THIS THESIS IS DEDICATED TO MY PARENTS.
WORDS CANNOT DESCRIBE YOUR LOVE, SUPPORT AND ENCOURAGEMENT THROUGHOUT.
CONTENTS

DEDICATION iii
CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES viii
LIST OF ABBREVIATIONS ix
ACKNOWLEDGEMENTS x
ABSTRACT xii
ABSTRAK xiii

CHAPTER 1: INTRODUCTION

1.1 General introduction and taxonomic complexities in *Fagraea sensu lato* 1
1.2 Scope of work and objectives 3

CHAPTER 2: LITERATURE REVIEW

2.1 Taxonomic History of *Fagraea*
 2.1.1 Relevant taxonomic documentation 5
 2.1.2 From Loganiaceae to Gentianaceae: familial classification and taxonomical position of *Fagraea* and the Potaliaceae 5
 2.1.3 Sectional classification of *Fagraea* 8
 2.1.4 Alternative generic interpretations 10
 2.1.5 Leenhouts' broad species concepts 11
 2.1.6 Malayan *Fagraea* 12

2.2 Taxonomically important morphological characters
 2.2.1 Stem prickliness 14
 2.2.2 Leaf shape 14
 2.2.3 Leaf margin 15
 2.2.4 Petiole-base appendages 15
 2.2.5 Inflorescence position and form 17
 2.2.6 Floral size, involucrate bracts, corolla and stamens 18
 2.2.7 Palynology 19
 2.2.8 Ovary structure and placentation 21
 2.2.9 Stigmatic structure 21
 2.2.10 Fruit form and size 22
 2.2.11 Seed characters 22

2.3 Biological and ecological aspects
 2.3.1 Distribution and habitat diversity 23
 2.3.2 Growth habit 24
 2.3.3 Vegetative growth: architecture, growth rates 25
2.3.4 Myrmecophily and extra-floral nectaries 26
2.3.5 Reproductive biology and ecology 26

2.4 Present and traditional uses 27

CHAPTER 3: MATERIALS AND METHODS

3.1 Herbarium materials and studies 30
3.2 Field collections and processing 30
3.3 Photography 32
3.4 Phylogenetic studies
 3.4.1 Collection of materials 32
 3.4.2 DNA extraction 32
 3.4.3 Gene regions and primers 34
 3.4.4 Polymerase Chain Reaction (PCR)
 3.4.4.1 Conditions used for priming ITS, trn L-F
 and ndhF regions 35
 3.4.4.2 Adjustments and Techniques used for
 'difficult' specimens 36
 3.4.4.3 Sequencing PCR products and data authentication 36
3.4.5 Phylogenetic analyses
 3.4.5.1 Sequence alignment 37
 3.4.5.2 Phylogenetic assessments 37
 3.4.5.3 Test of data partition incongruence 41

CHAPTER 4: RESULTS AND DISCUSSION

4.1 Morphology
 4.1.1 Growth habit and architecture 42
 4.1.2 Vegetative morphology
 4.1.2.1 Trunks/stems 49
 4.1.2.2 Leaves 54
 4.1.2.3 Petiolar sheaths 54
 4.1.3 Inflorescence structure 55
 4.1.4 Flowers 59
 4.1.5 Fruits 60
 4.1.6 Seeds 61
 4.1.7 Clonal growth from root suckers 63

4.2 Molecular Analysis
 4.2.1 Sequence variation 65
 4.2.2 Phylogenetic analyses 66
 4.2.2.1 Analyses of the ITS data set 67
 4.2.2.2 Analyses of the trnL-F data set 69
4.2.2.3 Analyses of the *ndhF* data set 72
4.2.2.4 Analyses of the combined ITS, *trnL-F* and *ndhF* data sets 74
4.2.2.5 Analyses of the expanded ITS data set 76

4.3 Implications of the molecular analyses
 4.3.1 Correspondence to named sections within *Fagraea s.l.* 79
 4.3.2 Generic delimitations of *Fagraea s.l.* 80
 4.3.3 Species concepts in *Fagraea s.l.* 81
 4.3.4 Morphological characters for identifying phylogenetic clades 82
 4.3.5 The *Fagraea* clade (*Fagraea s.s.* excluding *F. crenulata*) 83
 4.3.6 The *Gigantea* clade 84
 4.3.7 The *Racemosa* clade 84
 4.3.8 *Fagraea crenulata* compared with *Fagraea s.s.* 88
 4.3.9 The *Gigantea* and *Elliptica* clades share homoplasious character-states 89

4.4 Taxonomic framework
 4.4.1 Generic concepts in *Fagraea s.l.* 90
 4.4.2 Key to genera formerly placed in *Fagraea sensu lato* 92
 4.4.3 Enumeration of the Peninsular Malaysian taxa 93

CHAPTER 5: CONCLUSIONS

5.1 *Fagraea*: complex genus or several genera? 210
5.2 Limitations of generic concepts 212
5.3 Comparison between Borneo and Peninsular Malaysia and biogeographical insights 213
5.4 Useful characters for delimiting genera in *Fagraea s.l.* 216
5.5 Summary of future directions 216

REFERENCES 218

APPENDICES 231
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figures</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Aerial roots of hemi-epiphytic Fagraea.</td>
</tr>
<tr>
<td>2</td>
<td>Aubréville's architectural model in Fagraea fragrans.</td>
</tr>
<tr>
<td>3</td>
<td>Continuous orthotropic trunk growth in Fagraea volubilis following Roux's model.</td>
</tr>
<tr>
<td>4</td>
<td>Axillary flowering on branch segments in Fagraea fragrans.</td>
</tr>
<tr>
<td>5</td>
<td>Orthotropic branch-complexes with shoots terminated by cymes.</td>
</tr>
<tr>
<td>6</td>
<td>Plagiotropic branches of the section Racemosae.</td>
</tr>
<tr>
<td>7</td>
<td>The sympodial growth of branches by substitution after terminal flowering of the preceding shoot in Fagraea nervosa.</td>
</tr>
<tr>
<td>8</td>
<td>Bark characteristics of Fagraea.</td>
</tr>
<tr>
<td>9</td>
<td>Petiolar sheath characteristics in Fagraea.</td>
</tr>
<tr>
<td>10</td>
<td>Inflorescence rachises may be conspicuous or not in Fagraea section Racemosae.</td>
</tr>
<tr>
<td>11</td>
<td>An assembly of the five calyx lobes and two pairs of bracts removed from a fresh flower bud of Fagraea resinosa.</td>
</tr>
<tr>
<td>12</td>
<td>Fruit surface characteristics of Fagraea after drying.</td>
</tr>
<tr>
<td>13</td>
<td>Seed shapes in Fagraea.</td>
</tr>
<tr>
<td>14</td>
<td>Root suckers establishing from superficial lateral roots in Fagraea auriculata.</td>
</tr>
<tr>
<td>15</td>
<td>Strict consensus of 3520 equally parsimonious trees based on the ITS sequence data.</td>
</tr>
<tr>
<td>16</td>
<td>Strict consensus of 7224 equally parsimonious trees based on the trnL–F sequence data.</td>
</tr>
<tr>
<td>17</td>
<td>Single most parsimonious tree based on the ndhF sequence data.</td>
</tr>
<tr>
<td>18</td>
<td>Strict consensus of four equally parsimonious trees based on the combined ITS, trnL–F and ndhF sequence data.</td>
</tr>
<tr>
<td>19</td>
<td>Strict consensus of 2145 equally parsimonious trees based on the expanded ITS sequence data.</td>
</tr>
<tr>
<td>20</td>
<td>Fagraea cameronensis.</td>
</tr>
<tr>
<td>21</td>
<td>Fagraea carnosa.</td>
</tr>
<tr>
<td>22</td>
<td>Holotype of Fagraea curtisii King & Gamble var. curtisii.</td>
</tr>
<tr>
<td>23</td>
<td>Proposed holotype of Fagraea curtisii var. calcarea (Henderson) Wong & Sugumaran.</td>
</tr>
<tr>
<td>24</td>
<td>Fagraea fraserensis.</td>
</tr>
<tr>
<td>25</td>
<td>Fagraea gardenioides.</td>
</tr>
<tr>
<td>26</td>
<td>Fagraea insignis.</td>
</tr>
<tr>
<td>27</td>
<td>Fagraea larutensis.</td>
</tr>
<tr>
<td>28</td>
<td>Fagraea latibracteata.</td>
</tr>
<tr>
<td>29</td>
<td>Fagraea littoralis.</td>
</tr>
<tr>
<td>30</td>
<td>Utania johorensis.</td>
</tr>
<tr>
<td>31</td>
<td>Utania nervosa.</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Current classification of Gentianaceae subtribes Potaliinae, Faroinae and Lisianthiinae within the tribe Potalieae</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>Diagnostic characteristics of three sections in Fagraea according to Leenhouts (1962)</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>Voucher numbers and collecting localities for Fagraea taxa collected for the present study</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>List of species included from the GenBank for this study.</td>
<td>39</td>
</tr>
<tr>
<td>5</td>
<td>Comparison of key architectural characters among the four tree architectural models found in Fagraea s.l.</td>
<td>47</td>
</tr>
<tr>
<td>6</td>
<td>Characteristics of the parsimony-based analyses with individual and combined data sets.</td>
<td>67</td>
</tr>
<tr>
<td>7</td>
<td>A comparison of various habit and morphological characters found in distinct groups of Fagraea sensu lato resolving as monophyletic groups in molecular phylogenetic analyses in the present study.</td>
<td>85</td>
</tr>
</tbody>
</table>
LIST OF ABBREVIATIONS

Common words and taxonomic terms

c. about
comb. nov. new combination
DNA deoxyribonucleic acid
e.g. example
excl. excluding
Fig. Figure
i.e. that is
nom. illeg. illegal name
nom. invalid. name invalid
nom. nud. naked name (illegal name)
pro parte partly
quoad as far as is concerned
sensu in the sense of
s.l. sensu lato (in a broad sense)
sp. species
s.s. sensu stricto (in a strict sense)
syn. synonym
var. variety
viz. namely

Places, units of measurement, collecting information

alt. altitude
cm centimeter(s)
ft. foot (feet)
F.R. Forest Reserve
km kilometer(s)
m meter(s)
min minutes
mm millimeter(s)
Mt. Mount
s seconds
sine coll. without collector
s.n. sine numero (without number)
µl microliter

Cardinal points and other positions

C Central
E East
N North
NE North-East
NW North-West
S South
SE South-East
SW South-West
W West

Developmental stages

FB Flower Bud
FL Flower
FR Fruit
ACKNOWLEDGEMENTS

I am very thankful to my supervisor, Professor Wong Khoon Meng, whose encouragement, guidance and support from the beginning of the project until the end has enable me to develop an understanding of the subject. I am especially appreciative of him allowing me to refer to his personal research notes on Malaysian Fagrea, which were useful in beginning a number of investigations. I would also like to express my gratitude to Professor Rofina Yasmin, my co-supervisor, for her encouragement and support.

Appreciation is also extended to the Dean of the Faculty of Science, Professor Mohd Sofian Azirun and the Head of the Institute of Biological Sciences, Professor Rosli Hashim, for their support as well as providing the required facilities for the study. My sincere gratitude is also extended to Professor Haji Mohamed Abdul Majid and Professor Amru Nasruilhaq Boyce (previous Deans) for their encouragement and support since I joined as a staff member in the year 2000. Professor Lim Ah Lan is appreciated for being very kind and generous to me in so many ways, including giving valuable advices.

The Keepers, Directors and Curators of various herbaria, i.e., K, KLU, KEP and SING are thanked for loans of specimens. Staff members of the Sandakan Herbarium (SAN), particularly Dr. Joan Periera, Dr. Robert Ong, Dr. Rueban Nilus, Mr. Postar Miun, Mr. Ahmad Sappan and Mr. Jamirus Jumian are appreciated for their kind support during field trips in Sabah. Appreciation is also extended to staff members of the Brunei Herbarium (BRUN), particularly Dr. Kamariah Abu Salim and Mr. Mohd Arrifin for their assistance during a field trip and their pleasant hospitality in Brunei. Dr. Lena Struwe (Rutgers University) very kindly provided some plant materials as well as sent some important literature which were very useful for the study.

Special appreciation is due to Dr. Chandran Somasundram who kindly allowed me to use various equipment in the post harvest lab. Utmost appreciation is extended to Mr. Daniel Lee Kian Poh who not only did a great job as a research assistant for the project but also constantly helped out in various ways even after the period of employment. My colleague, Mr. Yong Kien Thai has been very patient and kind in sharing his knowledge in the phylogenetic analyses as well as giving other friendly advices. Sincere appreciation is also extended to Mr. Low Yee Wen and Mr. Zulkapli Ibrahim who greatly assisted in field work and obtained materials for DNA work from various places. Ms. Goh Wei Lim helped in some of the lab work and assisted in the sequence analyses work.

Dr. Richard Chung (Kepong Herbarium), Dr. Benjamin van ee (Harvard University Herbaria) Dr. WenHeng Zhang (Harvard University Herbaria) and Dr. Barry J. Conn (National Herbarium of New South Wales, Australia) assisted in sourcing some literature which were very important to the study. Dr. Koichi Kamiya provided some basic assistance in the initial stages of sequence alignment. Dr. Charles Davis (Harvard University Herbaria) looked through the thesis and provided some valuable comments.
Utmost appreciation is also extended to Dr. Vijayendra Madawan who patiently read through most parts of the dissertation and provided valuable comments. He was also very supportive in many other ways since the beginning of this research. Mr. Elango Velautham was generous in his friendly advices and shared some of his thoughts in the phylogenetic analyses.

Zainal Mustapha prepared the wonderful line drawings used in the thesis. Staff and student members of the post harvest lab particularly Mr. N. Doraisamy, Ms. Zuliana Razali and Mr. K. Wijentheran, are appreciated for their support in one way or another. Miss R. Sujatha, from the molecular biology lab very generously provided support for DNA work when it was required.

I wish to acknowledge the encouragement and support given by my friends, viz., Puan Sri Susan Jalaluddin, Dr. Loh Pui Lynn, Dr. Suresh Chandran, Mr. James Kingham, Mr. Tan Kui Sing, Miss Norsham Yaakob, Mr. Khairul Azmi, Mr. I.S. Shanmugaraj, Miss Wong Min May, Mr. Zahid Mohd Said, Mr. Abdul Aziz Othman, Ms. Esmeralda Borges, Ms. Anu Sheela, Miss Chan Mee Leng, Mr. Gary Lim, Miss. Maria L.T. Lardizabal, Ms. Serena Lee, Professor Christian Puff, Dr. David Boufford, Dr. Mathew Klooster, Dr. Ionel Valeriu Grozescu, Ms. Jiwamalar Perumal, Mr. Abdul Majid, Mr. B. Prabakharan, Mr. S. Gopalakrishnan, Mr. S. Thiagarajan, Mr. A. Selvakumar, Mr. P. Saravanam, Mr. N. Sivakumar, Mr. & Mrs. Harindranath, Mr & Mrs. Ramesh Sadiappan, Mr & Mrs. Manimaaran and Mr & Mrs. Ramesh Subramaniam. To my mom and other family members especially my wife, R. Shanti, I record my very special appreciation for their understanding, patience and support.

Finally, financial support for this study was provided by University of Malaya through fundamental research grant, FS 264/2007C.
systematic study of the Peninsular Malaysian species of *Fagraea sensu lato* was undertaken. This was done in the light of recent revisionary work done for Borneo that documented 20 new species and demonstrated that previous species concepts for *Fagraea* were too broad. Parallel to this the distinction of the subgeneric groups recognised as sections, i.e., *Cyrtophyllum*, *Fagraea* and *Racemosae*, were investigated with molecular phylogenetic methods. Representative taxa from the Malay Peninsula and Borneo augmented by sequences from other taxa in the same subtribe and tribe were used in the molecular analysis. Gene sequences from ITS, *trn*L–*F* (*trn*L intron + *trn*L–*F* spacer) and *ndh*F were analysed with two methods viz., maximum parsimony and Bayesian analyses. The results indicate that *Fagraea s.l.* includes four well-supported monophyletic groups, with the several gene sequences analysed with two phylogenetic methods. Two of the clades, viz., *Fagraea* and *Racemosae*, could be equated to sections *Fagraea* and *Racemosae*, respectively. The remaining two clades, viz., *Elliptica* and *Gigantea* appear to be parts of the section *Cyrtophyllum*. The Racemosae clade had the most morphological synapomorphies, with a distinct plant architecture where trunk growth is continuous and branches are plagiotropic (with distichous leaf arrangement); pendulous inflorescences; and a firm fruit wall with an epidermis that does not detach and wrinkle upon drying. The Fagraea clade (excluding *Fagraea crenulata*) has fruits that produce copious creamy pale yellowish latex in the fruit epidermis and fruit wall and have ellipsoid-rounded seeds. In comparison, all the other species of *Fagraea* (including *F. crenulata*) either have no latex or produce small amounts of translucent gummy latex and have polygonal seeds. *F. crenulata* is aberrant in the Fagraea clade in having unique characters such as a distinct architectural model, thorny bark and crenulate leaf margins. It is however, related to the Fagraea clade in having petiolar sheaths that do not or only slightly fuse at the edges and a peltate stigma structure. Phylogenetic analyses with the ITS region did not include *F. crenulata* in the Fagraea clade. However, *F. crenulata* is resolved basal to the Fagraea clade with chloroplast gene analyses. The clear split of section *Cyrtophyllum* into the Gigantea and Elliptica clades was somewhat surprising as these groups have a number of similar morphological features, such as small flowers and much-protruding stamens and styles. In comparison, the other groups are generally distinguishable with bigger flowers and less exserted stamens and styles. The only morphological difference between these two groups is the position of the inflorescence, terminal in Elliptica and axillary in Gigantea. Recognition of *Fagraea s.l.* as four distinct genera is indicated, as the complex is considered morphologically too divergent to be regarded as a single genus. These correspond to the four clades recognised in the molecular analyses, viz., *Elliptica*, *Fagraea*, *Gigantea* and *Racemosae*, and could adopt *Picrophloeus* Bl., *Fagraea Thunb. (sensu stricto)*, *Cyrtophyllum Reinw. ex Bl.* and *Utania* G.Don, respectively, as good genus names. The position of *F. crenulata* is doubtful and it is provisionally maintained in *Fagraea s.s.* pending future molecular investigations with a larger taxon sampling over wider geographical context, and the use of further gene regions.
ABSTRAK