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ABSTRACT 

 

 This thesis considers bivariate extension of the Meixner class of distributions by 

the method of generalized trivariate reduction so that the marginal distributions have 

different parameters; in particular, a new bivariate negative binomial (BNB) distribution 

is examined.  Different marginal parameters allow flexibility in statistical modelling and 

simulation studies when different marginal distributions and a specified correlation are 

required.  The multivariate extension of this class of distributions is also given.  

Specifically, various interesting properties of the proposed BNB distribution, such as 

canonical expansion and quadrant dependence are examined.  In addition, potential 

applications of the proposed distribution, as a bivariate mixed Poisson distribution, and 

the computer generation of bivariate samples are discussed.  Due to the complicated or 

intractable joint probability function (pf) for most bivariate and multivariate 

distributions, the popular method of maximum likelihood estimation (MLE) either leads 

to a slow parameter estimation or totally could not be employed.  Furthermore, MLE is 

not robust in the presence of outliers.  Alternative robust methods like minimum 

Hellinger distance (MHD) can be used but these methods may also involve complicated 

pf.  To address this difficulty in estimation, a Hellinger type distance measure based on 

the probability or moment generating function is proposed as a tool for quick and robust 

parameter estimation.  The proposed method is shown to yield consistent estimators.  It 

is computationally much faster than MLE or MHD since the generating function 

required is usually much simpler compared to the corresponding pf.  The distribution of 

the difference of two discrete random variables, particularly that of two correlated 

negative binomial random variables from the proposed BNB distribution, is also studied.  

The application of this distribution, which caters for non homogeneity in a group of 
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individuals, in modelling fluctuating asymmetry based on meristic (counts) traits in 

organisms is discussed.  A test for fluctuating asymmetry, based on a zero-inflated 

count model, is examined.  Also, numerical illustrations are given to complement the 

ideas and theories put forth.  
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ABSTRAK 

 

 Disertasi ini mempertimbangkan pelanjutan kelas taburan Meixner ke kes 

bivariat dengan menggunakan kaedah penurunan trivariat teritlak supaya taburan-

taburan sut akan mempunyai parameter yang berlainan; khasnya, satu taburan binomial 

negatif bivariat (BNB) yang baru telah dikaji.  Parameter-parameter yang berlainan bagi 

taburan sut mengizinkan kelenturan dalam pemodelan berstatistik dan kajian simulasi 

apabila taburan-taburan sut yang berlainan serta satu korelasi yang tertentu diperlukan.  

Pelanjutan kelas taburan ini ke kes multivariat juga diberi.  Khususnya, pelbagai ciri-ciri 

menarik, seperti kembangan kanonik dan kebersandaran sukuan, bagi taburan BNB yang 

dicadangkan dikaji.  Selain itu, aplikasi berpotensi bagi taburan yang dicadangkan, 

sebagai satu taburan Poisson bercampur bivariat, dan penjanaan komputer bagi sampel-

sampel bivariat dibincangkan.  Disebabkan oleh fungsi kebarangkalian (fk) tercantum 

yang rumit bagi kebanyakan taburan bivariat dan multivariat, kaedah penganggaran 

kebolehjadian maksimum (PKM) yang popular akan membawa kepada sama ada satu 

penganggaran parameter yang lambat, ataupun langsung tidak dapat digunakan.  

Tambahan pula, PKM tidak teguh semasa terdapatnya outlier.  Kaedah-kaedah teguh 

alternatif seperti jarak Hellinger minimum (JHM) boleh digunakan tetapi kaedah-

kaedah ini mungkin juga melibatkan fk yang rumit.  Untuk mengatasi kesukaran dalam 

penganggaran ini, satu sukatan jarak jenis Hellinger yang berdasarkan fungsi penjana 

kebarangkalian atau fungsi penjana momen dicadangkan sebagai satu alat untuk 

penganggaran parameter yang cepat dan teguh.  Kaedah yang dicadangkan ini 

ditunjukkan menghasilkan penganggar-penganggar yang konsisten.  Kaedah ini adalah 

lebih cepat secara pengiraan berbanding dengan PKM atau JHM memandangkan fungsi 

penjana yang diperlukan adalah biasanya lebih ringkas berbanding dengan fk yang 
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sepadan.  Taburan bagi perbezaan antara dua pembolehubah rawak diskrit, khasnya bagi 

dua pembolehubah rawak binomial negatif yang berkolerasi dari taburan BNB yang 

dicadangkan, juga dikaji.  Aplikasi taburan ini, yang mengambil kira ketidakhomogenan 

dalam satu kumpulan individu, dalam pemodelan asimetri berfluktuasi berdasarkan ciri-

ciri meristik (bilangan) pada organisma dibincangkan. Satu ujian bagi asimetri 

berfluktuasi berdasarkan satu model bilangan sifar-tertambah (zero-inflated) turut 

dikaji.  Sebagai tambahan, ilustrasi-ilustrasi berangka diberikan bagi melengkapkan 

gagasan-gagasan dan teori-teori yang dikemukakan dalam disertasi ini. 
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CHAPTER 1 :  INTRODUCTION 

 

1.0 Probability Distributions in Statistics 

Probability distributions form the core of statistics as empirical models in 

statistical data analysis or as mathematical models to explain the random variations or 

disturbances in a theoretical analysis.  Various systems of univariate distributions have 

been proposed when only one variable is of interest.  For instance, for continuous 

random variables, we have the Pearson system, Johnson’s system and the Edgeworth 

and Gram-Charlier expansions while, for the discrete case, the difference-equation 

families (Katz, 1946; Ord, 1967, 1972; Sundt & Jewell, 1981), power series 

distributions and Kemp families (see Johnson et al., 2005) are well-known.  The 

Meixner class defined by Meixner (1934), which contains as members the binomial, 

Poisson, negative binomial, normal, gamma and Meixner hypergeometric distributions 

such that their orthogonal polynomials have generating functions of the form 𝐺𝐺(𝑡𝑡, 𝑥𝑥) =

𝑓𝑓(𝑡𝑡)𝑒𝑒𝑥𝑥𝑥𝑥 (𝑡𝑡), has a number of interesting properties.  Apart from the binomial 

distribution, members of this class are infinitely divisible.  Distributions from the 

Meixner class are solutions to a quadratic regression problem (Laha & Lukacs, 1960).  

Another interesting characterization of the Meixner family is due to Morris (1982) who 

showed that distributions of the natural exponential family have at most a quadratic 

variance function of the mean if, and only if, they belong to the Meixner family.  A 

recent addition to families of distributions is that of Jones (2004), who considered a 

general family based on the distribution of order statistics.  For more than one variable, 

bivariate and multivariate extensions of these univariate distributions are required where 

the interdependencies among these variables are incorporated.  A number of books on 

bivariate and multivariate distributions (Mardia, 1970; Hutchinson & Lai, 1990; Joe, 



2 
 

1997; Johnson et al., 1997; Kotz et al., 2000; Balakrishnan & Lai, 2009) have appeared 

in the literature and these have proved very useful to researchers as well as practitioners.  

Various methods of constructing bivariate and multivariate distributions are 

available in the existing literature.  Some of these are the differential equations, 

bivariate Edgeworth expansions and translation methods (see Mardia, 1970), which are 

extensions of univariate methods.  Other methods such as compounding, generalizing 

and convolutions have also been proposed (see Hutchinson & Lai, 1990; Kocherlakota 

& Kocherlakota, 1992).  Some specific methods of construction pertinent to this thesis 

will be discussed in the next section.  More recent methods of construction through 

copulas and mixtures have been considered in order to achieve different types of 

dependence structure in multivariate distributions (see Joe, 1997).  For bivariate 

generalizations of important discrete univariate distributions like the Poisson, binomial, 

negative binomial, logarithmic series and Neyman Type A, their formulations, statistical 

inference and applications in diverse areas are described in detail in Kocherlakota & 

Kocherlakota (1992); see also Hutchinson & Lai (1990) for analyses of discrete data 

sets.  Bivariate and multivariate generalizations of distributions are of continuing 

interest as exemplified by recent works of Biswas & Hwang (2002), Jones & Larsen 

(2004), Kundu & Gupta (2009) and Kundu et al. (2010).  Furthermore, the recent work 

of Azzalini (2005) and Arellano-Valle & Azzalini (2008) on the skew-normal (Azzalini, 

1985) and other skewed distributions have attracted the attention of many researchers. 

 
1.1 Literature Review  

In this section, we present a brief review pertinent to the development of this 

thesis and to provide motivation for the research problems considered. 
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The Bernoulli trials form the building blocks in the construction of bivariate 

discrete distributions, leading to the development of bivariate binomial distributions as 

studied by Aitken & Gonin (1935), Hamdan (1972) and also, Hamdan & Jensen (1976).  

Edwards & Gurland (1961) and Holgate (1964) then considered the bivariate negative 

binomial and bivariate Poisson (which can also be obtained as a limit of the bivariate 

binomial distribution (Campbell, 1934)) distributions, respectively.  Among others, 

Kibble (1941), Lancaster (1957), Gumbel (1960), Mardia (1967), Downton (1970) and 

Lai & Moore (1984) have contributed significantly to the development of bivariate 

normal, gamma and exponential distributions.  The efforts by these earlier researchers 

have since paved the way for the construction of a multitude of bivariate and 

multivariate distributions such as multivariate mixed Poisson, multivariate power series, 

bivariate logistic, bivariate skew-normal, bivariate generalized exponential, Farlie-

Gumbel-Morgenstern copula and multivariate log normal distributions (see Johnson et 

al., 1997; Kotz et al., 2000; Balakrishnan & Lai, 2009) to reflect realistic situations for 

practical applications. 

A popular method of constructing bivariate distributions among the researchers 

is trivariate reduction or random element in common.  Through trivariate reduction, 

many bivariate generalizations of well-known univariate distributions have been 

constructed (see Mardia, 1970; Kocherlakota & Kocherlakota, 1992).  For the Meixner 

family of distributions (Meixner, 1934), Eagleson (1964) employed trivariate reduction 

to obtain their bivariate extensions which have the property that their joint distributions 

possess canonical expansions in their marginal distributions and corresponding 

orthogonal polynomials (see Chapter 2). However, apart from a restricted range of the 

correlation coefficient, bivariate distributions formed by trivariate reduction usually 

suffer from a lack of flexibility due to the marginal distributions having the same 

parameters.  For instance, by the trivariate reduction, the bivariate binomial distribution 



4 
 

has equal probability parameters (Hamdan, 1972) and the bivariate gamma distribution 

has equal scale parameters (Cherian, 1941 (cited in Mardia, 1970)) in the marginals. 

Furthermore, in statistical modelling and simulation studies, different marginal 

distributions and a less restrictive correlation are often required.  Most Monte Carlo 

simulation experiments need a varying degree of dependence (Devroye, 1986, p. 573) or 

a specification of different marginal distributions, especially when the bivariate 

structure of the distribution is not well understood.  Clearly, possessing different 

marginal distributions makes the bivariate distribution more flexible for empirical 

modelling.  In this connection, it is of interest to consider an extension of the existing 

Meixner class of bivariate distributions, such that the marginal distributions have 

different parameters and a wide range of the correlation coefficient.   

Mixed Poisson models form a useful class of distributions in practical 

applications (see Johnson et al., 2005).  These applications of bivariate and multivariate 

mixed Poisson distributions have been examined by Stein & Juritz (1987), Aitchison & 

Ho (1989), Chib & Winkelmann (2001) and Ferrari et al. (2004), among others.  

Edwards & Gurland (1961) and Subrahmaniam (1966) have also considered modelling 

accident proneness using their bivariate negative binomial in the context of the bivariate 

mixed Poisson model.  However, as observed by Chib & Winkelmann (2001), there is 

still a lack of parametric multivariate count distributions to cater for a wide variability 

of correlation structures that arise in practice.  It would be instructive to enhance the 

current class of bivariate and multivariate count distributions for statistical analysis by 

considering new distribution for correlated counts that arise as a member of the mixed 

Poisson family under different circumstances.  

In this technological age, computers have made it possible to simulate diverse 

types of populations from a variety of distributions, and to perform fast and efficient 
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computation of essential quantities like the distribution function.  More importantly, 

simulated data from a specified distribution can greatly assist in statistical data analysis 

as well as inference; for example, in examining the properties and performance of 

estimators and hypothesis tests (see Zhao & Joe, 2005; Patil & Shirke, 2007).  Thus, 

Ong (1992, 1993, 1995) has considered the computer generation and computation of 

bivariate distributions based on their mixture formulations. Recently, Michael & 

Schucany (2002) and Minhajuddin et al. (2004) considered the simulation of bivariate 

and multivariate distributions similar to the work of Ong (1993).  Balakrishnan & Lai 

(2009) have reviewed a number of the simulation approaches found in literature for 

bivariate continuous distributions.  As varying the degree of dependence is required in 

many Monte Carlo simulations, Ong (2008) gave a review of this issue in the context of 

mixture models. 

Since most simulation studies require a specification of the dependence between 

random variables of interest, distributional properties such as canonical expansion and 

quadrant dependence must be investigated.  Lancaster (1958), Eagleson (1964), 

Hamdan & Al-Bayyati (1971), Hamdan & Jensen (1976) and Gupta (1979) are among 

those who have enriched the field of study on canonical expansion for bivariate and 

multivariate distributions.  A canonical expansion of a bivariate distribution is a single 

series expansion in terms of its marginal distributions and the corresponding orthogonal 

polynomials.  It throws light on the structure of the distribution, such as the correlations 

between the random variables.  Recently, Cuadras (2002) derived canonical expansion 

of bivariate distributions in terms of distribution functions.       

Another interesting concept of dependence in a bivariate distribution is quadrant 

dependence.  Quadrant dependence (Lehmann, 1966) is a useful concept of bivariate 

dependence since it is easier to verify than the usual linear dependence.  This concept is 

imperative in reliability theory, where the random variables are seldom independent in 
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practice.  Joe (1997) gave a rather comprehensive description on most positive as well 

as negative dependence concepts found in literature.  Lai & Xie (2000) have constructed 

a family of positive quadrant dependent bivariate distributions.  Colangelo et al. (2006), 

Belzunce et al. (2007) and Colangelo et al. (2008) are among those continuing the work 

related to positive dependence.   

The famed maximum likelihood estimation is well-known to yield estimators 

which are asymptotically efficient but sensitive towards outliers.  On the other hand, 

minimum Hellinger distance estimation has been proven to work well in the presence of 

outliers (Beran, 1977).  Due to this attractive characteristic, Tamura & Boos (1986), 

Simpson (1987), Lindsay (1994) and Basu et al. (1997) have developed minimum 

divergence methods to account for various circumstances of data that arise in practice.  

Basu (2002) further considered the corresponding tests of hypotheses for the 

generalized Hellinger divergence family in discrete models.  However, most of these 

methods made use of the probability functions that are inherently intractable for most 

bivariate and multivariate distributions.  Furthermore, a complicated probability 

function slows down the parameter estimation process.  This is especially the case for 

discrete distributions.  To address this problem, Kemp & Kemp (1988) have introduced 

a rapid estimation method for univariate distributions based upon the probability 

generating function but the estimation depends upon predetermined initial values of the 

variable in the probability generating function.  A method of parameter estimation to 

avoid this dependence will be useful.     

There are times when the distribution for the difference of two independent or 

correlated random variables from a bivariate case comes in handy for data analysis.  In 

particular, this distribution of differences has found application in areas such as 

reliability theory, marketing, risk analysis, accident analysis and sports modelling.  

Surprisingly, in spite of the usefulness, the application of this distribution to paired 
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count data still receives comparatively less attention in statistical literature than its 

continuous counterpart.  Another situation is the analysis of fluctuating asymmetry in 

organisms.  The idea of fluctuating asymmetry (Van Valen, 1962) has been widely 

researched and used as a measure of developmental stability in organisms (Palmer, 

1994).  Developmental stability is defined as the ability to defend against random 

deviations from perfect bilateral symmetry, which may be expressed as (𝐿𝐿 − 𝑅𝑅), the 

random differences between the left (𝐿𝐿) and right (𝑅𝑅) sides of a particular 

morphological structure or trait.  Recently, Graham et al. (2003) studied growth models 

as well as fluctuating asymmetry under additive and multiplicative error models, and 

with respect to active and inert tissue models involving the lognormal and gamma 

distributions.  These continuous distributions arise naturally in growth (Mosimann & 

Campbell, 1988) processes. 

Fluctuating asymmetry has also been considered based upon the difference in 

counts of a trait, for example, the difference in counts of Drosophila bristles (Mather, 

1953; Woods et al., 1998), spots on the plumage of barn owls (Roulin et al., 2003) and 

number of pectoral fin rays in rainbow trout fry (Young et al., 2009).  It is noted that 

heterogeneity in a population invariably influences the trait size.  Differences in trait 

size may in turn affect the data collected especially for meristic counts; for example, 

Johnson et al. (2004) has shown that larger chinook salmon has significantly more traits 

which can be counted than smaller fish.  Larger traits may also appear to be more 

asymmetrical (Palmer, 1994; Knierim et al., 2007).  Hence, a joint distribution of (𝐿𝐿,𝑅𝑅) 

counts that takes into account the heterogeneity aspect of the population is of interest in 

the study of fluctuating asymmetry.  Furthermore, analysis involving meristic counts 

needs care since the data may be highly skewed with a majority of perfect bilateral 

symmetrical data and span a narrow range of differences in left and right counts 

(Knierim et al., 2007).  Since a high incidence of zeros is a natural measure of 
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symmetry, the inflation of the zero counts in the distribution of (𝐿𝐿 − 𝑅𝑅) may be 

proposed as a measure of developmental stability.  This may be useful; for instance, in 

the control of moths by using egg parasitoids (see Hewa-Kapuge & Hoffmann, 2001).     

 
1.2 Contributions of the Thesis 

 The main contributions of this thesis are listed below. 

• An extended class of bivariate and multivariate distributions from the Meixner 

family (except the Meixner hypergeometric distribution) has been formulated by 

an extension of the trivariate reduction method.  The marginals for these 

distributions are more flexible with different parameters. 

o A result on the existence of canonical expansion for this class of 

bivariate distributions has been obtained by extending the result of 

Eagleson (1964). 

o In particular, a new extended bivariate negative binomial distribution, 

which includes bivariate negative binomial of Edwards & Gurland 

(1961) and Subrahmaniam (1966), has been obtained by the extended 

trivariate reduction method.  This distribution has also been shown to 

arise as a bivariate mixed Poisson model. 

o Explicit formulae for the distributional properties of the extended 

bivariate negative binomial distribution are given, including that of the 

canonical expansion and the information matrix. 

• A rapid yet robust and consistent parameter estimation method based on the 

probability generating function for bivariate and multivariate distributions (𝑀𝑀𝑀𝑀𝛼𝛼  

estimation method) has been proposed.   

o This method does not suffer from the effects of predetermined initial 

values since there is no such need for selecting these values. 
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• A family of distributions defined by the difference of two random variables has 

been considered when they are (a) independent and (b) correlated, and many 

properties as well as computational issues have been studied.  

o A novel application of the zero-inflated model has been proposed to 

measure asymmetry.  

o Power of one-sided score and likelihood ratio tests for significance of 

zero-count inflation has been examined. 

Parts of the thesis work have been published (Ong et al., 2008; Sugita et al., 2010). 

Three papers based upon Chapters 3, 4 and 5 have been submitted for publication. 

 
1.3 Thesis Organization 

 Chapter 2 will serve as the preliminary chapter to the ensuing chapters by 

explaining briefly the needed terms and concepts.  Some fundamental definitions and 

supporting theorems for ease of reference can be found in this chapter.   

 The next three chapters comprise of the main findings for this thesis.  Chapter 3 

contains the formulations for a class of bivariate and multivariate distributions, 

particularly of those which arise from the Meixner class of univariate distributions.  Of 

a special interest here is the extended bivariate negative binomial distribution, which 

has marginal distributions possessing different parameters.  Basic properties of this 

distribution such as joint probability mass function, factorial moments and conditional 

distributions are given.  The canonical expansion and quadrant dependence of this 

distribution are also investigated.  A result on the canonical expansion of distributions 

derived from the extended trivariate reduction method is given, extending the result of 

Eagleson (1964) for the Meixner class of distributions.  On the practical side, 

applications of this distribution are illustrated with numerical examples.  Also given are 
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algorithms to generate bivariate samples with varying dependence according to the 

formulations introduced in this chapter.  

 In Chapter 4, a rapid parameter estimation method based on probability 

generating function for bivariate and multivariate distributions is proposed.  

Consistency of the estimators from this method will be shown.  Numerical examples are 

given to clearly demonstrate the competency of this method. 

 Chapter 5 will in turn dwell upon the distribution of the difference between two 

discrete random variables, specifically when these random variables are correlated.  

This distribution serves to model the difference of a meristic trait between bilateral sides 

of an organism.  By making use of a zero-inflated model, a statistical test to determine 

fluctuating asymmetry in organisms is established. 

 Finally, Chapter 6 gives the conclusion along with suggestions for further works. 

 



CHAPTER 2 :  PRELIMINARIES 

 

2.0 Introduction 

In this chapter, terms and concepts are presented to facilitate discussion in the 

ensuing chapters.  Interpretation of certain notations is also explained here. 

 
2.1 Formulation of Bivariate Distributions 

Bivariate discrete and continuous distributions can be constructed in a wide 

variety of ways.  Examples of methods of construction are trivariate reduction, mixing 

or compounding, and sampling.  A number of these methods have been reviewed in 

Mardia (1970) and Kocherlakota & Kocherlakota (1992).  

 
2.1.1 Trivariate Reduction 

The method of trivariate reduction or random element in common is a popular 

method of construction due to its simplicity and ease of generating samples on a 

computer when given a univariate generator.  This method is defined (Mardia, 1970) 

following the definition for additive property of a family of distributions.  

Definition 2.1 (Additive Property, Arnold, 1970):  Let {𝐹𝐹(𝑦𝑦; 𝜆𝜆)}𝜆𝜆>0 be a family of 

distributions parameterized by 𝜆𝜆, and let ℎ be a function mapping ℝ2 into ℝ.  

{𝐹𝐹(𝑦𝑦; 𝜆𝜆)}𝜆𝜆>0 will be said to form an additive family under ℎ if for any 𝜆𝜆1, 𝜆𝜆2 > 0 and 

𝑌𝑌1,𝑌𝑌2 are independent, 𝐹𝐹𝑌𝑌1 (𝑦𝑦) = 𝐹𝐹(𝑦𝑦; 𝜆𝜆1) and 𝐹𝐹𝑌𝑌2 (𝑦𝑦) = 𝐹𝐹(𝑦𝑦; 𝜆𝜆2) imply 𝐹𝐹ℎ(𝑌𝑌1,𝑌𝑌2)(𝑦𝑦) =

𝐹𝐹(𝑦𝑦; 𝜆𝜆1 + 𝜆𝜆2).  
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Definition 2.2 (Trivariate Reduction):  Given three independent additive random 

variables (rv) 𝑌𝑌1, 𝑌𝑌2 and 𝑊𝑊 from the same family of distribution, a bivariate 

generalization (𝑋𝑋1,𝑋𝑋2) is given by the convolutions 

 𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊 and 𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊.        (2.1) 

 Bivariate distributions in literature that can be formed using (2.1) include 

bivariate normal, gamma, Poisson and negative binomial distributions.  Note that this 

trivariate reduction technique has been generalized by Arnold (1967) to construct 

bivariate and multivariate distributions which are closed under other operations (see, for 

example, Mardia, 1970; Kundu & Gupta, 2009). 

 
2.1.2 Compounding 

 The compounding technique to produce bivariate distributions can be defined as: 

Definition 2.3 (Compounding of Uncorrelated Random Variables):  Let �𝑋𝑋1|𝜓𝜓 and �𝑋𝑋2|𝜓𝜓 

be independent rv’s with probability functions (pf’s) 𝑓𝑓𝑋𝑋1 (𝑥𝑥1|𝜓𝜓) and 𝑓𝑓𝑋𝑋2 (𝑥𝑥2|𝜓𝜓) for a 

given parameter 𝜓𝜓.  Let 𝜓𝜓 be a value of the rv Ψ with mixing distribution having pf 

𝑔𝑔(𝜓𝜓; 𝜉𝜉), where 𝜉𝜉 is the vector of parameters.  Then, the bivariate distribution (𝑋𝑋1,𝑋𝑋2) is 

said to be a compound distribution with pf given by 

 ℎ(𝑥𝑥1, 𝑥𝑥2; 𝜉𝜉) = ∫𝑓𝑓𝑋𝑋1 (𝑥𝑥1|𝜓𝜓)𝑓𝑓𝑋𝑋2 (𝑥𝑥2|𝜓𝜓)𝑔𝑔(𝜓𝜓; 𝜉𝜉)𝑑𝑑𝑑𝑑.      (2.2) 

 Specifically, (𝑋𝑋1,𝑋𝑋2) is a mixed Poisson distribution with its joint probability 

mass function (pmf) given by (2.2) where 𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖|𝜓𝜓), 𝑖𝑖 = 1,2 is the Poisson pmf with 

parameter 𝜓𝜓 regarded as a value of the rv Ψ with mixing distribution 𝑔𝑔(𝜓𝜓; 𝜉𝜉).  When Ψ 

is taken to be the gamma rv, the bivariate negative binomial distribution or also known 

as bivariate compound Poisson distribution is obtained as shown in Arbous & Kerrich 

(1951).   
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 In the above formulation, �𝑋𝑋1|𝜓𝜓 and �𝑋𝑋2|𝜓𝜓 are assumed to be independent.  There 

are cases where 𝑋𝑋1 and 𝑋𝑋2 may be correlated given the parameter 𝜓𝜓.  To account for 

this correlation, the compounding technique can be extended as follows. 

Definition 2.4 (Compounding of Correlated Random Variables):  Let �(𝑋𝑋1,𝑋𝑋2 )|𝜓𝜓 be 

rv’s with joint probability function 𝑓𝑓(𝑋𝑋1,𝑋𝑋2)(𝑥𝑥1, 𝑥𝑥2|𝜓𝜓) for a given parameter 𝜓𝜓.  Let 𝜓𝜓 be 

a value of the rv Ψ as defined in Definition 2.3.  Then, the bivariate distribution (𝑋𝑋1,𝑋𝑋2) 

is said to be a compound distribution with pf given by 

 ℎ(𝑥𝑥1, 𝑥𝑥2; 𝜉𝜉) = ∫𝑓𝑓(𝑋𝑋1,𝑋𝑋2)(𝑥𝑥1, 𝑥𝑥2|𝜓𝜓)𝑔𝑔(𝜓𝜓; 𝜉𝜉)𝑑𝑑𝑑𝑑.     

 Following this convention, Edwards & Gurland (1961) obtained a bivariate 

negative binomial distribution which they termed as the compound correlated bivariate 

Poisson distribution. 

 
2.2 Properties of Distribution 

2.2.1 Probability Generating Function and Joint Probability Function 

 Probability generating function (pgf) for a bivariate discrete distribution (𝑋𝑋1,𝑋𝑋2) 

is unique with respect to its corresponding joint probability mass function (pmf) 

Pr(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2).  They are related through the equation 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = 𝐸𝐸�𝑧𝑧1
𝑥𝑥1𝑧𝑧2

𝑥𝑥2� = � 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2)𝑧𝑧1
𝑥𝑥1𝑧𝑧2

𝑥𝑥2

𝑥𝑥1,𝑥𝑥2

.                                         (2.3) 

Henceforth, the pgf for (𝑋𝑋1,𝑋𝑋2) will be denoted by 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) or 𝐺𝐺(𝑧𝑧1, 𝑧𝑧2).  For 

continuous distributions, the terms moment generating function (mgf) and joint 

probability density function (pdf) are used instead of pgf and pmf, respectively. 
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 Kocherlakota & Kocherlakota (1992, p. 2) outlined two ways to obtain the pmf 

from its pgf as follows. 

(i) The pgf is expanded in powers of 𝑧𝑧1 and 𝑧𝑧2, that is the form of the right-most 

expression in the equation (2.3).  The coefficient of the term 𝑧𝑧1
𝑥𝑥1𝑧𝑧2

𝑥𝑥2  , which 

is 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2), will give the pmf of the distribution at (𝑥𝑥1, 𝑥𝑥2). 

(ii) The pgf is differentiated repeatedly with respect to 𝑧𝑧1 and 𝑧𝑧2 before 

evaluating the result at 𝑧𝑧1 = 0 and 𝑧𝑧2 = 0 to obtain the pmf, 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2).  

Mathematically,  

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) =
1

𝑥𝑥1! 𝑥𝑥2!
� 𝜕𝜕

𝑥𝑥1+𝑥𝑥2

𝜕𝜕𝑧𝑧1
𝑥𝑥1𝜕𝜕𝑧𝑧2

𝑥𝑥2 𝐺𝐺(𝑧𝑧1, 𝑧𝑧2)�
𝑧𝑧1=0,𝑧𝑧2=0

 . 

 
2.2.2 Marginal and Conditional Distributions 

 Let the joint pmf of (𝑋𝑋1,𝑋𝑋2) be 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2).  Then, the pmf’s of the marginal 

distributions 𝑋𝑋1 and 𝑋𝑋2 are 𝑓𝑓𝑋𝑋1 (𝑥𝑥1) = ∑ 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥2  and 𝑓𝑓𝑋𝑋2 (𝑥𝑥2) = ∑ 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2)𝑥𝑥1  

respectively.  The corresponding pgf’s of the marginals which can be obtained from 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) are 𝐺𝐺𝑋𝑋1 (𝑧𝑧1) = 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 1) = ∑ 𝑓𝑓𝑋𝑋1 (𝑥𝑥1)𝑧𝑧1
𝑥𝑥1

𝑥𝑥1  and similarly, 

𝐺𝐺𝑋𝑋2 (𝑧𝑧2) = 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(1, 𝑧𝑧2) = ∑ 𝑓𝑓𝑋𝑋2 (𝑥𝑥2)𝑧𝑧2
𝑥𝑥2

𝑥𝑥2 . 

 A useful Theorem 1.3.1 (due to Subrahmaniam, 1966) from Kocherlakota & 

Kocherlakota (1992, p. 13) regarding the pgf of the conditional distribution of (𝑋𝑋1,𝑋𝑋2) 

will be quoted here.  The result from this theorem enables the determination of the 

regression of  𝑋𝑋1 on 𝑋𝑋2 without having to first find the conditional probability function, 

which may be difficult in most cases. 
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Theorem 2.1 (Theorem 1.3.1, Kocherlakota & Kocherlakota, 1992):  Let 𝐺𝐺(𝑧𝑧1, 𝑧𝑧2) be 

the joint pgf of (𝑋𝑋1,𝑋𝑋2).  Then the pgf of the conditional distribution of 𝑋𝑋1 given 

𝑋𝑋2 = 𝑥𝑥2 is 𝐺𝐺𝑋𝑋1 (�𝑧𝑧|𝑥𝑥2) = 𝐺𝐺(0,𝑥𝑥2)(𝑧𝑧,0)
𝐺𝐺(0,𝑥𝑥2)(1,0)

, where 𝐺𝐺(𝑥𝑥1,𝑥𝑥2)(𝑢𝑢, 𝑣𝑣) = � 𝜕𝜕𝑥𝑥1+𝑥𝑥2

𝜕𝜕𝑧𝑧1
𝑥𝑥1𝜕𝜕𝑧𝑧2

𝑥𝑥2 𝐺𝐺(𝑧𝑧1, 𝑧𝑧2)�
𝑧𝑧1=𝑢𝑢 ,𝑧𝑧2=𝑣𝑣

. 

Based on this theorem, a corollary is found by Kocherlakota and Kocherlakota 

regarding the regression of 𝑋𝑋1 on 𝑋𝑋2.  Again, the corollary is quoted here. 

Corollary 2.1 (Corollary 1.3.1, Kocherlakota & Kocherlakota, 1992, p. 14):  Regression 

of 𝑋𝑋1 on 𝑋𝑋2 is 𝐸𝐸[�𝑋𝑋1|𝑋𝑋2 = 𝑥𝑥2] = 𝐺𝐺(1,𝑥𝑥2)(1,0)
𝐺𝐺(0,𝑥𝑥2)(1,0)

. 

 
2.2.3 Factorial Moments 

Let the factorial moments for a bivariate discrete distribution (𝑋𝑋1,𝑋𝑋2) be 

𝜇𝜇(𝑋𝑋1,𝑋𝑋2)
[𝑥𝑥1,𝑥𝑥2] = 𝐸𝐸 �𝑋𝑋1

[𝑥𝑥1]𝑋𝑋2
[𝑥𝑥2]� where 𝑋𝑋𝑖𝑖

[𝑥𝑥𝑖𝑖] = 𝑋𝑋𝑖𝑖(𝑋𝑋𝑖𝑖 − 1) … (𝑋𝑋𝑖𝑖 − 𝑥𝑥𝑖𝑖 + 1), 𝑖𝑖 = 1, 2.  Then, the 

factorial moment generating function can be defined by (Kocherlakota & Kocherlakota, 

1992)  

𝐻𝐻(𝑡𝑡1, 𝑡𝑡2) = 𝐺𝐺(𝑡𝑡1 + 1, 𝑡𝑡2 + 1) = �𝜇𝜇(𝑋𝑋1,𝑋𝑋2)
[𝑥𝑥1,𝑥𝑥2] 𝑡𝑡1

𝑥𝑥1

𝑥𝑥1!
𝑡𝑡2
𝑥𝑥2

𝑥𝑥2!
𝑡𝑡1,𝑡𝑡2

 .                                         (2.4) 

Another method to obtain the factorial moments is by differentiating 𝐺𝐺(𝑡𝑡1 + 1, 𝑡𝑡2 + 1) 

repeatedly and evaluating the result at 𝑡𝑡1 = 0 and 𝑡𝑡2 = 0, that is 

𝜇𝜇(𝑋𝑋1,𝑋𝑋2)
[𝑥𝑥1,𝑥𝑥2] = � 𝜕𝜕

𝑥𝑥1+𝑥𝑥2

𝜕𝜕𝑡𝑡1
𝑥𝑥1𝜕𝜕𝑡𝑡2

𝑥𝑥2 𝐺𝐺(𝑡𝑡1 + 1, 𝑡𝑡2 + 1)�
𝑡𝑡1=0,𝑡𝑡2=0

= 𝐺𝐺(𝑥𝑥1,𝑥𝑥2)(1,1).                      (2.5) 

These two methods are a direct extension from the univariate discrete case of obtaining 

the factorial moments 𝜇𝜇𝑋𝑋
[𝑥𝑥] for a random variable 𝑋𝑋 (see, for example, Johnson et al., 

2005, p. 59). 
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 Correlation between 𝑋𝑋1 and 𝑋𝑋2 can be found by making use of the factorial 

moments 𝜇𝜇(𝑋𝑋1,𝑋𝑋2)
[𝑥𝑥1,𝑥𝑥2]  as well as the factorial moments of the marginals, 𝜇𝜇𝑋𝑋1

[𝑥𝑥1] and 𝜇𝜇𝑋𝑋2

[𝑥𝑥2] 

through the equation 

𝜌𝜌(𝑋𝑋1,𝑋𝑋2) =
𝜇𝜇(𝑋𝑋1,𝑋𝑋2)

[1,1] − 𝜇𝜇𝑋𝑋1
[1]𝜇𝜇𝑋𝑋2

[1]

��𝜇𝜇𝑋𝑋1

[2] + 𝜇𝜇𝑋𝑋1

[1] �1 − 𝜇𝜇𝑋𝑋1

[1]�� �𝜇𝜇𝑋𝑋2

[2] + 𝜇𝜇𝑋𝑋2

[1] �1 − 𝜇𝜇𝑋𝑋2

[1]��
 .                         (2.6) 

 
2.2.4 Information Matrix 

 Let 𝑓𝑓𝑿𝑿(𝐱𝐱𝑖𝑖 ;𝜽𝜽), 𝑖𝑖 = 1,2, … ,𝑛𝑛 denote the pf and 𝐿𝐿(𝜽𝜽; 𝐱𝐱) denote the likelihood 

function, with 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑑𝑑) representing the vector of unknown parameters and 

𝐱𝐱 = (𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛) the 𝑛𝑛 sets of observed values for the 𝑘𝑘-variate random variable 

𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘).  The information matrix for a single observation, also known as 

the Fisher information, is given as (Hogg & Craig, 1995, p. 372) 

𝚪𝚪(𝜽𝜽) = �𝐸𝐸 �
𝜕𝜕ln𝑓𝑓𝑿𝑿(𝐱𝐱1;𝜽𝜽)

𝜕𝜕𝜃𝜃𝑖𝑖
𝜕𝜕ln𝑓𝑓𝑿𝑿(𝐱𝐱1;𝜽𝜽)

𝜕𝜕𝜃𝜃𝑗𝑗
��    or   

𝚪𝚪(𝜽𝜽) = �𝐸𝐸 �−
𝜕𝜕2ln𝑓𝑓𝑿𝑿(𝐱𝐱1;𝜽𝜽)

𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑗𝑗
�� ,  𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑑𝑑. 

Under regularity conditions, the information matrix for the sample 𝐱𝐱 is then 

𝐈𝐈(𝜽𝜽) = �𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿(𝜽𝜽; 𝐱𝐱)
𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑗𝑗

�� = 𝑛𝑛𝚪𝚪(𝜽𝜽),  𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑑𝑑. 
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2.3 Structure of Bivariate Distributions 

2.3.1 Canonical Expansion 

The canonical expansion of a bivariate probability density function is a useful 

tool in the study of the structure of bivariate distributions (Kotz, 1974).  If a bivariate 

distribution can be expressed in the canonical form, regression in that distribution can 

take a simple form (Lancaster, 1958) and correlation coefficient in a contingency table 

can be estimated (Hamdan & Al-Bayyati, 1971).  Also, a bivariate distribution with 

prescribed correlations and given marginal distributions can be constructed through the 

notion of canonical expansion (Lancaster, 1958). 

The canonical expansion of a bivariate distribution is defined as follows. 

Definition 2.5 (Canonical Expansion):  Let ℎ(𝑥𝑥1, 𝑥𝑥2) be a bivariate pdf with marginal 

pdf’s 𝑓𝑓𝑋𝑋1 (𝑥𝑥1) and 𝑓𝑓𝑋𝑋2 (𝑥𝑥2) where the parameters have been suppressed for simplicity.  

Let �𝜑𝜑𝑖𝑖
(1)(𝑥𝑥1)� and �𝜑𝜑𝑖𝑖

(2)(𝑥𝑥2)� be complete sets of orthonormal functions with respect 

to 𝑓𝑓𝑋𝑋1 (𝑥𝑥1) and 𝑓𝑓𝑋𝑋2 (𝑥𝑥2) respectively.  Then, ℎ(𝑥𝑥1, 𝑥𝑥2) can be expanded as a double series 

ℎ(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓𝑋𝑋1 (𝑥𝑥1)𝑓𝑓𝑋𝑋2 (𝑥𝑥2)��𝜌𝜌𝑖𝑖𝑖𝑖 𝜑𝜑𝑖𝑖
(1)(𝑥𝑥1)𝜑𝜑𝑖𝑖

(2)(𝑥𝑥2)
∞

𝑗𝑗=0

∞

𝑖𝑖=0

                                    (2.7) 

where 𝜌𝜌𝑖𝑖𝑖𝑖 = ∫∫ℎ(𝑥𝑥1, 𝑥𝑥2)𝜑𝜑𝑖𝑖
(1)(𝑥𝑥1)𝜑𝜑𝑖𝑖

(2)(𝑥𝑥2)𝑑𝑑𝑥𝑥1 𝑑𝑑𝑥𝑥2 and ∑ ∑ 𝜌𝜌𝑖𝑖𝑖𝑖∞
𝑗𝑗=0

∞
𝑖𝑖=0  is convergent 

(Lancaster, 1958).  Next, let 𝜙𝜙2 = ∫ � 𝑑𝑑𝑑𝑑(𝑥𝑥1,𝑥𝑥2)
𝑑𝑑𝐹𝐹1(𝑥𝑥1)𝑑𝑑𝐹𝐹2(𝑥𝑥2)

�
2
𝑑𝑑𝐹𝐹1(𝑥𝑥1)𝑑𝑑𝐹𝐹2(𝑥𝑥2) − 1 where 

𝐻𝐻(𝑥𝑥1, 𝑥𝑥2), 𝐹𝐹1(𝑥𝑥1) and 𝐹𝐹2(𝑥𝑥2) are the distribution functions corresponding respectively 

to ℎ(𝑥𝑥1, 𝑥𝑥2), 𝑓𝑓𝑋𝑋1 (𝑥𝑥1) and 𝑓𝑓𝑋𝑋2 (𝑥𝑥2).  If 𝜙𝜙2 is bounded (Lancaster, 1958), then (2.7) can be 

expressed in the canonical form such that 𝜌𝜌𝑖𝑖𝑖𝑖 = 0 for 𝑖𝑖 ≠ 𝑗𝑗, that is, the coefficient 

matrix �𝜌𝜌𝑖𝑖𝑖𝑖 � is diagonal.  The double series (2.7) becomes 
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ℎ(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓𝑋𝑋1 (𝑥𝑥1)𝑓𝑓𝑋𝑋2 (𝑥𝑥2)�𝜌𝜌𝑖𝑖𝜑𝜑𝑖𝑖
(1)(𝑥𝑥1)𝜑𝜑𝑖𝑖

(2)(𝑥𝑥2)
∞

𝑖𝑖=0

,  𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖                           (2.8) 

with 𝜙𝜙2 = ∑ 𝜌𝜌𝑖𝑖2∞
𝑖𝑖=1 .  The series (2.8) is the canonical expansion of the bivariate pdf 

ℎ(𝑥𝑥1, 𝑥𝑥2) and 𝜌𝜌𝑖𝑖  is known as the ith canonical coefficient or canonical correlation.   

 Eagleson (1964) has shown that for the Meixner class of distributions, the 

bivariate distributions obtained from trivariate reduction (2.1) have canonical 

expansions.   

Theorem 2.2 (Eagleson, 1964, p. 1211):  If, for a particular distribution, 

(i) the orthogonal polynomials are generated by a function of the form 

𝑓𝑓(𝑡𝑡)𝑒𝑒𝑥𝑥𝑥𝑥 (𝑡𝑡) where 𝑓𝑓(𝑡𝑡) is a power series in 𝑡𝑡 with 𝑓𝑓(0) = 1, and 𝑢𝑢(𝑡𝑡) is a 

power series in 𝑡𝑡 with 𝑢𝑢(0) = 0 and 𝑢𝑢′(0) = 1, 

(ii) the distribution is additive and 

(iii) a bivariate distribution is generated by using the additive property (2.1), 

then the matrix of correlations of the pairs of orthonormal polynomials on the marginals 

is diagonal.  Further, 𝜌𝜌𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑖𝑖  depends only on the normalising factor of the 𝑖𝑖th 

orthogonal polynomial. 

 
2.3.2 Quadrant Dependence 

Joe (1997) has discussed various forms of bivariate dependence which can be 

used in statistical analysis.  One of them is positive quadrant dependence, introduced by 

Lehmann (1966).  This dependence as well as negative quadrant dependence is a very 

useful measure as it is usually simpler and easier to establish than the other concepts of 

dependence (Lai & Xie, 2000).  Positive and negative quadrant dependences are defined 

as follows. 
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Definition 2.6 (Positive (Negative) Quadrant Dependence):  Two random variables 𝑋𝑋1 

and 𝑋𝑋2 are said to be positive (negative) quadrant dependent if  

 Pr(𝑋𝑋1 ≤ 𝑥𝑥1,𝑋𝑋2 ≤ 𝑥𝑥2) ≥ (≤)Pr(𝑋𝑋1 ≤ 𝑥𝑥1)Pr(𝑋𝑋2 ≤ 𝑥𝑥2),∀𝑥𝑥1, 𝑥𝑥2.           (2.9) 

Jensen (1971) has extended (2.9) to regions other than quadrant with the concept 

of positive dependence when the marginal distributions are identical.  Jensen’s 

definition of positive dependence is as follows. 

Definition 2.7 (Jensen’s Positive Dependence):  Two random variables 𝑋𝑋1 and 𝑋𝑋2 are 

said to be positively dependent if Pr(𝑋𝑋1 ∈ 𝐴𝐴,𝑋𝑋2 ∈ 𝐴𝐴) ≥ 𝑃𝑃𝑃𝑃(𝑋𝑋1 ∈ 𝐴𝐴)𝑃𝑃𝑃𝑃(𝑋𝑋2 ∈ 𝐴𝐴), for 

every measurable set 𝐴𝐴 with respect to the marginal measure. 

 
2.4 Parameter Estimation 

There are several widely used parameter estimation methods.  Among them are 

the classical method of moments, method of even-points and zero-zero cell frequency 

technique.  The more recent estimation methods include the M-estimation, expectation-

maximization (EM) and minimum divergence estimations.  Above all, the method of 

maximum likelihood under regularity conditions has proven to be the most preferred 

method as the estimators are asymptotically unbiased, consistent and efficient.  

Unfortunately, this method of estimation fails to produce satisfactory estimates in the 

presence of outliers in the data.  Minimum Hellinger distance estimation as well as 

several other related minimum divergence methods has been proposed as a method 

which not only overcomes this weakness, but also retains the desirable properties of 

asymptotic unbiasedness, consistency and efficiency. 
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2.4.1 Maximum Likelihood Estimation 

Let 𝐿𝐿(𝜽𝜽; 𝐱𝐱) denote the likelihood function with 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2, … , 𝜃𝜃𝑑𝑑) representing 

the vector of unknown parameters and 𝐱𝐱 = (𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛) is the 𝑛𝑛 sets of observed 

values for the 𝑘𝑘-variate random variable 𝑿𝑿 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘).  The method of maximum 

likelihood estimation (MLE) obtains the estimates of 𝜽𝜽, denoted as 𝜽𝜽� = �𝜃𝜃�1, 𝜃𝜃�2, … , 𝜃𝜃�𝑑𝑑�, 

by maximizing 𝐿𝐿(𝜽𝜽; 𝐱𝐱) with respect to 𝜽𝜽.  In other words, the likelihood equations  

𝜕𝜕ln𝐿𝐿(𝜽𝜽; 𝐱𝐱)
𝜕𝜕𝜃𝜃𝑖𝑖

= 0,  𝑖𝑖 = 1,2, … ,𝑑𝑑                                                                                 (2.10) 

are solved for 𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑑𝑑  as 𝜃𝜃�1,𝜃𝜃�2, … ,𝜃𝜃�𝑑𝑑 . 

 Assuming the following regularity conditions on 𝐿𝐿(𝜽𝜽; 𝐱𝐱) (Cox & Hinkley, 1974) 

(i) the parameter space Ω has finite dimension, is closed and compact, and the true 

parameter value is in the interior to Ω, 

(ii) the probability distributions defined by any two different values of 𝜽𝜽 are distinct, 

and 

(iii) for almost all 𝐱𝐱, the derivatives 𝜕𝜕ln𝐿𝐿(𝜽𝜽;𝐱𝐱)
𝜕𝜕𝜃𝜃𝑖𝑖

, 𝜕𝜕
2ln𝐿𝐿(𝜽𝜽;𝐱𝐱)
𝜕𝜕𝜃𝜃𝑖𝑖

2  and 𝜕𝜕
3ln𝐿𝐿(𝜽𝜽;𝐱𝐱)
𝜕𝜕𝜃𝜃𝑖𝑖

3  exist for every 𝜃𝜃𝑖𝑖 , 

𝑖𝑖 = 1,2, … ,𝑑𝑑 belonging to a non-degenerate interval 𝐴𝐴 

are satisfied, there exists a sequence of roots of (2.10) that is consistent.  However, if 

there is more than one root of (2.10), it is not known which roots are consistent.  Wald 

(1949) has shown that given certain conditions, the global maximum of (2.10) is 

consistent.   
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2.4.2 Minimum Hellinger Distance Estimation  

 Minimum Hellinger distance estimation (MHDE) was first introduced by Beran 

(1977) and followed up by Tamura & Boos (1986) and Simpson (1987, 1989) among 

others.  The more recent studies on MHDE and its related methods include Lindsay 

(1994), Basu et al. (1997) and Basu (2002).  MHDE has been shown to yield estimators 

which are asymptotically efficient and relative to MLE, attractively robust.  MHD 

estimators are also consistent under the correct conditions (Tamura & Boos, 1986; 

Simpson, 1987). 

Let the 𝐿𝐿2 norm be denoted by ‖ℎ(𝑡𝑡)‖2 = (∫|ℎ(𝑡𝑡)|2𝑑𝑑𝑑𝑑)1 2⁄ .  Also, let 𝑓𝑓𝜃𝜃(𝐱𝐱), 

𝐱𝐱 = (𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑘𝑘) denote the pf for a 𝑘𝑘-variate parametric family 𝐹𝐹𝜽𝜽 with 𝜽𝜽 ∈ Ω and 

Ω ∈ ℝ𝑑𝑑 , where Ω is the parameter space.  Let 𝑓𝑓𝑛𝑛(𝐱𝐱) denote the nonparametric density 

estimate obtained from a random sample 𝐗𝐗 = (𝐗𝐗1,𝐗𝐗2, … ,𝐗𝐗𝑛𝑛) of 𝑘𝑘-vectors.  The MHD 

estimate of 𝜽𝜽, denoted by 𝜽𝜽� minimizes the Hellinger distance measure �𝑓𝑓𝑛𝑛
1 2⁄ (𝐱𝐱) −

𝑓𝑓𝜽𝜽
1 2⁄ (𝐱𝐱)�

2

2
.  Succinctly, 

𝜽𝜽� = min
𝜽𝜽∈Ω

�𝑓𝑓𝑛𝑛
1 2⁄ (𝐱𝐱) − 𝑓𝑓𝜽𝜽

1 2⁄ (𝐱𝐱)�
2

2
 .                                                                            (2.11) 

The ease to search for optimum of (2.11) depends on the complexity of the parametric 

pf involved.   

 The MHDE has been generalized by Basu et al. (1997) to obtain the minimum 

generalized Hellinger divergence (MGHD) estimate of 𝜽𝜽, denoted by 𝜽𝜽�, which 

minimizes the divergence measure 𝐾𝐾𝛼𝛼(1 − ∑ 𝑓𝑓𝑛𝑛𝛼𝛼(𝐱𝐱)𝑓𝑓𝜽𝜽1−𝛼𝛼(𝐱𝐱)𝐱𝐱 ), 𝛼𝛼 ∈ (0,1) for count data 

models.  𝐾𝐾𝛼𝛼  is a nonnegative standardizing constant.  Minimizing this divergence 

measure is equivalent to maximizing the term ∑ 𝑓𝑓𝑛𝑛𝛼𝛼(𝐱𝐱)𝑓𝑓𝜽𝜽1−𝛼𝛼(𝐱𝐱)𝐱𝐱  over 𝜽𝜽 ∈ Ω.  This 

estimation method is also asymptotically efficient and robust.   
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However, both MHDE and MGHD perform poorly relative to MLE when the 

sample sizes are small.  Basu et al. (1997) pointed out that this is mainly due to large 

weights being accorded to the empty cells in the data set.  Thus, they suggested a 

penalized version of MGHD (MPGHD) which minimizes the divergence measure 

𝐷𝐷𝛼𝛼 = � �
𝑓𝑓𝑛𝑛(𝐱𝐱)

𝛼𝛼(𝛼𝛼 − 1) ��
𝑓𝑓𝑛𝑛(𝐱𝐱)
𝑓𝑓𝜽𝜽(𝐱𝐱)�

𝛼𝛼−1

− 1� +
𝑓𝑓𝜽𝜽(𝐱𝐱) − 𝑓𝑓𝑛𝑛(𝐱𝐱)

𝛼𝛼
�

𝐱𝐱:𝑓𝑓𝑛𝑛 (𝐱𝐱)≠0

+ � 𝑓𝑓𝜽𝜽(𝐱𝐱)
𝐱𝐱:𝑓𝑓𝑛𝑛 (𝐱𝐱)=0

     (2.12) 

over 𝜽𝜽 ∈ Ω.  They showed that the MPGHD performs just as well as, if not better than, 

MHDE empirically.  For bivariate and multivariate discrete cases, there are invariably 

many empty cells in the data set and thus, MPGHD is expected to be a more appropriate 

method of estimation. 

 
2.4.3 Simulated Annealing 

In principle, the problem of determining the globally optimum estimate when 

there are multiple roots of a given objective function may be resolved by simply finding 

all the roots and then, choosing the root corresponding to the optimum value of the 

function.  Nevertheless, depending on the complexity of the objective function, this 

approach may take a considerable amount of time even to find one root, and there is a 

chance of missing out the root that corresponds to the global optimum.  Furthermore, in 

the case of maximum likelihood estimation, there may be an infinite number of roots of 

(2.10) (Barnett, 1966).  

 In the light of the preceding discussion, the simulated annealing (SA) method is 

employed to estimate the 𝑑𝑑-dimensional unknown parameter vector 𝜽𝜽.  This is a 

discrete optimization method developed in the early 1980s by Kirkpatrick et al. (1983) 

based on a set of ideas put forth by Metropolis et al. (1953) in finding an equilibrium 

point that minimizes the total energy in a system of particles undergoing a change in 
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temperature using statistical thermodynamics.  Essentially, this stochastic global search 

technique approximates the minimum of the objective function 𝑓𝑓. 

SA operates iteratively by choosing a new set of parameter values 𝜽𝜽′ from the 

neighbourhood of the present set of 𝜽𝜽 at a temperature 𝑇𝑇 which follows a specified 

cooling schedule.  This 𝜽𝜽′ is accepted if the value of 𝑓𝑓 is smaller (downhill move).  

Uniquely, SA does not reject outright 𝜽𝜽′ if the value of 𝑓𝑓 is worse (uphill move).  It 

allows 𝜽𝜽′  to be accepted with a positive probability, usually given by the Metropolis 

acceptance probability (Fouskakis & Draper, 2002) 

Pr(𝜽𝜽,𝜽𝜽′ ,𝑇𝑇) = �
 1,                        if 𝑓𝑓(𝜽𝜽′) ≥ 𝑓𝑓(𝜽𝜽)

 𝑒𝑒
�
𝑓𝑓�𝜽𝜽′ �−𝑓𝑓(𝜽𝜽)

𝑇𝑇 �
,    if 𝑓𝑓(𝜽𝜽′) < 𝑓𝑓(𝜽𝜽)

� . 

This flexibility enables the algorithm to escape from getting stuck in local minima. 

 Usually, the temperature 𝑇𝑇 is decreased after every 𝑚𝑚 iterations.  At higher 

temperature, the system accepts moves almost randomly, regardless of whether they are 

uphill or downhill.  As the temperature is lowered, the probability of making uphill 

moves drops and eventually, the system may achieve a globally minimum state when no 

further moves are accepted.  Although this method is initially introduced to solve 

discrete problems, the SA method has been adapted to solve continuous problems as 

well (Brooks & Morgan, 1995; Parker, 2000). 

 The classical SA sometimes suffers a very slow and inefficient convergence to 

the optimum state.  To overcome this, modifications to the cooling schedule and 

acceptance probability or hybrids with other search methods among other solutions have 

been proposed by researchers including Szu & Hartley (1987), Ingber (1992), Brooks 

(1995) and Mendonca & Caloba (1997).  In this thesis, the SA combined with the 

downhill simplex method of Nelder and Mead in the subroutine amebsa proposed by 
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Press et al. (1992) is used for all the required function minimizations.  The efficiency of 

this SA is not affected in the narrow valleys of optimization (Press et al., 1992).  The 

SA algorithm is outlined as follows. 

Algorithm 2.1 (Subroutine amebsa, Press et al., 1992, p. 445):  Outline of SA 

Combined with Downhill Simplex Method  

(1) Initialize a (𝑑𝑑 + 1) × 𝑑𝑑 input matrix 𝐩𝐩 of parameter vectors 𝜽𝜽𝟎𝟎.  The (𝑑𝑑 + 1) 

rows of 𝑑𝑑-dimensional vector 𝜽𝜽𝟎𝟎 are the vertices of the starting simplex. 

(2) Compute the corresponding objective function 𝑓𝑓 for each (𝑑𝑑 + 1) vectors of 

𝜽𝜽𝟎𝟎 and assign the values to a vector 𝐲𝐲 of length (𝑑𝑑 + 1). 

(3) Select the initial temperature 𝑇𝑇0. 

(4) Set 𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐩𝐩(1, : ), 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐲𝐲(1), 𝑇𝑇 = 𝑇𝑇0 and stopping criterion =

false. 

(5) while (stopping criterion ≠ false) 

a) do 

i. Add a random fluctuation to 𝐲𝐲 and assign to 𝐲𝐲𝐲𝐲.  

ii. Determine the point in 𝐩𝐩 with highest (worst), second highest and 

lowest (best) values in 𝐲𝐲𝐲𝐲.     

iii. Compute the fractional range from the highest to lowest value in 

𝐲𝐲𝐲𝐲.  

iv. if satisfactory,  

then  put the best point and function value in slot 1 of arrays 

𝐩𝐩 and 𝐲𝐲; 

RETURN 
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v. Extrapolate by a factor -1 through the face of the simplex from 

the highest point, that is, reflect the simplex from the highest 

point to a new point 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 of length 𝑑𝑑.  If the corresponding 𝑓𝑓 

value assigned to 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 improves, replace 𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 and 

𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦. 

vi. if 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 is smaller than the lowest value in 𝐲𝐲𝐲𝐲, 

then try an additional extrapolation by a factor of 2 to a new 

point 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩; 

if the corresponding 𝑓𝑓 value assigned to 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 improves, 

then replace 𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦; 

else if 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 is worse than the second highest value in 𝐲𝐲𝐲𝐲, 

then look for an intermediate lower point, that is, do a one-

dimensional contraction to a new point 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩; 

if the corresponding 𝑓𝑓 value assigned to 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 improves, 

then replace 𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝐩𝐩𝐩𝐩𝐩𝐩𝐩𝐩 and 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 = 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦; 

if 𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦 is still worse than the highest value in 𝐲𝐲𝐲𝐲, 

 then contract around the lowest point and replace 𝐩𝐩; 

 Compute the corresponding 𝐲𝐲 for the new 𝐩𝐩.  

 end do 

b) if stopping criterion is met,  

then stopping criterion = true; 

  else decrease 𝑇𝑇 according to a selected temperature cooling schedule. 

end while 

(6) 𝜽𝜽𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  is the optimal estimate for 𝜽𝜽 with corresponding optimal objective 

function value of 𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 . 

 



26 
 

2.4.4 Consistency of Estimators 

 One of the basic large sample properties of estimators is the consistency of the 

estimators (Newey & McFadden, 1994).  An estimator 𝜽𝜽� is said to be consistent for the 

parameter 𝜽𝜽 if 𝜽𝜽� converges in probability (weak consistency) or if with probability 1 or 

convergence almost surely (strong consistency) to the true value of the parameter 𝜽𝜽0, 

that is  𝜽𝜽�
𝑃𝑃
→𝜽𝜽0 or 𝜽𝜽�

𝑎𝑎 .𝑠𝑠.
��𝜽𝜽0 as the data sample size 𝑛𝑛 → ∞.   

Definition 2.8 (Uniform Convergence in Probability):  Let 𝑄𝑄�𝑛𝑛(𝜽𝜽) be an objective 

function that converges uniformly in probability to 𝑄𝑄0(𝜽𝜽), where 𝜽𝜽 ∈ Ω.  This implies 

sup𝜽𝜽∈Ω�𝑄𝑄�𝑛𝑛(𝜽𝜽) − 𝑄𝑄0(𝜽𝜽)�
𝑃𝑃
→0. 

The following is a basic consistency theorem from Newey & McFadden (1994).  

Strong consistency result holds when sup𝜽𝜽∈Ω�𝑄𝑄�𝑛𝑛(𝜽𝜽) − 𝑄𝑄0(𝜽𝜽)�
𝑎𝑎 .𝑠𝑠.
�� 0.   

Theorem 2.3 (Newey & McFadden, 1994, p. 2121):  If there is a function 𝑄𝑄0(𝜽𝜽) such 

that 

(i) 𝑄𝑄0(𝜽𝜽) is uniquely maximized at 𝜽𝜽0, 

(ii) Ω is compact, 

(iii) 𝑄𝑄0(𝜽𝜽) is continuous, and 

(iv) 𝑄𝑄�𝑛𝑛(𝜽𝜽) converges uniformly in probability to 𝑄𝑄0(𝜽𝜽), 

then 𝜽𝜽�
𝑃𝑃
→ 𝜽𝜽0. 

 The following theorem is needed to establish consistency of the estimators in 

Chapter 4. 
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Theorem 2.5 (Continuous Mapping Theorem, Athreya & Lahiri, 2006, p. 305):  Let 

{𝑋𝑋𝑛𝑛}𝑛𝑛≥1, 𝑋𝑋 be random variables such that 𝑋𝑋𝑛𝑛
𝑑𝑑
→𝑋𝑋.  Let 𝑓𝑓:ℝ → ℝ be Borel measurable 

such that Pr�𝑋𝑋 ∈ 𝐷𝐷𝑓𝑓� = 0, where 𝐷𝐷𝑓𝑓  is the set of discontinuities of 𝑓𝑓.  Then, 

𝑓𝑓(𝑋𝑋𝑛𝑛)
𝑑𝑑
→𝑓𝑓(𝑋𝑋).  In particular, this holds if 𝑓𝑓:ℝ → ℝ is continuous. 

 
2.5 Hypothesis Testing 

This section will briefly review the Pearson’s 𝜒𝜒2 goodness-of-fit test and two 

commonly used parametric tests of hypotheses, namely the likelihood ratio (LR) and 

score tests.  In large samples, these tests are asymptotically equivalent.  Rao (1973) has 

examined the problem of constructing these tests for simple and composite hypotheses.  

Specifically, one-sided LR and score tests are described. 

 
2.5.1 Pearson’s Chi-Square Goodness-of-Fit Test 

Let the cell probabilities be specified functions of 𝜋𝜋1(𝜽𝜽),𝜋𝜋2(𝜽𝜽), … ,𝜋𝜋𝑘𝑘(𝜽𝜽) of 

𝑑𝑑 < 𝑘𝑘 − 1 unknown parameters 𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑑𝑑), which is estimated by 𝜽𝜽� =

�𝜃𝜃�1,𝜃𝜃�2, … , 𝜃𝜃�𝑑𝑑�.  Further, the estimates of the cell probabilities will simply be denoted as 

𝜋𝜋�1,𝜋𝜋�2, … ,𝜋𝜋�𝑘𝑘 .  Then, the test statistic for the goodness-of-fit test is 

𝜒𝜒2 = �
(𝑛𝑛𝑖𝑖 − 𝑛𝑛𝜋𝜋�𝑖𝑖)2

𝑛𝑛𝜋𝜋�𝑖𝑖

𝑘𝑘

𝑖𝑖=1

= �
�Observed𝑖𝑖 − Expected𝑖𝑖�

2

Expected𝑖𝑖

𝑘𝑘

𝑖𝑖=1

                                  (2.13) 

where 𝑛𝑛𝑖𝑖  is the observed frequency of cell 𝑖𝑖 and 𝑛𝑛 = ∑ 𝑛𝑛𝑖𝑖𝑘𝑘
𝑖𝑖=1 .  Asymptotically, this test 

statistic is distributed as 𝜒𝜒2(𝑘𝑘 − 1 − 𝑑𝑑). 

 The expected frequency in any cell should take a minimum value of 5 to ensure 

that the test statistic is asymptotically 𝜒𝜒2 distributed.  This is done by grouping the 
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expected values of several cells together.  However, in large samples, this minimum 

value can be taken to be as small as one. 

 
2.5.2 Likelihood Ratio and Score Tests 

 Let 𝐱𝐱 = (𝐱𝐱1, 𝐱𝐱2, … , 𝐱𝐱𝑛𝑛) of 𝑘𝑘-vectors with sample size 𝑛𝑛 be as defined in Section 

2.4.1.  Let 𝐻𝐻0 and 𝐻𝐻1 denote null and alternative hypotheses respectively.  Then, it is of 

interest to test  

 𝐻𝐻0 :   𝜃𝜃1 = 𝜃𝜃1
0,𝜃𝜃2 = 𝜃𝜃2

0, … , 𝜃𝜃𝑘𝑘 = 𝜃𝜃𝑘𝑘0;  𝜃𝜃𝑘𝑘+1,𝜃𝜃𝑘𝑘+2, … , 𝜃𝜃𝑑𝑑  unspecified 

against the two-sided alternative 

 𝐻𝐻1 :   𝜽𝜽 = (𝜃𝜃1,𝜃𝜃2, … ,𝜃𝜃𝑑𝑑) unspecified,  

or against the one-sided alternative 

 𝐻𝐻1 :   𝜃𝜃1 ≥ 𝜃𝜃1
0,𝜃𝜃2 ≥ 𝜃𝜃2

0, … ,𝜃𝜃𝑘𝑘 ≥ 𝜃𝜃𝑘𝑘0;  𝜃𝜃𝑘𝑘+1,𝜃𝜃𝑘𝑘+2, … ,𝜃𝜃𝑑𝑑  unspecified. 

• Likelihood Ratio (LR) Test 

For both one-sided and two-sided tests, the LR incorporates the information from 

both the null and alternative models for the data 𝐱𝐱 and gives 

𝜆𝜆 =
sup
𝜽𝜽∈Ω𝐻𝐻0

𝐿𝐿(𝜽𝜽; 𝐱𝐱)

sup
𝜽𝜽∈Ω𝐻𝐻1

𝐿𝐿(𝜽𝜽; 𝐱𝐱) 

where the supremums in the numerator and denominator are evaluated under the 

parameter spaces of 𝐻𝐻0 and 𝐻𝐻1, denoted by Ω𝐻𝐻0  and Ω𝐻𝐻1 , respectively (Rao, 1973).  

The test statistic for LR test is then taken as 

𝐿𝐿𝐿𝐿𝑇𝑇 = −2 ln 𝜆𝜆 = −2 ln�
𝐿𝐿�𝜽𝜽�∗; 𝐱𝐱�
𝐿𝐿�𝜽𝜽�; 𝐱𝐱�

�                                                                       (2.14) 
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where 𝜽𝜽�∗ = �𝜃𝜃1
0,𝜃𝜃2

0, … ,𝜃𝜃𝑘𝑘0,𝜃𝜃�𝑘𝑘+1,𝜃𝜃�𝑘𝑘+2, … ,𝜃𝜃�𝑑𝑑� and 𝜽𝜽� are the maximum likelihood 

estimates under 𝐻𝐻0 and 𝐻𝐻1, respectively.  For a two-sided alternative, the given 

statistic (2.14) has, asymptotically, a 𝜒𝜒2 distribution with 𝑘𝑘 degrees of freedom.  

This distribution will concisely be denoted as 𝜒𝜒𝑘𝑘2.  For a one-sided alternative, Self 

& Liang (1987) gave the asymptotic null distribution for the test statistic under 

certain regularity conditions (see Theorem 3, Self & Liang, 1987, p. 607).  In 

particular, the asymptotic null distribution for the statistic −2 ln 𝜆𝜆 is a 50:50 mixture 

of 𝜒𝜒0
2 and 𝜒𝜒1

2 when 𝑘𝑘 = 1 (see Case 5, Self & Liang, 1987, p. 608).  Here, the 

convention that the central 𝜒𝜒0
2 is identically zero resulting in all probability mass at 

zero is adopted.  When 𝐿𝐿�𝜽𝜽�; 𝐱𝐱� under the one-sided 𝐻𝐻1 is maximized at 𝜽𝜽� = 𝜽𝜽�∗, we 

will have the test statistic 𝐿𝐿𝐿𝐿𝑇𝑇 = 0, yielding a p-value of 1.00. 

• Score Test 

The score test statistic is slightly different between one-sided and two-sided 

cases.  Let the 𝑖𝑖th efficient score of Rao (1973) be 

𝑢𝑢𝑖𝑖(𝜽𝜽) =
1
√𝑛𝑛

𝜕𝜕ln𝐿𝐿(𝜽𝜽; 𝐱𝐱)
𝜕𝜕𝜃𝜃𝑖𝑖

,  𝑖𝑖 = 1,2, … ,𝑑𝑑 

and 𝑛𝑛 is the sample size of data 𝐱𝐱.  

The score test for the two-sided composite hypothesis is given by 

𝑆𝑆𝑐𝑐 = 𝐔𝐔∗𝑇𝑇(𝚪𝚪∗)−1𝐔𝐔∗,  where  

 𝐔𝐔∗𝑇𝑇 = [𝑢𝑢1(𝜽𝜽),𝑢𝑢2(𝜽𝜽), … ,𝑢𝑢𝑑𝑑(𝜽𝜽)]𝜽𝜽=𝜽𝜽�∗ and 𝚪𝚪∗ = �Γ𝑖𝑖𝑖𝑖∗ � = 1
𝑛𝑛
�𝐸𝐸 �− 𝜕𝜕2ln𝐿𝐿(𝜽𝜽;𝐱𝐱)

𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑗𝑗
�
𝜽𝜽=𝜽𝜽�∗

�   

with 𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑑𝑑 being the information matrix of a single observation for 𝜽𝜽 

evaluated under  𝜽𝜽�∗, which is the maximum likelihood estimates under 𝐻𝐻0.  This test 

statistic is also asymptotically distributed as a 𝜒𝜒𝑘𝑘2. 
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 For one-sided test, let 𝜗𝜗𝑖𝑖 = 𝜃𝜃𝑖𝑖 − 𝜃𝜃𝑖𝑖0, 𝑖𝑖 = 1,2, … ,𝑘𝑘.  Then, 𝐻𝐻0 and 𝐻𝐻1 become 

 𝐻𝐻0 :   𝜗𝜗1 = 0,𝜗𝜗2 = 0, … ,𝜗𝜗𝑘𝑘 = 0;  𝜃𝜃𝑘𝑘+1,𝜃𝜃𝑘𝑘+2, … , 𝜃𝜃𝑑𝑑  unspecified,  

 𝐻𝐻1 :   𝜗𝜗1 ≥ 0,𝜗𝜗2 ≥ 0, … ,𝜗𝜗𝑘𝑘 ≥ 0;  𝜃𝜃𝑘𝑘+1,𝜃𝜃𝑘𝑘+2, … ,𝜃𝜃𝑑𝑑  unspecified. 

Let 𝜽𝜽 = (𝝑𝝑,𝝋𝝋) with 𝝑𝝑 = (𝜗𝜗1,𝜗𝜗2, … ,𝜗𝜗𝑘𝑘) and 𝝋𝝋 = (𝜃𝜃𝑘𝑘+1,𝜃𝜃𝑘𝑘+2, … ,𝜃𝜃𝑑𝑑), the score 

statistic is then defined as (Silvapulle & Silvapulle, 1995) 

𝑆𝑆𝑐𝑐1 = 𝐔𝐔𝜗𝜗∗
𝑇𝑇(𝚪𝚪ϑϑ∗ )−1𝐔𝐔𝜗𝜗∗ − inf

 𝐛𝐛∈Ω𝐻𝐻1
{(𝐔𝐔𝜗𝜗∗ − 𝐛𝐛)𝑇𝑇(𝚪𝚪ϑϑ∗ )−1(𝐔𝐔𝜗𝜗∗ − 𝐛𝐛)}                          (2.15) 

where 𝐔𝐔𝜗𝜗∗ = [𝑢𝑢1(𝜽𝜽),𝑢𝑢2(𝜽𝜽), … ,𝑢𝑢𝑘𝑘(𝜽𝜽)]𝜽𝜽=𝜽𝜽�0
∗  and 𝚪𝚪ϑϑ∗ = �Γ𝑖𝑖𝑖𝑖∗ �, 𝑖𝑖, 𝑗𝑗 = 1,2, … ,𝑘𝑘 with 

𝜽𝜽�0
∗ = (𝝑𝝑0,𝝋𝝋�), 𝝑𝝑0 = 𝟎𝟎 and 𝝋𝝋�  is the ML estimate of 𝝋𝝋 under 𝐻𝐻0.  This statistic has 

asymptotically a chi-bar-squared 𝜒̅𝜒2 distribution which is a mixture of 𝜒𝜒2 

distributions.  Readers are referred to the paper by Shapiro (1988) for the detailed 

discussion on this asymptotic distribution.  Nevertheless, it is sufficient for the 

purpose of this thesis to state that when there is only one specified parameter 

(𝑘𝑘 = 1) under 𝐻𝐻0, the p-value of the test is 

Pr�𝑆𝑆𝑐𝑐1 ≥ 𝑠𝑠𝑠𝑠� =
1
2

Pr(𝜒𝜒0
2 ≥ 𝑠𝑠𝑠𝑠) +

1
2

Pr(𝜒𝜒1
2 ≥ 𝑠𝑠𝑠𝑠)                                           (2.16) 

with 𝑠𝑠𝑠𝑠 being the observed value for 𝑆𝑆𝑐𝑐1 .  Again, the convention that 𝜒𝜒0
2 has all 

probability mass at zero is adopted.  If the ML estimate of 𝝑𝝑 under unconstrained 

parameterization is 𝝑𝝑� ≤ 𝝑𝝑0, then the infimum of the second term on the right hand 

side of (2.15) is achieved when 𝐛𝐛 = 𝟎𝟎, yielding 𝑆𝑆𝑐𝑐1 = 0 and a p-value of 1.00.     

Silvapulle & Silvapulle (1995) have shown that the large-sample p-value of the test 

is bounded by 1
2

Pr(𝜒𝜒1
2 ≥ 𝑠𝑠𝑠𝑠) ≤ p-value ≤ 1

2
Pr(𝜒𝜒𝑘𝑘−1

2 ≥ 𝑠𝑠𝑠𝑠) + 1
2

Pr(𝜒𝜒𝑘𝑘2 ≥ 𝑠𝑠𝑠𝑠). 



CHAPTER 3 :  EXTENSION OF A CLASS OF BIVARIATE 

MEIXNER DISTRIBUTIONS 

 

3.0 Introduction 

Univariate binomial, gamma, Meixner hypergeometric, negative binomial, 

normal and Poisson distributions are members of the Meixner class of distributions 

(Meixner, 1934).  The Meixner class of distributions has a number of interesting 

characterizations and properties as described in Chapter 1.  In particular, joint 

distributions of the Meixner class formed by random elements in common have 

canonical expansions and this property has been used to characterize the Meixner class 

of distributions (Eagleson & Lancaster, 1967).  Lancaster (1975) has examined the 

convolutions of these joint Meixner distributions.  The bivariate counterparts of some of 

the distributions in this Meixner class have also been researched by others (see Mardia, 

1970; Kocherlakota & Kocherlakota, 1992).  However, most of these bivariate 

distributions have been formulated in such a way that the marginal distributions have at 

least one parameter in common.  For example, the popular bivariate negative binomial 

distribution of Edwards & Gurland (1961), formulated as a bivariate mixed Poisson 

distribution, has the probability generating function (pgf) for the joint random variables 

(rv’s) (𝑋𝑋1,𝑋𝑋2) given by 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �
Θ

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝜈𝜈

,   Θ = 1 − 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3 

with marginal pgf’s as 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = �
1 − 𝑝𝑝𝑖𝑖

1 − 𝑝𝑝𝑖𝑖𝑧𝑧
�
𝜈𝜈

, 𝑖𝑖 = 1,2 



32 
 

where 𝑝𝑝1 = 𝜃𝜃1+𝜃𝜃3
1−𝜃𝜃2

 and 𝑝𝑝2 = 𝜃𝜃2+𝜃𝜃3
1−𝜃𝜃1

.  Note that the marginals have the same index 

parameter, 𝜈𝜈. 

In this chapter, an extension of the Meixner class of bivariate distributions of 

Eagleson (1964) to bivariate distributions having marginal distributions with different 

parameters is introduced.  Some of these distributions are known with the exception of 

the extended bivariate negative binomial distribution.  This extended bivariate negative 

binomial distribution will be considered in detail.  Specifically, a sufficient condition for 

the joint probability function to have a canonical expansion is given.  Also, the 

application of this extended class in the computer generation of bivariate samples given 

the marginal distributions and correlation are examined.    Multivariate extensions of the 

distributions have also been derived.  Numerical illustrations are given at the end of the 

chapter to demonstrate the viability of this family of distributions. 

Note that, for the entire thesis, 𝑋𝑋~𝐷𝐷(𝜽𝜽) will refer to the rv 𝑋𝑋 being distributed 

as a distribution 𝐷𝐷 with parameter vector 𝜽𝜽. 

 
3.1 Formulation of Bivariate Distributions 

3.1.1 Extended Trivariate Reduction 

The method of trivariate reduction may be extended in the following manner. 

Definition 3.1 (Extension of Trivariate Reduction Method):  Given independent 𝑌𝑌1 and 

𝑌𝑌2 rv’s, consider 

𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1 and 𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2      (3.1) 

where (𝑊𝑊1,𝑊𝑊2) is a pair of randomly correlated elements independent of 𝑌𝑌1 and 𝑌𝑌2.  

Then, the joint rv’s (𝑋𝑋1,𝑋𝑋2) has a distribution formed by the extended trivariate 

reduction method.   
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The common random element 𝑊𝑊 in the usual trivariate reduction is now replaced by the 

joint rv’s (𝑊𝑊1,𝑊𝑊2).  Lai (1995) has examined the situation where 𝑊𝑊1 = 𝐼𝐼1𝑊𝑊 and 

𝑊𝑊2 = 𝐼𝐼2𝑊𝑊, with 𝐼𝐼1 and 𝐼𝐼2 being indicator rv’s such that (𝐼𝐼1, 𝐼𝐼2) has a joint probability 

distribution (𝑝𝑝00,𝑝𝑝01,𝑝𝑝10,𝑝𝑝11). 

For the genesis by (3.1), the general form of the bivariate pgf is given by 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = 𝐺𝐺𝑌𝑌1 (𝑧𝑧1;𝜽𝜽1)𝐺𝐺𝑌𝑌2 (𝑧𝑧2;𝜽𝜽2)𝐺𝐺(𝑊𝑊1,𝑊𝑊2)(𝑧𝑧1, 𝑧𝑧2;𝜽𝜽)                             (3.2) 

where 𝐺𝐺𝑌𝑌1 , 𝐺𝐺𝑌𝑌2 , and 𝐺𝐺(𝑊𝑊1,𝑊𝑊2) are the corresponding pgf of 𝑌𝑌1, 𝑌𝑌2 and (𝑊𝑊1,𝑊𝑊2) with 

parameter vectors 𝜽𝜽1, 𝜽𝜽2 and 𝜽𝜽 respectively.  𝑌𝑌1, 𝑌𝑌2, 𝑊𝑊1 and 𝑊𝑊2 are from the same 

family of univariate discrete distributions with (𝑊𝑊1,𝑊𝑊2) being jointly distributed.  For 

continuous cases, the pgf is replaced by the moment generating function (mgf).  Note 

that if (𝑊𝑊1,𝑊𝑊2) has a distribution formed by trivariate reduction, (𝑋𝑋1,𝑋𝑋2) again has a 

distribution formed by the usual trivariate reduction. 

 The model (3.1) can be easily applied to simulate samples with specified 

marginals and correlation from (𝑋𝑋1,𝑋𝑋2) as follows. 

(1) Generate 𝑦𝑦1 and 𝑦𝑦2 from specified distributions 𝑌𝑌1 and 𝑌𝑌2. 

(2) Use known joint distribution (𝑊𝑊1,𝑊𝑊2) as well as correlation to generate 

(𝑤𝑤1,𝑤𝑤2). 

(3) 𝑥𝑥1 = 𝑦𝑦1 + 𝑤𝑤1 and 𝑥𝑥2 = 𝑦𝑦2 + 𝑤𝑤2.   

a) Bivariate Binomial Distribution 

The formulation (3.1) has been used by Hamdan & Jensen (1976) to generalize 

the then existing bivariate binomial (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) distribution to obtain one with 

different index and probability parameters.  They let 𝑌𝑌1~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛1 − 𝑘𝑘, 𝑝𝑝1), 

𝑌𝑌2~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛2 − 𝑘𝑘,𝑝𝑝2) and (𝑊𝑊1,𝑊𝑊2)~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘,𝑝𝑝00,𝑝𝑝01,𝑝𝑝10, 𝑝𝑝11) be the 
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bivariate binomial random variables with joint pgf (𝑝𝑝00 + 𝑝𝑝10𝑧𝑧1 + 𝑝𝑝01𝑧𝑧2 + 𝑝𝑝11𝑧𝑧1𝑧𝑧2)𝑘𝑘 , 

where 𝑘𝑘 is an integer such that 𝑘𝑘 < min(𝑛𝑛1,𝑛𝑛2). Then, by (3.2), the joint pgf for 

bivariate binomial (𝑋𝑋1,𝑋𝑋2) distribution is 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = (𝑞𝑞1 + 𝑝𝑝1𝑧𝑧1)𝑛𝑛1−𝑘𝑘(𝑞𝑞2 + 𝑝𝑝2𝑧𝑧2)𝑛𝑛2−𝑘𝑘(𝑝𝑝00 + 𝑝𝑝10𝑧𝑧1 + 𝑝𝑝01𝑧𝑧2 + 𝑝𝑝11𝑧𝑧1𝑧𝑧2)𝑘𝑘  

with the marginal pgf’s 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = (𝑞𝑞𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑧𝑧)𝑛𝑛𝑖𝑖 ,  𝑖𝑖 = 1,2 

where 𝑝𝑝1 = 𝑝𝑝10 + 𝑝𝑝11 , 𝑝𝑝2 = 𝑝𝑝01 + 𝑝𝑝11, 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2 and 𝑝𝑝00 + 𝑝𝑝01 + 𝑝𝑝10 +

𝑝𝑝11 = 1.  Also, 0 ≤ 𝑝𝑝1,𝑝𝑝2,𝑝𝑝00,𝑝𝑝01,𝑝𝑝10, 𝑝𝑝11 ≤ 1.  Thus, the marginals are 

𝑋𝑋𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1,2.  This distribution has been considered by Hamdan & 

Jensen (1976) with applications to statistical quality control. 

b) Bivariate Poisson Distribution 

Bivariate Poisson (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵) distribution obtained through the usual trivariate 

reduction (2.1) already results in a distribution with different marginal parameters 

(Holgate, 1964).  Now, let 𝑌𝑌1~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) and 𝑌𝑌2~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2).  As noted in Section 

3.1.1, (𝑋𝑋1,𝑋𝑋2) from formulation (3.1) with (𝑊𝑊1,𝑊𝑊2)~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆3, 𝜆𝜆4, 𝜆𝜆5) formed 

from (2.1) will also have a bivariate Poisson distribution from the usual trivariate 

reduction and the joint pgf is 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = 𝑒𝑒�(𝜆𝜆1+𝜆𝜆3)(𝑧𝑧1−1)+(𝜆𝜆2+𝜆𝜆4)(𝑧𝑧2−1)+𝜆𝜆5(𝑧𝑧1−1)(𝑧𝑧2−1)� 

with the marginal pgf’s 

𝐺𝐺𝑋𝑋1 (𝑧𝑧) = 𝑒𝑒(𝜆𝜆1+𝜆𝜆3)(𝑧𝑧−1) and 𝐺𝐺𝑋𝑋2 (𝑧𝑧) = 𝑒𝑒(𝜆𝜆2+𝜆𝜆4)(𝑧𝑧−1). 

Thus, 𝑋𝑋1~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1 + 𝜆𝜆3) and 𝑋𝑋2~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2 + 𝜆𝜆4). 
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c) Bivariate Gamma Distribution 

The bivariate gamma (𝐵𝐵Γ) distribution arising from the usual trivarite reduction 

method has been introduced by Cherian (1941) (cited in Mardia, 1970).  This 𝐵𝐵Γ 

distribution has different index parameters but the same scale parameter of unity.  On 

the other hand, a 𝐵𝐵Γ distribution with different parameters has been obtained by Gupta 

(1979) through a more mathematically involved formulation.  Gupta obtained the 

distribution by first generalizing an ‘indirect method’ of Bennett & Rice (1934) (cited in 

Gupta, 1979) using the Fourier transform method and then, specializing two arbitrary 

functions (instantaneous nonlinearities) to Dirac delta functionals given the first result.   

Alternatively, Gupta’s (1979) generalization of the 𝐵𝐵Γ distribution may be 

obtained by using the simpler formulation (3.1).  Let 𝑌𝑌1~Γ(𝛼𝛼1,𝛽𝛽1), 𝑌𝑌2~Γ(𝛼𝛼2,𝛽𝛽2) and 

(𝑊𝑊1,𝑊𝑊2)~𝐵𝐵Γ(𝜈𝜈,𝛽𝛽1,𝛽𝛽2, 𝜌𝜌) of Wicksell-Kibble (Kibble, 1941).  Then, the joint mgf of 

bivariate gamma (𝑋𝑋1,𝑋𝑋2) is 

𝑀𝑀(𝑋𝑋1,𝑋𝑋2)(𝑡𝑡1, 𝑡𝑡2) = �1 −
𝑡𝑡1

𝛽𝛽1
�
−𝛼𝛼1

�1 −
𝑡𝑡2

𝛽𝛽2
�
−𝛼𝛼2

��1 −
𝑡𝑡1

𝛽𝛽1
� �1 −

𝑡𝑡2

𝛽𝛽2
� −

𝜌𝜌𝑡𝑡1𝑡𝑡2

𝛽𝛽1𝛽𝛽2
�
−𝜈𝜈

. 

The marginals which have different index and scale parameters are 𝑋𝑋𝑖𝑖~Γ(𝛼𝛼𝑖𝑖 + 𝜈𝜈,𝛽𝛽𝑖𝑖), 

𝑖𝑖 = 1,2 with mgf’s as 𝑀𝑀𝑋𝑋𝑖𝑖(𝑡𝑡) = (1 − 𝑡𝑡𝑖𝑖 𝛽𝛽𝑖𝑖⁄ )−(𝛼𝛼𝑖𝑖+𝜈𝜈), 𝑖𝑖 = 1,2. 

d) Bivariate Normal Distribution 

Pearson (1897) has used the method of trivariate reduction (2.1) to obtain the 

bivariate normal (𝐵𝐵𝐵𝐵) distribution.  Let 𝑌𝑌1~𝑁𝑁(𝜇𝜇1,𝜎𝜎1
2), 𝑌𝑌2~𝑁𝑁(𝜇𝜇2,𝜎𝜎2

2) and 

(𝑊𝑊1,𝑊𝑊2)~𝐵𝐵𝐵𝐵(𝜇𝜇3, 𝜇𝜇4,𝜎𝜎3
2,𝜎𝜎4

2, 𝜌𝜌).  Then, the joint mgf for bivariate normal (𝑋𝑋1,𝑋𝑋2) 

distribution by (3.1) is 

𝑀𝑀(𝑋𝑋1,𝑋𝑋2)(𝑡𝑡1, 𝑡𝑡2) = 𝑒𝑒
�(𝜇𝜇1+𝜇𝜇3)𝑡𝑡1+(𝜇𝜇2+𝜇𝜇4)𝑡𝑡2+1

2��𝜎𝜎1
2+𝜎𝜎3

2�𝑡𝑡1
2+2𝜌𝜌𝜎𝜎3𝜎𝜎4𝑡𝑡1𝑡𝑡2+�𝜎𝜎2

2+𝜎𝜎4
2�𝑡𝑡2

2��
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where 𝜌𝜌 is the correlation between 𝑋𝑋1 and 𝑋𝑋2.  The mgf’s for the marginals are 

 𝑀𝑀𝑋𝑋1 (𝑡𝑡) = 𝑒𝑒�(𝜇𝜇1+𝜇𝜇3)𝑡𝑡+1
2�𝜎𝜎1

2+𝜎𝜎3
2�𝑡𝑡2� and  𝑀𝑀𝑋𝑋2 (𝑡𝑡) = 𝑒𝑒�(𝜇𝜇2+𝜇𝜇4)𝑡𝑡+1

2�𝜎𝜎2
2+𝜎𝜎4

2�𝑡𝑡2�. 

Therefore, 𝑋𝑋1~𝑁𝑁(𝜇𝜇1 + 𝜇𝜇3,𝜎𝜎1
2 + 𝜎𝜎3

2) and 𝑋𝑋2~𝑁𝑁(𝜇𝜇2 + 𝜇𝜇4,𝜎𝜎2
2 + 𝜎𝜎4

2).  

e) Bivariate Negative Binomial Distribution 

• (𝑾𝑾𝟏𝟏,𝑾𝑾𝟐𝟐) distributed as bivariate negative binomial (BNB) distribution of 

Edwards & Gurland (1961), Subrahmaniam (1966) 

Let 𝑌𝑌1~𝑁𝑁𝑁𝑁(𝛼𝛼1,𝑝𝑝1), 𝑌𝑌2~𝑁𝑁𝑁𝑁(𝛼𝛼2, 𝑝𝑝2) and (𝑊𝑊1,𝑊𝑊2)~𝐵𝐵𝐵𝐵𝐵𝐵(𝜈𝜈, 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3) be the  

Edwards and Gurland’s BNB or compound correlated bivariate Poisson distribution 

with joint pgf 

𝐺𝐺(𝑊𝑊1,𝑊𝑊2)(𝑧𝑧1, 𝑧𝑧2) = �
Θ

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝜈𝜈

,   Θ = 1 − 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3. 

Note that this BNB distribution has a correlation coefficient, 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) in the range 

0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) =
(𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2)

�(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)(𝜃𝜃1 + 𝜃𝜃3)(𝜃𝜃2 + 𝜃𝜃3)
≤ 1. 

Then, (𝑋𝑋1,𝑋𝑋2) is an extended bivariate negative binomial (EBNB) with joint pgf 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �
𝑞𝑞1

1 − 𝑝𝑝1𝑧𝑧1
�
𝛼𝛼1
�

𝑞𝑞2

1 − 𝑝𝑝2𝑧𝑧2
�
𝛼𝛼2
�

Θ
1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2

�
𝜈𝜈

 

(3.3) 

where 𝑝𝑝1 = 𝜃𝜃1+𝜃𝜃3
1−𝜃𝜃2

, 𝑝𝑝2 = 𝜃𝜃2+𝜃𝜃3
1−𝜃𝜃1

, 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2 and Θ = 1 − 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3.  The 

marginal pgf’s of 𝑋𝑋1 and 𝑋𝑋2 are given by 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = �
𝑞𝑞𝑖𝑖

1 − 𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖
�
𝛼𝛼𝑖𝑖+𝜈𝜈

, 𝑖𝑖 = 1,2. 
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That is, 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝛼𝛼1 + 𝜈𝜈,𝑝𝑝1) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(𝛼𝛼2 + 𝜈𝜈, 𝑝𝑝2).  The distribution of 

(𝑋𝑋1,𝑋𝑋2) with pgf (3.3) will be denoted as EBNB-I.  This EBNB-I has a correlation in 

the range 0 ≤ 𝜌𝜌(𝑋𝑋1,𝑋𝑋2) ≤ 1 as seen from equation (3.10) because the term (𝜃𝜃3 +

𝜃𝜃1𝜃𝜃2) is nonnegative. 

• (𝑾𝑾𝟏𝟏,𝑾𝑾𝟐𝟐)  distributed as BNB distribution of Mitchell & Paulson (1981)  

Let 𝑌𝑌1~𝑁𝑁𝑁𝑁 �𝛼𝛼1, 𝜙𝜙1
1+𝜙𝜙1

� and 𝑌𝑌2~𝑁𝑁𝑁𝑁 �𝛼𝛼2, 𝜙𝜙2
1+𝜙𝜙2

�.  Also, let Mitchell and Paulson’s 

BNB be denoted as (𝑊𝑊1,𝑊𝑊2)~𝐵𝐵𝐵𝐵𝐵𝐵(𝜈𝜈, 𝜃𝜃1,𝜃𝜃2,𝑎𝑎, 𝑏𝑏, 𝑐𝑐) with joint pgf 

𝐺𝐺(𝑊𝑊1,𝑊𝑊2)(𝑧𝑧1, 𝑧𝑧2) = ��1 + 𝜏𝜏1(1 − 𝑧𝑧1)��1 + 𝜏𝜏2(1 − 𝑧𝑧2)� − 𝑑𝑑�−𝜈𝜈  

⋅ �𝑎𝑎 +
𝑏𝑏

1 + 𝜙𝜙1(1 − 𝑧𝑧1) +
𝑐𝑐

1 + 𝜙𝜙2(1 − 𝑧𝑧2)�
𝜈𝜈

 

where 𝜏𝜏𝑖𝑖 = 𝜃𝜃𝑖𝑖 (1 − 𝜃𝜃𝑖𝑖)⁄ , 𝑖𝑖 = 1,2, 𝜙𝜙1 = 𝜏𝜏1 (𝑎𝑎 + 𝑐𝑐)⁄ , 𝜙𝜙2 = 𝜏𝜏2 (𝑎𝑎 + 𝑏𝑏)⁄  and 𝑑𝑑 = 1 −

𝑎𝑎 − 𝑏𝑏 − 𝑐𝑐 with each parameter being nonnegative, 𝑏𝑏 + 𝑑𝑑 < 1 and 𝑐𝑐 + 𝑑𝑑 < 1.   

Mitchell & Paulson (1981) have introduced this generalization of the BNB so that its 

correlation coefficient 

𝜌𝜌(𝑊𝑊1,𝑊𝑊2) =
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

1 − 𝑑𝑑 �
𝜙𝜙1𝜙𝜙2

(1 + 𝜙𝜙1)(1 + 𝜙𝜙2)�
1
2
 

covers the full range, giving −1 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1.  

By (3.2) this extended EBNB distribution has pgf 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �1 + 𝜙𝜙1(1 − 𝑧𝑧1)�−𝛼𝛼1�1 + 𝜙𝜙2(1 − 𝑧𝑧2)�−𝛼𝛼2  

⋅ ��1 + 𝜏𝜏1(1 − 𝑧𝑧1)��1 + 𝜏𝜏2(1 − 𝑧𝑧2)� − 𝑑𝑑�−𝜈𝜈  

⋅ �𝑎𝑎 +
𝑏𝑏

1 + 𝜙𝜙1(1 − 𝑧𝑧1) +
𝑐𝑐

1 + 𝜙𝜙2(1 − 𝑧𝑧2)�
𝜈𝜈

 

(3.4) 
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The marginal pgf’s of 𝑋𝑋1 and 𝑋𝑋2 are given by 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = �1 + 𝜙𝜙𝑖𝑖(1 − 𝑧𝑧)�−
(𝛼𝛼𝑖𝑖+𝜈𝜈)

,  𝑖𝑖 = 1,2. 

Therefore, 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝛼𝛼1 + 𝜈𝜈,𝜙𝜙1 (1 + 𝜙𝜙1)⁄ ) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(𝛼𝛼2 + 𝜈𝜈,𝜙𝜙2 (1 + 𝜙𝜙2)⁄ ).  This 

distribution of (𝑋𝑋1,𝑋𝑋2) will be denoted as EBNB-II.  The correlation of EBNB-II is 

−1 ≤ 𝜌𝜌(𝑋𝑋1,𝑋𝑋2) ≤ 1 because 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) can take any value in the range [−1, 1] in 

equation (3.10). 

As a special case, when 𝑏𝑏 = 𝑐𝑐 = 0, (𝑊𝑊1,𝑊𝑊2) is distributed as the BNB 

distribution of Edwards & Gurland (1961) which has been considered earlier.  In 

addition, when 𝛼𝛼1 = 𝛼𝛼2 = 𝑏𝑏 = 𝑐𝑐 = 0, (𝑋𝑋1,𝑋𝑋2) is then the BNB of Edwards and 

Gurland.  

 
3.1.2 Mixed Poisson Formulation 

An extension to the compounding technique elucidated in Definition 2.3 is by 

having  

ℎ(𝑥𝑥1, 𝑥𝑥2; 𝜉𝜉) = ∬𝑓𝑓𝑋𝑋1 (𝑥𝑥1|𝜓𝜓1)𝑓𝑓𝑋𝑋2 (𝑥𝑥2|𝜓𝜓2)𝑔𝑔(𝜓𝜓1,𝜓𝜓2; 𝜉𝜉)𝑑𝑑𝜓𝜓1𝑑𝑑𝜓𝜓2                           (3.5)  

where 𝜓𝜓1 and 𝜓𝜓2 are jointly distributed with pdf 𝑔𝑔(𝜓𝜓1,𝜓𝜓2; 𝜉𝜉) (see, for example, Ong, 

1993).  The EBNB distribution can be formulated as a mixed Poisson distribution given 

by (3.5). 

The bivariate gamma distribution considered by Gupta (1979) has mgf  

𝑀𝑀(𝑈𝑈,𝑉𝑉)(𝑡𝑡1, 𝑡𝑡2) = �
𝛽𝛽1

𝛽𝛽1 − 𝑡𝑡1
�
𝛼𝛼1−𝜈𝜈

�
𝛽𝛽2

𝛽𝛽2 − 𝑡𝑡2
�
𝛼𝛼2−𝜈𝜈

��
𝛽𝛽1 − 𝑡𝑡1

𝛽𝛽1
� �
𝛽𝛽2 − 𝑡𝑡2

𝛽𝛽2
� −

𝜌𝜌2𝑡𝑡1𝑡𝑡2

𝛽𝛽1𝛽𝛽2
�
−𝜈𝜈

 

(3.6) 
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where 0 ≤ 𝜌𝜌2 ≤ 1 and 𝜈𝜈 < min(𝛼𝛼1,𝛼𝛼2).  It may be formulated by the extended 

trivariate reduction (3.1) where 𝑌𝑌1~Γ(𝛼𝛼1 − 𝜈𝜈,𝛽𝛽1) and 𝑌𝑌2~Γ(𝛼𝛼2 − 𝜈𝜈,𝛽𝛽2) are 

independent gamma rv’s and (𝑊𝑊1,𝑊𝑊2)~𝐵𝐵Γ(𝜈𝜈,𝛽𝛽1,𝛽𝛽2, 𝜌𝜌) has the Wicksell-Kibble’s 

bivariate gamma distribution (Kibble, 1941). 

The mixed Poisson formulation is as follows: 

Suppose �𝑋𝑋1|𝑈𝑈~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑈𝑈) and �𝑋𝑋2|𝑉𝑉~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑉𝑉) where 𝑈𝑈 and 𝑉𝑉 have a joint 

bivariate gamma distribution given by (3.6).  Then, the unconditional (𝑋𝑋1,𝑋𝑋2) has the 

EBNB distribution. 

The formulation is easily proved by using the following relation between the mgf of the 

mixing distribution and the pgf of the mixed distribution (see Ong, 1990) 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = 𝑀𝑀(𝑈𝑈,𝑉𝑉)(𝑧𝑧1 − 1, 𝑧𝑧2 − 1). 

This leads to the EBNB-I pgf 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �
𝑞𝑞1

1 − 𝑝𝑝1𝑧𝑧1
�
𝛼𝛼1−𝜈𝜈

�
𝑞𝑞2

1 − 𝑝𝑝2𝑧𝑧2
�
𝛼𝛼2−𝜈𝜈

�
Θ

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝜈𝜈

 

(3.7) 

where 𝜈𝜈 < min(𝛼𝛼1,𝛼𝛼2), 𝑝𝑝𝑖𝑖 = 1 (1 + 𝛽𝛽𝑖𝑖)⁄ , 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2,  

𝜃𝜃1 =
𝑝𝑝1(1 − 𝜌𝜌2𝑝𝑝2)
1 − 𝜌𝜌2𝑝𝑝1𝑝𝑝2

, 𝜃𝜃2 =
𝑝𝑝2(1 − 𝜌𝜌2𝑝𝑝1)
1 − 𝜌𝜌2𝑝𝑝1𝑝𝑝2

, 𝜃𝜃3 =
−𝑝𝑝1𝑝𝑝2(1 − 𝜌𝜌2)

1 − 𝜌𝜌2𝑝𝑝1𝑝𝑝2
 

and Θ = 1 − 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3 = 𝑞𝑞1𝑞𝑞2 (1 − 𝜌𝜌2𝑝𝑝1𝑝𝑝2)⁄ .  Note that −1 < 𝜃𝜃3 < 0 with 

𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2 > 0.  Rewriting in terms of 𝜃𝜃1, 𝜃𝜃2 and 𝜃𝜃3, 𝑝𝑝1 = 𝜃𝜃1+𝜃𝜃3
1−𝜃𝜃2

 and 𝑝𝑝2 = 𝜃𝜃2+𝜃𝜃3
1−𝜃𝜃1

.  The 

marginal pgf’s of 𝑋𝑋1 and 𝑋𝑋2 are given by 

𝐺𝐺𝑋𝑋1 (𝑧𝑧) = �
𝑞𝑞1

1 − 𝑝𝑝1𝑧𝑧1
�
𝛼𝛼1

 and 𝐺𝐺𝑋𝑋2 (𝑧𝑧) = �
𝑞𝑞2

1 − 𝑝𝑝2𝑧𝑧2
�
𝛼𝛼2

. 
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That is, 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝛼𝛼1, 𝑝𝑝1) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(𝛼𝛼2,𝑝𝑝2).  As a special case of this EBNB-I, the 

BNB is included with (𝑈𝑈,𝑉𝑉) having the Wicksell-Kibble’s bivariate gamma distribution 

(see Ong, 1990), that is when 𝛼𝛼1 = 𝛼𝛼2 = 𝜈𝜈 in (3.6) and (3.7).   

 
3.2 Extension to Multivariate Distributions 

 The formulation 𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1 and 𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2 can be extended to develop 

multivariate distributions.  By taking 𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1,  𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2, … , 𝑋𝑋𝑘𝑘 = 𝑌𝑌𝑘𝑘 + 𝑊𝑊𝑘𝑘 , 

multivariate distributions with different parameters for the marginals can be obtained.  

Shown below are two examples of multivariate distributions formed by this method. 

• Multivariate negative binomial distribution (MNB) 

Let 𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1,  𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2, … , 𝑋𝑋𝑘𝑘 = 𝑌𝑌𝑘𝑘 + 𝑊𝑊𝑘𝑘  where 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑘𝑘  are 

independent NB rv’s with pgf’s  

𝐺𝐺𝑌𝑌𝑖𝑖(𝑧𝑧𝑖𝑖) = [𝑞𝑞𝑖𝑖 (1 − 𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖)⁄ ]𝛼𝛼𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑘𝑘 

and 𝐖𝐖 = (𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑘𝑘) is distributed as MNB rv’s with pgf 

𝐺𝐺𝐖𝐖(𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘) = �Θ �1 −�𝜃𝜃𝑖𝑖𝑧𝑧𝑖𝑖

𝑘𝑘

𝑖𝑖=1

− � 𝜃𝜃𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘

− ⋯− 𝜃𝜃12…𝑘𝑘𝑧𝑧1𝑧𝑧2 … 𝑧𝑧𝑘𝑘�� �

𝜈𝜈

 

where Θ = 1 − ∑ 𝜃𝜃𝑖𝑖𝑘𝑘
𝑖𝑖=1 − ∑ 𝜃𝜃𝑖𝑖𝑖𝑖1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘 − ⋯− 𝜃𝜃12…𝑘𝑘 .  Thus, 𝐗𝐗 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘) is 

distributed as MNB with pgf  

𝐺𝐺𝐗𝐗(𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘) = ��
𝑞𝑞𝑖𝑖

1 − 𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖
�
𝛼𝛼𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

⋅ �Θ �1 −�𝜃𝜃𝑖𝑖𝑧𝑧𝑖𝑖

𝑘𝑘

𝑖𝑖=1

− � 𝜃𝜃𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘

− ⋯− 𝜃𝜃12…𝑘𝑘𝑧𝑧1𝑧𝑧2 … 𝑧𝑧𝑘𝑘�� �

𝜈𝜈
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with the marginals given by 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = [𝑞𝑞𝑖𝑖 (1 − 𝑝𝑝𝑖𝑖𝑧𝑧)⁄ ]𝛼𝛼𝑖𝑖+𝜈𝜈  

where 𝑝𝑝𝑖𝑖 = 𝜙𝜙𝑖𝑖 (Θ + 𝜙𝜙𝑖𝑖)⁄ , 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑘𝑘 and 

𝜙𝜙𝑖𝑖 = 𝜃𝜃𝑖𝑖 + �𝜃𝜃𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

+ � 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖
1≤𝑟𝑟<𝑠𝑠≤𝑘𝑘
𝑟𝑟≠𝑖𝑖 ,𝑠𝑠≠𝑖𝑖

+ ⋯+ 𝜃𝜃12…𝑘𝑘  . 

Therefore, each of the marginals 𝑋𝑋𝑖𝑖~𝑁𝑁𝑁𝑁(𝛼𝛼𝑖𝑖 + 𝜈𝜈, 𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1,2, … , 𝑘𝑘 will have 

different parameters. 

• Multivariate Binomial Distribution (MBinomial) 

Let 𝑌𝑌1,𝑌𝑌2, … ,𝑌𝑌𝑘𝑘  be independent binomial rv’s with pgf’s  

𝐺𝐺𝑌𝑌𝑖𝑖(𝑧𝑧𝑖𝑖) = (𝑞𝑞𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖)𝑛𝑛𝑖𝑖−𝑛𝑛 , 𝑖𝑖 = 1,2, … , 𝑘𝑘, 𝑛𝑛 < min(𝑛𝑛1,𝑛𝑛2, … ,𝑛𝑛𝑘𝑘) 

and 𝐖𝐖 = (𝑊𝑊1,𝑊𝑊2, … ,𝑊𝑊𝑘𝑘) is distributed as MBinomial rv’s with pgf 

𝐺𝐺𝐖𝐖(𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘) = �Θ + �𝜃𝜃𝑖𝑖𝑧𝑧𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ � 𝜃𝜃𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘

+ ⋯+ 𝜃𝜃12…𝑘𝑘𝑧𝑧1𝑧𝑧2 … 𝑧𝑧𝑘𝑘�

𝑛𝑛

 

where Θ = 1 − ∑ 𝜃𝜃𝑖𝑖𝑘𝑘
𝑖𝑖=1 − ∑ 𝜃𝜃𝑖𝑖𝑖𝑖1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘 − ⋯− 𝜃𝜃12…𝑘𝑘 .  Thus, 𝐗𝐗 = (𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑘𝑘) is 

distributed as MBinomial with pgf  

𝐺𝐺𝐗𝐗(𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘) = �(𝑞𝑞𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖)𝑛𝑛𝑖𝑖−𝑛𝑛
𝑘𝑘

𝑖𝑖=1

 

⋅ �Θ + �𝜃𝜃𝑖𝑖𝑧𝑧𝑖𝑖

𝑘𝑘

𝑖𝑖=1

+ � 𝜃𝜃𝑖𝑖𝑖𝑖 𝑧𝑧𝑖𝑖𝑧𝑧𝑗𝑗
1≤𝑖𝑖<𝑗𝑗≤𝑘𝑘

+ ⋯+ 𝜃𝜃12…𝑘𝑘𝑧𝑧1𝑧𝑧2 … 𝑧𝑧𝑘𝑘�

𝑛𝑛

 

with the marginals given by 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = (𝑞𝑞𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑧𝑧)𝑛𝑛𝑖𝑖  
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where 𝑝𝑝𝑖𝑖 = 𝜙𝜙𝑖𝑖 (Θ + 𝜙𝜙𝑖𝑖)⁄ , 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑘𝑘 and 

𝜙𝜙𝑖𝑖 = 𝜃𝜃𝑖𝑖 + �𝜃𝜃𝑖𝑖𝑖𝑖

𝑘𝑘

𝑗𝑗=1
𝑗𝑗≠𝑖𝑖

+ � 𝜃𝜃𝑖𝑖𝑖𝑖𝑖𝑖
1≤𝑟𝑟<𝑠𝑠≤𝑘𝑘
𝑟𝑟≠𝑖𝑖 ,𝑠𝑠≠𝑖𝑖

+ ⋯+ 𝜃𝜃12…𝑘𝑘  . 

Therefore, each of the marginals 𝑋𝑋𝑖𝑖~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑛𝑛𝑖𝑖 ,𝑝𝑝𝑖𝑖), 𝑖𝑖 = 1,2, … , 𝑘𝑘 will have 

different parameters. 

 
3.3 Canonical Expansion of Bivariate Distributions Formed by Extended 

Trivariate Reduction 

Members of the Meixner class of distributions, considered as weights for 

orthogonal polynomials, have generating functions for their corresponding orthogonal 

polynomials of the form 𝐺𝐺(𝑡𝑡, 𝑥𝑥) = 𝑓𝑓(𝑡𝑡)𝑒𝑒𝑥𝑥𝑥𝑥 (𝑡𝑡).  Eagleson (1964) has shown that their 

bivariate distributions obtained from trivariate reduction (2.1) have canonical 

expansions (Barrett & Lampard, 1955; Lancaster, 1958).  The following result extends 

Eagleson’s result to bivariate distributions which can be formed by the extended 

trivariate reduction explained in Section 3.1.1.  

Result 3.1:  If (𝑊𝑊1,𝑊𝑊2) has a bivariate distribution with canonical expansion in terms 

of orthogonal polynomials, then another bivariate distribution (𝑋𝑋1,𝑋𝑋2) generated using 

the additive property 𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1 and 𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2, where 𝑌𝑌1 and 𝑌𝑌2 are 

independent, also has a canonical expansion in terms of orthogonal polynomials. 

Proof: 

Let 𝜉𝜉𝑟𝑟∗(𝑢𝑢) denote the 𝑟𝑟th orthonormal polynomial of the 𝑟𝑟th orthogonal polynomial 

𝜉𝜉𝑟𝑟(𝑢𝑢) on a distribution 𝑈𝑈 and 𝑐𝑐𝑟𝑟
(𝑈𝑈) = ∫ 𝜉𝜉𝑟𝑟2(𝑢𝑢)𝑑𝑑𝑑𝑑(𝑢𝑢)∞

−∞  where 𝐹𝐹(𝑢𝑢) is the distribution 

function of 𝑈𝑈.  Also, let 𝜌𝜌𝑟𝑟𝑟𝑟
(𝑈𝑈,𝑉𝑉) denote the correlation of a (𝑟𝑟, 𝑠𝑠) pair of such 
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orthonormal polynomials on the marginals of the bivariate distribution (𝑈𝑈,𝑉𝑉), that is 

𝜌𝜌𝑟𝑟𝑟𝑟
(𝑈𝑈,𝑉𝑉) = 𝐸𝐸[𝜉𝜉𝑟𝑟∗(𝑢𝑢)𝜉𝜉𝑠𝑠∗(𝑣𝑣)].  Then, by extending Theorem 2.2, 

�𝑐𝑐𝑟𝑟
(𝑋𝑋1)𝑐𝑐𝑠𝑠

(𝑋𝑋2)�
1
2 𝜌𝜌𝑟𝑟𝑟𝑟

(𝑋𝑋1,𝑋𝑋2) 

= �𝜉𝜉𝑟𝑟(𝑥𝑥1)𝜉𝜉𝑠𝑠(𝑥𝑥2)𝑑𝑑𝑑𝑑(𝑥𝑥1, 𝑥𝑥2) 

= ����𝑟𝑟𝑖𝑖� 𝜉𝜉𝑖𝑖(𝑦𝑦1)𝜉𝜉𝑟𝑟−𝑖𝑖(𝑤𝑤1)
𝑟𝑟

𝑖𝑖=0

����
𝑠𝑠
𝑗𝑗� 𝜉𝜉𝑗𝑗 (𝑦𝑦2)𝜉𝜉𝑠𝑠−𝑗𝑗 (𝑤𝑤2)

𝑠𝑠

𝑗𝑗=0

�𝑑𝑑𝐹𝐹1(𝑦𝑦1)𝑑𝑑𝐹𝐹2(𝑦𝑦2)𝑑𝑑𝐹𝐹12(𝑤𝑤1,𝑤𝑤2) 

= ���𝑟𝑟𝑖𝑖� �
𝑠𝑠
𝑗𝑗�

𝑠𝑠

𝑗𝑗=0

��𝜉𝜉𝑖𝑖(𝑦𝑦1)𝜉𝜉𝑗𝑗 (𝑦𝑦2)𝑑𝑑𝐹𝐹1(𝑦𝑦1)𝑑𝑑𝐹𝐹2(𝑦𝑦2)� �� 𝜉𝜉𝑟𝑟−𝑖𝑖(𝑤𝑤1)𝜉𝜉𝑠𝑠−𝑗𝑗 (𝑤𝑤2)𝑑𝑑𝐹𝐹12(𝑤𝑤1,𝑤𝑤2)�
𝑟𝑟

𝑖𝑖=0

. 

Using a corollary from Lancaster (1963, p. 535) [which states that a necessary and 

sufficient condition for independence of the marginal variables of a bivariate statistical 

distribution is that 𝜌𝜌𝑖𝑖𝑖𝑖 = 0, for 𝑖𝑖 > 0 and 𝑗𝑗 > 0] and Theorem A also from Lancaster 

(1963, p. 532) [which states ∫ 𝜉𝜉𝑖𝑖(𝑢𝑢) 𝜉𝜉𝑗𝑗(𝑣𝑣)𝑑𝑑𝑑𝑑(𝑢𝑢, 𝑣𝑣) = 0 if 𝑖𝑖 ≠ 𝑗𝑗], then  

�𝑐𝑐𝑟𝑟
(𝑋𝑋1)𝑐𝑐𝑠𝑠

(𝑋𝑋2)�
1
2 𝜌𝜌𝑟𝑟𝑟𝑟

(𝑋𝑋1,𝑋𝑋2) = �𝜉𝜉𝑟𝑟(𝑤𝑤1)𝜉𝜉𝑠𝑠(𝑤𝑤2)𝑑𝑑𝐹𝐹12(𝑤𝑤1,𝑤𝑤2) 

 = 𝛿𝛿𝑟𝑟𝑟𝑟 �𝑐𝑐𝑟𝑟
(𝑊𝑊1)𝑐𝑐𝑠𝑠

(𝑊𝑊2)�
1
2 𝜌𝜌𝑟𝑟𝑟𝑟

(𝑊𝑊1,𝑊𝑊2) 

where 𝛿𝛿𝑟𝑟𝑟𝑟  is the Kronecker’s delta, indicating that the matrix of correlations is diagonal. 

■  

Remark: In general, the existence of the canonical expansion of a bivariate distribution 

may be proved by using the criterion of Brown (1958) which requires that the 

conditional moments 𝐸𝐸[�𝑋𝑋𝑛𝑛 |𝑦𝑦] and 𝐸𝐸[�𝑌𝑌𝑛𝑛 |𝑥𝑥]  must be polynomials with degree less than 

or equal to 𝑛𝑛. This criterion may not be easy to apply. 
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3.4 A General Form of Extended Bivariate Negative Binomial 

In this section, the EBNB distribution will be described in further detail.  In the 

mixed Poisson formulation, it is found that −1 < 𝜃𝜃3 < 0 whereas by the extended 

trivariate reduction formulation, 0 < 𝜃𝜃3 < 1 for the EBNB-I distribution.  Hence, a 

general EBNB-I distribution with −1 < 𝜃𝜃3 < 1 can be now defined. 

Definition 3.2 (Extended Bivariate Negative Binomial):  The joint pgf of the EBNB-I is  

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �
𝑞𝑞1

1 − 𝑝𝑝1𝑧𝑧1
�
𝛼𝛼1
�

𝑞𝑞2

1 − 𝑝𝑝2𝑧𝑧2
�
𝛼𝛼2
�

Θ
1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2

�
𝜈𝜈

 

(3.8) 

with the parameters 𝑝𝑝1 = 𝜃𝜃1+𝜃𝜃3
1−𝜃𝜃2

, 𝑝𝑝2 = 𝜃𝜃2+𝜃𝜃3
1−𝜃𝜃1

, 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2 and Θ = 1 − 𝜃𝜃1 −

𝜃𝜃2 − 𝜃𝜃3, and the restrictions 0 < 𝑝𝑝1, 𝑝𝑝2,𝜃𝜃1,𝜃𝜃2,Θ < 1, −1 < 𝜃𝜃3 < 1, 𝜃𝜃3 + 𝜃𝜃1 > 0, 

𝜃𝜃3 + 𝜃𝜃2 > 0, 𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2 > 0 and 𝛼𝛼1,𝛼𝛼2, 𝜈𝜈 > 0.   

This is obtained by combining (3.3) and (3.7) (substitute 𝛼𝛼1 − 𝜈𝜈 with 𝛼𝛼1 and 𝛼𝛼2 − 𝜈𝜈 

with 𝛼𝛼2).  Furthermore, note that the marginal distributions 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝛼𝛼1 + 𝜈𝜈,𝑝𝑝1) and 

𝑋𝑋2~𝑁𝑁𝑁𝑁(𝛼𝛼2 + 𝜈𝜈, 𝑝𝑝2) have different parameters.  The correlation is in the range [0,1] as 

indicated by equation (3.10). 

The following discussion focuses on the distributional properties for the EBNB-I 

distribution. 

 
3.4.1 Joint Probability Mass Function  

 To obtain the EBNB-I distribution’s pmf from the pgf, equation (3.8) is 

expanded in powers of 𝑧𝑧1 and 𝑧𝑧2.  Then, the coefficient for the term 𝑧𝑧1
𝑥𝑥1𝑧𝑧2

𝑥𝑥2  will give the 

pmf Pr(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2) = 𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) as 
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𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓𝑋𝑋1
(𝑥𝑥1)𝑓𝑓𝑋𝑋2

(𝑥𝑥2) �
Θ

𝑞𝑞1𝑞𝑞2
�
𝜈𝜈

���
(𝛼𝛼1)𝑥𝑥1−𝑟𝑟

(𝛼𝛼1 + 𝜈𝜈)𝑥𝑥1

�𝑥𝑥1
𝑟𝑟 � �

𝜃𝜃1

𝑝𝑝1
�
𝑟𝑟 (𝛼𝛼2)𝑥𝑥2−𝑠𝑠

(𝛼𝛼2 + 𝜈𝜈)𝑥𝑥2

�𝑥𝑥2
𝑠𝑠 � �

𝜃𝜃2

𝑝𝑝2
�
𝑠𝑠
�

𝑥𝑥2

𝑠𝑠=0

𝑥𝑥1

𝑟𝑟=0

 

⋅ � �(𝜈𝜈)𝑟𝑟+𝑠𝑠−𝑖𝑖 �
𝑟𝑟
𝑖𝑖� �

𝑠𝑠
𝑖𝑖� 𝑖𝑖! �

𝜃𝜃3

𝜃𝜃1𝜃𝜃2
�
𝑖𝑖

�
min (𝑟𝑟 ,𝑠𝑠)

𝑖𝑖=0

 

where 𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖) = (𝛼𝛼𝑖𝑖 + 𝜈𝜈)𝑥𝑥𝑖𝑖𝑝𝑝𝑖𝑖
𝑥𝑥𝑖𝑖 𝑞𝑞𝑖𝑖

𝛼𝛼𝑖𝑖+𝜈𝜈 𝑥𝑥𝑖𝑖 !� , 𝑖𝑖 = 1,2 are the pmf’s of the marginal 

distributions 𝑋𝑋1 and 𝑋𝑋2 and the parameters are as defined in Section 3.1.1 e).  Another 

method to obtain this pmf is described in Section 2.2.1. 

 On the other hand, for the case when 𝜈𝜈 is a non-negative integer, the pmf for 

EBNB-II is given below as 

Pr(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2) 

= 𝑓𝑓𝑋𝑋1
(𝑥𝑥1)𝑓𝑓𝑋𝑋2

(𝑥𝑥2) �
𝜈𝜈!

𝛼𝛼!𝛽𝛽! 𝛾𝛾!
𝜆𝜆1
𝛼𝛼𝜆𝜆2

𝛽𝛽𝜆𝜆3
𝛾𝛾 [(1 − 𝑑𝑑)(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)]𝜈𝜈

𝛼𝛼 ,𝛽𝛽 ,𝛾𝛾≥0
𝛼𝛼+𝛽𝛽+𝛾𝛾=𝜈𝜈

 

⋅  ��
(𝛼𝛼1)𝑥𝑥1−𝑟𝑟

(𝛼𝛼1 + 𝜈𝜈)𝑥𝑥1

�𝑥𝑥1
𝑟𝑟 �

(𝛼𝛼2)𝑥𝑥2−𝑠𝑠

(𝛼𝛼2 + 𝜈𝜈)𝑥𝑥2

�𝑥𝑥2
𝑠𝑠 �

𝑥𝑥2

𝑠𝑠=0

𝑥𝑥1

𝑟𝑟=0

���(𝜈𝜈)𝑟𝑟−𝑖𝑖(𝜈𝜈)𝑖𝑖 �
𝑟𝑟
𝑖𝑖� �𝜃𝜃1 �

𝜙𝜙1

1 + 𝜙𝜙1
�� �

𝑖𝑖
�

𝑠𝑠

𝑗𝑗=0

𝑟𝑟

𝑖𝑖=0

 

⋅  �(𝜈𝜈)𝑠𝑠−𝑗𝑗 (𝜈𝜈)𝑗𝑗 �
𝑠𝑠
𝑗𝑗� �𝜃𝜃1 �

𝜙𝜙1

1 + 𝜙𝜙1
�� �

𝑗𝑗

𝐹𝐹1 �𝜈𝜈 + 𝑖𝑖, 𝜈𝜈 + 𝑗𝑗; 𝜈𝜈;𝑑𝑑(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)�2 � 

where the parameters are as defined in Section 3.1.1 e), 𝜆𝜆1 = 𝑎𝑎
1−𝑑𝑑

, 𝜆𝜆2 = 𝑏𝑏
1−𝑑𝑑

, 𝜆𝜆3 = 𝑐𝑐
1−𝑑𝑑

 

and 𝑓𝑓𝑋𝑋𝑖𝑖(𝑥𝑥𝑖𝑖) = (𝛼𝛼𝑖𝑖 + 𝜈𝜈)𝑥𝑥𝑖𝑖 �
𝜙𝜙𝑖𝑖

1+𝜙𝜙𝑖𝑖
�
𝑥𝑥𝑖𝑖
� 1

1+𝜙𝜙𝑖𝑖
�
𝛼𝛼𝑖𝑖+𝜈𝜈

𝑥𝑥𝑖𝑖 !� , 𝑖𝑖 = 1,2 are the pmf’s of the marginal 

distributions 𝑋𝑋1 and 𝑋𝑋2.   
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3.4.2 Factorial Moments and Correlation 

 By differentiating the pgf (3.8) repeatedly,  

𝐺𝐺(𝑥𝑥1,𝑥𝑥2)(𝑧𝑧1, 𝑧𝑧2)

= 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2)���
(𝛼𝛼1)𝑥𝑥1−𝑟𝑟

(𝑥𝑥1 − 𝑟𝑟)! �
𝑝𝑝1

1 − 𝑝𝑝1𝑧𝑧1
�
𝑥𝑥1−𝑟𝑟 (𝛼𝛼2)𝑥𝑥2−𝑠𝑠

(𝑥𝑥2 − 𝑠𝑠)! �
𝑝𝑝2

1 − 𝑝𝑝2𝑧𝑧2
�
𝑥𝑥2−𝑠𝑠 �

𝑥𝑥2

𝑠𝑠=0

𝑥𝑥1

𝑟𝑟=0

 

⋅ �
(𝜈𝜈)𝑟𝑟+𝑠𝑠−𝑖𝑖

𝑖𝑖! (𝑟𝑟 − 𝑖𝑖)! (𝑠𝑠 − 𝑖𝑖)! �
𝜃𝜃1 + 𝜃𝜃3𝑧𝑧2

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝑟𝑟−𝑖𝑖

�
𝜃𝜃2 + 𝜃𝜃3𝑧𝑧1

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝑠𝑠−𝑖𝑖min (𝑟𝑟 ,𝑠𝑠)

𝑖𝑖=0

 

�⋅ �
𝜃𝜃3

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝑖𝑖

� 𝑥𝑥1! 𝑥𝑥2! 

and with equation (2.5), this gives the factorial moment of order (𝑥𝑥1, 𝑥𝑥2) as 

𝜇𝜇(𝑋𝑋1,𝑋𝑋2)
[𝑥𝑥1,𝑥𝑥2] = 𝜇𝜇𝑋𝑋1

[𝑥𝑥1]𝜇𝜇𝑋𝑋2

[𝑥𝑥2] ���
(𝛼𝛼1)𝑥𝑥1−𝑟𝑟

(𝛼𝛼1 + 𝜈𝜈)𝑥𝑥1

�𝑥𝑥1
𝑟𝑟 �

(𝛼𝛼2)𝑥𝑥2−𝑠𝑠

(𝛼𝛼2 + 𝜈𝜈)𝑥𝑥2

�𝑥𝑥2
𝑠𝑠 �
�

𝑥𝑥2

𝑠𝑠=0

𝑥𝑥1

𝑟𝑟=0

 

�⋅ � (𝜈𝜈)𝑟𝑟+𝑠𝑠−𝑖𝑖 �
𝑟𝑟
𝑖𝑖� �

𝑠𝑠
𝑖𝑖� 𝑖𝑖! �

Θ𝜃𝜃3
(𝜃𝜃1 + 𝜃𝜃3)(𝜃𝜃2 + 𝜃𝜃3)�

𝑖𝑖min (𝑟𝑟 ,𝑠𝑠)

𝑖𝑖=0

� 

(3.9) 

where 𝜇𝜇𝑋𝑋𝑖𝑖
[𝑥𝑥𝑖𝑖] = (𝛼𝛼𝑖𝑖 + 𝜈𝜈)𝑥𝑥𝑖𝑖(𝑝𝑝𝑖𝑖 𝑞𝑞𝑖𝑖⁄ )𝑥𝑥𝑖𝑖 , 𝑖𝑖 = 1,2, are the factorial moments of the marginal 

distributions 𝑋𝑋1 and 𝑋𝑋2, of order 𝑥𝑥1 and 𝑥𝑥2, respectively. 

From (2.6), (3.9) and 𝜇𝜇𝑋𝑋𝑖𝑖
[𝑥𝑥𝑖𝑖], 𝑖𝑖 = 1,2, the correlation coefficient is found to be  

𝜌𝜌(𝑋𝑋1,𝑋𝑋2) =
𝜈𝜈(𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2)

�(𝛼𝛼1 + 𝜈𝜈)(𝛼𝛼2 + 𝜈𝜈)(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)(𝜃𝜃1 + 𝜃𝜃3)(𝜃𝜃2 + 𝜃𝜃3)
 

=
𝜈𝜈

�(𝛼𝛼1 + 𝜈𝜈)(𝛼𝛼2 + 𝜈𝜈)
𝜌𝜌(𝑊𝑊1,𝑊𝑊2)                                                                 (3.10) 

where 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) is the correlation coefficient of (𝑊𝑊1,𝑊𝑊2).   
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3.4.3 Conditional Distributions and Regressions 

 From Theorem 2.1, the pgf of the conditional distribution of 𝑋𝑋1 given 𝑋𝑋2 = 𝑥𝑥2 is 

𝐺𝐺𝑋𝑋1 (𝑧𝑧|𝑥𝑥2) = �
1 − 𝑝𝑝1

1 − 𝑝𝑝1𝑧𝑧
�
𝛼𝛼1

�
Pr(𝑌𝑌2 = 𝑥𝑥2 − 𝑠𝑠)Pr(𝑊𝑊2 = 𝑠𝑠)

Pr(𝑋𝑋2 = 𝑥𝑥2)

𝑥𝑥2

𝑠𝑠=0

 

⋅ �
𝜃𝜃2 + 𝜃𝜃3𝑧𝑧
𝜃𝜃2 + 𝜃𝜃3

�
𝑠𝑠

�1 −
𝜃𝜃1

1 − 𝜃𝜃1
(𝑧𝑧 − 1)�

−(𝜈𝜈+𝑠𝑠)

 

(3.11) 

From (3.11), the conditional distribution of 𝑋𝑋1 given 𝑋𝑋2 = 𝑥𝑥2 is observed to be the 

convolution of 𝑉𝑉1 and 𝑉𝑉2 where 𝑉𝑉1~𝑁𝑁𝑁𝑁(𝛼𝛼1,𝑝𝑝1) and 𝑉𝑉2 is a finite mixture of 

convolutions (𝑈𝑈1𝑠𝑠 + 𝑈𝑈2𝑠𝑠), 𝑠𝑠 = 0,1, … , 𝑥𝑥2 with 𝑈𝑈1𝑠𝑠~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑠𝑠, 𝜃𝜃3
𝜃𝜃2+𝜃𝜃3

� and 

𝑈𝑈2𝑠𝑠~𝑁𝑁𝑁𝑁(𝜈𝜈 + 𝑠𝑠, 𝜃𝜃1) when 0 < 𝜃𝜃3 < 1.  When −1 < 𝜃𝜃3 < 0, 𝑉𝑉2 is a mixture of 

convolutions of pseudo-binomial and negative binomial random variables as described 

in Kemp (1979). 

 Hence, the regression of 𝑋𝑋1 on 𝑋𝑋2  according to Corollary 2.1 is  

𝐸𝐸[�𝑋𝑋1|𝑋𝑋2 = 𝑥𝑥2] = 𝐸𝐸[𝑉𝑉1] + 𝐸𝐸[𝑉𝑉2] 

    =
𝛼𝛼1𝑝𝑝1

𝑞𝑞1
+ �

Pr(𝑌𝑌2 = 𝑥𝑥2 − 𝑠𝑠)Pr(𝑊𝑊2 = 𝑠𝑠)
Pr(𝑋𝑋2 = 𝑥𝑥2) (𝐸𝐸[𝑈𝑈1𝑠𝑠] + 𝐸𝐸[𝑈𝑈2𝑠𝑠])

𝑥𝑥2

𝑠𝑠=0

  

=
𝛼𝛼1𝑝𝑝1

𝑞𝑞1
+

𝜈𝜈𝜃𝜃1

1 − 𝜃𝜃1
+ �

𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2

(1 − 𝜃𝜃1)(𝜃𝜃2 + 𝜃𝜃3)��
Pr(𝑌𝑌2 = 𝑥𝑥2 − 𝑠𝑠)Pr(𝑊𝑊2 = 𝑠𝑠)

Pr(𝑋𝑋2 = 𝑥𝑥2)

𝑥𝑥2

𝑠𝑠=0

.  

Note that 𝑉𝑉1 is equivalent to 𝑌𝑌1~𝑁𝑁𝑁𝑁(𝛼𝛼1,𝑝𝑝1) and 𝑉𝑉2 gives the conditional distribution 

of 𝑊𝑊1 given 𝑊𝑊2 = 𝑠𝑠. 

Similarly, the pgf of the conditional distribution of 𝑋𝑋2 given 𝑋𝑋1 = 𝑥𝑥1 and the 

regression of 𝑋𝑋2 on 𝑋𝑋1 are obtained as 
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𝐺𝐺𝑋𝑋2 (𝑧𝑧|𝑥𝑥1) = �
1 − 𝑝𝑝2

1 − 𝑝𝑝2𝑧𝑧
�
𝛼𝛼2

�
Pr(𝑌𝑌1 = 𝑥𝑥1 − 𝑠𝑠)Pr(𝑊𝑊1 = 𝑠𝑠)

Pr(𝑋𝑋1 = 𝑥𝑥1)

𝑥𝑥1

𝑠𝑠=0

 

⋅ �
𝜃𝜃1 + 𝜃𝜃3𝑧𝑧
𝜃𝜃1 + 𝜃𝜃3

�
𝑠𝑠

�1 −
𝜃𝜃2

1 − 𝜃𝜃2
(𝑧𝑧 − 1)�

−(𝜈𝜈+𝑠𝑠)

 

and  

𝐸𝐸[ �𝑋𝑋2|𝑋𝑋1 = 𝑥𝑥1] =
𝛼𝛼2𝑝𝑝2

𝑞𝑞2
+

𝜈𝜈𝜃𝜃2

1 − 𝜃𝜃2
+ �

𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2

(1 − 𝜃𝜃2)(𝜃𝜃1 + 𝜃𝜃3)��
Pr(𝑌𝑌1 = 𝑥𝑥1 − 𝑠𝑠)Pr(𝑊𝑊1 = 𝑠𝑠)

Pr(𝑋𝑋1 = 𝑥𝑥1)

𝑥𝑥1

𝑠𝑠=0

. 

Furthermore, 

𝐸𝐸��𝑋𝑋1
𝑘𝑘�𝑋𝑋2 = 𝑥𝑥2� = ���𝑘𝑘𝑖𝑖�

Pr(𝑌𝑌2 = 𝑥𝑥2 − 𝑠𝑠)Pr(𝑊𝑊2 = 𝑠𝑠)
Pr(𝑋𝑋2 = 𝑥𝑥2)

𝑥𝑥2

𝑠𝑠=0

𝑘𝑘

𝑖𝑖=0

𝐸𝐸�𝑌𝑌1
𝑘𝑘−𝑖𝑖�𝐸𝐸��𝑊𝑊1

𝑖𝑖 �𝑊𝑊2 = 𝑠𝑠�. 

 
3.4.4 Canonical Expansion 

Result 3.1 shows that the EBNB-I distribution has a canonical expansion in 

terms of orthogonal polynomials, which is derived next. 

 The factorial moment generating function (fmgf) for 𝑓𝑓(𝑥𝑥)𝑚𝑚𝑟𝑟(𝑥𝑥; 𝜈𝜈,𝑝𝑝) (𝜈𝜈)𝑟𝑟⁄  is 

�(1 + 𝑡𝑡)𝑥𝑥𝑓𝑓(𝑥𝑥)𝑚𝑚𝑟𝑟(𝑥𝑥; 𝜈𝜈,𝑝𝑝) (𝜈𝜈)𝑟𝑟⁄
∞

𝑥𝑥=0

= (−𝑝𝑝)−𝑟𝑟 �
𝑡𝑡𝑡𝑡
𝑞𝑞 �

𝑟𝑟
�1 −

𝑡𝑡𝑡𝑡
𝑞𝑞 �

−(𝜈𝜈+𝑟𝑟)
            (3.12) 

where 𝑚𝑚𝑟𝑟(𝑥𝑥; 𝜈𝜈, 𝑝𝑝) = (𝜈𝜈)𝑟𝑟 ⋅ 𝐹𝐹1 (−𝑟𝑟,−𝑥𝑥; 𝜈𝜈; 1 − 1 𝑝𝑝⁄ )2  is the 𝑟𝑟th Meixner polynomial 

and 𝑓𝑓(𝑥𝑥) = (𝜈𝜈)𝑥𝑥𝑝𝑝𝑥𝑥 𝑞𝑞𝜈𝜈 𝑥𝑥!⁄  is the NB pmf . 

 The fmgf of EBNB-I distribution from (3.3) is 

𝐻𝐻(𝑡𝑡1, 𝑡𝑡2) = (1 − 𝐴𝐴1𝑡𝑡1)−(𝛼𝛼1+𝜈𝜈)(1 − 𝐴𝐴2𝑡𝑡2)−(𝛼𝛼2+𝜈𝜈) �1 −
(𝐴𝐴3 + 𝐴𝐴1𝐴𝐴2)𝑡𝑡1𝑡𝑡2

(1 − 𝐴𝐴1𝑡𝑡1)(1 − 𝐴𝐴2𝑡𝑡2)�
−𝜈𝜈
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where 𝐴𝐴1 = 𝑝𝑝1 𝑞𝑞1⁄ , 𝐴𝐴2 = 𝑝𝑝2 𝑞𝑞2⁄  and 𝐴𝐴3 = 𝜃𝜃3 Θ⁄ .  Following the same technique in 

Kocherlakota and Kocherlakota (1992, p. 135), 𝐻𝐻(𝑡𝑡1, 𝑡𝑡2) is expanded to give 

𝐻𝐻(𝑡𝑡1, 𝑡𝑡2) = �
(𝜈𝜈)𝑖𝑖
𝑖𝑖!

∞

𝑖𝑖=0

�
𝜌𝜌(𝑊𝑊1,𝑊𝑊2)�(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)

Θ�𝐴𝐴1𝐴𝐴2
�
𝑖𝑖

 

⋅ (𝐴𝐴1𝑡𝑡1)𝑖𝑖(1 − 𝐴𝐴1𝑡𝑡1)−(𝛼𝛼1+𝜈𝜈+𝑖𝑖)(𝐴𝐴2𝑡𝑡2)𝑖𝑖(1 − 𝐴𝐴2𝑡𝑡2)−(𝛼𝛼2+𝜈𝜈+𝑖𝑖). 

(3.13) 

Using the relation in (3.12), the canonical expansion for the pmf of EBNB-I distribution 

is found to be 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓𝑋𝑋1 (𝑥𝑥1)𝑓𝑓𝑋𝑋2 (𝑥𝑥2)��
𝜌𝜌(𝑊𝑊1,𝑊𝑊2)�(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)

Θ�𝐴𝐴1𝐴𝐴2
�
𝑖𝑖

(𝜈𝜈)𝑖𝑖(𝑝𝑝1𝑝𝑝2)𝑖𝑖

𝑖𝑖!

∞

𝑖𝑖=0

 

⋅
𝑚𝑚𝑖𝑖(𝑥𝑥1;𝛼𝛼1 + 𝜈𝜈,𝑝𝑝1)

(𝛼𝛼1 + 𝜈𝜈)𝑖𝑖
𝑚𝑚𝑖𝑖(𝑥𝑥2;𝛼𝛼2 + 𝜈𝜈, 𝑝𝑝2)

(𝛼𝛼2 + 𝜈𝜈)𝑖𝑖
. 

Then, 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = 𝑓𝑓𝑋𝑋1
(𝑥𝑥1)𝑓𝑓𝑋𝑋2

(𝑥𝑥2)�
(𝜈𝜈)𝑖𝑖𝜌𝜌(𝑊𝑊1,𝑊𝑊2)

𝑖𝑖

�(𝛼𝛼1 + 𝜈𝜈)𝑖𝑖(𝛼𝛼2 + 𝜈𝜈)𝑖𝑖
𝑚𝑚𝑖𝑖
∗(𝑥𝑥1;𝛼𝛼1 + 𝜈𝜈,𝑝𝑝1)𝑚𝑚𝑖𝑖

∗(𝑥𝑥2;𝛼𝛼2 + 𝜈𝜈,𝑝𝑝2)
∞

𝑖𝑖=0

 

(3.14) 

where 𝑓𝑓𝑋𝑋𝑗𝑗 �𝑥𝑥𝑗𝑗 � = �𝛼𝛼𝑗𝑗 + 𝜈𝜈�
𝑥𝑥𝑗𝑗
𝑝𝑝𝑗𝑗
𝑥𝑥𝑗𝑗 𝑞𝑞𝑗𝑗

𝛼𝛼𝑗𝑗+𝜈𝜈 𝑥𝑥𝑗𝑗 !� , 𝑗𝑗 = 1,2 are the marginal pmf’s of 𝑋𝑋1 and 𝑋𝑋2 

and 𝑚𝑚𝑖𝑖
∗�𝑥𝑥𝑗𝑗 ;𝛼𝛼𝑗𝑗 + 𝜈𝜈, 𝑝𝑝𝑗𝑗 � = 𝑚𝑚𝑖𝑖�𝑥𝑥𝑗𝑗 ;𝛼𝛼𝑗𝑗 + 𝜈𝜈,𝑝𝑝𝑗𝑗 � ��𝛼𝛼𝑗𝑗 + 𝜈𝜈�

𝑖𝑖
𝑖𝑖! 𝑝𝑝𝑗𝑗−𝑖𝑖� , 𝑗𝑗 = 1,2 is the ith 

orthonormal Meixner polynomial. 

 
3.4.5 Quadrant Dependence 

It is easy to show that the EBNB-I distribution is positively quadrant dependent 

from the canonical expansion of its joint pmf given by (3.14) when the marginals are 
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identical.  Next, it is shown that EBNB-I and EBNB-II distributions are quadrant 

dependent when the marginal parameters are different.  

Result 3.2:  The EBNB-II (based on Mitchell and Paulson’s BNB) distribution with joint 

pgf (3.4) is positive quadrant dependent when 0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1 and negative quadrant 

dependent when −1 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 0. 

Proof:   

Note that 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) ≥ (≤)𝐺𝐺𝑋𝑋1 (𝑧𝑧1)𝐺𝐺𝑋𝑋2 (𝑧𝑧2) implies Pr(𝑋𝑋1 ≤ 𝑥𝑥1,𝑋𝑋2 ≤ 𝑥𝑥2) ≥

(≤)Pr(𝑋𝑋1 ≤ 𝑥𝑥1)Pr(𝑋𝑋2 ≤ 𝑥𝑥2),∀𝑥𝑥1, 𝑥𝑥2, that is, positive (negative) quadrant dependence 

(2.9).  This follows by extracting the (𝑥𝑥1, 𝑥𝑥2)-th term from the pgf. 

Rewriting equation (3.4),  

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) 

= �1 + 𝜙𝜙1(1 − 𝑧𝑧1)�−
(𝛼𝛼1+𝜈𝜈)

�1 + 𝜙𝜙2(1 − 𝑧𝑧2)�−
(𝛼𝛼2+𝜈𝜈)

 

⋅ �
1 + 𝜏𝜏1(1 − 𝑧𝑧1) + 𝜏𝜏2(1 − 𝑧𝑧2) + 𝜏𝜏1𝜏𝜏2(1 − 𝑧𝑧1)(1 − 𝑧𝑧2) − 𝑑𝑑

1 + 𝜏𝜏1(1 − 𝑧𝑧1) + 𝜏𝜏2(1 − 𝑧𝑧2) + 𝑎𝑎𝜙𝜙1𝜙𝜙2(1 − 𝑧𝑧1)(1 − 𝑧𝑧2) − 𝑑𝑑�
−𝜈𝜈

 

= �1 + 𝜙𝜙1(1 − 𝑧𝑧1)�−
(𝛼𝛼1+𝜈𝜈)

�1 + 𝜙𝜙2(1 − 𝑧𝑧2)�−
(𝛼𝛼2+𝜈𝜈)

 

⋅ �1 −
(𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏)𝜙𝜙1𝜙𝜙2(1 − 𝑧𝑧1)(1 − 𝑧𝑧2)

Φ
�
−𝜈𝜈

 

= �1 + 𝜙𝜙1(1 − 𝑧𝑧1)�−
(𝛼𝛼1+𝜈𝜈)

�1 + 𝜙𝜙2(1 − 𝑧𝑧2)�−
(𝛼𝛼2+𝜈𝜈)

 

⋅ �1 −
𝜌𝜌(𝑊𝑊1,𝑊𝑊2)(1 − 𝑑𝑑)�𝜙𝜙1(1 + 𝜙𝜙1)𝜙𝜙2(1 + 𝜙𝜙2)(1 − 𝑧𝑧1)(1 − 𝑧𝑧2)

Φ �
−𝜈𝜈

     (3.15) 

= �1 + 𝜙𝜙1(1 − 𝑧𝑧1)�−
(𝛼𝛼1+𝜈𝜈)

�1 + 𝜙𝜙2(1 − 𝑧𝑧2)�−
(𝛼𝛼2+𝜈𝜈)

  

⋅ �1 + �
(𝜈𝜈)𝑖𝑖
𝑖𝑖! �

𝜌𝜌(𝑊𝑊1,𝑊𝑊2)(1 − 𝑑𝑑)�𝜙𝜙1(1 + 𝜙𝜙1)𝜙𝜙2(1 + 𝜙𝜙2)(1 − 𝑧𝑧1)(1 − 𝑧𝑧2)
Φ �

𝑖𝑖∞

𝑖𝑖=1

�   (3.16) 

where Φ = 1 − 𝑑𝑑 + 𝜏𝜏1(1 − 𝑧𝑧1) + 𝜏𝜏2(1 − 𝑧𝑧2) + 𝑎𝑎𝜙𝜙1𝜙𝜙2(1 − 𝑧𝑧1)(1 − 𝑧𝑧2). 
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Since |𝑧𝑧𝑖𝑖| ≤ 1, 𝑖𝑖 = 1,2, the terms 1 − 𝑧𝑧𝑖𝑖  and (1 − 𝑧𝑧1)(1 − 𝑧𝑧2) as well as 

𝜏𝜏𝑖𝑖(1 − 𝑧𝑧𝑖𝑖) are nonnegative.  Also, 1 − 𝑑𝑑 > 0.  When 0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1, the infinite 

series in braces in (3.16) is positive.  Hence, (3.16) implies that 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) ≥

𝐺𝐺𝑋𝑋1 (𝑧𝑧1)𝐺𝐺𝑋𝑋2 (𝑧𝑧2).   When −1 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 0, rewrite (3.15) as  

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �1 + 𝜙𝜙1(1 − 𝑧𝑧1)�−
(𝛼𝛼1+𝜈𝜈)

�1 + 𝜙𝜙2(1 − 𝑧𝑧2)�−
(𝛼𝛼2+𝜈𝜈)

 

⋅ ��1 +
�−𝜌𝜌(𝑊𝑊1,𝑊𝑊2)�(1 − 𝑑𝑑)�𝜙𝜙1(1 + 𝜙𝜙1)𝜙𝜙2(1 + 𝜙𝜙2)(1 − 𝑧𝑧1)(1 − 𝑧𝑧2)

Φ �
−𝜈𝜈

� 

showing that the last term in brackets is greater than 1.  Hence, the expression in braces 

is less than 1 implying that 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) ≤ 𝐺𝐺𝑋𝑋1 (𝑧𝑧1)𝐺𝐺𝑋𝑋2 (𝑧𝑧2).  From the remark at the 

beginning of the proof, it is concluded that the EBNB-II is positive quadrant dependent 

when 0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1 and negative quadrant dependent when −1 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 0.     ■ 

Corollary 3.1:  The EBNB-I distribution with joint pgf (3.3) is positive quadrant 

dependent when 0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1. 

Proof:   

From (3.16) with 0b c= =  or by rewriting equation (3.3) using the relation of (2.4) in 

(3.13), it is obtained 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) 

= �1 + 𝐴𝐴1(1 − 𝑧𝑧1)�−
(𝛼𝛼1+𝜈𝜈)

�1 + 𝐴𝐴2(1 − 𝑧𝑧2)�−
(𝛼𝛼2+𝜈𝜈)

 

⋅ �1 + �
(𝜈𝜈)𝑖𝑖
𝑖𝑖! �

𝜌𝜌(𝑊𝑊1,𝑊𝑊2)�(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)

Θ�𝐴𝐴1𝐴𝐴2
�
𝑖𝑖

�
𝐴𝐴1𝐴𝐴2(1 − 𝑧𝑧1)(1 − 𝑧𝑧2)

�1 + 𝐴𝐴1(1 − 𝑧𝑧1)��1 + 𝐴𝐴2(1 − 𝑧𝑧2)�
�
𝑖𝑖∞

𝑖𝑖=1

� 

(3.17) 

where 𝐴𝐴1 = 𝑝𝑝1 𝑞𝑞1⁄  and 𝐴𝐴2 = 𝑝𝑝2 𝑞𝑞2⁄ . 
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 Similar to the arguments in Result 3.2, when 0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1, the infinite series 

in braces in (3.17) is positive.  Hence, (3.17) implies that 𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) ≥

𝐺𝐺𝑋𝑋1 (𝑧𝑧1)𝐺𝐺𝑋𝑋2 (𝑧𝑧2).  Thus, EBNB-I is positive quadrant dependent when 0 ≤ 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) ≤ 1. 

■ 

Remarks: (1) Quadrant dependence of the BNB distributions of Mitchell & Paulson 

(1981), Edwards & Gurland (1961) and Subrahmaniam (1966) follow on setting 

𝛼𝛼1 = 𝛼𝛼2 = 0. 

(2)  For the extended trivariate reduction (3.1), it is easy to show that if (𝑊𝑊1,𝑊𝑊2) is 

positive (negative) quadrant dependent, then (𝑋𝑋1,𝑋𝑋2) is also positive (negative) 

quadrant dependent. 

 
3.4.6  Partial Derivates and Information Matrix 

 Taking natural logarithm of equation (3.8) as 

ln�𝐺𝐺(𝑧𝑧1, 𝑧𝑧2)� = 𝛼𝛼1[ln(1 − 𝑝𝑝1) − ln(1 − 𝑝𝑝1𝑧𝑧1)] + 𝛼𝛼2[ln(1 − 𝑝𝑝2) − ln(1 − 𝑝𝑝2𝑧𝑧2)]

+ 𝜈𝜈[lnΘ − ln(1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2)] 

with 𝜃𝜃1 = �𝑝𝑝1(1 − 𝑝𝑝2) − 𝜃𝜃3(1 − 𝑝𝑝1)� (1 − 𝑝𝑝1𝑝𝑝2)⁄ ,  

𝜃𝜃2 = �𝑝𝑝2(1 − 𝑝𝑝1) − 𝜃𝜃3(1 − 𝑝𝑝2)� (1 − 𝑝𝑝1𝑝𝑝2)⁄  and  

Θ = (1 + 𝜃𝜃3)(1 − 𝑝𝑝1)(1 − 𝑝𝑝2) (1 − 𝑝𝑝1𝑝𝑝2)⁄ , 

the first order differentiations of the pgf with respect to its parameters are obtained. 

First, let 𝐺𝐺(𝑈𝑈1,𝑈𝑈2)(𝑧𝑧1, 𝑧𝑧2) = Θ (1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2)⁄  be a Edwards and 

Gurland’s BNB distribution with the index parameter, 𝜈𝜈 = 1 and the corresponding 

pmf, 𝑈𝑈(𝑢𝑢1,𝑢𝑢2).  Also, let ln(1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2) = ∑ ∑ 𝑉𝑉(𝑖𝑖, 𝑗𝑗)𝑧𝑧1
𝑖𝑖 𝑧𝑧2

𝑗𝑗∞
𝑗𝑗=0

∞
𝑖𝑖=0  where 
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𝑖𝑖𝑖𝑖(𝑖𝑖, 𝑗𝑗) = −�𝜃𝜃1𝑈𝑈(𝑖𝑖 − 1, 𝑗𝑗) + 𝜃𝜃3𝑈𝑈(𝑖𝑖 − 1, 𝑗𝑗 − 1)� (1 − 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3)⁄ .  Then, the first 

order differentiations are as follows.  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝1

= ���𝛼𝛼1𝑝𝑝1
𝑖𝑖Pr(𝑥𝑥 − 𝑖𝑖 − 1, 𝑦𝑦)

𝑥𝑥−1

𝑖𝑖=0

𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=1

−��
𝛼𝛼1

1 − 𝑝𝑝1
Pr(𝑥𝑥, 𝑦𝑦)𝑧𝑧1

𝑥𝑥𝑧𝑧2
𝑦𝑦

∞

𝑦𝑦=0

∞

𝑥𝑥=0

+
𝜈𝜈

(1 − 𝑝𝑝1)(1 − 𝑝𝑝1𝑝𝑝2) �����𝑈𝑈(𝑥𝑥 − 𝑖𝑖 − 1,𝑦𝑦
𝑦𝑦

𝑗𝑗=0

𝑥𝑥−1

𝑖𝑖=0

∞

𝑦𝑦=0

∞

𝑥𝑥=1

− 𝑗𝑗)Pr(𝑖𝑖, 𝑗𝑗)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦 −����𝑝𝑝2𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗 − 1)Pr(𝑖𝑖, 𝑗𝑗)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
𝑦𝑦−1

𝑗𝑗=0

𝑥𝑥

𝑖𝑖=0

∞

𝑦𝑦=1

∞

𝑥𝑥=0

−��(1 − 𝑝𝑝2)Pr(𝑥𝑥,𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=0

� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑝𝑝2

= ���𝛼𝛼2𝑝𝑝2
𝑖𝑖 Pr(𝑥𝑥, 𝑦𝑦 − 𝑖𝑖 − 1)

𝑦𝑦−1

𝑖𝑖=0

𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=1

∞

𝑥𝑥=0

−��
𝛼𝛼2

1 − 𝑝𝑝2
Pr(𝑥𝑥,𝑦𝑦)𝑧𝑧1

𝑥𝑥𝑧𝑧2
𝑦𝑦

∞

𝑦𝑦=0

∞

𝑥𝑥=0

+
𝜈𝜈

(1 − 𝑝𝑝2)(1 − 𝑝𝑝1𝑝𝑝2) �−����𝑝𝑝1𝑈𝑈(𝑥𝑥 − 𝑖𝑖 − 1, 𝑦𝑦
𝑦𝑦

𝑗𝑗=0

𝑥𝑥−1

𝑖𝑖=0

∞

𝑦𝑦=0

∞

𝑥𝑥=1

− 𝑗𝑗)Pr(𝑖𝑖, 𝑗𝑗)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦 + ����𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗 − 1)Pr(𝑖𝑖, 𝑗𝑗)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
𝑦𝑦−1

𝑗𝑗=0

𝑥𝑥

𝑖𝑖=0

∞

𝑦𝑦=1

∞

𝑥𝑥=0

−��(1 − 𝑝𝑝1)Pr(𝑥𝑥, 𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=0

� 

𝑑𝑑𝑑𝑑
𝑑𝑑𝜃𝜃3

= ��
𝜈𝜈

(1 + 𝜃𝜃3) Pr(𝑥𝑥,𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=0

+ ����
𝜈𝜈
Θ
𝑈𝑈(𝑥𝑥 − 𝑖𝑖 − 1,𝑦𝑦 − 𝑗𝑗 − 1)Pr(𝑖𝑖, 𝑗𝑗)𝑧𝑧1

𝑥𝑥𝑧𝑧2
𝑦𝑦

𝑦𝑦−1

𝑗𝑗=0

𝑥𝑥−1

𝑖𝑖=0

∞

𝑦𝑦=1

∞

𝑥𝑥=1

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝛼𝛼1

= �� ln(1 − 𝑝𝑝1)Pr(𝑥𝑥, 𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=0

−���
𝑝𝑝1
𝑖𝑖+1

(𝑖𝑖 + 1) Pr(𝑥𝑥 − 𝑖𝑖 − 1,𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
𝑥𝑥−1

𝑖𝑖=0

∞

𝑦𝑦=0

∞

𝑥𝑥=1
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𝑑𝑑𝑑𝑑
𝑑𝑑𝛼𝛼2

= �� ln(1 − 𝑝𝑝2)Pr(𝑥𝑥, 𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=0

−���
𝑝𝑝2
𝑖𝑖+1

(𝑖𝑖 + 1) Pr(𝑥𝑥, 𝑦𝑦 − 𝑖𝑖 − 1)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
𝑦𝑦−1

𝑖𝑖=0

∞

𝑦𝑦=1

∞

𝑥𝑥=0

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= �� ln(Θ)Pr(𝑥𝑥,𝑦𝑦)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
∞

𝑦𝑦=0

∞

𝑥𝑥=0

−����𝑉𝑉(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑗𝑗)Pr(𝑖𝑖, 𝑗𝑗)𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦
𝑦𝑦

𝑗𝑗=0

𝑥𝑥

𝑖𝑖=0

∞

𝑦𝑦=0

∞

𝑥𝑥=0

 

From the fact that 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∑ ∑ 𝑑𝑑Pr (𝑥𝑥 ,𝑦𝑦)
𝑑𝑑𝑑𝑑

𝑧𝑧1
𝑥𝑥𝑧𝑧2

𝑦𝑦∞
𝑦𝑦=0

∞
𝑥𝑥=0 , the first order differentiations for the 

corresponding pmf of the EBNB-I distribution are 

𝑑𝑑Pr(𝑥𝑥, 𝑦𝑦)
𝑑𝑑𝑝𝑝1

= −�
𝛼𝛼1

1 − 𝑝𝑝1
+

𝜈𝜈(1 − 𝑝𝑝2)
(1 − 𝑝𝑝1)(1 − 𝑝𝑝1𝑝𝑝2)�Pr(𝑥𝑥,𝑦𝑦) + �𝛼𝛼1𝑝𝑝1

𝑖𝑖Pr(𝑥𝑥 − 𝑖𝑖 − 1,𝑦𝑦)
𝑥𝑥−1

𝑖𝑖=0

+
𝜈𝜈

(1 − 𝑝𝑝1)(1 − 𝑝𝑝1𝑝𝑝2) ���𝑈𝑈(𝑥𝑥 − 𝑖𝑖 − 1,𝑦𝑦 − 𝑗𝑗)Pr(𝑖𝑖, 𝑗𝑗)
𝑦𝑦

𝑗𝑗=0

𝑥𝑥−1

𝑖𝑖=0

−��𝑝𝑝2𝑈𝑈(𝑥𝑥 − 𝑖𝑖, 𝑦𝑦 − 𝑗𝑗 − 1)Pr(𝑖𝑖, 𝑗𝑗)
𝑦𝑦−1

𝑗𝑗=0

𝑥𝑥

𝑖𝑖=0

�  , 

𝑑𝑑Pr(𝑥𝑥, 𝑦𝑦)
𝑑𝑑𝑝𝑝2

= −�
𝛼𝛼2

1 − 𝑝𝑝2
+

𝜈𝜈(1 − 𝑝𝑝1)
(1 − 𝑝𝑝2)(1 − 𝑝𝑝1𝑝𝑝2)�Pr(𝑥𝑥,𝑦𝑦) + �𝛼𝛼2𝑝𝑝2

𝑖𝑖 Pr(𝑥𝑥,𝑦𝑦 − 𝑖𝑖 − 1)
𝑦𝑦−1

𝑖𝑖=0

+
𝜈𝜈

(1 − 𝑝𝑝2)(1 − 𝑝𝑝1𝑝𝑝2) �−��𝑝𝑝1𝑈𝑈(𝑥𝑥 − 𝑖𝑖 − 1,𝑦𝑦 − 𝑗𝑗)Pr(𝑖𝑖, 𝑗𝑗)
𝑦𝑦

𝑗𝑗=0

𝑥𝑥−1

𝑖𝑖=0

+ ��𝑈𝑈(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗 − 1)Pr(𝑖𝑖, 𝑗𝑗)
𝑦𝑦−1

𝑗𝑗=0

𝑥𝑥

𝑖𝑖=0

�  , 

𝑑𝑑Pr(𝑥𝑥, 𝑦𝑦)
𝑑𝑑𝜃𝜃3

=
𝜈𝜈

(1 + 𝜃𝜃3) Pr(𝑥𝑥,𝑦𝑦) + ��
𝜈𝜈
Θ
𝑈𝑈(𝑥𝑥 − 𝑖𝑖 − 1, 𝑦𝑦 − 𝑗𝑗 − 1)Pr(𝑖𝑖, 𝑗𝑗)

𝑦𝑦−1

𝑗𝑗=0

𝑥𝑥−1

𝑖𝑖=0

 , 

𝑑𝑑Pr(𝑥𝑥, 𝑦𝑦)
𝑑𝑑𝛼𝛼1

= ln(1 − 𝑝𝑝1)Pr(𝑥𝑥, 𝑦𝑦) −�
𝑝𝑝1
𝑖𝑖+1

(𝑖𝑖 + 1) Pr(𝑥𝑥 − 𝑖𝑖 − 1, 𝑦𝑦)
𝑥𝑥−1

𝑖𝑖=0

 , 

𝑑𝑑Pr(𝑥𝑥, 𝑦𝑦)
𝑑𝑑𝛼𝛼2

= ln(1 − 𝑝𝑝2)Pr(𝑥𝑥,𝑦𝑦) −�
𝑝𝑝2
𝑖𝑖+1

(𝑖𝑖 + 1) Pr(𝑥𝑥, 𝑦𝑦 − 𝑖𝑖 − 1)
𝑦𝑦−1

𝑖𝑖=0

 , and 
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𝑑𝑑Pr(𝑥𝑥, 𝑦𝑦)
𝑑𝑑𝑑𝑑

= ln(Θ)Pr(𝑥𝑥,𝑦𝑦) −��𝑉𝑉(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗)Pr(𝑖𝑖, 𝑗𝑗)
𝑦𝑦

𝑗𝑗=0

𝑥𝑥

𝑖𝑖=0

 . 

 The information matrix is then obtained as explained in Section 2.2.4. 

 
3.4.7 Computer Generation of Bivariate Samples 

Here, the algorithms to generate random samples from EBNB-I distribution are 

given.  These algorithms are also applicable to generate random samples for extended 

bivariate binomial and gamma distributions. 

a) Mixture Method 

 By the formulation 𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1 and 𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2, the general form of pgf for 

EBNB distributions is given as in (3.2).  It is found in Section 3.4.2 that the correlation 

for EBNB-I distribution has the form 

𝜌𝜌(𝑋𝑋1,𝑋𝑋2) =
𝜈𝜈

�(𝛼𝛼1 + 𝜈𝜈)(𝛼𝛼2 + 𝜈𝜈)
𝜌𝜌(𝑊𝑊1,𝑊𝑊2) 

where 𝛼𝛼1, 𝛼𝛼2 and 𝜈𝜈 are the corresponding index parameters for 𝑌𝑌1, 𝑌𝑌2 and (𝑊𝑊1,𝑊𝑊2) 

distributions and 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) is the correlation of the bivariate distribution of (𝑊𝑊1,𝑊𝑊2).  

Extended bivariate binomial and gamma distributions can also be shown to have the 

same form of correlation relation. 

For any of the bivariate negative binomial, binomial and gamma distributions, 

given the marginals 𝑋𝑋1~𝑔𝑔(𝛼𝛼,𝜃𝜃1) and 𝑋𝑋2~𝑔𝑔(𝛽𝛽,𝜃𝜃2)  as well as the correlation 𝜌𝜌(𝑋𝑋1,𝑋𝑋2), it 

can be deduced that 𝑌𝑌1~𝑔𝑔(𝛼𝛼 − 𝜈𝜈, 𝜃𝜃1), 𝑌𝑌2~𝑔𝑔(𝛽𝛽 − 𝜈𝜈, 𝜃𝜃2), 𝑊𝑊1~𝑔𝑔(𝜈𝜈, 𝜃𝜃1), 𝑊𝑊2~𝑔𝑔(𝜈𝜈, 𝜃𝜃2) 

and 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) = �(𝛼𝛼1+𝜈𝜈)(𝛼𝛼2+𝜈𝜈)
𝜈𝜈

𝜌𝜌(𝑋𝑋1,𝑋𝑋2) with 𝑔𝑔(⋅) being one of the corresponding 

univariate distribution.  Ong (1990, 1992) has given several mixture models as well as 

algorithms for computer generation for these bivariate distributions of (𝑊𝑊1,𝑊𝑊2) with 
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given marginals and correlation.  From this and utilising the formulation (3.1), an 

algorithm to generate bivariate data from one of the three bivariate distributions with 

different marginals is given below. 

 
Algorithm 3.1:  Outline of Computer Generation of Bivariate Samples using Mixture 

Method 

(1) Set 0 < 𝜈𝜈 < min(𝛼𝛼,𝛽𝛽), 𝛼𝛼1 = 𝛼𝛼 − 𝜈𝜈, 𝛼𝛼2 = 𝛽𝛽 − 𝜈𝜈 and 

𝜌𝜌(𝑊𝑊1,𝑊𝑊2) = �(𝛼𝛼1+𝜈𝜈)(𝛼𝛼2+𝜈𝜈)
𝜈𝜈

𝜌𝜌(𝑋𝑋1,𝑋𝑋2). 

(2) Generate 𝑦𝑦1~𝑔𝑔(𝛼𝛼1, 𝜃𝜃1) and 𝑦𝑦2~𝑔𝑔(𝛼𝛼2, 𝜃𝜃2). 

(3) Use known marginals 𝑊𝑊1~𝑔𝑔(𝜈𝜈, 𝜃𝜃1), 𝑊𝑊2~𝑔𝑔(𝜈𝜈, 𝜃𝜃2) and 𝜌𝜌(𝑊𝑊1,𝑊𝑊2) in algorithm 

BNB from Ong (1992) to generate (𝑤𝑤1,𝑤𝑤2). 

(4) 𝑥𝑥1 = 𝑦𝑦1 + 𝑤𝑤1 and 𝑥𝑥2 = 𝑦𝑦2 + 𝑤𝑤2. 

 

b) Conditional Distribution Technique 

To simplify explanation, the following will focus on the implementation of 

conditional distribution technique to generate EBNB-I data.   

The conditional distribution of 𝑋𝑋1 given 𝑋𝑋2 = 𝑥𝑥2 is the convolution of 𝑉𝑉1 and 𝑉𝑉2 

as given in Section 3.4.3.  Now, given the marginals 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝛼𝛼, 𝑝𝑝1), 𝑋𝑋2~𝑁𝑁𝑁𝑁(𝛽𝛽,𝑝𝑝2) and 

𝜌𝜌(𝑋𝑋1,𝑋𝑋2). When 0 < 𝜃𝜃3 < 1, it is found that 𝑉𝑉1~𝑁𝑁𝑁𝑁(𝛼𝛼 − 𝜈𝜈,𝑝𝑝1), 

𝑈𝑈1𝑠𝑠~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑠𝑠, 𝜃𝜃3
𝜃𝜃2+𝜃𝜃3

� and 𝑈𝑈2𝑠𝑠~𝑁𝑁𝑁𝑁(𝜈𝜈 + 𝑠𝑠,𝜃𝜃1), 𝑠𝑠 = 0,1, … , 𝑥𝑥2, 𝑌𝑌2~𝑁𝑁𝑁𝑁(𝛽𝛽 − 𝜈𝜈,𝑝𝑝2) 

and 𝑊𝑊2~𝑁𝑁𝑁𝑁(𝜈𝜈,𝑝𝑝2).  When −1 < 𝜃𝜃3 < 0, 𝑉𝑉2 is a mixture of convolutions between a 

pseudo-binomial and a negative binomial rv’s which can be easily generated using the 

standard inverse transform method. 
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Algorithm 3.2:  Outline of Computer Generation of Bivariate Samples using 

Conditional Distribution Technique 

(1) Set 0 < 𝜈𝜈 < min(𝛼𝛼,𝛽𝛽), 𝛼𝛼1 = 𝛼𝛼 − 𝜈𝜈, 𝛼𝛼2 = 𝛽𝛽 − 𝜈𝜈. 

(2) Set 𝜃𝜃1, 𝜃𝜃2 and 𝜃𝜃3 such that  

𝜌𝜌(𝑋𝑋1,𝑋𝑋2) =
𝜈𝜈(𝜃𝜃3 + 𝜃𝜃1𝜃𝜃2)

�(𝛼𝛼1 + 𝜈𝜈)(𝛼𝛼2 + 𝜈𝜈)(1 − 𝜃𝜃1)(1 − 𝜃𝜃2)(𝜃𝜃1 + 𝜃𝜃3)(𝜃𝜃2 + 𝜃𝜃3)
. 

(3) Generate 𝑥𝑥2~𝑁𝑁𝑁𝑁(𝛽𝛽, 𝑝𝑝2) and 𝑣𝑣1~𝑁𝑁𝑁𝑁(𝛼𝛼1,𝑝𝑝1). 

(4) Set 𝑣𝑣2 = 0.  For 𝑠𝑠 = 0 to 𝑥𝑥2,  

 a) When 0 < 𝜃𝜃3 < 1, 

  (i) Generate 𝑢𝑢1𝑠𝑠~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 �𝑠𝑠, 𝜃𝜃3
𝜃𝜃2+𝜃𝜃3

� and 𝑢𝑢2𝑠𝑠~𝑁𝑁𝑁𝑁(𝜈𝜈 + 𝑠𝑠,𝜃𝜃1). 

  (ii)  𝑣𝑣2 = 𝑣𝑣2 + �Pr (𝑌𝑌2=𝑥𝑥2−𝑠𝑠)Pr (𝑊𝑊2=𝑠𝑠)
Pr (𝑋𝑋2=𝑥𝑥2)

� (𝑢𝑢1𝑠𝑠 + 𝑢𝑢2𝑠𝑠). 

b) When −1 < 𝜃𝜃3 < 0, generate 𝑣𝑣2 using the inverse transform method 

based on the probabilities given in Kemp (1979). 

(5) 𝑥𝑥1 = 𝑣𝑣1 + 𝑣𝑣2. 

 

 
3.5 Applications and Numerical Illustrations 

In this section, the application of the two formulations of the EBNB distribution 

for accident data is illustrated, bearing in mind that it is also applicable in other 

contexts. 
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 3.5.1 Extended Trivariate Reduction 

Suppose that accidents or injuries are due to (a) individual characteristics and (b) 

environmental factors (Arbous & Kerrich, 1951).  Let 𝑌𝑌1 and 𝑌𝑌2 represent the number of 

accidents due to (a) at two different time periods.  Suppose that accidents due to cause 

(b) vary from one time period to another as a pair of correlated random variables 

(𝑊𝑊1,𝑊𝑊2).  The total number of accidents in each period will be given by  

𝑋𝑋1 = 𝑌𝑌1 + 𝑊𝑊1 and 𝑋𝑋2 = 𝑌𝑌2 + 𝑊𝑊2. 

If 𝑌𝑌1 and 𝑌𝑌2 are assumed to be Poisson-distributed but due to individual characteristics, 

accident proneness varies from individual to individual as a gamma distribution, then 𝑌𝑌1 

and 𝑌𝑌2 will have the NB distributions. A similar reasoning for accidents due to 

environmental factors lead to the assumption that (𝑊𝑊1,𝑊𝑊2) has the BNB of Edward & 

Gurland (1961).  Hence accidents in the two time periods will have the EBNB-I 

distribution. 

 
3.5.2 Mixed Poisson Formulation 

Let 𝑋𝑋1 and 𝑋𝑋2 represent the number of accidents or injuries sustained by a group 

of individuals in two different time periods, each of unit length, with Poisson 

distributions 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) respectively. Suppose that the population 

consists of individuals where the proneness of each individual to accidents varies from 

individual to individual (see Edwards & Gurland, 1961; Subrahmaniam, 1966), that is, 

𝜆𝜆𝑖𝑖 , 𝑖𝑖 = 1,2 differs from individual to individual.  If 𝜆𝜆1 and 𝜆𝜆2 have a joint bivariate 

gamma distribution given by (3.6), we get the EBNB-I distribution. 
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3.5.3  Examples 

Two examples of fits of the EBNB-I distribution to a simulated data set and the 

rain-forest data set (see Holgate, 1966) are considered in this section.  The parameters 

have been estimated by maximum likelihood estimation (MLE) and the fits are 

compared with Edwards and Gurland’s BNB distribution.  The log likelihood function is 

maximized using the numerical method of simulated annealing to obtain globally 

optimum parameter estimates.  Suitable bounds are set for the unbounded parameters 

𝛼𝛼1, 𝛼𝛼2 and 𝜈𝜈 to assist in the numerical parameter searches.  Bounds for the parameters 

𝑝𝑝1, 𝑝𝑝2 and 𝜃𝜃3 are as given in Section 3.4. 

 Example 1.  A sample of size 500 is simulated from the EBNB-I distribution 

with 𝑝𝑝1 = 0.4, 𝑝𝑝2 = 0.5, 𝜃𝜃3 = 0.3, 𝛼𝛼1 = 0.5, 𝛼𝛼2 = 2.5 and 𝜈𝜈 = 1.0, where the 

marginals 𝑋𝑋1~𝑁𝑁𝑁𝑁(0.4, 1.5) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(0.5, 3.5) clearly have different index 

parameters.  Simulation is done according to the Algorithm 3.1.  Observed frequencies 

for the data are shown in the following Table 3.1.  

The EBNB-I and Edwards and Gurland’s BNB distributions are fitted to the data 

with grouping of frequencies at the cell (16,8).  The comparison of the fittings is made 

based on the chi-square, 𝜒𝜒2 goodness-of-fit statistic (2.13).  The parameter estimates 

and corresponding 𝜒𝜒2 values as well as degrees of freedom (d.f.) are given in Table 3.2.  

The expected frequencies for these two distributions are then given in Table 3.3. 

It is obvious from the 𝜒𝜒2 values in Table 3.2 that BNB could not give a 

satisfactory fit (p-value = 0.09) when the index parameters for the marginals are 

different as compared to EBNB-I (p-value = 0.56). 
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Table 3.1 

Simulated Sample of Size 500 from EBNB-I Distribution with  

𝑝𝑝1 = 0.4, 𝑝𝑝2 = 0.5, 𝜃𝜃3 = 0.3, 𝛼𝛼1 = 0.5, 𝛼𝛼2 = 2.5 and 𝜈𝜈 = 1.0 

𝑥𝑥2 
𝑥𝑥1 

0 1 2 3 4 5 6 7 8+ 

0 35 10 3 2 0 0 1 0 0 
1 53 16 1 1 1 0 0 1 0 
2 56 27 12 2 0 0 0 0 0 
3 33 17 9 8 1 0 0 0 0 
4 26 25 12 3 3 0 0 0 0 
5 20 12 9 4 1 0 0 0 0 
6 17 13 5 4 2 1 0 0 0 
7 7 3 1 4 4 0 0 0 0 
8 3 5 2 2 1 0 0 0 0 
9 2 3 2 4 1 0 0 0 0 

10 1 1 1 1 1 0 1 0 0 
11 0 0 0 0 0 0 0 0 0 
12 0 1 0 0 0 0 0 0 0 
13 0 0 0 0 0 0 0 0 0 
14 0 0 0 0 0 1 0 0 0 
15 0 0 0 1 0 0 0 0 0 

16+ 0 0 0 0 0 0 0 0 1 

Note:  The dotted lines indicate grouping of the data for the 𝜒𝜒2 goodness-of-fit test to yield a minimum 
expected frequency of 1. 

 

Table 3.2    

Parameter Estimates and 𝜒𝜒2 Values for EBNB-I and BNB Distributions 

Distribution ML Estimates 𝜒𝜒2 

EBNB-I 
𝑝̂𝑝1 = 0.415158, 𝑝̂𝑝2 = 0.506243, 
𝜃𝜃�3 = 0.350500, 𝛼𝛼�1 = 0.443790, 
𝛼𝛼�2 = 2.492638, 𝜈̂𝜈 = 0.825251 

51.84 
d.f. = 54 

BNB 
𝑝̂𝑝1 = 0.245742, 𝑝̂𝑝2 = 0.546149, 
𝜃𝜃�3 = 3.16 × 10−8, 𝜈̂𝜈 = 2.823620 

70.81 
d.f. = 56 
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Table 3.3    

Expected Frequencies when EBNB-I (BNB) Distribution is Fitted to the Simulated Data 

𝑥𝑥2 
𝑥𝑥1 

0 1 2 3 4 5 6 7 8+ 

0 
37.90 6.98 2.09 0.71 0.25 0.09 0.04 0.01 0.01 

(36.40) (13.24) (3.26) (0.68) (0.13) (0.02) (0.00) (0.00) (0.00) 

1 
52.70 20.67 4.93 1.59 0.56 0.20 0.08 0.03 0.02 

(48.90) (24.09) (7.48) (1.87) (0.41) (0.08) (0.02) (0.00) (0.00) 

2 
49.13 26.00 9.34 2.50 0.84 0.30 0.11 0.04 0.03 

(44.48) (27.64) (10.37) (3.04) (0.77) (0.17) (0.04) (0.01) (0.00) 

3 
38.47 23.94 11.20 3.91 1.11 0.38 0.14 0.05 0.03 

(34.03) (25.53) (11.22) (3.77) (1.07) (0.27) (0.06) (0.01) (0.00) 

4 
27.32 18.78 10.36 4.58 1.57 0.47 0.16 0.06 0.04 

(23.57) (20.72) (10.44) (3.96) (1.25) (0.35) (0.09) (0.02) (0.01) 

5 
18.23 13.40 8.24 4.31 1.83 0.62 0.19 0.07 0.04 

(15.31) (15.43) (8.77) (3.70) (1.29) (0.39) (0.11) (0.03) (0.01) 

6 
11.66 8.99 5.95 3.50 1.76 0.73 0.24 0.08 0.04 
(9.50) (10.79) (6.83) (3.17) (1.21) (0.40) (0.12) (0.03) (0.01) 

7 
7.22 5.77 4.03 2.57 1.46 0.71 0.29 0.10 0.05 

(5.70) (7.21) (5.02) (2.55) (1.05) (0.38) (0.12) (0.03) (0.01) 

8 
4.37 3.58 2.61 1.77 1.10 0.61 0.29 0.11 0.06 

(3.33) (4.64) (3.53) (1.95) (0.87) (0.33) (0.11) (0.03) (0.01) 

9 
2.59 2.17 1.63 1.16 0.77 0.47 0.25 0.12 0.07 

(1.90) (2.90) (2.40) (1.42) (0.68) (0.28) (0.10) (0.03) (0.01) 

10 
1.52 1.29 1.00 0.73 0.51 0.33 0.20 0.10 0.07 

(1.07) (1.77) (1.58) (1.00) (0.51) (0.22) (0.08) (0.03) (0.01) 

11 
0.87 0.76 0.60 0.45 0.33 0.22 0.14 0.08 0.07 

(0.59) (1.06) (1.01) (0.69) (0.37) (0.17) (0.07) (0.03) (0.01) 

12 
0.50 0.44 0.35 0.27 0.20 0.15 0.10 0.06 0.06 

(0.33) (0.62) (0.63) (0.46) (0.26) (0.13) (0.05) (0.02) (0.01) 

13 
0.28 0.25 0.20 0.16 0.12 0.09 0.06 0.04 0.05 

(0.18) (0.36) (0.39) (0.30) (0.18) (0.09) (0.04) (0.02) (0.01) 

14 
0.16 0.14 0.12 0.09 0.07 0.06 0.04 0.03 0.04 

(0.10) (0.21) (0.24) (0.19) (0.12) (0.07) (0.03) (0.01) (0.01) 

15 
0.09 0.08 0.07 0.05 0.04 0.03 0.03 0.02 0.03 

(0.05) (0.12) (0.14) (0.12) (0.08) (0.05) (0.02) (0.01) (0.01) 

16+ 
0.11 0.10 0.08 0.07 0.06 0.05 0.04 0.03 0.06 

(0.06) (0.14) (0.20) (0.19) (0.14) (0.09) (0.05) (0.02) (0.02) 
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Example 2.  Abundance of two different plant species in the rain-forest data 

(Holgate, 1966) can be due to individual growth factor and environmental factors such 

as climate and space.  This set of data can be fitted by the EBNB-I and Edwards and 

Gurland’s BNB distributions.  The MLE is carried out and the parameter estimates are 

obtained as: 

(i) EBNB-I 

𝑝̂𝑝1 = 0.308341, 𝑝̂𝑝2 = 0.245690, 𝜃𝜃�3 = 0.225283, 𝛼𝛼�1 = 1.463361, 

𝛼𝛼�2 = 1.300684, 𝜈̂𝜈 = 0.638345 

with marginals 𝑋𝑋1~𝑁𝑁𝑁𝑁(0.3083, 2.1017) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(0.2457, 1.9390). 

(ii) Edwards and Gurland’s BNB 

𝑝̂𝑝1 = 0.288067, 𝑝̂𝑝2 = 0.208444, 𝜃𝜃�3 = 0.003166, 𝜈̂𝜈 = 2.336087 

with marginals 𝑋𝑋1~𝑁𝑁𝑁𝑁(0.2881, 2.3361) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(0.2084, 2.3361). 

The expected frequencies obtained from both distributions are shown in Table 

3.4.  Expected frequencies from the Type II bivariate non-central NB (BNNB) 

distribution fit from Ong & Lee (1986) are also given for comparison.  Again, the 

comparison of the fittings is made based on the 𝜒𝜒2 statistic (2.13). 

Note that for the rain-forest data the marginal distributions for EBNB-I and the 

BNB are similar.  As expected, the fit by EBNB-I yields a smaller 𝜒𝜒2 value as compared 

to BNB since more flexibility is allowed for the marginals.  This 𝜒𝜒2 value is also smaller 

than the 𝜒𝜒2 value obtained from the Type II BNNB distribution as shown in Table 3.4. 
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Table 3.4    

Observed and Expected Frequencies for Rain-forest Data 

𝑥𝑥1 𝑥𝑥2 Observed 
Expected 

EBNB-I BNB 
Type II 
BNNB 

0 0 34 31.93 30.19 28.80 
1 0 12 16.10 16.94 17.64 
2 0 4 6.35 6.79 7.53 
3 0 5 2.30 2.36 2.66 
4 0 2 0.80 0.75 0.84 
0 1 8 10.20 10.94 11.14 
1 1 13 9.74 8.99 9.52 
2 1 3 4.73 4.75 5.05 
3 1 3 1.87 2.04 2.11 
4 1 0 0.68 0.78 0.76 
0 2 3 2.88 2.84 3.00 
1 2 6 2.92 3.07 3.19 
2 2 1 2.28 2.01 2.00 
3 2 2 1.14 1.04 0.96 
4 2 0 0.46 0.46 0.39 
0 3 1 0.78 0.64 0.67 
1 3 1 0.81 0.85 0.84 
2 3 0 0.67 0.67 0.61 
3 3 1 0.51 0.40 0.33 
4 3 0 0.27 0.21 0.15 

𝑥𝑥1 ≤ 4 𝑥𝑥2 ≥ 4 0 1.18 0.99 0.75 
𝑥𝑥1 ≥ 5  1 1.39 1.31 1.04 

𝜒𝜒2   13.16 14.28 13.44 
d.f.   6 8 9 

 

   



CHAPTER 4 :  PARAMETER ESTIMATION BASED ON 

PROBABILITY GENERATING FUNCTION 

 

4.0 Introduction 

Generating functions has been considered for statistical inference by many 

researchers; for example, Press (1972) and recently, Meintanis & Swanepoel (2007) as 

well as the references therein.  For count variables, in particular, the probability 

generating function (pgf) has been proposed for testing goodness-of-fit and parameter 

estimation.  The motivation to use pgf is that it is usually much simpler than the 

corresponding probability mass function (pmf), and this leads to simpler inference 

procedures.  This is especially true when dealing with multivariate discrete 

distributions.  For example, Edwards & Gurland’s (1961) bivariate negative binomial 

(BNB) distribution has pgf of the form 

𝐺𝐺(𝑋𝑋1,𝑋𝑋2)(𝑧𝑧1, 𝑧𝑧2) = �
Θ

1 − 𝜃𝜃1𝑧𝑧1 − 𝜃𝜃2𝑧𝑧2 − 𝜃𝜃3𝑧𝑧1𝑧𝑧2
�
𝜈𝜈

,                                                (4.1) 

where 0 ≤ 𝜃𝜃𝑖𝑖 ,Θ ≤ 1, 𝑖𝑖 = 1,2,3 and Θ = 1 − 𝜃𝜃1 − 𝜃𝜃2 − 𝜃𝜃3, as opposed to its joint pmf 

𝑓𝑓(𝑥𝑥1, 𝑥𝑥2) = Θν � (𝜈𝜈)𝑥𝑥1+𝑥𝑥2−𝑖𝑖 �
𝑥𝑥1
𝑖𝑖 � �

𝑥𝑥2
𝑖𝑖 �

𝑖𝑖!
𝑥𝑥1! 𝑥𝑥2!

𝜃𝜃1
𝑥𝑥1−𝑖𝑖𝜃𝜃2

𝑥𝑥2−𝑖𝑖𝜃𝜃3
𝑖𝑖

min(𝑥𝑥1,𝑥𝑥2)

𝑖𝑖=0

 .              (4.2) 

Evidently, the popular maximum likelihood estimation (MLE) utilising this pmf 

will be computationally involved despite its many appealing properties such as yielding 

efficient estimators.  Furthermore, MLE performs badly in the presence of outliers in the 

data.  Hence, a method which is simpler, faster and robust against outliers is much 

desired.   
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Kemp & Kemp (1988) introduced a rapid estimation method for univariate 

discrete distributions based on the pgf.  Dowling & Nakamura (1997) further derived 

asymptotic properties for these estimators.  To address the problem of outliers in 

parameter estimation, Simpson (1987) outlined the advantage of minimum Hellinger 

distance (MHD) estimation in reducing the effects of outliers on the parameter estimates 

as well as giving interesting properties, including asymptotic efficiency and the 

breakdown point of the method.  MHD has since been generalized to other robust 

minimum divergence estimation methods such as minimum generalized Hellinger 

distance (MGHD) and the penalized version of MGHD (MPGHD) methods by Basu et 

al. (1997).  These methods have been described briefly in Section 2.4. 

By combining the idea of MHD estimation method with the pgf method, a new 

minimum distance parameter estimation method for bivariate and multivariate discrete 

distributions is introduced here to obtain a rapid estimation method, which is both 

consistent and robust against outliers.  This method will be shown to be of great utility 

in the multivariate case.  Since the focus is on the multivariate case, only an example 

will be given in Section 4.5.1 to show the usefulness of this new method in parameter 

estimation for univariate distributions with complicated pmf.  

 
4.1 𝑴𝑴𝑴𝑴𝜶𝜶 Estimation Method 

Kemp & Kemp (1988) proposed a fast estimation method for discrete 

distributions by solving the simultaneous equations obtained from the relation of the 

empirical probability generating function (epgf), 𝐺𝐺�𝑛𝑛(𝑧𝑧) to its theoretical pgf, 𝐺𝐺(𝑧𝑧) given 

by  

𝐺𝐺(𝑧𝑧) = 𝐺𝐺�𝑛𝑛(𝑧𝑧) = �𝑝𝑝𝑖𝑖𝑧𝑧𝑖𝑖
𝑘𝑘

𝑖𝑖=0
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using two predetermined 𝑧𝑧 values, where 𝑝𝑝𝑖𝑖 = 𝑛𝑛𝑖𝑖 𝑛𝑛⁄ , 𝑛𝑛𝑖𝑖  is the frequency for the data 

value 𝑖𝑖 with sample size 𝑛𝑛 and ∑ 𝑝𝑝𝑖𝑖𝑘𝑘
𝑖𝑖=0 = 1.  A drawback of this method is the need to 

select 𝑧𝑧 values and then to determine the effects of different combinations of these 𝑧𝑧 

values.  To avoid this, a pgf-based minimum distance (𝑀𝑀𝑀𝑀𝛼𝛼) estimation method which 

takes into account all 𝑧𝑧 values in the range [0, 1] is proposed as follows. 

Let the 𝐿𝐿2 norm be denoted by ‖ℎ(𝑧𝑧)‖2 = (∫|ℎ(𝑧𝑧)|2𝑑𝑑𝑑𝑑)1 2⁄ .  Also, let 𝐺𝐺𝜽𝜽(𝐳𝐳), 

𝐳𝐳 = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝑘𝑘) denote the pgf for a k-variate parametric family 𝐹𝐹𝜽𝜽 with 𝜽𝜽 ∈ Ω and 

Ω ∈ ℝ𝑑𝑑 , where Ω is the parameter space.  Let 𝐺𝐺�𝑛𝑛(𝐳𝐳) denote the epgf obtained from a 

random sample 𝑿𝑿 = (𝑿𝑿1,𝑿𝑿2, … ,𝑿𝑿𝑛𝑛) of k-vectors.  The 𝑀𝑀𝑀𝑀𝛼𝛼  estimate of 𝜽𝜽, denoted by 

𝜽𝜽�, minimizes the distance measure �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2
2
 over the region 𝐳𝐳 ∈ [0,1]𝑘𝑘  for 

𝛼𝛼 > 0.  Mathematically, 

𝜽𝜽� = min
𝜽𝜽∈Ω

�𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2
2 = min

𝜽𝜽∈Ω
�� � …� �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�2𝑑𝑑𝑧𝑧1𝑑𝑑𝑧𝑧2 …𝑑𝑑𝑧𝑧𝑘𝑘

1

0

1

0

1

0
� . 

(4.3) 

When 𝛼𝛼 = 1, 𝑀𝑀𝑀𝑀1 estimate of 𝜽𝜽 is 𝜽𝜽� = min𝜽𝜽∈Ω�𝐺𝐺�𝑛𝑛(𝐳𝐳) − 𝐺𝐺𝜽𝜽(𝐳𝐳)�
2
2
.  Rueda & 

O’Reilly (1999) have used the measure �𝐺𝐺�𝑛𝑛(𝑧𝑧) − 𝐺𝐺𝜃𝜃(𝑧𝑧)�
2
2
 as a goodness-of-fit test of a 

univariate Poisson distribution but not for parameter estimation.  When 𝛼𝛼 = 1 2⁄ , we 

have 𝑀𝑀𝑀𝑀1 2⁄  estimate, 𝜽𝜽� = min𝜽𝜽∈Ω�𝐺𝐺�𝑛𝑛
1 2⁄ (𝐳𝐳) − 𝐺𝐺𝜽𝜽

1 2⁄ (𝐳𝐳)�
2

2
.  This measure is investigated 

since it is similar to MHD measure of �𝑓𝑓𝑛𝑛
1 2⁄ (𝑧𝑧) − 𝑓𝑓𝜽𝜽

1 2⁄ (𝑧𝑧)�
2

2
  where 𝑓𝑓𝑛𝑛  is the empirical 

density function and 𝑓𝑓𝜽𝜽 is the density function of a univariate 𝐹𝐹𝜽𝜽.  The MHD measure 

has the desirable property of being robust to outliers. 
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4.2 Consistency of Estimators 

The following Lemmas are needed to establish the consistency of the estimators 

obtained by the 𝑀𝑀𝑀𝑀𝛼𝛼  estimation method.  

Lemma 4.1:  If �𝐺𝐺�𝑛𝑛(𝐳𝐳) − 𝐺𝐺𝜽𝜽0 (𝐳𝐳)�
  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0, then �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳)�
  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 as 𝑛𝑛 → ∞. 

Proof: 

From the Strong Law of Large Numbers, 𝐺𝐺�𝑛𝑛(𝐳𝐳)
  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 𝐺𝐺𝜽𝜽0 (𝐳𝐳) when 𝑛𝑛 → ∞. By the 

continuous mapping theorem (Theorem 2.5), 𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳)
  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳). This implies that 

�𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 as 𝑛𝑛 → ∞.  (See also Proposition 3.1 in Remillard & 

Theodorescu, 2000.)                       ■ 

Lemma 4.2:  Let 𝑄𝑄�𝑛𝑛(𝜽𝜽) = −�𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2
2
 and Q0(𝜽𝜽) = −�𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2

2
, 

where 𝜽𝜽 ∈ Ω.  Assume that the parameter space Ω is compact.  Then, �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 implies that sup𝜽𝜽∈Ω�Q�𝑛𝑛(𝜽𝜽) − Q0(𝜽𝜽)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 as 𝑛𝑛 → ∞.   

Proof: 

sup
𝜽𝜽∈Ω

�Q�𝑛𝑛(𝜽𝜽) − Q0(𝜽𝜽)� 

= sup
𝜽𝜽∈Ω

���𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2
− �𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2
𝑑𝑑𝐳𝐳� 

≤ sup
𝜽𝜽∈Ω

��𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)��𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳) + 2�𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)��𝑑𝑑𝐳𝐳 

≤ ��𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)� sup

𝜽𝜽∈Ω
��𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳)� + 2�𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�� 𝑑𝑑𝐳𝐳 
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on expanding and simplifying the terms under the integral sign.  Since �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) −

𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 (Lemma 4.1) and Ω is compact, sup𝜽𝜽∈Ω�Q�𝑛𝑛(𝜽𝜽) − Q0(𝜽𝜽)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 as 

𝑛𝑛 → ∞.                              ■ 

Proposition:  Let 𝑄𝑄�𝑛𝑛(𝜽𝜽) = −�𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2
2
 and Q0(𝜽𝜽) = −�𝐺𝐺𝜽𝜽0

𝛼𝛼 (𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�
2

2
, 

and 𝜽𝜽� = min𝜽𝜽∈Ω �−𝑄𝑄�𝑛𝑛(𝜽𝜽)� = max𝜽𝜽∈Ω 𝑄𝑄�𝑛𝑛(𝜽𝜽).  Assume that the parameter space Ω is 

compact.  Then, �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 implies 𝜽𝜽�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 𝜽𝜽0. 

Proof:  

Q0(𝜽𝜽) achieves a unique maximum of 0 at 𝜽𝜽0 and Q0(𝜽𝜽) is a continuous function on Ω. 

From Lemma 4.1 and 4.2, �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽0
𝛼𝛼 (𝐳𝐳)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 implies sup𝜽𝜽∈Ω�Q�𝑛𝑛(𝜽𝜽) − Q0(𝜽𝜽)�

  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 0 as 𝑛𝑛 → ∞.  That is, Q�𝑛𝑛(𝜽𝜽) converges uniformly almost surely to Q0(𝜽𝜽) for large 

enough 𝑛𝑛.  Hence, by Theorem 2.3, 𝜽𝜽�
  𝑎𝑎 .𝑠𝑠.  
�⎯⎯� 𝜽𝜽0, that is, 𝜽𝜽� is strongly consistent.        ■ 

 
4.3 Design of Simulation Study 

The simulation study of 𝑀𝑀𝑀𝑀𝛼𝛼  estimation is developed for the BNB distribution 

using the FORTRAN programming language on computers (3GB RAM) running on 

Windows Vista.  As many as 500 simulated BNB samples are taken to estimate the 

parameters with each sample size being either 𝑛𝑛 = 100 or 𝑛𝑛 = 500.  The samples are 

simulated using the mixture formulation model BNB-II in Ong (1992), which is given 

below for convenience. 

Let �𝑋𝑋1|𝑘𝑘~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘,𝜙𝜙1) and �𝑋𝑋2|𝑘𝑘~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘,𝜙𝜙2) where 𝑘𝑘 is a value of the 

random variable 𝐾𝐾~𝑁𝑁𝑁𝑁(𝜈𝜈,𝜙𝜙). Then, (𝑋𝑋1,𝑋𝑋2)~𝐵𝐵𝐵𝐵𝐵𝐵(𝜈𝜈, 𝜃𝜃1,𝜃𝜃2,𝜃𝜃3) with the pgf given in 

(4.1) and 𝜃𝜃1 = 𝜙𝜙𝜙𝜙1(1 − 𝜙𝜙2) 𝛿𝛿⁄ , 𝜃𝜃2 = 𝜙𝜙𝜙𝜙2(1 − 𝜙𝜙1) 𝛿𝛿⁄ , 𝜃𝜃3 = 𝜙𝜙𝜙𝜙1𝜙𝜙2 𝛿𝛿⁄  and 𝛿𝛿 = 1 −
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𝜙𝜙(1 − 𝜙𝜙1)(1 − 𝜙𝜙2).  The marginals are 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝜈𝜈, 𝑝𝑝1) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(𝜈𝜈,𝑝𝑝2) with 

𝑝𝑝1 = (𝜃𝜃1 + 𝜃𝜃3) (1 − 𝜃𝜃2)⁄  and 𝑝𝑝2 = (𝜃𝜃2 + 𝜃𝜃3) (1 − 𝜃𝜃1)⁄ . 

 

 

Figure 4.1 (Data in Table A1) 

Bias Measures in Parameter from Simulations with 𝑵𝑵 Monte Carlo Samples  

 

To determine a feasible number of simulated samples for the simulation study, 

simulation runs with 100, 200, 500, 800 and 1000 Monte Carlo samples have been 

performed with a set of selected parameter values, 𝑝𝑝1 = 0.4, 𝑝𝑝2 = 0.5, 𝜃𝜃3 = 0.3 and 

𝜈𝜈 = 4.0, and sample size, 𝑛𝑛 = 500 for BNB distribution.  It is found that 500 Monte 

Carlo samples are sufficient.  For comparison, MLE is considered for parameter 

estimation in the simulations.  The ML estimates are found to have stabilized with small 

parameter biases at about 500 Monte Carlo samples as shown in Figure 4.1.  Table 4.1 

below gives the computation time required for each of the simulation with different 

number of Monte Carlo samples.  It is observed that the biasness in parameter estimates 

decreases as the number of samples increases.  However, the computation time also 

increases.  Although the biases are closest to zero with 800 Monte Carlo samples, it is 
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decided to take 500 Monte Carlo samples for the simulation study as a trade off between 

computation time and a very slight difference in accuracy.   

Table 4.1 

Computation Time for Simulation with 𝑁𝑁 Monte Carlo Samples 

Number of Monte 
Carlo Samples, 𝑁𝑁 100 200 500 800 1000 

Computation Time 
(Minutes) 6.4684 12.4945 31.2583 48.5399 62.8610 

 

In the simulation study, the corresponding likelihood, distance or divergence 

measure is maximized or minimized by using simulated annealing technique.  This is 

done over closed and bounded intervals for the parameters and the parameter space Ω 

may be assumed as compact.  For bivariate distributions, the 𝑀𝑀𝑀𝑀𝛼𝛼  estimates are given 

by  

𝜽𝜽� = min
𝜽𝜽∈Ω

�� � �𝐺𝐺�𝑛𝑛𝛼𝛼(𝐳𝐳) − 𝐺𝐺𝜽𝜽𝛼𝛼(𝐳𝐳)�2𝑑𝑑𝑧𝑧1𝑑𝑑𝑧𝑧2

1

0

1

0
� .                                                       (4.3) 

The integral involved is numerically approximated by the Gauss quadrature method, 

which is known to work well in rectangular regions.  The IMSL FORTRAN routine 

GQRUL or DGQRUL produces the quadrature points and corresponding weights 

required for the Gauss quadrature method.  For bivariate distributions, the choice on the 

number of quadrature points used for each variable of integration in (4.3) is made based 

on the following empirical observations for 𝛼𝛼 = 1 and 𝛼𝛼 = 1 2⁄  for the same set of 

parameter values, 𝑝𝑝1 = 0.4, 𝑝𝑝2 = 0.5, 𝜃𝜃3 = 0.3 and 𝜈𝜈 = 4.0, and sample size, 𝑛𝑛 = 500 

for BNB distribution.  
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a)  MD1 

  

b)  MD1 2⁄  

Figure 4.2 (Data in Table A2) 

Approximation with Corresponding Contour of the Distance Measure Integral Values 

  

Figure 4.2 shows that the Gauss quadrature approximation method converges 

after 3 quadrature points are used for each variable of integration.  Basically, the more 

quadrature points are used, the more accurate is the integral approximation and the 

longer is the computation duration.  In order to make the most parsimonious choice in 
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terms of computation time, the least number of points that leads to convergence is 

chosen.  Here, that chosen number of quadrature points is 3.  Thus, a 3×3 quadrature 

points are used in the approximation of the double integrals in the distance measure 

(4.3) for bivariate distribution.  Furthermore, since the range of integration is over a 

narrow range from 0 to 1, three quadrature points are sufficient for a good 

approximation of a single integral.      

 

 

 

 

 

 

 

 

 

 

Figure 4.3 

Cases Considered in the Simulation Study of 𝑀𝑀𝑀𝑀𝛼𝛼  Method 

 

 With the setup for simulation study as explained above, the behaviour of the 

𝑀𝑀𝑀𝑀𝛼𝛼  method in the presence or absence of outliers are considered for six cases as 

mapped out in Figure 4.3.  Simulated samples of size 𝑛𝑛 = 100 or 𝑛𝑛 = 500 are generated 

without outliers (Cases 1 and 2) or with an added 1% of outliers with respect to sample 

size 𝑛𝑛 (Cases 3 to 6).  The outliers are created by placing them at positions away from 

the rest of the data:  a) 2 counts (Cases 3 and 4) and b) 4 counts (Cases 5 and 6) away 

from the maximum of 𝑋𝑋1 and 𝑋𝑋2, that is at the cell positions (max(𝑋𝑋1) + 2, max(𝑋𝑋2) +
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2) and (max(𝑋𝑋1) + 4, max(𝑋𝑋2) + 4).  On a computer, FORTRAN source codes for 

multiple cases of the study are executed simultaneously.   

For Cases 1 and 2, the 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  parameter estimates are compared 

against the ML estimates.  It is well known that MLE method is not robust against 

outliers.  Therefore, for Cases 3 to 6 where outliers are present, the estimates from 

MPGHD instead of MLE are given for comparison with the estimates of 𝑀𝑀𝑀𝑀1 and 

𝑀𝑀𝑀𝑀1 2⁄  methods.  MGHD method is affected by the empty cells in a data set whereas 

this effect has been corrected in the MPGHD method (Basu et al., 1997).  Due to this 

and the fact that there are usually a number of empty cells in bivariate cases, the 

MPGHD estimates are chosen as the baseline for comparison in the simulation study 

when outliers are present in the data sets.   

 
4.4 Simulation Results and Discussions 

 The simulation results along with the measures of bias and mean squared errors 

(MSE) for 4 different sets of selected parameters are given in the subsequent sections.  

The computation time for each case is given in minutes. 

 
4.4.1 Without Outliers 

 Results shown in Tables 4.2 and 4.3 correspond to Cases 1 and 2.  Figures 4.4 

and 4.5 enable the graphical comparison of the parameter biases for the three estimation 

methods. 
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Table 4.2    

Simulation Results when 𝑛𝑛 = 500 with No Outliers (Computation Duration in Minutes) 

𝑛𝑛 = 500 MD1 MD1 2⁄  MLE 

Parameter Estimate Bias 
(MSE) Estimate Bias 

(MSE) Estimate Bias 
(MSE) 

Set 1 

𝑝𝑝1 = 0.4 0.408227 0.008227 0.412247 0.012247 0.402726 0.002726 
(0.002022) (0.003345) (0.001045) 

𝑝𝑝2 = 0.5 0.509213 
0.009213 

0.513122 
0.013122 

0.502974 
0.002974 

(0.002145) (0.003363) (0.001117) 

𝜃𝜃3 = 0.3 0.303968 
0.003968 

0.302972 
0.002972 

0.300814 
0.000814 

(0.002153) (0.003299) (0.000421) 

𝜈𝜈 = 4.0 3.926721 
-0.073279 

3.905012 
-0.094988 

3.983285 
-0.016715 

(0.433761) (0.583802) (0.267652) 
Duration: 7.249717 7.183417 30.444517 

Set 2 

𝑝𝑝1 = 0.3 0.310406 0.010406 0.312532 0.012532 0.304457 0.004457 
(0.002319) (0.002703) (0.001527) 

𝑝𝑝2 = 0.2 0.208510 
0.008510 

0.209995 
0.009995 

0.203796 
0.003796 

(0.001485) (0.001769) (0.000946) 

𝜃𝜃3 = 0.1 0.099981 
-0.000019 

0.101047 
0.001047 

0.100031 
0.000031 

(0.000332) (0.000997) (0.000186) 

𝜈𝜈 = 4.0 3.930723 
-0.069277 

3.914868 
-0.085132 

3.992861 
-0.007139 

(0.629331) (0.676913) (0.488250) 
Duration: 2.547067 2.611883 6.592700 

Set 3 

𝑝𝑝1 = 0.8 0.807946 0.007946 0.806411 0.006411 0.801965 0.001965 
(0.000864) (0.001305) (0.000186) 

𝑝𝑝2 = 0.6 0.615890 
 

0.015890 
0.611201 

0.011201 
0.603264 

0.003264 
(0.002931) (0.004944) (0.000433) 

𝜃𝜃3 = 0.2 0.210276 
0.010276 

0.202912 
0.002912 

0.195467 
-0.004533 

(0.017321) (0.017309) (0.000452) 

𝜈𝜈 = 4.0 3.838572 
-0.161428 

3.885545 
-0.114455 3.949643 

 
-0.050357 

(0.368277) (0.531359) (0.102458) 
Duration:         48.013967 43.380467 283.006617 

Set 4 

𝑝𝑝1 = 0.4 0.401457 0.001457 0.400839 0.000839 0.398351 -0.001649 
(0.003775) (0.003664) (0.002347) 

𝑝𝑝2 = 0.5 0.500336 
0.000336 

0.500052 
0.000052 

0.497767 
-0.002233 

(0.004037) (0.004098) (0.002515) 

𝜃𝜃3 = 0.3 0.302111 
0.002111 

0.298424 
-0.001576 

0.298654 
-0.001346 

(0.002537) (0.002276) (0.001043) 

𝜈𝜈 = 0.5 0.514846 
0.014846 

0.515526 
0.015526 

0.513978 
0.013978 

(0.014462) (0.014808) (0.010288) 
Duration: 2.019550 2.151950 4.760933 
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Figure 4.4    

Bias Measures in Parameter for MD1, MD1 2⁄   and MLE Methods when 𝑛𝑛 = 500 with No 

Outliers 
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Table 4.3    

Simulation Results when 𝑛𝑛 = 100 with No Outliers (Computation Duration in Minutes) 

𝑛𝑛 = 100 MD1 MD1 2⁄  MLE 

Parameter Estimate Bias 
(MSE) Estimate Bias 

(MSE) Estimate Bias 
(MSE) 

Set 1 

𝑝𝑝1 = 0.4 0.439091 0.039091 0.447210 0.047210 0.411839 0.011839 
(0.006782) (0.008752) (0.003485) 

𝑝𝑝2 = 0.5 0.537254 
0.037254 

0.546282 
0.046282 

0.510670 
0.010670 

(0.006893) (0.008308) (0.003500) 

𝜃𝜃3 = 0.3 0.319004 
0.019004 

0.322407 
0.022407 

0.306324 
0.006324 

(0.010057) (0.008896) (0.001483) 

𝜈𝜈 = 4.0 3.628951 
-0.371049 

3.569747 
-0.430253 

3.901468 
-0.098532 

(1.085702) (1.230148) (0.720146) 
Duration: 5.222683 4.747600 20.848167 

Set 2 

𝑝𝑝1 = 0.3 0.338202 0.038202 0.341767 0.041767 0.319231 0.019231 
(0.007443) (0.008168) (0.004686) 

𝑝𝑝2 = 0.2 0.231046 
0.031046 

0.233779 
0.033779 

0.216005 
0.016005 

(0.005471) (0.006203) (0.003097) 

𝜃𝜃3 = 0.1 0.103050 
0.003050 

0.103538 
0.003538 

0.103604 
0.003604 

(0.001872) (0.001911) (0.000770) 

𝜈𝜈 = 4.0 3.693848 
-0.306152 

3.673803 
-0.326197 

3.850516 
-0.149484 

(1.454646) (1.527762) (1.091255) 
Duration: 1.727950 1.815200 4.981767 

Set 3 

𝑝𝑝1 = 0.8 0.833766 0.033766 0.827178 0.027178 0.806697 0.006697 
(0.002869) (0.003376) (0.000774) 

𝑝𝑝2 = 0.6 0.670426 
0.070426 

0.659241 
0.059241 

0.611140 
0.011140 

(0.009263) (0.013945) (0.001846) 

𝜃𝜃3 = 0.2 0.333721 
0.133721 

0.317735 
0.117735 

0.209286 
0.009286 

(0.086209) (0.073302) (0.002445) 

𝜈𝜈 = 4.0 3.302221 
-0.697779 

3.444127 
-0.555873 

3.828822 
-0.171178 

(0.906485) (1.232588) (0.405671) 
Duration:         31.226883 28.775733 179.798283 

Set 4 

𝑝𝑝1 = 0.4 0.378067 -0.021933 0.376454 -0.023546 0.369597 -0.030403 
(0.015575) (0.015579) (0.012272) 

𝑝𝑝2 = 0.5 0.471649 
-0.028351 

0.469752 
-0.030248 

0.463906 
-0.036094 

(0.01817) (0.018248) (0.014162) 

𝜃𝜃3 = 0.3 0.280870 
-0.019130 

0.277538 
-0.022462 

0.275199 
-0.024801 

(0.009124) (0.009029) (0.005609) 

𝜈𝜈 = 0.5 0.666446 
0.166446 

0.671162 
0.171162 

0.662190 
0.162190 

(0.286226) (0.290995) (0.240780) 
Duration: 1.353683 1.407683 2.667183 
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Figure 4.5    

Bias Measures in Parameter for MD1, MD1 2⁄   and MLE Methods when 𝑛𝑛 = 100 with No 

Outliers 

 

4.4.2 With Outliers 

a) Outliers Positioned at Cell (max(𝑿𝑿𝟏𝟏) + 2, max(𝑿𝑿𝟐𝟐) + 2) 

 Results shown in Tables 4.4 and 4.5 correspond to Cases 3 and 4.  Figures 4.6 

and 4.7 illustrate the parameter biases for the three estimation methods. 

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

B
ia

s

-0.80

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

B
ia

s

-0.35

-0.30

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

B
ia

s

-0.05

0.00

0.05

0.10

0.15

0.20

B
ia

s

MD1 MD1 2⁄  MLE 

𝑝𝑝1            𝑝𝑝2            𝜃𝜃3            𝜈𝜈 

𝑝𝑝1            𝑝𝑝2            𝜃𝜃3            𝜈𝜈 

𝑝𝑝1            𝑝𝑝2            𝜃𝜃3            𝜈𝜈 

𝑝𝑝1            𝑝𝑝2            𝜃𝜃3            𝜈𝜈 



78 
 

Table 4.4    

Simulation Results when 𝑛𝑛 = 500 with 1% Outliers at Cell (max(𝑋𝑋1) + 2, max(𝑋𝑋2) +

2) (Computation Duration in Minutes) 

𝑛𝑛 = 500 MD1 MD1 2⁄  MPGHD 

Parameter Estimate Bias 
(MSE) Estimate Bias 

(MSE) Estimate Bias 
(MSE) 

Set 1 

𝑝𝑝1 = 0.4 0.422211 0.022211 0.419452 0.019452 0.389542 -0.010458 
(0.002281) (0.002917) (0.002907) 

𝑝𝑝2 = 0.5 0.524060 
0.024060 

0.521029 
0.021029 

0.488007 -0.011993 
(0.002374) (0.002966) (0.002994) 

𝜃𝜃3 = 0.3 0.307559 
0.007559 

0.308892 
0.008892 

0.276072 -0.023928 
(0.002493) (0.002151) (0.004714) 

𝜈𝜈 = 4.0 3.772157 
-0.227843 

3.825498 
-0.174502 

4.180034  0.180034 
(0.438702) (0.546128) (0.677924) 

Duration: 8.282667 7.951117 53.413233 
Set 2 

𝑝𝑝1 = 0.3 0.332773 0.032773 0.327607 0.027607 0.281029 -0.018971 
(0.003479) (0.004079) (0.003383) 

𝑝𝑝2 = 0.2 0.226240 0.026240 
0.222509 0.022509 

0.185757 -0.014243 
(0.002199) (0.002567) (0.001965) 

𝜃𝜃3 = 0.1 0.105798 0.005798 
0.104459 0.004459 

0.090491 -0.009509 
(0.000387) (0.000460) (0.000545) 

𝜈𝜈 = 4.0 3.706760 -0.293240 
3.824134 -0.175866 

4.547886 0.547886 
(1.183116) (1.540243) (1.765489) 

Duration:         2.241467 2.245483 11.107750 
Set 3 

𝑝𝑝1 = 0.8 0.809059 0.009059 0.808141 0.008141 0.771647 -0.028353 
(0.002201) (0.001253) (0.000936) 

𝑝𝑝2 = 0.6 0.618380 0.018380 
0.615145 0.015145 

0.559410 -0.040590 
(0.003421) (0.004612) (0.001408) 

𝜃𝜃3 = 0.2 0.204354 0.004354 
0.201095 0.001095 

0.202333 0.002333 
(0.016551) (0.016569) (0.005205) 

𝜈𝜈 = 4.0 3.802067 -0.197933 
3.865058 -0.134942 

4.483183 0.483183 
(0.384546) (0.519880) (0.397416) 

Duration: 38.787217 34.715767 508.795900 
Set 4 

𝑝𝑝1 = 0.4 0.463709 0.063709 0.460404 0.060404 0.392709 -0.007291 
(0.003238) (0.003905) (0.007641) 

𝑝𝑝2 = 0.5 0.565306 0.065306 
0.561331 0.061331 

0.489423  -0.010577 
(0.003335) (0.003969) (0.008330) 

𝜃𝜃3 = 0.3 0.329790 0.029790 
0.329308 0.029308 

0.276729 -0.023271 
(0.002217) (0.002178) (0.005601) 

𝜈𝜈 = 0.5 0.436097 -0.063903 
0.438617 -0.061383 

0.540314 0.040314 
(0.009533) (0.008975) (0.129224) 

Duration: 2.422017 2.435850 8.128383 
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Figure 4.6 

Bias Measures in Parameter for MD1, MD1 2⁄   and MPGHD Methods when 𝑛𝑛 = 500 with 

1% Outliers at Cell (max(𝑋𝑋1) + 2, max(𝑋𝑋2) + 2) 
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Table 4.5    

Simulation Results when 𝑛𝑛 = 100 with 1% Outliers at Cell (max(𝑋𝑋1) + 2, max(𝑋𝑋2) +

2) (Computation Duration in Minutes) 

𝑛𝑛 = 100 MD1 MD1 2⁄  MPGHD 

Parameter Estimate Bias 
(MSE) Estimate Bias 

(MSE) Estimate Bias 
(MSE) 

Set 1 

𝑝𝑝1 = 0.4 0.449382 0.049382 0.454757 0.054757 0.378850 -0.021150 
(0.007017) (0.008915) (0.010482) 

𝑝𝑝2 = 0.5 0.548291 
0.048291 

0.553573 
0.053573 

0.472756 -0.027244 
(0.006935) (0.008357) (0.011497) 

𝜃𝜃3 = 0.3 0.326028 
0.026028 

0.326966 
0.026966 

0.264465 -0.035535 
(0.009406) (0.008700) (0.008494) 

𝜈𝜈 = 4.0 3.536089 
-0.463911 

3.511678 
-0.488322 

4.642401 0.642401 
(1.083552) (1.228945) (4.186887) 

Duration: 5.637483 5.488150 27.894550 
Set 2 

𝑝𝑝1 = 0.3 0.333663 0.033663 0.331141 0.031141 0.266263  -0.033737 
(0.014513) (0.016069) (0.010789) 

𝑝𝑝2 = 0.2 0.231136 0.031136 
0.229661 0.029661 

0.176754 -0.023246 
(0.009356) (0.010693) (0.00628) 

𝜃𝜃3 = 0.1 0.105329 0.005329 
0.103766 0.003766 

0.084025 -0.015975 
(0.002165) (0.002271) (0.001588) 

𝜈𝜈 = 4.0 4.419362 0.419362 
4.549245 0.549245 

5.479294  1.479294 
(7.396000) (7.979569) (7.888147) 

Duration:         1.599667 1.773217 10.815117 
Set 3 

𝑝𝑝1 = 0.8 0.836548 0.036548 0.818694 0.018694 0.739273 -0.060727 
(0.002398) (0.006432) (0.005797) 

𝑝𝑝2 = 0.6 0.673529 0.073529 
0.651875 0.051875 

0.522854 -0.077146 
(0.009041) (0.016592) (0.007572) 

𝜃𝜃3 = 0.2 0.331425 0.131425 
0.330248 0.130248 

0.214878 0.014878 
(0.086525) (0.070930) (0.008776) 

𝜈𝜈 = 4.0 3.280508 -0.719492 
3.617985 -0.382015 

5.040627 1.040627 
(0.897631) (2.204145) (2.557858) 

Duration: 34.226117 23.243200 290.589000 
Set 4 

𝑝𝑝1 = 0.4 0.433973 0.033973 0.433117 0.033117 0.349438 -0.050562 
(0.013782) (0.013804) (0.024963) 

𝑝𝑝2 = 0.5 0.531051 0.031051 
0.530921 0.030921 

0.436059 -0.063941 
(0.014653) (0.014270) (0.02811) 

𝜃𝜃3 = 0.3 0.309398 0.009398 
0.312606 0.012606 

0.237155 -0.062845 
(0.007973) (0.008696) (0.012549) 

𝜈𝜈 = 0.5 0.535754 0.035754 
0.532747 0.032747 

0.847953 0.347953 
(0.098187) (0.089141) (1.318471) 

Duration: 1.580283 1.698317 4.430650 
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Figure 4.7 

Bias Measures in Parameter for MD1, MD1 2⁄   and MPGHD Methods when 𝑛𝑛 = 100 with 

1% Outliers at Cell (max(𝑋𝑋1) + 2, max(𝑋𝑋2) + 2) 

 

b) Outliers Positioned at Point (max(𝑿𝑿𝟏𝟏) + 4, max(𝑿𝑿𝟐𝟐) + 4) 

 Results shown in Tables 4.6 and 4.7 correspond to Cases 5 and 6.  Figures 4.8 

and 4.9 illustrate the parameter biases for the three estimation methods. 
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Table 4.6    

Simulation Results when 𝑛𝑛 = 500 with 1% Outliers at Cell (max(𝑋𝑋1) + 4, max(𝑋𝑋2) +

4) (Computation Duration in Minutes) 

𝑛𝑛 = 500 MD1 MD1 2⁄  MPGHD 

Parameter Estimate Bias 
(MSE) Estimate Bias 

(MSE) Estimate Bias 
(MSE) 

Set 1 

𝑝𝑝1 = 0.4 0.422070 0.022070 0.421465 0.021465 0.380728 -0.019272 
(0.002138) (0.003167) (0.002106) 

𝑝𝑝2 = 0.5 0.523961 0.023961 
0.523095 0.023095 

0.479284 -0.020716 
(0.002230) (0.003217) (0.002378) 

𝜃𝜃3 = 0.3 0.309070 0.009070 
0.307041 0.007041 

0.275191 -0.024809 
(0.002175) (0.002831) (0.003976) 

𝜈𝜈 = 4.0 3.771453 -0.228547 
3.804836 -0.195164 

4.296306 0.296306 
(0.424643) (0.564412) (0.669366) 

Duration: 10.456533 10.035150 62.898683 
Set 2 

𝑝𝑝1 = 0.3 0.334854 0.034854 0.329040 0.029040 0.276199 -0.023801 
(0.003460) (0.004259) (0.003828) 

𝑝𝑝2 = 0.2 0.227762 0.027762 
0.223014 0.023014 

0.182251 -0.017749 
(0.002196) (0.002594) (0.002191) 

𝜃𝜃3 = 0.1 0.106003 0.006003 
0.105697 0.005697 

0.086231 -0.013769 
(0.000383) (0.000572) (0.000662) 

𝜈𝜈 = 4.0 3.673041 -0.326959 
3.810375 -0.189625 

4.671142 0.671142 
(1.138937) (1.529734) (2.009540) 

Duration:         3.114867 3.125150 18.089000 
Set 3 

𝑝𝑝1 = 0.8 0.809613 0.009613 0.808140 0.008140 0.772264 -0.027736 
(0.000946) (0.001260) (0.000552) 

𝑝𝑝2 = 0.6 0.617973 0.017973 
0.615230 0.015230 

0.558206 -0.041794 
(0.003124) (0.004634) (0.001226) 

𝜃𝜃3 = 0.2 0.211857 0.011857 
0.202424 0.002424 

0.203340 0.003340 
(0.016471) (0.016837) (0.004951) 

𝜈𝜈 = 4.0 3.830413 -0.169587 
3.866399 -0.133601 

4.491988 0.491988 
(0.420453) (0.524173) (0.290153) 

Duration: 43.720733 38.977900 599.812517 
Set 4 

𝑝𝑝1 = 0.4 0.465812 0.065812 0.464836 0.064836 0.377906 -0.022094 
(0.003565) (0.003079) (0.007218) 

𝑝𝑝2 = 0.5 0.567438 0.067438 
0.566174 0.066174 

0.475530 -0.024470 
(0.003769) (0.003229) (0.008587) 

𝜃𝜃3 = 0.3 0.329559 0.029559 
0.329565 0.029565 

0.260173 -0.039827 
(0.002395) (0.002538) (0.006465) 

𝜈𝜈 = 0.5 0.440250 -0.059750 
0.434281 -0.065719 

0.564330 0.064330 
(0.042225) (0.008292) (0.091400) 

Duration: 3.576550 3.597150 14.076400 



83 
 

 

 

 

 

Set 1 

 

Set 3 

 

Set 2 

 

Set 4

 

Figure 4.8 

Bias Measures in Parameter for MD1, MD1 2⁄   and MPGHD Methods when 𝑛𝑛 = 500 with 

1% Outliers at Cell (max(𝑋𝑋1) + 4, max(𝑋𝑋2) + 4) 
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Table 4.7    

Simulation Results when 𝑛𝑛 = 100 with 1% Outliers at Cell (max(𝑋𝑋1) + 4, max(𝑋𝑋2) +

4) (Computation Duration in Minutes) 

𝑛𝑛 = 100 MD1 MD1 2⁄  MPGHD 

Parameter Estimate Bias 
(MSE) Estimate Bias 

(MSE) Estimate Bias 
(MSE) 

Set 1 

𝑝𝑝1 = 0.4 0.450658 0.050658 0.454963 0.054963 0.379540 -0.020460 
(0.007201) (0.008926) (0.002566) 

𝑝𝑝2 = 0.5 0.549609 0.049609 
0.554039 0.054039 

0.477970 -0.022030 
(0.007065) (0.008402) (0.002689) 

𝜃𝜃3 = 0.3 0.324154 0.024154 
0.326548 0.026548 

0.268189 -0.031811 
(0.009883) (0.008742) (0.005052) 

𝜈𝜈 = 4.0 3.523628 -0.476372 
3.508175 -0.491825 

4.323036 0.323036 
(1.096381) (1.230844) (0.733868) 

Duration: 7.348733 7.198533 63.313900 
Set 2 

𝑝𝑝1 = 0.3 0.335584 0.035584 0.334721 0.034721 0.251251 -0.048749 
(0.014431) (0.016083) (0.009323) 

𝑝𝑝2 = 0.2 0.232344 0.032344 
0.232483 0.032483 

0.165418 -0.034582 
(0.009371) (0.010644) (0.005165) 

𝜃𝜃3 = 0.1 0.106021 0.006021 
0.105684 0.005684 

0.078745 -0.021255 
(0.002109) (0.002687) (0.001399) 

𝜈𝜈 = 4.0 4.379788 0.379788 
4.480790 0.480790 

5.805823 1.805823 
(7.252881) (7.874835) (7.949555) 

Duration:         2.622700 2.403033 12.331117 
Set 3 

𝑝𝑝1 = 0.8 0.836411 0.036411 0.825257 0.025257 0.736315 -0.063685 
(0.002385) (0.004918) (0.00342) 

𝑝𝑝2 = 0.6 0.673686 0.073686 
0.659811 0.059811 

0.512885 -0.087115 
(0.008920) (0.013613) (0.005762) 

𝜃𝜃3 = 0.2 0.335692 0.135692 
0.320634 0.120634 

0.216332 0.016332 
(0.085331) (0.074232) (0.008286) 

𝜈𝜈 = 4.0 3.281912 -0.718088 
3.444059 -0.555941 

5.162477  1.162477 
(0.892124) (1.220883) (2.447958) 

Duration: 29.896083 42.869033 353.604550 
Set 4 

𝑝𝑝1 = 0.4 0.440168 0.040168 0.438470 0.038470 0.310459 -0.089541 
(0.013785) (0.013970) (0.017217) 

𝑝𝑝2 = 0.5 0.538511 0.038511 
0.535883 0.035883 

0.395997 -0.104003 
(0.014518) (0.014645) (0.02164) 

𝜃𝜃3 = 0.3 0.312904 0.012904 
0.311652 0.011652 

0.217228 -0.082772 
(0.008893) (0.007624) (0.00978) 

𝜈𝜈 = 0.5 0.521576 0.021576 
0.529733 0.029733 

0.891716 0.391716 
(0.088694) (0.105775) (0.946063) 

Duration: 2.524750 2.580833 8.349650 
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Figure 4.9    

Bias Measures in Parameter for MD1, MD1 2⁄   and MPGHD Methods when 𝑛𝑛 = 100 with 

1% Outliers at Cell (max(𝑋𝑋1) + 4, max(𝑋𝑋2) + 4) 
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sample size, 𝑛𝑛 = 100 deviate somewhat more from the true parameters.  For all three 

estimation methods, the estimates for the index parameter 𝜈𝜈 deviate most from the true 

value as clearly shown in Figures 4.4 and 4.5.  The estimates from the MLE method 

remain rather close to the true parameters as expected.   

On the other hand, MD1 and MD1 2⁄  methods are not greatly affected by the 

presence of outliers as shown by the good parameter estimations of all Sets 1 to 4 for 

both sample sizes in Tables 4.4 to 4.7.  The results suggest that the estimates for MD1 

and MD1 2⁄  methods are comparable to that of MPGHD.  In spite of the similar 

performances, MD1 and MD1 2⁄  tend to have smaller biases for the estimates of 𝜈𝜈 

compared to MPGHD.  On top of that, due to empty cells, MPGHD requires a 

correction or penalty in its procedure which has not been supported theoretically (Basu 

et al., 1997) whereas MD1 and MD1 2⁄  methods do not need such correction.     

The simulation study also reveals that both MD1 and MD1 2⁄  methods produced 

very similar results with no particular advantage to either method in terms of 

computation time.  In comparison, the computation times for MLE and MPGHD 

methods are notably (at least twice) longer than that for MD1 or MD1 2⁄  method.  For 

most of the data sets, the computation time is 4 to 6 times longer than is needed for MD1 

or MD1 2⁄  method.  Hence, it can be deduced that MD1, MD1 2⁄  or, in general, MD𝛼𝛼  

method can be recommended for fast, robust parameter estimation. 

 
4.5 Examples of Goodness-of-Fit 

4.5.1 Univariate Case 

To illustrate goodness-of-fit, a data set on the distribution of the number of 

infestation spots by the southern pine beetle, Dendroctonus frontalis Zimmermann, 

(Coleoptera: Scolytidae), in 5’ × 5’ geographic areas in Southeast Texas obtained from 
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Lin (1985) is used.  This data set is fitted with the univariate distribution proposed by 

Sugita et al. (to appear), which has a relatively simple pgf given by 

𝐺𝐺(𝑧𝑧) = �
1 − 𝑝𝑝3

1 − 𝑝𝑝3𝑧𝑧
�
𝑘𝑘1

�
𝑝𝑝1 + 𝑝𝑝2𝑧𝑧
𝑝𝑝1 + 𝑝𝑝2

�
𝑘𝑘2 𝐹𝐹1 (𝑘𝑘1; 𝑘𝑘2 + 1; 𝜆𝜆 (𝑝𝑝1 + 𝑝𝑝2𝑧𝑧) (1 − 𝑝𝑝3𝑧𝑧)⁄ )1

𝐹𝐹1 (𝑘𝑘1; 𝑘𝑘2 + 1; 𝜆𝜆)1
 

where 𝑘𝑘1 ≥ 0, 𝑝𝑝1, 𝑝𝑝2, 𝑝𝑝3 > 0, 𝑝𝑝1 + 𝑝𝑝2 + 𝑝𝑝3 = 1, 𝜆𝜆 > 0 and 𝑘𝑘2 is a non-negative integer 

or 𝑘𝑘2 + 1 < 0 (𝑘𝑘2 real), as compared to its complicated pmf as follows. 

(A) When 𝑘𝑘2 is a non-negative integer, 

(I) If 𝑥𝑥 ≤ 𝑘𝑘2, 

Pr(𝑋𝑋 = 𝑥𝑥) = �
(𝑘𝑘1)𝑥𝑥−𝑠𝑠
(𝑥𝑥 − 𝑠𝑠)!

(1 − 𝑝𝑝3)𝑘𝑘1𝑝𝑝3
𝑥𝑥−𝑠𝑠 �𝑘𝑘2

𝑠𝑠 �
𝑥𝑥

𝑠𝑠=0

 

× �
𝑝𝑝1

𝑝𝑝1 + 𝑝𝑝2
�
𝑘𝑘2−𝑠𝑠

�
𝑝𝑝2

𝑝𝑝1 + 𝑝𝑝2
�
𝑠𝑠 𝐹𝐹1 (𝑘𝑘1 + 𝑥𝑥 − 𝑠𝑠; 𝑘𝑘2 + 1 − 𝑠𝑠; 𝜆𝜆𝑝𝑝1)1

𝐹𝐹1 (𝑘𝑘1; 𝑘𝑘2 + 1; 𝜆𝜆)1
 . 

(II) If 𝑥𝑥 > 𝑘𝑘2, 

Pr(𝑋𝑋 = 𝑥𝑥) = �
(𝑘𝑘1)𝑥𝑥−𝑠𝑠
(𝑥𝑥 − 𝑠𝑠)!

(1 − 𝑝𝑝3)𝑘𝑘1𝑝𝑝3
𝑥𝑥−𝑠𝑠 �𝑘𝑘2

𝑠𝑠 �
𝑘𝑘2

𝑠𝑠=0

 

× �
𝑝𝑝1

𝑝𝑝1 + 𝑝𝑝2
�
𝑘𝑘2−𝑠𝑠

�
𝑝𝑝2

𝑝𝑝1 + 𝑝𝑝2
�
𝑠𝑠 𝐹𝐹1 (𝑘𝑘1 + 𝑥𝑥 − 𝑠𝑠; 𝑘𝑘2 + 1 − 𝑠𝑠; 𝜆𝜆𝑝𝑝1)1

𝐹𝐹1 (𝑘𝑘1; 𝑘𝑘2 + 1; 𝜆𝜆)1
 

+ �
(𝑘𝑘1)𝑥𝑥−𝑘𝑘2

(𝑥𝑥 − 𝑠𝑠)!
(1 − 𝑝𝑝3)𝑘𝑘1𝑝𝑝3

𝑥𝑥−𝑠𝑠
𝑥𝑥

𝑠𝑠=𝑘𝑘2+1

 

×
𝑘𝑘2!

𝑠𝑠! (𝑠𝑠 − 𝑘𝑘2)!
𝜆𝜆𝑠𝑠−𝑘𝑘2

𝑝𝑝2
𝑠𝑠

(𝑝𝑝1 + 𝑝𝑝2)𝑘𝑘2

𝐹𝐹1 (𝑘𝑘1 + 𝑥𝑥 − 𝑘𝑘2; 𝑠𝑠 − 𝑘𝑘2 + 1; 𝜆𝜆𝑝𝑝1)1

𝐹𝐹1 (𝑘𝑘1; 𝑘𝑘2 + 1; 𝜆𝜆)1
 . 

(B) When 𝑘𝑘2 + 1 < 0 (𝑘𝑘2 real), 

Pr(𝑋𝑋 = 𝑥𝑥) = �
(𝑘𝑘1 − 𝑘𝑘2)𝑥𝑥

(𝑥𝑥 − 𝑠𝑠)!
(1 − 𝑝𝑝3)𝑘𝑘1−𝑘𝑘2𝑝𝑝3

𝑥𝑥−𝑠𝑠
𝑥𝑥

𝑠𝑠=0

 

×
(𝜆𝜆𝑝𝑝2)𝑠𝑠

𝑠𝑠! (1 − 𝑘𝑘2)𝑠𝑠
𝐹𝐹1 (𝑘𝑘1 + 𝑥𝑥 − 𝑘𝑘2; 𝑠𝑠 − 𝑘𝑘2 + 1; 𝜆𝜆𝑝𝑝1)1

𝐹𝐹1 (𝑘𝑘1; 𝑘𝑘2 + 1; 𝜆𝜆)1
 . 
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MLE, 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  estimations have been done by numerical optimization 

using simulated annealing method.  The expected frequencies and corresponding 𝜒𝜒2 

values as well as degrees of freedom (d.f.) are shown in Table 4.8.        

Table 4.8 

Observed and Expected Frequencies of Geographic Areas with Corresponding Number 

of Infestation Spots by the Southern Pine Beetle (Lin, 1985) 

Number of Spots, 𝑥𝑥 
Number of Areas 

Observed 
Expected 

MLE 𝑀𝑀𝑀𝑀1 𝑀𝑀𝑀𝑀1 2⁄  

0 1169 1168.7975 1168.5271 1168.5480 
1 144 150.8730 149.1437 149.0216 
2 92 81.0680 82.5711 82.6389 
3 54 50.5578 51.9411 52.0093 
4 29 32.9782 33.7774 33.8179 
5 18 21.8774 22.1767 22.1923 
6 10 14.6067 14.5800 14.5792 
7 12 9.7701 9.5668 9.5572 
8 6 6.5322 6.2564 6.2433 
9 9 4.3606 4.0755 4.0620 

10 3 2.9048 2.6440 2.6317 
11 2 1.9304 1.7083 1.6980 
12 0 1.2796 1.0994 1.0911 
13 0 0.8460 0.7048 0.6984 
14 1 0.5579 0.4502 0.4454 
15 0 0.3670 0.2866 0.2831 
16 0 0.2409 0.1818 0.1793 
17 0 0.1577 0.1150 0.1132 
18 0 0.1030 0.0725 0.0713 
19 1 0.1911 0.1215 0.1188 

𝜒𝜒2 (p-value)  11.53 (0.24)  12.10 (0.21) 12.15 (0.21 ) 
d.f.  9 9 9 

Duration (Seconds)  6.01 1.75 1.86 

ML estimates:  𝑝̂𝑝2 = 2.27 × 10−7, 𝑝̂𝑝3 = 0.568428, 𝑘𝑘�1 = 0.113725, 𝑘𝑘�2 = 0, 𝜆̂𝜆 = 1.668486 
𝑀𝑀𝑀𝑀1 estimates:  𝑝̂𝑝2 = 2.0 × 10−10, 𝑝̂𝑝3 = 0.535226, 𝑘𝑘�1 = 0.099844, 𝑘𝑘�2 = 0, 𝜆̂𝜆 = 1.959887 
𝑀𝑀𝑀𝑀1 2⁄  estimates:  𝑝̂𝑝2 = 4.0 × 10−10, 𝑝̂𝑝3 = 0.533580, 𝑘𝑘�1 = 0.099078, 𝑘𝑘�2 = 0, 𝜆̂𝜆 = 1.975669 
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All three methods are able to fit the data reasonably.  Even though the 𝜒𝜒2 value 

for MLE is slightly lower than 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄ , the 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  methods have the 

clear advantage of faster computation time as shown in Table 4.8.  Furthermore, the 

higher 𝜒𝜒2 value for 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  method is due to the biggest difference between 

the observed and expected frequencies for 𝑥𝑥 = 9.  Omitting this point would actually 

produce a lower 𝜒𝜒2 value for both 𝑀𝑀𝑀𝑀1 and  𝑀𝑀𝑀𝑀1 2⁄  methods compared to MLE.  This is 

in line with the characteristic of 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  method being a more robust 

estimation method and thus, mitigating the effect of possible sampling error. 

 
4.5.2 Bivariate Case 

Example 1.  A comparison of the estimation methods MD1, MD1 2⁄ , MPGHD and 

MLE is made based on the chi-square, 𝜒𝜒2 goodness-of-fit statistic (2.13) obtained for a 

real data set.  The data on the numbers of accidents sustained by 166 London omnibus 

drivers over two successive years from Edwards & Gurland (1961) is used.  The BNB 

with pgf (4.1) and pmf (4.2) is fitted to the data set.  The parameter estimates with 

corresponding 𝜒𝜒2  values as well as d.f. are given in the following Table 4.9.   

Table 4.9 

Parameter Estimates and 𝜒𝜒2  Statistics for MD1, MD1 2⁄ , MPGHD and MLE Methods 

Parameter 
Estimate 

MD1 MD1 2⁄  MPGHD MLE 

𝑝𝑝1 0.119763 0.109187 0.093077 0.232907 
𝑝𝑝2 0.112254 0.102381 0.087041 0.224823 
𝜃𝜃3 0.034128 0.031740 0.023562 0.030518 
𝜈𝜈 11.807725 13.037853 14.819167 5.317321 

𝜒𝜒2 14.72 14.75 15.35 17.40 
d.f. 21 21 21 21 

p-value 0.84 0.84 0.80 0.69 
Duration (Seconds) 0.34 0.37 1.69 1.42 
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Based on the 𝜒𝜒2 values, MD1, MD1 2⁄  and MPGHD methods give a better fit than 

MLE.  Between the three, MD1 and MD1 2⁄  show a slightly better fit than MPGHD.  It is 

also noted that there is a marked difference between the estimates of MD1, MD1 2⁄  and 

MPGHD as compared to the ML estimates, suggesting the possibility of outliers in the 

data set.  These ML estimates are quite similar to those obtained by Subrahmaniam & 

Subrahmaniam (1973), where the index parameter, 𝜈𝜈 has been fixed in that paper.  

Subrahmaniam and Subrahmaniam obtained the estimates of 𝑝̂𝑝1 = 0.244142, 𝑝̂𝑝2 =

0.235474 and 𝜃𝜃�3 = 0.032278 with 𝜈𝜈 = 5.  The computation times given in seconds 

clearly show the superiority of MD1 and MD1 2⁄  methods for rapid estimation.  The 

observed and expected frequencies for all four methods are given in Table 4.10. 

 

Example 2.  To illustrate further the advantage of the 𝑀𝑀𝑀𝑀𝛼𝛼  estimation method, 

the classic data set on 122 shunters from Arbous & Kerrich (1951), given in Table 4.11, 

has been fitted with the new EBNB-II distribution formed using the BNB of Mitchell & 

Paulson (1981).  This new distribution has a complicated pmf (as given in Section 3.4.1) 

but, comparatively, a simple pgf (3.4).  Parameter estimation using the classical 

methods, such as MLE and methods of moments, which made use of the pmf will be 

difficult and tedious.  Estimation has been done using the proposed 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  

methods, and the estimates for the parameters, following the notations in Section 3.1.1 

e), are given in Table 4.12.  The result for each of 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  methods is obtained 

using 5 × 5 quadrature points with a computation time of less than 1.5 seconds.   
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Table 4.10 

Observed and Expected Frequencies for MD1, 𝑀𝑀𝑀𝑀1 2⁄ , MPGHD and MLE Methods 

 X2 
X1 0 1 2 3 4 5 6 7 8 9 

0 

15 15 4 2 0 0 1 0 0 0 
15.73 12.90 5.74 1.83 0.47 0.10 0.02 0.00 0.00 0.00 
15.65 12.94 5.76 1.83 0.47 0.10 0.02 0.00 0.00 0.00 
16.12 13.84 6.34 2.06 0.53 0.12 0.02 0.00 0.00 0.00 
16.34 13.65 6.77 2.59 0.85 0.25 0.07 0.02 0.00 0.00 

1 

17 18 9 3 3 0 1 1 0 0 
14.37 19.12 11.77 4.80 1.50 0.39 0.09 0.02 0.00 0.00 
14.39 19.28 11.87 4.82 1.49 0.38 0.08 0.02 0.00 0.00 
15.32 19.66 11.99 4.86 1.50 0.38 0.08 0.02 0.00 0.00 
14.41 16.95 10.84 5.09 1.97 0.66 0.20 0.06 0.02 0.00 

2 

4 16 12 6 2 3 0 0 0 0 
7.11 13.10 10.91 5.71 2.19 0.67 0.17 0.04 0.01 0.00 
7.12 13.20 11.01 5.73 2.18 0.66 0.17 0.04 0.01 0.00 
7.77 13.28 10.52 5.31 1.98 0.59 0.15 0.03 0.01 0.00 
7.55 11.45 9.11 5.14 2.33 0.90 0.31 0.10 0.03 0.01 

3 

2 6 5 2 4 0 0 0 0 0 
2.53 5.95 6.35 4.19 1.97 0.72 0.22 0.06 0.01 0.00 
2.52 5.96 6.37 4.18 1.95 0.70 0.21 0.05 0.01 0.00 
2.79 5.96 5.88 3.64 1.62 0.57 0.16 0.04 0.01 0.00 
3.05 5.67 5.43 3.61 1.89 0.84 0.32 0.11 0.04 0.01 

4 

1 4 4 0 1 0 0 0 0 0 
0.72 2.07 2.72 2.19 1.24 0.54 0.19 0.06 0.01 0.00 
0.71 2.05 2.69 2.16 1.22 0.52 0.18 0.05 0.01 0.00 
0.80 2.04 2.42 1.80 0.95 0.39 0.13 0.04 0.01 0.00 
1.05 2.31 2.59 2.00 1.19 0.60 0.26 0.10 0.04 0.01 

5 

1 0 0 0 1 0 0 0 0 0 
0.18 0.60 0.93 0.89 0.60 0.31 0.13 0.04 0.01 0.00 
0.17 0.58 0.91 0.87 0.58 0.29 0.12 0.04 0.01 0.00 
0.19 0.58 0.80 0.69 0.43 0.20 0.08 0.02 0.01 0.00 
0.33 0.83 1.06 0.93 0.63 0.35 0.17 0.07 0.03 0.01 

6 

0 0 1 0 0 0 0 0 0 0 
0.04 0.15 0.27 0.30 0.24 0.14 0.07 0.03 0.01 0.00 
0.04 0.14 0.26 0.29 0.22 0.13 0.06 0.02 0.01 0.00 
0.04 0.14 0.22 0.22 0.16 0.09 0.04 0.01 0.00 0.00 
0.09 0.27 0.39 0.38 0.29 0.18 0.09 0.04 0.02 0.01 

7+ 

0 0 0 0 0 0 0 0 0 0 
0.01 0.04 0.09 0.12 0.11 0.08 0.04 0.02 0.00 0.00 
0.01 0.04 0.07 0.10 0.10 0.07 0.04 0.01 0.00 0.00 
0.01 0.04 0.06 0.07 0.06 0.04 0.02 0.01 0.00 0.00 
0.03 0.11 0.18 0.21 0.18 0.12 0.08 0.04 0.02 0.00 

Note:  The dotted lines indicate grouping of the data for the 𝜒𝜒2 goodness-of-fit test to yield a minimum 
expected frequency of 2. 
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Table 4.11 

Observed Frequencies of the Number of Accidents Sustained by 122 Experienced 

Shunters over Two Successive Periods of Time 

Number of Accidents from 
(1943-1947), 𝑋𝑋1 

Number of Accidents from (1937-1942), 𝑋𝑋2 
0 1 2 3 4 5 6 

0 21 18 8 2 1 0 0 
1 13 14 10 1 4 1 0 
2 4 5 4 2 1 0 1 
3 2 1 3 2 0 1 0 
4 0 0 1 1 0 0 0 
5 0 0 0 0 0 0 0 
6 0 0 0 0 0 0 0 
7 0 1 0 0 0 0 0 

 

Table 4.12 

Results from 𝑀𝑀𝑀𝑀1 and  𝑀𝑀𝑀𝑀1 2⁄  Estimations in Comparison with Results from Arbous & 

Kerrich (1951) and Kocherlakota & Kocherlakota (1992, p. 153) 

Estimation 𝑀𝑀𝑀𝑀1 𝑀𝑀𝑀𝑀1 2⁄  Arbous & 
Kerrich (1951) 

Kocherlakota & 
Kocherlakota 

(1992) 

Parameter 
Estimates 

𝑝̂𝑝1 = 0.211768 
𝑝̂𝑝2 = 0.261421 
𝜈̂𝜈 = 3.612849 

𝛼𝛼�1 = 5.00 × 10−8 
𝛼𝛼�2 = 5.07 × 10−7 
𝑎𝑎� = 1.04 × 10−6 

𝑏𝑏� = 0.00 
𝑐̂𝑐 = 0.00 

𝑝̂𝑝1 = 0.212035 
𝑝̂𝑝2 = 0.262266 
𝜈̂𝜈 = 3.602972 

𝛼𝛼�1 = 1.12 × 10−5 
𝛼𝛼�2 = 4.29 × 10−5 
𝑎𝑎� = 2.22 × 10−7 

𝑏𝑏� = 0.00 
𝑐̂𝑐 = 0.00 

𝑝̂𝑝1 = 0.217 
𝑝̂𝑝2 = 0.265 
𝜈̂𝜈 = 3.524 

 

𝑝̂𝑝1 = 0.222 
𝑝̂𝑝2 = 0.271 
𝜈̂𝜈 = 3.420 

 

Correlation 0.235288 0.235815 0.239744 0.325489 

 

The estimates obtained for 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  methods are comparable to the 

estimates obtained by Arbous & Kerrich (1951) and Kocherlakota & Kocherlakota 

(1992).  Also note that the 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  parameter estimates for 𝛼𝛼1, 𝛼𝛼2, 𝑏𝑏 and 𝑐𝑐 are 

very close to zero, indicating that the BNB of Edward & Gurland (1981), a special case 

of the EBNB-II, may be sufficient to describe this data set. 
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 Example 3.  In Mitchell & Paulson (1981), the pmf of the proposed BNB is 

restricted to the index parameter, 𝜈𝜈 being an integer despite the distribution admitting a 

full range of correlation [−1, 1].  They argued that there is no representation for which 

𝜈𝜈 can take on any arbitrary real values since the pmf derived is not infinitely divisible.  

Thus, having to fix as an integer, 𝜈𝜈 = 1 in the MLE although it is more possible for 

𝜈𝜈 > 1, they are not able to produce a better fit to the data on the number of flight aborts 

for 109 aircrafts given in Table 4.13.  On the other hand, the 𝑀𝑀𝑀𝑀𝛼𝛼  method involves only 

the pgf, where 𝜈𝜈 can take any arbitrary real values.   Now, the data on the number of 

flight aborts will be fitted with EBNB-II distribution to allow for flexibility in the 

marginals, and parameter estimation is done with 𝑀𝑀𝑀𝑀1 and 𝑀𝑀𝑀𝑀1 2⁄  methods for 

comparison with the result from Mitchell & Paulson (1981). 

Table 4.13 

Observed Frequencies of the Number of Flight Aborts for 109 Aircrafts over Two 

Successive Periods of Time 

Number of Aborts for 
First Six Months, 𝑋𝑋1 

Number of Aborts for Second Six Months, 𝑋𝑋2 
0 1 2 3 4 

0 34 20 4 6 4 
1 17 7 0 0 0 
2 6 4 1 0 0 
3 0 4 0 0 0 
4 0 0 0 0 0 
5 2 0 0 0 0 

Univariates 𝑋𝑋1~𝑁𝑁𝑁𝑁(0.95,0.40) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(1.51,0.32) (Mitchell & Paulson, 1981). 

 

 Table 4.14 gives the results for the estimations.  The estimates for 𝑝𝑝2 are 

approximately the same for all estimation methods but the estimates for 𝑝𝑝1 are very 

different for the 𝑀𝑀𝑀𝑀1 and  𝑀𝑀𝑀𝑀1 2⁄  estimates compared to the ML estimate from Mitchell 

& Paulson (1981).  Unfortunately, 𝜒𝜒2 goodness-of-fit test could not be performed since 

there is no explicit representation for the pmf of EBNB-II when 𝜈𝜈 is not an integer.  
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However, comparing the estimated marginals with the result for the univariates of 𝑋𝑋1 

and 𝑋𝑋2 given in Table 4.13, the estimated marginals from both 𝑀𝑀𝑀𝑀1 and  𝑀𝑀𝑀𝑀1 2⁄  

methods are much closer to the given univariates than those from Mitchell and Paulson 

(1981).  For 𝑀𝑀𝑀𝑀1 method, the marginals are 𝑋𝑋1~𝑁𝑁𝑁𝑁(1.1138,0.3525) and 

𝑋𝑋2~𝑁𝑁𝑁𝑁(1.4718, 0.3332) while for 𝑀𝑀𝑀𝑀1 2⁄  method, the marginals are 

𝑋𝑋1~𝑁𝑁𝑁𝑁(1.0644,0.3573) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(1.4857,0.3311).  The marginals from Mitchell 

& Paulson (1981) are 𝑋𝑋1~𝑁𝑁𝑁𝑁(1,0.1655) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(1,0.3299).  The estimated 

correlation coefficients for all three methods are not much different from the sample 

correlation of -0.16. 

Table 4.14 

Results from 𝑀𝑀𝑀𝑀1 and  𝑀𝑀𝑀𝑀1 2⁄  Estimations in Comparison with Result from Mitchell & 

Paulson (1981) 

Estimation 𝑀𝑀𝑀𝑀1 𝑀𝑀𝑀𝑀1 2⁄  Mitchell & Paulson 
(1981) 

Parameter 
Estimates 

𝑝̂𝑝1 = 0.352531 
𝑝̂𝑝2 = 0.333210 
𝑎𝑎� = 0.709167 
𝑏𝑏� = 1.928684 
𝑐̂𝑐 = 5.62 × 10−7 
𝜈̂𝜈 = 1.113808 

𝛼𝛼�1 = 2.00 × 10−10  
𝛼𝛼�2 = 0.358033 

𝑝̂𝑝1 = 0.357294 
𝑝̂𝑝2 = 0.331096 
𝑎𝑎� = 0.499473 
𝑏𝑏� = 8.735757 
𝑐̂𝑐 = 0.020573 
𝜈̂𝜈 = 0.952946 
𝛼𝛼�1 = 0.141434 
𝛼𝛼�2 = 0.532748 

𝑝̂𝑝1 = 0.1655 
𝑝̂𝑝2 = 0.3299 
𝑎𝑎� = 0.00 
𝑏𝑏� = 0.6820 
𝑐̂𝑐 = 0.3179 
𝜈𝜈 = 1 

Correlation -0.131282 -0.119507 -0.13 

 

4.6 Extension to Multivariate Distributions 

 
The proposed method of parameter estimation is readily extended to the case of 

three or more variables because the Gauss quadrature method is easily extended for the 

approximation of multiple integrations (see Haber, 1970, p. 488; Burden & Faires, 

2005, p. 226).  However, the accuracy of the higher-dimension integration is of concern 
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and this would be affected by the numbers of quadrature points selected in the 

computation of the integral.  The following Table 4.15 shows the approximate integral 

values for several selected number of quadrature points for each variable of integration 

when finding the integral of MD1and MD1 2⁄  for a 5-variate NB distribution with the pgf  

𝐺𝐺(𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5)(𝑧𝑧1, 𝑧𝑧2, 𝑧𝑧3, 𝑧𝑧4, 𝑧𝑧5)

= �
1 − 𝜃𝜃

1 − 𝜃𝜃{(1 − 𝜃𝜃1)⋯ (1 − 𝜃𝜃5) + 𝜃𝜃1(1 − 𝜃𝜃2)⋯ (1 − 𝜃𝜃5)𝑧𝑧1 + ⋯+ 𝜃𝜃1 ⋯𝜃𝜃5𝑧𝑧1 ⋯𝑧𝑧5}�
𝜈𝜈

 

and marginals 𝑋𝑋𝑖𝑖~𝑁𝑁𝑁𝑁(𝑝𝑝𝑖𝑖 , 𝜈𝜈) where 𝑝𝑝𝑖𝑖 = 𝜃𝜃𝜃𝜃𝑖𝑖 (1 − 𝜃𝜃 + 𝜃𝜃𝜃𝜃𝑖𝑖)⁄ , 𝑖𝑖 = 1,2, … ,5.  Two sets of 

parameters are selected for computation.  

(i) Set 1:  𝜃𝜃1 = 0.2,𝜃𝜃2 = 0.5,𝜃𝜃3 = 0.3,𝜃𝜃4 = 0.6,𝜃𝜃5 = 0.5,𝜃𝜃 = 0.3, 𝜈𝜈 = 4.0 

(ii) Set 2 :  𝜃𝜃1 = 0.2,𝜃𝜃2 = 0.5,𝜃𝜃3 = 0.6,𝜃𝜃4 = 0.6,𝜃𝜃5 = 0.1,𝜃𝜃 = 0.3, 𝜈𝜈 = 0.8 

 
Table 4.15 

Approximate Integration Values for Different Number of Quadrature Points 

No. of  
Quadrature Points 

Set 1 Set 2 
MD1 MD1 2⁄  MD1 MD1 2⁄  

2 0.001178838 0.000918151 6.891733290 3.144593212 
3 0.001173603 0.000918121 6.892291443 3.144656158 
4 0.001173891 0.000918174 6.892298716 3.144658084 
5 0.001173892 0.000918175 6.892298756 3.144658086 
10 0.001173892 0.000918175 6.892298756 3.144658086 

 

From the results above, a minimum of 2 quadrature points for each variable of 

integration is enough to obtain an accuracy of four significant figures.  To have a higher 

confidence in the accuracy of the integral approximation, 3 quadrature points can be 

used with a slightly longer computation time.  The integral approximation converges 

with more quadrature points. 
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 Next, the use of the MD1 and MD1 2⁄  methods in estimating the parameters of a 

5-variate NB distribution has been investigated with a simulated sample of size 𝑛𝑛 = 500.  

The parameters for Set 1 above are used for generating the random sample.  The result 

is given in Table 4.16. 

Table 4.16 

Estimates for A Simulated 5-Variate NB Sample of Size 500 

No. of 
Quadrature Points 

Parameters 
Estimates 

MD1 MD1 2⁄  

2 

𝜃𝜃1 = 0.2 
𝜃𝜃2 = 0.5 
𝜃𝜃3 = 0.3 
𝜃𝜃4 = 0.6 
𝜃𝜃5 = 0.5 
𝜃𝜃 = 0.3 
𝜈𝜈 = 4.0 

Duration (Minutes): 

0.173043 
0.493745 
0.272964 
0.579709 
0.498450 
0.247742 
5.221724 
0.525783 

0.170282 
0.4929726 
0.271419 
0.579059 
0.498641 
0.255043 
5.049222 
1.077600 

3 

𝜃𝜃1 = 0.2 
𝜃𝜃2 = 0.5 
𝜃𝜃3 = 0.3 
𝜃𝜃4 = 0.6 
𝜃𝜃5 = 0.5 
𝜃𝜃 = 0.3 
𝜈𝜈 = 4.0 

Duration (Minutes): 

0.178044 
0.501627 
0.279266 
0.588056 
0.506287 
0.220468 
5.939513 
8.820317 

0.172070 
0.495670 
0.273963 
0.581884 
0.500621 
0.246223 
5.250783 
6.347917 

 

 The estimates are close to the true parameter values with the computation time 

under 10 minutes.  Although computation time is processor and computer dependent, 

this indicates that the MD𝛼𝛼  method can be used for quick parameter estimation in 

multivariate setting. 



CHAPTER 5 :  A CLASS OF DISTRIBUTIONS DEFINED BY 

DIFFERENCE OF TWO  DISCRETE RANDOM VARIABLES 

 

5.0 Introduction 

In this chapter, we consider the difference of two discrete random variables 

when they are (a) independent and (b) jointly distributed.  The difference of two discrete 

random variables (rv’s) has been discussed by various researchers (Irwin, 1937; 

Skellam, 1946; Johnson, 1959; Consul, 1988; Karlis & Ntzoufras, 2003; Ong & 

Shimizu, 2003); most of these researchers considered independent rv’s.  Furthermore, 

application to the analysis of paired data involving counts has not been given due 

attention in statistical literature.  One particular area where such an analysis occurs 

naturally is in the study of fluctuating asymmetry of organisms involving meristic 

(count) traits, where models based upon the difference of two correlated random 

variables are required.  A zero inflated count model is proposed to test for fluctuating 

asymmetry and a simulation study on the power of the test is considered.  Examples 

using real data sets are then given. 

 
5.1 Two Independent Random Variables 

Let two independent rv’s, 𝑋𝑋1 and 𝑋𝑋2, be from the Panjer’s family of distributions 

with probability generating function (pgf) and probability mass function (pmf), 

respectively, 

𝐺𝐺𝑋𝑋𝑖𝑖(𝑧𝑧) = �
𝑞𝑞𝑖𝑖

1 − 𝑝𝑝𝑖𝑖𝑧𝑧
�
𝛼𝛼𝑖𝑖

,  and 

Pr(𝑋𝑋𝑖𝑖 = 𝑟𝑟) =
(𝛼𝛼𝑖𝑖)𝑟𝑟
𝑟𝑟!

𝑝𝑝𝑖𝑖𝑟𝑟(1 − 𝑝𝑝𝑖𝑖)𝛼𝛼𝑖𝑖 , 0 < 𝑝𝑝𝑖𝑖 < 1, 𝛼𝛼𝑖𝑖 > 0, 𝑟𝑟 = 0,1,2, … , 𝑖𝑖 = 1,2. 
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Let 𝑝𝑝𝑖𝑖 = 𝜆𝜆𝑖𝑖𝜃𝜃𝑖𝑖
1+𝜆𝜆𝑖𝑖𝜃𝜃𝑖𝑖

 and 𝛼𝛼𝑖𝑖 = 1
𝜃𝜃𝑖𝑖

 for 𝑖𝑖 = 1,2.  Then, the Poisson pgf is obtained when 𝜃𝜃𝑖𝑖 → 0.  

When 𝜃𝜃𝑖𝑖 < 0 (𝜃𝜃𝑖𝑖 > 0), the binomial (negative binomial) pgf is obtained.  Further, 

define the difference of 𝑋𝑋1 and 𝑋𝑋2 as 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2.  Then, the rv 𝑋𝑋 has the difference 

distribution with the pmf 

Pr(𝑋𝑋 = 𝑘𝑘) =

⎩
⎨

⎧ 𝑝𝑝1
𝑘𝑘(1 − 𝑝𝑝1)𝛼𝛼1 (1 − 𝑝𝑝2)𝛼𝛼2

(𝛼𝛼1)𝑘𝑘
𝑘𝑘!

𝐹𝐹1 (𝛼𝛼1 + 𝑘𝑘,𝛼𝛼2; 𝑘𝑘 + 1; 𝑝𝑝1𝑝𝑝2)2 ,                 𝑘𝑘 ≥ 0

 𝑝𝑝2
−𝑘𝑘(1 − 𝑝𝑝1)𝛼𝛼1 (1 − 𝑝𝑝2)𝛼𝛼2

(𝛼𝛼2)−𝑘𝑘
(−𝑘𝑘)!

𝐹𝐹1 (𝛼𝛼2 − 𝑘𝑘,𝛼𝛼1;−𝑘𝑘 + 1;𝑝𝑝1𝑝𝑝2)2 , 𝑘𝑘 < 0
� 

(5.1) 

where 𝑘𝑘 is an integer and the Gauss hypergeometric function is defined by  

𝐹𝐹1 (𝑎𝑎, 𝑏𝑏; 𝑐𝑐; 𝑥𝑥)2 = �
(𝑎𝑎)𝑛𝑛(𝑏𝑏)𝑛𝑛

(𝑐𝑐)𝑛𝑛

∞

𝑛𝑛=0

𝑥𝑥𝑛𝑛

𝑛𝑛!
, |𝑥𝑥| < 1 . 

This pmf (5.1) is arrived at by making use of the fact that 

Pr(𝑋𝑋1 − 𝑋𝑋2 = 𝑘𝑘) = �Pr(𝑋𝑋1 = 𝑘𝑘 + 𝑟𝑟)Pr(𝑋𝑋2 = 𝑟𝑟)
∞

𝑟𝑟=0

, −∞ < 𝑘𝑘 < ∞      (5.2)  

where Pr(𝑋𝑋1 = 𝑟𝑟) and Pr(𝑋𝑋2 = 𝑟𝑟) are the pmf for the rv’s 𝑋𝑋1 and 𝑋𝑋2 for 𝑟𝑟 = 0,1,2, ….  

This relation (5.2) combined with the probability recurrence formulae for the two rv’s 

belonging to the Panjer’s family, given by 

Pr(𝑋𝑋𝑖𝑖 = 𝑟𝑟 + 1) = �
(𝛼𝛼𝑖𝑖 + 𝑟𝑟)𝑝𝑝𝑖𝑖
𝑟𝑟 + 1

�Pr(𝑋𝑋𝑖𝑖 = 𝑟𝑟),       𝑟𝑟 = 0,1,2, … , 𝑖𝑖 = 1,2 ,         (5.3) 

is useful in computing the pmf (5.1) due to its relative simplicity without involving the 

Gauss hypergeometric function. 
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The pgf of 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 is given by 

𝐺𝐺𝑋𝑋(𝑧𝑧) = �
𝑞𝑞1

1 − 𝑝𝑝1𝑧𝑧
�
𝛼𝛼1
�

𝑞𝑞2

1 − 𝑝𝑝2
1
𝑧𝑧
�

𝛼𝛼2

, 𝑞𝑞𝑖𝑖 = 1 − 𝑝𝑝𝑖𝑖 , 𝑖𝑖 = 1,2.                       (5.4) 

Through suitable transformation and restrictions, several models of differences 

nested in this class of distribution can be obtained as shown in Table 5.1.    

Table 5.1   

Nested Models 

Parameter 
Distribution 

𝑋𝑋1 𝑋𝑋2 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 

𝜃𝜃1 > 0 
𝜃𝜃2 > 0 𝑁𝑁𝑁𝑁 �

1
𝜃𝜃1

,
𝜆𝜆1𝜃𝜃1

1 + 𝜆𝜆1𝜃𝜃1
� 𝑁𝑁𝑁𝑁 �

1
𝜃𝜃2

,
𝜆𝜆2𝜃𝜃2

1 + 𝜆𝜆2𝜃𝜃2
� 𝑁𝑁𝑁𝑁 �

1
𝜃𝜃1

,
𝜆𝜆1𝜃𝜃1

1 + 𝜆𝜆1𝜃𝜃1
� − 𝑁𝑁𝑁𝑁 �

1
𝜃𝜃2

,
𝜆𝜆2𝜃𝜃2

1 + 𝜆𝜆2𝜃𝜃2
� 

𝜃𝜃1 → 0 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) 𝑁𝑁𝑁𝑁 �
1
𝜃𝜃2

,
𝜆𝜆2𝜃𝜃2

1 + 𝜆𝜆2𝜃𝜃2
� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) −𝑁𝑁𝑁𝑁 �

1
𝜃𝜃2

,
𝜆𝜆2𝜃𝜃2

1 + 𝜆𝜆2𝜃𝜃2
� 

𝜃𝜃2 → 0 𝑁𝑁𝑁𝑁 �
1
𝜃𝜃1

,
𝜆𝜆1𝜃𝜃1

1 + 𝜆𝜆1𝜃𝜃1
� 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) 𝑁𝑁𝑁𝑁 �

1
𝜃𝜃1

,
𝜆𝜆1𝜃𝜃1

1 + 𝜆𝜆1𝜃𝜃1
� − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) 

𝜃𝜃1 → 0 
𝜃𝜃2 → 0 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) 

𝑃𝑃𝑖𝑖 = −
𝑝𝑝𝑖𝑖
𝑞𝑞𝑖𝑖

 

𝛼𝛼𝑖𝑖 = −𝑁𝑁 
𝑖𝑖 = 1,2 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁,𝑃𝑃1) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁,𝑃𝑃2) 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁,𝑃𝑃1) − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑁𝑁,𝑃𝑃2) 

 

5.1.1 Distributional Properties 

 A recurrence formula for pmf (5.1) is 

(𝑘𝑘 + 1)(𝑘𝑘 + 1 − 𝛼𝛼2)𝛾𝛾Pr(𝑘𝑘 + 1)

= [(2𝑘𝑘 + 𝛼𝛼1 − 𝛼𝛼2)𝛾𝛾 − 𝑘𝑘]Pr(𝑘𝑘) + (1 − 𝛾𝛾)𝑝𝑝1(𝛼𝛼1 + 𝑘𝑘)(𝛼𝛼1 + 𝑘𝑘 − 1)Pr(𝑘𝑘 − 1) 

where 𝛾𝛾 = 𝑝𝑝1𝑝𝑝2
𝑝𝑝1𝑝𝑝2−1

. 
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The 𝑟𝑟-th factorial cumulants, denoted by 𝜅𝜅(𝑟𝑟) and derived by differentiating the 

factorial cumulant generating function ln𝐺𝐺(𝑧𝑧 + 1), is given by 

𝜅𝜅(𝑟𝑟) = (𝑟𝑟 − 1)! �𝛼𝛼1 �
𝑝𝑝1

𝑞𝑞1
�
𝑟𝑟

+ (−1)𝑟𝑟𝛼𝛼2 ��
1

1 − 𝑞𝑞2
�
𝑟𝑟

− 1��. 

The mean and variance are then, respectively, 

𝜇𝜇1 = 𝜅𝜅(1) = 𝛼𝛼1 �
𝑝𝑝1

𝑞𝑞1
� − 𝛼𝛼2 �

𝑝𝑝2

𝑞𝑞2
�  and  𝜇𝜇2 = 𝜅𝜅(1) + 𝜅𝜅(2) = 𝛼𝛼1 �

𝑝𝑝1

𝑞𝑞1
2� + 𝛼𝛼2 �

𝑝𝑝2

𝑞𝑞2
2� . 

Since 𝜅𝜅(2) > 0, the variance is always larger than the mean.  It follows that this class of 

distribution exhibits over dispersion. 

The indices of skewness and kurtosis are given by �𝛽𝛽1 = �𝜇𝜇3
2 𝜇𝜇2

3⁄  and 𝛽𝛽2 =

𝜇𝜇4 𝜇𝜇2
2⁄ , respectively.  Thus, 

𝛽𝛽1 =
[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 2𝑎𝑎) − 𝛼𝛼2𝑝𝑝2(1 + 𝑝𝑝2) (1 − 𝑝𝑝2)3⁄ ]2

[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎) + 𝛼𝛼2𝑝𝑝2 (1 − 𝑝𝑝2)2⁄ ]3 , 𝑎𝑎 =
𝑝𝑝1

𝑞𝑞1
, 

𝛽𝛽2 − 3
𝛽𝛽1

=
�𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 6𝑎𝑎 + 6𝑎𝑎2) + 𝛼𝛼2𝑝𝑝2[(1 + 𝑝𝑝2)2 + 2𝑝𝑝2]

(1 − 𝑝𝑝2)4 � �𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎) + 𝛼𝛼2𝑝𝑝2
(1 − 𝑝𝑝2)2�

�𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 2𝑎𝑎) − 𝛼𝛼2𝑝𝑝2(1 + 𝑝𝑝2)
(1 − 𝑝𝑝2)3 �

2

> 0. 

Ong et al. (2008) have discussed results of skewness and kurtosis for several specific 

cases.  For 𝜃𝜃2 → 0 (NB-Poisson), 

𝛽𝛽1 =
[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 2𝑎𝑎) − 𝜆𝜆2]2

[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎) + 𝜆𝜆2]3 , 𝑎𝑎 =
𝑝𝑝1

𝑞𝑞1
, 

𝛽𝛽2 = 3 +
𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 6𝑎𝑎 + 6𝑎𝑎2) + 𝜆𝜆2

[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎) + 𝜆𝜆2]2 ,   and 
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𝛽𝛽2 − 3
𝛽𝛽1

=
[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 6𝑎𝑎 + 6𝑎𝑎2) + 𝜆𝜆2][𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎) + 𝜆𝜆2]

[𝛼𝛼1𝑎𝑎(1 + 𝑎𝑎)(1 + 2𝑎𝑎) − 𝜆𝜆2]2  . 

For the Poisson distribution, 𝛽𝛽2 − 𝛽𝛽1 − 3 = 0 while for the NB-Poisson distribution, 

(𝛽𝛽2 − 3) 𝛽𝛽1⁄ > 1.  In comparison, the Neyman Type A distribution, a well known 

contagious distribution, has this ratio (𝛽𝛽2 − 3) 𝛽𝛽1⁄   close to 1 (Johnson et al., 2005, p. 

406), which limits its utility. 

 
5.1.2 Difference of Two Independent Random Variables 𝑿𝑿 = 𝑿𝑿𝟏𝟏 − 𝑿𝑿𝟐𝟐 when 

𝑿𝑿𝟐𝟐~𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩𝑩 (𝒏𝒏,𝒑𝒑)  

The following result allows the application of known results for convolutions to 

derive various quantities for the difference 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 involving the binomial rv.  

Result 5.1 (Ong et al., 2008):  The difference 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2, where 𝑋𝑋1 is any rv 

belonging to the family defined by (5.3) and 𝑋𝑋2~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑛𝑛,𝑝𝑝), is the convolution of 

𝑋𝑋1 and 𝑇𝑇~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑛𝑛, 1 − 𝑝𝑝)  shifted 𝑛𝑛 steps to the left.  (Note:  If 

𝑋𝑋1~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑛𝑛,𝑝𝑝), then consider 𝑋𝑋 = −(𝑋𝑋2 − 𝑋𝑋1).) 

To illustrate, the pmf for the differences Binomial-Binomial is derived based on 

the above result.  Now, let 𝑋𝑋1~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑚𝑚, 𝜃𝜃).  Then, 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 is the shifted 

convolution of 𝑋𝑋1~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝑚𝑚,𝜃𝜃) and 𝑇𝑇~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 (𝑛𝑛, 1 − 𝑝𝑝), that is 

𝑋𝑋~ 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑛𝑛(𝑋𝑋1 + 𝑇𝑇).  The pmf for 𝑋𝑋1 + 𝑇𝑇, the convolution of two binomials (see 

Ong, 1995) is given by  

Pr(𝑘𝑘) = 𝑝𝑝𝑛𝑛 �𝑚𝑚 + 𝑛𝑛
𝑘𝑘 � 𝜃𝜃𝑘𝑘(1 − 𝜃𝜃)𝑚𝑚−𝑘𝑘 𝐹𝐹1 �−𝑛𝑛,−𝑘𝑘;−𝑚𝑚 − 𝑛𝑛; 1 +

(1 − 𝜃𝜃)(1 − 𝑝𝑝)
𝜃𝜃𝜃𝜃 �2 , 

𝑘𝑘 = 0,1,2, … ,𝑚𝑚 + 𝑛𝑛. 

 

 



102 
 

Then, 𝑋𝑋 has pmf 

Pr(𝑥𝑥) = 𝑝𝑝𝑛𝑛 �𝑚𝑚 + 𝑛𝑛
𝑥𝑥 + 𝑛𝑛 � 𝜃𝜃

𝑥𝑥+𝑛𝑛(1 − 𝜃𝜃)𝑚𝑚−𝑛𝑛−𝑥𝑥 𝐹𝐹1 �−𝑛𝑛,−𝑥𝑥 − 𝑛𝑛;−𝑚𝑚 − 𝑛𝑛; 1 +
(1 − 𝜃𝜃)(1 − 𝑝𝑝)

𝜃𝜃𝜃𝜃
�2 , 

𝑥𝑥 = −𝑛𝑛,−𝑛𝑛 + 1, … , 0, 1, 2, … ,𝑚𝑚. 

Another example is the derivation of the Poisson-Binomial pmf.  Let 

𝑋𝑋1~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆). Then, 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 has pgf 𝐺𝐺(𝑧𝑧) = 𝑧𝑧−𝑛𝑛𝑒𝑒𝜆𝜆(𝑧𝑧−1)(𝑝𝑝 + (1 − 𝑝𝑝)𝑧𝑧)𝑛𝑛 , that 

is, 𝑋𝑋~ 𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝑛𝑛(𝑋𝑋1 + 𝑇𝑇).  𝑋𝑋1 + 𝑇𝑇 has pmf given by 

Pr(𝑘𝑘) = 𝑒𝑒−𝜆𝜆(1 − 𝑝𝑝)𝑘𝑘𝑝𝑝𝑛𝑛−𝑘𝑘𝐿𝐿𝑘𝑘
(𝑛𝑛−𝑘𝑘) �

−𝜆𝜆𝜆𝜆
1 − 𝑝𝑝�

, 𝑘𝑘 = 0,1,2, … 

with 𝐿𝐿𝑘𝑘
(𝛼𝛼)(𝑥𝑥) = (𝛼𝛼+1)𝑛𝑛

𝑛𝑛 !
𝐹𝐹1 (−𝑛𝑛;𝛼𝛼 + 1; 𝑥𝑥)1  being the Laguerre function.  If we let 𝜆𝜆 =

𝜃𝜃(1 − 𝑝𝑝), then this becomes the pmf of the Charlier series distribution (Ong, 1988).  

Thus, 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 has pmf 

Pr(𝑥𝑥) = 𝑒𝑒−𝜆𝜆(1 − 𝑝𝑝)𝑥𝑥+𝑛𝑛𝑝𝑝−𝑥𝑥𝐿𝐿𝑥𝑥+𝑛𝑛
(−𝑥𝑥) �

−𝜆𝜆𝜆𝜆
1 − 𝑝𝑝�

, 𝑥𝑥 = −𝑛𝑛,−𝑛𝑛 + 1, … ,0,1,2, …  . 

 
5.1.3 Computation of Probabilities 

In order to use recurrence formulae to facilitate the computation of pmf’s which 

are in terms of special functions, initial values like Pr(0) and Pr(1) are required.  

However, Pr(0) and Pr(1) are infinite series (except for the Binomial-Binomial); for 

example, from (5.2), Pr(0) = ∑ Pr(𝑋𝑋1 = 𝑟𝑟)Pr(𝑋𝑋2 = 𝑟𝑟)∞
𝑟𝑟=0  where Pr(𝑋𝑋𝑖𝑖 = 𝑟𝑟), 𝑖𝑖 = 1,2 

have recurrences as in (5.3).  To aid the computations, error bounds for these infinite 

series are derived.  Here, the error bound for calculating Pr(0) is presented.  The error 

bounds for Pr(1) and other probabilities are obtained similarly.  Let 

Pr(0) = �Pr(𝑋𝑋1 = 𝑟𝑟)Pr(𝑋𝑋2 = 𝑟𝑟)
∞

𝑟𝑟=0

= �Pr𝑋𝑋1 (𝑟𝑟)Pr𝑋𝑋2 (𝑟𝑟)
𝑡𝑡

𝑟𝑟=0

+ 𝑒𝑒𝑡𝑡  
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where 𝑒𝑒𝑡𝑡 = ∑ Pr𝑋𝑋1 (𝑟𝑟)Pr𝑋𝑋2 (𝑟𝑟)∞
𝑟𝑟=𝑡𝑡+1  is the error bound.  Pr(0) is evaluated by summing 

until 𝑒𝑒𝑡𝑡  is below a prescribed value (accuracy).  The following result gives a bound for 

𝑒𝑒𝑡𝑡 . 

Result 5.2:  Suppose that Pr𝑋𝑋1 (𝑟𝑟) and Pr𝑋𝑋2 (𝑟𝑟) are unimodal distributions. The error 

bound 𝑒𝑒𝑡𝑡  is given by 

𝑒𝑒𝑡𝑡 = � Pr𝑋𝑋1 (𝑟𝑟)Pr𝑋𝑋2 (𝑟𝑟)
∞

𝑟𝑟=𝑡𝑡+1

<
Pr𝑋𝑋1 (𝑟𝑟 + 1)Pr𝑋𝑋2 (𝑟𝑟 + 1)

1 − 𝑇𝑇1𝑇𝑇2
 

where 𝑡𝑡 ≥ max(𝑀𝑀1,𝑀𝑀2), 𝑀𝑀𝑖𝑖 = mode of Pr𝑋𝑋𝑖𝑖(𝑟𝑟) and 𝑇𝑇𝑖𝑖 = (𝛼𝛼𝑖𝑖 + 𝑡𝑡 + 1)𝑝𝑝𝑖𝑖 (𝑡𝑡 + 2)⁄ , 

𝑖𝑖 = 1,2. 

Proof:   

Consider Pr𝑋𝑋𝑖𝑖(𝑡𝑡 + 2) = [(𝛼𝛼𝑖𝑖 + 𝑡𝑡 + 1)𝑝𝑝𝑖𝑖 (𝑡𝑡 + 2)⁄ ]Pr𝑋𝑋𝑖𝑖(𝑡𝑡 + 1) = 𝑇𝑇𝑖𝑖Pr𝑋𝑋𝑖𝑖(𝑡𝑡 + 1), 𝑖𝑖 = 1,2.  

Suppose 𝑡𝑡 ≥ max(𝑀𝑀1,𝑀𝑀2) where unimodality of the distributions is assumed.  Then, 

Pr𝑋𝑋𝑖𝑖(𝑡𝑡 + 2) Pr𝑋𝑋𝑖𝑖(𝑡𝑡 + 1)⁄ = 𝑇𝑇𝑖𝑖 < 1 and 𝑇𝑇1𝑇𝑇2 < 1.  It follows that 

𝑒𝑒𝑡𝑡 < Pr𝑋𝑋1 (𝑟𝑟 + 1)Pr𝑋𝑋2 (𝑟𝑟 + 1)[1 + 𝑇𝑇1𝑇𝑇2 + (𝑇𝑇1𝑇𝑇2)2 + ⋯ ] =
Pr𝑋𝑋1 (𝑟𝑟 + 1)Pr𝑋𝑋2 (𝑟𝑟 + 1)

1 − 𝑇𝑇1𝑇𝑇2
 . 

■ 

To illustrate the utility of the error bound, comparison is done for the 

computation of Pr(0) = ∑ Pr𝑋𝑋1 (𝑟𝑟)Pr𝑋𝑋2 (𝑟𝑟)∞
𝑟𝑟=0  by summing this infinite series until (a) 

the term Pr𝑋𝑋1 (𝑟𝑟)Pr𝑋𝑋2 (𝑟𝑟) ≤ 𝜀𝜀, and (b) error bound is realized, that is, 𝑒𝑒𝑡𝑡 ≤ 𝜀𝜀 where 𝜀𝜀 is a 

designated small number, say 𝜀𝜀 = 10−10.  Some computational results are shown in 

Table 5.2.  The Pr(0) in the first column have been computed to an accuracy of 10−10.  

For small values of 𝛼𝛼𝑖𝑖  and 𝑝𝑝𝑖𝑖 , there is no appreciable difference between stopping 

criteria (a) and (b).  It is noted that when the parameters 𝛼𝛼𝑖𝑖  and 𝑝𝑝𝑖𝑖  are large, 

computation of the infinite series by stopping criterion (a) is not advisable due to 
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premature termination because all the terms Pr𝑋𝑋1 (𝑟𝑟)Pr𝑋𝑋2 (𝑟𝑟) are very small.  Thus, in 

general, it is more advantageous to use the error bound in the computation of Pr(0) and 

other probabilities for a more accurate result. 

Table 5.2 

Comparison between Stopping Criteria (a) and (b) 

𝜀𝜀 = 1.0 × 10−10 
Estimated Pr(0)/ 
Number of terms  

Parameters/ 
Pr(0) 

Criterion (a) 
Term is very small 

Criterion (b) 
Error bound achieved 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.1 
𝛼𝛼2 = 5, 𝑝𝑝2 = 0.2

 0.3097102247 

0.3097102247 
10 

0.3097102246 
9 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.1 
𝛼𝛼2 = 10, 𝑝𝑝2 = 0.2

 0.152199031879 

0.1521990319 
11 

0.1521990318 
10 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.1 
𝛼𝛼2 = 5, 𝑝𝑝2 = 0.9

 0.000037854543 

0.0000378545 
12 

0.0000378545 
37 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.1 
𝛼𝛼2 = 10, 𝑝𝑝2 = 0.9

 0.000000001380 

5.90490 × 10-11 
1 

0.0000000014 
82 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.4 
𝛼𝛼2 = 5, 𝑝𝑝2 = 0.5

 0.104458093643 

0.1044580936 
24 

0.1044580936 
23 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.4 
𝛼𝛼2 = 10, 𝑝𝑝2 = 0.5

 0.034065499221 

0.0340654992 
27 

0.0340654992 
27 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.85 
𝛼𝛼2 = 5, 𝑝𝑝2 = 0.95

 0.003023311781 

2.37305 × 10-11 
1 

0.0030233117 
164 

𝛼𝛼1 = 5, 𝑝𝑝1 = 0.85 
𝛼𝛼2 = 10, 𝑝𝑝2 = 0.95

 0.000031024588 

7.45177 × 10-18 
1 

0.0000310245 
173 

 

5.2 Two Correlated Random Variables 

Considering the case when the two rv’s are not independent, the difference of 

two correlated 𝑋𝑋1 and 𝑋𝑋2 rv’s having extended bivariate negative binomial (EBNB) 

distribution arising from two different formulations is examined as follows. 
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a) EBNB Distribution Formed by Extended Trivariate Reduction 

If two rv’s 𝑋𝑋1 and 𝑋𝑋2 involve a third random element in common as in the usual 

trivariate reduction formulation (2.1), the difference of these two rv’s can be treated as 

the difference between two independent rv’s.  To illustrate, let 𝑌𝑌1, 𝑌𝑌2 and 𝑊𝑊 be three 

independent rv’s.  Defined as (2.1), the difference between 𝑋𝑋1 and 𝑋𝑋2 denoted by 𝑋𝑋 is 

𝑋𝑋 = 𝑌𝑌1 − 𝑌𝑌2, which does not involve 𝑊𝑊.  Therefore, 𝑋𝑋 can be considered as the 

difference of two independent rv’s.  

For formulation (3.1), where (𝑊𝑊1,𝑊𝑊2) is a pair of randomly correlated elements 

independent of 𝑌𝑌1 and 𝑌𝑌2, it is found that 𝑋𝑋 = (𝑌𝑌1 − 𝑌𝑌2) + (𝑊𝑊1 −𝑊𝑊2).  Thus, 𝑋𝑋 is a 

convolution of two independent differences.  The first difference involves two 

independent variables whereas the second difference may be considered as a difference 

of two dependent variables depending on the formulation of the joint (𝑊𝑊1,𝑊𝑊2) 

distribution.  If (𝑊𝑊1,𝑊𝑊2) is formulated by the usual trivariate reduction (2.1) or EBNB 

described in the next section, we obtain the difference of two independent rv’s.  

b) EBNB Distribution as A Bivariate Mixed Poisson Distribution 

The EBNB distribution has pgf as given in (3.7).  Thus, pgf of the difference 

𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 will have the form of 

𝐺𝐺𝑋𝑋(𝑧𝑧) = 𝐺𝐺(𝑋𝑋1,𝑋𝑋2) �𝑧𝑧,
1
𝑧𝑧
� 

 = �
Θ

1 − 𝜃𝜃2 − (𝜃𝜃1 + 𝜃𝜃3)𝑧𝑧
�
𝛼𝛼1−𝜈𝜈

�
Θ

1 − 𝜃𝜃1 − (𝜃𝜃2 + 𝜃𝜃3) 1
𝑧𝑧
�

𝛼𝛼2−𝜈𝜈

�
Θ

1 − 𝜃𝜃1𝑧𝑧 − 𝜃𝜃2
1
𝑧𝑧 − 𝜃𝜃3

�

𝜈𝜈

.  

(5.5) 

Let 𝜃𝜃1 = 𝜋𝜋, 𝜃𝜃2 = 𝜂𝜂 and 𝜃𝜃3 = −𝜋𝜋𝜋𝜋 where 𝜃𝜃3 < 0.  This still represents a legitimate 

EBNB (see Section 3.1.2).  Equation (5.5) is then 
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𝐺𝐺𝑋𝑋(𝑧𝑧) = �
1 − 𝜋𝜋

1 − 𝜋𝜋𝜋𝜋�
𝛼𝛼1

�
1 − 𝜂𝜂

1 − 𝜂𝜂 1
𝑧𝑧
�

𝛼𝛼2

 

which is of the same form as (5.4), the pgf of the difference of two independent 

𝑁𝑁𝑁𝑁(𝛼𝛼1,𝜋𝜋) and 𝑁𝑁𝑁𝑁(𝛼𝛼2, 𝜂𝜂) rv’s.  Thus, the differences of correlated data from EBNB 

distribution can be fitted using the NB-NB distribution. 

 As a special case, when 𝛼𝛼1 = 𝛼𝛼2 =  𝜈𝜈, (𝑋𝑋1,𝑋𝑋2) has the BNB (compound 

correlated bivariate Poisson) distribution of Edwards & Gurland (1961).  The difference 

𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2 is then the difference of two independent 𝑁𝑁𝑁𝑁(𝜈𝜈,𝜋𝜋) and 𝑁𝑁𝑁𝑁(𝜈𝜈, 𝜂𝜂) rv’s. 

 
5.3 Applications of the Distribution 

5.3.1 Model Selection 

 The NB-NB distribution has several other distributions nested within it through 

certain conditions imposed on the distribution parameters as shown in Table 5.1.  By 

testing suitable hypotheses involving only these parameters, the NB-NB distribution can 

be used to find the best model for fitting a set of data.  For example, let the null and 

alternative hypotheses of interest be, respectively, 

𝐻𝐻0 :   𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃0;  𝜆𝜆1, 𝜆𝜆2 unspecified 

𝐻𝐻1 :   𝜆𝜆1, 𝜆𝜆2,𝜃𝜃1, 𝜃𝜃2 unspecified 

where 𝜆𝜆1, 𝜆𝜆2,𝜃𝜃1,𝜃𝜃2 are as defined in Section 5.1 and 𝜃𝜃0 is known.  Non-rejection of the 

null hypothesis for a very small value of 𝜃𝜃0 indicates that the Poisson-Poisson 

distribution will fit adequately.  Conversely, the rejection of the null hypothesis will 

indicate that the more general NB-NB distribution could be more suitable. 
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5.3.2 Test for Equality of Means and Index Parameters 

 The null hypothesis for testing the equality of means and index parameters of the 

random variables 𝑋𝑋1 and 𝑋𝑋2 is 

𝐻𝐻0 :    𝜇𝜇 = 0, 𝛿𝛿 = 0;  𝜆𝜆2,𝜃𝜃2 unspecified 

against the alternative hypothesis of 

𝐻𝐻1 :   𝜇𝜇, 𝜆𝜆2, 𝛿𝛿,𝜃𝜃2 unspecified 

where 𝜇𝜇 = 𝜆𝜆1 − 𝜆𝜆2 and 𝛿𝛿 = 𝜃𝜃1 − 𝜃𝜃2.  If the null hypothesis is not rejected, the 

distributions for 𝑋𝑋1 and 𝑋𝑋2 are identical.  The converse is true if the null hypothesis is 

rejected.   

 
5.3.3 Test for Bilateral Asymmetry in Organisms 

There are three forms of bilateral asymmetry, namely fluctuating asymmetry 

(FA), directional asymmetry (DA) and antisymmetry (Van Valen, 1962).  FA, a pattern 

of bilateral variation in a sample of individuals where the mean of the difference 

between the bilateral sides is zero with deviations normally distributed about the mean 

(Palmer, 1994), is a commonly used measure for developmental stability.  

Developmental stability refers to the ability of defending against small, random 

developmental perturbations originating from the environment on a particular 

morphological structure or trait.   

On the other hand, DA shows a deviation from perfect bilateral symmetry by 

favouring development of a trait on one side of the body than the other, causing the 

mean of that side to be larger.  Antisymmetry is a pattern of bilateral variation in a 

sample of individuals which shows a platykurtic (broad-peaked) or bimodal distribution 

of the differences between the bilateral sides about a mean of zero.  DA and 
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antisymmetry may render some traits unusable for studies of developmental stability 

(Palmer & Strobeck, 1986; Palmer, 1994).     

Homogenous Population 

The morphological trait considered may be meristic (counts) or metrical 

(continuous variable).  Here, it is of interest to consider an additive error model for 

meristic trait.  This is the case if inert structures like bristles or fins are considered 

(Mosimann & Campbell, 1988).  Let 𝑊𝑊1 and 𝑊𝑊2 be rv’s that represent the development 

of the left (𝐿𝐿) and right (𝑅𝑅) side of a meristic (count) trait for a homogenous group of 

individuals (Palmer, 1994) such that 𝑊𝑊1 = 𝑊𝑊2 = 𝑊𝑊.  If 𝑌𝑌1 and 𝑌𝑌2 are the corresponding 

independent random errors in development for the left and right side of the trait, then by 

trivariate reduction (2.1) 

𝐿𝐿 = 𝑊𝑊 + 𝑌𝑌1 and 𝑅𝑅 = 𝑊𝑊 + 𝑌𝑌2 . 

Thus, (𝐿𝐿,𝑅𝑅) has a joint distribution with marginals given by 𝐿𝐿 and 𝑅𝑅.  The difference 

𝑋𝑋 = 𝐿𝐿 − 𝑅𝑅 = 𝑌𝑌1 − 𝑌𝑌2  is the difference of two independent discrete rv’s as described in 

Section 5.1. 

For example, let 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜇𝜇) represent a Poisson random variable with mean 𝜇𝜇. 

Suppose 𝑊𝑊, 𝑌𝑌1 and 𝑌𝑌2 are independent Poisson random variables 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆), 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) respectively.  Then, (𝐿𝐿,𝑅𝑅) has a bivariate Poisson 

distribution with joint probability mass function (Mardia, 1970) given by 

Pr(𝐿𝐿 = 𝑙𝑙,𝑅𝑅 = 𝑟𝑟) = 𝑒𝑒−(𝜆𝜆+𝜆𝜆1+𝜆𝜆2) 𝜆𝜆1
𝑙𝑙

𝑙𝑙!
𝜆𝜆2

𝑟𝑟

𝑟𝑟!
� �𝑙𝑙𝑖𝑖� �

𝑟𝑟
𝑖𝑖
�

min (𝑙𝑙 ,𝑟𝑟)

𝑖𝑖=0

𝑖𝑖! �
𝜆𝜆

𝜆𝜆1𝜆𝜆2
�
𝑖𝑖

 . 

Then, 𝑋𝑋 = 𝑌𝑌1 − 𝑌𝑌2 has pmf Pr(𝑋𝑋 = 𝑘𝑘) = 𝑓𝑓(𝑘𝑘) (see, for example, Johnson et al., 2005, 

p. 198) given by 
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𝑓𝑓(𝑘𝑘) = 𝑒𝑒−(𝜆𝜆1+𝜆𝜆2) �
𝜆𝜆1

𝜆𝜆2
�
𝑘𝑘
2
𝐼𝐼𝑘𝑘�2�𝜆𝜆1𝜆𝜆2�, −∞ < 𝑘𝑘 < ∞                                   (5.6) 

where 𝑘𝑘 is an integer and 𝐼𝐼𝑘𝑘(𝑥𝑥) is the modified Bessel function of the first kind defined 

by  

𝐼𝐼𝑘𝑘(𝑥𝑥) = �
𝑥𝑥
2
�
𝑘𝑘
�

�𝑥𝑥
2

4 �
𝑛𝑛

𝑛𝑛! Γ(𝑘𝑘 + 𝑛𝑛 + 1)

∞

𝑛𝑛=0

  

with Γ(𝑦𝑦) being the gamma function. 

For simplicity suppose that the random errors in development, 𝑌𝑌1 and 𝑌𝑌2 are also 

identically distributed (Graham et al., 2003, p. 58), that is 𝜆𝜆1 = 𝜆𝜆2 = 𝜇𝜇.  Then, 𝑋𝑋 =

𝑌𝑌1 − 𝑌𝑌2 is the difference of two identical Poisson rv’s (Irwin, 1937; see also Johnson et 

al., 2005, p. 198 for references therein).  In this case, 

𝐸𝐸[𝑋𝑋] = 𝐸𝐸[𝑌𝑌1] − 𝐸𝐸[𝑌𝑌2] = 0 and 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌1] + 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌2] = 2𝜇𝜇 . 

Also, 𝑓𝑓(−𝑘𝑘) = 𝑓𝑓(𝑘𝑘) since the distribution 𝑋𝑋 is symmetrical. 

Heterogeneous Population 

Relaxing the assumption that the group of individuals under study forms a 

homogenous group, it is assumed that 𝑌𝑌1 and 𝑌𝑌2 above are now independent Poisson 

random variables 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1𝑖𝑖) and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2𝑖𝑖)  for the ith individual.  That is, the 

means 𝜆𝜆1𝑖𝑖  and 𝜆𝜆2𝑖𝑖  may differ from individual to individual due to size, length and so on, 

representing the non homogeneity in the population.  However, this constitutes a great 

number of unknown parameters 𝜆𝜆1𝑖𝑖  and 𝜆𝜆2𝑖𝑖 , 𝑖𝑖 = 1,2, … in the model.  To overcome this, 

compounding technique is applied by assuming that 𝜆𝜆1𝑖𝑖  and 𝜆𝜆2𝑖𝑖  are values of rv’s with 

probability density functions (pdf’s) 𝑓𝑓(𝜆𝜆1;𝜓𝜓) and 𝑔𝑔(𝜆𝜆2;𝜙𝜙) respectively, where 𝜓𝜓 and 𝜙𝜙 
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are vectors of unknown parameters.  Both 𝑓𝑓(𝜆𝜆1;𝜓𝜓) and 𝑔𝑔(𝜆𝜆2;𝜙𝜙) are known as mixing 

distributions.  This reduces a large number of parameters to be considered to only 𝜓𝜓 and 

𝜙𝜙 in the two distributions.   

Mathematically, let 𝑌𝑌1|𝜆𝜆1
�~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) and 𝑌𝑌2|𝜆𝜆2

�~𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) having pmf’s 

𝑓𝑓𝑌𝑌1 (𝑘𝑘|𝜆𝜆1
�) and 𝑓𝑓𝑌𝑌2 (𝑘𝑘|𝜆𝜆2

�)  respectively.  Then, the unconditional pmf’s are given by 

𝑓𝑓𝑌𝑌1 (𝑘𝑘) = � 𝑒𝑒−𝜆𝜆1
𝜆𝜆1

𝑘𝑘

𝑘𝑘!
𝑓𝑓(𝜆𝜆1;𝜓𝜓)𝑑𝑑𝜆𝜆1

∞

0
 and 𝑓𝑓𝑌𝑌2 (𝑘𝑘) = � 𝑒𝑒−𝜆𝜆2

𝜆𝜆2
𝑘𝑘

𝑘𝑘!
𝑔𝑔(𝜆𝜆2;𝜙𝜙)𝑑𝑑𝜆𝜆2

∞

0
 . 

If 𝑓𝑓(𝜆𝜆1;𝜓𝜓) and 𝑔𝑔(𝜆𝜆2;𝜙𝜙) are taken to be gamma pdf’s, the negative binomial (NB) 

distributions 𝑌𝑌1~𝑁𝑁𝑁𝑁(𝛼𝛼1,𝜋𝜋) and 𝑌𝑌2~𝑁𝑁𝑁𝑁(𝛼𝛼2, 𝜂𝜂) are obtained (Greenwood & Yule, 

1920).   Then, the pmf of 𝑋𝑋 = 𝑌𝑌1 − 𝑌𝑌2  is given by (5.1). 

Correlated Random Errors 

 Extending to 𝑌𝑌1 and 𝑌𝑌2 being the corresponding correlated random errors in 

development for the left and right side of the morphological trait studied and letting the 

joint (𝑌𝑌1,𝑌𝑌2) has the EBNB distribution in Section 3.4, the result in Section 5.2 is 

applicable for the difference 𝑋𝑋 = 𝑌𝑌1 − 𝑌𝑌2 here. 

a) Directional Asymmetry 

If 𝜆𝜆1 ≠ 𝜆𝜆2, then  

𝐸𝐸[𝑋𝑋] = 𝐸𝐸[𝑌𝑌1] − 𝐸𝐸[𝑌𝑌2] = 𝜆𝜆1 − 𝜆𝜆2 ≠ 0 and 

𝑉𝑉𝑉𝑉𝑉𝑉[𝑋𝑋] = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌1] + 𝑉𝑉𝑉𝑉𝑉𝑉[𝑌𝑌2] = 𝜆𝜆1 + 𝜆𝜆2 . 

This case may be used as a model for DA.  It follows that the set of hypotheses of 

interest is 

𝐻𝐻0 :   𝜆𝜆1 = 𝜆𝜆2     against    𝐻𝐻1 :   𝜆𝜆1 ≠ 𝜆𝜆2 .                      (5.7) 
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Non rejection of 𝐻𝐻0 indicates that the means of the left and right sides may be taken to 

be the same and consideration of FA is more appropriate.  There are a variety of 

statistical tests for the hypotheses (5.7) which are similar to those for Section 5.3.2.  The 

popular ones are the likelihood ratio, score and Wald tests.  Rao’s score test is usually 

preferred due to its computation simplicity.  

b) Fluctuating Asymmetry 

The presence of excess zeros (inflation) in count data indicates a zero-inflated 

model having the pmf   

𝑃𝑃(0) = 𝜔𝜔 + (1 − 𝜔𝜔)𝑓𝑓(0), 0 < 𝜔𝜔 < 1 

𝑃𝑃(𝑘𝑘) = (1 − 𝜔𝜔)𝑓𝑓(𝑘𝑘), 𝑘𝑘 = 1,2,3, …                                                                  (5.8) 

where 𝑓𝑓(𝑘𝑘) is the pmf of a rv 𝑋𝑋.  It is possible for 𝜔𝜔 < 0 provided that 𝜔𝜔 ≥ −𝑓𝑓(0)
1−𝑓𝑓(0)

.  The 

literature abounds with the applications of the well-researched zero-inflated models.  

See, for instance, the recent articles of Gupta et al. (1996, 2004) and papers in the 

reference. 

If the difference in the development of the left and right side of a meristic trait is 

merely due to random variation, then a high degree of symmetry will be reflected in a 

great number of 𝑋𝑋 = 0.  It follows that an appropriate model will be given by the zero-

inflated model (5.8) where 𝑓𝑓(𝑘𝑘) is as in (5.1) or (5.6) depending on the model.  A 

threshold value 𝜔𝜔0 is predetermined and if the value 𝜔𝜔 exceeds 𝜔𝜔0 it will mean that 

there is a significant degree of symmetry. 

With zero-inflated model (5.8), a statistical test of FA corresponds to testing the 

one-sided hypotheses 

𝐻𝐻0 :   𝜔𝜔 = 𝜔𝜔0     against    𝐻𝐻1 :   𝜔𝜔 ≥ 𝜔𝜔0.                         
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Therefore, rejection of 𝐻𝐻0: 𝜔𝜔 = 𝜔𝜔0 implies perfect bilateral symmetry for the trait apart 

from insignificant chance variation. 

 
5.4 Numerical Illustrations 

 The required formulae for the partial derivatives of NB-NB and Poisson-Poisson 

distributions and related quantities in the information matrix are given in Appendices B 

and C, respectively. 

 
5.4.1 Model Selection and Test for Equality of Means 

Thirty two randomly selected participants from a prospective study of male 

sexual contacts of men with AIDS or an AIDS-related condition (ARC) were assessed 

for the presence or absence of generalized lymphadenopathy by two different physicians 

with mean number of assessed palpable lymph nodes being 7.91 and 5.16 (Rosner, 

2000, p. 319).  Since the means of the number of assessed lymph nodes are clearly 

different, the 𝑁𝑁𝑁𝑁(𝜃𝜃, 𝜆𝜆) − 𝑁𝑁𝑁𝑁(𝜃𝜃, 𝜆𝜆) distribution is not considered and 𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) −

𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) distribution has been fitted to the data.  The parameterization using 𝑝𝑝1, 𝑝𝑝2, 

𝛼𝛼1 and 𝛼𝛼2 has not been adopted because of the numerical instability in the computations 

for the score test. Due to the complicated expression of the pmf, maximum likelihood 

estimation (MLE) has been done by numerical optimization.  

The expected frequencies and their graphical representation are shown in Table 

5.3 and Figure 5.1, respectively.  The hypothesis that the data follows the 𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) −

𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) distribution is not rejected at the significance level, 𝛼𝛼 = 0.05 since 𝜒𝜒7
2 =

14.067 > 11.73.  Note that the 𝜒𝜒2 goodness of fit value is inflated due to the relatively 

high count at 𝑘𝑘 = 3. 
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Table 5.3 

Observed and Expected Frequencies of Differences in Assessment of Number of 

Palpable Lymph Nodes among Sexual Contacts of AIDS or ARC Patients by Two 

Physicians 

Difference, 
𝑘𝑘 

Observed 
Frequency 

Expected Frequency, 
𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) − 𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) 

    -4 ≤  0 0.35 
-3 1 0.50 
-2 2 1.03 
-1 1 1.85 
0 3 2.89 
1 3 3.90 
2 1 4.55 
3 10 4.60 
4 4 4.07 
5 3 3.18 
6 2 2.20 

     7≥  2 2.86 

𝜒𝜒2  11.73 
d.f.  7 

ML estimates:  𝜆̂𝜆1 = 5.1876, 𝜆̂𝜆2 = 2.4376, 𝜃𝜃�1 = 1.44 × 10−4, 𝜃𝜃�2 = 0.02591 

 

Since the ML estimates of 𝜃𝜃𝑖𝑖’s are small, which indicates the Poisson-Poisson 

distribution, the data have been fitted with the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2) 

distribution.  The parameter estimates obtained are �𝜆̂𝜆1, 𝜆̂𝜆2� = (5.2707, 2.5207) and 

𝜒𝜒2 = 11.80.  The expected frequencies are very close to those given in Table 5.3 and 

will not be displayed.  
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Figure 5.1 

Observed and Expected Frequencies of Difference in Assessment of Number of 

Palpable Lymph Nodes by Two Physicians 

 

Since 𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) − 𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆1) − 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝜆𝜆2)) distribution is 

not rejected, we now consider the test of parameters based upon the likelihood ratio and 

score tests.  The 𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) − 𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) will be used to illustrate the tests. 

The degree of clinical agreement between the two physicians may be examined 

by testing for equality of means in the distributions of the number of palpable lymph 

nodes assessed by them when a  𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) −𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) distribution is fitted to the 

data.  It is assumed that the assessments made by the physicians are independent of each 

other.  The hypotheses of interest are as in Section 5.3.2. 

Remark:  The sets of parameters under the null and alternative hypotheses correspond 

to the 𝑁𝑁𝑁𝑁(𝜃𝜃, 𝜆𝜆) − 𝑁𝑁𝑁𝑁(𝜃𝜃, 𝜆𝜆) and 𝑁𝑁𝑁𝑁(𝜃𝜃1, 𝜆𝜆1) − 𝑁𝑁𝑁𝑁(𝜃𝜃2, 𝜆𝜆2) distributions respectively 

with parameter estimates 

-4 -3 -2 -1 0 1 2 3 4 5 6 7
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𝜇𝜇 = 0, 𝛿𝛿 = 0; 𝜆̂𝜆2
0 = 7.6968, 𝜃𝜃�2

0 = 1.4041 × 10−6  (null), 

𝜇̂𝜇 = 2.7500, 𝜆̂𝜆2 = 2.4376, 𝛿̂𝛿 = −0.02577, 𝜃𝜃�2 = 0.02591  (alternative). 

The likelihood ratio (LR) and score test statistic values for the hypothesis test are 10.969 

and 18.373, respectively.  These test statistics as given in Section 2.5.2 have been 

obtained by numerical computation of the various quantities involved.  For the two-

sided score test, following the sequence of 𝜇𝜇, 𝜆𝜆2, 𝛿𝛿 and 𝜃𝜃2, the efficient scores and 

information matrix for a single observation are computed as 

𝐔𝐔∗𝑇𝑇 = [1.010563 −4.103907 × 10−8 −1.926742 0.229783]  and 

𝚪𝚪∗ = �
0.067010 0.004098

0.008196
0.120730
0.241461
8.513046

0.241461
0.482921

14.386421
28.772841

� . 

 At the significance level 𝛼𝛼 = 0.05, both test statistics above exceeded the 

critical value 𝜒𝜒2
2 = 5.991.  Therefore, both tests reject the null hypothesis at 𝛼𝛼 = 0.05.  

Thus, there is little evidence to suggest that the mean of number of palpable lymph 

nodes as assessed by each of the two physicians are equal. 

 
5.4.2 Test for Fluctuating Asymmetry 

 For illustration purposes, the simpler Poisson-Poisson distribution, which is 

nested in NB-NB distribution as shown in Section 5.1, is considered.  The pmf of this 

distribution is as given in (5.6).  For the zero-inflated model (5.8), it is of interest to 

apply the above theory to test the following null and alternative hypotheses. 

𝐻𝐻0 :   𝜔𝜔 = 𝜔𝜔0;   𝜆𝜆1, 𝜆𝜆2 unspecified 

 𝐻𝐻1 :   𝜔𝜔 ≥ 𝜔𝜔0;  𝜆𝜆1, 𝜆𝜆2 unspecified.                   (5.9) 
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Since the alternative hypothesis is one-sided, the one-sided score test (Silvapulle 

& Silvapulle, 1995) mentioned in Section 2.5 is employed here.  Note that the usual 

score test, which is a two-sided test, is inappropriate or not meaningful since it is of 

interest only to show 𝜔𝜔 greater than a threshold value of 𝜔𝜔0 as no evidence of FA. As a 

comparison, the one-sided likelihood ratio test is also considered.  Asymptotic null 

distribution of these one-sided test statistics is 1
2
𝜒𝜒0

2 + 1
2
𝜒𝜒1

2 distribution with 𝜒𝜒0
2 denoting 

the distribution with point mass at zero (Self & Liang, 1987; Silvapulle & Silvapulle, 

1995).  The p-value of both test statistics is as given in (2.16).  First, the computer 

programs used in implementing the tests were validated using 5 sets of generated data 

from several combinations of 𝜆𝜆1, 𝜆𝜆2 and 𝜔𝜔 for 𝜔𝜔0 = 0.5 and 0.7 as shown in Table 5.4.  

Assuming a significance level of 𝛼𝛼 = 0.05 for the hypothesis testing, the results of the 

tests of hypotheses for these well-behaved data sets are consistent with the parameters 

chosen. 

Next, a simulation study is conducted to compare the power of both one-sided 

score and likelihood ratio tests.  The values 𝜔𝜔0 = 0.3, 0.5 and 0.7, and various 

combinations of 𝜆𝜆1, 𝜆𝜆2 and 𝜔𝜔 are selected for two sample sizes, 𝑛𝑛 = 50 and 100.  We 

simulated 10000 Monte Carlo samples for each combination of parameter values.  For 

each simulated sample, the p-value is calculated.  The proportion of samples with p-

value less than 𝛼𝛼 is computed as an estimate for the power of the test with the results as 

shown in Table 5.5 (𝛼𝛼 = 0.05) and Table 5.6 (𝛼𝛼 = 0.10). 
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Table 5.4 

Hypothesis Testing for 5 Sets of Generated Data 

Parameters 
ML Estimate 

𝜔𝜔0 = 0.5 𝜔𝜔0 = 0.7 Unconstrained 
Set 1 

𝜆𝜆1 = 0.5 
𝜆𝜆2 = 0.5 
𝜔𝜔 = 0.8 

0.114391 
0.114391 

 

0.205082 
0.205082 

 

0.215989 
0.215989 
0.713131 

Score, 𝑆𝑆𝑐𝑐1  (p-value) 0.031846 (0.43) 0.000309 (0.49)  
𝐿𝐿𝐿𝐿𝑇𝑇  (p-value) 0.727826 (0.20) 0.006273 (0.47)  

 Do not reject 𝐻𝐻0 Do not reject 𝐻𝐻0  
Set 2 

𝜆𝜆1 = 2.0 
𝜆𝜆2 = 0.8 
𝜔𝜔 = 0.4 

1.888086 
0.616240 

 

2.069489 
0.665064 

 

1.764248 
0.575384 
0.407281 

Score, 𝑆𝑆𝑐𝑐1  (p-value) 0.00 (1.00) 0.00 (1.00)  
𝐿𝐿𝐿𝐿𝑇𝑇  (p-value) 0.00 (1.00) 0.00 (1.00)  

 Do not reject 𝐻𝐻0 Do not reject 𝐻𝐻0  
Set 3 

𝜆𝜆1 = 4.2 
𝜆𝜆2 = 4.2 
𝜔𝜔 = 0.8 

1.478640 
1.478639 

 

2.517537 
2.517536 

 

2.991034 
2.991033 
0.815328 

Score, 𝑆𝑆𝑐𝑐1  (p-value) 29.785568 (2.4 × 10-8) 3.410228 (0.03)  

𝐿𝐿𝐿𝐿𝑇𝑇  (p-value) 56.184720 (3.3 × 10-14) 10.199098 (7.0 × 10-4)  
 Reject 𝐻𝐻0 Reject 𝐻𝐻0  

Set 4 
𝜆𝜆1 = 4.2 
𝜆𝜆2 = 4.2 
𝜔𝜔 = 0.6 

3.078538 
3.078531 

 

3.586511 
3.586517 

 

3.404922 
3.404937 
0.619395 

Score, 𝑆𝑆𝑐𝑐1  (p-value) 5.767871 (8.2 × 10-3) 0.00 (1.00)  

𝐿𝐿𝐿𝐿𝑇𝑇  (p-value) 7.944254 (2.4 × 10-3) 0.00 (1.00)  
 Reject 𝐻𝐻0 Do not reject 𝐻𝐻0  

Set 5 
𝜆𝜆1 = 4.2 
𝜆𝜆2 = 4.2 
𝜔𝜔 = 0.1 

4.139961 
4.139961 

 

4.228670 
4.228670 

 

3.615909 
3.615909 
0.099489 

Score, 𝑆𝑆𝑐𝑐1  (p-value) 0.00 (1.00) 0.00 (1.00)  
𝐿𝐿𝐿𝐿𝑇𝑇  (p-value) 0.00 (1.00) 0.00 (1.00)  

 Do not reject 𝐻𝐻0 Do not reject 𝐻𝐻0  
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Table 5.5 

a) Power of One-Sided Score Test (𝛼𝛼 = 0.05) 

𝜔𝜔0 𝜔𝜔 
𝑛𝑛 = 50 (𝜆𝜆1, 𝜆𝜆2)  𝑛𝑛 = 100 (𝜆𝜆1, 𝜆𝜆2) 

(2, 2) (4, 2) (4, 4)  (2, 2) (4, 2) (4, 4) 
0.3 0.3 0.0412 0.0510 0.0573  0.0417 0.0580 0.0596 

 
0.4 0.2142 0.3359 0.3310  0.3925 0.5569 0.5470 

 
0.5 0.5530 0.7768 0.7691  0.8631 0.9693 0.9561 

 
0.6 0.7920 0.9746 0.9699  0.9854 0.9999 0.9997 

     
 

   
0.5 0.5 0.0129 0.0177 0.0188  0.0158 0.0220 0.0213 

 
0.6 0.0981 0.1918 0.1741  0.2484 0.4117 0.3709 

 
0.7 0.3307 0.6565 0.6026  0.7553 0.9480 0.9303 

 
0.8 0.4495 0.8708 0.8492  0.8136 0.9962 0.9930 

     
 

   
0.7 0.7 0.0003 0.0009 0.0004  0.0006 0.0019 0.0015 

 
0.8 0.0055 0.0334 0.0163  0.0460 0.1794 0.1240 

 
0.9 0.0490 0.2293 0.1870  0.2536 0.7452 0.7041 

 
 

b) Power of One-Sided Likelihood Ratio Test (𝛼𝛼 = 0.05) 

𝜔𝜔0 𝜔𝜔 
𝑛𝑛 = 50 (𝜆𝜆1, 𝜆𝜆2)  𝑛𝑛 = 100 (𝜆𝜆1, 𝜆𝜆2) 

(2, 2) (4, 2) (4, 4) 
 

(2, 2) (4, 2) (4, 4) 
0.3 0.3 0.0394 0.0332 0.0409 

 
0.0398 0.0377 0.0412 

 
0.4 0.2238 0.2734 0.2775 

 
0.4019 0.4813 0.4842 

 
0.5 0.6030 0.7285 0.7255 

 
0.8848 0.9539 0.9427 

 
0.6 0.8917 0.9681 0.9636 

 
0.9957 0.9999 0.9995 

         
0.5 0.5 0.0327 0.0329 0.0344 

 
0.0379 0.0381 0.0401 

 
0.6 0.2114 0.2805 0.2580 

 
0.4036 0.5083 0.4746 

 
0.7 0.6049 0.7778 0.7322 

 
0.9144 0.9718 0.9623 

 
0.8 0.8528 0.9800 0.9727 

 
0.9932 1.0000 0.9998 

         
0.7 0.7 0.0234 0.0385 0.0275 

 
0.0311 0.0432 0.0327 

 
0.8 0.1865 0.3684 0.2701 

 
0.4569 0.6424 0.5593 

 
0.9 0.5843 0.8472 0.8050 

 
0.9213 0.9935 0.9895 
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 Table 5.6  

a) Power of One-Sided Score Test (𝛼𝛼 = 0.10) 

𝜔𝜔0 𝜔𝜔 
𝑛𝑛 = 50 (𝜆𝜆1, 𝜆𝜆2)  𝑛𝑛 = 100 (𝜆𝜆1, 𝜆𝜆2) 

(2, 2) (4, 2) (4, 4)  (2, 2) (4, 2) (4, 4) 
0.3 0.3 0.0812 0.0935 0.1031  0.0855 0.1071 0.1084 

 
0.4 0.3404 0.4607 0.4619  0.5381 0.6758 0.6759 

 
0.5 0.7016 0.8633 0.8586  0.9292 0.9858 0.9784 

 
0.6 0.8953 0.9906 0.9868  0.9960 1.0000 0.9999 

     
 

   
0.5 0.5 0.0368 0.0480 0.0507  0.0463 0.0562 0.0590 

 
0.6 0.2122 0.4190 0.3113  0.4175 0.5809 0.5431 

 
0.7 0.5423 0.8119 0.7677  0.8920 0.9827 0.9726 

 
0.8 0.6264 0.9389 0.9332  0.9166 0.9987 0.9970 

     
 

   
0.7 0.7 0.0033 0.0090 0.0056  0.0060 0.0127 0.0085 

 
0.8 0.0378 0.1519 0.0873  0.1822 0.4200 0.3267 

 
0.9 0.1655 0.4844 0.4259  0.4538 0.8799 0.8531 

 

b) Power of One-Sided Likelihood Ratio Test (𝛼𝛼 = 0.10) 

𝜔𝜔0 𝜔𝜔 
𝑛𝑛 = 50 (𝜆𝜆1, 𝜆𝜆2)  𝑛𝑛 = 100 (𝜆𝜆1, 𝜆𝜆2) 

(2, 2) (4, 2) (4, 4) 
 

(2, 2) (4, 2) (4, 4) 
0.3 0.3 0.0813 0.0708 0.0821 

 
0.0838 0.0794 0.0865 

 
0.4 0.3497 0.4020 0.4117 

 
0.5430 0.6224 0.6286 

 
0.5 0.7384 0.8353 0.8330 

 
0.9383 0.9796 0.9725 

 
0.6 0.9497 0.9876 0.9853 

 
0.9986 1.0000 0.9999 

         
0.5 0.5 0.0710 0.0703 0.0759 

 
0.0812 0.0792 0.0838 

 
0.6 0.3338 0.3416 0.3941 

 
0.5499 0.6460 0.6249 

 
0.7 0.7446 0.8756 0.8427 

 
0.9612 0.9898 0.9856 

 
0.8 0.9203 0.9913 0.9878 

 
0.9969 1.0000 0.9999 

         
0.7 0.7 0.0532 0.0794 0.0639 

 
0.0667 0.0899 0.0699 

 
0.8 0.3113 0.5205 0.4209 

 
0.6148 0.7754 0.7093 

 
0.9 0.7218 0.9144 0.8909 

 
0.9558 0.9960 0.9951 

 

The study reveals the following: 

(i) In most cases, the empirical power for score test is smaller than the power of 

likelihood ratio test. 
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(ii) The probability of Type-I error for score test is much lower than the nominal 

level when the value of 𝜔𝜔0 is larger.  Thus, the likelihood ratio test would be 

preferred for such cases. 

(iii) The power for both tests increases when the difference between 𝜔𝜔0 and 𝜔𝜔 

increases. 

(iv) The empirical powers for both tests also increase as the sample size 

increases. 

A numerical example based on a real data set is given next. 

Example 1.  A data set from Mardia (1970) on the distribution of number of 

Mullerian glands on the left and right forelegs of 2000 male pigs will be used to show 

application of the above theory.  The frequencies for the difference in the number of 

glands on the bilateral sides (𝑅𝑅 − 𝐿𝐿) of the pigs are given in Table 5.7 below. 

Table 5.7 

Observed Frequencies for the Difference of Number of Mullerian Glands on the Left 

and Right Sides (𝑅𝑅 − 𝐿𝐿) of 2000 Male Pigs 

Difference, 𝑘𝑘 Frequency 

-6 0 
-5 0 
-4 4 
-3 28 
-2 116 
-1 444 
0 809 
1 450 
2 111 
3 34 
4 4 
5 0 
6 0 
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 The zero-inflated Poisson-Poisson difference distribution is fitted to the data to 

yield the estimates of  𝜆̂𝜆1 =  0.627606, 𝜆̂𝜆2 = 0.620612 and 𝜔𝜔� = 1.39 × 10−8.  Since 

the value of 𝜔𝜔� is close to 0, the hypotheses (5.9) with 𝜔𝜔0 = 0 will be tested using the 

one-sided likelihood ratio and score tests.  The estimates obtained under the null 

hypothesis, when 𝜔𝜔 = 0, are 𝜆̂𝜆1 =  0.627594 and 𝜆̂𝜆2 = 0.620610.  Following the 

sequence of parameters in the alternative hypothesis, the efficient scores and 

information matrix for a single observation are computed as 

𝐔𝐔∗𝑇𝑇 = [−0.619260 5.6698 × 10−4 −5.5038 × 10−4]  and 

𝚪𝚪∗ = �
1.437955 −0.475490 −0.469588

1.064594  −0.534744
1.070557

�. 

Both the LR and score test statistics are found to be 0.00 with a p-value of 1.00 due to 

the unconstrained ML estimates being very close to the ML estimates under 𝐻𝐻0.  Thus, 

the null hypothesis is not rejected.  There is no evidence of perfect bilateral symmetry 

for the number of Mullerian glands on the left and right sides of male pigs. 

 

Example 2.  A data set on the difference of number of pored lateral line scales on 

the left and right sides (𝑅𝑅 − 𝐿𝐿) of 40 pure banded sunfish (Enneacanthus gloriosus 

Girard) from Collier’s Mill Pond, New Jersey is used to investigate developmental 

stability for the population.  The data is from Graham & Felley (1985) (cited in Graham 

et al., 1993).  The frequencies for the differences in the number of pored lateral line 

scales are given in Table 5.8. 

Graham & Felley (1985) examined the patterns of asymmetry in 11 populations 

of fishes including this population of E. gloriosus.  They conducted t-tests on the means 

and variances of (𝐿𝐿 − 𝑅𝑅) of 7 bilateral traits in the 11 populations to check for 
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directional asymmetry.  Graham & Felley (1985) concluded that there is no evidence of 

directional asymmetry and asserted that the asymmetry shown was FA. 

Table 5.8 

Observed Frequencies for the Difference of Number of Pored Lateral Line Scales on 

Left and Right Sides (𝑅𝑅 − 𝐿𝐿) of 40 Enneacanthus gloriosus Individuals 

Difference, 𝑘𝑘 Frequency 

-4 0 
-3 2 
-2 4 
-1 8 
0 12 
1 4 
2 5 
3 3 
4 2 
5 0 

 

 Now, the zero-inflated Poisson-Poisson difference distribution is considered as a 

model for the data and tested for FA.  A fit of the model yields the ML estimates of  

𝜆̂𝜆1 =  1.901434, 𝜆̂𝜆2 = 1.650508 and 𝜔𝜔� = 0.103329.  The value of 𝜔𝜔� is not much 

larger than 0, showing a slight zero inflation.  Thus, the hypotheses (5.9) with 𝜔𝜔0 = 0 

will be tested.  The ML estimates obtained under the null hypothesis, when 𝜔𝜔 = 0, are 

𝜆̂𝜆1 =  1.666655 and 𝜆̂𝜆2 = 1.441650.  Following the sequence of parameters in the 

alternative hypothesis, the efficient scores and information matrix for a single 

observation are computed as 

𝐔𝐔∗𝑇𝑇 = [1.695795 −4.8589 × 10−6 1.8962 × 10−5]  and 

𝚪𝚪∗ = �
3.227096 −0.240032 −0.121420

0.361808 −0.275372
0.375299

�. 
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The one-sided LR and score test statistics are 1.095466 and 0.891118, 

respectively.  The corresponding p-values are 0.15 and 0.17, respectively.  Thus, the 

null hypothesis is not rejected, implying that there is evidence of fluctuating asymmetry 

among the sunfish based on the asymmetry shown in the meristic character of pored 

lateral line scales.  This inference corresponds with the findings of Graham & Felley 

(1985). 



CHAPTER 6 :  CONCLUSION AND FURTHER WORK 

  

The extension of trivariate reduction method to construct a class of bivariate and 

multivariate distribution belonging to the Meixner family of distributions has been 

considered in this research.  These constructed distributions are of a more general form 

as their marginal distributions are allowed to have different parameters.  Such flexibility 

is required not only in Monte Carlo simulation experiments but also, more importantly, 

in empirical modelling for better understanding of, and solutions to, real life problems.  

Although the extended bivariate Meixner hypergeometric distribution has not been 

considered in this thesis due to the complicated nature of the distribution, this 

distribution is of interest for future work. 

The existence of canonical expansion for this extended class of distributions has 

also been established to help in the study of the distribution structure.  Using the given 

algorithms, bivariate samples of these distributions can be easily generated on a 

computer.  It may be interesting to apply the extended trivariate reduction method to 

cover the exponential or related family of distribution, forming flexible marginal 

distributions and possibly, a wider range of correlations in some cases. 

 One of the distributions highlighted in the research is a new, extended bivariate 

negative binomial (EBNB-I) distribution constructed by the extended trivariate 

reduction method and also as a bivariate mixed Poisson model.  Aside from the derived 

basic distributional properties such as the joint probability mass function, factorial 

moments, correlations and regressions, this distribution is shown to be positive quadrant 

dependent and hence making it useful, for example, in the field of reliability analysis.  

Among the other potential applications for this distribution are in the analysis of 

accidents, absenteeism and ecology.  The relevance of this distribution in practice has 
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been demonstrated clearly in the analysis of rain-forest data in Chapter 3.  A fit with 

simulated data shows that when the negative binomial marginals are very different, the 

more flexible, extended bivariate negative binomial distribution is to be preferred.   

 Unfortunately, the joint probability functions for bivariate and multivariate 

distributions usually have complicated or worse, intractable mathematical expressions.  

Most of them also involve special functions such as the orthonormal Meixner 

polynomials in the case of EBNB-I.  Due to this, the use of classical parameter 

estimation methods such as maximum likelihood estimation has proved to be very 

tedious and taxing.  The situation becomes even more complex when there is a need to 

account for outliers in the data.  Therefore, the 𝑀𝑀𝑀𝑀𝛼𝛼  estimation based on the distribution 

generating function proposed here will be a very appealing method of parameter 

estimation.  This method is fast and robust against outliers.  The estimators are also 

consistent.  

 The simpler Edwards and Gurland’s bivariate negative binomial distribution has 

been used throughout the simulation study on the competency of the 𝑀𝑀𝑀𝑀𝛼𝛼  estimation 

method.  Without jeopardising the robustness and accuracy of the estimators, the 𝑀𝑀𝑀𝑀𝛼𝛼  

method has been shown to be far superior in the computation time taken as compared to 

the maximum likelihood and minimum penalized generalized Hellinger distance 

estimation methods.  This method is usually 4 to 6 times faster in obtaining the 

estimates for a set of data.  The clear advantage of 𝑀𝑀𝑀𝑀𝛼𝛼  method is due to the simpler 

generating function used in the computations.  The simulation study also shows that the 

𝑀𝑀𝑀𝑀𝛼𝛼  method works as well as the minimum penalized generalized Hellinger distance 

method of Basu et al. (1997) in the presence of empty cells in the data.  In addition, this 

method is easily extensible to multivariate cases.  Thus, 𝑀𝑀𝑀𝑀𝛼𝛼   method will indeed be a 

suitable parameter estimation method for the extended class of bivariate and 

multivariate distributions in Chapter 3 as illustrated by Example 2 in Chapter 4.  
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Application of 𝑀𝑀𝑀𝑀𝛼𝛼  method to the omnibus driver data in Chapter 4 yields a result 

consistent with the minimum penalized generalized Hellinger distance method, pointing 

out the possibility of a presence of outliers in the data set.  

 In spite of the many attractive characteristics, as with many estimation methods, 

𝑀𝑀𝑀𝑀𝛼𝛼   method does not perform very well when the sample size of data is small.  Further 

research along this line can be pursued to improve this method.  A possible modification 

is to add an appropriate penalty to the distance measure of the method, as similarly done 

to produce the minimum penalized generalized Hellinger distance method.  Another 

potential research consideration is to derive the explicit asymptotic efficiency of the 

𝑀𝑀𝑀𝑀𝛼𝛼  estimators, which has not been investigated here.  The asymptotic distribution of 

the 𝑀𝑀𝑀𝑀𝛼𝛼  distance measure will also be of interest for statistical inference.  On a 

different tangent, it may be feasible to use the 𝑀𝑀𝑀𝑀𝛼𝛼  distance measure as a test statistic in 

the hypothesis testing for goodness-of-fit. 

 Aside from the joint distribution, the distribution of the difference between two 

random variables is also an important area of study, especially for paired count data 

which does not seem to be well studied. Various results have been derived and 

computational issues considered for the case of two independent random variables. For 

the dependent case, the distribution of the difference between two correlated negative 

binomial random variables has been proposed to model fluctuating asymmetry, where 

this distribution is fitted to a sample of differences between an organism’s bilateral sides 

for a meristic trait.  Based on a zero-inflated count model, a test for fluctuating 

asymmetry has also been proposed.  Clearly high incidence of zero counts indicates 

perfect bilateral symmetry for the trait apart from chance variations.  In Chapter 5, the 

one-sided score and likelihood ratio hypothesis tests for fluctuating asymmetry 

performed on several generated data sets and two real data sets, where computations are 

based on the simpler Poisson difference distribution, demonstrated the feasibility of 
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implementing this model for fluctuating asymmetry.  Further work may be considered 

in either a regression or Bayesian context. 

 The contributions of this thesis clearly have useful and interesting applications 

in many areas.  For instance, statistical inference based on generating functions in 

multivariate situations will reduce the complexity of the computational problems 

involved.  Further and more comprehensive work in the field of multivariate 

distributions is required, and this field is still attracting the attention of many researchers 

with a focus towards applications.     
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APPENDIX A :  DATA FOR GRAPHS IN TEXT  

 

Table A1 (Figure 4.1) 

Parameter Bias Measures from Simulations with 𝑁𝑁 Monte Carlo Samples with selected 

Parameter Values, 𝑝𝑝1 = 0.4, 𝑝𝑝2 = 0.5, 𝜃𝜃3 = 0.3 and 𝜈𝜈 = 4.0, for BNB Distribution 

Parameter 
Sample Size, 𝑁𝑁 

100 200 500 800 1000 
𝑝𝑝1 0.013027 0.008328 0.002726 0.001427 0.000885 
𝑝𝑝2 0.014044 0.009034 0.002974 0.001412 0.000894 
𝜃𝜃3 0.006337 0.004114 0.000814 0.000036 -0.000230 
𝜈𝜈 -0.196980 -0.114700 -0.016710 0.005439 0.013207 

Log 
Likelihood -1857.4495 -1856.0878 -1855.6510 -1855.8358 -1855.5725 

Computation 
Time 

(Minutes) 
6.4684 12.4945 31.2583 48.5399 62.8610 

 

Table A2 (Figure 4.2) 

Approximation of the Distance Measure Integral Values for Several Combinations of 

Number of Quadrature Points (𝑧𝑧1, 𝑧𝑧2) 

a) MD1 

𝑧𝑧1 
𝑧𝑧2 

2 3 4 5 6 
2 1.492384 1.497824 1.493699 1.493091 1.493176 
3 1.471525 1.474015 1.469258 1.468923 1.469100 
4 1.473321 1.476654 1.472398 1.472225 1.472408 
5 1.473380 1.476925 1.472774 1.472616 1.472798 
6 1.473385 1.476939 1.472791 1.472634 1.472816 

 

b) MD1 2⁄  

𝑧𝑧1 
𝑧𝑧2 

2 3 4 5 6 
2 2.503785 2.488645 2.486656 2.486768 2.486818 
3 2.462397 2.452109 2.449587 2.449962 2.449996 
4 2.463505 2.453181 2.450873 2.451249 2.451272 
5 2.463542 2.453281 2.450971 2.451340 2.451364 
6 2.463541 2.453275 2.450963 2.451333 2.451357 
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APPENDIX B :  PARTIAL DERIVATES AND ELEMENTS OF THE 

INFORMATION MATRIX FOR NB-NB DISTRIBUTION 

 

Let 𝑋𝑋 = 𝑋𝑋1 − 𝑋𝑋2, 𝑝𝑝𝑖𝑖 = 𝜆𝜆𝑖𝑖𝜃𝜃𝑖𝑖
1+𝜆𝜆𝑖𝑖𝜃𝜃𝑖𝑖

 and 𝛼𝛼𝑖𝑖 = 1
𝜃𝜃𝑖𝑖

 for 𝑖𝑖 = 1,2, where 𝜆𝜆1 and 𝜆𝜆2 are the means 

for 𝑋𝑋1~𝑁𝑁𝑁𝑁(𝛼𝛼1, 𝑝𝑝1) and 𝑋𝑋2~𝑁𝑁𝑁𝑁(𝛼𝛼2,𝑝𝑝2) respectively.  Also, Pr(𝑋𝑋 = 𝑘𝑘) = 𝑓𝑓(𝑘𝑘) is as 

given in (5.1). 

(B1) Partial Derivatives of NB-NB Probabilities 

 Let 𝑢𝑢𝑖𝑖 = 1
1+𝜆𝜆𝑖𝑖𝜃𝜃𝑖𝑖

 for 𝑖𝑖 = 1,2.   

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆1

= �𝑢𝑢1(𝑢𝑢1𝜆𝜆1𝜃𝜃1)𝑗𝑗 [𝑓𝑓(𝑘𝑘 − 𝑗𝑗 − 1) − 𝑓𝑓(𝑘𝑘 − 𝑗𝑗)]
∞

𝑗𝑗=0

 

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆2

= �𝑢𝑢2(𝑢𝑢2𝜆𝜆2𝜃𝜃2)𝑗𝑗 [𝑓𝑓(𝑘𝑘 + 𝑗𝑗 + 1) − 𝑓𝑓(𝑘𝑘 + 𝑗𝑗)]
∞

𝑗𝑗=0

 

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜃𝜃1

= �(𝑢𝑢1𝜆𝜆1)𝑗𝑗+1𝜃𝜃1
𝑗𝑗−1 �

𝑗𝑗𝑗𝑗(𝑘𝑘 − 𝑗𝑗 − 1)
𝑗𝑗 + 1

− 𝑓𝑓(𝑘𝑘 − 𝑗𝑗) +
𝑓𝑓(𝑘𝑘)
𝑗𝑗 + 1�

∞

𝑗𝑗=1

 

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜃𝜃2

= �(𝑢𝑢2𝜆𝜆2)𝑗𝑗+1𝜃𝜃2
𝑗𝑗−1 �

𝑗𝑗𝑗𝑗(𝑘𝑘 + 𝑗𝑗 + 1)
𝑗𝑗 + 1

− 𝑓𝑓(𝑘𝑘 + 𝑗𝑗) +
𝑓𝑓(𝑘𝑘)
𝑗𝑗 + 1�

∞

𝑗𝑗=1

 

(B2) Partial Derivatives of Log Likelihood Function 

𝑛𝑛𝑘𝑘 =  Observed frequency for (𝑋𝑋 = 𝑘𝑘) 

𝜕𝜕ln𝐿𝐿
𝜕𝜕𝜆𝜆𝑖𝑖

= �
𝑛𝑛𝑘𝑘
𝑓𝑓(𝑘𝑘)

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑖𝑖

∞

k=−∞

, 𝑖𝑖 = 1,2 

𝜕𝜕ln𝐿𝐿
𝜕𝜕𝜃𝜃𝑖𝑖

= �
𝑛𝑛𝑘𝑘
𝑓𝑓(𝑘𝑘)

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜃𝜃𝑖𝑖

∞

k=−∞

, 𝑖𝑖 = 1,2 
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(B3) Elements of the Information Matrix 

 By using the relation 𝚪𝚪(𝚽𝚽) = 1
𝑛𝑛
�𝐸𝐸 �− 𝜕𝜕2ln𝐿𝐿(𝚽𝚽;𝐱𝐱)

𝜕𝜕𝜙𝜙𝑖𝑖𝜕𝜕𝜙𝜙𝑗𝑗
�� = �𝐸𝐸 �� 1

𝑓𝑓(𝑘𝑘)
�

2 𝜕𝜕𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜙𝜙𝑖𝑖

𝜕𝜕𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜙𝜙𝑗𝑗

�� , 

expectations for the second partial derivatives of the log likelihood function, for 

𝑖𝑖, 𝑗𝑗 = 1,2, are given by 

𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜆𝜆𝑖𝑖𝜕𝜕𝜆𝜆𝑗𝑗

� = 𝑛𝑛 �
1

𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑖𝑖

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑗𝑗

 
∞

k=−∞

 , 𝑖𝑖, 𝑗𝑗 = 1,2 

𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜃𝜃𝑖𝑖𝜕𝜕𝜃𝜃𝑗𝑗

� = 𝑛𝑛 �
1

𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜃𝜃𝑖𝑖

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜃𝜃𝑗𝑗

 
∞

k=−∞

 , 𝑖𝑖, 𝑗𝑗 = 1,2 

𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜆𝜆𝑖𝑖𝜕𝜕𝜃𝜃𝑗𝑗

� = 𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜃𝜃𝑗𝑗 𝜕𝜕𝜆𝜆𝑖𝑖

� = 𝑛𝑛 �
1

𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑖𝑖

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜃𝜃𝑗𝑗

 
∞

k=−∞

 , 𝑖𝑖, 𝑗𝑗 = 1,2 

where 𝑛𝑛 = sample size. 
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APPENDIX C :  PARTIAL DERIVATES AND ELEMENTS OF THE 

INFORMATION MATRIX FOR POISSON-POISSON DISTRIBUTION 

 

𝑓𝑓(𝑘𝑘) and 𝑃𝑃(𝑘𝑘) are as given in (5.6) and (5.8), respectively. 

(C1) Partial Derivatives of Poisson-Poisson Probabilities 

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆1

= 𝑓𝑓(𝑘𝑘 − 1) − 𝑓𝑓(𝑘𝑘) 

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆2

= 𝑓𝑓(𝑘𝑘 + 1) − 𝑓𝑓(𝑘𝑘) 

𝜕𝜕2𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜆𝜆1

2 = 𝑓𝑓(𝑘𝑘 − 2) − 2𝑓𝑓(𝑘𝑘 − 1) + 𝑓𝑓(𝑘𝑘) 

𝜕𝜕2𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜆𝜆2

2 = 𝑓𝑓(𝑘𝑘 + 2) − 2𝑓𝑓(𝑘𝑘 + 1) + 𝑓𝑓(𝑘𝑘) 

𝜕𝜕2𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜆𝜆1𝜕𝜕𝜆𝜆2

=
𝜕𝜕2𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜆𝜆2𝜕𝜕𝜆𝜆1

= 2𝑓𝑓(𝑘𝑘) − 𝑓𝑓(𝑘𝑘 − 1) − 𝑓𝑓(𝑘𝑘 + 1) 

(C2) Partial Derivatives of Log Likelihood Function of Zero-Inflated Poisson-

Poisson Distribution 

𝑛𝑛𝑘𝑘 =  Observed frequency for (𝑋𝑋 = 𝑘𝑘) 

ln𝐿𝐿 = � 𝑛𝑛𝑘𝑘 ln𝑃𝑃(𝑘𝑘)
∞

𝑘𝑘=−∞

 

𝜕𝜕ln𝐿𝐿
𝜕𝜕𝜕𝜕

=
𝑛𝑛0�1 − 𝑓𝑓(0)�

𝑓𝑓(0) + 𝜔𝜔�1 − 𝑓𝑓(0)�
+ �

−𝑛𝑛𝑘𝑘
(1 − 𝜔𝜔)

𝑘𝑘≠0

 

𝜕𝜕ln𝐿𝐿
𝜕𝜕𝜆𝜆𝑖𝑖

=
𝑛𝑛0(1 − 𝜔𝜔)𝜕𝜕𝜕𝜕(0)

𝜕𝜕𝜆𝜆𝑖𝑖
𝑓𝑓(0) + 𝜔𝜔�1 − 𝑓𝑓(0)�

+ �𝑛𝑛𝑘𝑘
1

𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑖𝑖𝑘𝑘≠0

, 𝑖𝑖 = 1,2 
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(C3) Elements of the Information Matrix 

𝑛𝑛 = sample size 

𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜕𝜕2 � =

𝑛𝑛𝑛𝑛(0)�1 − 𝑓𝑓(0)�2

�𝑓𝑓(0) + 𝜔𝜔�1 − 𝑓𝑓(0)��
2 + �

𝑛𝑛𝑛𝑛(𝑘𝑘)
(1 − 𝜔𝜔)2

𝑘𝑘≠0

 

𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜕𝜕𝜕𝜕𝜆𝜆𝑖𝑖

� = 𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜆𝜆𝑖𝑖𝜕𝜕𝜕𝜕

� =
𝑛𝑛𝑛𝑛(0)𝜕𝜕𝜕𝜕(0)

𝜕𝜕𝜆𝜆𝑖𝑖
�𝑓𝑓(0) + 𝜔𝜔�1 − 𝑓𝑓(0)��

2 , 𝑖𝑖 = 1,2 

𝐸𝐸 �−
𝜕𝜕2ln𝐿𝐿
𝜕𝜕𝜆𝜆𝑖𝑖𝜕𝜕𝜆𝜆𝑗𝑗

� = 𝑛𝑛 �
𝑓𝑓(0)(1 − 𝜔𝜔)2

�𝑓𝑓(0) + 𝜔𝜔�1 − 𝑓𝑓(0)��
2
𝜕𝜕𝜕𝜕(0)
𝜕𝜕𝜆𝜆𝑖𝑖

𝜕𝜕𝜕𝜕(0)
𝜕𝜕𝜆𝜆𝑗𝑗

−
𝑓𝑓(0)(1 − 𝜔𝜔)

𝑓𝑓(0) + 𝜔𝜔�1 − 𝑓𝑓(0)�
𝜕𝜕2𝑓𝑓(0)
𝜕𝜕𝜆𝜆𝑖𝑖𝜕𝜕𝜆𝜆𝑗𝑗 �

+ 𝑛𝑛��
1

𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑖𝑖

𝜕𝜕𝜕𝜕(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑗𝑗

−
𝜕𝜕2𝑓𝑓(𝑘𝑘)
𝜕𝜕𝜆𝜆𝑖𝑖𝜕𝜕𝜆𝜆𝑗𝑗

�
𝑘𝑘≠0

, 𝑖𝑖, 𝑗𝑗 = 1,2       
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