=1

(1− γ)Yn
(n+ γ)|Φk

n,λ|
z̄n

f(z) = X1z +
∞∑
n=2

Xn

{
z − (1− γ)zn

(n− γ)|Φk
n,λ|

}
+
∞∑
n=1

Yn

{
z +

(1− γ)z̄n

(n+ γ)|Φk
n,λ|

}

f(z) =
∑∞

n=1 (Xnhn + Yngn) as required.

Theorem 4.11. The class T ?H(λ, k, α1, γ) is closed under convex combination.

Proof. Suppose that for i = 1, 2, 3, ..., fi(z) ∈ T ?H(λ, α1, γ) where fi is given by

fi(z) = z −
∞∑
n=2

|an,i|zn +
∞∑
n=1

|bn,i|z̄n.

From Theorem 4.9,

∞∑
n=2

(
n− γ
1− γ

|Φk
n,λ||an,i|

)
+
∞∑
n=1

(
n+ γ

1− γ
|Φk

n,λ||bn,i|
)
≤ 1. (4.17)

For
∑∞

i=1 ti = 1 where ∀i, 0 ≤ ti ≤ 1, the convex combination of fi may be written

as

∞∑
i=1

tifi(z) = z −
∞∑
n=2

(
∞∑
i=1

ti|an,i|zn
)

+
∞∑
n=1

(
∞∑
i=1

ti|bn,i|z̄n
)
.
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Then, by (4.17)

∞∑
n=2

(
n− γ
1− γ

|Φk
n,λ|
)(∣∣∣∣∣

∞∑
i=1

ti|an,i|

∣∣∣∣∣
)

+
∞∑
n=1

(
n+ γ

1− γ
|Φk

n,λ|
)(∣∣∣∣∣

∞∑
i=1

ti|bn,i|

∣∣∣∣∣
)

=
∞∑
i=1

ti

{
∞∑
n=2

(
n− γ
1− γ

|Φk
n,λ||an,i|

)
+
∞∑
n=1

(
n+ γ

1− γ
|Φk

n,λ||bn,i|
)}

≤
∞∑
i=1

ti (1) = 1.

Hence,
∑∞

i=1 tifi(z) ∈ T ?H(λ, k, α1, γ).

4.3 Subclasses of harmonic functions with respect to symmetric points

The class of analytic univalent functions in the unit disk which are starlike with

respect to symmetrical points was first introduced by Sakaguchi (1959). Since then,

some authors [for examples see Guney (2007), Aini et al. (2008), Aini and Suzeini

(2009) and Murugusundaramoorthy et al. (2011)] have studied the classes of har-

monic starlike and convex functions with respect to symmetrical points motivated by

Jahangiri (1999) and Ahuja and Jahangiri (2004). In (Ahuja and Jahangiri, 2004),

for 0 ≤ γ < 1, the authors introduced the class S?HS(γ) which denote the class of

complex-valued, sense-preserving, harmonic univalent functions f of the form (1.5)

and satisfying condition

Im

{
2 ∂
∂θ
f(reiθ)

f(reiθ)− f(−reiθ)

}
= Re

2
[
zh′(z)− zg′(z)

]
h(z) + g(z)

 ≥ γ.

Using the operator Hk
λf defined in section 4.2 and for 0 ≤ γ < 1, S?HS(λ, k, α1, γ)

denote the class of harmonic univalent functions starlike of order γ with respect to
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symmetric points. The function f ∈ S?HS(λ, k, α1, γ) is satisfying

Re

{
2z
[
Hk
λf(z)

]′[
Hk
λf(z)−Hk

λf(−z)
]}

= Re

 2
[
z
(
Hk
λh(z)

)′ − z (Hk
λg(z)

)′]([
Hk
λh(z)−Hk

λh(−z)
]

+
[
Hk
λg(z)−Hk

λg(−z)
])
 ≥ γ (4.18)

where
[
Hk
λf(z)

]′
= ∂

∂θ

[
Hk
λf(reiθ)

]
.

Further denote T ?HS(λ, k, α1, γ) as the class of functions f = h+ḡ ∈ S?HS(λ, k, α1, γ)

such that h and g are of the form (4.13).

Theorem 4.12. Let f = h+ ḡ be given by (1.5) and [1 + (n− 1)λ]k
∏l

i=1(αi)n−1 ≥∏m
j=1(βj)n−1(n− 1)!. If

∞∑
n=2

{
2n− γ [1− (−1)n]

2 (1− γ)
|an|+

2n+ γ [1− (−1)n]

2 (1− γ)
|bn|
}
|Φk

n,λ| ≤ 1− 1 + γ

1− γ
|b1|

(4.19)

where |b1| < 1−γ
1+γ

, 0 ≤ γ < 1 and Φk
n,λ is given by (4.12) then the harmonic function

f is orientation preserving in D and f ∈ S?HS(λ, k, α1, γ).

Proof. To verify that f is orientation preserving, we show |h′(z)| ≥ |g′(z)|.

|h′(z)| = |1 +
∞∑
n=2

nanz
n−1|

≥ 1− |
∞∑
n=2

n|an||z|n−1

≥ 1−
∞∑
n=2

n|an|.
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By the hypothesis of the theorem, |Φk
n,λ| ≥ 1 and by (4.19) give

≥ 1−
∞∑
n=2

2n− γ[1− (−1)n]

2 (1− γ)
|Φk

n,λ||an|

≥
∞∑
n=1

2n+ γ[1− (−1)n]

2 (1− γ)
|Φk

n,λ||bn|

≥
∞∑
n=1

n|bn|

≥
∞∑
n=1

n|bn||z|n−1

= |g′(z)|.

Thus, f is orientation preserving in D.

Next, we prove f ∈ S?HS(λ, k, α1, γ). It suffices to show that the condition (4.18) is

satisfied. Then, let

w =
2
[
z
(
Hk
λh(z)

)′ − z (Hk
λg(z)

)′]([
Hk
λh(z)−Hk

λh(−z)
]

+
[
Hk
λg(z)−Hk

λg(−z)
]) =

A(z)

B(z)

where A(z) = 2z +
∑∞

n=2 2nΦk
n,λanz

n −
∑∞

n=1 2nΦk
n,λbnz

n ,

and B(z) = 2z +
∑∞

n=2[1− (−1)n]Φk
n,λanz

n +
∑∞

n=1[1− (−1)n]Φk
n,λbnz

n.

Since Re w ≥ γ if and only if |A(z) + (1− γ)B(z)| ≥ |A(z)− (1 + γ)B(z)|, thus the

result is achieved by showing |A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0.

Consider
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|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

≥ (4− 2γ)|z| −
∞∑
n=2

|Φk
n,λ||an||zn| (2n+ (1− γ)[1− (−1)n])

−
∞∑
n=1

|Φk
n,λ||bn||zn| (2n− (1− γ)[1− (−1)n])− 2γ|z|

−
∞∑
n=2

|Φk
n,λ||an||zn| (2n− (1 + γ)[1− (−1)n])

−
∞∑
n=1

|Φk
n,λ||bn||zn| (2n+ (1 + γ)[1− (−1)n])

= 4(1− γ)|z| −
∞∑
n=2

|Φk
n,λ||an||zn|(4n− 2γ[1− (−1)n])

−
∞∑
n=1

|Φk
n,λ||bn||zn|(4n+ 2γ[1− (−1)n])

≥ 4(1− γ)|z|{
1−

∞∑
n=2

|Φk
n,λ||an|

(
2n− γ[1− (−1)n]

2(1− γ)

)
−
∞∑
n=1

|Φk
n,λ||bn|

(
2n+ γ[1− (−1)n]

2(1− γ)

)}

= 4(1− γ)|z|{
1− 1 + γ

1− γ
|b1| −

(
∞∑
n=2

[
2n− γ[1− (−1)n]

2(1− γ)
|an|+

2n+ γ[1− (−1)n]

2(1− γ)
|bn|
]
|Φk

n,λ|

)}
.

This last expression is non-negative by (4.19), and thus f ∈ S?HS(λ, k, α1, γ).

For
∑∞

n=2 |xn|+
∑∞

n=1 |ȳn| = 1, the functions

f1(z) = z+
∞∑
n=2

2 (1− γ)

(2n− γ[1− (−1)n])|Φk
n,λ|

xnz
n+

∞∑
n=1

2(1− γ)

(2n+ γ[1− (−1)n])|Φk
n,λ|

ȳnz̄
n

shows the equality in the coefficient bound given by (4.19) is attained.

The following result proves the hypothesis in Theorem 4.12 is a necessary and

sufficient condition for f to be in the class T ?HS(λ, k, α1, γ).
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Theorem 4.13. Let f = h + ḡ be given by (4.13), f ∈ T ?HS(λ, k, α1, γ) if and only

if

∞∑
n=2

{
2n− γ [1− (−1)n]

2 (1− γ)
|an|+

2n+ γ [1− (−1)n]

2 (1− γ)
|bn|
}
|Φk

n,λ| ≤ 1− 1 + γ

1− γ
|b1|

(4.20)

where |b1| < 1−γ
1+γ

, 0 ≤ γ < 1 and Φk
n,λ is given by (4.12).

Proof. Since f ∈ T ?HS(λ, k, α1, γ) ⊂ S?HS(λ, k, α1, γ), sufficiency part follows from

Theorem 4.12. To prove the necessity part, assume that f ∈ T ?HS(λ, k, α1, γ). For

functions f of the form (4.13), the condition (4.18) is equivalent to

Re

 2
[
z
(
Hk
λh(z)

)′ − z (Hk
λg(z)

)′]([
Hk
λh(z)−Hk

λh(−z)
]

+
[
Hk
λg(z)−Hk

λg(−z)
]) − γ



= Re

{
2z −

∑∞
n=2 2nΦk

n,λanz
n −

∑∞
n=1 2nΦk

n,λbnz
n

2z −
∑∞

n=2 Φk
n,λanz

n[1− (−1)n] +
∑∞

n=1 Φk
n,λbnz

n[1− (−1)n]
− γ

}

≥ 0.

The condition should hold for all values of z, |z| = r < 1. Choosing the values of z

on the real positive axis, 0 ≤ z = r < 1 , and Φk
n,λ is real, we have

{
2(1− γ)−

∑∞
n=2 Φk

n,λanr
n−1 (2n− γ[1− (−1)n])

2−
∑∞

n=2 Φk
n,λanr

n−1[1− (−1)n] +
∑∞

n=1 Φk
n,λbnr

n−1[1− (−1)n]

}

−

{ ∑∞
n=1 Φk

n,λbnr
n−1 (2n+ γ[1− (−1)n])

2−
∑∞

n=2 Φk
n,λanr

n−1[1− (−1)n] +
∑∞

n=1 Φk
n,λbnr

n−1[1− (−1)n]

}
≥ 0. (4.21)

Letting r → 1− and if the condition (4.20) does not hold, then the numerator in

(4.21) is negative. Thus the coefficient bound inequality (4.21) holds true when

f ∈ T ∗H(p, k, α1, γ). This completes the proof of Theorem 4.13.
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Denote clco T ?HS(λ, k, α1, γ) as the closed convex hull of T ∗HS(λ, k, α1, γ). The

following result gives extreme points of clco T ?HS(λ, k, α1, γ).

Theorem 4.14. f = h+ ḡ ∈ clco T ?HS(λ, k, α1, γ) if and only if f can be expressed

in the form

f =
∞∑
n=1

(Xnhn + Yngn) (4.22)

where

h1(z) = z, hn(z) = z − 2(1− γ)

(2n− γ[1− (−1)n]) |Φk
n,λ|

zn (n = 2, 3, ...),

gn(z) = z +
2(1− γ)

(2n+ γ[1− (−1)n]) |Φk
n,λ|

z̄n (n = 1, 2, 3, ...),

Φk
n,λ is given by (4.12) and

∑∞
n=1 (Xn + Yn) = 1, with Xn ≥ 0, Yn ≥ 0. In particular

the extreme points of T ?HS(λ, k, α1, γ) are hn and gn.

Proof. Let f be of the form (4.22). Then we have

f(z) =
∞∑
n=1

(Xn + Yn) z −
∞∑
n=2

2(1− γ)

(2n− γ[1− (−1)n]) |Φk
n,λ|

Xnz
n

+
∞∑
n=1

2(1− γ)

(2n+ γ[1− (−1)n]) |Φk
n,λ|

Ynz̄
n

= z −
∞∑
n=2

2(1− γ)

(2n− γ[1− (−1)n]) |Φk
n,λ|

Xnz
n

+
∞∑
n=1

2(1− γ)

(2n+ γ[1− (−1)n]) |Φk
n,λ|

Ynz̄
n.

Furthermore, let |an| = 2(1−γ)

(2n−γ[1−(−1)n])|Φkn,λ|
Xn and |bn| = 2(1−γ)

(2n+γ[1−(−1)n])|Φkn,λ|
Yn.
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Applying Theorem 4.13, gives

∞∑
n=2

(2n− γ[1− (−1)n]) |Φk
n,λ|

2(1− γ)
|an|+

∞∑
n=1

(2n+ γ[1− (−1)n]) |Φk
n,λ|

2(1− γ)
|bn|

=
∞∑
n=2

(2n− γ[1− (−1)n]) |Φk
n,λ|

2(1− γ)

2(1− γ)

(2n− γ[1− (−1)n]) |Φk
n,λ|

Xn

+
∞∑
n=1

(2n+ γ[1− (−1)n]) |Φk
n,λ|

2(1− γ)

2(1− γ)

(2n+ γ[1− (−1)n]) |Φk
n,λ|

Yn

=
∞∑
n=2

Xn +
∞∑
n=1

Yn

= 1−X1 ≤ 1.

Thus f ∈ clco T ?HS(λ, k, α1, γ).

Conversely, let f ∈ clco T ?HS(λ, k, α1, γ). Set

Xn =
(2n− γ[1− (−1)n]) |Φk

n,λ||an|
2(1− γ)

(n = 2, 3, ...),

Yn =
(2n+ γ[1− (−1)n]) |Φk

n,λ||bn|
2(1− γ)

(n = 1, 2, ...)

and define X1 = 1−
∑∞

n=2Xn +
∑∞

n=1 Yn.

109



Therefore,

f(z) = z −
∞∑
n=2

|an|zn +
∞∑
n=1

|bn|z̄n

f(z) = z −
∞∑
n=2

2(1− γ)Xn

(2n− γ[1− (−1)n]) |Φk
n,λ|

zn +
∞∑
n=1

2(1− γ)Yn
(2n+ γ[1− (−1)n]) |Φk

n,λ|
z̄n

f(z) = X1z +
∞∑
n=2

Xn

{
z − 2(1− γ)zn

(2n− γ[1− (−1)n]) |Φk
n,λ|

}

+
∞∑
n=1

Yn

{
z +

2(1− γ)z̄n

(2n+ γ[1− (−1)n]) |Φk
n,λ|

}

f(z) =
∑∞

n=1 (Xnhn + Yngn) as required.

Theorem 4.15. The class T ?HS(λ, k, α1, γ) is closed under convex combination.

Proof. Suppose that for i = 1, 2, 3, ..., fi(z) ∈ T ?HS(λ, k, α1, γ) where fi is given by

fi(z) = z −
∞∑
n=2

|an,i|zn +
∞∑
n=1

|bn,i|z̄n.

From Theorem 4.13,

∞∑
n=2

(
2n− γ [1− (−1)n]

2 (1− γ)
|Φk

n,λ||an,i|
)

+
∞∑
n=1

(
2n+ γ [1− (−1)n]

2 (1− γ)
|Φk

n,λ||bn,i|
)
≤ 1.

(4.23)

For
∑∞

i=1 ti = 1 where ∀i, 0 ≤ ti ≤ 1, the convex combination of fi may be written

as,

∞∑
i=1

tifi(z) = z −
∞∑
n=2

(
∞∑
i=1

ti|an,i|zn
)

+
∞∑
n=1

(
∞∑
i=1

ti|bn,i|z̄n
)
.

Then, by (4.23)
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∞∑
n=2

(
2n− γ [1− (−1)n]

2 (1− γ)
|Φk

n,λ|
)(∣∣∣∣∣

∞∑
i=1

ti|an,i|

∣∣∣∣∣
)

+
∞∑
n=1

(
2n+ γ [1− (−1)n]

2 (1− γ)
|Φk

n,λ|
)(∣∣∣∣∣

∞∑
i=1

ti|bn,i|

∣∣∣∣∣
)

=
∞∑
i=1

ti

{
∞∑
n=2

(
2n− γ [1− (−1)n]

2 (1− γ)
|Φk

n,λ||an,i|
)

+
∞∑
n=1

(
2n+ γ [1− (−1)n]

2 (1− γ)
|Φk

n,λ||bn,i|
)}

≤
∞∑
i=1

ti (1) = 1.

This is the condition required by (4.23) and hence,
∑∞

i=1 tifi(z) ∈ T ?HS(λ, k, α1, γ).

In the theorem below we give distortion bounds for f in the class T ?HS(λ, k, α1, γ)

Theorem 4.16. If f ∈ T ?HS(λ, k, α1, γ) with Φk
n,λ ≥ Φk

2,λ then for |z| = r < 1,

|f(z)| ≤ (1 + |b1|) r + r2

{
(1− γ)

2|Φk
2,λ|
− (1 + γ)|b1|

2|Φk
2,λ|

}

and

|f(z)| ≥ (1− |b1|) r − r2

{
(1− γ)

2|Φk
2,λ|
− (1 + γ)|b1|

2|Φk
2,λ|

}
.
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Proof. Since

2

(1− γ)

∞∑
n=2

(|an|+ |bn|) |Φk
2,λ|

≤
∞∑
n=2

(
2n− γ[1− (−1)n]

2(1− γ)

)
(|an|+ |bn|) |Φk

n,λ|

≤
∞∑
n=2

(
2n− γ[1− (−1)n]

2(1− γ)
|an|+

2n+ γ[1− (−1)n]

2(1− γ)
|bn|
)
|Φk

n,λ|

≤ 1− 1 + γ

1− γ
|b1|.

Thus using the result of Theorem 4.13, the above gives

∞∑
n=2

(|an|+ |bn|) ≤
(1− γ)

2|Φk
2,λ|
− 1 + γ

2|Φk
2,λ|
|b1|. (4.24)

Next, since f ∈ T ?HS(λ, k, α1, γ) and for 0 < |z| = r < 1, we have using (4.24)

|f(z)| =

∣∣∣∣∣z −
∞∑
n=2

|an|zn +
∞∑
n=1

|bn|z̄n
∣∣∣∣∣

≤ |z|+
∞∑
n=2

|an| |z|n +
∞∑
n=1

|bn| |z̄|n

= (1 + |b1|)|z|+
∞∑
n=2

(|an|+ |bn|) |z|n

≤ (1 + |b1|)|z|+
∞∑
n=2

(|an|+ |bn|) |z|2

= (1 + |b1|)r + r2

{
∞∑
n=2

(|an|+ |bn|)

}

≤ (1 + |b1|)r + r2

{
(1− γ)

2|Φk
2,λ|
− 1 + γ

2|Φk
2,λ|
|b1|

}

which gives the first result.
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In a similar manner, we derive the following lower bound.

|f(z)| ≥ |z| −
∞∑
n=2

|an| |z|n −
∞∑
n=1

|bn| |z|n

= (1− |b1|)|z| −
∞∑
n=2

(|an|+ |bn|) |z|n

≥ (1− |b1|)|z| −
∞∑
n=2

(|an|+ |bn|) |z|2

= (1− |b1|)r − r2

{
∞∑
n=2

(|an|+ |bn|)

}

≥ (1− |b1|)r − r2

{
(1− γ)

2|Φk
2,λ|
− 1 + γ

2|Φk
2,λ|
|b1|

}
.
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CHAPTER 5

PRESERVATION OF CERTAIN OPERATORS

Jung, Kim and Srivastava (1993) introduced the families of integral operators and

investigated the preservation of these operators in Hardy space of analytic func-

tions. In this chapter, preservation of the Carlson-Shaffer operator, Hohlov opera-

tor, Dziok-Srivastava operator and Kwon-Cho operator are shown to be preserved

in the same class. Beside that, class R(λ, k, α1, γ) is defined using the operator Hk
λf

as introduced in section 4.2. Using the condition of convex null sequences, we show

the preservation of Jung-Kim-Srivastava operators in this class.

5.1 Preservation on hardy space

Recently, some authors (Raina, 2009), (Raina and Srivastava, 1999) and (Jung et

al., 1993) have considered relationships between certain families of integral operators

and the Hardy space of analytic functions. For our case, we consider Carlson-Shaffer

operator, Hohlov operator, Dziok-Srivastava operator and Kwon-Cho operator. For

f ∈ R, these operators will be shown to be preserved in Hardy space.

First, let HP (0 < P ≤ ∞) denotes the Hardy space of analytic functions in D.

The integral mean MP (r, f) is defined as follows:

Definition 5.1.

MP (r, f) =


( 1

2π

∫ 2π

0
|f(reiθ|P dθ)

1
P , 0 < P <∞

max|z|≤r ‖f(z)‖ , P =∞

(5.1)
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An analytic function f in D belongs to the Hardy space HP (0 < P ≤ ∞) if

limr→1−MP (r, f) <∞. HP is a Banach space for 1 ≤ P ≤ ∞ with norm

‖f‖P = lim
r→1−

MP (r, f) (5.2)

whilst H∞ is the class of bounded analytic functions in D.

Next, we list some prior results which will be used in establishing our results.

Lemma 5.1. (Jung et al., 1993) If f ∈ R then f ∈ HP (0 < P <∞).

Lemma 5.2. (Libera, 1965) If M and N are regular in D, N(0) = M(0) = 0, N

maps D onto a many sheeted region which is starlike with respect to the origin, if

M ′

N ′
∈ P then M

N
∈ P .

Therefore if Re
{
M ′(z)
N ′(z)

}
> 0 then Re

{
M(z)
N(z)

}
> 0.

Proposition 5.1. (Duren, 1970: p. 42) A function f(z) which is analytic in |z| < 1

is continuous in |z| ≤ 1 and absolutely continuous on |z| = 1 if and only if f ′ ∈ H1.

For the first theorem, we show the preservation of Carlson-Shaffer operator,

L(b, c)f .

Theorem 5.1. Given Re b > 0, Re c > 0 and f ∈ R then L(b, c)f ∈ HP (0 < P <

∞) and L(b, c)f ∈ H∞.

Proof. The Euler representation of Carlson-Shaffer operator is

 L(b, c)f(z) =
Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1 1

t
f (tz) dt (5.3)

with Re c > 0, Re b > 0.

Differentiating with respect to z, (5.3) becomes

d

dz
[L(b, c)]f(z) =

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1 1

t
f ′ (tz) t dt
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and taking the real part gives,

Re

(
d

dz
[L(b, c)]f(z)

)
=

Γ(c)

Γ(b)Γ(c− b)

∫ 1

0

tb−1 (1− t)c−b−1Re [f ′ (tz)] dt.

Since f ∈ R, Re[f ′(tz)] > 0 where t ∈ (0, 1).

Hence, Re
(
d
dz

[L(b, c)]f(z)
)
> 0 and thus [L(b, c)]f ∈ R. Lemma 5.1 implies

[L(b, c)]f ∈ HP .

To prove L(b, c)f ∈ H∞, it can be shown that

z

{
d

dz
[L(b, c)] f(z)

}
= b[L(b+ 1, c)]f(z)− (b− 1)[L(b, c)]f(z), b > 0

which gives

∣∣∣∣ ddz [L(b, c)]f(z)

∣∣∣∣P =

∣∣∣∣ bz [L(b+ 1, c)]f(z)− (b− 1)

z
[L(b, c)]f(z)

∣∣∣∣P (0 < P <∞).

Furthermore, using

max
{
AP , BP

}
≤ (A+B)P ≤ 2P (AP +BP ) (5.4)

we can easily derive

∣∣∣∣ ddz [L(b, c)]f(z)

∣∣∣∣P ≤ 2P

|z|P
{
| b[L(b+ 1, c)]f(z) |P + | (b− 1)[L(b, c)]f(z) |P

}
.

From Proposition 5.1, we obtain that if d
dz

[L(b, c)]f(z) ∈ H1 then [L(b, c)] f is con-

tinuous in D = {z : z ∈ C and |z| ≤ 1}.

With P = 1, |z| = r < 1,

∣∣∣∣ ddz [L(b, c)] f(z)

∣∣∣∣1 ≤ 2

|z|
{
| b [L(b+ 1, c)] f(z) |1 + | (b− 1) [L(b, c)] f(z) |1

}
∣∣∣∣ ddz [L(b, c)] f(z)

∣∣∣∣1 ≤ 2

r

{
| b [L(b+ 1, c)] f(z) |1 + | (b− 1) [L(b, c)] f(z) |1

}
. (5.5)
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Making use of (5.1) and (5.2), the inequality (5.5) yields

M1

(
r,
d

dz
[L(b, c)] f(z)

)
≤ 2

r
{ |b| M1(r, [L(b+ 1, c)] f(z) + | (b− 1)| M1(r, [L(b, c)] f(z))}

and

∥∥∥∥ ddz [L(b, c)] f(z)

∥∥∥∥
1

≤ 2| b | ‖ [L(b+ 1, c)] f(z) ‖1 +2| (b−1) | ‖ [L(b, c)] f(z) ‖1 .

(5.6)

Since [L(b, c)] f ∈ HP (0 < P <∞), [L(b, c)] f(z) ∈ H1 , [L(b+ 1, c)] f ∈ H1 and

the equation (5.6) implies d
dz

[L(b, c)] f ∈ H1.

Upon application of Proposition 5.1, [L(b, c)]f is continuous in D = D + δD. D is

compact(closed and bounded). Therefore, [L(b, c)]f is a bounded analytic function

in D. Hence [L(b, c)] f ∈ H∞.

Next, the result for Hohlov operator, Ha,b ,c f is obtained.

Theorem 5.2. If f ∈ R then Ha,b ,c f ∈ HP (0 < P <∞) and Ha,b ,c f ∈ H∞.

Proof. Hohlov operator in terms of Euler presentation is given as

Ha,b ,c f(z) =
Γ(c)

Γ(a)Γ(b)

∫ 1

0

(1− t)c−b−1

Γ(c− a− b+ 1)
tb−2F (c−a, 1−a; c−a−b+1; 1−t)f (tz) dt

(5.7)

where (c− a+ 1) > b > 0.

Differentiation of (5.7) gives

d

dz
[Ha,b ,c ] f(z)

=
Γ(c)

Γ(a)Γ(b)

∫ 1

0

tb−2 (1− t)c−a−b

Γ(c− a− b+ 1)
F (c− a, 1− a; c− a− b+ 1; 1− t)f ′ (tz) t dt
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=
Γ(c)

Γ(a)Γ(b)

∫ 1

0

tb−1 (1− t)c−a−b

Γ(c− a− b+ 1)
F (c− a, 1− a; c− a− b+ 1; 1− t)f ′ (tz) dt.

Taking the real part

Re

(
d

dz
[Ha,b ,c ] f(z)

)

=
Γ(c)

Γ(a)Γ(b)

∫ 1

0

tb−1 (1− t)c−a−b

Γ(c− a− b+ 1)
F (c− a, 1− a; c− a− b+ 1; 1− t)Ref ′ (tz) dt

and since f ∈ R, Re [f ′(tz)] > 0, t ∈ (0, 1). Then

Re

(
d

dz
[Ha,b ,c ] f(z)

)
> 0

Thus Ha,b ,c f ∈ R. From Lemma 5.1, Ha,b ,c f ∈ HP (0 < P < ∞). The second

result is obtained by using a similar manner as in Theorem 5.1.

We now present two results concerning inclusion theorems of Dziok-Srivastava

operator and Kwon-Cho operator in Hardy space using Libera’s Lemma.

Theorem 5.3. Let H l,m [α1] f(z) =
∑∞

n=0 φn [α1] an+1z
n+1 where z ∈ D, φn [α1] =

(α1)n···(αl)n
(β1)n···(βm)nn!

and α1 < 1 , a1 = 1

αi > 0 (i = 1, 2, . . .) and βj 6= 0,−1,−2, . . . (j = 1, 2, . . .) are real parameters with∏l
i=1(αi)n ≥

∏m
j=1(βj)nn! and (α1 + 1)n

∏l
i=2(αi)n ≥

∏m
j=1(βj)nn!.

If f ∈ R then H l,m [α1] f ∈ HP (0 < P <∞) and H l,m [α1] f ∈ H∞.

Proof. Easily, it can be shown that the differentiation of Dziok-Srivastava operator

gives

d

dz
H l,m [α1] f(z) =

1

z

{
α1H

l,m [α1 + 1] f(z) + (1− α1)H l,m [α1] f(z)
}
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and

Re

{
d

dz
H l,m [α1] f(z)

}
= Re

{
α1

∞∑
n=0

φn [α1 + 1] an+1z
n+1

z
+ (1− α1)

∞∑
n=0

φn [α1] an+1z
n+1

z

}

= Re

{
∞∑
n=0

an+1z
n+1

z
(α1φn [α1 + 1] + (1− α1)φn [α1])

}

≥ Re

{
∞∑
n=0

an+1z
n+1

z

}

= Re

{
f(z)

z

}

Since f ∈ R, using Lemma 5.2 results in Re
{
f(z)
z

}
> 0 and Lemma 5.1 implies

H l,m [α1] f ∈ HP (0 < P <∞).

Next, consider∣∣∣∣ ddzH l,m [α1] f(z)

∣∣∣∣P =

∣∣∣∣1z {α1H
l,m [α1 + 1] f(z) + (1− α1)H l,m [α1] f(z)

}∣∣∣∣P .
Using (5.4)the following inequality is easily derived.

∣∣∣∣ ddzH l,m [α1] f(z)

∣∣∣∣P

≤
(

2

|z|

)P {∣∣α1H
l,m [α1 + 1] f(z)

∣∣P +
∣∣(1− α1)H l,m [α1] f(z)

∣∣P} .

From Proposition 5.1, we have

∣∣∣∣ ddzH l,m [α1] f(z)

∣∣∣∣1
≤
(

2

r

){∣∣α1H
l,m [α1 + 1] f(z)

∣∣1 +
∣∣(1− α1)H l,m [α1] f(z)

∣∣1} . (5.8)

119



Making use of (5.1) and (5.2), the inequality (5.8) yields

M1

(
r,
d

dz
H l,m [α1] f(z)

)
≤ 2

r

{
| α1 | M1

(
r,H l,m [α1 + 1] f(z)

)
+ | (1− α1)) | M1

(
r,H l,m [α1] f(z)

) }
and

∥∥∥∥ ddzH l,m [α1] f(z)

∥∥∥∥
1

≤ 2 | α1 |
∥∥ H l,m [α1 + 1] f(z)

∥∥
1

+ 2 | (1− α1) |
∥∥ H l,m [α1] f(z)

∥∥
1
. (5.9)

Since, we have established earlier that H l,m [α1] f ∈ HP (0 < P <∞), H l,m [α1] f ∈

H1 and H l,m [α1 + 1] f ∈ H1 thus (5.9) implies d
dz
H l,m [α1] f ∈ H1. Applying

Proposition 5.1, H l,m [α1] f is continuous in D = D + δD. D is compact(closed

and bounded). Therefore, H l,m [α1] f is a bounded analytic function in D. Hence

H l,m [α1] f ∈ H∞.

Lastly, the Kwon-Cho operator defined by Kwon and Cho (2007) asH l,m
λ [α1] f(z)

is used in obtaining the following theorem.

Theorem 5.4. Let H l,m
λ [α1] f(z) =

∑∞
n=0 Ψn [λ] an+1z

n+1 where z ∈ D, Ψn [λ] =

(λ)n(β1)n···(βm)n
(α1)n···(αl)nn!

, 0 < λ < 1, a1 = 1, αi > 0 (i = 1, 2, . . .) and βj 6= 0,−1,−2, . . . (j =

1, 2, . . .) are real parameters with (λ)n
∏m

j=1(βj)n ≥
∏l

i=1(αi)nn! and

(λ+ 1)n
∏m

j=1(βj)n ≥
∏l

i=1(αi)nn!. If f ∈ R then H l,m
λ [α1] f ∈ HP (0 < P <∞).
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Proof. Differentiation of H l,m
λ [α1] f results in

z

{
d

dz
H l,m
λ [α1] f(z)

}
= λH l,m

λ+1 [α1 + 1] f(z)− (λ− 1)H l,m
λ [α1] f(z)

d

dz
H l,m
λ [α1] f(z) =

1

z

{
λH l,m

λ+1 [α1 + 1] f(z) + (1− λ)H l,m
λ [α1] f(z)

}
d

dz
H l,m
λ [α1] f(z) =

{
λ
∞∑
n=0

Ψn [λ+ 1] an+1z
n+1

z
+ (1− λ)

∞∑
n=0

Ψn [λ] an+1z
n+1

z

}

Re

{
d

dz
H l,m
λ [α1] f(z)

}
= Re

{
∞∑
n=0

an+1z
n+1

z
(λΨn [λ+ 1] + (1− λ)Ψn [λ])

}

≥ Re

{
∞∑
n=0

an+1z
n+1

z

}

= Re

{
f(z)

z

}
.

The hypothesis f ∈ R implies Re
{
f(z)
z

}
> 0. Applying Lemma 5.1, H l,m

λ [α1] f ∈

HP (0 < P <∞).

Remark 5.1. H l,m
λ [α1] f ∈ H∞ can be shown using similar method as in Theorem

5.3.

Remark 5.2. The notation of Kwon-Cho operator can be written as Hm+1,l[λ]f(z),

hence Theorem 5.4 is a special case of Theorem 5.3.

5.2 Preservation using convex null sequences

There are some classes were introduced using various operators and the class R(γ)

[for examples see (Al-Oboudi, 2004) and (Murugusundaramoorthy, 2003)]. The op-

erator Hk
λf defined in section 4.2 is considered to introduce a class R(λ, k, α1, γ)

which satisfies the condition Re
[
Hk
λf(z)

]′
> γ (0 ≤ γ < 1, λ ≥ 0, k ∈ N0 =

{0, 1, 2, . . .}).
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The Jung-Kim-Srivastava operators:

Jνf(z) = z +
∞∑
n=2

(
ν + 1

ν + n

)
anz

n, ν > −1

and

`νµf(z) = z +
Γ(ν + µ+ 1)

Γ(µ+ 1)

∞∑
n=2

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n, ν > 0, µ > −1

are shown to be preserved in the class R(λ, k, α1, γ) using condition of convex null

sequence. Some papers on convex null sequences can be found in (Al-Oboudi, 2004)

and (Babalola, 2009).

Throughout this section, these two lemmas are used in proving our results.

Lemma 5.3. (Goodman, 1983) If p(z) is analytic in the unit disc D, p(0) = 1 and

Re[p(z)] > 1
2
, z ∈ D, then for any analytic function q in D, the function p ∗ q takes

its values in the convex hull of q(D).

Definition 5.2. A sequence c0, c1, . . . , cn, . . . of nonnegative numbers is called a

convex null sequence if cn → 0 as n→∞ and c0 − c1 ≥ c1 − c2 ≥ . . . ≥ cn − cn+1 ≥

. . . ≥ 0.

Lemma 5.4. (Fejèr, 1925) Let {cn}∞n=0 be a convex null sequence. Then the function

s(z) = c0
2

+
∑∞

n=1 cnz
n is analytic and Re[s(z)] > 0 in D.

Theorem 5.5. If f ∈ R(λ, k, α1, γ) then Jνf ∈ R(λ, k, α1, γ).

Proof. Let f ∈ R(λ, k, α1, γ) then

Re

{
z +

∞∑
n=2

Φk
n,λanz

n

}′
= Re

{
1 +

∞∑
n=2

nΦk
n,λanz

n−1

}
> γ.

Let q(z) = 1 +
∑∞

n=2 nΦk
n,λanz

n−1.
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Considering

Re

{
z +

∞∑
n=2

Φk
n,λ

(
ν + 1

ν + n

)
anz

n

}′
= Re

{
1 +

∞∑
n=2

nΦk
n,λ

(
ν + 1

ν + n

)
anz

n−1

}
.

Let

P (z) = 1 +
∞∑
n=2

nΦk
n,λ

(
ν + 1

ν + n

)
anz

n−1

=

(
1 +

∞∑
n=2

nΦk
n,λanz

n−1

)
∗

(
1 +

∞∑
n=2

(
ν + 1

ν + n

)
anz

n−1

)

= q(z) ∗ p(z).

Applying Lemma 5.4, let cn = ν+1
ν+n+1

(ν > −1) with c0 = 1. Then

i) cn nonnegative numbers.

ii) cn → 0 as n→∞.

iii)

cn + cn+2

2cn+1

=
ν + 1

ν + n+ 1
+

ν + 1

ν + n+ 3
÷ 2(ν + 1)

ν + n+ 2

=
(ν + n+ 2)2

(ν + n+ 1)(ν + n+ 3)

= 1 +
1

(ν + n+ 1)(ν + n+ 3)

≥ 1.

Therefore {cn}∞n=0 is a convex null sequence. Thus the function s(z) = c0
2

+
∑∞

n=1 cnz
n
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is analytic and Re[s(z)] > 0. Using the above cn, we have

s(z) =
1

2
+
ν + 1

ν + 2
z +

ν + 1

ν + 3
z2 + · · ·

s(z)− 1

2
=
ν + 1

ν + 2
z +

ν + 1

ν + 3
z2 + · · · .

The function

p(z) = 1 +
∞∑
n=2

(
ν + 1

ν + n

)
anz

n−1

p(z) = 1 + s(z)− 1

2
=

1

2
+ s(z)

Re[p(z)] = Re[
1

2
+ s(z)] >

1

2
.

Using Lemma 5.3 we obtain

Re[P (z)] = Re
[
1 +

∑∞
n=2 nΦk

n,λ

(
ν+1
ν+n

)
anz

n−1
]
> γ, hence Jνf ∈ R(λ, k, α1, γ).

Theorem 5.6. If f ∈ R(λ, k, α1, γ) then `νµf ∈ R(λ, k, α1, γ).

Proof. Let f ∈ R(λ, k, α1, γ) then

Re

{
z +

∞∑
n=2

Φk
n,λanz

n

}′
= Re

{
1 +

∞∑
n=2

nΦk
n,λanz

n−1

}
> γ.

Let q(z) = 1 +
∑∞

n=2 nΦk
n,λanz

n−1.

Considering

Re

{
z +

Γ(ν + µ+ 1)

Γ(µ+ 1)

∞∑
n=2

Φk
n,λ

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n

}′

= Re

{
1 +

Γ(ν + µ+ 1)

Γ(µ+ 1)

∞∑
n=2

nΦk
n,λ

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n−1

}
.
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Let

P (z) = 1 +
Γ(ν + µ+ 1)

Γ(µ+ 1)

∞∑
n=2

nΦk
n,λ

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n−1

=

(
1 +

∞∑
n=2

nΦk
n,λanz

n−1

)
∗

(
1 +

Γ(ν + µ+ 1)

Γ(µ+ 1)
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n=2

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
anz

n−1

)

= q(z) ∗ p(z).

Applying Lemma 5.4, let cn = Γ(ν+µ+1)Γ(µ+n+1)
Γ(µ+1)(Γ(ν+µ+n+1)

with c0 = 1. Then

i) cn nonnegative numbers.

ii) cn → 0 as n→∞.

iii)

cn + cn+2

cn+1

=

{
Γ(ν + µ+ 1)Γ(µ+ n+ 1)

Γ(µ+ 1)Γ(ν + µ+ n+ 1)
+

Γ(ν + µ+ 1)Γ(µ+ n+ 3)

Γ(µ+ 1)Γ(ν + µ+ n+ 3)

}
÷ Γ(ν + µ+ 1)Γ(µ+ n+ 2))

Γ(µ+ 1)Γ(ν + µ+ n+ 2)

=
(ν + µ+ n+ 1)

(µ+ n+ 1)
+

(µ+ n+ 2)

(ν + µ+ n+ 2)

= 2 +
1 + ν2

(µ+ n+ 1)(ν + µ+ n+ 2)

≥ 2.

Therefore {cn}∞n=0 is a convex null sequence. Thus the function s(z) = c0
2

+
∑∞

n=1 cnz
n
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is analytic and Re[s(z)] > 0. Using the above cn, we have

s(z) =
1

2
+

Γ(ν + µ+ 1)Γ(µ+ 2)

Γ(µ+ 1)Γ(ν + µ+ 2)
z +

Γ(ν + µ+ 1)Γ(µ+ 3)

Γ(µ+ 1)Γ(ν + µ+ 3)
z2 + · · ·

s(z)− 1

2
=

Γ(ν + µ+ 1)Γ(µ+ 2)

Γ(µ+ 1)Γ(ν + µ+ 2)
z +

Γ(ν + µ+ 1)Γ(µ+ 3)

Γ(µ+ 1)Γ(ν + µ+ 3)
z2 + · · · .

The function

p(z) =

(
1 +

Γ(ν + µ+ 1)

Γ(µ+ 1)
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n=2

(
Γ(µ+ n)

Γ(ν + µ+ n)

)
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n−1
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p(z) = 1 + s(z)− 1

2
=

1

2
+ s(z)

Re[p(z)] = Re[
1

2
+ s(z)] >

1

2
.

Using Lemma 5.3 we obtainRe[P (z)] = 1+Γ(ν+µ+1)
Γ(µ+1)

∑∞
n=2 nΦk

n,λ

(
Γ(µ+n)

Γ(ν+µ+n)

)
anz

n−1 >

γ. Hence `νµf ∈ R(λ, α1, γ).
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CHAPTER 6

FUTURE RESEARCH

In the last chapter, we discuss open problems for future research. Some topics in

this thesis can be extended to generate new results.

Problem I: Necessary and sufficient conditions for the integral transform Vλf to be

a convex functions of order δ where f in Wβ(α, γ) have been investigated in chap-

ter two. This study can be continued to determine the sharpness of β and to find

conditions on λ such that the results can be applied for certain integral transforms

as Bernardi integral operator, Komatu operator and Hohlov operator.

Problem II: Raghavendar & Swaminathan (2012) studied the combination of star-

like and convex functions for the integral transform Vλf where f in certain class.The

investigation in chapter two can be extended to obtain new result using combination

properties of starlikeness and convexity of order δ for Vλf where f ∈ Wβ(α, γ).

Problem III: In chapter three, the conditions on β have been obtained for func-

tions in the classes of Janowski starlike and the Cassini curve. Beside that, the class

of uniformly convex can be considered in getting new results on β.

Problem IV: Lastly, the discussion on properties of functions for the subclasses

of multivalent and univalent harmonic functions in chapter four can be extended to

meromorphic multivalent and univalent harmonic functions. Previously, there are

authors [see (Ahuja and Jahangiri, 2002), (Patel and Palit, 2009) and (Wang et al.,

2009)] studied meromorphic harmonic functions.
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functions. Acta Universitatis Apulensis, 18, 233-243.

Janowski, W. (1973). Some extremal problems for certain families of analytic func-

tions I. Ann. Polon. Math., 28, 297-326.

Jung, I.B., Kim, Y.C. & Srivastava, H.M. (1993). The Hardy space of analytic func-

tions associated with certain one-parameter families of integral operators. Journal

of Math. Anal. and Applied, 38(1), 138-147.

Kanas, S. (1995). Class of functions defined by Ruscheweyh derivative. Bull. Malay.

Math. Soc.(second series), 18, 1-8.

132



Kaplan, W. (1952). Close-to-convex schlicht functions. Michigan Math. J., 1, 169-

185.

Kim, Y. C. & Ronning, F. (2001). Integral transform of certain subclasses of ana-

lytic functions, J. Math. Anal. Appl., 258, 466-489.

Kiryakova, V. S., Saigo, M. & Srivastava, H. M. (1998). Some criteria for univalence

of analytic functions involving generalized fractional calculus operators, Fract. Calc.

Appl. Anal., 1, 79-104.

Koepf, W. (2007). Bieberbach’s conjecture, the de Branges and Weinstein functions

and the Askey-Gasper inequality. Ramanujan J., 13, 103-129.

Komatu, Y. (1990). On analytic prolongation of a family of operators, Matemat-

ica(Cluj.), 32(55), 141-145.

Kwon, O.S. & Cho, N.E. (2007). Inclusion properties for certain subclasses of ana-

lytic functions associated with the Dziok-Srivastava operator. Journal of Inequalities

and Applications, 38(1), 1-10.

Lewy, H. (1936). On the non-vanishing of the Jacobian in certain one-to-one map-

pings. Bull. Amer. Math. Soc., 42, 689-692.

Libera, R.J. (1965). Some classes of regular univalent functions. Proc. Amer. Math.

Soc., 16, 755-758.

Livington, A.E. (1966). On the radius of univalence of certain analytic functions.

Proc. Amer. Math.Soc., 17, 352-357.

Löwner, K. (1917). Untersuchungen über die verzerrungbei konformen Abbildungen

des Einheitskreises |z| < 1, die durch funktionen mit nichtverschwindender ablietung
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