Aklaloueh M., Rajos R.M., Rojo J.M., Saadoune I., Amarilla J.M., *The role of particle size on the electrochemical properties at 25 and 55 °C of the LiCr$_{0.2}$Ni$_{0.4}$Mn$_{1.4}$O$_4$ spinels as 5V-cathode materials for lithium ion batteries*, Electrochimica Acta 54 (2009) 7542

Amdouni N., Zarrouk H., Julien C.M., *Structural and electrochemical properties of LiCoO$_2$ and LiAl$_y$Co$_{1-y}$O$_2$ (y = 0.1 and 0.2) Oxides: A comparative study of electrodes prepared by the citrate precursor route*, Ionics 9 (2003) 47

Bauer E.M., Bellito C., Righini G., Pasquali M., Dell’Era A., Prosini P.P., A versatile method of preparation of carbon-rich LiFePO$_4$: a promising cathode material for Li-ion batteries, Journal of Power Sources 146 (2005) 544

Belharouak I., Johnson C., Amine K, Synthesis and electrochemical analysis of vapor-deposited carbon coated LiFePO$_4$, Electrochemistry Communications 7 (2005) 983

Cao J., Guo C., Zou H., Charge density measurement and bonding character in LiNiO$_2$, Journal of Solid State Chemistry 182 (2009) 555

Deng B., Nakamura H., Zhang Q., Yoshio M., Xia Y., *Greatly improved elevated temperature cycling behavior of Li$_{1+x}$Mg$_x$Mn$_{2-x}$O$_{4+\delta}$ spinels with controlled oxygen stoichiometry*, Electrochimica Acta 49 (2004) 1823

Fey G.T.K., Cho Y.D., Premkumar T., *Nanocrystalline LiMn$_2$O$_4$ derived by HMTA assisted solution combustion synthesis as a lithium intercalating cathode material*, Materials Chemistry and Physics 99 (2006a) 451

GuO R., Shi P., Cheng X., Sun L., *Effect of ZnO modification on the performance of LiNi_{0.5}Co_{0.25}Mn_{0.25}O_2 cathode material*, Electrochimica Acta 54 (2009) 5796

Ha H.W., Yun N.J., Kim K., *Improvement of electrochemical stability of LiMn_2O_4 by CeO2 coating for lithium ion batteries*, Electrochimica Acta 52 (2007) 3236

References

Kim H.S., Kong M., Kim K., Kim I.J., Gu H.B., *Effect of carbon coating on LiNi_{1/3}Co_{1/3}Mn_{1/3}O_2 cathode material for lithium secondary batteries*, Journal of Power Sources 171 (2007a) 917

Kim H.B., Park B.C., Myung S.T., Amine K., Prakash J., Sun Y.K., *Electrochemical and thermal characterization of Electrochemical and thermal characterization of AlF_3-coated Li[Ni_{0.8}Co_{0.15}Al_{0.05}]O_2 cathode in lithium ion cells*, Journal of Power Sources 179 (2008) 347

Kim J., Kim B.H., Baik Y.H., Chang P.K., Park H.S., Amine K., *Effect of (Al, Mg) substitution in LiNiO_2 electrode for lithium batteries*, Journal of power Sources 158 (2006) 641

Kuwahara A. Suzuki S, Miyayama M, *High-rate properties of LiFePO_4/carbon composites as cathode materials for lithium ion batteries*, Ceramics International 34 (2008) 863
Kwon S.J., Kim C.W., Jeong W.T., Lee K.S., Synthesis and electrochemical properties of olivine LiFePO$_4$ as cathode material prepared by mechanical alloying, Journal of Power Sources 137 (2004) 93

Lee S.H., Koo B.K., Kim J.C., Kim K.M., Effect of Co$_3$(PO$_4$)$_2$ coating on Li[Co$_{0.1}$Ni$_{0.15}$Li$_{0.2}$Mn$_{0.55}$]O$_2$ for lithium rechargeable batteries, Journal of Power Sources 184 (2008) 276

Lee J., Teja A.S., Characteristics of lithium iron phosphate (LiFePO$_4$) particles synthesized in subcritical water, Journal of Supercritical fluid 35 (2005) 83

Lee J.H., Hong J.K., Jang D.H., Sun Y.K., Oh S.M., Degradation mechanisms in doped spinels of LiM$_{0.05}$Mn$_{1.95}$O$_4$ (M = Li, B, Al, Co and Ni) for Li secondary batteries, Journal of Power Sources 89 (2000) 7

Li X., Xu Y., *Spinel LiMn$_2$O$_4$ active material with high capacity retention*, Applied Surface Science 253 (2007) 8592

Li D., Kato Y., Kobayakawa K., Noguchi H., Sato Y., *Preparation and electrochemical characteristics of LiNi$_{1/3}$Mn$_{1/3}$Co$_{1/3}$O$_2$ coated with metal oxides coating*, Journal of Power Sources 160 (2006) 1342

Li J., Wang L., Zhang Q., He X., *Electrochemical performance SrF$_2$-coated LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ cathode material for lithium ion batteries*, Journal of Power Sources 190 (2009) 149

Li J., Suzuki T., Naga K., Ohzawa Y., Nakajima T., *Electrochemical performance of LiFePO$_4$ modified by pressure-pulsed chemical vapor infiltration in lithium-ion batteries*, Materials Science and Engineering B 142 (2007) 86

Liu H, Cao Q, Fu L J. Li C, Wu Y P, Wu H Q, *Doping effects of zinc on LiFePO$_4$ cathode material for lithium ion batteries*, Electrochemistry Communications 8 (2006) 1553
Liu L., Wang Z., Li H., Chen L., Huang X., Al_2O_3-coated LiCoO_2 as cathode material for lithium ion batteries, Solid State Ionics 152-153 (2002a) 341

Liu J.R., Wang M., Liu X., Yin D.C., Huang W.D., Citric acid complex method of preparing inverse spinel LiNiVO_4 cathode material for lithium ion batteries, Journal of Power Sources 108 (2002b) 113

Lu C.H., Lee W.C, Liou S.W, Fey G.T.K, Hydrothermal synthesis of LiNiVO_4 cathode material for lithium ion batteries, Journal of Power Sources 81-82 (1999) 696

Luo S., Tang Z., Lu J., Zhang Z., Electrochemical properties of carbon-mixed LiFePO_4 cathode material synthesized by the ceramic granulation method, Ceramics International 34 (2008) 1349

Mai L.Q., Chen W., Xu Q., Zhu Q.Y., Han C.H., Guo W.L., Influence of surface modification on structure and electrochemical performance of $\text{LiNi}_{0.5}\text{Co}_{0.5}\text{VO}_4$, Solid State Ionics 161 (2003) 205

Ojczyk W., Marzec J., Swierczek K., Zajac W., Molenda M., Dziembaj R., Molenda J., *Studies of selected synthesis procedures of the conducting LiFePO$_4$-based composite cathode materials for Li-ion batteries*, Journal of Power Sources 173 (2007) 700

References

Li[Ni$_{1/3}$Co$_{1/3}$Mn$_{1/3}$]O$_2$ cathode materials on high voltage region, Journal of Power Sources 178 (2008) 826

Piana M., Cushings B.L., Goodenough J.B., Penazzi N., A new promising sol gel synthesis of phospo-olivines as environmentally friendly cathode materials for Li-ion cells, Solid State Ionics 175 (2004) 233

Prabaharan S.R.S., Michael M.S., Radhakrisna S., Julien C., Novel low temperature synthesis and characterization of LiNiVO$_4$ for high voltage Li ion batteries, Journal of Materials Chemistry 7 (1997) 1791

Prakash S., Mustain W.E., Kohl P.A., Performance of Li-ion secondary batteries in low power, hybrid power supplies, Journal of Power Sources (2009) 1184

Prosini P.P, Zane D., Pasquali M., Improved electrochemical performance of a LiFePO$_4$-based composite cathode, Electrochimica Acta 46 (2001) 3517

Sathiyamoorthi R., Chandrasekaran R., Gopalan A., Vasudevan T., *Synthesis and electrochemical performance of high voltage cycling LiCo$_{0.8}$M$_{0.2}$O$_2$ (M = Mg, Ca, Ba) as cathode material*, Materials Research Bulletin 43 (2008) 1401

References

Song M.Y., Park C.K., Yoon S.D., Park H.R., Mumm D.R., Electrochemical properties of \(\text{LiNi}_{1-y}\text{M}_y\text{O}_2 \) (\(M = \text{Ni, Ga, Al and/or Ti} \)) cathodes, Ceramics International 35 (2009) 1145

Sugiyama J., Noritake T., Hioki T., Itoh T., Hosomi T., Yamauchi H., A new variety of \(\text{LiMnO}_2 \): high pressure synthesis and magnetic properties of tetragonal and cubic phases of \(\text{Li}_x\text{Mn}_{1-x}\text{O} \) \(x \approx 0.5 \), Materials Science and Engineering B 84 (2001) 224

Sun Y., Wan P., Pan J., Xu C., Liu X., Low temperature synthesis of layered \(\text{LiNiO}_2 \) cathode material in air atmosphere by ion exchange reaction, Solid State Ionics 177 (2006) 1173

Sun Y.K., Synthesis and electrochemical studies of spinel \(\text{Li}_{1.03}\text{Mn}_2\text{O}_4 \) cathode materials prepared by sol gel method for lithium ion batteries, Solid State Ionics 100 (1997) 115
Sun Y.K., *Cycling behavior of LiCoO$_2$ cathode materials prepared by PAA-assisted sol-gel method for rechargeable lithium ion batteries*, Journal of Power Sources 83 (1999) 223

Sun Y.K., Yoon C.S., Oh I.H., *Surface structural change of ZnO coated LiNi$_{0.5}$Mn$_{1.5}$O$_4$ spinel as 5 V cathode materials at elevated temperatures*, Electrochimica Acta 48 (2003) 503

Sun Y.K., Han J.M., Myung S.T., Lee S.W., Amine K., *Significant improvement of high voltage cycling behavior AlF$_3$-coated LiCoO$_2$ cathode*, Electrochemistry Communications 8 (2006) 821

Suresh P., Shukla A.K., Munichandraiah N., *Capacity stabilization of layered Li$_{0.9}$Mn$_{0.9}$Ni$_{0.1}$O$_2$ cathode material by employing ZnO coating*, Materials Letters 59 (2005b) 953

Wu F., Wang M., Su Y., Bao L., Chen S., *Surface of LiNi$_{1/3}$Co$_{1/3}$Mn$_{1/3}$O$_2$ modified by CeO$_2$-coating*, Electrochimica Acta 54 (2009) 6803

Xia Y., Yoshio M., Noguchi H., *Improved electrochemical performance of LiFePO$_4$ by increasing its specific surface area*, Electrochimica Acta 52 (2006) 240

Yi T.F., Shu J., Zhu Y.R., Zhu R.S., *Advanced electrochemical performance of LiMn$_{1.4}$Cr$_{0.2}$Ni$_{0.4}$O$_4$ as 5 V cathode material by citric acid assisted method*, Journal of Physics and Chemistry of Solids 70 (2009) 153

Yi T.F., Hao C.L., Yue C.B., Zhu R.S., Shu J., *A literature review and test: Structure and physicochemical properties of spinel LiMn$_2$O$_4$ synthesized by different temperatures for lithium ion battery*, Synthetic Metals 159 (2009) 1255

Ying J., Wan C., Jiang C., *Surface treatment of LiNi$_{0.8}$Co$_{0.2}$O$_2$ cathode material for lithium secondary batteries*, Journal of Power Sources 102 (2001) 162

Yu L., Qiu X., Xi Y., Zhu W., Chen L., *Enhanced high-potential and elevated temperature cycling stability of LiMn$_2$O$_4$ cathode by TiO$_2$ modification for Li-ion battery*, Electrochimica Acta 51 (2006) 6406

Yu A., Subba Rao G.V., Chowdari B.V.R., *Synthesis and properties of LiGa$_x$Mg$_y$Ni$_{1-x-y}$O$_2$ as cathode material for lithium ion batteries*, Solid State Ionics 135 (2000) 131

Zheceva E., Mladenov M., Stoyanova R., Vassilev S., *Coating technique for improvement of the cycling stability of LiCo/NiO$_2$ electrode material*, Journal of Power Sources 190 (2009) 149
Zheng J.M., Li J., Zhang Z.R., Guo X.J., Yang Y., *The effects of TiO\textsubscript{2} coating on the electrochemical performance of Li[Li\textsubscript{0.2}Mn\textsubscript{0.54}Ni\textsubscript{0.13}Co\textsubscript{0.13}]O\textsubscript{2} cathode material for lithium-ion battery*, Solid State Ionics 179 (2008a) 1794

Zheng Z., Tang Z., Zhang Z., Shen W., Lin Y., *Surface modification of Li\textsubscript{1.03}Mn\textsubscript{1.97}O\textsubscript{4} spinels for improved capacity retention*, Solid State Ionics 148 (2002) 317