
 
 

 
 

 

SOME PROBLEMS OF OUTLIERS IN CIRCULAR DATA 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALI H. M. ABUZAID 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FACULTY OF SCIENCE 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

2010 

 

 

 



 ii 

 
SOME PROBLEMS OF OUTLIERS IN CIRCULAR DATA 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ALI H. M. ABUZAID 
 

 

 

 

 

THESIS SUBMITTED FOR THE FULFILLMENT OF THE 

REQUIREMENTS FOR THE DEGREE OF DOCTOR OF 

PHILOSOPHY 
 

 

 

 

 

 

 

 

 

FACULTY OF SCIENCE 

UNIVERSITY OF MALAYA 

KUALA LUMPUR 

 

2010 

 



 i 

ABSTRAK 
 

 
Kajian ini mengambil kira tiga masalah nilai tersisih dalam statistik bulatan. 

Masalah yang pertama adalah cubaan untuk menggunakan prosedur piawai dalam 

mengesan nilai tersisih untuk data set yang linear dengan menganggarkan 

pembolehubah bulatan oleh pembolehubah linear. Ini adalah mungkin bagi nilai 

penumpuan parameter yang besar. Siri kajian simulasi dilaksanakan bagi menentukan 

nilai penumpuan parameter yang boleh diterima supaya taburan von Mises boleh 

dianggarkan oleh taburan normal.  

   

Kedua adalah masalah nilai tersisih dalam sampel bulatan. Dua ujian berangka 

tak sejajar dicadangkan bagi mengenal pasti nilai tersisih. Ujian statistik berdasarkan 

penjumlahan  jarak bulatan dan panjang perentas masing-masing daripada satu titik nilai 

ke semua titik lain pada lilitan satu bulatan. Statistik ujian taburan penghampiran yang 

baru telah diterbitkan. Kajian simulasi menunjukkan bahawa prestasi kedua-dua statistik 

tersebut lebih baik daripada ujian tak sejajar. Selain itu, satu versi plotkotak untuk data 

set bulatan dicadangkan. Melalui kajian simulasi, kita dapat menunjukkan kriteria 

perintang amat bergantung kepada ukuran penumpuan sampel bulatan. 

 

Masalah ketiga ialah kewujudan nilai tersisih dalam model regresi bulatan. 

Pertamanya, kita mencadangkan satu takrif baru bagi ralat bulatan yang boleh mengenal 

pasti nilai tersisih dengan menggunakan pelbagai graf dan ujian-ujian berangka. Kedua, 

tiga ujian berangka dibangunkan untuk mengesan nilai berpengaruh berasaskan 

pendekatan penghapusan baris. Dua yang pertama didefinisikan menggunakan jarak 

bulatan antara pemerhatian dan nilai-nilai penyesuaian dengan terbitan taburan 

penghampiran. Ujian yang lain adalah lanjutan satu versi statistik COVR ATIO dalam
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regresi linear untuk kes bulatan. Secara umum, ketiga-tiga ujian berangka menunjukkan 

prestasi yang baik dalam mengesan nilai berpengaruh. 

 

Untuk ilustrasi, kita mempertimbangkan dua data set bulatan yang sebenar, 

yakni, set data arah pergerakan katak dan set data arah angin. Kesimpulannya, statistik 

yang dicadangkan di sini mampu menyelesaikan sebahagian besar masalah nilai tersisih 

dalam data bulatan. 
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ABSTRACT 
 
 

This study considers three problems of outliers in circular statistics. The first 

problem is an attempt to use the standard outlier detection procedures for linear data set 

by approximating circular variables by linear variables. This is possible for large values 

of concentration parameter. Series of simulation studies are carried out to specify the 

accepted value of the concentration parameter so that the von Mises distribution can be 

approximated by normal distribution.  

 

The second is the problem of outliers in circular samples. Two numerical tests of 

discordancy are proposed to identify outliers. The test statistics are based on the 

summation of circular distances and chord lengths respectively from the point of interest 

to all other observations on the circumference of a unit circle. The approximate 

distributions of the test statistics are derived. Simulation studies show that both statistics 

perform better than other known discordancy tests. On the other hand, a boxplot version 

for circular data sets is proposed. Via simulation studies, we show that the resistant 

criterion highly depends on the concentration of circular samples. 

 

The third problem is the existence of outliers in the circular regression model. 

Firstly, we propose a new definition of circular residuals which can be used to identify 

outliers using various graphical and numerical tests. Secondly, three numerical tests are 

developed to detect influential observations based on row deletion approach. The first 

two are defined using the circular distance between the observed and fitted values with 

the derivation of the approximate distributions. The other test is an extended version of 

the COVRATIO statistic in linear regression to the circular case. In general, the three 

numerical tests perform well in detecting influential observations.  
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For illustration, we consider two real circular data sets, namely, the frogs’ data 

set and the wind direction data set. In conclusion, the statistics proposed by this study 

are able to solve some problems of outliers in circular data. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1  Background of the study 

 

Statistical data can be classified according to their distributional topologies. 

Most of the data are linear type which can be represented on a real line. However, the 

circumference of the circle or the surface of sphere are more convenient to represent a 

data of directional type. 

 

 The disparate topologies of the circle and straight line are reflected in the 

mathematical and statistical treatments of the data. Circle is a closed curve but not for a 

line. From the properties of the circle, the directions close to the opposite end-points are 

near neighbour in a circular metric but maximally distant in linear metric. 

 

Circular data refer to a set of observations measured by angles and distributed 

within ]2,0(  or ]360,0( . It can be displayed on the circumference of a unit circle. 

Circular data are found in many scientific fields: 

 

(i) meteorology: there are many circular data arising in meteorological studies such as 

wind and wave directions (Johnson & Wehrly, 1977; Hussin et al., 2004 and Gatto 

& Jammalamadaka, 2007), the number of times a day at which thunderstorms 

occur and the frequencies of heavy rain in a year (Mardia & Jupp, 2000). 

(ii) biology: animal navigation (Batschelet, 1981), spawning times of a particular fish 

(Lund, 1999). 
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(iii) physics: fractional part of atomic weights (von Mises, 1918), source of signals in 

the case of airplane crashes (Lenth, 1981). 

(iv) psychology: studies of mental maps to represent the surroundings of respondents 

(Gordon et al., 1989). 

(v) medicine: the angle of knee flexion as a measure of recovery of orthopaedic patients 

(Jammalamadaka et al., 1986). 

(vi) geology: modelling the cross-bedding data (Jones & James, 1969), the direction of 

earthquake displacement in terms of the direction steepest decent (Rivest, 1997).  

(vi) political science: the modelling of the casualties in the second Iraq war and suicide 

cases in Switzerland (Gill & Hangartner, 2009).  

 

In general, circular data can be found whenever periodic phenomena occur. 

Applying the conventional linear techniques on circular data may lead to paradoxes. For 

example, let us consider two angles 5  and 355  as illustrated in Figure 1.1.  The 

arithmetic mean by treating the data as linear observation is 180 . However, the mean 

direction of the two directions has to be 0 . Therefore, special statistical methods and 

techniques are needed to analyse circular data while taking into account the structure of 

circular sample space. 

 

 

 

 

Figure 1.1: Arithmetic and geometric mean 

5355

180

0
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The history of circular data emphasizes the saying “Necessity is the mother of 

invention”. The development of circular data analysis is a response to applied problems 

in several fields of science. Astronomy was the host soil for the roots of circular data 

when the Reverend John Mitchell FRS analysed the angular separation between stars in 

1767. The second valuable contribution is in geographical context, where John Playfair 

in 1902 was the first man who pointed out the requirement of new and different 

methods to analyse circular data. He recommended the use of the resultant vector 

method in averaging directions. 

 

Construction of statistical graphics for circular data goes back to the end of the 

first Millennium. Nightingale in 1858 proposed a circular graphical device (currently 

known as “rose diagram”) to present social and medical data that could save thousands 

of lives (Kopf, 1916 and Fisher, 1993, p.5). 

 

The interest in circular data analysis increased gradually until circular 

probability distributions started to appear in the literature in 1950s. A significant 

development of circular data analyses occurred when Waston & Williams (1956) 

introduced the statistical inference about the mean direction and dispersion for samples 

from a von Mises distribution. Since then, the analysis of circular data has seen vigorous 

developments where many related books and review papers were published. The first 

comprehensive book was written by Mardia (1972) followed by a specialised book on 

circular statistics in Biology by Batschelet (1981). Historical review of directional 

statistics was thoroughly covered by Fisher et al. (1987) and Fisher (1993). On the other 

hand, Jupp & Mardia (1989) published the first statistical review paper concerning the 

directional data which summarized the developments of circular data analysis over the 

years. 
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Currently, the analysis of circular data attracts the interest of statisticians and 

researchers from different scientific fields due to the availability of solid foundation 

theory and the accessibility to this kind of data. Recently, new circular distributions 

have been proposed (see Siew et al. (2008), Gatto & Jammalamadaka (2007)). Strong 

interests on circular regression model have also been shown (see Downs & Mardia 

(2002), Hussin et al. (2004) and Kato et al. (2008)). Works on functional relationship 

models for circular variables have also been reported (see Hussin (1997), Bowtell & 

Patefield (1999) and Caires & Wyatt (2003)). 

 

As the analyses of circular data are being developed and its applications are 

highly sought after, the necessity for special statistical software to analyse circular data 

has increased. Currently, there are a few statistical software that provide limited 

analyses of circular data, inter alia, Axis, Oriana and DDSTP (a Statistical Packages for 

the Analysis of Directional Data). Moreover, some routines are written in R/S-Plus 

language and are provided by Jammalamadaka & SenGupta (2001). Therefore, more 

algorithms and programmes need to be developed to conduct necessary analyses and 

simulations using appropriate packages. 

 

However, the problem of outliers in circular data has not received enough 

attention. A few tests of discordancy that have been formulated but none has been 

shown superior over the others. The interest here is to develop new numerical and 

graphical tests of discordancy that are more powerful and interpretable. Similarly, the 

problem of outliers in circular regression models has not been mentioned in any 

published work. Throughout this thesis, the development of some statistics to detect 

outliers and influential observations in circular samples and simple circular regression 

model will be discussed. 
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1.2  Statement of the problem 

 

Circular data is subjected to contamination with outlying observations. So far, 

very few published papers focusing on the detection of outlier in circular data exist.  

Moreover, no related study on outlier problem in circular regression has been found in 

the literature. Hence, in this study, we will develop new test statistics and graphical 

procedures to detect outliers and influential observations in circular samples and 

circular regression. The asymptotic distributions for some of the proposed statistics will 

also be derived. Further, we look at several important issues in circular regression. The 

first issue is to investigate the diagnostic checking for circular regression models, and 

the second is to explore the possibility of applying standard procedures in linear case by 

approximating circular variables by linear. The performance of the relevant proposed 

procedures will be compared. 

 

1.3  Objectives 

 

Based on the statement of problem above, the researcher has outlined the 

following objectives for this study: 

 

1.  To specify the accepted value of the concentration parameter that von Mises   

distribution can be approximated by normal distribution. 

2. To detect possible outliers in circular samples by: 

(i) Proposing alternative statistical tests of discordancy. 

(ii) Deriving the approximate distribution of proposed tests. 

3. To develop the circular boxplot and formulate its criterion to identify outliers.  

4. To formulate a new definition of circular residuals for diagnostic checking purposes. 
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5. To propose new statistics to identify outliers and influential observations in circular 

regression. 

6. To derive the approximate distributions of some of the proposed statistics in (5). 

 

1.4  Significance of the study 

 

The findings from this study will be beneficial in the following ways: 

1. Contribute to the knowledge in statistics regarding the modelling of circular data and 

detection of outliers and influential observations. 

2. Optimize the estimation of parameters in circular models by identifying outliers and 

influential observations. 

 

1.5  Thesis outline 

 

This research attempts to handle the problem of outliers in circular data and 

circular regression by proposing new alternative statistical techniques. The research is 

outlined as follows: 

 

Chapter two provides a literature review about the circular regression models and the 

problem of outliers in univariate samples and regression models. The focus will be on 

the regression of circular variables. A review of method of identification of outliers in 

both linear and circular univariate samples is presented. Special discussions are on the 

test of discordancy in circular samples. In addition, we review some of the outlier and 

influential observations detection methods in linear regression which has the possibility 

to be extended to circular case. 
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Chapter three introduces descriptive statistics for circular data, such as the mean and 

median directions, mean resultant length, the circular variance and the standard 

deviation. A brief discussion is given on the von Mises distribution. Two circular data 

sets which are used in this study are presented. 

 

Chapter four looks at the problem of approximating von Mises distribution by normal 

distribution. Two circular data sets are approximated by linear data to identify possible 

outliers and highlight the drawback of approximation technique. 

 

Chapter five discusses the general effect of outliers on the summary statistics for 

circular data. Here, we propose two alternative tests of discordancy for circular samples. 

The cut-off points for both tests are obtained and the power of performance is 

investigated through simulation studies. We also look at the derivation of the 

approximate distribution of the test statistics. 

 

Chapter six proposes a circular boxplot to label possible outliers in circular samples. 

Extensive simulation studies are used to find the suitable circular boxplot criterion. 

Special sub-routine is developed within S-Plus environment. 

 

Chapter seven presents the development of the simple circular regression model. It 

proposes and tests the satisfaction of the assumptions for a new practical definition of 

circular residuals based on the circular distances. The diagnostic checking tools for 

circular regression are discussed. 

 

Chapter eight proposes several numerical statistics to detect possible influential 

observations in the circular regression. Two statistics are derived based on the 
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difference between fitted and observed values. The cut-off points and the power of 

performance are discussed. The approximate distributions for modified statistics are 

derived. Further, the idea of COVRATIO statistic in linear regression model is extended 

to the circular case. Via simulation, the cut-off points are obtained and the power of 

performance is investigated. 

 

Chapter nine presents the general conclusion and highlights the significant 

contributions of this research work. Moreover, the researcher also suggests a few 

possibilities for extending research work on the problem of outlier in the area of circular 

statistics. 

 

Lists of appendices are attached at the end of this thesis, including the wind 

direction data, simulation results and the S-Plus subroutines. 
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1  Introduction 

 

One of the most common problems arising in any statistical analysis is the 

existence of some unexpected observations. Such observations are known as outliers 

and are not guaranteed to be a part of the phenomena under study. The problem of 

outlier is considered to be as old as the subject of statistics itself. Beckman & Cook 

(1983) and Barnett & Lewis (1984) reviewed the literature on outliers and the available 

approaches to deal with outliers in different areas of statistics. The earliest discussion on 

outliers was done by Bernoulli (1777) where he questioned the assumption of 

identically distributed error. The first attempt to develop an objective statistical method 

to deal with outliers was proposed by Peirce (1852). Later, Wright (1884) extended their 

works and suggested that any observation whose residual exceeds 3.37 times the 

standard deviation it is rejected. Extensive literature on outliers includes different 

definitions of outliers and a general agreement that outliers in a set of data refer to 

observations which appear to be inconsistent with the remaining observations.  

 

Until the late of 1950’s, there was not much development in the detection of 

outliers due to the absence of high speed computing facilities. It was only after the 

existence of high performance computing that there was interest in the outliers’ 

problem. Lately, it has become the central focus, and must be taken into account in any 

data analysis to obtain better estimation of the considered models.  
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Beckman & Cook (1983) outlined the importance and the reasons for studying 

outliers as follows: 

i. Special interest: Barnett (1978) described the interesting legal case of Hudlum versus 

Hadlum in 1949 as an example.  

ii. Detection of specific alternative rare phenomena rather than estimating a common 

characteristic. Beckman & Cook (1983) gave an example of the changes of radiation 

level to locate the dropped Russian satellites in the central Canada. 

iii. Diagnostic indicator to test the strength and weakness of a model. For example, the 

data may conform well to the model when they are transformed to the logistic scale as 

the transformation may lessen the effect of outliers. 

iv. Accommodation of outliers to make improvement on modelling and estimation. 

v. Identification of influential observations by looking at how outliers affect the 

estimation of parameters. 

 

The existence of outliers in any data set makes statistical analysis difficult, where 

the underlying assumptions are subject to breakdown. Anscombe (1960) and Barnett 

(1978) stated that outliers may reflect: (i) Measurement error, (ii) Inherent variability in 

the population, or (iii) Execution error. 

 

The following section discusses the development of circular regression model 

when the response is a circular variable. The third section reviews the outliers in linear 

and circular univariate samples by presenting some of the popular techniques in the 

detection of outliers among samples. Some of outliers’ detection techniques for linear 

regression models are considered in the fourth section. 
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2.2  Circular regression models 

 

Regression analysis is one of the most popular statistical techniques to investigate 

the relationship between variables. Regression of a linear variable on a set of linear 

explanatory variables has received wide interest from statisticians and researchers  

(see Montgomery & Peck (1992), Chatterjee et al. (2000)) whereas regression analysis 

when either response or explanatory variables are circular has been considered only in 

the past 40 years. 

 

Circular regression is commonly occurs in many areas of application in biology, 

meteorology, geology and physics. Gould (1969) emphasized the necessity of analyzing 

circular variables by using techniques different from those appropriate for usual 

Euclidean type variables because the circumference is a bounded closed space. When 

the response is a linear variable X  and the explanatory is a circular variable , then 

the mean value of X  given , can be simply obtained by 

sincos| 0 baaE X ,  

where aa ,0  and b  are unknown parameters. This can be fitted by using the classical 

methods of linear regression models. Laycock (1975) has considered the case involving 

more than one circular explanatory variable. 

 

In the following subsections we consider two other cases: the first when the 

response variable is circular and the explanatory variables are linear; and the second, 

when both response and explanatory variables are circular. 
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2.2.1  Regression of circular variable on linear variables 

 

In several circumstances, one may be interested in investigating the relationship 

between circular and linear variables, for example, the relationship between wind 

direction and its speed; or the direction a has bird flown and the distance moved.  

 

The regression of a circular variable on a set of linear variables was first discussed 

by Gould (1969). A regression model was proposed to predict the mean direction  of 

a circular variable  from a set of linear covariates k1 xxX ,..., , where  follows 

von Mises distribution with mean direction  and concentration parameter  denoted 

by ),(~ VM . The proposed model is given by  

 
                                        

k

j
j

1
0 jx ,                          kj ,...,1  

 

(2.1) 

where 0  and ’s are unknown parameters and jx  is a linear covariate. Model (2.1) 

produces various forms of the so-called “barber’s pole” model in which  conditioned 

on xX  is a curve winding in an infinite number of spirals up the surface of an 

infinitely long cylinder. The maximum likelihood estimations (MLE) of model 

parameters are obtained iteratively. Gould (1969) pointed out that the estimated 

parameters are the local maxima and may not be the absolute maxima. He also pointed 

out that, for large concentration parameter  of the response variable , linear 

statistics is applied to fit the model from the start. 

 

Analogous to normal theory, Mardia (1972) extended Gould (1969) model by 

assuming i  to be independently distributed as the von Mises distribution with mean i  

and concentration parameter  and this model is given by 
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                                            ii t0 ,                          ni ,...,1 , (2.2) 

where it  are known numbers, while 0 ,  and are unknown parameters. 

 

Laycock (1975) discussed Model (2.1) and showed that the maximum likelihood 

estimates are equivalent to the least squares estimates for large sample size n. Moreover, 

Laycock pointed out that the linear statistics can be applied from the start for large 

sample size n  or large concentration parameter . 

 

 Johnson & Wehrly (1978) mentioned that the MLE of model (2.1) has infinite 

many high peaks, which leads to ambiguously defined MLEs. Alternatively, they 

proposed a different class of models in which the response completes just a single spiral 

as x  increases through its range. Further, for one explanatory variable, they suggested 

the use of specific model for the joint distribution of the continuous linear variable X  

and circular variable , with a completely specified marginal distribution of  linear 

variable X , )(xF . The conditional distribution is given by 

)),(2(~| xFVMxX . 

 

Fisher & Lee (1992) emphasized the necessity to work with von Mises family of 

distributions because it has a measure of dispersion while for other distributions there is 

no natural measure of scale. Moreover, the von Mises family shares many of the 

properties of normal distribution. They extended Johnson & Wehrly (1978) model by 

assuming that the circular observations n,...,1  follow von Mises distribution with 

mean directions n,...,1  and concentration parameters n,...,1 , respectively. They 

assumed that all of the concentration parameters are equals to  and the ’s are related 

to the explanatory variables iX  by means of link function (.)g . The model is given by 

                            )( '

ii g Xβ ,                         ni ,...,1 , 
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where β  is k- vector of regression coefficients. The function (.)g  will map the real line 

to the circle, for x ranges from  to  and )(xg  ranges from  to  and assume 

that 0)0(g . One of the practical possibilities for function (.)g  is given by 

xxxg )sgn(tan2 1 . 

The parameter  can be estimated from the data, analogous to the estimation of Box-

Cox transformation in the ordinary linear regression. When 0 , function )(xg  

corresponds to a log transformation.  

  

2.2.2  Regression of circular variable on circular variables 

 

The first attempt to fit a regression model for circular variable on an explanatory 

circular variable was made by Laycock (1975) using the complex linear regression, 

where the model can be expressed as a conventional linear model with complex entries. 

Laycock (1975) pointed out that the use of his model to predict a pure direction is open 

to objections. 

 

For response variable Y  and explanatory variable X  in which both of them 

follow von Mises with concentration parameter 2 , Fisher & Lee (1992) suggested 

that the problem can be handled satisfactorily by transforming the data to continuous 

linear variables. 

 

Jammalamadaka & Sarma (1993) proposed a circular model for two circular 

random variables X  and Y  in terms of the conditional expectation of the vector 

)(iye given x  such that 

),()()(| 21

)( xiqxqexxeE xiiy  

where )(x  is the conditional mean direction of y  given x  with conditional 
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concentration 10 x . Equivalently, )()|(cos 1 xqxyE  and )()|(sin 2 xqxyE . 

Then the predicted ŷ  is obtained by 
)(

)(
tanˆ

1

21

xq

xq
yx . Due to the difficulty of 

estimating )(1 xq  and )(2 xq  they are expressed instead in terms of their Fourier series 

expansions. 

 

 Rivest (1997) proposed a circular–circular regression model to predict the y-

direction based on the rotation of the decentred x-angle. The model is given by  

),,;( rxy , 

)2(mod)}cos(),{sin(tan),,;( 1 xrxrx , 

where  and  are angles belonging to )2,0[ , r  is real number and  has a 

distribution with mean 0. The parameters are estimated by maximizing the average 

cosine residuals angles given by 

n

i
ii rxy

n
rL

1

)}.,,;(cos{
1

),,(ˆ  

 

Lund (1999) proposed a regression model where the independent variables 

consist of one circular variable and a set of linear variables. For a circular response Y , a 

circular predictor  and a set of linear covariates X , the least circular distance 

regression model is given by  

εββX ),,,( 21y , 

where 1β  and 2β  are vectors of parameters and ε  is the random circular error with 

mean direction 0. The parameter estimates are obtained by maximizing the average 

cosine residuals. The estimates are similar to the maximum likelihood estimates. 

Downs & Mardia (2002) described the models which were proposed by Gould 

(1969), Johnson & Wehrly (1978), and Fisher & Lee (1992) as non-rotational models. 
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This is because these models use linear combinations of linear concomitant variables, 

and are relatively difficult to interpret. Moreover, the absence of any topologically 

appropriate method for angular scale change is another serious shortcoming.  

 

In cases where X  and Y  are circular variables with mean directions  and  

respectively, Downs & Mardia (2002) applied the following mapping 

)(
2

1
tan)(

2

1
tan xy , 

where  is a slope parameter in the closed interval [−1, 1]. The mapping defines a one-

to-one relationship with a unique solution given by 

.
2

1
tantan2 1 xy  

They classified the regression model according to the nature of the parameters ,  and 

. The maximum likelihood estimates were derived and the properties of the model 

were discussed with an application to circadian biological rhythms and wind direction 

data. 

 

Hussin et al. (2004) extended model (2.2) for the case when both response and 

explanatory variables are circular, where the 'it s in (2.2) are considered to be circular 

while  is an integer. For any circular observations ),(),...,,( 11 nn yxyx  of circular 

variables X  and Y  with a linear relationship between them, the proposed model is 

given by 

 )2(modxy , (2.3) 

where ε  is a circular random error having a von Mises distribution with circular mean 0 

and concentration parameter . One application of model (2.3) is to compare two 

instruments to measure the wind and wave direction. The maximum likelihood 
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estimations of the model parameters are obtained iteratively. Model (2.3) will be 

discussed extensively in Chapter 7. 

 

On the other hand, Kato et al. (2008) expressed the regression curve as a form of 

Möbius circle transformation. For an angular variable, Y , and angular covariate, X , 

which takes values on the unit circle, }1||;{ zCz  in the complex plane, they 

proposed the regression curve to be: 

x
x

x
y ,

1 1

1

0
, 

where 0  and 1  are complex parameters with 0  and C1
. In this case, the 

angular error  is assumed to follow wrapped Cauchy distribution, while Downs & 

Mardia (2002) assumed the angular error to follow von Mises distribution. Due to the 

attractive properties of wrapped Cauchy distribution, some desirable properties of the 

model have been derived. 

 

In this study, we consider model (2.3) which is known as the simple circular 

regression model due to its simpler form compared to other circular regression models 

and its similarities to the simple linear regression. The adequacy of the model will be 

investigated and some of the outlier detection techniques will be extended to the circular 

case. 

 

2.3  Outliers in univariate samples 

 

The literature on the tests of outliers in univariate data is in abundance. Most of 

these tests are developed for the linear samples, while there are few tests available for 

circular data. Outliers are also expected to occur in circular data, but the identification 

method differs from linear case. Collett (1980) illustrated the difference between outlier 
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problem in linear and circular cases by considering the following data set (unit in 

degree): 

 10, 18, 33, 48, 67, 349. (2.4) 

 

 

 

 

 

 

 

Figure 2.1: Graphical presentation of data in (2.4) 

 

Figure 2.1 shows the plot of data in (2.4) by using linear and circular plots. If we 

treat the data as linear data, then we can easily identify 349 as an outlier. However, if 

the data are treated as circular data, then 349 is basically consistent with the rest of the 

observations and it is no longer an outlier. 

 

The following subsection reviews some of the popular tests of outlier in linear 

univariate dataset, followed by a review of tests of outlier in circular univariate data.  

 

2.3.1 Outlier identification in linear univariate data set 

 

There are different methods to identify outliers in linear univariate samples, and 

we review some of them in this subsection. 

 

 

 

0 50 100 150 200 250 300 350
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(i) Boxplot 

Boxplot plays an important rule in the exploratory data analysis. It was 

developed by Tukey (1977) and consists of five-number summaries: the smallest 

observation, first quartile 
1Q , median 2Q , third quartile 3Q , and the largest observation. 

Boxplot is a popular tool to detect outliers in univariate linear samples based on 

IQR5.1  boxplot criterion, where IQR is the interquartiles range and 13 QQIQR . 

In other words, any observation below IQRQFL 5.11  or above 

IQRQFU 5.13  is labelled as outlier, where LF  and UF  are called the lower and 

upper fences, respectively. Further discussion on boxplot and on developing a new 

boxplot for circular variables is given in Chapter 6.  

  

(ii) The ‘three – sigma’ rule 

Under normality assumptions, an observation ix  can be identified as an outlier if 

its distance to the sample mean is greater than s3 , where s  is the sample standard 

deviation given by 
n

i

i

n

xx
s

1

2

1
 , x is the sample mean and n is the sample size. 

 

(iii) Dixon test   

The Dixon’s (Q-test) was developed by Dixon (1950, 1951). It is a simple test to 

examine if one (and only one) observation from a small set can be "legitimately" 

rejected or not. The data is ranked in ascending order )()1( ,..., nxx , from a sample of size 

n. The statistic  is a ratio defined as the difference of the suspect value from its nearest 

one divided by the range of the values. The  statistics for the highest and the lowest 

values are computed and compared with critical values, respectively as follows 
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1

1

xx

xx

n

nn

n
 and 

1

12

1
xx

xx

n

. 

Both tests and their critical values are available in many statistical tables (see Murdoch 

& Barnes (1998, p.27)). To avoid the problem of two outliers on the same side of the 

distribution, Dean & Dixon (1951) suggested taking a more elaborate approach by using 

different formulas for different sample sizes. They defined the various ratios based on 

sample size n. An example is given in Section 4.3.1. 

 

(iv) Maximum normed residual (Grubbs) test  

Based on the normality assumptions, Grubbs (1969) proposed a test to detect 

one outlier at a time in a univariate data set of a size not less than 6n  under the null 

hypothesis that there are no outliers in the data set. The two sided version of the test 

statistic is given by 

s

xx

G
i

ni
max

,...,1
, 

where x is the sample mean and s  is the sample standard deviation. On the other hand, 

the one sided Grubbs test is used to examine whether the maximum or the minimum 

values are outliers and they are given respectively by 

s

xx
G

n

n

)(
 or 

s

xx
G

)1(

1 , 

where )(nx  and  )1(x  are the maximum and the minimum values, respectively.  

 

(v) Least Absolute Deviation  

Wu & Lee (2006) proposed a least absolute deviation (LAD) method for the 

determination of the number of upper or lower outliers in normal sample by minimizing 

its sample mean absolute deviation. 
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2.3.2 Outlier identification in circular univariate data set 

 

Outlier in the context of circular data would be defined as a set of observations 

which is inconsistrent with the rest of the sample. It is expected to lie far from the mean 

direction of the circulae sample. To date, there are a few numerical and graphical tests 

of discordancy in circular samples. Three of the numerical tests were suggested by 

Collett (1980) and the remaining one was suggested earlier by Mardia (1975). Another 

test based on Bayesian methods was suggested by Bagchi & Guttman (1990).  

 

Suppose we have an independent random circular sample n,...,1  of size n 

which follows a von Mises distribution, ),(VM , with a density function given by 

)),cos(exp(
)(2

1
),;(

0I
f    2,0 , 

where  is the mean direction,  is the concentration parameter with 0 , and )(0I  

is the modified Bessel function of first kind and order zero. Detail description of the 

distribution is given in Section 3.2.2. 

 

To test whether or not a surprising value is an outlier in a von Mises distribution, 

we consider a null hypothesis that all n  observations follow ),(VM  against an 

alternative hypothesis that ( 1n ) observations come from ),(VM  and one 

observation comes from ),( *VM , where * . 

 

The available numerical tests of discordancy in circular data are presented 

briefly as follows. Most of the tests use the descriptive measure for circular data; the 
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resultant length for circular sample is given by 22 CSR , where 
n

i
iS

1

sin  and 

n

i
iC

1

cos , ni ,...,1 . 

 

(i) C  statistic 

 The mean resultant length of circular data set is given by 
n

R
R .  By omitting 

the ith observation, the mean resultant length is given by 
)1(

)(

)(
n

R
R

i

i . Therefore,  

 

R

RR
C

i

i

)(
max , 

 

(2.5) 

can be considered as a test statistic. Values of C will then be compared with percentage 

points for different sample size n  and estimated concentration parameter ˆ . If C is 

larger than the critical value, we reject the null hypothesis so that the ith observation can 

be considered as an outlier.  

 

(ii)  D  statistic 

 The D statistic uses the relative arc lengths based on ordered observations of a 

circular sample )()1( ,..., n . Let iT  be the arc length between consecutive observations 

given by ,)()1( iiiT  1,...,1 ni  and )1()(2 nnT . Define ,
1i

i

i
T

T
D  

ni ,...,1  and nTT0 . Let 
1k

k

k
T

T
D  corresponds to the greatest arc containing a single 

observation k . Since kD  is two tailed, Collett (1980) suggested working in terms of  

 ),min( 1

kk DDD , (2.6) 

where 10 D . The observation k  can be considered as an outlier if the value of D is 

larger than the value of percentage points as given in Collett (1980). 
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(iii) L statistic 

The L test is based on the maximum likelihood ratio statistic for the alternative 

hypothesis. The L statistic is given by  

 

)ˆ(

)ˆ(
lnˆˆ)1(

0

)(0

)()(
I

I
nRRL

k

kk
, 

 

(2.7) 

where 2

)(

2

)(

2

)( kkk SCR  , 
)( kC  and 

)( kS  are the values of  C and S, respectively, 

based on )1(n  observations excluding k ; ˆ  is the maximum likelihood estimator of 

 based on n  observations and )(
ˆ

k  is the maximum likelihood estimator of  based 

on  )1(n  observations excluding k . 

 

(iv)  M statistic 

Mardia (1975) proposed a statistic of discordancy which is given by 

Rn

Rn
M

i

i

)(1
min . Later, Collett (1980) reformulated the M  statistic in terms of   

 
,

11
max1

)(

Rn

RR

Rn

RR
MM ki

i
 

(2.8) 

where }{max )( i
i

k RR . Collett stated the asymptotic distribution of M statistic for large 

value of . As the value of  increases the von Mises distribution will be 

approximated by a simple normal distribution (see Jammalamadaka & SenGupta 

(2001)). On the other hand, the statistic M  can be approximated by 
)1(

)( 2*

n

bn
, where 

2

* max
xx

xx
b

i

i

i
 is the test statistic used to identify discordancy in normal data. 

Percentage points for *b  are given in Pearson and Hartley (1966). 
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The C and D statistics can be used for any circular sample, while L and M are 

useful only for circular samples from von Mises distribution. Collett (1980) provided 

the percentage points of the null distribution of the C and D statistics for various values 

of  and provided the asymptotic distribution of M statistic. The distribution of the L 

statistic is unknown. Further, among the available tests for the detection of outliers in 

circular data, the most appropriate test is Mardia’s test, since his test is independent of 

the concentration parameter of the von Mises distribution (see Upton (1993)). 

Alternative statistics to identify outliers in circular samples based on the circular 

distance or chord lengths are discussed in detail Chapter 5. 

 

On the other hand, Jammalamadaka & SenGupta (2001) suggested several 

graphical techniques to explore circular samples which are summarized below. 

 

(i) Circular distance between circular sample observations 

The circular distance between any two points is taken to be the smaller of the 

two arc lengths between the two points along the circumferences. For any two angles  

and , the circular distance is defined as 

 ))(2,min(),(d . (2.9) 

If the circular distances between observation i  and its neighbours on both sides are 

relatively larger than the distance between other successive observations, then i  is 

considered as an outlier. 

 

(ii) P-P plot 

P-P plot can be obtained by finding the best fitting of cumulative von Mises 

distribution ˆ,ˆ;F̂  for the circular sample.  Then the plot is obtained by plotting the 
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pairs of )ˆ,ˆ;(ˆ,)1( )(iFni , ni ,...,1 , where n  is the sample size. Any point in  

P-P plot that seems not to be close enough to the diagonal line is suspected to be 

outliers. 

 

(iii) Q-Q plot 

Q-Q plot is obtained by plotting )),2(sin( )(ii zq , where ˆ,0;)1(1 niFqi  

and 
2

)ˆsin( i
iz ,  ni ,...,1 , where )()1( ,..., nzz  are the ordered values of iz ’s. Any 

points in Q-Q plot far from the diagonal line are candidate to be outliers. 

 

(iv) Spoke plot 

The spoke plot is introduced by Hussain et al. (2007). It consists of inner and 

outer rings in which lines are used to connect the pair of points ),( ii between the two 

directional variables 
 360,0 ii . The lesser number of lines crossing the inner 

ring indicates higher correlation. 

 

In this thesis, alternative graphical tools analogue to the linear graphics will be 

developed to identify outliers in a circular sample. Further, they will be extended to 

detect possible outliers in circular regression based on circular residuals in Chapter 7.  

 

2.4 Outliers and influential observations in regression models 

 

The analysis of regression is subjected to the occurrence of the outliers. Barnett 

& Lewis (1984) and Belsley et al. (1980) discussed extensively on outliers and 

diagnostics checking for linear regression. Outliers which change the values of statistics 
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of interest such as parameters estimates or variance of residuals are known as influential 

observations. However, there is no known published work discussing the problem of 

outliers in regression models for circular variables. A brief overview on influential 

observations in linear regression analysis is given in the following Section. 

 

2.4.1  Outliers and influential observations in linear regression 

 

Methods described in previous section can be used to detect outliers in 

regression modles using their residuals. This section reviews some of the techniques 

used to identify influential observations in linear regression based on row deletion 

approach which was developed by Belsley et al. (1980).  It investigates the impact of 

deleting one row at a time from both X  matrix and Y  vector on the fitted values, 

residuals and the estimated parameter. Here, the approaches are reviewed for two 

reasons: The first is to use them to identify influential observations in circular 

regression after approximating the circular variables into linear variable. The second is 

to extend some of these techniques to the circular regression case.  

   

Regression analysis is concerned with fitting models to data in which there is a 

single continuous response variable whose expected value depends on the values of the 

explanatory variables. Linear regression model is summarized by  

εXβY , 

where Y  is n –vector of response, X  is pn  full rank matrix of known constants, β  

is  p-vector of unknown parameters and ε  is n-vector of errors with the assumptions 

that 0ε)(E  and nV Iε
2)( . The least square estimation of β  is given by 

YXXXβ '' 1)(


, where ββ)(


E  and 
12 )()cov( XXβ

'


. The residual sum of 

squares about the fitted model is given by )()( '
βXYβXY


RSS , the least squares 
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estimator of 2  is an unbiased estimator and defined by )(2 pnRSSs . The 

ordinary residual vector is defined as  

          ,)1(ˆ YHYYe  

where Ŷ is the vector of the fitted values and ''
XXXXH

1)( is the hat matrix which 

is a symmetric and idempotent matrix. The matrix H  contains the information on the 

influence of the response value iY  on the corresponding fitted value YHY
'

ii
ˆ , where 

'

iH  is the ith row of matrix H . The iih  is the diagonal elements of the hat matrix H . 

Huber (1981) suggested that iih  with values less than 0.2 appearing to be safe, values 

between 0.2 and 0.5 as being risky and values greater than 0.5, if possible, be avoided 

by the control of design matrix. Belsley et al. (1980) suggested an approximation cut-

off value at 0.05 level of significant to be )2( np , where p is the number of model 

coefficients. Entries iih  are used to identify leverage points. 

 

Next, we look at different methods of measuring the effect of deleting one row 

on the estimation of parameters and their covariance, residual sum of squares, fitted 

values and their variances. 

 

(i)  Influence of the ith observation on β  and its covariance 

Let 
)( iβ


 be the least square estimate of β  when the ith observation is deleted. 

Then 

i)(i)(

1

i)(i)()( )( YXXXβ
''

i


 

where )( iX  and )( iY  are obtained by removing the ith row in X  and Y , respectively. 

The change in the estimate of the parameter vector β  when the ith observation is 

deleted is given by 
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ii

ii

i
h

e

1

)(ˆˆ
'1

)(

XXX
ββ

'

 . 

where iX is the ith row of X  matrix. Cook (1977,1979) considered a statistic based on 

the confidence ellipsoids for investigating the contribution of each data point i  to the 

least squares estimate of the parameter, β , which is given by 

pnpF
ps

.2

'

~
)ˆ()ˆ( ββXXββ

'

. 

In order to determine the degree of influence of the ith data point on the estimated 

parameter vector, β , Cook suggested the measure of the critical nature of each data 

point to be 

2

)(

'

)(

)(

)ˆ()ˆ(

ps
D

ii

i

ββXXββ
'
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2

)1( ii

iii

h

h

ps

e
. 

A large value of )( iD  indicates that the associated observation has a strong influence on 

the estimate of parameter vector β̂ . 

 

One of the diagnostic techniques of row deletion is to compare the estimated 

covariance matrix of β̂  using all available data, 12 )( XX
' , with the estimated 

covariance matrix that results in deleting the ith observation, 1

i)(i)(

2 )XX
'( .  

Belsley et al. (1980) suggested the comparison of the two matrices using determinantal 

ratio which is given by 

})(det{

}][det{
12

1

i)(i)(

2

)(

)(
XX

XX

'

'

s

s
COVRATIO

i

i  

                                          
ii

p

i

hs

s

1

1
2

)(
. 



 29 

A value of )( iCOVRATIO  which is not near unity indicates that the ith observation is 

possibly influential. Hence, any data point with |1| )( iCOVRATIO  close to or larger 

than )3( np  is possibly an influential observation. 

 

(ii) Influence of the ith observation on the residuals sum of squares  

Let 
2

ieRSS be the residual sum of squares after fitting the model using all 

observations, then  

2)( spnRSS  

   YXβYY
'' 'ˆ . 

Similarly, after the deletion of the ith observation it becomes 

)(ˆ)()1( '

)(

22

)()( ii

''
YXYXβYYY iiii spnRSS .                

Hence, 

ii

i

i
h

e
spnspn

1
)()1(

2

22

)(
. 

Goldsmith & Boddy (1973) and Mickey (1974) suggested that if deleting the ith 

observation results in the largest reduction of the residual sum of squares, then the ith 

point is most likely to be an influential observation. Belsley et al. (1980) formalized this 

into the following statistic 

)1(

)1()()(

)(

)(

)(
pnRSS

pnpnRSSRSS
RESRATIO

i

i

i . 

                                   
)1(2

)(

2

iii

i

hs

e
. 

Under the normality assumptions, the statistic RESRATIO follows F  distribution with 

1 and ( 1pn ) degrees of freedom. 

 



 30 

 (iii) Influence of deleting the ith observation on 
iŶ  and its variance 

Belsley et al. (1980) defined the change in fitted value for the ith row that results 

from deleting the ith observation as  

)(ˆˆ iDFFIT ii YYi
)1()( iii

i

ii
hs

e
V . 

Belsely et al. (1980) suggested that a convenient size adjusted cut off for 
iDFFIT  is 

np2 . The estimated variance of fitted value 
iŶ  when the fit is based on all 

observations is compared with the estimated variance when the ith data point is deleted. 

.)ˆ(ˆ)ˆ(ˆ 2'

iiii hsVV βXY  

Similarly,            ))(ˆ(ˆ))(ˆ(ˆ ' iViV ii βXY
ii

iii

h

hs

1

2

)(
. 

Thus, the ratio of the estimated variance is given by 

)1(2

2

)(

ii

i

hs

s
FVARATIO . 

FVARATIO provides a useful summary of changes that occur in the precision of the 

fitted values of the ith observation when the ith observation is deleted. 

 

2.4.3     Outliers and influential observations in circular regression 

 

There has been no published work related to the outliers and influential 

observations in the regression for circular variables or circular regression models. 

However, there is a specific discussion done on the diagnostics checking for certain 

circular regression models. 

Fisher & Lee (1992) discussed the diagnostics checking for their proposed 

model. In the example of the distance and direction moved by small blue periwinkles, 
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they used some diagnostics plot for residuals direction like the plot of residuals 

direction against the distance moved and von Mises Q-Q plot. 

 

Lund (1999) used the von Mises Q-Q plot and proposed the Akaike information 

criterion (AICC) statistic by assuming that the error has a von Mises distribution with 

concentration parameter . The model with minimum AICC is deemed to be the best 

fit. Moreover, he assessed the goodness of fit by using )ˆ(A  given by the equation  

n

i
iiiy

n
A

1
21 )],ˆ,ˆ,,(cos[

1
)ˆ( X  

as an analogue of residual sums of squares in linear regression (RSS). Further, Lund 

(1999) touched on the available circular correlation measures (see Fisher (1993) and 

Mardia & Jupp (2000)) which could be applied to the observed and fitted values. 

Consequently, squaring these measures gives an analog to the coefficient of 

determination, 2R  for linear regression. For a random sample ),(),....,,( 11 nn yxyx , the 

simplest measure proposed by Jammalamadaka & Sarma (1988) and is given by 

n

i
ii

n

i
ii

c

yyxx

yyxx

r

1

22

1

)(sin)(sin

)sin()sin(

, 

where x  and y  are the sample mean directions. 

 

Due to the lack of tests to detect outliers or influential observations in circular 

data, there is a need to propose new tests statistics to deal with this problem. The 

following chapter discuses some of the summary statistics of circular data and describes 

the two circular data sets which are going to be used for the purpose of illustration in 

this study. 
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2.5 Summary 

 

Like other type of data, circular data are subjected to contamination by outliers 

and influential observations. There is a need to come out with new outlier detection tests 

and influential observation detection procedures in both univariate circular samples and 

circular regression. In order to do so some approaches may be developed either by using 

circle properties (i.e. chord and circular distance), or extending some of popular 

graphical tools like boxplot, or employing row deletion approach to the circular 

regression case. These will be the focus of our study. 
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CHAPTER THREE 

DESCRIPTIVE STATISTICS OF CIRCULAR DATA 

 

3.1  Introduction 

 

This chapter reviews some of the descriptive measures for circular data, and also 

describes the widely used circular distribution which is the von Mises distribution as 

can be seen in Chapter 2. In this study, we consider two circular data sets. The first is 

the direction of frogs, which was considered by Collett (1980). The next is the wind 

direction data modelled by Hussin et al. (2004).  

 

3.2 Descriptive measures for circular data 

 

In order to assess the main characteristics of any circular data set, we need some 

measures of location and dispersion, for example: mean direction, variance etc. Let 

n,...,1  be observations in a random circular sample of size n  from a circular 

population. The descriptive measures can be described as follows: 

 

(i) The mean direction 

To find the mean direction of circular random sample, we consider each 

observation to be a unit vector whose direction is specified by the circular angle and 

find their resultant vector. The mean direction is defined by the angle made by the 

resultant vector with horizontal line. Specifically, we have the resultant length R  given 

by 

22 SCR , 
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where 
n

i
iC

1

cos  and 
n

i
iS

1

sin . The mean direction, , may be obtained by 

solving the equations,  
R

C
cos  and 

R

S
sin , where 

.0,0ifundefined,

,0,0if,2)(tan

,0if,)(tan

,0,0if,
2

,0,0if),(tan

1-

1-

1

CS

CSCS

CCS

CS

CSCS

 

One of the mean direction characteristics is that 0sin
1

n

i
i , which is analogous to 

the linear case. Mean direction is sometimes called the “preferred direction”. 

 

(ii) Mean resultant length 

 Mean resultant length R  is useful for unimodal data to measure how 

concentrated the data is towards the centre. It is defined by 
n

R
R  and lies in the 

range ]1,0[ . When R  is close to 1, it implies that all directions in the data set are similar, 

or the set of observation has a small dispersion and is more concentrated towards the 

centre. However, 0R  does not imply that the directions are spread almost evenly 

around the circle, for example, any data set of the form nn ,...,,,..., 11  has 

0R . 

 

(iii) The median direction 

Fisher (1993) defined the median direction of circular variable as an axis 

(median axis) that divides the circular data into two equal groups. Consistently, Mardia 

& Jupp (2000) defined the median as any point , where  half of the data lie in the arc 

),[  and the other points are nearer to  than to . Practically, for any 
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circular sample, Fisher (1993) defined the median direction as the observation  which 

minimizes the summation of circular distances (2.9) to all observations, 

n

i
id

1

||||  for .,...,1 ni  Fisher’s definition is used to obtain the circular 

median in the Oriana statistical software package. 

 

It is interesting to note the robustness of mean direction as stated by Wehrly & 

Shine (1981). According to Mardia & Jupp (2000), the robustness property is due to the 

compactness of the circle.  

 

(iv) The sample circular variance 

The sample circular variance is defined by the quantity RV 1 , where 

10 V . The smaller values of circular variance refer to a more concentrated sample.  

 

(v) The sample circular standard deviation 

The quantity V1log2v  is defined as the sample circular standard 

deviation with ν0 , where V  is the sample circular variance. The reason for 

defining the circular standard deviation in this way, rather than as the square root of the 

sample circular variance is to obtain some reasonable approximations for proportion of 

von Mises distribution, provided that the distribution is not too dispersed (see Fisher 

1993, p.54). 

 

3.3  The von Mises distribution 

 

The von Mises distribution is introduced by von Mises (1918) to study the 

deviations of measured atomic weight from integral values. It is the most common 
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distribution considered for unimodal samples of circular data. The von Mises 

distribution has been extensively discussed where many inference techniques have been 

developed. It is denoted by ),(VM , where  is the mean direction and  is the 

concentration parameter. The probability density function for the von Mises distribution 

is given by 

,)cos(exp
)(2

1
,;

0I
f   2,0  and ,0  

where )(0I  is the modified Bessel function of the first kind and order zero, and it is 

given by 

.
!

1

2
cosexp

2

1
22

0

2

0
0

r
dI

r

r

 

Jammalamadaka & SenGupta (2001) summarized some of von Mises density properties, 

which are 

(i) it is symmetrical about the mean direction , 

(ii) it has a mode at , and 

(iii)    it has antimode at )( . 

Best & Fisher (1981) gave the maximum likelihood estimates of the concentration 

parameter  as follows: 

.85.0if,)34(

,85.053.0if,
)1(

43.0
39.14.0

,53.0if,
6

5
2

ˆ

123

53

RRRR

R
R

R

RRRR

 

Further, the estimation of the concentration parameter depends on the sample size.  
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Watson (1961) proposed a test for goodness of fit 
2

nU  of any given circular 

distribution (i.e. von Mises distribution).  Let )(F  be the distribution function of the 

von Mises distribution which is given by dIFz
i

ii
0

1

0 )cosexp()}(2{)( . 

The test statistic 
2

nU  is given by  

 
n

i

n

i

ii
in zn

n

zc
zU

1 1

2

22

2

1

3

1
. 

 

(3.1) 

where 
n

i
iz

n
z

1

1
 and 12ici . The critical values were supplied by Stephens (1964). 

 

3.4  Frogs direction data 

 

The data set have been selected from a series of experiments conducted to 

investigate the homing ability of the northern cricket frogs described by Ferguson et al. 

(1967). A total of 14 frogs were collected from the mud flats of an abandoned stream 

meander near Indianola, Mississippi. After 30 hours enclosure within a dark 

environmental chamber, the frogs were released and the directions taken were recorded 

as given below: 

 316,200,192,184,178,152,145,136,130,127,121,117,110,104 . 

 

Some of the descriptive statistics for the data are given in Table 3.1. The mean 

and median directions are close to each other which is around 145°. The data seem to be 

not highly concentrated where the estimate of the concentration parameter is around 2. 

Figure 3.1 shows the frogs data distributed on the circumference of the circle. The plot 

of circular histogram for frogs direction data is displayed in Figure 3.2. The solid 

straight line shows the mean direction and the arched line indicates the 95% confidence 
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interval of mean direction. The data have one mode which is close to the mean direction 

while there is one bar directed to the opposite of mean direction which is suspected to 

be an outlier.   

 

Table 3.1: Some descriptive measures for frogs direction data 

Descriptive measure value 

Mean direction,  145.974° 

Median,  145° 

Mean resultant length, R  0.725 

Variance, V 0.274 

Standard deviation, v̂  45.931° 

Concentration parameter, ˆ  2.18 
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Figure 3.1: Circular plot of frogs data Figure 3.2: Circular histogram for frogs data 

 

Figure 3.3 shows the Q-Q plot for the frogs data. The quantiles are close to 

straight line except one point. To test the goodness-of-fit, 
2

nU , statistic given by (3.1) is 

used.  The test statistic 
2

nU 0.066, is smaller than the critical value 0.101 at 0.05 

significant level. Thus, we may conclude that the frogs data follows von Mises 

distribution. 
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Figure 3.3: Q-Q plot for frogs data 

 

3.5  Wind direction data 

 

In this section we introduce briefly the HF (High frequency) radar system and 

anchored wave buoy techniques for measuring the ocean wind direction followed by a 

description of the data. The interest here is to identify the outliers in the data.  

 

(i) The HF radar system 

HF radar is a tool for synoptic on-line mapping of surface current fields and 

the spatial distribution of the wave directional spectrum. The HF radar used to 

collect the data was developed by UK Rutherford and Appleton Laboratories and 

subsequently by Marex Ltd and The Marconi Radar Company. The system is 

pulse radar that uses high frequency (24.4-27 MHz) radio frequency to map 

surface current patterns over a large area of ocean. 
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(ii) The Anchored wave buoy 

It is often used to evaluate the performance of other wind or wave 

measuring systems. Older models measure vertical motion at a single point. 

Typical wave buoys additionally measure the lope of the sea surface in two 

directions at the same points. 

  

3.5.1  Data description 

  

The data were collected along the Holderness coastline (the Humberside coast of 

the North Sea, United Kingdom) by using HF radar system and wave buoys. The 

deployment began in October 1994, as a part of an experiment studying the transport of 

sediment away from the coast. The following information is assumed: 

(i)  There is temporal stationary over the period of measurements, 

(ii)  There is spatial stationary over the area of measurements. 

(iii) The different techniques are measured independently.  

 

The wind direction is the direction of the local wind which blows across the sea 

surface and along the coast where the HF radar system and anchored wave buoys are 

deployed. The full data set is quoted from Hussin (1997) and is given in Appendix (A.1) 

which consists of time (in days) when the data and the directions (in radians) were 

recorded. There were 129 measurements recorded by HF radar and anchored wave buoy 

respectively over the period of 22.7 days. 
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3.5.2  Descriptive statistics 

 

Some of the descriptive statistics for wind direction data are given in Tables 3.2 

(in radians). Both summary statistics for the measurements which are recorded by HF 

radar and anchored wave buoy are almost similar. The concentration is small and the 

mean resultant length is around 0.4. 

 

Table 3.2: Some descriptive measures for wind direction data 

Descriptive Measure HF radar Anchored buoy 

Mean direction,  6.127 6.116 

Median,  5.713 5.842 

Mean resultant length, R  0.444 0.411 

Variance, V 0.556 0.588 

Standard deviation, v̂  1.274 1.333 

Concentration parameter, ˆ  0.999 0.902 

 

Figure 3.4 shows the plot of simple circular histograms for direction data 

measured by HF Radar and Anchored buoy. It seems that the two measurements have 

similar distribution. Figure 3.5 shows the Q-Q plot for HF radar and anchored buoy 

directions data, where most of the quantiles are close to the straight line. This suggests 

that the data follow von Mises distribution. Figures 3.4 and 3.5 indicate the closeness 

between the measurements of the two techniques.  

 

Figure 3.6 shows the ordinary scatter plot of wind direction data. The 

measurements are in radians where the scale is artificially broken at 0 (or 

equivalently 2 ) radians. Two points seem to be outliers at the left top of the plot. 

However, they are actually consistent with the rest of the observations as they are close 

to other observations at the right top or left bottom due to the closed range property of 

the circular variable. Further, there is a linear relationship between HF radar system and 
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anchored wave buoy measurements. Figure 3.7 shows the spoke plot of wind direction 

data. The inner ring represents the measurements by HF radar while the outer ring 

represents the measurements of the anchored buoy. Since almost all the lines do not 

cross the inner circle it means that the data are highly correlated with estimated 

correlation parameter 952.0ĉr . Further, there are only two lines crossing the inner 

ring, which are associated with observations number 38 and 111. This indicates that the 

pairs corresponding to the two observations are inconsistent.  
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(a) Measurements by HF radar 
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(b) Measurements by anchored buoy 
 

Figure 3.4: Circular histograms for wind direction data 
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(a) Measurements by HF radar (b) Measurements by anchored buoy 

 

Figure 3.5: Q-Q plot for wind direction data 
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Figure 3.6:  Scatter plot of wind direction data measured by both techniques 

 

 

Figure 3.7:  Spoke plot of wind direction data measured by both techniques 

 

3.6  Summary 

 

Two data sets were described in this chapter and will be used for illustration 

purposes through out this thesis. Based on the explanatory analysis, we expect to 

identify one outlier in frogs data and two outliers in the wind direction data. 
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CHAPTER FOUR 

LINEAR APPROXIMATION OF CIRCULAR VARIABLES 

AND DETECTION OF OUTLIERS 

 

4.1  Introduction 

 

The approximation of circular variables by linear variables enables us to use 

linear statistical tests. Several authors had state that a sample from the von Mises 

distribution with large concentration parameter  can be treated as linear sample (see 

Mardia (1975), Fisher & Lee (1992) and Jammalamadaka & SenGupta (2001)). 

 

This chapter reviews one of the important theorems in this aspect and discusses 

how large the concentration parameter  should be in order to approximate circular 

data to linear. Two circular data sets (frogs and wind direction data) are considered. 

Consequently, we apply the linear outlier detection procedures on both sets of data. 

  

4.2 The approximate distribution for von Mises samples with large 

concentration parameter 

 

This section reviews the proof of the approximate distribution for von Mises 

samples with large concentration parameter  and discusses the value of the 

concentration parameter in order to approximate von Mises samples by normal 

distribution. 
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4.2.1 The proof of the approximate distribution 

 

Jammalamadaka & SenGupta (2001, p.41) stated the proof that for a circular 

random variable  from a von Mises distribution with mean direction  and 

concentration parameter , that is  )( ,VM~ , )(  can be approximated 

by standard normal distribution as , that is, 

 )()( 10,N~ .     (4.1) 

The proof of (4.1) is given below. The von Mises density function is given by 

)},cos(exp{
)(2

1
,;

0I
f   .0,2,0  

For large concentration parameter , the modified Bessel function of the first kind and 

order zero can be estimated by  
2

)exp(
)(0I . 

Let )( ,  then   )(  and let )( . Using the change-

of-variable technique 

))(()( fg , 

                         
)(2

cosexp
1

0I
. 

By substituting the approximated value of )(0I , we get 

2

)exp(
2

cosexp

)(g  

            
)exp(2

cosexp

. 



 46 

For large  and hence small , cos)cos( . From the Taylor series 

expansion, we know that 
2

1cos
2

. Hence, 

2
1cos

2

. 

Therefore, 

)exp(2

2
1exp

2

g , 

            
2

exp
2

1 2

.  

This is the probability density function of the standard normal distribution. 

            

 

In the following subsection we discuss how large the concentration parameter of 

von Mises sample should be for it to be approximated by the normal distribution. 

 

4.2.2  The size of the concentration parameter 

 

We use simulation to define how large the concentration parameter  should be 

in order to be approximated by the normal distribution. A total of 13 different sample 

sizes 5n , 10(10)100, 120 and 150 and twenty one values of concentration parameter, 

 0.001, 0.01 0.1, 0.5, 1, 1.5, 2(1)10, 12, 15, 17, 20 are considered. Simulation 

studies are carried out with a fixed mean direction at 4  radians as the value of  in 

(4.1) does not depend on the mean direction. For each combination of sample size n and 

concentration parameter , 3000 samples are generated from the von Mises 



 47 

distribution. For each generated sample,  is calculated. The Kolmogorov-Smirnov test 

is used to assess the goodness of fit at three levels of significance = 0.1, 0.05 and 

0.01. Then, the percentages of the generated samples which follow standard normal 

distribution are calculated as tabulated in Table 4.1. For each , the percentage points 

as given in the first, second and third rows correspond to the = 0.1, 0.05 and 0.01 

level of significance respectively. The following results are observed: 

(i) As expected, the percentage is a decreasing function of the significant level .  

(ii) For 5 , the percentage of generated samples which are correctly approximated 

by normal distribution is a decreasing function of the sample size 1505 n  , but 

constant for 5 .  

(iii) For all considered sample size n, the percentage is a decreasing function of 

concentration parameter 5.0  but an increasing function for 1.  

(iv) At 0.05 level of significance, for small sample size ( 20n ) and 2 , more than 

96% of the generated samples are well approximated by standard normal 

distribution. Further, for any sample size n with concentration parameter 3 , 

more than 96% approximated by standard normal distribution. For any considered 

sample size n with concentration parameter 4 , it is found that more than 98% of 

the generated samples are approximated by the standard normal distribution. 

Further, for 10  the percentage is almost 100%. 

 

Generally, based on the simulation results we may conclude that, any sample 

generated from von Mises distribution with concentration parameter 4  can be 

considered to be normally distributed. For samples with size ( 20n ), the concentration 

parameter 2  is considered large enough so that the data can be approximated by 

normal. 

 

http://www.physics.csbsju.edu/stats/KS-test.html
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Table 4.1: The percentage of samples correctly approximated by standard normal distribution 

  n 

  5 10 20 30 40 50 60 70 80 90 100 120 150 

 0.1 78.4 61.1 43.3 32.7 23.6 20.6 17.6 14.4 12.3 9.1 7.7 6.1 3.5 

0.001 0.05 84.1 67.7 50.2 38.0 28.6 25.3 21.9 17.9 15.2 12.3 10.5 7.8 4.7 

 0.01 95.0 78.3 62.7 48.6 39.3 34.3 30.1 25.6 23.1 18.9 15.8 12.6 7.9 

                

 0.1 78.1 61.5 41.2 32.4 25.4 18.7 17.4 13.5 11.7 9.4 7.6 5.2 2.5 

0.01 0.05 83.2 68.6 47.0 38.1 29.7 23.3 21.3 17.2 14.9 12.4 10.2 7.2 3.4 

 0.01 94.4 81.2 59.2 49.6 40.0 33.0 29.2 24.7 20.9 18.8 15.2 11.8 6.2 

                

 0.1 76.3 58.2 32.9 25.5 17.1 14.1 11.4 7.4 5.4 4.6 3.9 2.2 1.2 

0.1 0.05 82.0 65.4 39.4 31.3 21.4 17.8 14.5 9.9 7.3 6.4 5.3 3.0 1.9 

 0.01 94.0 79.2 52.3 42.4 30.1 25.5 20.7 15.2 13.2 11.3 8.6 5.7 2.9 

                

 0.1 72.9 49.7 22.0 7.4 2.5 0.9 0.5 0.0 0.0 0.0 0.0 0.0 0.0 

0.5 0.05 79.2 59.2 30.8 12.5 5.2 1.5 0.7 0.1 0.1 0.0 0.0 0.0 0.0 

 0.01 92.4 74.9 48.8 26.1 14.4 5.7 2.6 0.8 0.5 0.2 0.0 0.0 0.0 

                

 0.1 75.8 57.6 28.6 11.5 3.6 1.2 0.3 0.1 0.0 0.0 0.0 0.0 0.0 

1 0.05 80.5 67.5 39.7 19.4 7.9 2.9 1.0 0.3 0.0 0.0 0.0 0.0 0.0 

 0.01 93.5 82.3 61.7 42.7 23.5 12.5 6.0 2.4 0.7 0.2 0.2 0.0 0.0 

                

 0.1 83.3 71.2 47.7 32.1 18.7 10.1 5.7 2.2 1.0 0.5 0.1 0.0 0.0 

1.5 0.05 86.5 80.1 61.5 45.3 29.6 18.1 11.8 5.8 3.0 1.7 0.7 0.1 0.0 

 0.01 95.6 91.2 81.8 70.2 56.3 42.7 31.8 22.9 14.0 9.2 5.7 1.7 0.2 

                

 0.1 88.9 81.4 69.1 56.7 42.9 32.9 25.5 17.3 12.5 8.4 5.4 1.8 0.2 

2 0.05 91.4 88.9 79.9 70.0 58.4 47.0 39.9 29.9 23.5 17.2 12.5 5.6 1.2 

 0.01 97.2 96.6 92.6 88.2 81.9 74.3 70.0 59.4 52.7 46.5 36.0 23.4 9.2 

                

 0.1 94.5 93.0 89.8 86.6 83.3 78.2 76.5 71.8 66.2 62.4 58.8 49.1 35.4 

3 0.05 96.5 96.5 94.6 93.0 91.1 88.3 86.6 83.1 80.9 78.4 74.9 65.9 54.3 

 0.01 98.8 99.5 98.6 98.7 98.0 97.5 97.0 95.8 96.0 93.9 93.6 89.2 83.8 

                

 0.1 97.1 96.8 96.4 96.0 95.0 94.7 93.9 93.7 93.0 91.2 90.4 88.0 83.5 

4 0.05 98.5 98.7 98.4 98.2 98.0 97.9 97.8 97.7 97.2 96.8 96.2 96.1 95.6 

 0.01 99.8 99.8 99.7 99.7 99.6 99.6 99.6 99.5 99.5 99.4 99.4 99.3 98.8 

                

 0.1 97.9 98.3 98.8 98.4 98.8 98.1 98.4 98.1 97.8 97.9 97.7 97.4 97.1 

5 0.05 98.9 99.4 99.6 99.5 99.5 99.5 99.3 99.4 98.9 99.5 99.3 99.1 99.1 

 0.01 99.8 99.9 99.9 100.0 99.9 100.0 99.9 100.0 99.9 100.0 99.9 100.0 99.9 

                

 0.1 98.6 99.5 99.3 99.6 99.4 99.4 99.4 99.4 99.3 99.3 99.3 99.3 99.1 

6 0.05 99.5 99.9 99.8 99.9 99.8 99.9 99.9 99.8 99.7 99.8 100.0 99.8 99.9 

 0.01 99.9 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 99.4 99.3 99.6 99.7 99.8 99.4 99.7 99.7 99.7 99.6 99.7 99.6 99.5 

7 0.05 99.8 99.9 99.8 99.9 99.9 99.8 100.0 99.9 99.8 99.9 99.9 99.9 99.9 

 0.01 100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 99.6 99.7 99.9 99.8 99.8 99.9 99.8 99.8 99.9 99.9 99.9 99.9 99.8 

8 0.05 100 99.9 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100 100 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
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Table 4.1, continued. 

  n 

  5 10 20 30 40 50 60 70 80 90 100 120 150 

 0.1 99.6 99.9 99.8 99.8 99.9 99.8 99.9 100.0 99.9 99.8 99.9 99.8 99.9 

9 0.05 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 99.9 99.9 99.9 99.8 99.9 99.8 99.9 99.9 100.0 100.0 99.9 99.9 100.0 

10 0.05 99.9 100.0 100.0 99.9 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 100.0 100.0 100.0 99.8 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 99.8 

12 0.05 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 100.0 99.9 100.0 99.9 99.9 99.9 100.0 100.0 99.8 99.9 99.9 99.9 99.9 

15 0.05 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 100.0 99.9 99.9 100.0 99.9 99.9 99.9 99.9 99.9 100.0 99.9 99.9 99.8 

17 0.05 100.0 100.0 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

                

 0.1 100.0 99.9 100.0 100.0 99.9 100.0 99.9 99.9 100.0 99.9 99.8 100.0 99.8 

20 0.05 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 0.01 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 

 

4.3  Illustrative examples 

 

This section considers two data sets which are described in Chapter 3, namely, 

the frogs data and wind direction data. Both of them are approximated as linear data set 

to highlight the necessity of circular tests of discordancy.  

 

4.3.1  Frogs data 

 

The sample size of frog data is 14 with an estimated concentration parameter 

18.2ˆ . It comes from von Mises distribution as discussed in Section 3.3. Since the 

sample is less than 20 and the concentration parameter is greater than 2 as discussed in 

Subsection 4.2.2, frogs data can be treated as a linear sample. Further test based on the 

Kolmogorov-Smirnov test is conducted to check the normality assumption of the data 
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set.  The resulting value of the test statistic is 0.1861 with the p-value 0.5 which suggest 

that the data comes from normal distribution. Next, four different techniques are used to 

detect possible outliers. Their implication and results are discussed here. 

(i) Boxplot  

Figure 4.1 shows the ordinary boxplot for frogs direction data which is obtained 

by S-Plus statistical software package. There is only one line outside the whiskers 

corresponding to observation 316. Thus, observation value 316 can be considered as an 

outlier.  
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Figure 4.1: Boxplot for frogs direction 

 

(ii) The three – sigma rule  

The standard deviation of frog data is 55.24 and its mean is 158. According to the 

three-sigma rule any data point out of the range of sx 3  i.e. (-7.72, 323.72) is 

considered as an outlier. None of the observation values is located outside the 

mentioned interval. Therefore, the frogs data is free from outliers.  
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(iii) Dixon test 

      Dixon test is used to examine whether the minimum or maximum observation is an 

outlier. Since the sample size is 14, by following the rule suggested by Dean & Dixon 

(1951), we use 22r  formula. The test statistic for the minimum value is given by 

12

13

22
xx

xx
r

n 104192

104117
0.148. 

The test statistic for the maximum value is  

    
3

2

22
xx

xx
r

n

nn
 

117316

192316
0.623. 

The associated critical value is 0.501. Therefore, the maximum observation with value 

316 is identified as an outlier. After the exclusion of observation 316, we re-examine the 

rest of data. The sample size has now reduced to 13. Thus, the formula of 22r  is reused. 

The test statistic for the minimum value is 
104184

104117
22r 0.163 and for the maximum 

value is 
117200

184200
22r 0.193. The corresponding critical value is 0.521, which is 

larger than Dixon statistic for either minimum or maximum values. Thus, there is no 

more observations identified as outliers. Observation 316 is the only outlier identified in 

the data. 

 

(iv) Maximum normed residual (Grubbs) test  

The Grubbs statistic for frog data is 2.86. The critical value at 05.0  level of 

significance is 2.36 (See Table 1, Grubbs (1969)). Therefore, the associated observation 

316 is identified as an outlier. 
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4.3.2  Wind direction data 

 

The wind direction data described in Section 3.5 consists of two sets of readings 

of wind direction using two different instruments. By treating the data as linear we may 

then fit the simple linear regression model to see the linear relationship between the two 

readings. We may identify possible outliers by using row deletion approach. S-Plus 

statistical software package is used to fit the data. The scatter plot for wind direction 

data is given in Figure 3.6 and there are four points far from the straight line. The output 

of fitting wind direction data by using simple linear regression model is displayed in 

Figure 4.2. The results show that, both coefficients are significant and the fitted model 

is given by 

ii xy 8996.05398.0ˆ . 

The coefficient of determination is 2R = 0.8515, while the F-statistic is 728.5 

with the p-value equals zero. This suggests that the model fits the data well. The value 

of Durbin – Watson statistic (D-W) can be calculated and equals 1.77. The upper bound 

of D-W statistic at 0.05 significant level is 1.72. Thus, we conclude that the residuals 

are uncorrelated.  

 

 

 

 

 

 

 

 

 

Figure 4.2: Simple linear regression model for wind direction data 

*** Linear Model *** 

Call: lm(formula = Anchored ~ Radar, data = wind,na.action = na.exclude) 

Residuals: 

     Min      1Q   Median     3Q   Max  

 -0.9512 -0.3572 -0.05984 0.1335 5.395 

Coefficients: 

              Value Std. Error t value Pr(>|t|)  

(Intercept)  0.5398  0.1354     3.9880  0.0001  

      Radar  0.8996  0.0333    26.9906  0.0000  

 

Residual standard error: 0.8002 on 127 degrees of freedom 

Multiple R-Squared: 0.8515  

F-statistic: 728.5 on 1 and 127 degrees of freedom, the p-value is 0  

 

Analysis of Variance Table 

 

Response: Anchored 

 

Terms added sequentially (first to last) 

           Df   Sum of Sq   Mean Sq   F Value   Pr(F)  

        R   1   466.4941   466.4941  728.494     0 

Residuals  127  81.3250   0.6404               



 53 

Figure 4.3 gives the residual plot of the fitted model. It can be seen that most of 

residual points are distributed around zero. There are four points with numbers 38, 100, 

109 and 111 located far from the other points with residual values 2.69, 5.14, 5.4 and 

1.71, respectively. It is obvious that the values of observations with numbers 100 and 

109 are closer to 2  rather than 0. Thus, if these residuals are treated as circular 

residuals, then observation with numbers 100 and 109 are consistent with the rest of 

observations.  

 

It is expected that, observation with numbers 100 and 109 will be identified as 

outliers by using linear techniques. Figure 4.4 illustrates the Q-Q plot of the residuals. 

Most of the points are close to the straight line except for four points with numbers 38, 

100, 109 and 111.  Next, we explore the wind direction data further using different 

methods via row deletion approach. 

 

(i) The hat matrix, iih   

The plot of iih  against the index of observation is displayed in Figure 4.5. The 

cut-off points is )2( np = )1292( = 0.031. None of the values exceeds the cut off points. 

Thus, there is no leverage points suggested. 

 

(ii) Cook statistic, )( iD   

Figure 4.6 displays Cook statistic, )( iD  against the index of observation. 

Observations number 100 and 109 have very high values, which are very influential on 

the estimate of . There are some other observations that have shorter spikes.  
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Figure 4.3: Ordinary residuals plot of wind 

data 
Figure 4.4: Q-Q plot for the residuals of  

wind data 
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Figure 4.5: Hat matrix, iih  of wind data Figure 4.6: Cook statistic, )( iD  of wind 

data 
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Figure 4.7: )( iDFFIT  statistic of wind 

data 

Figure 4.8: )( iRESRATIO  statistic of   

wind data 
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Figure 4.9: |1| )( iCOVRATIO  statistic 

of wind data 

Figure 4.10: )( iFVRATIO  statistic of wind 

data 
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(iii) DFFIT statistic  

A display of DFFIT statistic against the index of observations is given in Figure 

4.7. Three observations with numbers 38, 100 and 109 exceed the cut-off point 

249.012922  given by the dotted line. Thus, they are candidates to be influential 

observations. 

 

(iv) RESRATIO statistic  

Figure 4.8 displays the plot of RESRATIO statistic against the index of 

observation. Only two observations with numbers 100 and 109 are larger than 

127,1,05.0F 3.92 given by the dotted line.  

 

(v) COVRATIO statistic  

Figure 4.9 displays the COVRATIO statistic against the index number. Statistics 

values corresponding to observations number 38, 100 and 109 exceed the cut–off point 

of )3( np )1296( 0.0465. 

 

(vi) FVARATIO statistic  

There are four different points which are relatively large compared to the rest. 

Figure 4.10 displays the FAVRATIO statistic against the index of observation.  

 

4.4  Summary 

 

Based on the simulation study in Section 4.3, it is found that any sample 

generated from von Mises distribution with concentration parameter 4  can be 
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approximated by normal distribution. Further, for small sample size ( 20n ) samples 

can be approximated by normal if the concentration parameter is 2 . 

 

In the frogs data, three tests have identified observation 316 as an outlier, while 

the other test failed to do so. Note that, the use of linear discordancy tests for circular 

data highly depends on the mean direction of the circular samples. If the mean direction 

is close to the boundary of the circular variable (i.e. 0 or equivalently 2  radians), then 

most of the linear discordancy tests will perform poorly and are sometimes completely 

wrong. Consider the following simulated sample from von Mises distribution with mean 

0 and concentration parameter 5.6  given as follows:  

 .353,351,351,346,345,339,338,324,43,36,34,21,18,13,6     (4.2) 

The IQR for (4.2) is 96.317 . Based on the ordinary boxplot criterion it is impossible to 

identify any of the points as an outlier. Similar conclusion can be drawn for other tests, 

where the standard deviation is 08.165  and the mean is 17.192 . None of the values is 

located outside the interval (  417.687,06.303 ). These shortcomings motivate us to 

develop alternative tests of discordancy for circular samples. 

 

On the other hand, in the wind direction data the tests have wrongly identified 

two of the points as outliers and influential observations although they are consistent 

with the rest of the observations. Thus, there is a strong need to study alternative 

procedures to detect outlier in circular regression data.  

 

In the following chapters, we propose alternative numerical and graphical tests 

to detect possible outliers in univariate and bivariate circular data. 
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CHAPTER FIVE 

ALTERNATIVE TESTS OF DISCORDANCY  

IN CIRCULAR DATA 

 

5.1  Introduction 

 

Circular data are subjected to one or more outlying observations. Discordancy 

tests in circular samples are different from those used in linear case, due to the bounded 

closed space of circular variables. Section 2.3 discusses these differences and reviews 

the available numerical and graphical tests to identify outliers in circular samples. 

 

The existence of any outliers in circular sample affects its summary statistics. 

Jammalamadaka and SenGupta (2001) defined circular distance between any two points 

as the smaller of two arc lengths between the points along circumference. Hence, the 

circular distance between the mean direction   and each observation i  is defined as: 

.))(2,min( iiiid  

Collett (1980) suggested that an observation with the maximum value of id  will be a 

candidate of being an outlier. 

 

The resultant length for circular data is given by 22 CSR . Omitting any 

observation i  from a circular sample may increase the resultant length. It can be 

shown that 

)cos(21sincos 2222

)( iiii RRSCR , 
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where 2

)( iR  is the sample resultant length by omitting the ith observation i . Therefore, 

as an observation gets further away from the mean direction, the value of  )( i  

increases, and the value of )cos( i  decreases from 1 to -1. Similarly, the value of 

2

)( iR  increases from 2)1(R  to 2)1(R . 

 

Collett (1980) mentioned that the identification of outlier in circular data is 

highly dependent on the concentration parameter , whereby, it is easier to identify an 

outlier in high concentrated circular samples than those with smaller concentration.  

 

This chapter introduces three numerical tests for detection of outliers in circular 

samples. The first two are based on the circular distances and the chords’ length 

between circular observations respectively. The next section is on the approximate 

distribution of the proposed statistics. 

 

5.2  Alternative tests of discordancy in circular data 

 

In this section, we propose two alternative methods of identifying outliers in 

circular data. The idea is based on the fact that circular data are distributed on the 

circumference of a circle.  Thus, it is appropriate to use the properties of the circle. The 

first statistic is developed based on the summation of circular distances between circular 

observations while the second method is formulated based on the summation of the 

chords’ length between the circular observations. 
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5.2.1   A statistic 

 

Suppose n,...,1  are (i.i.d) circular sample located on the circumference of a 

unit circle. Rao (1969) defined the circular distance between i  and j  as 

                                  )cos(1 jiijd ,                    nji ,...,1,  (5.1) 

where ijd  is a monotone increasing function of )( ji  and ]2,0[ijd . The 

summation of all circular distances of the point of interest j  to all other points is given 

by 

n

i
jij niD

1

.,...,1)),cos(1(  

If the observation j  is an outlier (i.e. it lies far from the rest of the observations), then 

the value of jD  will increase. Thus, the average circular distance given by 
1n

D j
 can be 

used to identify possible outliers in the circular sample. The proposed statistic is given 

by 

 
,,...,1,

)1(2
max nj

n

D
A

j

j
 

 

(5.2) 

where ]1,0[A  is a linear measure. The average circular distance is divided by 2 in 

order to standardize the values of statistic A. The proposed statistic is based on the 

relative decrease in the summation of circular distances by omitting the point of interest 

j . 

 

An alternative definition of circular distance in terms of angles is given in (2.9). 

This alternative definition was used by Jammalamadaka & SenGupta (2001, p.218) for 

initial identification of outliers. Thus, alternative statistics of discordancy in circular 
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samples may be defined based on this statistic. The summation of all circular distances 

from the observation j  to all other observations is given by 

,,...,1,||)||(
1

* njD
n

i
jij

 

and a reasonable statistic can be simply given by 

,,...,1,
)1(

max

*

* nj
n

D
A

j

j
 

where ],0[*A . Statistic *A  is expected to have similar performance as statistic A. 

 

In the following subsection an alternative statistic is proposed based on the 

summation of chord lengths passing through each observation in the circular sample. 

 

5.2.2  Chord statistic 

 

Here, the interest is to develop an alternative test of discordancy in circular data 

based on the geometrical properties of the chord of a circle. A chord is a segment that 

connects two distinct points on a circle circumference. The length of a chord between 

two points i  and j  can be calculated according to the formula  

r
rcrd

ij

ij
2

sin2)( , 

where r is the radius length and ij  is the smallest angle between i  and j  which can 

be calculated using equation (2.9) such that 

||||)( jijiij d  , ],0[ij . 

In circular data, a unit circle (i.e. 1r ) is used to display the observations. Suppose 

there are n points n,...,1  located on the circumference of a unit circle. Let jB  be the 

summation of all chords lengths pass through observation j  and given by                       
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 n

i

ij
n

i
ijj crdB

11 2
sin2)( ,   ni ,...,1 . 

 

(5.3) 

For example, suppose n = 4 and let 1j . Then 
1B  is the sum of all chord lengths 

starting from 1  to the points 32 , and 
4
, as illustrated in Figure 5.1. 

 

 

 

 

 

 

 

Figure 5.1: Illustration of chord lengths 

 

 Note that, )1(2}max{ nB j  for nj ,...,1 . As ij  increases from 0 to , 

2
sin

ij
 increases from 0 to 1. When ij , 

n

i

ij
n

1

1
2

sin , for ni ,...,1 , while 

n

i

ij

1

0
2

sin  for ni ,...,1 , when 0ij . Therefore, the maximum value of jB  

suggests that j  is a candidate of outlier. The proposed chord statistic is given by 

 

)1(2
max

n

B
Chord

j

j
,             nj ,...,1 . 

 

(5.4) 

                                                                                  

We will consider A and chord statistics for further discussion in the following 

sections. The discussion above can be extended to the case when ),(~ VMj , 

nj ,...,1 . The next subsection describes and discusses the percentage points of the 

alternative statistics. 

2  

1
 

3  

4  
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5.2.3 Percentage points of A and chord statistics 

 

A simulation study is designed to find the percentage points of the null 

distribution of no outliers in circular data set for A and chord statistics. We consider 

sixteen values of concentration parameter in the range of 0.2 to 20 and different sample 

sizes ranging from 5 to 150. For each combination of sample size n and concentration 

parameter , we generate 5000 random samples of size n from a von Mises ),0(VM . 

The A and chord statistics in each generated random sample are calculated based on 

equations (5.2) and (5.4). We wish to estimate the percentage points of A and chord 

statistics at the 10, 5 and 1 percentages when no outlier is presented in the sample. 

 

The simulation results are tabulated in Tables 5.1 and 5.2.  For each sample size 

n and concentration parameter , 10, 5 and 1 percentages are given in the first, second 

and third rows, respectively. The following results are observed: 

(i) In both statistics, it can be seen that the percentages have a peak value at around 1   

for samples with small sizes ( 10n ). For ( 3010 n ), the respective peak occurs 

when  is around 2 , while for larger sample size ( 40n ) the peak  is at 3 . 

The pattern can be seen clearly through visual plot. For example, Figure 5.2 plots 

the 5 percentage points for n =20, where the peak is clearly at =2.  

(ii) For small values of concentration parameter , the percentage points are a 

decreasing function of the sample size n, while for larger , the percentage point 

are increasing as illustrated in Figures 5.3.  

(iii) In general, the percentage points of A statistic are smaller than the percentage points 

of chord statistic.  
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Table 5.1: The 10, 5 and 1 percentage points of the null distribution of A statistic 

                  

n Perc. 0.2 0.5 1 2 3 4 5 6 7 8 9 10 12 15 17 20 

 10% 0.86 0.86 0.87 0.79 0.58 0.45 0.34 0.29 0.25 0.22 0.20 0.18 0.15 0.12 0.10 0.08 

5 5% 0.90 0.90 0.90 0.86 0.68 0.53 0.42 0.34 0.30 0.27 0.24 0.22 0.18 0.15 0.13 0.11 

 1% 0.95 0.95 0.95 0.94 0.91 0.75 0.59 0.47 0.45 0.37 0.34 0.30 0.25 0.20 0.18 0.17 

 
                 

 10% 0.83 0.84 0.84 0.80 0.59 0.44 0.36 0.31 0.25 0.22 0.20 0.19 0.15 0.12 0.11 0.07 

6 5% 0.86 0.87 0.88 0.86 0.69 0.54 0.43 0.36 0.30 0.28 0.25 0.23 0.18 0.15 0.13 0.10 

 1% 0.92 0.93 0.94 0.94 0.89 0.72 0.59 0.50 0.44 0.36 0.33 0.31 0.23 0.20 0.18 0.16 

 
                 

 10% 0.82 0.83 0.84 0.80 0.60 0.45 0.36 0.31 0.26 0.23 0.21 0.18 0.16 0.12 0.11 0.07 

7 5% 0.85 0.86 0.88 0.87 0.71 0.55 0.42 0.37 0.31 0.27 0.25 0.22 0.20 0.14 0.13 0.10 

 1% 0.90 0.92 0.94 0.93 0.87 0.72 0.61 0.50 0.41 0.39 0.34 0.29 0.27 0.19 0.19 0.17 

 
                 

 10% 0.79 0.82 0.83 0.81 0.64 0.48 0.37 0.32 0.28 0.24 0.20 0.20 0.16 0.13 0.11 0.08 

8 5% 0.82 0.85 0.87 0.87 0.75 0.58 0.45 0.37 0.33 0.28 0.25 0.23 0.20 0.15 0.13 0.10 

 1% 0.88 0.90 0.93 0.94 0.89 0.79 0.61 0.53 0.43 0.38 0.32 0.32 0.27 0.20 0.17 0.15 

 
                 

 10% 0.79 0.80 0.83 0.82 0.64 0.49 0.39 0.33 0.27 0.24 0.21 0.20 0.16 0.13 0.12 0.10 

9 5% 0.82 0.83 0.87 0.87 0.76 0.57 0.46 0.39 0.33 0.29 0.25 0.24 0.20 0.16 0.13 0.11 

 1% 0.87 0.89 0.92 0.92 0.90 0.77 0.57 0.52 0.43 0.39 0.34 0.32 0.27 0.21 0.19 0.16 

 
                 

 10% 0.77 0.79 0.83 0.82 0.66 0.50 0.39 0.33 0.28 0.24 0.22 0.20 0.16 0.13 0.12 0.10 

10 5% 0.80 0.82 0.86 0.87 0.76 0.59 0.46 0.38 0.33 0.29 0.26 0.24 0.19 0.16 0.14 0.12 

 1% 0.85 0.88 0.92 0.92 0.91 0.79 0.61 0.51 0.42 0.41 0.36 0.32 0.26 0.22 0.19 0.16 

 
                 

 10% 0.75 0.78 0.82 0.83 0.67 0.50 0.39 0.35 0.30 0.26 0.23 0.20 0.17 0.14 0.12 0.10 

12 5% 0.78 0.81 0.85 0.87 0.77 0.58 0.46 0.41 0.34 0.30 0.26 0.24 0.20 0.16 0.13 0.11 

 1% 0.82 0.86 0.89 0.92 0.90 0.76 0.61 0.52 0.44 0.40 0.38 0.32 0.28 0.21 0.18 0.15 

 
                 

 10% 0.74 0.77 0.81 0.84 0.71 0.53 0.42 0.35 0.30 0.26 0.24 0.21 0.17 0.14 0.13 0.11 

14 5% 0.76 0.79 0.84 0.87 0.79 0.62 0.48 0.41 0.34 0.29 0.28 0.24 0.20 0.16 0.15 0.12 

 1% 0.81 0.84 0.89 0.91 0.90 0.80 0.66 0.53 0.46 0.39 0.36 0.32 0.27 0.22 0.20 0.16 

 
                 

 10% 0.73 0.76 0.81 0.83 0.73 0.53 0.42 0.36 0.31 0.27 0.24 0.21 0.18 0.14 0.13 0.11 

16 5% 0.75 0.78 0.84 0.87 0.81 0.61 0.49 0.41 0.36 0.31 0.28 0.25 0.21 0.17 0.15 0.12 

 1% 0.80 0.82 0.88 0.91 0.90 0.77 0.65 0.55 0.47 0.43 0.38 0.33 0.28 0.21 0.21 0.17 

 
                 

 10% 0.71 0.75 0.81 0.84 0.73 0.55 0.44 0.36 0.32 0.27 0.25 0.21 0.19 0.14 0.13 0.11 

18 5% 0.73 0.78 0.83 0.87 0.83 0.64 0.51 0.41 0.35 0.31 0.28 0.25 0.21 0.17 0.15 0.12 

 1% 0.77 0.81 0.87 0.91 0.91 0.81 0.63 0.54 0.46 0.42 0.35 0.31 0.28 0.23 0.22 0.18 

 
                 

 10% 0.70 0.74 0.80 0.84 0.75 0.56 0.45 0.38 0.32 0.28 0.25 0.22 0.19 0.15 0.13 0.11 

20 5% 0.73 0.76 0.82 0.87 0.82 0.68 0.51 0.44 0.37 0.31 0.28 0.25 0.22 0.17 0.15 0.12 

 1% 0.77 0.81 0.86 0.90 0.92 0.86 0.73 0.53 0.48 0.41 0.38 0.32 0.30 0.20 0.20 0.17 

 
                 

 10% 0.69 0.73 0.80 0.85 0.75 0.58 0.45 0.37 0.33 0.29 0.25 0.23 0.19 0.16 0.14 0.12 

25 5% 0.71 0.76 0.82 0.88 0.83 0.69 0.54 0.44 0.37 0.33 0.29 0.27 0.22 0.17 0.16 0.13 

 1% 0.75 0.79 0.85 0.90 0.92 0.85 0.66 0.54 0.53 0.43 0.35 0.32 0.28 0.24 0.20 0.17 

 
                 

 10% 0.67 0.72 0.80 0.86 0.77 0.60 0.49 0.38 0.34 0.29 0.26 0.23 0.20 0.16 0.14 0.12 

30 5% 0.69 0.74 0.82 0.88 0.85 0.68 0.56 0.43 0.39 0.34 0.30 0.26 0.23 0.18 0.16 0.13 

 1% 0.72 0.78 0.84 0.91 0.91 0.88 0.69 0.55 0.49 0.42 0.39 0.33 0.32 0.24 0.20 0.17 
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Table 5.1, continued. 
                  

n Perc. 0.2 0.5 1 2 3 4 5 6 7 8 9 10 12 15 17 20 

 10% 0.65 0.71 0.79 0.86 0.84 0.64 0.51 0.43 0.36 0.31 0.28 0.25 0.21 0.17 0.15 0.12 

40 5% 0.67 0.73 0.80 0.87 0.89 0.72 0.58 0.48 0.42 0.36 0.32 0.28 0.24 0.19 0.16 0.13 

 1% 0.70 0.76 0.83 0.90 0.92 0.91 0.77 0.59 0.55 0.46 0.39 0.35 0.30 0.24 0.21 0.17 

 
                 

 10% 0.64 0.70 0.78 0.86 0.86 0.65 0.51 0.43 0.37 0.32 0.29 0.25 0.22 0.18 0.16 0.13 

50 5% 0.65 0.71 0.80 0.87 0.89 0.76 0.59 0.49 0.43 0.35 0.32 0.28 0.25 0.20 0.18 0.14 

 1% 0.69 0.74 0.82 0.89 0.92 0.91 0.82 0.61 0.53 0.42 0.41 0.36 0.30 0.24 0.22 0.18 

 
                 

 10% 0.63 0.69 0.78 0.86 0.86 0.69 0.54 0.45 0.40 0.34 0.30 0.27 0.22 0.18 0.16 0.13 

60 5% 0.64 0.70 0.79 0.87 0.89 0.77 0.61 0.50 0.44 0.38 0.34 0.30 0.24 0.21 0.17 0.14 

 1% 0.67 0.72 0.81 0.89 0.92 0.88 0.78 0.62 0.55 0.46 0.41 0.38 0.30 0.26 0.22 0.18 

 
                 

 10% 0.62 0.68 0.77 0.86 0.86 0.69 0.56 0.46 0.39 0.34 0.30 0.27 0.23 0.19 0.17 0.14 

70 5% 0.64 0.70 0.79 0.87 0.89 0.76 0.64 0.51 0.44 0.40 0.34 0.31 0.26 0.20 0.18 0.15 

 1% 0.66 0.71 0.81 0.89 0.92 0.91 0.79 0.66 0.54 0.50 0.44 0.37 0.32 0.25 0.23 0.18 

 
                 

 10% 0.62 0.68 0.78 0.86 0.88 0.73 0.56 0.47 0.40 0.34 0.32 0.28 0.23 0.19 0.17 0.14 

80 5% 0.63 0.70 0.79 0.88 0.90 0.80 0.63 0.52 0.44 0.38 0.35 0.31 0.26 0.21 0.19 0.16 

 1% 0.66 0.72 0.80 0.89 0.92 0.92 0.78 0.67 0.57 0.49 0.43 0.39 0.32 0.25 0.23 0.18 

 
                 

 10% 0.61 0.68 0.77 0.86 0.88 0.75 0.58 0.47 0.41 0.36 0.32 0.29 0.24 0.19 0.17 0.14 

90 5% 0.63 0.69 0.78 0.87 0.90 0.82 0.65 0.53 0.46 0.41 0.35 0.31 0.27 0.22 0.20 0.17 

 1% 0.65 0.72 0.80 0.88 0.92 0.92 0.84 0.69 0.62 0.48 0.43 0.38 0.35 0.28 0.25 0.19 

 
                 

 10% 0.61 0.67 0.76 0.86 0.89 0.74 0.57 0.49 0.41 0.37 0.32 0.30 0.25 0.20 0.17 0.14 

100 5% 0.62 0.69 0.77 0.87 0.90 0.82 0.64 0.55 0.47 0.40 0.35 0.32 0.27 0.22 0.20 0.17 

 1% 0.64 0.70 0.79 0.88 0.92 0.92 0.85 0.66 0.56 0.49 0.46 0.38 0.32 0.26 0.24 0.18 

 
                 

 10% 0.60 0.67 0.77 0.86 0.89 0.78 0.59 0.49 0.42 0.37 0.33 0.30 0.24 0.20 0.17 0.14 

110 5% 0.61 0.68 0.77 0.87 0.90 0.85 0.66 0.55 0.47 0.40 0.37 0.34 0.27 0.22 0.19 0.16 

 1% 0.64 0.70 0.79 0.88 0.92 0.93 0.78 0.69 0.61 0.47 0.43 0.42 0.33 0.29 0.23 0.18 

 
                 

 10% 0.60 0.67 0.76 0.86 0.88 0.78 0.61 0.51 0.43 0.37 0.33 0.31 0.25 0.20 0.18 0.15 

120 5% 0.61 0.68 0.78 0.87 0.90 0.84 0.68 0.57 0.48 0.41 0.38 0.34 0.28 0.22 0.20 0.17 

 1% 0.63 0.70 0.79 0.88 0.92 0.93 0.85 0.73 0.59 0.51 0.47 0.43 0.34 0.26 0.26 0.19 

 
                 

 10% 0.60 0.67 0.76 0.86 0.89 0.78 0.61 0.51 0.42 0.38 0.34 0.30 0.25 0.20 0.18 0.15 

130 5% 0.61 0.68 0.77 0.87 0.90 0.86 0.68 0.57 0.47 0.42 0.37 0.34 0.28 0.22 0.20 0.17 

 1% 0.62 0.70 0.78 0.88 0.92 0.93 0.87 0.70 0.58 0.52 0.46 0.41 0.33 0.26 0.24 0.18 

 
                 

 10% 0.59 0.66 0.76 0.86 0.90 0.81 0.61 0.51 0.43 0.39 0.34 0.31 0.26 0.21 0.19 0.16 

140 5% 0.61 0.67 0.77 0.87 0.91 0.87 0.69 0.58 0.47 0.42 0.37 0.34 0.28 0.22 0.20 0.17 

 1% 0.63 0.69 0.78 0.88 0.92 0.93 0.82 0.74 0.55 0.48 0.48 0.42 0.33 0.27 0.26 0.19 

 
                 

 10% 0.59 0.66 0.76 0.86 0.89 0.77 0.63 0.52 0.44 0.39 0.34 0.32 0.26 0.20 0.19 0.16 

150 5% 0.60 0.67 0.77 0.87 0.90 0.83 0.73 0.59 0.49 0.44 0.38 0.35 0.28 0.22 0.20 0.17 

 1% 0.62 0.69 0.78 0.88 0.92 0.93 0.91 0.75 0.63 0.52 0.45 0.44 0.35 0.27 0.26 0.19 
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Table 5.2: The 10, 5 and 1 percentage points of the null distribution of chord statistic 

                  

n Perc. 0.2 0.5 1 2 3 4 5 6 7 8 9 10 12 15 17 20 

 10% 0.91 0.91 0.91 0.86 0.74 0.63 0.55 0.51 0.48 0.44 0.41 0.40 0.36 0.31 0.30 0.28 

5 5% 0.94 0.94 0.94 0.91 0.81 0.69 0.61 0.56 0.53 0.50 0.46 0.45 0.40 0.36 0.33 0.31 

 1% 0.96 0.96 0.96 0.96 0.94 0.84 0.75 0.69 0.64 0.60 0.56 0.54 0.49 0.44 0.40 0.38 

 
                 

 10% 0.90 0.90 0.90 0.88 0.73 0.64 0.58 0.52 0.48 0.44 0.42 0.40 0.36 0.32 0.30 0.28 

6 5% 0.92 0.92 0.92 0.91 0.82 0.71 0.62 0.58 0.52 0.49 0.46 0.43 0.40 0.36 0.34 0.31 

 1% 0.95 0.96 0.96 0.96 0.92 0.83 0.74 0.68 0.62 0.59 0.55 0.53 0.48 0.43 0.41 0.38 

 
                 

 10% 0.88 0.89 0.90 0.88 0.76 0.64 0.57 0.53 0.48 0.46 0.43 0.41 0.37 0.33 0.30 0.28 

7 5% 0.90 0.91 0.92 0.91 0.83 0.71 0.63 0.58 0.53 0.50 0.47 0.44 0.41 0.37 0.34 0.32 

 1% 0.93 0.95 0.96 0.96 0.92 0.85 0.75 0.68 0.68 0.61 0.56 0.54 0.49 0.43 0.40 0.37 

 
                 

 10% 0.87 0.88 0.89 0.88 0.77 0.66 0.57 0.53 0.49 0.45 0.42 0.40 0.37 0.33 0.31 0.29 

8 5% 0.89 0.89 0.91 0.91 0.85 0.72 0.63 0.58 0.54 0.49 0.47 0.45 0.41 0.37 0.34 0.31 

 1% 0.93 0.94 0.95 0.95 0.94 0.85 0.74 0.70 0.64 0.61 0.55 0.53 0.49 0.42 0.40 0.38 

 
                 

 10% 0.86 0.87 0.89 0.89 0.78 0.66 0.59 0.53 0.50 0.46 0.44 0.41 0.38 0.34 0.32 0.29 

9 5% 0.88 0.89 0.91 0.92 0.84 0.73 0.64 0.59 0.54 0.51 0.47 0.45 0.42 0.37 0.34 0.32 

 1% 0.92 0.92 0.95 0.96 0.95 0.88 0.74 0.69 0.63 0.60 0.57 0.53 0.47 0.44 0.41 0.38 

 
                 

 10% 0.85 0.86 0.89 0.89 0.80 0.69 0.60 0.54 0.51 0.48 0.44 0.42 0.39 0.34 0.33 0.30 

10 5% 0.87 0.88 0.91 0.92 0.86 0.74 0.65 0.60 0.56 0.52 0.49 0.47 0.42 0.38 0.36 0.32 

 1% 0.90 0.92 0.94 0.95 0.94 0.88 0.77 0.69 0.64 0.60 0.58 0.56 0.50 0.44 0.42 0.38 

 
                 

 10% 0.84 0.85 0.88 0.89 0.80 0.69 0.60 0.56 0.50 0.47 0.45 0.43 0.38 0.34 0.32 0.29 

12 5% 0.85 0.87 0.91 0.92 0.86 0.75 0.66 0.60 0.55 0.52 0.48 0.46 0.43 0.37 0.35 0.32 

 1% 0.88 0.91 0.93 0.95 0.94 0.86 0.79 0.69 0.63 0.61 0.58 0.53 0.49 0.44 0.40 0.37 

 
                 

 10% 0.82 0.84 0.88 0.89 0.81 0.69 0.61 0.56 0.52 0.48 0.45 0.43 0.39 0.34 0.32 0.30 

14 5% 0.82 0.86 0.89 0.93 0.87 0.75 0.67 0.60 0.56 0.53 0.48 0.47 0.43 0.38 0.36 0.32 

 1% 0.87 0.89 0.93 0.95 0.94 0.88 0.78 0.70 0.65 0.61 0.58 0.55 0.51 0.44 0.42 0.38 

 
                 

 10% 0.81 0.84 0.87 0.90 0.82 0.69 0.62 0.57 0.52 0.48 0.46 0.44 0.39 0.35 0.33 0.31 

16 5% 0.83 0.85 0.90 0.92 0.89 0.76 0.67 0.61 0.57 0.52 0.49 0.47 0.43 0.38 0.36 0.33 

 1% 0.86 0.89 0.92 0.94 0.94 0.89 0.80 0.71 0.65 0.61 0.58 0.54 0.49 0.44 0.42 0.39 

 
                 

 10% 0.80 0.84 0.88 0.90 0.83 0.70 0.64 0.57 0.53 0.49 0.47 0.43 0.40 0.36 0.34 0.31 

18 5% 0.83 0.85 0.89 0.92 0.89 0.76 0.69 0.69 0.57 0.53 0.51 0.48 0.43 0.38 0.36 0.33 

 1% 0.86 0.88 0.92 0.94 0.94 0.90 0.80 0.72 0.68 0.60 0.58 0.55 0.51 0.44 0.42 0.38 

 
                 

 10% 0.80 0.83 0.87 0.91 0.83 0.72 0.63 0.57 0.53 0.49 0.46 0.44 0.41 0.36 0.34 0.32 

20 5% 0.82 0.84 0.88 0.92 0.89 0.78 0.68 0.62 0.58 0.54 0.51 0.47 0.44 0.39 0.37 0.34 

 1% 0.85 0.87 0.91 0.94 0.94 0.89 0.80 0.72 0.66 0.62 0.60 0.55 0.51 0.45 0.43 0.39 

 
                 

 10% 0.78 0.82 0.86 0.91 0.86 0.74 0.65 0.58 0.54 0.51 0.48 0.45 0.41 0.36 0.34 0.31 

25 5% 0.80 0.83 0.89 0.92 0.91 0.79 0.70 0.64 0.58 0.54 0.51 0.49 0.45 0.40 0.38 0.34 

 1% 0.83 0.86 0.91 0.94 0.95 0.92 0.79 0.73 0.68 0.64 0.59 0.55 0.51 0.46 0.43 0.39 

 
                 

 10% 0.78 0.82 0.86 0.91 0.87 0.74 0.66 0.60 0.56 0.52 0.49 0.46 0.42 0.37 0.35 0.32 

30 5% 0.79 0.83 0.88 0.92 0.91 0.80 0.71 0.64 0.60 0.56 0.52 0.50 0.46 0.40 0.37 0.35 

 1% 0.82 0.85 0.90 0.94 0.94 0.92 0.83 0.73 0.67 0.63 0.60 0.57 0.53 0.46 0.43 0.40 
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Table 5.2, continued. 
                  

n Perc. 0.2 0.5 1 2 3 4 5 6 7 8 9 10 12 15 17 20 

 10% 0.76 0.80 0.86 0.91 0.89 0.77 0.68 0.62 0.56 0.53 0.49 0.47 0.43 0.38 0.36 0.33 

40 5% 0.77 0.81 0.87 0.92 0.92 0.82 0.73 0.67 0.62 0.56 0.53 0.51 0.46 0.41 0.38 0.36 

 1% 0.80 0.84 0.89 0.93 0.94 0.93 0.83 0.76 0.70 0.64 0.61 0.57 0.53 0.46 0.44 0.40 

 
                 

 10% 0.74 0.80 0.86 0.91 0.91 0.79 0.69 0.62 0.58 0.54 0.51 0.48 0.44 0.39 0.37 0.34 

50 5% 0.76 0.81 0.87 0.92 0.93 0.86 0.73 0.66 0.62 0.58 0.54 0.51 0.47 0.42 0.40 0.36 

 1% 0.79 0.83 0.88 0.93 0.95 0.94 0.87 0.76 0.69 0.64 0.62 0.58 0.53 0.47 0.44 0.41 

 
                 

 10% 0.74 0.78 0.85 0.92 0.92 0.80 0.71 0.64 0.59 0.55 0.52 0.49 0.45 0.40 0.39 0.35 

60 5% 0.75 0.80 0.86 0.92 0.93 0.86 0.76 0.68 0.63 0.59 0.55 0.52 0.48 0.43 0.40 0.37 

 1% 0.77 0.82 0.87 0.93 0.95 0.95 0.86 0.77 0.71 0.67 0.62 0.59 0.54 0.49 0.46 0.41 

 
                 

 10% 0.74 0.79 0.86 0.92 0.92 0.83 0.73 0.66 0.61 0.58 0.54 0.50 0.47 0.41 0.39 0.36 

70 5% 0.75 0.80 0.87 0.92 0.94 0.88 0.77 0.70 0.65 0.61 0.57 0.55 0.50 0.45 0.42 0.38 

 1% 0.77 0.81 0.88 0.94 0.95 0.95 0.88 0.80 0.73 0.67 0.64 0.61 0.57 0.50 0.47 0.42 

 
                 

 10% 0.74 0.79 0.85 0.92 0.93 0.85 0.74 0.67 0.61 0.58 0.54 0.51 0.48 0.42 0.38 0.36 

80 5% 0.75 0.80 0.86 0.93 0.94 0.90 0.80 0.72 0.66 0.62 0.57 0.55 0.50 0.45 0.42 0.38 

 1% 0.77 0.81 0.87 0.94 0.95 0.96 0.88 0.79 0.72 0.69 0.65 0.62 0.55 0.50 0.47 0.43 

 
                 

 10% 0.73 0.79 0.86 0.92 0.93 0.85 0.75 0.68 0.62 0.58 0.55 0.52 0.48 0.42 0.39 0.37 

90 5% 0.75 0.80 0.86 0.93 0.94 0.91 0.79 0.72 0.66 0.61 0.58 0.55 0.52 0.44 0.41 0.39 

 1% 0.77 0.82 0.88 0.93 0.96 0.96 0.89 0.82 0.73 0.67 0.65 0.60 0.56 0.50 0.44 0.43 

 
                 

 10% 0.73 0.78 0.85 0.92 0.94 0.86 0.74 0.68 0.62 0.59 0.56 0.53 0.48 0.42 0.40 0.38 

100 5% 0.74 0.79 0.86 0.93 0.95 0.91 0.78 0.73 0.67 0.62 0.60 0.56 0.52 0.44 0.42 0.40 

 1% 0.76 0.81 0.87 0.93 0.96 0.96 0.87 0.81 0.73 0.69 0.68 0.60 0.59 0.49 0.48 0.44 

 
                 

 10% 0.73 0.78 0.85 0.92 0.94 0.87 0.76 0.69 0.62 0.60 0.56 0.52 0.47 0.42 0.40 0.39 

110 5% 0.74 0.79 0.86 0.93 0.95 0.93 0.82 0.73 0.66 0.63 0.60 0.56 0.50 0.45 0.42 0.41 

 1% 0.76 0.81 0.87 0.94 0.96 0.96 0.93 0.83 0.73 0.69 0.67 0.61 0.58 0.50 0.45 0.45 

 
                 

 10% 0.73 0.78 0.85 0.92 0.94 0.86 0.77 0.69 0.65 0.59 0.56 0.53 0.47 0.43 0.41 0.40 

120 5% 0.74 0.79 0.86 0.93 0.95 0.92 0.82 0.73 0.69 0.63 0.59 0.57 0.50 0.45 0.44 0.42 

 1% 0.75 0.80 0.87 0.93 0.96 0.96 0.93 0.83 0.76 0.70 0.65 0.65 0.58 0.51 0.47 0.46 

 
 

                

 10% 0.73 0.78 0.85 0.92 0.94 0.87 0.76 0.69 0.63 0.59 0.56 0.53 0.48 0.43 0.41 0.41 

130 5% 0.73 0.79 0.86 0.93 0.95 0.92 0.80 0.74 0.68 0.63 0.60 0.56 0.51 0.46 0.44 0.43 

 1% 0.75 0.80 0.87 0.94 0.96 0.96 0.91 0.82 0.75 0.71 0.66 0.67 0.57 0.50 0.48 0.47 

 
                 

 10% 0.72 0.78 0.85 0.92 0.95 0.88 0.79 0.71 0.64 0.60 0.57 0.54 0.49 0.44 0.42 0.42 

140 5% 0.73 0.79 0.86 0.93 0.95 0.93 0.83 0.75 0.67 0.64 0.61 0.57 0.52 0.47 0.45 0.44 

 1% 0.75 0.80 0.87 0.94 0.96 0.96 0.92 0.82 0.76 0.72 0.66 0.67 0.58 0.51 0.49 0.48 

 
                 

 10% 0.71 0.78 0.85 0.93 0.95 0.88 0.79 0.70 0.65 0.61 0.57 0.54 0.49 0.44 0.41 0.43 

150 5% 0.72 0.79 0.86 0.93 0.95 0.93 0.84 0.76 0.68 0.65 0.60 0.57 0.52 0.47 0.43 0.45 

 1% 0.74 0.80 0.87 0.93 0.96 0.97 0.95 0.83 0.74 0.70 0.65 0.63 0.58 0.52 0.49 0.49 
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Figure 5.2: The percentage points of A and chord statistics for n = 20, 05.0   
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Figure 5.3: The percentage points for A and chord statistics at = 0.5 and 8, 05.0  
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5.2.4  The performance of A and chord statistics compared to other tests 

 

(i)  Definitions and notations 

Collett (1980) applied selected measures to test the performances of several 

statistics to detect an outlier in circular sample. In this subsection, we use similar 

measures to compare the performance of the A and chord statistics with C, D and M 

statistics which are reviewed in Section 2.3. 

 

David (1970, p.185) and Barnett & Lewis (1984, p.132-135), state that a good 

test should have (i) a high power function, (ii) a high probability of identifying a 

contaminating value as an outlier when it is in fact an extreme value, and (iii) a low 

probability of wrongly identifying a good observation as discordant. In circular statistics 

context the extreme value is defined as a point with the maximum circular deviation. 

 

Let P1=(1- ) be the power function where  is the type-II error, P3 the 

probability that the contaminant point is an extreme point and is identified as discordant, 

and P5 the probability that the contaminant point is identified as a discordant given that 

it is an extreme point. A good test is expected to have (i) high P1, (ii) high P5 and (iii) 

low P1-P3. 

 

(ii) Description of simulation algorithm 

To study the performance of the A and chord statistics, we use 2000 samples 

based on different sizes n = 5, 10, 20 and 50, and concentration parameter  = 2, 5 and 

7.  The samples are generated in such a way that ( 1n ) of the observations come from 

),(VM  and the remaining one observation comes from ,VM , where  is 

the degree of contamination and 10 . When 5n , the contaminated point is 
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placed at the third ordered position in the sample, whereas for the others, the 

contaminated point is set at the seventh ordered position in the sample. The C, D, M, A 

and chord statistics in each random sample are then calculated based on corresponding 

equations in Sections 2.3 and 5.2. 

 

(iii) Discussion 

 Figure 5.4 displays the performance measure P3 against the degree of 

contamination  using the 5 percentage points for the A and chord statistics.  It is 

obvious that both statistics have similar performance for all cases. Figure 5.4(a) shows 

that, for 20n , the performance of both statistics are better when higher value of 

concentration parameter is used. On the other hand, Figure 5.4(b) illustrates that, for 

7 , the performance is lower when larger sample sizes are used.  
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Figure 5.4: Power of performance for A and chord statistics 
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Figure 5.5 gives three selected graphs of the performance measures P1 and P3 against 

 for C, D, M, A and Chord statistics. The following results are observed: 

(i) In case of small sample size ( 5n ) and small concentration parameter  ( 2 ), the 

values of P1 are better for M statistic compared to others for all contamination  

levels, as illustrated in Figure 5.5(a).  However, as n gets larger, A statistic performs 

better followed by chord statistic as shown in Figure 5.5(b).  Similar trend is 

observed for P3 and P5. 

(ii) For larger sample size n = 10, 15, 20 and 50 and larger concentration parameter, 

( 5  and 7), A and chord statistics perform almost similar and slightly better in 

terms of P1, P3 and P5 compared to C and D statistics but they are much better than 

M statistic for 4.0 , as partially shown in Figure 5.5(c). For 4.0  the 

performance for all statistics are similar. 

(iii) The differences between P1 and P3 generally are very close to 0 for all cases. 
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Figure 5.5: Relative performance of discordancy tests 
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Based on the results obtained from this simulation study, we conclude that, in 

general, the A and chord statistics have similar performance but perform better than the 

other tests of discordancy in a circular data set. Similar pattern is observed for the other 

cases and the complete results are available in Appendix (A.2).  

 

5.3  On the approximate distribution of the alternative tests of 

discordancy 

 

M statistic is the only known test of discordancy in circular samples that has an 

asymptotic distribution, under the assumption that the sample comes from von Mises 

distribution with a large concentration parameter . This section discusses on the 

approximate distribution of the alternative tests of discordancy which have been 

proposed in Section 5.2. Further, we propose a procedure to identify outliers in circular 

samples based on the approximate distribution of the circular distance in (5.1). 

 

Result 5.1.  

 Let n,...,1  be (i.i.d) sample from von Mises distribution with mean direction  

and large concentration parameter . Then, for any i  and j jinji ,,...,1,   

.)]cos(1[ 2

1

d

ji  

Proof: 

Suppose },...,{ 1 n  is a random circular sample from von Mises distribution 

with mean  and large concentration parameter , ),(~ VM . For any 

observation i   and large , it has been shown  in (4.1) that  

),(~)( 10Nμθκ
i

. 
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Since i  and j  are independent observations then, 

),(~)( 10Nθθ
2

κ
ji

. 

From the properties of standard normal distribution, we get 

 
.~)(

2
1

2
ji

χθθ
2

κ
 

 

   (5.5) 

For large , the distribution is more concentrated. Thus the circular distance between 

any two points is relatively small. From the second order of Taylor series expansion, 

2
1cos

2

 or cos1
2

2

. Thus, by letting )( ji , we have  

)]cos(1[)(
2

1 2

jiji . 

Multiplying both sides by , then we get 

)]cos(1[)(
2

2

jiji . 

From (5.5), for )cos(1 jiijd , we have  

2
1jiij

χθθ1κdκ ~)]cos([ .    

                                                                                             

Result 5.2.  

 Let n,...,1  be (i.i.d) sample from von Mises distribution with mean direction  

and large concentration parameter . Then,  

,~sin 2

1

2

2
2

ij

ijB   for nji ,...,1, and ji , 

where ij  is the circular distance between i  and j . 

 

Proof: 

From the definition of circular distance in Subsection 5.2.2 and the cosine function 

properties, we have 
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||)||cos()cos( jiij , 

           ||)|cos(| ji , 

         )cos( ji .  (5.6) 

Consider the trigonometric identities 
2

sin21cos 2 . Thus, for circular distance 

ij , we have  

2
sin2)cos(1 2 ij

ij . 

By multiplying both sides by , we get 

2
sin2)]cos(1[ 2 ij

ij . 

From (5.6) and Result 5.1, we have 

.~sin 2

1

2

2
2

ij

ijB  

 

 

Since ijd  and ijB  have the same approximate distribution, we can make use the 

approximate distribution of ijd  given by Result 5.1 to identify outliers in circular 

samples. 

 

Unfortunately, the statistic 
n

i
ijd

1

does not follow Chi-squares distribution with 

(n-1) degree of freedom due to the absence of independency. Alternatively, in order to 

optimize the usefulness of Result 5.1 towards the identification of outliers in circular 

samples, the count of ijd  which exceed the critical values 2

1,
 at  level of significant 

for each nj ,...,1  is considered as an indicator of outlier existence. In other words, 
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with respect to the jth observation, let jP  be the percentage of ijd  that exceeds the 

critical value 2

1,
 for each observation i , nji ,...,1, . Then value of jP  close to 

100% indicates that the jth observation is a candidate to be an outlier. It is obvious that 

for sample of size n, the maximum count of jP  could not exceed (n-1). 

 

Simulation study is carried out to determine the size of }{max j
j

P . Two main 

factors are considered: concentration parameter and sample size. A total of seven 

sample sizes n =10, 30, 50, 70, 100, 150 and 200, together with nine values of 

concentration parameter = 2, 5, 10, 30, 50, 70, 100 and 200 are considered. For each 

combination of sample size n and concentration parameter , we generated 2000 

samples from von Mises distribution ,0VM . The percentage of }{max j
j

P  for each 

generated sample is specified and then ranked in an ascending order to obtain the 

percentiles. 

 

For small concentration parameter , all ijd  values will be less than 2

1,
, since 

]2,0[)cos(1 ji . This suggests that  should be at least 
2

1,
2

1
 where  is the 

level of significance for the observation to be identified as an outlier. Simulation results 

are given in Appendix (A.3) and show that the percentage (cut-off) points are consistent 

for 2 .  

 

Table 5.3 presents the arithmetic mean and the standard deviations as given in 

parenthesis for the percentages for 2 . Results show that the cut-off points highly 

dependent on the sample size n and approach 100% for very large sample size n. 
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Further, the standard deviations is less than 6%, which suggest the consistent behaviour 

of the percentage points for 2 . 

 

Table 5.3: The cut-off points for the percentage of the jP  for 2  

n 10 30 50 70 100 150 200 

90% 40.00 54.67 62.60 66.57 69.70 74.27 76.65 

 (0.00) (1.72) (2.67) (2.45) (4.00) (4.79) (5.43) 

95% 41.00 63.00 70.80 73.71 76.10 80.07 81.95 
 (3.16) (3.31) (3.91) (3.03) (4.15) (4.84) (5.89) 

99% 60.00 79.00 83.40 85.29 87.20 88.80 90.20 

 (0.00) (5.22) (3.53) (3.23) (3.82) (4.58) (4.36) 

 

 

5.4  Summary 

 

This chapter has proposed three alternative numerical tests of discordancy. The 

first is based on the circular distance while the second is based on the chord lengths. 

The other is an approach to detect outliers in circular samples based on the approximate 

distribution of circular distance. The proposed statistics are simple and easy to interpret 

by practitioners. It is found that the first two statistics have equal performance, but 

perform slightly better than the other known tests of discordancy.  
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CHAPTER SIX 

LABELING OUTLIERS VIA CIRCULAR BOXPLOT 

 

6.1  Introduction 

 

Visual display is an easy and informative technique to describe any given data 

set, for example, histogram, pie chart, Q-Q plot and boxplot. Boxplot is a simple and 

flexible graphical tool in exploratory data analysis. It was developed by Tukey (1977) 

and it consists of five-number summaries which are the smallest observation, lower 

quartile 1Q , median, upper quartile 3Q  and largest observation. One of its main 

applications is to identify extreme values and outliers in univariate data sets. 

 

Extensive research has been conducted on the labelling of outliers by using 

boxplot.  To identify outliers in real line data sets, most studies use 1.5 as the value for 

resistant constant, , in the boxplot criterion, IQR , where IQR  is the interquartile 

range. In other words, any observation with value smaller than )5.1( 1 IQRQ  or 

greater than )5.1( 3 IQRQ  are labelled as "outlier". Hoaglin et al. (1986) investigated 

the performance of boxplot for outlier labelling by considering different values of . 

They concluded that 5.1  is the best choice in avoiding masking problems while 

choosing 3  is considered to be extremely conservative. On the other hand, 

Ingelfinger et al. (1983) suggested the use of 2  while Sim et al. (2005) 

demonstrated that the choice of resistant constant 5.1  or 3  is in general 

inappropriate for normal sample and is completely inappropriate for skewed 

distributions. This signifies the importance of choosing the best value of  for different 

data set with different underlying distributions. 
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Fisher (1993) reviewed circular plots which went back to 1858 when Florence 

Nightingale drew a circular plot of the causes of mortality in the British Army during 

the Crimean War. This plot is also known as rose diagram or wind rose diagram. 

Graedel (1977) used boxplot to describe the wind speed in different sectors of the wind 

rose diagram. However, in general, boxplot is not suitable to be used directly on a 

circular data set.  Meanwhile, Anderson (1993) described briefly a version of circular 

boxplot using five summary statistics as found in linear boxplot.  However, the whiskers 

are fixed to map out the central 90% of the data for all cases.  No attempt was made to 

determine the appropriate values of the resistant constants and other properties of the 

circular boxplot.  In our works, we develop a more comprehensive theory of the circular 

boxplot with the main purpose of labelling outliers in the circular data. 

  

Figure 6.1 displays the boxplot of the data given in (2.4). There is an isolated 

observation on the right side of the boxplot. However, the value of this point is actually 

consistent with the other values if it is treated as circular observation. Thus, the 

construction of a new boxplot for circular variables is really indispensable, which must 

be able to taken into account the periodicity of circular variables. 

 

 

 

Figure 6.1: Boxplot of data in (2.4) 

 

The objectives of this chapter are as follows: 

(i) to propose a special boxplot version for circular data sets called circular boxplot,  

(ii)  to label possible outliers with the circular boxplot, and  

(iii) to develop a subroutine in S-Plus environment to display the circular boxplot. 

0 100 200 300
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This chapter is organized as follows. The next section discusses the proposed 

construction of circular boxplot. Simulation and numerical studies are carried out in 

Sections 6.3 and 6.4 to estimate the appropriate values of resistant constant  and to 

investigate the power of performance of the circular boxplot respectively. Practical 

example is given in Section 6.5. 

 

6.2  Summary statistics for circular boxplot 

 

Due to the unusual characteristics of circular variables, many relevant 

descriptive measures and display plots were developed, for example, mean direction, 

variance, circular histogram and stem-and-leaf diagrams. However, there is no known 

design of boxplot for circular variable. 

 

The encountered difficulty in constructing the boxplot for circular variables 

arises from the complexity of determining the median. This is due to the bounded range 

of circular variables and the problem of overlapping which is highly expected to occur 

when the concentration parameter of circular sample is small. 

 

The following subsections discuss the number summaries which are required to 

construct the circular boxplot. 

 

6.2.1  Median direction and quartiles of circular variable 

 

  The definition of the median direction is given in Section 3.2. In the case of 

prior knowledge of the circular distribution, Mardia (1972) defined the median direction 

 as the solution of  
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2

5.0)()( dfdf , 

where )(f is the probability density function of . The first and third quartile 

directions 
1Q  and 3Q  is any solution of  

1

25.0)(
Q

df   and  
3

25.0)(
Q

df  

respectively. In most cases, the circular distribution is unknown. To date, no published 

literature is found on a nonparametric estimator of 1Q  and 3Q  for circular variables. 

However, it seems sensible to estimate 1Q  and 3Q  by classifying the sample 

observations into two groups based on their locations with respect to the sample median 

direction. Subsequently, 1Q  can be considered as the median of the first group and 3Q  

as the median of the second. 

 

If the value of 1Q  is larger than the value of 3Q  we simply interchange their 

labels. For simplicity and to avoid the confusion caused by the localization of 1Q  and 

3Q ,  rotatable property of  circular data by subtracting the estimated mean direction of 

the circular sample from each sample observation is used  to  make sure that the mean is 

in the zero direction. This rotation might be helpful to identify 
1

Q  and 3
Q  in a more 

consistent way. That is, we can assume ],0[)( 1Q  and ]2,[)( 3Q . The 

robustness of mean direction (see Wehrly and Shine (1981)) is a useful property which 

gives a fair assurance that the existence of any possible outlier will not have much effect 

on the estimated mean direction. Figure 6.2.(a) shows the quartiles for simulated 

circular data from von Mises distribution with mean direction 4  and concentration 

parameter 4. The first quartile 331Q , the median direction 50  and the third 

quartile 
693Q . 
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6.2.2  Circular interquartiles range CIQR and fences 

 

Analogues to the linear case, circular interquartiles range CIQR  is required to 

construct the circular boxplot. After the rotation of sample observation, CIQR  can be 

obtained by the following formula:  

132 QQCIQR . 

For highly concentrated data it is possible to have quartiles and mean directions at the 

same point. Thus, the 0CIQR . The upper and lower fences can be identified such as, 

lower fence CIQRQLF 1  and upper fence CIQRQU F 3 , where ν is the 

resistant constant.  Figure 6.2(b) illustrates a particular example of the proposed circular 

boxplot for symmetric simulated circular data. 
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Figure 6.2: Proposed structure of circular boxplot  

 

In the following section, numerical and simulation studies will be carried out in 

order to specify appropriate values of resistant constant . 
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6.3  Estimation of the resistant constant v 

 

In the real line case IQR5.1 criterion is a popular choice for boxplot to identify 

outliers. The interest of investigating the appropriate values of the resistant constant  

was developed since the first construction of boxplot. Hoaglin et al. (1986), Ingelfinger 

et al. (1994) and Sim et al. (2005) discussed the appropriate values of resistant constant 

, which can be used to identify outliers in linear samples. It is not sensible to utilize 

similar resistant constant  of linear boxplot in the case of circular data due to the 

bounded range of the circle. This is because the high possibility of overlapping problem 

between lower and upper fences for large resistant constant  when the concentration 

parameter  is small. 

 

Hoaglin et al. (1986) used three different measures to investigate the behaviour 

of boxplot. In this section we extend their methodology to estimate the appropriate 

values of the resistant constant . The following notations are used. Let ),( nA  denote 

the outside rate per observation in von Mises samples size n. Further, ),( nB  denotes 

the probability of a sample of size n that contains no observation outside the interval 

( FL , FU ), and ),(3 nB  is the probability that the von Mises sample of size n contains 

more than two observations outside the interval ( FL , FU ).  

 

6.3.1  Simulation and numerical studies  

 

In order to investigate the behaviour of circular variables with respect to five 

different summaries which are the median, 1Q , 3Q , FL  and FU , series of simulation 

studies are carried out. Samples are generated from von Mises distribution ),(VM , 
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with different sizes n between 5 and 200. Different values of concentration parameter 

are considered, = 0.5 ,1 (1) 10.  Further, various values of the resistant constant  

1(0.2)3 and 3.5 are utilized in order to obtain 
FL  and 

FU . 

 

A total of 3000 samples with sample size n and concentration parameter  are 

generated from von Mises distribution ),(VM . By using different values of the 

resistant constant , the following statistics which are CIQR, mean, median, 1Q , 3Q , 

FL , FU , ),( nA , ),( nB  and ),(3 nB  are obtained. There are huge amount of results 

and information obtained from this simulation studies. In the following subsection we 

will look into the properties of CIQR, circular distance between mean and median 

direction, overlapping problem and further descriptions of  the three measures ),( nA  , 

),( nB   and ),(3 nB . A part of simulations results are given in Appendix (A.4). 

 

6.3.2  Results and discussion 

 

(i)  Circular interquartiles range CIQR 

CIQR can be estimated from the cumulative distribution function of any 

statistical distribution and it is defined as 2575 xxCIQR , where 25x  and 75x  are the 

solutions of 25.0)(
25

0

dxxf
x

 and 75.0)(
75

0

x

dxxf , respectively. 

 

By comparing the obtained CIQR from simulations with the CIQR based on the 

c.d.f. of the von Mises distribution table Batschelet (1981, p.322-331), close values are 

obtained especially for large sample size 20n . For instance: 

(1) For, 2 , 
14925x  and 

21175x , then  62149211CIQR . 

(2) For, 10 , 
16725x  and 

19375x , then 
 26167193CIQR .  
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These values are close to the results found by simulation, which are 3.61  for 

2  and n=60 and 25  for 10 , n =40,  (see Appendix (A.4)). Thus, the c.d.f. of 

any known distributions can be used to construct the boxplot, while for unknown 

distribution or at a stage of exploring the data, nonparametric methods are used to 

define the median and CIQR. 

 

Fisher (1993, p.54) stated that ” there is no circular distribution available with an 

associated measure of spread, which can rescale to have unit spread”. This lack of 

“standardized” circular distribution especially with von Mises distribution causes 

difficulties as there is no standard von Mises distribution as analogues to the standard 

normal distribution. Consequently, it is rather difficult to find functional relationship for 

CIQR.  An attempt has been made to find it via a simulation study.  
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Figure 6.3: CIQR for different sample size n at various levels of  

 

When the probability density function of von Mises distribution is used, Figure 

6.3 shows that the CIQR is a decreasing function of concentration parameter and the 

plots of CIQR are very close to each other for large sample sizes (n 10). Furthermore, 
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we found that, for large samples (n 10) of von Mises distribution with concentration 

parameter ( 3), there is a functional relationship between CIQR (in radian) and 

concentration parameter . It can be expressed in the following form:  

1)(lnCIQR . 

As shown in Figure 6.4, the CIQR values lie very close to the curve of 1)(ln . 
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Figure 6.4: Functional relation between CIQR and concentration parameter  

  

(ii)  Circular distance between mean and median directions 

  The circular distance is defined as the smallest difference angle between any two 

angles. Figure 6.5 illustrates the behaviour of circular distance between mean and 

median direction for different values of concentration parameter  and different sample 

size n. It shows that the circular distance is a decreasing function of concentration 

parameter  and sample size n. For 50n  the difference when 5.0  is around 3.8 , 

while it is around 5.2  for  3 . These results confirm Wehrly and Shine (1981) 

conclusion about the robustness of the mean direction.  
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 Figure 6.5: Circular distance between mean and median direction versus  

 

(iii)  Overlapping problem of the fences 

Overlapping problem between the upper and lower fences is expected to occur at 

some values of resistant constant  because of the bounded range of circular variables. 

Such problem has caused a messy boxplot structure and could lead to miss-

identification of outliers.  

 

Result 6.1 

For large concentration parameter  and sample size with n 10, the upper 

and lower fences of circular boxplot are subject for overlapping if  

5.0)ln(  

where  is the resistant constant. 

Proof: 

Overlapping problem occurs if CIQRQ*
1 . For symmetric samples 

CIQRQ
2

1*

1  , then overlapping occurs when  

CIQR)5.0( , 
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for large concentration parameter  and large sample size n. However, 

1)(lnCIQR . Thus,  

)ln(

1
)5.0( . 

 Hence, overlapping problem occurs if 5.0)ln( .  

□ 

 

           As an example, for n 10 with 4 , if  is larger than 3.8 then the 

overlapping problem is expected to occur. The case will be more complicated for 

smaller concentration parameter )3( , where the overlapping will occur even for 

small values of resistant constant .  

 

(iv) Description of B(ν,n) measure 

),( nB  denotes the probability of no observation outside the interval ( FF UL , ) 

for von Mises sample of size n and resistant constant . Overlapping problem affects 

the behaviour of ),( nB  measure. Figure 6.6 shows the behaviour of )50,(B . For 

small concentration parameter ( 2 ). It is observed that )50,(B  is non-monotone 

function of resistant constant , while it is an increasing function of  for large 

concentration parameter ( 2 ), where it is not affected much by the increase of . 

 

Simulation results of ),( nB  are used to specify values of resistant constant  

which can be used to construct circular boxplot.  It is more informative to interpret the 

results of simulation studies according to the mode of sample size n with respect to 4. 

Thus, the sample size can be clustered into one of 4 groups according to whether n has 

the form 24,14,4 jjj   or 34 j , where j .  
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Figure 6.6: Behaviour of ),( nB  measure for simulated data 

 

Figure 6.7 shows the values of resistant constant  for sample size  

20025 n  and small concentration parameter 5.0 . At 0.05 significant level, the 

values of resistant constant  vary between 1 and 1.7. Generally, at 0.1, 0.05 and 0.01 

significant level all values of  vary between 1 and 2. Thus, we recommend the use of 

)21(  for circular boxplot criterion when the concentration parameter is small.  

 

Figures 6.8 and 6.9 show the percentile values of ),( nB  measure for large 

concentration parameter =7 and =10, respectively. In both figures at 0.05 

significant level, the values of resistant constant  seem to be stationary for 555 n  

with respect to the remainder number after dividing sample size n by 4. Figures 6.8 and 

6.9 suggest that it is appropriate to take into consideration the values of resistant 

constant to be between 2 and 2.7. Similar behaviour can be observed for 1.0 , but 

with the values of resistant constant  vary within 1.5 and 2.2. The situation is different 

for 01.0 , where the cut points are fixed at 5.3  for ( 255 n ) and decreases to 

3  or less for ( 25n ). 
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Figure 6.7: Percentiles of the resistant constant  for different sample size, at 5.0  
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Figure 6.8: Percentile points for different sample size n, at =7 

 

For further description of ),( nB  measure, Figure 6.10 shows the scatter plot of 

),5.1( nB  versus the sample size n. There is a decreasing linear relationship between the 

sample size n and ),5.1( nB  for 555 n  with respect to each cluster of reminder after 
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dividing sample size n by 4. Note that, the behaviour of ),5.1( nB  measure in Figure 

6.10 is agreed with the discussion on the linear boxplot (see Hoaglin et al. (1986)). 
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Figure 6.9: Percentile points for different sample size n, at =10 
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Figure 6.10: Simulation estimate of ),5.1( nB  
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(v)   Description of B3(v,n) measure 

),(3 nB  is the probability that the von Mises sample of size n contains more 

than two observations outside the interval (
FF UL , ). Table 6.1 tabulate the probability 

of ),(3 nB  for different sample size n and concentration parameter =7.  The 

probability of ),(3 nB  is displayed in Figure 6.11. It is obvious that ),(3 nB  is a 

decreasing function of the resistant constant . For small sample size ( 10n ) the 

probability of ),(3 nB  is almost 0. 

 

The results in Table 6.1 agree with the previous conclusion on the values of 

resistant constant  for large concentration parameter and in order to identify more than 

two outliers, smaller values of resistant constant are recommended. Further, it is 

observed that ),1(3 nB  approaches to asymptotic value 1 for a very large sample size n. 

 

Table 6.1: ),(3 nB measure for different sample size n at 7  

Resistant 

constant v 

Sample size n 

7 25 50 100 200 

1.0 0.0 0.15 0.46 0.81 0.98 

1.2 0.0 0.07 0.22 0.49 0.83 

1.5 0.0 0.02 0.06 0.14 0.37 

1.7 0.0 0.01 0.02 0.05 0.14 

2.0 0.0 0.0 0.01 0.01 0.02 

2.2 0.0 0.0 0.0 0.0 0.0 

2.5 0.0 0.0 0.0 0.0 0.0 

2.7 0.0 0.0 0.0 0.0 0.0 

3.0 0.0 0.0 0.0 0.0 0.0 

3.5 0.0 0.0 0.0 0.0 0.0 

 
 



 91 

1.0 1.5 2.0 2.5 3.0 3.5

0.0

0.2

0.4

0.6

0.8

1.0
n=7

n=25

n=50

n=100

n=200

B
3
(

,n
)

 

Figure 6.11: ),(3 nB  for different sample size n at concentration parameter, 7  

 

(vi)  Description of A(v,n) measure 

),( nA  is the outside rate per observation in von Mises samples of size n. The 

simulation results (see Appendix A.4) show that ),( nA  measure is a decreasing 

function of  for large concentration parameter 3 . Due to overlapping problem 

),( nA  behaves similar to ),(1 nB with respect to the values of resistant constant . 

 

It is of interest to investigate the relationship between the function ),( nA  and 

the sample size n. Figure 6.12 shows a nonlinear relationship between ),5.1( nA  and 

)2005( n . The function approaches to asymptotic value 0 for very large sample 

size. Figure 6.13 shows there is a linear relationship between simulation estimate of 

),5.1( 1nA  measure and  1n  for each reminder cluster.   
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Figure 6.12: Simulation estimate of ),5.1( nA  measure 
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Figure 6.13: Simulation estimate of ),5.1( 1nA  measure 
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6.4  Power of performance 

 

The performance of any discordancy test can be examined by using the same 

approach described in Section 4.2. In order to study the performance of circular boxplot, 

3000 samples based on different sample size n =5(5)20, 60 and 100, with concentration 

parameters =1, 5, 7 and 10 are considered. Samples are generated in such a way that 

)1(n  observations come from ),(VM  and the other one observation generated 

from ),(VM , where  is the degree of contamination and 10 . 

 

Based on simulation studies in Section 6.3, for small concentration parameter 

(i.e. =1), small values of  are examined ( 21 v ), while larger values of resistant 

value ,  ( 7.22 v ) are used when  is large, (i.e. =5, 7 and 10). 

 

Figure 6.14(a) illustrates the plot of P1 for 60n  and 2  for different 

concentration levels. It is shown that the power function P1 is an increasing function of 

concentration parameter . For small concentration parameter, the power of circular 

boxplot is weaker compared to the higher concentration parameter . This is due to the 

bounded range of the circle, and also, when the concentration parameter is small the 

observations tend to distribute uniformly. Hence, it becomes difficult to divide the 

circular sample into quartiles without covering all the circumferences of the circle 

which result in no outlier being detected. Figure 6.14(b) shows the plot of P1 for 10  

and 2  for different sample sizes, where the power of performance is also an 

increasing function of the sample size n. For small sample size 5n , the power of 

circular boxplot does not overtake 50% at any level of concentration or any 

contamination level . The power of circular boxplot enhances gradually as the sample 

size n increases. Further, Figure 6.14 shows that the power of performance highly 
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depends on the level of contamination . The complete results of the power of 

performance for circular boxplot are given in Appendix (A.5). 
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Figure 6.14: Power of performance of circular boxplot 

 

6.5  Practical Example  

 

In this section we consider frog direction data which was described in Section 

3.3. We recall the summary statistics for frog data, The mean direction is 104.146 , 

the resultant length is 1527.10R , the mean resultant length is 725.0R   and the 

maximum likelihood estimate of concentration parameter 18.2ˆ . Four tests which 

were discussed in previous sections will be applied to frog data to identify any possible 

outliers.  

 

 

 

n=60, v=2 
 

(a) 

κ =10, v=2 
 

(b) 
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6.5.1  Identifying outliers by using A and Chord statistics 

 

Table 6.2 summarizes the results of applying the C, D and M statistics which are 

the same as that found in Collett (1980). It can be seen that only D and M statistics have 

identified the observation with value 316  as an outlier.  For C statistic, it is developed 

by considering the effect of outlier on the resultant length.  Note that 316  is an extreme 

point since it has the largest circular deviation of magnitude 61.160 . The deletion of 

point 316  from original data changes the resultant length from 15.10R  to 

 R 14.11)14( . Whereas, the deletion of any other single observation decreases the 

mean resultant length to around 9.2. The observed changes on the resultant length is 

however not large enough to be detected by the C statistic. 

 

In the case of A statistic, the summation of all circular distances is 

92.92
14

1j
jD . By omitting point 316  from the data, the summation of all circular 

distances reduces to 68.92 while omitting any other single point reduces the summation 

of all circular distances to around 89. The greatest change is when 316  is omitted. 

Using equation (5.2), statistic 23.9A . Comparing this value with the critical value as 

given in Table 5.1 (approximately 0.87), we reject the null hypothesis. It means that A 

statistic identifies observation  316  as an outlier. On the other hand, for chord statistic, 

the summation of all chord lengths is 18.149
14

1j
jB . By omitting point 316  from the 

data, the summation of all chord lengths reduces to 124.23 while omitting any other 

single point reduces the summation of all chords lengths to around 140.  The change is 

the greatest when 316  is omitted. Using equation (5.4) the chord statistic equals 

Chord 96.0 . By comparing the value with the critical value as given in Table 5.2 
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(approximately equals 0.93), thus, the null hypothesis is rejected and observation 316  

is identified as an outlier. 

 

Table 6.2: Results of applying different discordancy tests on the frog data 

Statistic Statistics’ value Observation Critical value,95% Conclusion 

C 0.182 316  0.2 Not outlier 

D 0.78 316  0.74 Outlier 

M 0.52 316  0.50 Outlier 

Chord 0.96 316  0.93 Outlier 

A 0.92 316  0.83 Outlier 

 

6.5.2  Identifying outliers by using modified chord statistic 

 

Table 6.3 gives the values of jP  for 14,...,1j . Observation 316  with 

corresponding number 14 has the maximum value of  )( jdN  with a percentage  of 

64.28% from its sample size, which can be considered as an outlier.  

 

Table 6.3: The values of jP  for frog data set 

Observation 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

               

jP  7 7 7 7 7 7 7 7 7 0 0 0 0 64 

 

6.5.3  Identifying outliers by using circular boxplot 

 

The circular boxplot is used to detect possible outliers in the frog data. The 

estimated concentration parameter is 18.2ˆ , the estimated median direction is 

145 , first quartile is 1211Q  the third quartile is 
1923Q , 71CIQR  and the 

circular distance between the mean and median direction is 97.0  which confirms the 

robustness of the mean direction. Since 18.2ˆ , small values of resistant constant  

are used. Table 6.4 shows the observations detected as outliers in frog direction data by 
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using different values of . Observation 316  is identified as an outlier when 1, 

1.2, 1.5 and 1.7, while for larger values of  none of the observations was identified as 

an outlier. Figure 6.15 shows the boxplot of frog direction data for 1.5, where the 

plot is obtained by using special subroutine developed in S-Plus environment. 

 

Table 6.4: Summary of the outliers detected using several values of  for frog data 

 
FL  FU  Number of outliers Outliers 

1.0 0.50  0.263  1 
316  

1.2 8.35  2.277  1 
316  

1.5 5.14  5.289  1 
316  

1.7 3.0  7.312  1 
316  

2.0 0.334  0.339  0 - 

2.2 3.355  7.317  0 - 

2.5 5.303  5.9  0 - 

2.7 3.289  7.23  0 - 

3.0 0.45  0.268  0 - 

3.5 5.80  5.232  0 - 

 

.

 

Figure 6.15: Circular boxplot of frogs direction, for =1.5 

 

6.5.4  Discussion 

 

A, chord, modified chord statistics and circular boxplot are able to identify 

observation value 316  as an outlier. These results are in agreement with the findings in 
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Collett (1980), where the D and M statistics succeeded in identifying observation 316  

as an outlier, while C statistic failed to do so. Thus, we can conclude that the new 

proposed statistics provide alternative tests to identify outliers in circular sample. 

 

6.6 Summary 

 

The boxplot is a popular tool for explanatory data analysis. It was developed 

gradually over the past 40 years. There is no known structure of boxplot for circular 

variables. However, specifying the median direction, first and third quartiles solve part 

of the problem of constructing circular boxplot, while the determination of the upper 

and lower fences are more challenging because of the bounded range of the circle.  

 

It is shown that the level of concentration parameter strongly affects the 

structure of circular boxplot. There are some interesting points being highlighted based 

on the simulation studies, such as the functional relationship between the CIQR and the 

large concentration parameter , which may be given by 1)(lnCIQR  and the 

overlapping problem which may occur for 5.0)ln( . 

 

It is recommended to use different values of  to identify possible outlier in 

circular variables. For samples with large concentration parameter 3 , it is 

appropriate to use different values of , which are 7.22 , while for samples with 

small concentration parameter 3 , the values of resistant rules can be chosen 

between 1 and 2. These values are comparable to the linear case in which  equals to 

1.5. 
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CHAPTER SEVEN 

SIMPLE CIRCULAR REGRESSION MODEL AND  

ITS DIAGNOSTIC CHECKING 

 

7.1  Introduction 

 

In some cases the relationship between two circular variables can be fitted by     

a straight line. This chapter discusses the development of simple circular regression 

model, differences with other circular models, parameters estimates, its asymptotic 

properties and its applications. For diagnostic checking, we propose and examine a new 

practical definition of circular residuals based on circular distance. We apply different 

numerical tests and graphical tools to identify outliers in circular regression based on 

this circular residual. 

 

7.2  Simple circular regression model  

 

Gould (1969) proposed a regression model to predict the mean direction of 

circular response variable  from a vector of linear covariates k1 x,,xX ... , where 

 follows von Mises distribution with mean direction  and concentration parameter 

. The model is given by  

 
                                    

k

j
jj x

1
0 ,                 kj ,...,1 , 

 

(7.1) 

where 0 and ’s are unknown parameters and jx  is a linear covariate. Mardia (1972) 

extended Gould’s model (1969) by assuming i , ni ,...,1 , to  be independently 
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distributed from von Mises distribution with mean direction i  and unknown 

concentration parameter . The model is given by 

                                           ii t0 ,                       ni ,...,1 , (7.2) 

where it  are known numbers, while 0 ,  and  are unknown parameters. It is 

important to mention that the explanatory variables in model (7.2) are linear variables.  

 

Hussin et al. (2004) extended model (7.2) to the case when both response and 

explanatory variables are circular. For any circular observations ),(),...,,( 11 nn yxyx  of 

circular variables X  and Y  with a linear relationship between them, the proposed 

model is given by 

                      2modxy ,                   (7.3) 

where ε  is circular random error having a von Mises distribution with circular mean  0 

and concentration parameter .  

 

A restriction is imposed on the values of the parameter to ensure the practicality 

of the model. Consider the following four points (in radian): (0.10,0.90), (2.00,1.99), 

(4.30,4.63) and (6.25,6.24). The points are fairly close to the straight lines xy  and 

)2(mod4xy . By maximizing the log likelihood function of model (7.3), there is a 

clear maximum at 1  in the interval 5.15.0 . Other local maximums are 

observed at 4  and 7.129 . However, there is no practical interpretation for the 

last two values. Thus, the value close to one would be a logical and simpler choice. This 

model is considered in this study due to its simpler form compared to the other circular 

models. 
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7.2.1  Differences of other circular models and practical applications 

 

Simple circular regression model is one of the circular regression models that 

consider the relationship between two circular variables. This model is specified for the 

case when the relationship between two circular variables is linear, with a set of 

assumptions about the circular error which are analogue to those in the linear regression.  

 

Hussin et al. (2004) applied their model on the wind and wave direction data 

recorded by two different techniques, which are the HF radar system and the anchored 

wave buoy. The model can be used to fit the relationship between any two circular 

variables with a true linear relationship between them. Practically, it can be involved in 

the modelling of the relationship between any two instruments used to measure circular 

phenomena, or circular variables in different location or time. In such cases, whenever 

the comparison between two circular variables is required, diagnostic checking of the 

model and the detection of any possible outliers are necessary and important. The next 

subsection discusses the maximum likelihood estimates of the model parameters.   

 

7.2.2  Maximum likelihood estimates and asymptotic properties of model 

parameters 

 

Let ),(),...,,( 11 nn yxyx  be pairs of circular observations, where 2,0 ii yx . 

Suppose the data is fitted using the simple circular regression model given by (7.3) and 

the resulting circular residuals follow von Mises distribution. The log likelihood 

function is given by 

iinn xyInnyyxxL cos)(log)2log(),...,,,...,;,,(log 011 . 

 



 102 

The maximum likelihood estimate of parameter  is given by 

,0,0if,2)(tan

,0if,)(tan

,0,0if),(tan

ˆ
1

1

1

CSCS

CCS

CSCS

 

where )ˆsin( ii xyS  and )ˆcos( ii xyC , ˆ  is the MLE of . Due to the 

nonlinear nature of the first partial derivative of the log likelihood function with respect 

to , then it can be estimated iteratively according to the formula 

)ˆˆcos(

)ˆˆsin(ˆˆ

0

2

0
01

iii

iii

xyx

xyx
 by choosing a suitable initial value 0 . The 

estimation of concentration parameter is obtained by )ˆˆcos(
1

ˆ 1

ii xy
n

A , 

where the function (.)A  is the ratio of the modified Bessel function for the first kind of 

order one, and first kind of order zero. One of the inverses of function A  is 

approximated by Dobson (1978) and is given by 
)1(8

389
)(

2
1A . 

 

In order to assess the accuracy of the maximum likelihood estimators of model 

parameters, the asymptotic variances can be obtained by inverting the 33  Fisher 

information matrix and are given by  

})(){ˆ(ˆ
)ˆ(

22

2

ii

i

xxnA

x
Var , 

})(){ˆ(ˆ
)ˆ(

22

ii xxnA

n
Var , 

and                                    
)}ˆ()ˆ(ˆˆ{

ˆ
)ˆ(

2 AAn
Var . 

Further, the covariance of parameters are given by  

})(){ˆ(ˆ
)ˆ,ˆcov(

22

ii

i

xxnA

x
, 
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0)ˆ,ˆcov()ˆ,ˆ(cov , 

where 
n

i
ii xy

n
A

1

)ˆˆcos(
1

)ˆ( . 

 

7.3  Circular error  

 

The analysis of error term is considered to be as old as the subject of statistical 

modelling. Error or random disturbance is an essential term for any regression model. In 

the case of linear regression, errors are assumed to be random, independent, identically 

and normally distributed with mean zero and constant variance. Most of circular 

regression models do not give enough attention to the analysis of error term.  

 

 Hussin et al. (2004), assumed that the error is uncorrelated and has von Mises 

distribution with circular mean 0  and concentration parameter . This section 

proposes a new definition of circular residuals based on the circular distance. Numerical 

and simulation studies are carried out to investigate the properties of the proposed 

circular residuals. 

 

The standard definition of residuals is given by iii yye ˆ , where iy and iŷ  are 

the observed and predicted values respectively, which is no longer valid here because 

the variables are circular. For instance, let 
350iy  and 

5ˆ
iy , then 

 3455350ie , whereas the actual circular distance as defined in (2.9) is  15 . 

 

 Mardia (1972, p.128) defined the angular deviations of the observations from 

their fitted values by using the following statistic  
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n

i
ii yy

n 1

)ˆcos(
1

1 , 

which correspond to the estimated residuals. The acceptance of this definition means 

that the estimation of circular residuals for the ith observation can be obtained by 

)ˆcos(1*

iii yye . Note that 
*

ie  is linear and is bounded within the interval ]2,0[ . 

Hence, it is important to define new residuals of circular type so that the assumptions of 

error, such as whether they come from von Mises distribution, can be investigated. 

 

7.3.1  New circular residuals 

 

Consider the circular distance given by equation (2.9) 

))(2,min(),(d , 

where ],0[)ˆ,(d . The direct use of circular distance to obtain the circular 

residuals is not possible to satisfy every assumption of circular errors. For example, it is 

impossible to show the circular mean of such residuals to be zero. Moreover, the 

estimated concentration parameter also tends to increase as the residuals are distributed 

in the interval ],0[  instead of the entire circumference. 

 

In order to make the values of the residuals distributed around zero, we utilize 

the definition of absolute value 

.if),(

,if,

zxzx

zxzx
zx  

Thus, we propose new circular residual based on circular distance as follows                          

.ˆ,ˆorˆ,ˆif||),ˆ||(

,ˆ,ˆorˆ,ˆif||),ˆ||(

iiiiiiiiii

iiiiiiiiii

A
yyyyyyyyyy

yyyyyyyyyy
r

i
 

 

(7.4) 
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Equation (7.4) can be written in a simpler form as follows  

 2modˆ
iiA yyr

i
. (7.5) 

Note that when  2
iii AAA rrr . It is obvious that from definition (7.4) and 

(7.5), the new residuals 
iAr  are in the range ],[ .  

 

Numerical and simulation studies are carried out in the following subsection in 

order to show that the circular distance residuals Ar  are uncorrelated and follow von 

Mises distribution with circular mean 0 and concentration parameter . 

 

7.3.3 Simulation study to investigate the circular error assumptions 

 

  Simulation studies are carried out to study the properties of the proposed circular 

distance residuals Ar . Five different sample sizes are used: n =30, 50, 70,100 and 150 

together with six different values of concentration parameter = 2, 5, 10, 30 and 50. 

For each sample size and concentration parameter, 2000 samples of circular errors  

are generated from von Mises distribution with circular mean 0  and concentration 

parameter . Another 2000 samples for X  variable with similar sample size are 

generated from von Mises distribution with circular mean 4  and concentration 

parameter 5.1 . Without loos of generality, the parameters of model (7.3) are fixed 

at 0  and 1 . The observed values sY  for each generated set sX  and 
j
 are 

obtained based on model (7.3). The fitted values sŶ  and then the circular residuals, 
sAr , 

for 2000,...,1s  are obtained based on (7.4). Then we estimate the mean direction s  

and the concentration parameter s
ˆ  for all  s.  
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Table 7.1 summarizes the results of simulation studies for all combinations of 

sample size n and concentration parameter . In each cell, the mean of circular error 

and concentration parameters are denoted by ˆ  and ˆ , respectively together with their 

biases. The third row in each cell gives the proportion of residuals 
sAr  that follow 

),0(VM  at 0.05 level of significance based on 
2

nU  statistic (see Section 3.3). 

 

Further, we apply Durbin-Watson statistic (D.W.) to measure the autocorrelation 

between residuals for each 
sAr . The fourth row of each cell gives the proportion of 

sAr which is considered to be uncorrelated at 0.05 significant level. 

 

Table 7.1: The results of simulations processes for circular residual Ar .  

n  2 5 10 30 50 

 ˆ  (bias) 6.282   (-0.000) 6.282   (-0.001) 6.283   (-0.001) 6.283    (0.000) 6.283    (0.000) 

30 ˆ  (bias) 2.112    (0.112) 5.152    (0.152) 11.259  (1.259) 31.976  (1.976) 51.875  (1.875) 

 
2

nU  0.997 0.994 1.00 0.995 1.00 

 D.W. 0.972 0.990 0.985 0.987 0.985 

 ˆ  (bias) 6.283  (-0.000) 6.282   (-0.001) 6.283   (-0.001) 6.283    (0.000) 6.283    (0.000) 

50 ˆ  (bias) 1.939   (-0.061) 5.106   (0.106) 10.928  (0.928) 31.319  (1.319) 51.498  (1.498) 

 
2

nU  0.992 0.995 0.991 1.00 0.993 

 D.W. 0.959 0.993 0.979 0.986 0.987 

 ˆ  (bias) 6.282   (-0.000) 6.282   (-0.002) 6.282   (-0.001) 6.284    (0.000) 6.283    (0.000) 

70 ˆ  (bias) 1.953   (-0.047) 4.918   (-0.082) 10.633  (0.633) 29.920 (-0.080) 50.881  (0.881) 

 
2

nU  0.992 0.991 0.994 1.00 0.994 

 D.W. 0.951 0.990 0.991 0.988 0.974 

 ˆ  (bias) 6.282   (-0.000) 6.281   (-0.002) 6.282   (-0.001) 6.282   (-0.001) 6.283   (-0.001) 

100 ˆ  (bias) 1.99       (-0.01) 5.178    (0.178) 10.428  (0.428) 30.331  (0.331) 49.863 (-0.137) 

 
2

nU  1.00 0.999 0.995 0.991 1.00 

 D.W. 0.984 0.980 0.990 0.976 0.978 

 ˆ  (bias) 0.001    (0.001) 6.284    (0.001) 6.281   (-0.002) 6.282   (-0.001) 6.285   (0.002) 

150 ˆ  (bias) 2.063    (0.063) 5.130    (0.130) 10.260  (0.260) 30.716  (0.716) 50.137  (0.137) 

 
2

nU  1.00 0.995 1.00 0.994 1.00 

 D.W. 0.974 0.996 0.991 0.988 0.984 

 

  Results in Table 7.1 show that all the estimated mean directions ˆ  are very 

close to 0 (or equivalently 2 ) and the biases vary between -0.002 to 0.002 radians  

(or 115.1  to 115.1 ). The biases of the estimated mean of concentration parameter 
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also vary between -0.136 to 1.875, where the large biases correspond to large values of 

the concentration parameter. These suggest that the estimated mean directions and 

concentration parameters do not differ much from the original values. On the other 

hand, the proportions of  
Ar  that follows ,0VM  based on 

2

nU  statistic are close or 

equal to 1, while the proportions of  Ar  that have insignificant Durbin-Watson statistic 

are always greater than 0.95. These results suggest that the proposed circular residuals 

are uncorrelated and follow ,0VM . In other words, the new circular residuals, Ar , 

has sufficient properties to be used for simple circular regression model.  

 

7.4  Goodness-of-fit for simple circular regression model  

 

Lund (1999) assessed the goodness-of-fit of the least circular distance regression 

model described in Subsection (2.2.2) by using the function 

n

i

iiiy
n

A
1

21 )]ˆ,ˆ,,(cos[
1

)ˆ( X  as an analogue of residuals sums of squares in 

linear regression model. Thus, the )ˆ(A  for the simple circular regression model is 

given by 

n

i
ii yy

n
A

1

)ˆcos(
1

)ˆ( ,    

     
n

i
ii xy

n 1

)ˆˆcos(
1

. 

where ]1,1[)ˆ(A .  It is known that )ˆcos( ii yy  is a non-monotone function, where 

.
2

ˆif,0

,
2

ˆif,0
)ˆcos(

ii

ii

ii

yy

yy
yy  

Due to the differences of signs, some of the terms may vanish which lead to losing some 

important information. Thus, we suggest to improve the goodness-of-fit test by squaring 
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the )ˆcos( ii yy  function to be more consistent with residuals sums of squares. The 

modified statistic becomes 

n

i
ii xy

n
A

1

2* )]ˆˆ([cos
1

)ˆ(  

   
n

i
ii yy

n 1

2 )]ˆ([cos
1

, 

where ]1,0[)ˆ(*A . Therefore, the closer )ˆ(*A  to 1 indicates a better goodness-of-fit 

of the model. In addition, Lund (1999) also mentioned various circular correlation 

measures which could be applied to the observed and fitted values. For a random 

sample ),(),....,,( 11 nn yxyx , the simplest measure is proposed by Jammalamadaka & Sarma 

(1988) and given by 

n

i
ii

n

i
ii

c

yyxx

yyxx

r

1

22

1

)(sin)(sin

)sin()sin(

, 

where x  and y  are the sample mean directions. Consequently, squaring cr  gives an 

analogy to the coefficient  of determination, 
2R , for linear regression.   

 

7.5   Diagnostic checking of simple circular regression model  

 

Residuals analysis has been widely used in investigating the adequacy of fitted 

model. In this section we extend it to the circular regression case by using different 

graphical and numerical methods. 

 

7.5.1  Graphical tools 

 

As shown in the literature, there are few techniques available for diagnostic 

checking in circular regression. Jammalamadaka & SenGupta (2001) suggested several 



 109 

graphical techniques for diagnostic checking in circular samples, such as, circular 

distance plot between the observations of circular sample, P-P plot and Q-Q plot. 

Furthermore, circular boxplot is proposed in Chapter 6 can play an important role to 

detect possible outliers in the circular residuals. Some of the techniques used in the 

linear regression can be extended to the circular case. 

 

(i) Circular residuals on circumferences of circle 

It could be easier to identify visually any points that are relatively far from the 

rest of other points by plotting the points on the circumferences of a circle.  

 

(ii) Circular residuals versus the observation index 

It is a linear plot for the circular residuals versus the observation index, which 

enable us to investigate the randomness property and to detect any possible outliers. 

Those points which are inconsistent with the other points are candidates to be 

considered as outliers.  

 

(iii)  Spoke plot of the fitted and observed values 

The long line between the observed observation iy  and its fitted value iŷ  

indicates a possibility of the ith observation being an outlier.  

 

7.5.2  Numerical tests 

 

Applying more than one test to detect outliers is recommended. There is no 

known published works on the detection of outliers in circular regression. Beside the 

graphical techniques described in the previous subsection, there are three numerical 
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tests that can be used to identify outliers in univariate circular sample; C, D and M 

statistics. We can also use the proposed numerical tests presented in Chapter 5. These 

numerical tests may be extended to detect outliers in circular regression based on the 

circular residuals. 

 

7.6  Numerical example (wind direction data) 

 

The scatter plot of wind direction data in Figure 3.6 shows a linear relationship 

between the measurements of HF radar and anchored buoy with slope close to 1 and 

negligible intersect. Since both measurements of variables are circular, we fit the wind 

direction data using model (7.3).  

 

7.6.1  Estimation of the model parameters and calculation of circular residuals 

 

The maximum likelihood estimates of the parameters are obtained and given by 

164.0ˆ , 973.0ˆ  and 338.7ˆ . Hence, the fitted model is given by 

2mod973.0164.0ˆ
ii xy . 

 The circular distance residuals 
iAr  are obtained using (7.4). The estimated mean 

direction and concentration parameter of the residuals are 017.0ˆ  and 338.7ˆ  

respectively. The measures of the goodness-of-fit are )ˆ(A 0.929 and )ˆ(*A 0.908, 

and the square of the circular correlation coefficient between the response and predicted 

values is 
2

cr 0.908. These suggest that the model fits the data well.  

 

 

 



 111 

7.6.2  Graphical tools 

 

Figures 7.1 to 7.4 give the plots for diagnostic purposes. When the residuals are 

plotted on a circumference of a circle and index plot as shown in Figures 7.1 and 7.2 

respectively, we can observed that two residuals points corresponding to observation 38 

and 111 are inconsistent with the rest of the residuals. Plot of circular distance in Figure 

7.3 also shows that the circular distance between observations 38 as well as 111 and 

their neighbours at both sides are longer than circular distance between any other 

observations and their neighbours. Similarly, all the quantile points in Figure 7.4 are 

close to the straight line, except for these two observations. While in Figure 7.5, there 

are two obvious long lines also correspond to the same observation crossing the inner 

ring of the spoke plot. Generally, the graphical tools suggest that observations numbered 

38 and 111 as possible outliers. 

 

In order to obtain the circular boxplot for the circular residuals, we calculate its 

summary statistics. The mean direction of circular residuals is 017.0ˆ and the 

estimated concentration parameter is 338.7ˆ . The estimated median direction is  

0.0072, the first quartile is 1Q = 0.202, the third quartile is 3Q = 6.125, giving the CIQR 

= 0.360. Since 338.7ˆ  is considered to be large enough, larger values of the resistant 

constant  are recommended.  

 

Table 7.2 shows the observations detected as outliers in wind direction data set 

by using different values of resistant constant . Observations numbered 38 and 111 are 

identified as outliers for all values of resistant constant  considered. For smaller values 

of , other observations are also identified as outliers. Figure 7.6 shows the boxplot of 
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circular residuals of wind direction data for 5.2 . It is obvious that the two points 38 

and 111 are identified as outliers. 
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Figure 7.1: Circular residuals on circle 
circumferences   

Figure 7.2: Circular residuals versus 
observations index 
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Figure 7.3: Circular distance between 

circular residuals        

Figure 7.4: Q-Q plot for circular residuals 
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Figure 7.5: Spoke plot for the fitted and 
observed values 

Figure 7.6: Circular boxplot of wind   
residuals for 5.2  
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Table 7.2: Summary of the outliers detecting by several values of  for circular 

residuals of wind data 

 
FL  

FU  Number of outliers Outliers 

1.0 0.561 5.765 14 15,18,38,43,48,68,70,95,98,99,100,109,111,123. 

1.2 0.633 5.693 12 18,38,43,48,68,70,95,98,99,100,111,123. 

1.5 0.741 5.586 6 38,43,70,99,100,111. 

1.7 0.813 5.514 4 38,43,70,111. 

2.0 0.921 5.406 3 38,43,111. 

2.2 1.029 5.298 2 38,111. 

2.5 1.101 5.226 2 38,111. 
2.7 1.173 5.154 2 38,111. 

3.0 1.281 5.046 2 38,111. 

3.5 1.461 4.866 2 38,111. 

 

7.6.3  Numerical methods 

 

Table 7.3 summarizes the results by applying different discordancy tests on the 

circular distance residuals 
iAr . All of the six tests have successfully identified 

observation number 38 as the only outlier. After removing observation 38 from the data, 

only the C statistic does not detect observation 111 as an outlier. Figure 7.7 displays the 

values of jP  for the residuals. There are two points with the highest values of jP  

corresponding to observations number 38 and 111.  

 

Table 7.3: Results by applying different discordancy tests on wind direction data 

Statistic   Statistics’ value Observation Critical value,95% Conclusion 
 

C 
0.0160 38 < 0.016  Outlier 

0.01 111 < 0.016 Not an outlier 
 

D 
0.480 38 0.13 Outlier 

0.299 111 0.13 Outlier 
 

M 
0.217 38 < 0.01 Outlier 
0.174 111 < 0.01 Outlier 

 

A 
0.963 38 0.47 Outlier 
0.616 111 0.37 Outlier 

 

Chord 
0.972 38 0.68 Outlier 

0.774 111 0.60 Outlier 
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Figure 7.7: The values of jP  for the residuals of wind direction data 

 

7.6.4  The effect of outliers on the estimation 

 

Table 7.4 summarizes the effect of excluding the outliers on the parameter 

estimates. The removal of observation numbers 38 and 111 does not significantly 

change the value of ˆ  and ˆ . However, both values are getting closer to 0 and 1, 

respectively. Furthermore, without the outlier, the estimated concentration parameter 

has increased from 7.338 to 11.010 and )ˆ(A  is increased from 0.929 to 0.953, as well 

as )ˆ(*A  increased from 0.908 to 0.915. The 
2

cr  increased from 0.908 to 0.955. Thus, 

the estimation is more accurate and we may have better model fitting for the data when 

observation 38 and 111 are excluded from the data set. 

 

Figure 7.8 shows the diagnostic checking plots of circular residuals after 

removing observations number 38 and 111 from the wind direction data. The four plots 

suggest that the residuals points are distributed within an acceptable range. 



 115 

 

Table 7.4: Summary of the effect of outlier removal  

 Full data Excluding observation 

number 38 

Excluding observation 

numbers 38 and 111 

ˆ  0.164 0.159 0.153 

ˆ  0.973 0.974 0.974 

ˆ  7.338 9.229 11.01 

2

cr  0.908 0.954 0.955 

)ˆ(A  0.929 0.944 0.953 

)ˆ(*A  0.908 0.909 0.915 

 

Figure 7.8: Diagnostic graphical tools for circular residuals without observations 

number 38 and 111 
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Circular residuals on circumferences 

(b) 

Circular residuals versus observations index 
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Circular distance 

(d) 

Q-Q plot 
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7.7  Summary 

 

The simple circular regression model is considered in this chapter and new 

circular residuals are defined. The proposed residuals based on the circular distance can 

be used to check the adequacy of the fitted model by investigating the assumption made 

about the error. Several numerical tests and graphical techniques are utilized to identify 

outliers in circular regression based on the circular residuals. Observations number 38 

and 111 have been identified as outliers when applied on wind direction data. The 

exclusion of these two observations from the original data set improves the goodness-

of-fit for the model. In the following chapter, other statistics are proposed to identify 

outliers in simple circular regression using row deletion approach.  

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 



 117 

CHAPTER EIGHT 

IDENTIFICATION OF INFLUENTIAL OBSERVATIONS 

IN SIMPLE CIRCULAR REGRESSION MODEL 

 

8.1  Introduction 

 

The existence of outliers in statistical data may indicate failure of the model or 

point to an unanticipated phenomenon. Hoaglin et al. (1986, p.991) stated that “It is still 

informative, however, and may be important, to examine samples and residuals for 

presence of outliers or exotic values”. In regression, interest focus on the outlier which 

is influential. There are extensive literatures available on statistical tests to identify 

influential observations in linear regression. On the other hand, the absence of such tests 

in circular case motivates us to develop numerical tests to identify influential 

observations in circular regression models. One of the possible ways is the row deletion 

approach, which was first developed by Belsley et al. (1980) for linear regression 

models. It investigates the impact of deleting one row at a time from both X  matrix and 

Y  vector on the estimated parameters, fitted values and residuals. Some of these 

statistics have been reviewed in Section 2.4.  

 

This chapter presents five new numerical tests to detect the influential 

observations in simple circular regression model. Two of them are based on the 

difference between observed and fitted values. Another two are developed based on the 

approximate distribution for the mentioned statistics. The fifth numerical test is based 

on the COVRATIO statistic which is an analogy to the linear case. 
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8.2  Mean circular error statistics 

 

8.2.1  Development of mean circular error statistics 

 

Rao (1969) defined the circular distance between two circular observations i  

and j  as )cos(1 jiijd , where ijd  is a monotone increasing function of 

)( ji  and ]2,0[ijd . Mardia (1972, p.128) defined the angular deviation of 

observations from their fitted values for circular regression model. In this section we use 

this statistic for the detection of influential observations in the simple circular regression 

model (7.3) by using row deletion approach. Let the statistic be known as mean circular 

error MCEc and given by   

 
,ˆ

1
1

n

ii y-y
n

MCEc
1i

)cos(  

 

(8.1) 

where n is the sample size and ]2,0[MCEc . 

 

If an observation iy  is an outlier then the circular distance between iy  and its 

associated fitted value iŷ  is expected to be relatively large. Thus, the existence of such 

observation in a data set will increase the summation of all circular distances as well as 

the value of MCEc statistic. Consequently, the removal of the ith observation denoted 

by (-i)MCEc  from the data set will decrease the value of the statistic. Let the maximum 

absolute difference between the value of the statistics for full and reduced data sets be 

|}(-i)
i

MCEc-MCEc| maxDMCEc { . 

The ith observation is identified as an influential observation if DMCEc exceeds a pre-

specified cut-off points.  
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Using circular distance in (2.9) allows us to use sine function as an alternative 

measure of mean circular error, where sine is an increasing function on the interval 

]2,0[ . Therefore, an alternative statistic is  

 n

i

id

n
MCEs

1 2
sin

1
, 

 

(8.2) 

where 
iii yyd ˆ  is the circular distance between iy  and iŷ , with sample 

size n and ]1,0[MCEs . 

 

Analogy to the MCEc statistic, if an observation iy  is an outlier, then the half 

of the circular distance 2id  is expected to be relatively large compared to other 

2id ’s. Thus, the existence of such observation increases the value of MCEs. 

Consequently, the removal of  iy  decreases the value of MCEs and denoted by 

(-i)MCEs . Let the maximum absolute difference between the value of the statistics for 

full and reduced data sets be 

|}{ )(-i
i

MCEs-MCEs| maxDMCEs . 

The ith observation is identified as an influential observation if DMCEs exceeds a pre-

specified cut-off points. 

 

MCEc and MCEs statistics are considered as a sort of arithmetic means which 

is not resistant to the existence of outliers. Thus, it can be used to detect possible 

influential observation in circular regression. It is expected that both statistics are more 

powerful for small sample size n , because the estimated mean of smaller samples is 

more sensitive to the existence of outlier rather than larger samples.  

 

 



 120 

8.2.2  Percentage points of mean circular error statistics 

 

(i)  Description of simulation process 

A series of simulation studies is carried out to find the percentage (cut-off) point 

of DMCEc and DMCEs statistics by using Monte Carlo methods. Fifteen different 

sample sizes are used which are n=10(10)150. For each sample size n, a set of circular 

random error from von Mises distribution with mean direction 0 and various values of 

concentration parameter  are generated, where  5, 10, 30 and 50. Samples of von 

Mises distribution )5.1,4(VM  with corresponding size n are generated to represent 

the values of X  variable. Without loss of generality, the parameters of model (7.3) are 

fixed at 0 and 1 . Observed values of response variable Y  are calculated based 

on model (7.3) and consequently the fitted values Ŷ are obtained.  

 

We then compute the value of MCEc and MCEs statistics for full data set. 

Sequentially, we exclude the ith observation from the generated sample, for ni ,...,1 . 

We refit the reduced data using model (7.3) and then calculate the values of )(-iMCEc  

and )(-iMCEs  statistics as well as the values of DMCEc and DMCEs statistics. The 

process is repeated 2000 times for each combination of sample size n and concentration 

parameter .  

 

The percentage points of DMCEc and DMCEs statistics for each sample size n 

and concentration parameter  are tabulated in Tables 8.1 and 8.2, respectively. The 

10, 5 and 1 percentage points are given in the first, second and third rows of each table 

respectively. 
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Table 8.1: The 10, 5 and 1 percentage points of the null distribution of DMCEc statistic 

   

n Percentage 5 10 30 50 

 10% 0.0666 0.0457 0.0215 0.0176 

10 5% 0.0997 0.0650 0.0259 0.0204 

 1% 0.1279 0.0923 0.0318 0.0281 

      

 10% 0.0389 0.0181 0.0106 0.0091 

20 5% 0.0471 0.0217 0.0125 0.0098 

 1% 0.0721 0.0302 0.0159 0.0126 

      

 10% 0.0302 0.0132 0.0078 0.0059 

30 5% 0.0358 0.0155 0.0087 0.0066 

 1% 0.0515 0.0200 0.0098 0.0076 

      

 10% 0.0230 0.0112 0.0056 0.0045 

40 5% 0.0272 0.0126 0.0062 0.0049 

 1% 0.0354 0.0166 0.0073 0.0056 

      

 10% 0.0186 0.0087 0.0046 0.0036 

50 5% 0.0212 0.0099 0.0051 0.0039 

 1% 0.0269 0.0129 0.0062 0.0048 

      

 10% 0.0165 0.0076 0.0038 0.0031 

60 5% 0.0193 0.0086 0.0042 0.0034 

 1% 0.0243 0.0109 0.0049 0.0039 

      

 10% 0.0149 0.0067 0.0034 0.0026 

70 5% 0.0178 0.0073 0.0038 0.0028 

 1% 0.0219 0.0102 0.0048 0.0033 

      

 10% 0.0132 0.0060 0.0030 0.0023 

80 5% 0.0153 0.0068 0.0032 0.0025 

 1% 0.0204 0.0087 0.0040 0.0028 

      

 10% 0.0111 0.0056 0.0026 0.0021 

90 5% 0.0128 0.0063 0.0028 0.0023 

 1% 0.0158 0.0082 0.0034 0.0026 

      

 10% 0.0111 0.0052 0.0024 0.0019 

100 5% 0.0127 0.0062 0.0026 0.0020 

 1% 0.0156 0.0071 0.0030 0.0023 

      

 10% 0.0095 0.0045 0.0022 0.0017 

110 5% 0.0111 0.0049 0.0024 0.0019 

 1% 0.0137 0.0071 0.0027 0.0022 

      

 10% 0.0094 0.0044 0.0020 0.0016 

120 5% 0.0107 0.0049 0.0022 0.0017 

 1% 0.0147 0.0058 0.0025 0.0020 

      

 10% 0.0086 0.0040 0.0019 0.0014 

130 5% 0.0100 0.0046 0.0020 0.0016 

 1% 0.0130 0.0057 0.0024 0.0018 
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Table 8.1, continued. 
   

n Percentage 5 10 30 50 

 10% 0.0085 0.0037 0.0017 0.0014 

140 5% 0.0099 0.0045 0.0018 0.0015 

 1% 0.0132 0.0060 0.0022 0.0018 

      

 10% 0.0075 0.0036 0.0016 0.0013 

150 5% 0.0084 0.0040 0.0018 0.0014 

 1% 0.0101 0.0048 0.0020 0.0016 

 

 

(ii)  Discussion 

Tables 8.1 and 8.2 show the estimated percentage points for DMCEc and 

DMCEs statistics. The estimated percentage (cut-off) points for DMCEcand DMCEs 

statistics are decreasing functions of the concentration parameter . It is noticeable that 

the percentages are decreasing functions of the sample size n for any level of 

concentration parameter . Figure 8.1 shows the behaviour of DMCEc and DMCEs 

statistics for different sample size n when 10  for 05.0 . The percentage points 

become almost constant for large sample size n, ( i.e. 100n ).  
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Figure 8.1: Percentage points of DMCEcand DMCEs statistics for 10 , 05.0  
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Table 8.2: The 10, 5 and 1 percentage points of the null distribution of DMCEs statistic 

   

n Percentage 5 10 30 50 

 10% 0.0605 0.0365 0.0100 0.0060 

10 5% 0.0766 0.0513 0.0125 0.0073 

 1% 0.1068 0.0868 0.0483 0.0316 

      

 10% 0.0286 0.0168 0.0057 0.0036 

20 5% 0.0333 0.0192 0.0067 0.0044 

 1% 0.0461 0.0277 0.0091 0.0063 

      

 10% 0.0199 0.0128 0.0046 0.0026 

30 5% 0.0219 0.0145 0.0055 0.0031 

 1% 0.0266 0.0173 0.0064 0.0048 

      

 10% 0.0144 0.0103 0.0033 0.0020 

40 5% 0.0157 0.0111 0.0038 0.0022 

 1% 0.0198 0.0136 0.0051 0.0032 

      

 10% 0.0116 0.0078 0.0029 0.0017 

50 5% 0.0129 0.0090 0.0033 0.0019 

 1% 0.0150 0.0103 0.0041 0.0027 

      

 10% 0.0099 0.0067 0.0025 0.0015 

60 5% 0.0108 0.0075 0.0028 0.0017 

 1% 0.0124 0.0085 0.0036 0.0022 

      

 10% 0.0085 0.0058 0.0022 0.0013 

70 5% 0.0095 0.0064 0.0026 0.0015 

 1% 0.0105 0.0074 0.0034 0.0018 

      

 10% 0.0077 0.0053 0.0020 0.0011 

80 5% 0.0083 0.0057 0.0022 0.0013 

 1% 0.0095 0.0064 0.0030 0.0016 

      

 10% 0.0065 0.0047 0.0017 0.0011 

90 5% 0.0071 0.0050 0.0020 0.0013 

 1% 0.0080 0.0059 0.0025 0.0016 

      

 10% 0.0062 0.0043 0.0016 0.0010 

100 5% 0.0066 0.0046 0.0018 0.0011 

 1% 0.0076 0.0054 0.0022 0.0013 

      

 10% 0.0055 0.0038 0.0015 0.0009 

110 5% 0.0060 0.0041 0.0017 0.0010 

 1% 0.0068 0.0047 0.0021 0.0013 

      

 10% 0.0053 0.0036 0.0014 0.0008 

120 5% 0.0057 0.0038 0.0016 0.0009 

 1% 0.0065 0.0045 0.0022 0.0012 

      

 10% 0.0047 0.0033 0.0013 0.0008 

130 5% 0.0050 0.0035 0.0015 0.0009 

 1% 0.0058 0.0041 0.0019 0.0012 
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Table 8.2, continued. 
   

n Percentage 5 10 30 50 

 10% 0.0045 0.0031 0.0012 0.0007 

140 5% 0.0051 0.0033 0.0014 0.0009 

 1% 0.0058 0.0039 0.0016 0.0011 

      

 10% 0.0041 0.0029 0.0011 0.0007 

150 5% 0.0045 0.0031 0.0013 0.0008 

 1% 0.0049 0.0036 0.0015 0.0010 

 

For all studied cases, the percentage of DMCEs are smaller than the percentiles 

of DMCEc due to the range of MCEs is smaller than the range of MCEc, as shown in 

Figure 8.1. However, the percentage points of DMCEc and DMCEs become closer for 

large concentration  as well as for large sample size n. 

 

8.2.3 The power of performance of mean circular error statistics 

 

This subsection describes the numerical and simulation studies to investigate the 

power of performance of DMCEc and DMCEs statistics and subsequently discuss the 

obtained results. 

 

(i) Description of simulation process 

To investigate the power of performance of DMCEc and DMCEs statistics, 

four different sample sizes are considered, n = 30, 70, 100 and 150. We generate the 

data as described in Section 8.2.2.  At position ][d  of the response variable Y , the 

observation ][dy  is contaminated as follows 

2mod][][* dydy , 

where ][* dy  is the contaminated observation at position ][d  and  is the degree of 

contamination in the range 10 . When 0 , there is no contamination at 

position ][d , whereas when 1, the observation ][* dy  is located at the anti mode of 
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its initial location. The generated data are fitted using model (7.3) and the values of Ŷ  

are obtained. Thus, values of DMCEc and DMCEs statistics are calculated for each 

generated data set. 

 

The process is repeated for 2000 times. The power of performances of DMCEc  

and DMCEs statistics are investigated by computing the percentage of correctly 

detecting outlier as influential observation at position ][d .  

 

(ii)  Discussion 

A part of the results are displayed in the following figures and the complete 

simulation results are given in Appendix (A.6). Figure 8.2 shows that the test based on 

DMCEc statistic is superior compared to the DMCEs statistic for all considered cases. 
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Figure 8.2: Power of performance of  DMCEc and DMCEs statistics 
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Figure 8.3 shows the performance of DMCEc and DMCEs statistics for 70n  

for different values of concentration parameter . It is obvious that both statistics have 

similar behaviour. The performance of both statistics highly depend on the 

concentration parameter , where the power of performances are increasing functions 

of the concentration parameter .  
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Figure 8.3: Power of performance of  DMCEc and DMCEs statistics, for 70n  

 

Figure 8.4 shows the performance of DMCEc and DMCEs statistics at 10  

for different sample size n. For both statistics the power of performances are decreasing 

functions of sample size n. However, sample size has a slight effect on the performance 

of the DMCEs statistic compare to the DMCEc statistic. 

 

In general, the power of performance is an increasing function of the 

contamination level , as shown in Figures 8.2, 8.3 and 8.4.  
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Figure 8.4: Power of performance of  DMCEc and DMCEs statistics, for 10  

 

8.3  The approximate distribution of modified mean circular error 

statistics 

 

In the previous section we discussed the mean circular error statistics. The cut-

off points and the power of performance were obtained by using Monte Carlo 

simulations. In this section we discuss the approximate distribution of mean circular 

error statistics. The formula of the approximate distribution will slightly change from 

those proposed in Section 8.2. The interest here is to find the statistical distribution 

which enables us to use the available statistical distributions to identify possible 

influential observations in the circular regression models. 
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8.3.1  Approximate distribution of modified mean circular error )( jMDC  

 

This subsection discusses the derivation of the approximate distribution of 

DMCEc which will be denoted by )( jMDC , under the assumptions that 

)2(mod)ˆ( ii yy  follow von Mises distribution with mean zero and large 

concentration parameter . 

 

Result 8.1 

For any circular regression model with )2(mod)ˆ( ii yy  (i.i.d) follows the von 

Mises distribution with mean direction 0 and large concentration parameter , then 

the  

2
1jj

χMMCEcMMCEcMDC
)()()(

~ ,        j=1,...,n 

where iy  and iŷ  are the ith observed and expected values respectively, MMCEc is the 

modified mean circular error and given by 
n

i
ii yyMMCEc

1

)]ˆcos(1[2  for full 

data set and jiyyMMCEc
n

i
iijj ,)]ˆcos(1[2

1
)()(  is the modified mean 

circular error after removing the  jth row. 

 

Proof: 

Suppose that ),0(~)2(mod)ˆ( VMyy ii , with large .  It has been shown 

in equation (4.1) that if ),0(~)ˆ( VMyy ii , then 

),(~)ˆ( 10Nyyκ
ii

. 

By using the standard normal distribution properties 

 2

)1(

2 ~)ˆ( ii yy  (8.3) 
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For large concentration parameter , then small values of )ˆ( ii yy  is obtained. Thus, 

from the second order of Taylor series expansion we have  

2

)ˆ(
1)ˆcos(

2

ii
ii

yy
yy . 

Thus, 

 )]ˆcos(1[2)ˆ( 2

iiii yyyy . 
 

(8.4) 

From equations (8.3) and (8.4) we get 

2

)1(~)]ˆcos(1[2 ii yy . 

From the properties of Chi-square distribution, the modified mean circular error is given 

by 

2

)(
1

~)]ˆcos(1[2 n

n

i
ii yyMMCEc . 

By the removal of the jth row from full data set we have,  

2

)1(
1

)()( ~)]ˆcos(1[2 n

n

i
iijj yyMMCEc , where ji  

and )( j  is the concentration parameter of  )2(mod)ˆ( ii yy , after removing the jth 

row. The absolute difference between MMCEc and )( jMMCEc  has the following 

distribution  

2

)1()()( ~jj MMCEcMMCEcMDC . 

In other words, if the absolute difference between MMCEc and )( jMMCEc  

exceeds the tabulated value of Chi-square at degree of freedom 1 and desired level of 

significance, then observation at  jth row is candidate to be considered as an influential 

observation. 
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8.3.2  Approximate distribution of modified mean circular error )( jMDS  

 

Analogous to the approximate distribution of the mean circular error in terms of 

circular distance and similar to the Result 5.2 we may arrive at the following result.  

 

Result 8.2 

For any circular regression model with )2(mod)ˆ( ii yy  (i.i.d) follows the von 

Mises distribution with mean direction 0 and large concentration parameter ,  then 

the  

2
1jj

χMMCEsMMCEsMDS ~
)()(

,       j=1,…,n. 

where iy  and iŷ  are the ith observed and expected values respectively, MMCEs is the 

modified mean circular error and given by 
n

i

id
MMCEs

1

2

2
sin4  for full data set 

and ji
d

MMCEs
n

i

i

jj ,
2

sin4
1

2

)()(
 is the modified mean circular error after 

removing the jth row. 

Proof: 

From equations (5.6) we have )ˆcos()cos( iii yyd  and by the trigonometric 

identities, we have 
2

sin21cos 2
. Thus,  

2
sin2)cos(1 2 i

i

d
d . 

By multiplying both sides by 2 , 

2
sin4)]ˆcos(1[2 2 i

ii

d
yy . 

Therefore, 
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n

i

i
n

i
ii

d
yy

1

2

1 2
sin4)]ˆcos(1[2 . 

From Result 8.1 we get 

2

)(
1

2 ~
2

sin4 n

n

i

id
MMCEs . 

Removing the jth row from full data set then,  

2

)1(
1

2

)()( ~
2

sin4 n

n

i

i
jj

d
MMCEs , where ji . 

The absolute difference between MMCEs and )( jMMCEs  has the following 

distribution 

2

)1()()( |~| jj MMCEsMMCEsMDS . 

 

In other words, if the absolute difference between MMCEs and jMMCEs  

exceeds the tabulated value of Chi-squares at degree of freedom 1, then observation at 

jth row is candidate to be considered as an influential observation. 

 

8.4 COVRATIO statistic for simple circular regression model 

In Section 2.4 we reviewed some of the available tests to identify influential 

observations in linear regression. One of them is COVRATIO statistic which is the ratio 

of the estimated covariance matrix of the estimated coefficients using all available data 

with estimated covariance matrix that results when ith observation is deleted. 

 

Belsley et al. (1980) suggested a comparison based on the determinantal ratio 

which is given by  

||

|| )(

)(
COV

COV
COVRATIO

i

i . 
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where || COV  is the determinant covariance matrix of coefficients for full data set and 

|| )( iCOV  is for the reduced data set by excluding the ith row. If the ratio is close to the 

unity, then there is no significant difference between the covariance matrices. In other 

words, the ith observation is consistent with the other observations. Alternatively, if the 

value of |1| )( iCOVRATIO  is close or larger than )3( np  then it indicates that the ith 

observation is a candidate to be an influential observation, where p is the number of 

estimated coefficients and n is the sample size. 

 

This section discusses the extension of COVRATIO statistic to the circular case. 

The covariance matrix, cut-off points and the power of performance are discussed 

subsequently.  

 

8.4.1 Covariance matrix of simple circular regression model 

 

Subsection 7.2.2 has discussed the asymptotic variance and covariance for the 

parameters of simple circular regression model. The covariance matrix is given by 

 

)}ˆ()ˆ(ˆˆ{

ˆ
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0
})(){ˆ(ˆ})(){ˆ(ˆ
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})(){ˆ(ˆ})(){ˆ(ˆ
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2222

2

AAn

xxnA
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x
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ii
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where 
n

i
ii xy

n
A

1

)ˆˆcos(
1

)ˆ(  and ˆ  is the estimated concentration parameter of 

circular random error. To apply the COVRATIO statistic, in analogy to the linear case 

we will consider the coefficients covariance matrix, which is given by 

 

nx

xx

xxnA
COV

i

ii

ii

2

22 })(){ˆ(ˆ

1
. 
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It can be shown that the determinant of covariance matrix for model (7.3) is given by 

 

)ˆ(ˆ

1

A
COV . 

 

(8.5) 

Thus, the COVRATIO statistic for the ith row is given by 

 

)ˆ(ˆ

)ˆ(ˆ
)()()(

)(
A

A

COV

COV
COVRATIO

iii

i . 
(8.6) 

 

The above statistic is simple and easy to be obtained. Any observation with 

|1| )( iCOVRATIO  exceeding the cut-off point which will be calculated in the 

following section will be identified as an influential observation. 

 

8.4.2 Percentage points of COVRATIO statistic 

 

(i) Description of simulation process 

The percentage points are obtained by using Monte Carlo simulation method. 

Fifteen different sample sizes of n =10(10)150 are used. For each sample size n, a set of 

circular random error from von Mises distribution with mean direction 0 and various 

values of concentration parameter  are generated, where = 5, 10, 30 and 50 as 

follows: 

Step 1. Generate X  variable of size n from 5.1,4VM . The parameters of simple 

circular regression model (7.3) are fixed at 0  and 1 . 

Step 2. Calculate the observed values of the response variable Y based on model (7.3). 

Step 3. Fit the generated circular data by using model (7.3). 

Step 4. Calculate || COV  by using equation (8.5) 

Step 5. Exclude the ith row from the generated sample, where i=1,...,n. Repeat Steps 3 

to 5 to obtain || )( iCOV  for all i. 
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Step 6. Compute )( iCOVRATIO  by using equation (8.6) and then obtain the values of 

|1| )( iCOVRATIO  for all i. 

Step 7. Specify the maximum value of |1| )( iCOVRATIO . 

 

The process is repeated 2000 times for each combination of sample size n and 

concentration parameter . Then the 10
th
, 5

th
  and 1

st
 upper percentiles of the maximum 

values of |1| )( iCOVRATIO  are calculated. The percentiles are tabulated in Table 8.3. 

For each sample size n and concentration parameter , where 10, 5 and 1 percentages 

are given in the first , second and third rows, respectively. 

 

(i) Discussion 

Results in Table 8.3 show that the cut points of |1| )( iCOVRATIO  statistic are 

independent of the concentration parameter . Figure 8.5 illustrates the values of cut-

off points versus the concentration parameter  for n =50 where similar results are 

obtained for other sample size n.  

 

In order to estimate the cut-off points for each sample size at different 

percentiles we suggest calculating the arithmetic mean of the simulated cut-off points 

for each sample size n. Table 8.4 gives the cut-off points and the corresponding standard 

deviations as given in parenthesis for various sample size n. The results show that the 

cut-off points is a decreasing functions of sample size n. The values of the standard 

deviations are also very small indicating the independency of percentiles values on the 

concentration parameter. 
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Table 8.3: The percentage points of the null distribution of |1| )( iCOVRATIO  

n 

  

Percentage 5 10 30 50 

 10% 1.035 1.432 1.035 1.143 

10 5% 1.353 1.501 1.383 1.446 

 1% 1.611 1.747 1.889 1.481 

      

 10% 0.569 0.547 0.504 0.536 

20 5% 0.769 0.696 0.606 0.671 

 1% 0.808 0.800 0.847 0.848 

      

 10% 0.364 0.338 0.375 0.344 

30 5% 0.459 0.444 0.450 0.452 

 1% 0.727 0.552 0.559 0.586 

      

 10% 0.276 0.263 0.258 0.245 

40 5% 0.337 0.346 0.340 0.348 

 1% 0.463 0.435 0.410 0.423 

      

 10% 0.225 0.200 0.199 0.193 

50 5% 0.262 0.263 0.265 0.268 

 1% 0.335 0.312 0.297 0.335 

      

 10% 0.187 0.182 0.170 0.173 

60 5% 0.230 0.232 0.236 0.239 

 1% 0.292 0.261 0.254 0.254 

      

 10% 0.167 0.150 0.151 0.146 

70 5% 0.196 0.181 0.199 0.180 

 1% 0.270 0.223 0.235 0.203 

      

 10% 0.146 0.130 0.128 0.127 

80 5% 0.173 0.167 0.171 0.174 

 1% 0.222 0.201 0.198 0.172 

      

 10% 0.120 0.128 0.118 0.122 

90 5% 0.141 0.146 0.136 0.136 

 1% 0.166 0.184 0.179 0.184 

      

 10% 0.120 0.113 0.108 0.106 

100 5% 0.139 0.132 0.122 0.119 

 1% 0.186 0.163 0.152 0.149 

      

 10% 0.104 0.098 0.099 0.096 

110 5% 0.122 0.126 0.121 0.119 

 1% 0.142 0.138 0.134 0.144 

      

 10% 0.104 0.096 0.089 0.089 

120 5% 0.118 0.106 0.105 0.115 

 1% 0.151 0.132 0.134 0.123 

      

 10% 0.094 0.088 0.086 0.087 

130 5% 0.105 0.102 0.110 0.105 

 1% 0.126 0.127 0.138 0.128 
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Table 8.3, continued. 
   

n Percentage 5 10 30 50 

 10% 0.091 0.081 0.081 0.077 

140 5% 0.105 0.095 0.110 0.091 

 1% 0.129 0.132 0.108 0.130 

      

 10% 0.079 0.076 0.072 0.075 

150 5% 0.090 0.086 0.089 0.095 

 1% 0.109 0.113 0.101 0.101 
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Figure 8.5: The percentage points of  |1| )( iCOVRATIO  statistic, for 50n  

 

For the linear case Belsley et al. (1980) stated that np3  is an appropriate cut-

off points of |1| )( iCOVRATIO  statistic at 0.05 significant level. It is of interest to 

find such formula for circular case. We found that the cut-off points for any sample size 

are very close to the values )7( np  where 2p  and n is the sample size. The exact 

values of )7( np  are given in the last row of Table 8.4, followed by the bias of the cut-

off points at 0.05 significant level in parenthesis. The biases in all cases are less than 

0.021. Thus, the approximated value )7( np  can be used as the cut-off points of 

|1| )( iCOVRATIO  statistic at 0.05 level of significant for any sample of size n and 

2p . 
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Table 8.4: Means of the percentage points for the null distribution of 

|1| )( iCOVRATIO   

n 10 20 30 

90% 1.161 0.188 0.539 0.027 0.355 0.017 

95% 1.421 0.066 0.685 0.067 0.451 0.006 

99% 1.682 0.175 0.826 0.026 0.606 0.082 

(7p/n) 1.4 (0.021)* 0.7 (-0.015)* 0.467 (-0.015)* 

 

n 40 50 60 

90% 0.261 0.013 0.204 0.014 0.178 0.008 

95% 0.343 0.005 0.264 0.003 0.234 0.004 

99% 0.433 0.023 0.320 0.018 0.265 0.018 

(7p/n) 0.35 (-0.007)* 0.28 (-0.016)* 0.233 (0.001)* 

 

n 70 80 90 

90% 0.154 0.009 0.133 0.009 0.122 0.004 

95% 0.189 0.010 0.171 0.003 0.139 0.005 

99% 0.233 0.028 0.198 0.020 0.178 0.009 

(7p/n) 0.2 (-0.011)* 0.175 (-0.004)* 0.156 (-0.016)* 

 

n 100 110 120 

90% 0.112 0.006 0.099 0.003 0.095 0.007 

95% 0.128 0.009 0.122 0.003 0.111 0.006 

99% 0.162 0.017 0.140 0.004 0.135 0.012 

(7p/n) 0.14 (-0.012)* 0.127 (-0.005)* 0.117 (-0.006)* 

 

n 130 140 150 

90% 0.089 0.003 0.083 0.006 0.076 0.003 

95% 0.105 0.003 0.100 0.009 0.090 0.004 

99% 0.130 0.006 0.125 0.011 0.106 0.006 

(7p/n) 0.108 (-0.002)* 0.1 (0.000) 0.093 (-0.003)* 

* The bias of 95% cut-off-points from the corresponding value of (7p/n). 

 

8.4.3  Power of performance of COVRATIO statistic 

 

This subsection examines the performance of |1| )( iCOVRATIO  statistic through 

numerical and simulation studies. Part (i) describes the used algorithm and part (ii) 

discusses the obtained results. 

 

(i) Description of simulation process 

Monte Carlo simulation method is used to examine the performance of 

|1| )( iCOVRATIO statistic for detecting influential observations in the simple circular 
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regression model. Samples of five different sizes n = 30, 70, 100 and 150 are used. We 

follow similar procedures described in Subsection 8.4.2(a) to generate the data. In 

addition, we let the observation at position ][d , say  ][dy , be contaminated such that 

2mod,][][* dydy , 

where ][* dy  is the value of ][dy  after contamination,  is the degree of contamination 

in the range 10 . The generated data of X  and Y  are then fitted by using model 

(7.3) and COV  is calculated using equation (8.5). Consequently, by excluding the ith 

row from sample, for ni ,...,1  and refitting the reduced data we calculate 

)( iCOVRATIO  by using equation (8.6). Finally, we specify the maximum value of 

|1| )( iCOVRATIO  statistic. 

 

The process is repeated for 2000 times. The power of performance of 

|1| )( iCOVRATIO  statistic is examined by computing the percentage of correct 

detection of the contaminated observation at position ][d .  

 

(ii) Discussion 

Three main factors are considered in the discussion on the power of performance 

of |1| )( iCOVRATIO  statistic, namely, the level of contamination , concentration 

parameter and the sample size n. The complete results of the power of performance 

are given in Appendix (A.7). 

 

Figure 8.6 illustrates the power of performance of |1| )( iCOVRATIO  statistic 

for 70n  and four values of the concentration parameter 5 , 10, 30 and 50. It is 

shown that the power of performance is an increasing function of concentration 

parameter . As the concentration parameter increases, the power of performance also 
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increases. The power of performance highly depends on the level of contamination . 

On the other hand, the power of performance is a decreasing function of sample size n 

as shown in Figure 8.7. 
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Figure 8.6: Power of performance for |1| )( iCOVRATIO  statistic, for 70n  
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Figure 8.7: Power of performance for |1| )( iCOVRATIO  statistic, for 10  
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8.5  Practical example 

  

This section considers the wind direction data, which has been described in 

Chapter 3 and fitted in Chapter 7. Several numerical and graphical methods have 

identified observations numbered 38 and 111 as outliers. The numerical methods which 

are discussed in this chapter will be applied to the data in order to identify possible 

influential observations. 

 

8.5.1  Mean circular error 

 

The estimated concentration parameter is 338.7ˆ  and the sample 

size 129n . The mean circular error for full data set is MCEc = 0.071 and MCEs = 

0.127. From Tables 8.1 and 8.2, the corresponding cut-off points at 0.05 significant 

level for DMCEcand DMCEs statistics are 0.005 and 0.004, respectively. The 

|MCEc-MCEc| -i)(  and |MCEs-MCEs| -i)(  statistics are calculated and the results are 

plotted in Figures 8.8 and 8.9 respectively. It is obvious that observations number 38 

and 111 exceed the cut-off points as shown by dash line in Figures 8.8 and 8.9. 
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  Figure 8.8: DMCEc statistic for wind data Figure 8.9: DMCEs statistic for wind data 
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8.5.2  Approximate distribution of mean circular error statistics  

 

The )( jMDC  statistic is calculated for wind direction data and the values of statistic 

are plotted in Figures 8.10. The cut off point is 2

05.0,1
= 3.841 as shown by the dash line. 

Hence, we conclude that the )( jMDC  statistic has successfully identified observations 

numbered 38 and 111 as influential observations. The results of )( jMDS  is similar to 

the )( jMDC  . 

 

8.5.3  COVRATIO statistic 

 

The determinant of coefficients covariance matrix for full data set COV  is 

71089.2  and the corresponding cut-off point is 0.108. The 1iCOVRATIO statistic 

values for wind direction data are plotted in Figure 8.11. It can be seen that the 

1iCOVRATIO  statistic values for observations numbered 38 and 111 exceed the 

cut-off point. 
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   Figure 8.10: 
iMDC  statistic for wind data        Figure 8.11: 1iCOVRATIO  statistic for 

wind data 

 



 142 

8.6  Summary 

 

Five statistics to identify influential observations in circular regression are 

proposed using row deletion approach. These statistics can be extended to the case of 

multiple influential observations by obtaining the appropriate cut-off points or by 

considering the difference by the approximate distribution of the full and reduced data 

follow Chi-squares with the reduction as degree of freedom.  

 

Generally, the proposed tests perform competitively well and they are able to 

identify the same points identified in Chapter 7 as outliers.  
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CHAPTER NINE 

CONCLUSIONS 

 

9.1  Summary 

 

This study aims to shed the light on some problems of outliers in circular data. 

The lack of published work in this area motivates the researcher to propose new 

techniques for detecting outliers. We present important and significant works on the 

detection of outliers in circular samples and simple circular regression via several 

numerical and graphical techniques. 

 

9.2  Significance of the study 

 

This study has involved new methodological developments in three main 

aspects: 

 Application of the approximation technique of circular variable into linear variables.  

 Development of alternative procedures to detect outliers in univariate circular 

samples. 

 Proposal on new techniques to identify possible outliers in circular regression.  

 

Firstly, through simulation studies, it was found that the approximation of 

samples from von Mises distribution by normal distribution depends on the sample size 

n and concentration parameter . For small sample size ( 20n ), samples are 

approximated by normal distribution if the concentration parameter 2 . For larger 

samples, the concentration parameter should be larger than 4. 
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Secondly, two new tests of discordancy based on circular distance and chord 

lengths were proposed. The cut-off points and the power of performance were obtained. 

The simulation results showed that the new tests performed better than other known 

available tests. Moreover, they are easier to be used and interpreted by the practitioners. 

Discussion on the approximate distribution of the tests for samples from von Mises 

distribution with a large concentration parameter was presented. 

 

Thirdly, circular boxplot was developed to identify possible outliers in circular 

samples. Five circular summary statistics are used. The circular median is obtained 

using the definition given by Fisher (1993) and subsequently was extended to obtain the 

values of the first and third quartiles. Extensive simulation work was used to find 

suitable circular boxplot criterion CIQR  where  is the resistant constant. Several 

interesting results were observed:  

(i) There is a functional relationship between CIQR (in radians) and concentration 

parameter such that 
1

lnCIQR  for large . 

(ii) The whiskers of the circular boxplot overlap if 5.0)ln( . 

(iii) The circular boxplot criterion depends on the concentration parameter. For large 

concentration 3  the appropriate resistant constant is between 2 and 2.7, while 

for small concentration 3  the values of resistant constant can be 21 . 

 

Furthermore, we investigated the power of performances of the proposed 

circular boxplot. The results suggested that the proposed procedure was more effective 

for large concentration parameter since the observations for small  tend to be 

distributed uniformly. The power of the circular boxplot also increases gradually as the 

sample size n increases. We then developed the diagrammatical representation of the 

circular boxplot in S-Plus environment and applied on two real circular data sets. 
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Fourthly, the problem of identifying outliers in simple regression model for 

circular variable was considered. A new definition of circular residuals 
Ar  was proposed 

based on the circular distance. Simulations studies showed that 
Ar  satisfied the model 

assumptions. The circular residuals Ar  successfully identified possible outliers in the 

model by applying several numerical tests and graphical techniques described in this 

study. 

 

Fifthly, two alternative statistics based on the circular distance between the 

observed and fitted values were proposed. Row deletion approach was used to 

investigate the effect of excluding one observation at a time. The cut-off points for both 

statistics are obtained and discussed, and the power of performance were investigated 

through simulation. It was found that the power of performance is a decreasing function 

of sample size n but an increasing function of the concentration parameter. The 

approximated distributions for both statistics are shown to follow Chi-square 

distribution with one degree of freedom. 

 

Sixthly, the COVRATIO statistic was extended to the circular case. The 

percentiles were obtained through simulations. It was found that )7( np  is an 

appropriate estimated cut-off points of 1iCOVRATIO  statistic at 0.05 level of 

significance, where p is the number of terms and n is the sample size. The power of 

performance is an increasing function of concentration parameter , while it is a  

decreasing function of the sample size n.  

 

Finally, throughout this study, we used two real data sets for illustration. The 

proposed detection methods were able to detect outliers in the circular data.  
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9.3 Further research 

 

There are various possibilities for further research in this area. Some suggestions 

are given as follows: 

 

(i) To extend the procedures of the detection of outliers to other circular regression 

models. 

(ii) To extend the procedures of the detection of outliers to the circular functional 

relationship model. 

(iii) To carry out more studies on the diagnostics checking on the circular regression 

models. 

(iv)  To develop some effective procedures to detect multiple outliers as in circular 

regression models. 

(v) To develop comprehensive and easy-to-use software for circular data analysis.  

 

We recognize that there are still many problems ready to be explored in circular 

statistics, and it is fascinating for statisticians to work on them. 
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Appendix 1 

 Wind Direction Data 
 

 

Obs. 

No. 

Radar Anchored Buoy  

Obs. 

No. 

Radar Anchored Buoy 

Time Obs. Time Obs. Time Obs. Time Obs. 

1 1.615 0.79 1.618 1.154 33 3.823 5.406 3.826 5.744 

2 1.656 0.715 1.66 1.154 34 3.865 5.472 3.868 5.547 

3 1.698 0.975 1.701 1.007 35 3.906 5.401 3.91 5.498 

4 1.74 0.97 1.743 1.178 36 3.948 5.42 3.951 5.4 

5 1.781 0.993 1.785 0.859 37 3.99 5.276 3.993 5.449 

6 1.823 0.902 1.826 1.007 38 4.031 1.728 4.035 4.786 

7 1.837 0.943 1.847 1.056 39 4.406 5.512 4.41 5.449 

8 2.406 1.728 2.41 1.4 40 4.448 5.486 4.451 5.178 

9 2.448 1.445 2.451 1.497 41 4.49 5.444 4.493 5.62 

10 2.49 1.679 2.493 1.693 42 4.531 5.518 4.535 5.13 

11 2.531 1.703 2.535 2.012 43 4.559 5.505 4.576 4.541 

12 2.573 1.862 2.576 1.792 44 9.573 5.558 9.576 5.571 

13 2.615 1.726 2.618 1.766 45 9.615 5.42 9.618 5.62 

14 2.656 1.79 2.66 1.669 46 9.656 5.398 9.66 5.473 

15 2.698 1.831 2.701 1.4 47 9.698 5.334 9.701 5.327 

16 2.726 1.719 2.743 1.4 48 9.781 5.418 9.785 4.835 

17 2.781 1.646 2.785 1.375 49 9.823 5.418 9.826 5.032 

18 2.823 1.622 2.826 1.056 50 9.892 5.338 9.91 5.842 

19 2.865 1.342 2.868 1.178 51 9.948 5.47 9.951 5.571 

20 2.906 1.176 2.91 1.276 52 9.99 5.455 9.993 5.522 

21 2.948 1.325 2.951 1.693 53 10.073 5.555 10.076 5.473 

22 2.99 1.103 2.993 1.325 54 10.115 5.462 10.118 5.522 

23 3.406 6.131 3.41 6.062 55 10.156 5.401 10.16 5.522 

24 3.448 5.719 3.451 5.988 56 10.198 5.316 10.201 5.376 

25 3.49 5.713 3.493 5.988 57 10.24 5.439 10.243 5.081 

26 3.531 5.487 3.535 5.498 58 10.406 5.408 10.41 5.473 

27 3.573 5.742 3.576 5.276 59 10.448 5.431 10.451 5.449 

28 3.615 5.728 3.618 5.302 60 10.49 5.473 10.493 5.915 

29 3.656 5.61 3.66 5.62 61 10.531 5.46 10.535 5.351 

30 3.698 5.463 3.701 5.744 62 10.573 5.364 10.576 5.571 

31 3.74 5.427 3.743 5.644 63 10.615 5.444 10.618 5.376 

32 3.781 5.418 3.785 5.669 64 10.656 5.35 10.66 5.327 

65 10.698 5.202 10.701 4.983 70 10.906 5.238 10.91 4.417 

66 10.74 5.161 10.743 4.786 71 10.948 4.97 10.951 5.007 

67 10.781 5.062 10.785 4.908 72 10.99 4.947 10.993 5.473 

68 10.823 5.145 10.826 4.517 73 11.031 4.887 11.035 5.4 

69 10.865 5.212 10.868 4.835 74 11.073 4.872 11.076 4.859 
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Obs. 

No. 

Radar Anchored Buoy  

Obs. 

No. 

Radar Anchored Buoy 

Time Obs. Time Obs. Time Obs. Time Obs. 

75 11.115 4.589 11.118 4.859 103 20.906 0.237 20.91 0.171 

76 11.156 4.51 11.16 4.761 104 20.948 0.045 20.951 0.295 

77 11.281 4.319 11.285 4.639 105 20.99 6.241 20.993 6.259 

78 11.323 4.427 11.326 4.664 106 21.031 0.248 21.035 0.319 

79 11.337 4.436 11.347 4.664 107 21.073 0.578 21.076 0.539 

80 11.406 4.451 11.41 4.074 108 21.087 0.627 21.097 0.81 

81 12.198 3.84 12.201 4.295 109 21.406 0.251 21.41 6.161 

82 12.24 3.819 12.243 4.098 110 21.448 5.299 21.451 5.473 

83 12.281 4.159 12.285 4.173 111 21.49 3.749 21.493 5.62 

84 12.323 3.987 12.326 4.122 112 21.531 1.876 21.535 2.012 

85 19.823 5.506 19.826 5.817 113 21.573 1.776 21.576 1.963 

86 19.865 5.509 19.868 5.571 114 21.615 1.786 21.618 1.841 

87 19.906 5.643 19.91 5.571 115 21.656 1.658 21.66 1.89 

88 19.948 5.707 19.951 5.596 116 21.684 1.377 21.701 1.497 

89 19.99 5.727 19.993 5.964 117 21.74 1.305 21.743 1.669 

90 20.031 5.685 20.035 5.547 118 21.781 1.309 21.785 1.325 

91 20.073 5.696 20.076 6.161 119 21.823 1.337 21.826 1.644 

92 20.115 5.745 20.118 6.037 120 21.865 1.198 21.868 1.571 

93 20.142 5.837 20.16 5.915 121 21.906 1.15 21.91 1.08 

94 20.531 1.146 20.535 1.546 122 21.948 1.047 21.951 1.129 

95 20.573 1.074 20.576 1.866 123 21.99 0.97 21.993 0.466 

96 20.615 1.201 20.618 1.717 124 22.031 0.998 22.035 0.981 

97 20.656 1.253 20.66 1.89 125 22.073 1.071 22.076 1.007 

98 20.698 1.032 20.701 1.89 126 22.531 0.793 22.535 0.834 

99 20.74 1.093 20.743 1.988 127 22.573 0.753 22.576 1.056 

100 20.781 0.505 20.785 6.137 128 22.615 0.573 22.618 0.932 

101 20.823 0.234 20.826 0.393 129 22.656 0.437 22.66 0.761 

102 20.865 0.275 20.868 0.271      
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Appendix 2 

Power of Performance of Discordancy Statistics 
n=5    P1     P3     P5    P1-P3   

 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0.06 0.01 0.01 0.04 0.04 0.30 0.06 0.04 0.00 0.00 0.00 0.00 0.00 
 0.1 0.01 0.01 0.06 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.05 0.05 0.31 0.06 0.05 0.00 0.00 0.00 0.00 0.00 
 0.2 0.02 0.02 0.08 0.01 0.01 0.01 0.02 0.08 0.01 0.01 0.07 0.06 0.32 0.07 0.05 0.00 0.00 0.00 0.00 0.00 
 0.3 0.04 0.03 0.12 0.03 0.02 0.04 0.03 0.12 0.03 0.02 0.10 0.08 0.33 0.09 0.06 0.00 0.00 0.00 0.00 0.00 
 0.4 0.04 0.05 0.16 0.05 0.04 0.04 0.04 0.16 0.05 0.04 0.10 0.10 0.37 0.11 0.08 0.00 0.00 0.00 0.00 0.00 
κ=2 0.5 0.08 0.08 0.21 0.08 0.08 0.08 0.08 0.21 0.08 0.08 0.15 0.15 0.39 0.14 0.15 0.00 0.00 0.00 0.00 0.00 
 0.6 0.11 0.12 0.27 0.12 0.13 0.11 0.11 0.27 0.12 0.13 0.17 0.18 0.41 0.19 0.21 0.00 0.00 0.00 0.00 0.00 
 0.7 0.18 0.19 0.32 0.19 0.22 0.18 0.19 0.32 0.19 0.22 0.25 0.27 0.45 0.27 0.30 0.00 0.00 0.00 0.00 0.00 
 0.8 0.23 0.25 0.35 0.25 0.26 0.23 0.24 0.35 0.25 0.26 0.31 0.32 0.46 0.33 0.34 0.00 0.00 0.00 0.00 0.00 
 0.9 0.28 0.30 0.38 0.29 0.29 0.28 0.29 0.37 0.29 0.29 0.35 0.37 0.47 0.36 0.35 0.00 0.00 0.00 0.00 0.00 
 1 0.30 0.32 0.37 0.31 0.33 0.30 0.32 0.38 0.31 0.33 0.36 0.39 0.48 0.38 0.42 0.00 0.00 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.01 0.01 0.07 0.01 0.01 0.01 0.01 0.07 0.01 0.01 0.04 0.04 0.31 0.04 0.03 0.00 0.00 0.00 0.00 0.00 
 0.1 0.02 0.02 0.09 0.02 0.02 0.02 0.02 0.09 0.02 0.02 0.07 0.09 0.35 0.08 0.09 0.00 0.00 0.00 0.00 0.00 
 0.2 0.06 0.07 0.16 0.07 0.07 0.06 0.07 0.16 0.07 0.07 0.16 0.17 0.41 0.17 0.16 0.00 0.00 0.00 0.00 0.00 
 0.3 0.18 0.19 0.29 0.18 0.21 0.18 0.19 0.29 0.18 0.21 0.30 0.31 0.48 0.31 0.35 0.00 0.00 0.00 0.00 0.00 
 0.4 0.37 0.36 0.42 0.38 0.36 0.37 0.35 0.42 0.38 0.36 0.50 0.47 0.57 0.50 0.48 0.00 0.00 0.00 0.00 0.00 
κ=5 0.5 0.62 0.59 0.57 0.62 0.61 0.62 0.59 0.57 0.62 0.61 0.70 0.66 0.64 0.70 0.70 0.00 0.00 0.00 0.00 0.00 
 0.6 0.80 0.77 0.68 0.80 0.77 0.80 0.77 0.68 0.80 0.77 0.85 0.81 0.72 0.85 0.83 0.00 0.00 0.00 0.00 0.00 
 0.7 0.92 0.90 0.77 0.92 0.92 0.92 0.90 0.77 0.92 0.92 0.94 0.92 0.78 0.94 0.95 0.00 0.00 0.00 0.00 0.00 
 0.8 0.97 0.96 0.83 0.97 0.98 0.97 0.96 0.83 0.97 0.98 0.98 0.97 0.84 0.98 0.99 0.00 0.00 0.00 0.00 0.00 
 0.9 0.99 0.99 0.88 0.99 0.99 0.99 0.99 0.88 0.99 0.99 1.00 0.99 0.88 1.00 0.99 0.00 0.00 0.00 0.00 0.00 
 1 1.00 0.99 0.88 1.00 1.00 1.00 0.99 0.88 1.00 1.00 1.00 0.99 0.88 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.01 0.01 0.06 0.01 0.02 0.01 0.01 0.06 0.01 0.02 0.04 0.03 0.31 0.03 0.09 0.00 0.00 0.00 0.00 0.00 
 0.1 0.03 0.02 0.10 0.03 0.04 0.03 0.02 0.10 0.03 0.04 0.10 0.09 0.35 0.10 0.13 0.00 0.00 0.00 0.00 0.00 
 0.2 0.13 0.12 0.21 0.13 0.11 0.13 0.12 0.21 0.13 0.11 0.26 0.24 0.44 0.26 0.23 0.00 0.00 0.00 0.00 0.00 
 0.3 0.32 0.28 0.38 0.32 0.32 0.32 0.28 0.38 0.32 0.32 0.47 0.40 0.56 0.46 0.44 0.00 0.00 0.00 0.00 0.00 

 0.4 0.60 0.55 0.55 0.60 0.57 0.60 0.54 0.55 0.60 0.57 0.69 0.62 0.63 0.69 0.67 0.00 0.00 0.00 0.00 0.00 
κ=7 0.5 0.85 0.81 0.75 0.84 0.84 0.85 0.81 0.75 0.84 0.84 0.88 0.84 0.79 0.88 0.88 0.00 0.00 0.00 0.00 0.00 
 0.6 0.95 0.93 0.83 0.95 0.94 0.95 0.93 0.83 0.95 0.94 0.97 0.94 0.84 0.97 0.97 0.00 0.00 0.00 0.00 0.00 

 0.7 0.99 0.98 0.89 0.98 0.99 0.99 0.98 0.89 0.98 0.99 0.99 0.98 0.90 0.99 0.99 0.00 0.00 0.00 0.00 0.00 

 0.8 1.00 0.99 0.95 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 0.99 0.96 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 0.9 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00 
 1 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00 
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Appendix 2, continued. 
n=10    P1     P3     P5    P1-P3   

 λ C D M chord A C D M chord A C D M Chord A C D M chord A 

 0 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.04 0.03 0.09 0.05 0.03 0.00 0.00 0.00 0.00 0.00 
 0.1 0.00 0.01 0.01 0.01 0.01 0.00 0.01 0.01 0.01 0.01 0.04 0.04 0.10 0.06 0.04 0.00 0.00 0.00 0.00 0.00 
 0.2 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.05 0.05 0.10 0.06 0.05 0.00 0.00 0.00 0.00 0.00 
 0.3 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.07 0.05 0.13 0.07 0.06 0.00 0.00 0.00 0.00 0.00 
 0.4 0.03 0.02 0.04 0.02 0.02 0.03 0.02 0.04 0.02 0.02 0.08 0.06 0.12 0.07 0.07 0.00 0.00 0.00 0.00 0.00 
κ=2 0.5 0.04 0.03 0.05 0.03 0.03 0.04 0.03 0.05 0.03 0.03 0.09 0.07 0.12 0.08 0.08 0.00 0.00 0.00 0.00 0.00 
 0.6 0.07 0.06 0.07 0.06 0.07 0.07 0.06 0.07 0.07 0.07 0.13 0.11 0.13 0.12 0.13 0.00 0.00 0.00 0.00 0.00 
 0.7 0.12 0.10 0.10 0.10 0.10 0.12 0.09 0.10 0.10 0.10 0.18 0.14 0.15 0.16 0.15 0.00 0.00 0.00 0.00 0.00 
 0.8 0.14 0.13 0.11 0.15 0.14 0.14 0.12 0.11 0.15 0.14 0.19 0.17 0.14 0.20 0.19 0.00 0.00 0.00 0.00 0.00 
 0.9 0.21 0.17 0.13 0.19 0.18 0.21 0.16 0.13 0.19 0.18 0.26 0.20 0.16 0.23 0.24 0.00 0.00 0.00 0.00 0.00 
 1 0.21 0.18 0.13 0.20 0.21 0.21 0.18 0.13 0.20 0.21 0.26 0.22 0.17 0.25 0.26 0.00 0.01 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.07 0.05 0.12 0.06 0.05 0.00 0.00 0.00 0.00 0.00 
 0.1 0.01 0.01 0.03 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.08 0.08 0.17 0.08 0.08 0.00 0.00 0.00 0.00 0.00 
 0.2 0.04 0.04 0.06 0.04 0.04 0.04 0.04 0.06 0.04 0.04 0.15 0.14 0.19 0.14 0.13 0.00 0.00 0.00 0.00 0.00 
 0.3 0.15 0.13 0.14 0.14 0.11 0.15 0.13 0.14 0.14 0.11 0.28 0.25 0.27 0.28 0.22 0.00 0.00 0.00 0.00 0.00 
 0.4 0.31 0.29 0.23 0.30 0.31 0.31 0.28 0.23 0.30 0.31 0.44 0.41 0.33 0.43 0.44 0.00 0.00 0.00 0.00 0.00 
κ=5 0.5 0.57 0.51 0.40 0.57 0.55 0.57 0.51 0.40 0.57 0.56 0.66 0.58 0.46 0.65 0.65 0.00 0.00 0.00 0.00 0.00 
 0.6 0.80 0.74 0.56 0.79 0.78 0.80 0.74 0.56 0.79 0.78 0.85 0.79 0.59 0.84 0.83 0.00 0.00 0.00 0.00 0.00 
 0.7 0.92 0.87 0.68 0.92 0.92 0.92 0.87 0.68 0.92 0.92 0.94 0.88 0.69 0.93 0.93 0.00 0.00 0.00 0.00 0.00 
 0.8 0.97 0.95 0.79 0.97 0.98 0.97 0.95 0.79 0.97 0.98 0.98 0.96 0.80 0.98 0.99 0.00 0.00 0.00 0.00 0.00 
 0.9 0.99 0.98 0.84 0.99 0.99 0.99 0.98 0.84 0.99 0.99 0.99 0.99 0.84 0.99 1.00 0.00 0.00 0.00 0.00 0.00 
 1 1.00 0.99 0.85 1.00 1.00 1.00 0.99 0.85 1.00 1.00 1.00 0.99 0.85 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.03 0.03 0.12 0.04 0.07 0.00 0.00 0.00 0.00 0.00 
 0.1 0.02 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.11 0.08 0.14 0.12 0.09 0.00 0.00 0.00 0.00 0.00 
 0.2 0.08 0.06 0.09 0.09 0.10 0.08 0.06 0.09 0.09 0.10 0.21 0.16 0.23 0.22 0.25 0.00 0.00 0.00 0.00 0.00 
 0.3 0.25 0.21 0.21 0.27 0.28 0.25 0.21 0.21 0.27 0.28 0.40 0.32 0.32 0.42 0.43 0.00 0.00 0.00 0.00 0.00 

 0.4 0.55 0.46 0.39 0.56 0.55 0.55 0.46 0.39 0.56 0.55 0.65 0.55 0.47 0.67 0.65 0.00 0.00 0.00 0.00 0.00 
κ=7 0.5 0.80 0.73 0.60 0.81 0.83 0.80 0.72 0.60 0.81 0.83 0.86 0.78 0.65 0.87 0.88 0.00 0.00 0.00 0.00 0.00 

 0.6 0.95 0.92 0.78 0.95 0.94 0.95 0.92 0.78 0.95 0.94 0.96 0.93 0.79 0.97 0.96 0.00 0.00 0.00 0.00 0.00 

 0.7 0.99 0.97 0.89 0.99 0.99 0.99 0.97 0.89 0.99 0.99 0.99 0.98 0.89 0.99 0.99 0.00 0.00 0.00 0.00 0.00 

 0.8 1.00 0.99 0.95 1.00 1.00 1.00 0.99 0.95 1.00 1.00 1.00 0.99 0.95 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 0.9 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 1 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 1.00 1.00 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00 
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Appendix 2, continued. 
n=20    P1     P3     P5    P1-P3   

 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.05 0.02 0.02 0.02 0.03 0.00 0.00 0.00 0.00 0.00 
 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.02 0.02 0.04 0.05 0.00 0.00 0.00 0.00 0.00 
 0.2 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.05 0.04 0.02 0.05 0.05 0.00 0.00 0.00 0.00 0.00 
 0.3 0.01 0.00 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.05 0.05 0.04 0.07 0.06 0.00 0.00 0.00 0.00 0.00 
 0.4 0.01 0.02 0.01 0.02 0.01 0.01 0.01 0.01 0.02 0.01 0.06 0.05 0.04 0.08 0.06 0.00 0.00 0.00 0.00 0.00 
κ=2 0.5 0.01 0.02 0.02 0.02 0.02 0.01 0.02 0.02 0.02 0.02 0.05 0.08 0.05 0.08 0.08 0.00 0.00 0.00 0.00 0.00 
 0.6 0.04 0.04 0.02 0.03 0.03 0.04 0.03 0.02 0.03 0.03 0.09 0.09 0.05 0.08 0.10 0.00 0.00 0.00 0.00 0.00 
 0.7 0.05 0.06 0.03 0.06 0.07 0.05 0.05 0.03 0.06 0.07 0.10 0.10 0.05 0.11 0.15 0.00 0.00 0.00 0.00 0.00 
 0.8 0.08 0.09 0.03 0.09 0.09 0.08 0.08 0.03 0.09 0.10 0.13 0.13 0.05 0.14 0.16 0.00 0.00 0.00 0.00 0.00 
 0.9 0.10 0.10 0.04 0.11 0.11 0.10 0.10 0.04 0.11 0.11 0.15 0.14 0.06 0.16 0.16 0.00 0.00 0.00 0.00 0.00 
 1 0.11 0.11 0.04 0.12 0.14 0.11 0.11 0.04 0.12 0.14 0.15 0.15 0.06 0.17 0.20 0.00 0.00 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.02 0.02 0.05 0.00 0.00 0.00 0.00 0.00 
 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.09 0.07 0.10 0.09 0.08 0.00 0.00 0.00 0.00 0.00 
 0.2 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.11 0.11 0.11 0.11 0.11 0.00 0.00 0.00 0.00 0.00 
 0.3 0.08 0.07 0.08 0.08 0.09 0.08 0.07 0.08 0.08 0.09 0.21 0.18 0.20 0.19 0.21 0.00 0.00 0.00 0.00 0.00 
 0.4 0.23 0.20 0.17 0.21 0.24 0.23 0.19 0.17 0.21 0.24 0.37 0.31 0.28 0.34 0.37 0.00 0.00 0.00 0.00 0.00 
κ=5 0.5 0.48 0.43 0.35 0.47 0.47 0.48 0.42 0.35 0.47 0.47 0.59 0.52 0.43 0.57 0.57 0.00 0.00 0.00 0.00 0.00 
 0.6 0.73 0.64 0.55 0.72 0.73 0.73 0.64 0.55 0.72 0.73 0.79 0.70 0.60 0.78 0.78 0.00 0.00 0.00 0.00 0.00 
 0.7 0.88 0.82 0.69 0.87 0.90 0.88 0.82 0.69 0.87 0.90 0.91 0.84 0.71 0.90 0.92 0.00 0.00 0.00 0.00 0.00 
 0.8 0.96 0.93 0.82 0.96 0.96 0.96 0.93 0.82 0.96 0.96 0.98 0.94 0.83 0.97 0.97 0.00 0.00 0.00 0.00 0.00 
 0.9 0.99 0.97 0.90 0.99 0.99 0.99 0.97 0.90 0.99 0.99 0.99 0.97 0.90 0.99 0.99 0.00 0.00 0.00 0.00 0.00 
 1 1.00 0.99 0.93 1.00 1.00 1.00 0.99 0.93 1.00 1.00 1.00 0.99 0.93 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.07 0.04 0.06 0.00 0.00 0.00 0.00 0.00 
 0.1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.08 0.08 0.13 0.09 0.06 0.00 0.00 0.00 0.00 0.00 
 0.2 0.06 0.05 0.06 0.07 0.05 0.06 0.05 0.06 0.07 0.05 0.20 0.15 0.19 0.21 0.17 0.00 0.00 0.00 0.00 0.00 
 0.3 0.20 0.14 0.16 0.21 0.17 0.20 0.14 0.16 0.21 0.17 0.35 0.25 0.28 0.36 0.31 0.00 0.00 0.00 0.00 0.00 

 0.4 0.46 0.37 0.36 0.47 0.45 0.46 0.37 0.36 0.47 0.45 0.58 0.47 0.46 0.60 0.58 0.00 0.00 0.00 0.00 0.00 
κ=7 0.5 0.77 0.67 0.62 0.78 0.73 0.77 0.67 0.62 0.78 0.73 0.82 0.71 0.66 0.83 0.78 0.00 0.00 0.00 0.00 0.00 

 0.6 0.92 0.86 0.82 0.92 0.91 0.92 0.86 0.82 0.92 0.91 0.94 0.87 0.83 0.94 0.93 0.00 0.00 0.00 0.00 0.00 

 0.7 0.98 0.97 0.94 0.99 0.99 0.98 0.96 0.94 0.98 0.99 0.99 0.97 0.94 0.99 0.99 0.00 0.00 0.00 0.00 0.00 

 0.8 1.00 0.99 0.97 1.00 1.00 1.00 0.99 0.97 1.00 1.00 1.00 0.99 0.97 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 0.9 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 
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Appendix 2, continued. 
n=50    P1     P3     P5    P1-P3   

 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00 0.00 
 0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.05 0.00 0.00 0.00 0.00 0.00 
 0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 
 0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.05 0.00 0.00 0.00 0.00 0.00 
 0.4 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.01 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.00 
κ=2 0.5 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.03 0.01 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.00 
 0.6 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.01 0.02 0.05 0.02 0.01 0.08 0.08 0.00 0.00 0.00 0.00 0.00 
 0.7 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.03 0.03 0.08 0.05 0.01 0.08 0.09 0.00 0.00 0.00 0.00 0.00 
 0.8 0.01 0.00 0.00 0.04 0.04 0.01 0.00 0.00 0.03 0.04 0.09 0.07 0.02 0.09 0.09 0.00 0.00 0.00 0.00 0.00 
 0.9 0.01 0.01 0.00 0.04 0.05 0.01 0.01 0.00 0.04 0.05 0.09 0.08 0.03 0.10 0.09 0.00 0.00 0.00 0.00 0.00 
 1 0.02 0.01 0.01 0.05 0.05 0.02 0.01 0.01 0.05 0.04 0.10 0.09 0.05 0.10 0.10 0.00 0.00 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.10 0.10 0.00 0.01 0.00 0.00 0.00 
 0.1 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.01 0.00 0.00 0.00 
 0.2 0.01 0.01 0.00 0.01 0.01 0.01 0.00 0.00 0.01 0.01 0.05 0.00 0.00 0.08 0.08 0.00 0.01 0.00 0.00 0.00 
 0.3 0.03 0.01 0.00 0.05 0.05 0.03 0.01 0.00 0.05 0.05 0.10 0.02 0.00 0.17 0.16 0.00 0.01 0.00 0.00 0.00 
 0.4 0.09 0.05 0.01 0.14 0.14 0.09 0.02 0.00 0.14 0.14 0.17 0.05 0.00 0.26 0.26 0.00 0.01 0.00 0.00 0.00 
κ=5 0.5 0.23 0.19 0.13 0.34 0.34 0.23 0.19 0.13 0.34 0.34 0.31 0.17 0.10 0.46 0.46 0.00 0.01 0.00 0.00 0.00 
 0.6 0.45 0.37 0.23 0.57 0.57 0.45 0.37 0.23 0.57 0.57 0.51 0.35 0.25 0.65 0.64 0.00 0.00 0.00 0.00 0.00 
 0.7 0.72 0.68 0.41 0.81 0.81 0.72 0.68 0.41 0.81 0.81 0.76 0.70 0.45 0.85 0.85 0.00 0.00 0.00 0.00 0.00 
 0.8 0.87 0.72 0.49 0.93 0.93 0.87 0.72 0.49 0.93 0.93 0.89 0.76 0.50 0.95 0.95 0.00 0.00 0.00 0.00 0.00 
 0.9 0.96 0.86 0.56 0.97 0.97 0.96 0.86 0.56 0.97 0.97 0.98 0.88 0.55 0.99 0.99 0.00 0.00 0.00 0.00 0.00 
 1 0.99 0.95 0.78 0.99 0.99 0.99 0.95 0.78 0.99 0.99 0.99 0.96 0.79 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

                      
 λ C D M chord A C D M chord A C D M chord A C D M chord A 

 0 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 
 0.1 0.01 0.01 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.10 0.01 0.00 0.07 0.07 0.00 0.00 0.00 0.00 0.00 
 0.2 0.04 0.02 0.01 0.03 0.02 0.04 0.01 0.01 0.03 0.02 0.20 0.02 0.01 0.13 0.12 0.00 0.01 0.00 0.00 0.00 
 0.3 0.17 0.10 0.05 0.13 0.12 0.17 0.10 0.05 0.13 0.12 0.37 0.10 0.04 0.27 0.27 0.00 0.01 0.00 0.00 0.00 

 0.4 0.41 0.35 0.09 0.34 0.34 0.41 0.34 0.09 0.34 0.34 0.57 0.34 0.11 0.48 0.47 0.00 0.01 0.00 0.00 0.00 
κ=7 0.5 0.70 0.59 0.20 0.65 0.64 0.70 0.59 0.20 0.65 0.64 0.79 0.58 0.22 0.73 0.72 0.00 0.00 0.00 0.00 0.00 

 0.6 0.92 0.80 0.32 0.89 0.88 0.92 0.80 0.32 0.89 0.88 0.94 0.81 0.30 0.91 0.90 0.00 0.00 0.00 0.00 0.00 

 0.7 0.98 0.89 0.36 0.98 0.97 0.98 0.89 0.36 0.98 0.97 0.99 0.88 0.37 0.99 0.98 0.00 0.00 0.00 0.00 0.00 

 0.8 1.00 0.95 0.53 1.00 1.00 1.00 0.95 0.53 1.00 1.00 1.00 0.96 0.50 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 0.9 1.00 0.99 0.76 1.00 1.00 1.00 0.99 0.76 1.00 1.00 1.00 0.99 0.73 1.00 1.00 0.00 0.00 0.00 0.00 0.00 

 1 1.00 0.99 0.89 1.00 1.00 1.00 0.99 0.89 1.00 1.00 1.00 1.00 0.85 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
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Appendix 3 

Percentage points for )( jdN  

  n 

 Percentages 10 30 50 70 100 150 200 

 90% 10 0.0 0 0.0 0 0.0 0.0 
1 95% 20 0.0 0 0.0 0 0.0 0.0 

 99% 50 0.0 0 0.0 0 0.0 0.0 

 90% 40 56.7 66 65.7 64 66.0 65.5 
2 95% 40 70.0 76 74.3 71 72.0 70.5 

 99% 60 90.0 86 85.7 84 80.7 80.5 

 90% 40 56.7 68 72.9 79 85.3 88.0 

5 95% 40 66.7 78 81.4 86 91.3 94.5 
 99% 60 86.7 92 92.9 97 98.7 98.0 

 90% 40 56.7 64 67.1 73 76.7 79.5 

10 95% 40 63.3 74 74.3 79 82.7 84.5 
 99% 60 76.7 84 87.1 88 92.7 93.5 

 90% 40 53.3 60 65.7 70 75.3 75.5 
30 95% 40 63.3 68 74.3 77 81.3 80.0 

 99% 60 76.7 80 87.1 89 90.0 90.5 

 90% 40 53.3 62 65.7 70 73.3 75.5 
50 95% 40 60.0 70 71.4 76 78.7 81.5 

 99% 60 80.0 82 84.3 87 87.3 88.5 

 90% 40 53.3 62 67.1 69 72.0 76.5 

70 95% 40 60.0 68 74.3 75 78.0 81.5 
 99% 60 76.7 82 81.4 84 88.7 90.0 

 90% 40 56.7 62 64.3 68 73.3 76.0 

100 95% 40 63.3 70 71.4 73 79.3 80.0 
 99% 60 76.7 82 84.3 86 88.0 89.5 

 90% 40 53.3 60 64.3 69 74.0 77.0 
200 95% 40 60.0 68 71.4 76 80.0 83.5 

 99% 60 73.3 82 82.9 85 87.3 91.0 

 90% 40 53.3 62 65.7 68 73.3 76.0 
500 95% 40 63.3 70 72.9 75 78.7 80.0 

 99% 60 76.7 84 84.3 87 87.3 89.5 

 90% 40 53.3 60 67.1 67 73.3 77.0 

1000 95% 50 60.0 66 71.4 73 78.7 83.5 
 99% 60 76.7 80 82.9 85 87.3 91.0 
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Appendix 4 

Measures of Circular Boxplot 
n=5  υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=6 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)     CIQR d    B(υ,n)     

0.5 144.1 12.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.7 0.7  125.4 13.2 0.7 0.8 0.8 0.8 0.7 0.6 0.6 0.6 0.6 0.6 

1 129.2 11.1 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8  99.4 10.1 0.6 0.7 0.8 0.8 0.8 0.8 0.8 0.7 0.7 0.7 

2 95.3 8.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.8 0.9  65.3 7.0 0.6 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 

3 75.3 7.4 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9  51.4 5.8 0.6 0.7 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 

4 62.7 6.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9 0.9  43.2 5.1 0.6 0.7 0.8 0.9 0.9 0.9 0.9 1.0 1.0 1.0 

5 55.6 5.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.9  38.7 4.7 0.6 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.0 

6 50.1 5.4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  34.7 4.2 0.6 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0 

7 45.5 5.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  32.0 3.8 0.7 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0 

8 41.9 4.6 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  29.8 3.6 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0 

9 38.0 4.3 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  28.1 3.5 0.6 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0 

10 36.0 4.0 0.9 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0  26.4 3.3 0.7 0.8 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.0 

κ      B3(υ,n)           B3(υ,n)     

0.5   0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1    0.0 0.0 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 

1   0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1 0.1 0.1    0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.2 0.2 0.2 

2   0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 0.1 0.1    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

3   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)           A(υ,n)     

0.5   6.4 7.0 8.3 10.8 13.4 12.6 13.1 11.6 11.1 11.3    4.5 3.7 5.4 9.1 13.8 16.1 16.5 15.5 14.5 14.1 

1   4.7 5.0 6.6 9.4 10.8 10.6 10.8 11.1 10.2 9.9    5.8 4.2 3.5 4.5 6.8 8.2 9.9 11.5 13.2 13.2 

2   1.6 1.6 2.2 2.7 4.3 5.9 6.3 6.8 7.5 7.2    6.4 4.6 3.0 2.3 1.8 1.8 2.0 2.7 3.6 6.1 

3   1.1 0.7 0.4 0.7 1.7 2.2 3.4 4.0 5.1 5.8    6.0 4.3 2.6 1.9 1.4 1.0 0.8 0.9 1.0 1.7 

4   0.9 0.4 0.3 0.3 0.6 0.7 1.3 2.0 2.9 3.5    5.5 3.9 2.3 1.8 1.2 0.7 0.6 0.5 0.4 0.5 

5   0.8 0.3 0.2 0.1 0.3 0.3 0.5 0.7 1.5 2.8    5.3 3.5 2.0 1.5 1.0 0.6 0.5 0.4 0.4 0.2 

6   1.0 0.5 0.3 0.1 0.3 0.1 0.2 0.5 0.9 1.7    5.1 3.5 2.1 1.5 0.9 0.6 0.4 0.3 0.3 0.1 

7   1.0 0.4 0.2 0.1 0.2 0.0 0.1 0.1 0.4 1.1    5.1 3.5 2.0 1.5 1.0 0.6 0.5 0.4 0.4 0.1 

8   1.2 0.6 0.3 0.2 0.2 0.0 0.1 0.1 0.4 0.7    5.2 3.5 2.2 1.5 1.0 0.5 0.4 0.3 0.2 0.1 

9   1.5 0.6 0.3 0.1 0.3 0.0 0.0 0.0 0.2 0.4    5.0 3.3 2.0 1.5 1.0 0.6 0.4 0.3 0.3 0.1 

10   1.5 0.6 0.3 0.2 0.4 0.0 0.0 0.0 0.2 0.2    5.2 3.4 2.1 1.5 1.1 0.6 0.5 0.4 0.3 0.1 

d is the circular distance between the mean and median in degrees 
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Appendix 4, continued. 
n=15 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=20 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)     CIQR d    B(υ,n)     

0.5 130.0 11.8 0.8 0.8 0.9 0.8 0.7 0.6 0.6 0.5 0.6 0.6  126.7 11.0 0.7 0.8 0.9 0.8 0.7 0.6 0.5 0.5 0.5 0.5 

1 99.9 8.6 0.6 0.7 0.8 0.9 0.9 0.8 0.8 0.7 0.7 0.6  95.5 7.6 0.4 0.6 0.8 0.8 0.9 0.9 0.8 0.8 0.7 0.5 

2 65.1 5.6 0.4 0.6 0.7 0.8 0.9 0.9 0.9 0.9 0.9 0.9  62.4 4.9 0.3 0.4 0.6 0.7 0.8 0.9 0.9 0.9 0.9 0.9 

3 50.4 4.7 0.5 0.6 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0  48.9 4.0 0.3 0.5 0.7 0.7 0.8 0.9 0.9 0.9 1.0 1.0 

4 43.0 4.1 0.5 0.6 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.0  40.9 3.5 0.4 0.5 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0 

5 38.0 3.8 0.5 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.0  36.1 3.3 0.4 0.5 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0 

6 34.4 3.4 0.5 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0 1.0  32.5 3.0 0.4 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

7 31.9 3.1 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0  29.9 2.7 0.4 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

8 29.6 3.0 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0  27.9 2.5 0.4 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

9 27.8 2.8 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0  26.3 2.5 0.4 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

10 26.3 2.7 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.0  24.8 2.3 0.4 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

                          

κ      B3(υ,n)           B3(υ,n)     

0.5   0.1 0.0 0.1 0.1 0.3 0.3 0.4 0.4 0.3 0.3    0.1 0.1 0.1 0.1 0.2 0.4 0.4 0.4 0.4 0.4 

1   0.1 0.1 0.0 0.0 0.1 0.1 0.2 0.2 0.3 0.3    0.2 0.1 0.0 0.0 0.0 0.1 0.1 0.2 0.3 0.4 

2   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

3   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)           A(υ,n)     

0.5   2.9 2.2 3.9 9.1 17.1 19.9 19.9 19.6 17.4 15.3    3.1 2.0 2.2 6.4 15.2 21.2 23.2 23.1 20.3 15.6 

1   5.5 3.6 2.2 2.6 4.8 8.4 10.2 13.6 15.6 17.0    6.1 3.8 2.0 1.6 2.6 5.7 8.6 11.7 14.7 19.3 

2   6.2 4.4 2.6 1.9 1.3 0.8 0.9 1.2 2.0 4.8    7.2 5.1 3.0 2.2 1.3 0.8 0.6 0.7 1.0 3.5 

3   5.5 3.9 2.3 1.6 0.9 0.6 0.4 0.3 0.3 0.6    6.2 4.4 2.4 1.8 1.1 0.7 0.5 0.3 0.3 0.2 

4   5.0 3.4 1.9 1.3 0.8 0.5 0.3 0.2 0.2 0.1    6.0 4.1 2.2 1.5 0.9 0.5 0.4 0.2 0.2 0.1 

5   4.9 3.3 1.8 1.2 0.7 0.4 0.3 0.2 0.1 0.0    5.9 3.9 2.0 1.3 0.8 0.4 0.3 0.2 0.1 0.1 

6   4.9 3.1 1.7 1.2 0.7 0.4 0.3 0.2 0.1 0.1    5.9 3.8 2.0 1.3 0.7 0.4 0.3 0.2 0.1 0.0 

7   4.8 3.1 1.6 1.1 0.6 0.3 0.2 0.2 0.1 0.0    5.8 3.7 1.9 1.2 0.7 0.4 0.2 0.2 0.1 0.0 

8   4.7 3.1 1.6 1.1 0.6 0.3 0.3 0.2 0.1 0.0    5.6 3.6 1.9 1.2 0.6 0.3 0.2 0.1 0.1 0.0 

9   4.8 3.1 1.7 1.1 0.6 0.4 0.3 0.2 0.1 0.0    5.7 3.7 1.9 1.2 0.6 0.3 0.2 0.2 0.1 0.0 

10   4.6 2.9 1.6 1.1 0.6 0.3 0.2 0.1 0.1 0.0    5.7 3.7 1.9 1.2 0.7 0.4 0.3 0.2 0.1 0.0 
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Appendix 4, continued. 
n=25 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=30 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)      CIQR d    B(υ,n)     

0.5 127.3 7.7 0.7 0.9 1.0 1.0 0.8 0.6 0.4 0.3 0.2 0.4  127.3 10.1 0.7 0.8 0.9 0.9 0.7 0.6 0.5 0.4 0.4 0.5 

1 93.3 4.5 0.1 0.3 0.7 0.9 1.0 1.0 1.0 0.9 0.8 0.4  94.2 6.4 0.3 0.5 0.7 0.8 0.9 0.9 0.9 0.8 0.7 0.5 

2 61.3 2.9 0.0 0.1 0.2 0.4 0.6 0.8 0.9 0.9 1.0 1.0  61.5 4.1 0.1 0.3 0.5 0.6 0.7 0.8 0.9 0.9 1.0 1.0 

3 47.5 2.5 0.0 0.1 0.3 0.5 0.6 0.8 0.8 0.9 0.9 1.0  48.2 3.3 0.2 0.3 0.5 0.7 0.8 0.9 0.9 0.9 1.0 1.0 

4 40.6 2.1 0.1 0.2 0.4 0.6 0.8 0.9 0.9 0.9 1.0 1.0  40.9 2.9 0.3 0.4 0.6 0.7 0.9 0.9 0.9 1.0 1.0 1.0 

5 36.0 1.9 0.1 0.2 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0  36.1 2.6 0.3 0.4 0.7 0.8 0.9 0.9 0.9 1.0 1.0 1.0 

6 32.5 1.7 0.1 0.2 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0  32.6 2.4 0.3 0.4 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

7 29.9 1.6 0.1 0.2 0.5 0.7 0.8 0.9 1.0 1.0 1.0 1.0  30.2 2.3 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

8 27.8 1.5 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0  28.0 2.1 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

9 26.2 1.4 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0  26.5 2.0 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

10 24.7 1.4 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0  25.0 1.9 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 1.0 

                          

κ      B3(υ,n)           B3(υ,n)     

0.5   0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.7 0.8 0.6    0.1 0.1 0.0 0.1 0.2 0.4 0.5 0.5 0.5 0.4 

1   0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.5    0.3 0.2 0.1 0.0 0.0 0.1 0.1 0.2 0.3 0.5 

2   0.8 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

3   0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

4   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)           A(υ,n)     

0.5   1.6 0.5 0.3 1.6 11.5 26.8 34.7 36.3 31.2 16.1    2.6 1.3 1.4 4.4 14.9 24.0 26.1 26.2 23.6 16.1 

1   6.8 3.8 1.1 0.4 0.2 1.1 2.8 6.2 14.6 28.8    6.5 3.8 1.7 1.0 1.2 3.6 6.2 9.8 16.3 22.0 

2   7.3 5.1 2.9 2.0 1.0 0.5 0.3 0.1 0.1 0.1    7.3 5.1 3.0 2.1 1.2 0.7 0.4 0.3 0.3 1.6 

3   6.3 4.2 2.2 1.5 0.8 0.5 0.3 0.2 0.1 0.0    6.4 4.2 2.3 1.6 0.9 0.5 0.3 0.2 0.1 0.1 

4   5.7 3.5 1.7 1.1 0.5 0.3 0.2 0.1 0.1 0.0    5.8 3.7 1.9 1.2 0.6 0.4 0.3 0.2 0.1 0.0 

5   5.4 3.3 1.5 0.8 0.4 0.2 0.1 0.1 0.0 0.0    5.6 3.6 1.8 1.2 0.6 0.3 0.2 0.1 0.1 0.0 

6   5.4 3.2 1.4 0.8 0.4 0.2 0.1 0.1 0.0 0.0    5.7 3.5 1.7 1.0 0.5 0.2 0.2 0.1 0.1 0.0 

7   5.3 3.1 1.4 0.8 0.3 0.1 0.1 0.0 0.0 0.0    5.4 3.3 1.6 1.0 0.5 0.2 0.1 0.1 0.0 0.0 

8   5.1 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.5 3.3 1.6 1.0 0.5 0.2 0.1 0.1 0.0 0.0 

9   5.2 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.1 3.1 1.5 0.9 0.4 0.2 0.1 0.1 0.0 0.0 

10   5.1 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.4 3.3 1.6 1.0 0.5 0.2 0.1 0.1 0.0 0.0 
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Appendix 4, continued. 
n=40 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=50 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)      CIQR d    B(υ,n)     

0.5 126.7 8.9 0.7 0.9 0.9 0.9 0.8 0.6 0.4 0.4 0.3 0.4  127.6 8.3 0.7 0.9 1.0 0.9 0.8 0.5 0.4 0.3 0.3 0.4 

1 93.7 5.5 0.2 0.4 0.7 0.9 0.9 0.9 0.9 0.9 0.7 0.5  93.5 4.9 0.1 0.4 0.7 0.9 1.0 1.0 0.9 0.9 0.7 0.4 

2 61.4 3.5 0.1 0.2 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0  61.1 3.2 0.0 0.1 0.3 0.4 0.6 0.8 0.9 0.9 1.0 1.0 

3 47.6 2.9 0.1 0.2 0.4 0.6 0.7 0.8 0.9 0.9 0.9 1.0  47.9 2.7 0.1 0.2 0.4 0.5 0.7 0.8 0.9 0.9 0.9 1.0 

4 40.5 2.6 0.2 0.3 0.5 0.7 0.8 0.9 0.9 0.9 1.0 1.0  40.6 2.3 0.1 0.2 0.5 0.6 0.8 0.9 0.9 0.9 1.0 1.0 

5 35.8 2.3 0.2 0.3 0.6 0.7 0.8 0.9 0.9 1.0 1.0 1.0  36.0 2.0 0.1 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 

6 32.3 2.1 0.2 0.3 0.6 0.7 0.9 0.9 1.0 1.0 1.0 1.0  32.6 1.9 0.1 0.3 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0 

7 30.0 2.0 0.2 0.4 0.6 0.7 0.9 0.9 1.0 1.0 1.0 1.0  30.1 1.8 0.1 0.3 0.6 0.7 0.9 0.9 1.0 1.0 1.0 1.0 

8 27.7 1.9 0.2 0.4 0.6 0.8 0.9 0.9 1.0 1.0 1.0 1.0  28.1 1.7 0.2 0.3 0.6 0.7 0.9 0.9 1.0 1.0 1.0 1.0 

9 26.0 1.7 0.2 0.4 0.6 0.8 0.9 0.9 1.0 1.0 1.0 1.0  26.2 1.5 0.1 0.3 0.6 0.7 0.9 0.9 1.0 1.0 1.0 1.0 

10 25.0 1.6 0.2 0.4 0.7 0.8 0.9 1.0 1.0 1.0 1.0 1.0  24.8 1.5 0.1 0.3 0.6 0.7 0.9 0.9 1.0 1.0 1.0 1.0 

                          

κ      B3(υ,n)           B3(υ,n)     

0.5   0.1 0.1 0.0 0.1 0.2 0.4 0.5 0.6 0.6 0.5    0.2 0.1 0.0 0.1 0.2 0.4 0.6 0.7 0.7 0.5 

1   0.5 0.3 0.1 0.0 0.0 0.0 0.1 0.1 0.3 0.5    0.6 0.3 0.1 0.0 0.0 0.0 0.1 0.1 0.3 0.5 

2   0.5 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

3   0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

4   0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

5   0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)           A(υ,n)     

0.5   2.2 0.9 0.7 2.8 13.1 24.8 29.5 29.9 27.3 16.9    1.9 0.7 0.5 2.5 12.8 27.0 31.5 33.3 28.0 16.6 

1   6.8 3.8 1.4 0.7 0.7 2.4 4.3 8.0 15.4 24.5    6.8 3.8 1.3 0.6 0.4 1.4 3.6 7.8 15.8 27.3 

2   7.5 5.2 3.0 2.1 1.2 0.6 0.4 0.3 0.2 0.7    7.4 5.1 2.9 2.0 1.1 0.5 0.3 0.2 0.1 0.4 

3   6.4 4.2 2.3 1.6 0.9 0.5 0.4 0.3 0.1 0.1    6.2 4.0 2.1 1.4 0.8 0.5 0.3 0.2 0.1 0.0 

4   6.0 3.7 1.9 1.2 0.6 0.4 0.2 0.2 0.1 0.0    5.7 3.6 1.8 1.1 0.6 0.3 0.2 0.1 0.1 0.0 

5   5.6 3.5 1.7 1.0 0.5 0.3 0.2 0.1 0.1 0.0    5.3 3.2 1.5 0.9 0.4 0.2 0.1 0.1 0.0 0.0 

6   5.5 3.3 1.6 0.9 0.4 0.2 0.1 0.1 0.0 0.0    5.3 3.2 1.5 0.8 0.4 0.2 0.1 0.1 0.0 0.0 

7   5.3 3.2 1.5 0.9 0.4 0.2 0.1 0.1 0.0 0.0    5.3 3.1 1.4 0.8 0.4 0.1 0.1 0.0 0.0 0.0 

8   5.5 3.3 1.5 0.9 0.4 0.2 0.1 0.1 0.0 0.0    5.0 2.9 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

9   5.6 3.3 1.5 0.9 0.4 0.2 0.1 0.1 0.0 0.0    5.2 3.1 1.4 0.8 0.3 0.2 0.1 0.0 0.0 0.0 

10   5.2 3.1 1.4 0.8 0.3 0.1 0.1 0.1 0.0 0.0    5.2 3.1 1.4 0.8 0.3 0.1 0.1 0.0 0.0 0.0 
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Appendix 4, continued. 
n=60 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=70 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)      CIQR d    B(υ,n)     

0.5 127.3 7.7 0.7 0.9 1.0 1.0 0.8 0.6 0.4 0.3 0.2 0.4  127.2 7.3 0.7 0.9 1.0 1.0 0.8 0.6 0.4 0.2 0.2 0.4 

1 93.3 4.5 0.1 0.3 0.7 0.9 1.0 1.0 1.0 0.9 0.8 0.4  93.4 4.2 0.1 0.3 0.7 0.9 1.0 1.0 1.0 0.9 0.8 0.4 

2 61.3 2.9 0.0 0.1 0.2 0.4 0.6 0.8 0.9 0.9 1.0 1.0  60.8 2.7 0.0 0.0 0.2 0.3 0.5 0.8 0.9 0.9 1.0 1.0 

3 47.5 2.5 0.0 0.1 0.3 0.5 0.6 0.8 0.8 0.9 0.9 1.0  47.3 2.2 0.0 0.1 0.3 0.4 0.6 0.7 0.8 0.9 0.9 1.0 

4 40.6 2.1 0.1 0.2 0.4 0.6 0.8 0.9 0.9 0.9 1.0 1.0  40.4 2.0 0.1 0.1 0.4 0.5 0.7 0.8 0.9 0.9 1.0 1.0 

5 36.0 1.9 0.1 0.2 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0  35.7 1.8 0.1 0.2 0.4 0.6 0.8 0.9 0.9 1.0 1.0 1.0 

6 32.5 1.7 0.1 0.2 0.5 0.7 0.8 0.9 0.9 1.0 1.0 1.0  32.5 1.6 0.1 0.2 0.5 0.6 0.8 0.9 0.9 1.0 1.0 1.0 

7 29.9 1.6 0.1 0.2 0.5 0.7 0.8 0.9 1.0 1.0 1.0 1.0  29.9 1.5 0.1 0.2 0.5 0.7 0.8 0.9 1.0 1.0 1.0 1.0 

8 27.8 1.5 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0  27.9 1.4 0.1 0.2 0.5 0.7 0.8 0.9 1.0 1.0 1.0 1.0 

9 26.2 1.4 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0  26.3 1.3 0.1 0.2 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0 

10 24.7 1.4 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 1.0  24.8 1.2 0.1 0.2 0.5 0.7 0.8 0.9 1.0 1.0 1.0 1.0 

                          

κ      B3(υ,n)           B3(υ,n)     

0.5   0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.7 0.8 0.6    0.2 0.0 0.0 0.0 0.2 0.4 0.6 0.7 0.8 0.6 

1   0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.5    0.7 0.4 0.1 0.0 0.0 0.0 0.0 0.1 0.2 0.6 

2   0.8 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.6 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0 

3   0.7 0.4 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

4   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.7 0.4 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

5   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)           A(υ,n)     

0.5   1.6 0.5 0.3 1.6 11.5 26.8 34.7 36.3 31.2 16.1    1.5 0.4 0.2 1.3 10.2 27.1 36.7 38.7 32.1 16.5 

1   6.8 3.8 1.1 0.4 0.2 1.1 2.8 6.2 14.6 28.8    6.7 3.6 1.1 0.4 0.2 0.5 2.1 6.3 15.3 30.6 

2   7.3 5.1 2.9 2.0 1.0 0.5 0.3 0.1 0.1 0.1    7.4 5.1 2.9 2.0 1.1 0.5 0.3 0.1 0.1 0.1 

3   6.3 4.2 2.2 1.5 0.8 0.5 0.3 0.2 0.1 0.0    6.4 4.1 2.2 1.4 0.8 0.5 0.3 0.2 0.1 0.0 

4   5.7 3.5 1.7 1.1 0.5 0.3 0.2 0.1 0.1 0.0    5.6 3.5 1.7 1.0 0.5 0.3 0.2 0.1 0.1 0.0 

5   5.4 3.3 1.5 0.8 0.4 0.2 0.1 0.1 0.0 0.0    5.4 3.2 1.4 0.8 0.4 0.2 0.1 0.1 0.0 0.0 

6   5.4 3.2 1.4 0.8 0.4 0.2 0.1 0.1 0.0 0.0    5.3 3.1 1.4 0.8 0.3 0.1 0.1 0.1 0.0 0.0 

7   5.3 3.1 1.4 0.8 0.3 0.1 0.1 0.0 0.0 0.0    5.1 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

8   5.1 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.1 2.9 1.2 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

9   5.2 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.1 2.9 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

10   5.1 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.0 2.9 1.2 0.7 0.3 0.1 0.1 0.0 0.0 0.0 



 164 

 

Appendix 4, continued. 
n=100 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=130 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)      CIQR d    B(υ,n)     

0.5 127.6 6.2 0.7 0.9 1.0 1.0 0.9 0.6 0.3 0.2 0.1 0.3  127.4 5.5 0.7 1.0 1.0 1.0 0.9 0.6 0.3 0.1 0.1 0.3 

1 92.9 3.5 0.0 0.2 0.7 0.9 1.0 1.0 1.0 1.0 0.8 0.4  92.8 3.1 0.0 0.2 0.7 0.9 1.0 1.0 1.0 1.0 0.8 0.4 

2 60.7 2.3 0.0 0.0 0.1 0.2 0.4 0.7 0.8 0.9 1.0 1.0  60.6 2.0 0.0 0.0 0.0 0.1 0.3 0.7 0.8 0.9 1.0 1.0 

3 47.6 1.9 0.0 0.0 0.2 0.3 0.5 0.7 0.8 0.8 0.9 1.0  47.5 1.7 0.0 0.0 0.1 0.2 0.4 0.6 0.7 0.8 0.9 1.0 

4 40.3 1.6 0.0 0.1 0.3 0.4 0.7 0.8 0.9 0.9 1.0 1.0  40.3 1.4 0.0 0.0 0.2 0.3 0.6 0.7 0.8 0.9 0.9 1.0 

5 35.7 1.5 0.0 0.1 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0  35.8 1.3 0.0 0.0 0.2 0.4 0.7 0.8 0.9 0.9 1.0 1.0 

6 32.4 1.3 0.0 0.1 0.3 0.5 0.8 0.9 0.9 1.0 1.0 1.0  32.2 1.2 0.0 0.0 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0 

7 29.9 1.3 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0 1.0  29.9 1.1 0.0 0.1 0.3 0.5 0.8 0.9 0.9 1.0 1.0 1.0 

8 27.9 1.2 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0 1.0  27.9 1.0 0.0 0.1 0.3 0.5 0.8 0.9 0.9 1.0 1.0 1.0 

9 26.1 1.1 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0 1.0  26.3 1.0 0.0 0.1 0.3 0.6 0.8 0.9 1.0 1.0 1.0 1.0 

10 24.8 1.1 0.0 0.1 0.4 0.6 0.8 0.9 1.0 1.0 1.0 1.0  24.9 0.9 0.0 0.1 0.3 0.6 0.8 0.9 1.0 1.0 1.0 1.0 

                          

κ      B3(υ,n)           B3(υ,n)     

0.5   0.2 0.0 0.0 0.0 0.1 0.4 0.7 0.8 0.9 0.6    0.2 0.0 0.0 0.0 0.1 0.4 0.7 0.8 0.9 0.7 

1   0.9 0.6 0.1 0.0 0.0 0.0 0.0 0.0 0.2 0.6    1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.2 0.6 

2   1.0 0.8 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0    1.0 0.9 0.7 0.4 0.2 0.0 0.0 0.0 0.0 0.0 

3   0.9 0.7 0.3 0.2 0.1 0.0 0.0 0.0 0.0 0.0    1.0 0.8 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0 

4   0.9 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.8 0.3 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

5   0.8 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.8 0.5 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.8 0.5 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0    0.9 0.6 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)           A(υ,n)     

0.5   1.2 0.2 0.0 0.9 7.9 30.1 41.3 44.1 35.0 14.5    0.9 0.1 0.0 0.2 7.1 29.7 44.0 47.2 36.7 13.8 

1   6.9 3.6 0.9 0.3 0.0 0.0 0.5 3.2 12.9 33.3    6.9 3.6 0.8 0.2 0.0 0.0 0.4 1.9 11.2 35.6 

2   7.4 5.1 2.9 2.0 1.0 0.5 0.2 0.1 0.0 0.0    7.3 5.1 2.9 2.0 1.0 0.4 0.2 0.1 0.0 0.0 

3   6.2 3.9 2.1 1.4 0.7 0.4 0.3 0.2 0.1 0.0    6.1 3.9 2.0 1.3 0.7 0.4 0.3 0.2 0.1 0.0 

4   5.6 3.4 1.6 0.9 0.5 0.2 0.1 0.1 0.0 0.0    5.7 3.4 1.6 1.0 0.5 0.2 0.2 0.1 0.1 0.0 

5   5.4 3.2 1.4 0.8 0.3 0.2 0.1 0.1 0.0 0.0    5.2 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

6   5.3 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0    5.2 3.0 1.2 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

7   5.1 2.9 1.2 0.6 0.2 0.1 0.0 0.0 0.0 0.0    5.1 2.9 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0 

8   5.0 2.8 1.2 0.6 0.2 0.1 0.0 0.0 0.0 0.0    4.9 2.8 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0 

9   5.1 2.9 1.2 0.6 0.2 0.1 0.0 0.0 0.0 0.0    4.8 2.7 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0 

10   5.0 2.8 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0    4.8 2.7 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0 
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Appendix 4, continued. 
n=150 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 n=200 υ 1.00 1.20 1.50 1.70 2.00 2.20 2.50 2.70 3.00 3.50 

κ  CIQR d    B(υ,n)      CIQR d    B(υ,n)     

0.5 127.5 5.1 0.8 1.0 1.0 1.0 0.9 0.6 0.3 0.1 0.0 0.3  127.6 4.5 0.8 1.0 1.0 1.0 0.9 0.6 0.3 0.1 0.0 0.3 

1 92.9 2.9 0.0 0.1 0.7 0.9 1.0 1.0 1.0 1.0 0.9 0.4  92.8 2.4 0.0 0.1 0.7 0.9 1.0 1.0 1.0 1.0 0.9 0.4 

2 60.6 1.9 0.0 0.0 0.0 0.1 0.3 0.6 0.8 0.9 1.0 1.0  60.7 1.6 0.0 0.0 0.0 0.0 0.2 0.6 0.8 0.9 1.0 1.0 

3 47.5 1.6 0.0 0.0 0.1 0.2 0.4 0.6 0.7 0.8 0.9 1.0  47.5 1.4 0.0 0.0 0.0 0.1 0.3 0.5 0.6 0.7 0.8 1.0 

4 40.4 1.4 0.0 0.0 0.2 0.3 0.5 0.7 0.8 0.9 0.9 1.0  40.3 1.2 0.0 0.0 0.1 0.2 0.5 0.7 0.8 0.8 0.9 1.0 

5 35.7 1.2 0.0 0.0 0.2 0.4 0.6 0.8 0.9 0.9 1.0 1.0  35.8 1.0 0.0 0.0 0.1 0.3 0.6 0.8 0.9 0.9 1.0 1.0 

6 32.4 1.1 0.0 0.0 0.2 0.4 0.7 0.9 0.9 1.0 1.0 1.0  32.4 1.0 0.0 0.0 0.1 0.3 0.7 0.8 0.9 1.0 1.0 1.0 

7 30.0 1.0 0.0 0.0 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0  29.9 0.9 0.0 0.0 0.2 0.4 0.7 0.9 0.9 1.0 1.0 1.0 

8 27.9 1.0 0.0 0.0 0.3 0.5 0.7 0.9 0.9 1.0 1.0 1.0  27.9 0.9 0.0 0.0 0.2 0.4 0.7 0.9 0.9 1.0 1.0 1.0 

9 26.2 0.9 0.0 0.0 0.3 0.5 0.8 0.9 1.0 1.0 1.0 1.0  26.1 0.8 0.0 0.0 0.2 0.4 0.7 0.9 0.9 1.0 1.0 1.0 

10 24.8 0.9 0.0 0.0 0.3 0.5 0.8 0.9 1.0 1.0 1.0 1.0  24.9 0.7 0.0 0.0 0.2 0.4 0.7 0.9 1.0 1.0 1.0 1.0 

                          

κ      B3(υ,n)             B3(υ,n)   

0.5   0.2 0.0 0.0 0.0 0.1 0.4 0.7 0.9 0.9 0.7    0.2 0.0 0.0 0.0 0.1 0.4 0.7 0.9 1.0 0.7 

1   1.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.6    1.0 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.1 0.6 

2   1.0 1.0 0.8 0.5 0.2 0.1 0.0 0.0 0.0 0.0    1.0 1.0 0.9 0.7 0.4 0.1 0.0 0.0 0.0 0.0 

3   1.0 0.9 0.5 0.3 0.1 0.0 0.0 0.0 0.0 0.0    1.0 1.0 0.7 0.5 0.2 0.1 0.0 0.0 0.0 0.0 

4   1.0 0.8 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.9 0.6 0.3 0.1 0.0 0.0 0.0 0.0 0.0 

5   1.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.9 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

6   0.9 0.7 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.9 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 

7   0.9 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.8 0.4 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

8   0.9 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

9   0.9 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

10   0.9 0.7 0.2 0.1 0.0 0.0 0.0 0.0 0.0 0.0    1.0 0.8 0.3 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

                          

κ      A(υ,n)             A(υ,n)   

0.5   0.8 0.1 0.0 0.3 6.2 30.1 45.8 49.7 37.3 13.3    0.6 0.0 0.0 0.0 4.1 32.3 51.0 53.4 37.8 12.0 

1   7.0 3.6 0.7 0.2 0.0 0.0 0.2 1.5 10.4 38.2    7.1 3.6 0.6 0.1 0.0 0.0 0.1 0.7 6.8 42.1 

2   7.3 5.0 2.9 2.0 1.0 0.4 0.2 0.1 0.0 0.0    7.3 5.0 2.9 2.0 1.0 0.4 0.2 0.0 0.0 0.0 

3   6.2 3.9 2.0 1.3 0.7 0.4 0.3 0.2 0.1 0.0    6.1 3.8 1.9 1.3 0.7 0.4 0.3 0.2 0.1 0.0 

4   5.5 3.3 1.5 0.9 0.4 0.2 0.1 0.1 0.1 0.0    5.5 3.3 1.5 0.9 0.4 0.2 0.1 0.1 0.1 0.0 

5   5.3 3.1 1.3 0.8 0.3 0.1 0.1 0.1 0.0 0.0    5.2 3.0 1.3 0.7 0.3 0.1 0.1 0.0 0.0 0.0 

6   5.0 2.8 1.2 0.6 0.2 0.1 0.1 0.0 0.0 0.0    5.0 2.9 1.2 0.6 0.2 0.1 0.0 0.0 0.0 0.0 

7   5.0 2.8 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0    4.9 2.8 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0 

8   5.0 2.8 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0    4.8 2.7 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0 

9   4.9 2.7 1.1 0.6 0.2 0.1 0.0 0.0 0.0 0.0    4.9 2.7 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0 

10   4.8 2.6 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0    4.8 2.6 1.0 0.5 0.2 0.1 0.0 0.0 0.0 0.0 
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Appendix 5 

Power of Performance of Circular Boxplot 
 

n=5, κ=2 
ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.4 0.0 

0.1 0.1 0.1 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.0 

0.2 0.1 0.1 0.2 0.0 0.1 0.1 0.3 0.0 0.1 0.0 0.3 0.0 0.1 0.0 0.3 0.0 0.1 0.0 0.4 0.0 

0.3 0.1 0.1 0.2 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.1 0.0 0.4 0.0 

0.4 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 

0.5 0.2 0.2 0.3 0.0 0.2 0.1 0.3 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 

0.6 0.2 0.2 0.3 0.0 0.2 0.2 0.3 0.0 0.2 0.1 0.4 0.0 0.2 0.1 0.4 0.0 0.2 0.1 0.5 0.0 

0.7 0.3 0.2 0.3 0.0 0.2 0.2 0.3 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.5 0.0 

0.8 0.3 0.3 0.3 0.0 0.3 0.2 0.3 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.5 0.0 

0.9 0.3 0.3 0.3 0.0 0.3 0.3 0.4 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.4 0.0 0.3 0.2 0.5 0.0 

1.0 0.3 0.3 0.3 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.4 0.0 0.3 0.2 0.5 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.4 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.5 0.0 

0.1 0.1 0.0 0.4 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.6 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.6 0.0 

0.2 0.1 0.0 0.5 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.6 0.0 0.1 0.0 0.6 0.0 0.1 0.0 0.6 0.0 

0.3 0.1 0.1 0.5 0.0 0.1 0.1 0.5 0.0 0.1 0.1 0.6 0.0 0.1 0.0 0.6 0.0 0.1 0.1 0.6 0.0 

0.4 0.1 0.1 0.5 0.0 0.1 0.1 0.6 0.0 0.1 0.1 0.6 0.0 0.1 0.1 0.6 0.1 0.1 0.1 0.6 0.1 

0.5 0.2 0.1 0.5 0.0 0.2 0.1 0.6 0.0 0.1 0.1 0.6 0.1 0.1 0.1 0.6 0.1 0.1 0.1 0.6 0.1 

0.6 0.2 0.1 0.5 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 

0.7 0.2 0.2 0.5 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 

0.8 0.3 0.2 0.5 0.0 0.2 0.2 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.2 0.6 0.0 

0.9 0.3 0.2 0.5 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.6 0.0 0.2 0.1 0.6 0.0 0.2 0.2 0.6 0.0 

1 0.3 0.3 0.5 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.7 0.0 0.2 0.2 0.6 0.0 

                     

                     
n=5, κ=5 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.2 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.2 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

0.3 0.2 0.2 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 

0.4 0.3 0.3 0.2 0.0 0.2 0.2 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 

0.5 0.3 0.3 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 

0.6 0.4 0.4 0.2 0.0 0.3 0.3 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 0.2 0.2 0.3 0.0 

0.7 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.3 0.3 0.2 0.0 0.3 0.3 0.2 0.0 0.3 0.3 0.3 0.0 

0.8 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.3 0.0 

0.9 0.5 0.5 0.3 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.3 0.0 

1 0.5 0.5 0.3 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.5 0.5 0.3 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 

0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 

0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.0 0.1 0.0 0.4 0.0 

0.3 0.1 0.1 0.2 0.0 0.1 0.0 0.3 0.0 0.1 0.0 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 

0.4 0.2 0.2 0.3 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 

0.5 0.2 0.2 0.3 0.0 0.2 0.1 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.5 0.0 0.2 0.2 0.5 0.0 

0.6 0.3 0.3 0.3 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.5 0.0 0.2 0.2 0.5 0.0 0.2 0.2 0.5 0.0 

0.7 0.4 0.4 0.3 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.5 0.0 0.2 0.2 0.5 0.0 0.2 0.2 0.5 0.0 

0.8 0.4 0.4 0.3 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.5 0.0 0.2 0.2 0.5 0.0 0.3 0.3 0.5 0.0 

0.9 0.5 0.5 0.4 0.0 0.4 0.4 0.5 0.0 0.3 0.3 0.5 0.0 0.3 0.3 0.6 0.0 0.3 0.3 0.5 0.0 

1 0.5 0.5 0.3 0.0 0.4 0.4 0.5 0.0 0.3 0.3 0.5 0.0 0.3 0.3 0.6 0.0 0.3 0.3 0.5 0.0 

*dif is the rounded P1-P3 
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Appendix 5, continued. 
 

n=5, κ=7 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.0 0.1 0.0 

0.3 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 

0.4 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.1 0.1 0.2 0.0 

0.5 0.4 0.4 0.1 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.2 0.0 

0.6 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.2 0.0 

0.7 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.3 0.3 0.2 0.0 0.3 0.3 0.2 0.0 0.3 0.3 0.2 0.0 

0.8 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 

0.9 0.5 0.5 0.3 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.5 0.5 0.2 0.0 

1 0.5 0.5 0.3 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.5 0.5 0.2 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 0.0 

0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 0.0 

0.3 0.1 0.1 0.1 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.1 0.1 0.3 0.0 

0.4 0.2 0.2 0.2 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.2 0.1 0.3 0.0 

0.5 0.3 0.2 0.2 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.3 0.0 0.2 0.2 0.3 0.0 

0.6 0.3 0.3 0.2 0.0 0.2 0.2 0.3 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.3 0.0 

0.7 0.4 0.4 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.5 0.0 0.3 0.3 0.4 0.0 

0.8 0.5 0.5 0.3 0.0 0.4 0.4 0.4 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.5 0.0 0.3 0.3 0.4 0.0 

0.9 0.5 0.5 0.3 0.0 0.4 0.4 0.4 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.5 0.0 0.3 0.3 0.4 0.0 

1 0.5 0.5 0.3 0.0 0.4 0.4 0.4 0.0 0.4 0.4 0.5 0.0 0.3 0.3 0.5 0.0 0.3 0.3 0.5 0.0 

                     

                     
n=5, κ=10 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.1 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.2 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 

0.3 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 

0.4 0.4 0.4 0.2 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0 

0.5 0.4 0.4 0.2 0.0 0.3 0.3 0.2 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.2 0.0 

0.6 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.2 0.0 

0.7 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.2 0.0 

0.8 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 

0.9 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.2 0.0 0.4 0.4 0.2 0.0 0.5 0.5 0.2 0.0 

1 0.5 0.5 0.3 0.0 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.5 0.5 0.3 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.2 0.0 

0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 0.0 

0.3 0.2 0.2 0.1 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.3 0.0 0.1 0.1 0.2 0.0 

0.4 0.2 0.2 0.1 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.2 0.2 0.2 0.0 

0.5 0.3 0.3 0.2 0.0 0.2 0.2 0.3 0.0 0.2 0.2 0.3 0.0 0.2 0.2 0.4 0.0 0.3 0.3 0.2 0.0 

0.6 0.4 0.4 0.2 0.0 0.2 0.2 0.3 0.0 0.2 0.2 0.4 0.0 0.2 0.2 0.4 0.0 0.3 0.3 0.3 0.0 

0.7 0.5 0.5 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.3 0.4 0.0 0.3 0.3 0.4 0.0 0.4 0.4 0.3 0.0 

0.8 0.5 0.5 0.3 0.0 0.4 0.4 0.3 0.0 0.4 0.4 0.4 0.0 0.3 0.3 0.5 0.0 0.4 0.4 0.4 0.0 

0.9 0.6 0.6 0.3 0.0 0.5 0.5 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 0.5 0.0 0.4 0.4 0.4 0.0 

1 0.6 0.6 0.3 0.0 0.5 0.5 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 0.5 0.0 0.4 0.4 0.4 0.0 
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Appendix 5, continued. 

n=10, κ=2 
ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.3 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

0.1 0.1 0.1 0.3 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

0.2 0.1 0.1 0.3 0.0 0.1 0.1 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

0.3 0.2 0.1 0.3 0.1 0.1 0.1 0.3 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 

0.4 0.2 0.2 0.3 0.1 0.2 0.2 0.3 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 

0.5 0.3 0.2 0.3 0.1 0.2 0.2 0.3 0.0 0.2 0.1 0.2 0.0 0.2 0.1 0.2 0.0 0.1 0.1 0.2 0.0 

0.6 0.4 0.3 0.3 0.1 0.3 0.3 0.3 0.1 0.3 0.2 0.3 0.0 0.3 0.2 0.3 0.0 0.2 0.2 0.2 0.0 

0.7 0.5 0.4 0.4 0.1 0.4 0.4 0.3 0.1 0.3 0.3 0.3 0.0 0.3 0.3 0.3 0.0 0.3 0.2 0.2 0.0 

0.8 0.6 0.5 0.4 0.1 0.5 0.5 0.3 0.1 0.4 0.3 0.3 0.0 0.4 0.3 0.3 0.0 0.3 0.3 0.3 0.0 

0.9 0.6 0.6 0.4 0.1 0.6 0.5 0.3 0.0 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.3 0.3 0.0 

1 0.7 0.6 0.4 0.1 0.6 0.5 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.4 0.4 0.0 0.4 0.3 0.3 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.7 0.0 

0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.7 0.0 

0.2 0.0 0.0 0.3 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.6 0.0 0.1 0.0 0.7 0.0 

0.3 0.1 0.0 0.3 0.0 0.1 0.0 0.4 0.0 0.0 0.0 0.5 0.0 0.1 0.0 0.6 0.0 0.1 0.0 0.7 0.0 

0.4 0.1 0.1 0.3 0.0 0.1 0.0 0.4 0.0 0.1 0.0 0.5 0.0 0.1 0.0 0.6 0.0 0.1 0.0 0.7 0.1 

0.5 0.1 0.1 0.3 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.5 0.0 0.1 0.1 0.6 0.0 0.1 0.1 0.7 0.1 

0.6 0.2 0.1 0.3 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.5 0.0 0.1 0.1 0.6 0.0 0.1 0.1 0.7 0.1 

0.7 0.2 0.2 0.3 0.0 0.2 0.1 0.4 0.0 0.2 0.1 0.5 0.0 0.2 0.1 0.6 0.0 0.2 0.1 0.7 0.0 

0.8 0.2 0.2 0.3 0.0 0.2 0.2 0.5 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.8 0.0 

0.9 0.3 0.3 0.4 0.0 0.2 0.2 0.5 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.7 0.0 0.2 0.2 0.8 0.0 

1 0.3 0.3 0.4 0.0 0.2 0.2 0.6 0.0 0.2 0.2 0.7 0.0 0.2 0.2 0.7 0.0 0.2 0.2 0.8 0.0 

                     

                     
n=10, κ=5 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.1 0.1 0.1 0.3 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.2 0.2 0.1 0.3 0.0 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 

0.3 0.3 0.3 0.3 0.0 0.3 0.2 0.2 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.1 0.1 0.0 

0.4 0.5 0.5 0.3 0.0 0.4 0.4 0.2 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 

0.5 0.7 0.7 0.3 0.0 0.6 0.6 0.2 0.0 0.5 0.5 0.2 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.1 0.0 

0.6 0.9 0.8 0.3 0.0 0.8 0.8 0.2 0.0 0.7 0.7 0.2 0.0 0.7 0.7 0.2 0.0 0.6 0.6 0.2 0.0 

0.7 0.9 0.9 0.3 0.0 0.9 0.9 0.2 0.0 0.8 0.8 0.2 0.0 0.8 0.8 0.2 0.0 0.7 0.7 0.2 0.0 

0.8 1.0 1.0 0.3 0.0 0.9 0.9 0.3 0.0 0.9 0.9 0.2 0.0 0.9 0.9 0.2 0.0 0.8 0.8 0.2 0.0 

0.9 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 0.9 0.9 0.2 0.0 0.9 0.9 0.2 0.0 0.9 0.9 0.2 0.0 

1 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 0.9 0.9 0.4 0.0 0.9 0.9 0.4 0.0 0.9 0.9 0.3 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 

0.4 0.2 0.2 0.1 0.0 0.2 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.1 0.0 

0.5 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 

0.6 0.5 0.5 0.2 0.0 0.4 0.4 0.1 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 

0.7 0.6 0.6 0.2 0.0 0.5 0.5 0.1 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.1 0.0 0.3 0.3 0.1 0.0 

0.8 0.7 0.7 0.2 0.0 0.6 0.6 0.1 0.0 0.6 0.6 0.1 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.1 0.0 

0.9 0.8 0.8 0.2 0.0 0.7 0.7 0.1 0.0 0.7 0.7 0.2 0.0 0.6 0.6 0.2 0.0 0.5 0.5 0.2 0.0 

1 0.9 0.9 0.3 0.0 0.8 0.8 0.3 0.0 0.7 0.7 0.3 0.0 0.6 0.6 0.4 0.0 0.6 0.6 0.4 0.0 
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Appendix 5, continued.  

 

n=10, κ=7 
ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.1 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.2 0.2 0.2 0.2 0.0 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 

0.3 0.4 0.4 0.2 0.0 0.4 0.3 0.2 0.0 0.3 0.3 0.1 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 

0.4 0.7 0.7 0.3 0.0 0.6 0.6 0.2 0.0 0.5 0.5 0.1 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.1 0.0 

0.5 0.8 0.8 0.3 0.0 0.8 0.8 0.2 0.0 0.7 0.6 0.1 0.0 0.7 0.6 0.1 0.0 0.6 0.6 0.1 0.0 

0.6 0.9 0.9 0.3 0.0 0.9 0.9 0.2 0.0 0.8 0.8 0.2 0.0 0.8 0.8 0.2 0.0 0.7 0.7 0.1 0.0 

0.7 1.0 1.0 0.3 0.0 1.0 0.9 0.2 0.0 0.9 0.9 0.2 0.0 0.9 0.9 0.2 0.0 0.9 0.9 0.1 0.0 

0.8 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 0.9 0.9 0.2 0.0 

0.9 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 

1 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.2 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 

0.4 0.3 0.3 0.1 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 

0.5 0.5 0.5 0.1 0.0 0.4 0.4 0.1 0.0 0.3 0.3 0.0 0.0 0.3 0.3 0.0 0.0 0.2 0.2 0.0 0.0 

0.6 0.6 0.6 0.1 0.0 0.5 0.5 0.1 0.0 0.5 0.5 0.0 0.0 0.4 0.4 0.0 0.0 0.4 0.4 0.1 0.0 

0.7 0.8 0.8 0.1 0.0 0.7 0.7 0.1 0.0 0.6 0.6 0.1 0.0 0.6 0.6 0.1 0.0 0.5 0.5 0.1 0.0 

0.8 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.1 0.0 0.6 0.6 0.1 0.0 

0.9 0.9 0.9 0.2 0.0 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.1 0.0 

1 1.0 1.0 0.3 0.0 0.9 0.9 0.3 0.0 0.9 0.9 0.3 0.0 0.8 0.8 0.2 0.0 0.8 0.8 0.3 0.0 

                     

                     
n=10, κ=10 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.2 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.1 0.1 0.1 0.2 0.0 0.1 0.1 0.2 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 

0.2 0.3 0.3 0.2 0.0 0.3 0.2 0.2 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0 

0.3 0.6 0.6 0.2 0.0 0.5 0.5 0.2 0.0 0.4 0.4 0.1 0.0 0.4 0.4 0.1 0.0 0.3 0.3 0.1 0.0 

0.4 0.8 0.8 0.2 0.0 0.7 0.7 0.2 0.0 0.6 0.6 0.1 0.0 0.6 0.6 0.1 0.0 0.5 0.5 0.1 0.0 

0.5 0.9 0.9 0.2 0.0 0.9 0.9 0.2 0.0 0.8 0.8 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.1 0.0 

0.6 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 

0.7 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 0.9 0.9 0.1 0.0 

0.8 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 

0.9 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.2 0.0 

1 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.2 0.2 0.1 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 

0.4 0.5 0.5 0.1 0.0 0.4 0.3 0.0 0.0 0.3 0.3 0.0 0.0 0.3 0.3 0.0 0.0 0.2 0.2 0.0 0.0 

0.5 0.6 0.6 0.1 0.0 0.5 0.5 0.0 0.0 0.5 0.5 0.0 0.0 0.4 0.4 0.0 0.0 0.3 0.3 0.0 0.0 

0.6 0.8 0.8 0.1 0.0 0.7 0.7 0.1 0.0 0.6 0.6 0.0 0.0 0.6 0.6 0.0 0.0 0.5 0.5 0.1 0.0 

0.7 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.0 0.0 0.7 0.7 0.1 0.0 

0.8 1.0 1.0 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 

0.9 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 

1 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 1.0 1.0 0.3 0.0 0.9 0.9 0.4 0.0 0.9 0.9 0.4 0.0 
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Appendix 5, continued.  

 

n=60, κ=7 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.7 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.2 0.0 

0.1 0.1 0.0 0.7 0.1 0.1 0.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 

0.2 0.3 0.2 0.7 0.2 0.2 0.1 0.6 0.1 0.1 0.1 0.4 0.0 0.1 0.1 0.4 0.0 0.1 0.1 0.3 0.0 

0.3 0.6 0.4 0.7 0.2 0.5 0.4 0.6 0.2 0.4 0.3 0.4 0.1 0.4 0.3 0.4 0.1 0.3 0.2 0.3 0.0 

0.4 0.9 0.7 0.7 0.2 0.8 0.6 0.6 0.2 0.7 0.6 0.4 0.1 0.7 0.6 0.4 0.1 0.6 0.5 0.3 0.1 

0.5 1.0 0.9 0.7 0.1 0.9 0.9 0.6 0.1 0.9 0.8 0.4 0.0 0.9 0.8 0.4 0.0 0.8 0.8 0.3 0.0 

0.6 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 0.9 0.3 0.0 

0.7 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

0.8 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

0.9 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

1 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.3 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.2 0.2 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

0.4 0.4 0.4 0.1 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 

0.5 0.7 0.7 0.1 0.0 0.6 0.6 0.1 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.0 0.0 0.3 0.3 0.0 0.0 

0.6 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 0.8 0.8 0.0 0.0 0.7 0.7 0.0 0.0 0.5 0.5 0.0 0.0 

0.7 1.0 1.0 0.2 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.0 0.0 0.9 0.9 0.0 0.0 0.8 0.8 0.0 0.0 

0.8 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 

0.9 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

1 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.2 0.0 

                     

                     
n=60, κ=10 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.7 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 

0.1 0.2 0.1 0.7 0.1 0.1 0.1 0.6 0.1 0.1 0.0 0.4 0.0 0.1 0.0 0.4 0.0 0.0 0.0 0.2 0.0 

0.2 0.5 0.3 0.7 0.2 0.4 0.2 0.6 0.1 0.2 0.2 0.4 0.1 0.2 0.2 0.4 0.1 0.2 0.2 0.3 0.0 

0.3 0.8 0.6 0.7 0.2 0.7 0.6 0.6 0.1 0.6 0.5 0.4 0.1 0.6 0.5 0.4 0.1 0.5 0.4 0.3 0.0 

0.4 1.0 0.9 0.7 0.1 0.9 0.9 0.6 0.1 0.9 0.8 0.4 0.0 0.9 0.8 0.4 0.0 0.8 0.8 0.3 0.0 

0.5 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 0.9 0.3 0.0 

0.6 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

0.7 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

0.8 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

0.9 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 

1 1.0 1.0 0.7 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.6 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 

0.4 0.7 0.7 0.1 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.0 0.0 0.3 0.3 0.0 0.0 0.2 0.2 0.0 0.0 

0.5 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.0 0.0 0.7 0.7 0.0 0.0 0.5 0.5 0.0 0.0 

0.6 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 0.9 0.9 0.0 0.0 0.9 0.9 0.0 0.0 0.8 0.8 0.0 0.0 

0.7 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 

0.8 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

0.9 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

1 1.0 1.0 0.4 0.0 1.0 1.0 0.3 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 
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Appendix 5, continued. 
 

n=100, κ=2 
ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.9 0.1 0.1 0.0 0.8 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.5 0.0 

0.1 0.1 0.0 0.9 0.1 0.1 0.0 0.8 0.1 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0 0.0 0.0 0.6 0.0 

0.2 0.2 0.0 0.9 0.1 0.1 0.0 0.8 0.1 0.1 0.0 0.7 0.0 0.1 0.0 0.7 0.0 0.0 0.0 0.6 0.0 

0.3 0.2 0.0 0.9 0.2 0.2 0.0 0.8 0.1 0.1 0.0 0.7 0.1 0.1 0.0 0.7 0.1 0.1 0.0 0.6 0.0 

0.4 0.3 0.1 0.9 0.3 0.2 0.1 0.8 0.2 0.1 0.0 0.7 0.1 0.1 0.0 0.7 0.1 0.1 0.0 0.6 0.1 

0.5 0.5 0.1 0.9 0.4 0.4 0.1 0.8 0.3 0.2 0.1 0.7 0.2 0.2 0.1 0.7 0.2 0.2 0.1 0.6 0.1 

0.6 0.6 0.1 0.9 0.5 0.5 0.1 0.8 0.4 0.4 0.1 0.7 0.2 0.4 0.1 0.7 0.2 0.3 0.1 0.6 0.2 

0.7 0.8 0.2 0.9 0.5 0.7 0.2 0.8 0.4 0.5 0.2 0.7 0.3 0.5 0.2 0.7 0.3 0.4 0.2 0.6 0.2 

0.8 0.8 0.3 0.9 0.6 0.8 0.3 0.8 0.5 0.6 0.3 0.7 0.4 0.6 0.3 0.7 0.4 0.5 0.2 0.6 0.2 

0.9 0.9 0.4 0.9 0.5 0.8 0.4 0.8 0.5 0.7 0.3 0.7 0.4 0.7 0.3 0.7 0.4 0.6 0.3 0.6 0.3 

1 0.9 0.4 0.9 0.5 0.9 0.4 0.8 0.5 0.8 0.4 0.7 0.4 0.8 0.4 0.7 0.4 0.6 0.3 0.7 0.3 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.4 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.5 0.1 0.0 0.4 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 

0.6 0.1 0.1 0.4 0.1 0.1 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.1 0.0 

0.7 0.2 0.1 0.5 0.1 0.1 0.1 0.3 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 

0.8 0.3 0.2 0.5 0.1 0.1 0.1 0.4 0.0 0.1 0.1 0.3 0.0 0.0 0.0 0.2 0.0 0.0 0.0 0.2 0.0 

0.9 0.4 0.2 0.5 0.1 0.2 0.1 0.4 0.1 0.1 0.1 0.3 0.0 0.1 0.0 0.3 0.0 0.0 0.0 0.4 0.0 

1 0.4 0.3 0.6 0.2 0.2 0.1 0.5 0.1 0.1 0.1 0.4 0.0 0.1 0.0 0.2 0.0 0.0 0.0 0.5 0.0 

                     

                     
n=100, κ=5 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.8 0.1 0.0 0.0 0.7 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.3 0.0 

0.1 0.1 0.0 0.8 0.1 0.1 0.0 0.7 0.1 0.0 0.0 0.5 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.3 0.0 

0.2 0.3 0.1 0.8 0.2 0.2 0.1 0.7 0.1 0.1 0.1 0.5 0.0 0.1 0.1 0.5 0.0 0.1 0.1 0.4 0.0 

0.3 0.5 0.2 0.8 0.3 0.4 0.2 0.7 0.2 0.3 0.2 0.5 0.1 0.3 0.2 0.5 0.1 0.2 0.1 0.4 0.1 

0.4 0.7 0.4 0.8 0.3 0.6 0.4 0.7 0.2 0.5 0.4 0.6 0.1 0.5 0.4 0.6 0.1 0.4 0.3 0.4 0.1 

0.5 0.9 0.6 0.8 0.3 0.8 0.6 0.7 0.2 0.7 0.6 0.6 0.1 0.7 0.6 0.6 0.1 0.6 0.6 0.4 0.1 

0.6 1.0 0.8 0.8 0.2 1.0 0.8 0.7 0.1 0.9 0.8 0.6 0.1 0.9 0.8 0.6 0.1 0.9 0.8 0.4 0.1 

0.7 1.0 0.9 0.8 0.1 1.0 0.9 0.8 0.1 1.0 0.9 0.6 0.1 1.0 0.9 0.6 0.1 1.0 0.9 0.4 0.1 

0.8 1.0 1.0 0.8 0.0 1.0 1.0 0.8 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 

0.9 1.0 1.0 0.8 0.0 1.0 1.0 0.8 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 

1 1.0 1.0 0.9 0.0 1.0 1.0 0.8 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.6 0.0 1.0 1.0 0.4 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.1 0.1 0.2 0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 

0.4 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.0 

0.5 0.5 0.4 0.2 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 

0.6 0.7 0.7 0.2 0.1 0.6 0.6 0.1 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.1 0.0 0.2 0.2 0.0 0.0 

0.7 0.9 0.9 0.2 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.1 0.0 0.6 0.6 0.1 0.0 0.5 0.5 0.0 0.0 

0.8 1.0 0.9 0.2 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.0 0.0 

0.9 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.0 0.0 

1 1.0 1.0 0.3 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 0.9 0.9 0.0 0.0 
 

 

 
 
 
 
 
 
 
 



 172 

 
 

Appendix 5, continued.  

 

n=100, κ=7 
ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.8 0.1 0.0 0.0 0.6 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.2 0.0 

0.1 0.1 0.0 0.8 0.1 0.1 0.0 0.7 0.1 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 

0.2 0.3 0.1 0.8 0.2 0.2 0.1 0.7 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.5 0.1 0.1 0.1 0.3 0.0 

0.3 0.6 0.3 0.8 0.3 0.5 0.3 0.7 0.2 0.4 0.3 0.5 0.1 0.4 0.3 0.5 0.1 0.3 0.2 0.4 0.1 

0.4 0.9 0.6 0.8 0.3 0.8 0.6 0.7 0.2 0.7 0.6 0.5 0.1 0.7 0.6 0.5 0.1 0.6 0.5 0.4 0.1 

0.5 1.0 0.8 0.8 0.1 0.9 0.8 0.7 0.1 0.9 0.8 0.5 0.1 0.9 0.8 0.5 0.1 0.8 0.8 0.4 0.0 

0.6 1.0 1.0 0.8 0.1 1.0 1.0 0.7 0.0 1.0 0.9 0.5 0.0 1.0 0.9 0.5 0.0 1.0 0.9 0.4 0.0 

0.7 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

0.8 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

0.9 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

1 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.2 0.2 0.2 0.0 0.1 0.1 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.0 0.0 0.0 0.0 

0.4 0.4 0.4 0.2 0.0 0.3 0.3 0.1 0.0 0.2 0.2 0.0 0.0 0.2 0.2 0.0 0.0 0.1 0.1 0.0 0.0 

0.5 0.7 0.7 0.2 0.0 0.6 0.6 0.1 0.0 0.5 0.5 0.0 0.0 0.4 0.4 0.0 0.0 0.3 0.3 0.0 0.0 

0.6 0.9 0.9 0.2 0.0 0.8 0.8 0.1 0.0 0.8 0.8 0.1 0.0 0.7 0.7 0.0 0.0 0.5 0.5 0.0 0.0 

0.7 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 0.9 0.9 0.1 0.0 0.9 0.9 0.0 0.0 0.8 0.8 0.0 0.0 

0.8 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 0.9 0.9 0.0 0.0 

0.9 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

1 1.0 1.0 0.4 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 

                     

                     
n=100, κ=10 

ν  1   1.2   1.5   1.7   2  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.1 0.0 0.8 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.4 0.0 0.0 0.0 0.3 0.0 

0.1 0.2 0.1 0.8 0.1 0.1 0.1 0.7 0.1 0.1 0.0 0.4 0.0 0.1 0.0 0.4 0.0 0.0 0.0 0.3 0.0 

0.2 0.5 0.2 0.8 0.3 0.4 0.2 0.7 0.2 0.2 0.2 0.5 0.1 0.2 0.2 0.5 0.1 0.2 0.1 0.3 0.0 

0.3 0.8 0.5 0.8 0.3 0.7 0.5 0.7 0.2 0.5 0.4 0.5 0.1 0.5 0.4 0.5 0.1 0.5 0.4 0.3 0.1 

0.4 1.0 0.8 0.8 0.1 0.9 0.8 0.7 0.1 0.9 0.8 0.5 0.1 0.9 0.8 0.5 0.1 0.8 0.8 0.3 0.0 

0.5 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 0.9 0.3 0.0 

0.6 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

0.7 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

0.8 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

0.9 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

1 1.0 1.0 0.8 0.0 1.0 1.0 0.7 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.5 0.0 1.0 1.0 0.4 0.0 

                     
ν  2.3   2.5   2.7   3   3.5  

λ P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif P1 P3 P5 dif 
0 0.0 0.0 0.1 0.0 0.0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.1 0.0 0.0 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.2 0.1 0.1 0.2 0.0 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

0.3 0.3 0.3 0.2 0.0 0.2 0.2 0.1 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 0.1 0.1 0.0 0.0 

0.4 0.7 0.7 0.2 0.0 0.5 0.5 0.1 0.0 0.4 0.4 0.0 0.0 0.4 0.3 0.0 0.0 0.2 0.2 0.0 0.0 

0.5 0.9 0.9 0.2 0.0 0.8 0.8 0.1 0.0 0.8 0.7 0.0 0.0 0.7 0.7 0.0 0.0 0.5 0.5 0.0 0.0 

0.6 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 0.9 0.9 0.0 0.0 0.9 0.9 0.0 0.0 0.8 0.8 0.0 0.0 

0.7 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

0.8 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

0.9 1.0 1.0 0.2 0.0 1.0 1.0 0.1 0.0 1.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 

1.0 1.0 1.0 0.3 0.0 1.0 1.0 0.2 0.0 1.0 1.0 0.1 1.0 1.0 1.0 0.0 0.0 1.0 1.0 0.0 0.0 
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Appendix 6 

Power of Performance for Row Deletion Statistics 
  n=30 n=70 n=100 n=150 

κ λ 

DM

CEc 

DM

CEs COV 

DM

CEc 

DM

CEs COV 

DM

CEc 

DM

CEs COV 

DM

CEc 

DM

CEs COV 

 0.0 0.03 0.03 0.03 0.02 0.02 0.02 0.01 0.01 0.01 0.01 0.00 0.01 

 0.1 0.08 0.05 0.07 0.05 0.04 0.04 0.04 0.02 0.03 0.03 0.02 0.02 

 0.2 0.24 0.14 0.14 0.19 0.10 0.11 0.10 0.08 0.09 0.08 0.05 0.05 

 0.3 0.42 0.29 0.32 0.30 0.18 0.20 0.28 0.18 0.18 0.21 0.15 0.15 

 0.4 0.69 0.56 0.59 0.51 0.41 0.41 0.50 0.39 0.40 0.43 0.37 0.38 

5 0.5 0.76 0.73 0.74 0.77 0.65 0.67 0.69 0.60 0.61 0.59 0.55 0.55 

 0.6 0.91 0.88 0.91 0.87 0.82 0.84 0.87 0.78 0.79 0.78 0.75 0.75 

 0.7 0.95 0.94 0.95 0.97 0.92 0.96 0.95 0.91 0.92 0.90 0.88 0.90 

 0.8 0.98 0.97 0.98 0.97 0.97 0.97 0.97 0.96 0.97 0.97 0.95 0.96 

 0.9 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.99 0.99 0.98 0.98 

 1.0 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 1.00 1.00 0.99 0.99 

              

 0.0 0.04 0.04 0.04 0.02 0.01 0.02 0.01 0.01 0.01 0.00 0.01 0.00 

 0.1 0.18 0.08 0.08 0.08 0.06 0.06 0.05 0.03 0.04 0.04 0.04 0.03 

 0.2 0.42 0.31 0.32 0.38 0.24 0.25 0.29 0.19 0.19 0.21 0.17 0.17 

 0.3 0.64 0.52 0.64 0.61 0.55 0.57 0.62 0.50 0.52 0.57 0.46 0.47 

10 

0.4 0.89 0.77 0.89 0.89 0.83 0.84 0.85 0.79 0.82 0.79 0.74 0.74 

0.5 0.99 0.95 0.99 0.97 0.94 0.96 0.96 0.94 0.95 0.96 0.96 0.95 

 0.6 1.00 0.97 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.99 0.97 1.00 

 0.7 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 

 0.8 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

              

 0.0 0.03 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 

 0.1 0.49 0.28 0.29 0.27 0.20 0.20 0.21 0.16 0.15 0.17 0.09 0.11 

 0.2 0.88 0.76 0.78 0.78 0.71 0.76 0.75 0.70 0.71 0.72 0.67 0.69 

 0.3 0.98 0.97 0.98 0.99 0.95 0.99 0.98 0.97 0.98 0.98 0.95 0.98 

30 

0.4 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

              

 0.0 0.04 0.04 0.04 0.01 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.00 

 0.1 0.50 0.36 0.40 0.40 0.32 0.33 0.34 0.27 0.30 0.30 0.21 0.21 

 0.2 0.97 0.94 0.95 0.94 0.92 0.93 0.92 0.91 0.92 0.92 0.91 0.92 

 0.3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

50 

0.4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 0.9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Appendix 7 

S-Plus Subroutine for Tests of Discordancy in Circular Data 
  

  

Discordancy<-function(x,type){ 

  

    x<-na.exclude(x) 

    n<-length(x) 

    if (type==1){x<-x*pi/180}               # change from degree to radian  

   

  C<-sum(cos(x)) 

  S<-sum(sin(x)) 

  R<-(C^2+S^2)^(0.5)                         # Resultant length 

  Rbar<-R/n                                  # Sample mean Resultant 

length 

 

  Ci<-matrix(0,nrow=n) 

  Si<-matrix(0,nrow=n) 

     Ri<-matrix(0,nrow=n) 

  

       Rbari<-matrix(0,nrow=n) 

        Cst<-matrix(0,nrow=n) 

       ki<-matrix(0,nrow=n) 

 

   #------- Estimate the mean direction--------------------# 

 

    if(S>0 && C>0){Mu<-atan(S/C)} 

     else if(C<0){Mu<-atan(S/C)+ pi} 

      else if(S<0 && C>0){Mu<-atan(S/C)+2*pi} 

 

    #------ Estime the concentration parameter -------------# 

 

  if (Rbar<0.53){k<-2*(Rbar)+(Rbar)^3+(5/6)*(Rbar)^5} 

   else if (Rbar>=0.53 &&Rbar<0.85){k<--0.4+1.39*(Rbar)+(0.43/(1-

Rbar))} 

      else if (Rbar>=0.85){k<-1/((Rbar)^3-4*(Rbar)^2+3*(Rbar))} 

 

       #----------------------------------------------# 

  #                C statistic                   # 

  #----------------------------------------------# 

   for (i in 1:n){ 

     Ci[i]<-sum(cos(x))-cos(x[i]) 

     Si[i]<-sum(sin(x))-sin(x[i]) 

             Ri[i]<-(Ci[i]^2+Si[i]^2)^(0.5)    

             Rbari[i]<- Ri[i]/(n-1)          

             Cst[i]<-(Rbari[i]-Rbar)/(Rbar) 

                 } 

            Cmax<-max(Cst) 

 

        for (i in 1:n){if(Cst[i]==Cmax){obC<-i}} 

           Csta<-cbind(obC,Cmax)    

 

       #----------------------------------------------# 

  #                D statistic                   # 

  #----------------------------------------------# 

     theta1<-matrix(0,nrow=n-1,ncol=n) 

 

     t1<-matrix(0,nrow=n-1,ncol=n) 

     D1<-matrix(0,nrow=n-1,ncol=n) 

 

       maxt1<-matrix(0,nrow=n) 

     t<-matrix(0, nrow=n) 

       D<-matrix(0, nrow=n) 

   

  theta<-sort(x) 

      # remoteness of each observation 

   

     for ( i in 1:n){theta1[,i]<-remove.row(theta,i,1)} 
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   # find arc length after the remoteness of each observation one by one 

   

       for (j in 1:n){               

             for (i in 1:n-2){ 

          t1[i,j]<-theta1[i+1,j]-theta1[i,j] 

             D1[i,j]<-(t1[i,j]/t1[i-1,j]) 

             } 

     

     t1[n-1,j]<-2*pi-theta1[n-1,j]+theta1[1,j] 

     D1[n-1,j]<-(t1[n-1,j]/t1[n-2,j]) 

     D1[1,j]<-(t1[1,j]/t1[n-1,j]) 

                       } 

 

  

  for( i in 1:n){maxt1[i]<-max(t1[,i])}  #find the greatest arc within columns 

   

        MaxT1<-max(maxt1)                  # find the maximum among all 

columns 

  

        for (i in 1:n){if(maxt1[i]==MaxT1){obd<-i}} 

 

    # Apply the test on the whole data set 

 

                 for (i in 1:n-1){ 

          t[i]<-theta[i+1]-theta[i] 

             D[i]<-(t[i]/t[i-1]) 

              } 

  

     t[n]<-2*pi-theta[n]+theta[1] 

     D[n]<-(t[n]/t[n-1]) 

     D[1]<-(t[1]/t[n]) 

                

             for (i in 1:n){if(x[i]==theta[obd]){obD<-i}} 

           

             D1<-(1/D)   

            Df<-min(D[obd],D1[obd])  

  

            Dsta<-cbind(obD,Df)  

 

       #----------------------------------------------# 

   #                M statistic                   # 

   #----------------------------------------------# 

  

         M<-matrix(0,nrow=n) 

  

     for(i in 1:n){M[i]<-((Ri[i]-R+1)/(n-R))} 

     Mmax<-max(M) 

               

           for (i in 1:n){if(M[i]==Mmax){obM<-i}} 

 

           Msta<-cbind(obM,Mmax) 

           m<-cbind(M) 

 

      #----------------------------------------------# 

    #                L statistic                   # 

    #----------------------------------------------# 

      

           # Kuppa estimation with deleting one observation        

     

  for(i in 1:n){ 

   if (Rbari[i]<0.53){ki[i]<-

2*(Rbari[i])+(Rbari[i])^3+(5/6)*(Rbari[i])^5} 

 else if (Rbari[i]>=0.53 &&Rbari[i]<0.85){ki[i]<-

0.4+1.39*(Rbari[i])+(0.43/(1- Rbari[i]))} 

 else if (Rbari[i]>=0.85){ki[i]<-1/((Rbari[i])^3-

4*(Rbari[i])^2+3*(Rbari[i]))} 

                            } 

 

 L<-matrix(0, nrow=n) 

  

for(i in 1:n) 
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   {L[i]<-(Ri[i]+1)*ki[i]-k*R 

n*log((exp(ki[i])/(2*pi*ki[i])))/(exp(k)/(2*pi*k))} 

         

      Lmax<-max(L) 

       

      for (i in 1:n){if(L[i]==Lmax){obL<-i}} 

    Lsta<-cbind(obL,Lmax) 

     

  Summary<-cbind(n,C,S,R,Rbar,Mu,k) 

   

       #----------------------------------------------# 

  #                A and Chord statistic         # 

  #----------------------------------------------# 

   thetasif<-matrix(0,n,n) 

      

       A<-matrix(0,n,n) 

       Chord<-matrix(0,n,n) 

      

       sumA<-matrix(0, nrow=n) 

       sumChord<-matrix(0, nrow=n) 

      

       for(i in 1:n){ 

         for(j in 1:n){ 

              thetasif[i,j]<-pi-abs(pi-abs(x[i]-x[j])) 

              A[i,j]<-(1-cos(x[i]-x[j]))            

                Chord[i,j]<-2*sin(thetasif[i,j]/2) 

                    }} 

     for(i in 1:n){ 

          sumA[i]<-(sum(A[,i]))/(2*(n-1))           

            sumChord[i]<-(sum(Chord[,i]))/(2*(n-1))} 

   

     Amax<-max(sumA) 

     Chordmax<-max(sumChord) 

   

 

       for (i in 1:n){if(sumA[i]==Amax){obA<-i}} 

       for (i in 1:n){if(sumChord[i]==Chordmax){obChord<-i}} 

          

  Asta<-cbind(obA,Amax) 

  Chordsta<-cbind(obChord,Chordmax) 

     

       #----------------------------------------------# 

  #            Asymptotic distribution           # 

  #----------------------------------------------# 

  Distance<-matrix(0, nrow=n, ncol=n) 

  ScoreChi<-matrix(0, nrow=n, ncol=n) 

 

   for(i in 1:n){ 

    for(j in 1:n){ 

     Distance[i,j]<-k*(1-cos(x[i]-x[j])) 

     if(Distance[i,j]>qchisq(0.95,1)){ScoreChi[i,j]<-1}  

      }}  

         Points<-apply(ScoreChi,1,sum) 

         plot(Points) 

 

list(Summary=Summary,Csta=Csta,Dsta=Dsta,Msta=Msta,Lsta=Lsta,Chordsta=Chordsta

,Asta=Asta,Points=Points)  

   

#Discordancy(x,1)   if type isdegree=1, radian = other wise 

} 
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Appendix 8 

S-Plus subroutine for Circular Boxplot 

 
CircularBoxplot<-function(x,v,r,type){ 

 

 if(type==1){x<-x*pi/180} 

x1<-as.matrix(x) 

x<-sort(x1)  

n<-length(x) 

       

      #Mean and Concentration 

      #---------------------- 

 

               CircMeanCon<-function(x){ 

      C<-sum (cos(x)) 

                S<-sum(sin(x)) 

      n<-length(x) 

      R<-(C^2+S^2)^(0.5)           # Resultant length 

      Rbar<-R/n                    # Sample mean Resultant 

length 

 

                # Mu Ml estimation             (Fisher pp.31 (2.9)) 

             

         if(S>0 && C>0){Mu<-atan(S/C)} 

              else if(C<0){Mu<-atan(S/C)+ pi} 

             else if(S<0 && C>0){Mu<-atan(S/C)+2*pi} 

  

      # Kappa estimation         (Fisher pp.88 (4.40)) 

 

  if (Rbar<0.53){k<-2*(Rbar)+(Rbar)^3+(5/6)*(Rbar)^5} 

   else if (Rbar>=0.53 &&Rbar<0.85){k<--0.4+1.39*(Rbar)+(0.43/(1-

Rbar))} 

       else if (Rbar>=0.85){k<-1/((Rbar)^3-

4*(Rbar)^2+3*(Rbar))} 

          

      list(Mu=Mu,k=k)} 

  #-----------------------------------------------------------------#   

         

        #Mod Programme (Radian) 

        #---------------------- 

 

       RadMod<-function(x){        

       for(i in 1:length(x)){ 

                 m<-as.integer(x[i]/(2*pi)) 

             if (x[i]>=2*pi){x[i]<-(x[i]-(m*2*pi))} 

              else if (x[i]<0 &&x[i]>(-2*pi)){x[i]<-x[i]+(2*pi)} 

            else if (x[i]<=(-2*pi)){x[i]<-

x[i]+((abs(m)+1)*2*pi)} 

                    else(x[i]<-x[i]) 

                       } 

       list(x=x)} 

  #----------------------------------------------------------#                    

      

     # Programme To Estimate the median 

     #--------------------------------- 

           Cirmedian<-function(x){ 

         n<-length(x) 

             Obs<-matrix(0, nrow=n) 

  

                      #Circular distance 

        #----------------- 

            CirDis<-function(a,x,n){ 

        d<-matrix(0, nrow=n) 

         for (i in 1:n){d[i]<-abs(pi-abs(x[i]-a))} 

         

        sumd<-sum(d) 

                      list(d=d,sumd=sumd)} 

                        

                 #------------------------------------------------------# 
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        #Estimation of Mean 

        #------------------  

                    

        CircMean<-function(x){ 

                  C<-sum (cos(x)) 

                  S<-sum(sin(x)) 

                    # Mu Ml estimation             (Fisher pp.31 (2.9)) 

                if(S>0 && C>0){Mu<-atan(S/C)} 

                else if(C<0){Mu<-atan(S/C)+ pi} 

              else if(S<0 && C>0){Mu<-atan(S/C)+2*pi} 

                     list(Mu=Mu) 

                                    }   

     #-----------------------------------------------------------# 

   

           for (i in 1:n){ 

                Obs[i]<-pi-(CirDis(x[i],x,n)$sumd)/n} 

  

      CirMedSort<-sort(Obs) 

 

                 CirMedOdd<-CirMedSort[1]  #Odd case take the minimun 

        CirMedEven<-CirMedSort[2] # Even case we look for less two 

values 

    

         

                # To specify the location of points 

 

           for (i in 1:n){ 

       if(Obs[i]==CirMedOdd){PosOdd<-i} 

       if(Obs[i]==CirMedEven){PosEven<-i} 

                       } 

 

      # To specify the value of meadian 

 

         if((n%%2)==1){CirMed<-x[PosOdd]} 

         if((n%%2)==0){TwoPoints<-c(x[PosOdd],x[PosEven]) 

                    CirMed<-CircMean(TwoPoints)$Mu} 

 

     list(CirMed=CirMed) 

   

                  } 

 #-------------------------------------------------------------------------# 

 

  Mu<-CircMeanCon(x)$Mu   # To calculate the mean 

 kappa<-CircMeanCon(x)$k 

 

# Rotation 

#---------- 

xR<-RadMod(x-Mu)$x 

 

FirstHalf<-matrix(NA,nrow=n) 

secondHalf<-matrix(NA,nrow=n) 

 

   CirMedian<-Cirmedian(xR)$CirMed 

 

     for(i in 1:n){ 

    if(xR[i]>CirMedian && (xR[i]-CirMedian)<pi){secondHalf[i]<-xR[i]}                                

    if(xR[i]>CirMedian && (xR[i]-CirMedian)>pi){FirstHalf[i]<-xR[i]} 

    if(xR[i]<CirMedian && (CirMedian-xR[i])<pi){FirstHalf[i]<-xR[i]}                                        

    if(xR[i]<CirMedian && (CirMedian-xR[i])>pi){secondHalf[i]<-xR[i]} 

                             } 

  

     FirstHalf<-na.exclude(FirstHalf) 

     secondHalf<-na.exclude(secondHalf) 

  

   Q3<-Cirmedian(FirstHalf)$CirMed 

   Q1<-Cirmedian(secondHalf)$CirMed 

 

   CIQR<-2*pi-Q3+Q1 

   

       WhiskerUpv<-RadMod(Q3-v*(CIQR))$x           #mode   
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  WhiskerDownv<-RadMod(Q1+v*(CIQR))$x         #mode 

 

 

# To fix the whisker on the last point 

#------------------------------------- 

 

ddd<-matrix(10,nrow=n, ncol=2) 

 

  for(i in 1:n){ 

   if (xR[i]<=WhiskerDownv){ddd[i,1]<-pi-abs(pi-abs(xR[i]-

WhiskerDownv))} 

   if (xR[i]>=WhiskerUpv){ddd[i,2]<-pi-abs(pi-abs(xR[i]-WhiskerUpv))} 

         } 

 

      for(i in 1:n){ 

        if(ddd[i,1]==min(ddd[,1])){WhiskerDownv<-xR[i]} 

        if(ddd[i,2]==min(ddd[,2])){WhiskerUpv<-xR[i]}} 

 

# Number of outliers 

#------------------- 

 

OutlierCount<-0 

OutlierValues<-matrix(NA,nrow=n) 

 

for(i in 1:n){if(xR[i]>WhiskerDownv &&xR[i]<WhiskerUpv)       

{OutlierCount<OutlierCount+1  

      OutlierValues[i]<-xR[i]}} 

 

 

#Re-rotate the observation 

#------------------------- 

 

Q1<-RadMod(Q1+Mu)$x 

Med<-RadMod(CirMedian+Mu)$x 

Q3<-RadMod(Q3+Mu)$x 

Ul<-RadMod(WhiskerDownv+Mu)$x 

Uf<-RadMod(WhiskerUpv+Mu)$x 

OutlierValues<-RadMod(na.exclude(OutlierValues)+Mu)$x 

 

outliers<-(as.vector(na.exclude(OutlierValues))) 

Results<-cbind(WhiskerDownv,WhiskerUpv,OutlierCount,outliers) 

 

 

#------------------------------------ 

# Start Drawing the Circular box plot 

#------------------------------------ 

d<-x 

  # Construct the Outer box 

   plot(c(-r,r), c(-r,r), xlab="", ylab="",xaxt="n",yaxt="n",type="n") 

   title("Circular Boxplot of") 

 

  # Construct the main circle (middle circle) 

   xp <- NULL 

          yp <- NULL 

 

    for(i in 0:100) { 

                a <- (2 * pi * i)/100 

                x <- (0.85*r) * cos(a) 

                y <- (0.85*r) * sin(a) 

                xp <- c(xp, x ) 

                yp <- c(yp, y ) 

                       } 

  lines(yp, xp, type = "l",lwd=1)  

 

 #Plot data set on the circle 

 

   dx<-(0.85*r)*cos(d) 

   dy<-(0.85*r)*sin(d) 

    

  points(dy, dx, type = "p",col=2,pch=15) 
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# Plot the Q1,Q3,Ul,Uf and Median on the Circle 

 

   m<-c(Q1,Q3,Ul,Uf,Med) 

 

    # Construct the inner circle points 

           mx1<-((0.85*r)-0.1)*cos(m)           

      my1<-((0.85*r)-0.1)*sin(m) 

 

   # Construct the outer circle points 

      mx2<-((0.85*r)+0.1)*cos(m) 

      my2<-((0.85*r)+0.1)*sin(m) 

 

    segments(my1[3], mx1[3], my2[3], mx2[3],lwd=5)       # Draw  Ul 

    segments(my1[4], mx1[4], my2[4], mx2[4],lwd=5)      # Draw  Uf 

    segments(my1[5], mx1[5], my2[5], mx2[5],lwd=7)    # Draw  

Median  

 

 

# To plot the inner and outer circles 

 

Dif<-matrix(0,nrow=1000) 

Dif[1]<-Q3   

 

if(Q1>Q3){             #Case when the median far from the zero direction 

 

    for(i in 2:1000) { 

     Dif[i]<-Dif[i-1]+0.05 

            if(Dif[i]>Q1|Dif[i]==Q1){final<-i 

                              break}}  

 

     Dif<-Dif[1:final]              

                  } 

 

 

            if(Q1<Q3){   #Case when the median close from the zero direction 

    for(i in 2:1000) { 

     Dif[i]<-Dif[i-1]+0.005 

              if(Dif[i]>2*pi|Dif[i]==2*pi){final1<-i 

                                 break}}  

    Dif[final1+1]<-0    

    for(i in (final1+2):1000) { 

           Dif[i]<-Dif[i-1]+0.005 

              if(Dif[i]>Q1|Dif[i]==Q1){final<-i 

                                 break}}  

 

     Dif<-(Dif[1:final]) 

         } 

 

########################### 

 

 Difmid<-matrix(0,nrow=1000) 

 Difmid[1]<-Uf 

 

  if(Ul>Uf){              #Case when the median far from the zero 

direction 

 

    for(i in 2:1000) { 

     Difmid[i]<-Difmid[i-1]+0.05 

            if(Difmid[i]>Ul|Difmid[i]==Ul){finalmid<-i 

                              break}}  

       Difmid<-Difmid[1:finalmid]              

                  } 

 

 

 

  if(Ul<Uf){     #Case when the median close from the zero direction 

 

    for(i in 2:1000) { 

     Difmid[i]<-Difmid[i-1]+0.05 

              if(Difmid[i]>2*pi|Difmid[i]==2*pi){finalmid<-i 
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                          break}}  

 

              Difmid[finalmid+1]<-0 

     

            for(i in (finalmid+2):1000) { 

           Difmid[i]<-Difmid[i-1]+0.05 

              if(Difmid[i]>Ul|Difmid[i]==Ul){finalmid<-i 

                                 break}}  

 

            Difmid<-(Difmid[1:finalmid]) 

         } 

 

# Construct the inner circle points 

                xin <- ((0.85*r)-0.1) * cos(Dif) 

                yin <- ((0.85*r)-0.1)* sin(Dif) 

 

# Construct the outer circle points 

     xout <-((0.85*r)+0.1) * cos(Dif) 

                 yout <-((0.85*r)+0.1)* sin(Dif) 

 

# Construct the midd circle points 

     xmid <-((0.85*r)) * cos(Difmid) 

                 ymid <-((0.85*r))* sin(Difmid) 

 

# Draw the inner and outer circle   

  lines(yin, xin, type = "l",lwd=5) 

  lines(yout, xout, type = "l",lwd=5) 

  lines(ymid, xmid, type = "l",lwd=3)  

  segments(yin[1], xin[1], yout[1], xout[1],lwd=5)                  # Draw 

Q3 

  segments(yin[final], xin[final], yout[final], xout[final],lwd=5)  # Draw 

Q1 

 

Mean<-Mu 

Median<-RadMod(CirMedian+Mu)$x 

Concentration<-kappa 

OutlierCountD<-OutlierCount*pi/180 

 

SSRadian<-cbind(Mean,Median,Concentration, 

Q1,Q3,CIQR,WhiskerDownv,WhiskerUpv,OutlierCount)        

SSDegree<cbind(Mean,Median,Concentration=Concentration*pi/180,Q1,Q3,CIQR,Whisk

erDownv,WhiskerUpv,OutlierCountD)*180/pi 

        

     OutliersDegree<-outliers*180/pi 

 

list("Summary Statistics Radian"=SSRadian,outliers=outliers, "Summary 

Statistics in Degree"=SSDegree,OutliersDegree=OutliersDegree) 

 

} 

#CirQun(x,v,r,type)    type=1 degree      else degree 
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Appendix 9 

S-Plus Subroutine to Fit the Simple Circular Regression Model 
 

 

 

SCRM<-function(x,y,iter){ 

      # To obtain the initial values  

 #----------------------------- 

  

    n<-length(x)   

       

     dat.lm<-lm(y~x) 

 

     dat.lm<-summary(dat.lm) 

    

     dat.lm<-as.vector(dat.lm) 

 

     dat.lm<-dat.lm$coefficients 

 

     dat.lm<-as.vector(dat.lm)   

   

      iniA<-dat.lm[1] 

 

      iniB<-dat.lm[2] 

      

 # The begining of the iterative procedure 

 #---------------------------------------- 

 

  bb<-matrix(0,nrow=iter) 

  alpha<-matrix(0,nrow=iter) 

  

  bb[1]<-iniB 

  alpha[1]<-iniA 

  

  for (i in 2:iter){ 

 

       S<-sum(sin(y-bb[i-1]*x)) 

       C<-sum(cos(y-bb[i-1]*x)) 

    

   if (S>0 && C>0){alpha[i]<-atan(S/C)} 

   else if (C<0) {alpha[i]<-atan(S/C)+pi} 

   else if (S<0 && C>0){alpha[i]<-atan(S/C)+2*pi} 

    

    

   K1<-sum(x*sin(y-alpha[i]-bb[i-1]*x)) 

   K2<-sum((x^2)*cos(y-alpha[i]-bb[i-1]*x)) 

   bb[i]<-bb[i-1]+(K1/K2) 

   final<-i 

   if (abs(bb[i-1]-bb[i])<0.001) break 

         } 

 

   alphaEst<-alpha[final] 

   betaEst<-bb[final] 

  

   w<-(sum(cos(y-alpha[final]-betaEst*x)))/n 

   KappaEst<-(9-8*w+3*(w^2))/(8*(1-w)) 

  

   

   A2w<-(sum(cos(y-alpha[final]-betaEst*x)^2))/n 

 

 

 

 

 

 #Asymptotic properties 

 #--------------------- 

  

 pp<-n*(sum(x^2))-(sum(x))^2 

  

 VarAlphaHead<-(sum(x^2))/(KappaEst*w*pp) 
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 VarBetaEst<-n/(KappaEst*w*pp) 

 VarKappaEst<-KappaEst/(n*(KappaEst-KappaEst*(w^2)-w)) 

  

    sealpha<-sqrt(VarAlphaHead) 

    sebeta<-sqrt(VarBetaEst) 

    sekappa<-sqrt(VarKappaEst) 

 

  

 # fitted values 

 #--------------- 

 

  yhat<-alpha[final]+betaEst*x  

  

   for(i in 1:length(yhat)){ 

      m<-as.integer(yhat[i]/(2*pi)) 

    if (yhat[i]>=2*pi){yhat[i]<-(yhat[i]-(m*2*pi))} 

       else if (yhat[i]<0 &&yhat[i]>(-2*pi)){yhat[i]<-yhat[i]+(2*pi)} 

        else if (yhat[i]<=(-2*pi)){yhat[i]<-

yhat[i]+((abs(m)+1)*2*pi)} 

                 else(yhat[i]<-yhat[i]) 

                   } 

 

 

 # Calaculate the residuals 

 #------------------------- 

  

      res<-matrix(0, nrow=n) 

  

    for (i in 1:n){ 

if(((yhat[i])<y[i])&&(y[i]-yhat[i])<=pi){res[i]<-(pi-abs(pi-abs(y[i]-

yhat[i])))} 

if(((yhat[i])<y[i])&&(y[i]-yhat[i])>pi){res[i]<--(pi-abs(pi-abs(y[i]-

yhat[i])))} 

if(((yhat[i])>y[i])&&(yhat[i]-y[i])<=pi){res[i]<--(pi-abs(pi-abs(y[i]-

yhat[i])))} 

 if (((yhat[i])>y[i])&&(yhat[i]-y[i])>pi){res[i]<-(pi-abs(pi-abs(y[i]-

yhat[i])))} 

                            } 

 # Calculate the circular correlation 

 #------------------------------------ 

   Corr<-function (x,y){ 

  

   MeanCon<-function(CC){ 

    n<-length(CC)  

      C<-sum(cos(CC)) 

    S<-sum(sin(CC)) 

    R<-(C^2+S^2)^(0.5)                    # Resultant length 

    Rbar<-R/n                             # Sample mean Resultant 

length 

 

    if(S>=0 && C>0){Mu<-atan(S/C)} 

     else if(C<0){Mu<-atan(S/C)+ pi} 

      else if(S<0 && C>=0){Mu<-atan(S/C)+2*pi} 

        

       list(Mu=Mu)} 

  

      xbar<-MeanCon(x)$Mu 

      ybar<-MeanCon(y)$Mu 

  

      A<-sin(x-xbar) 

      B<-sin(y-ybar) 

  

     r<-sum(A*B)/(sum(A^2)*sum(B^2))^0.5 

     r2<-r^2 

      list(r=r,r2=r2) 

                         } 

 

# Circular Correlation between X and Y 

CorrXY<-Corr(x,y)$r 

 

#Circular correlation between y and yaht 
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CorrYhatY<-Corr(y,yhat)$r 

R2<-(CorrYhatY)^2 

  

output1<-cbind(alpha[final],betaEst,KappaEst) 

output2<-cbind(sealpha,sebeta,sekappa) 

output3<-cbind(CorrXY,w,A2w,CorrYhatY,R2) 

 

par(mfrow=c(1,2)) 

plot(x,y) 

plot(res) 

 

 

list("Estimation of Model parameters"=output1,"Standard Error"=output2, 

"Goodness of fit"=output3, res=res) 

 

   } 

#SCRM(x,y,iter) 

#SCRM(wind$R,wind$A,50) 
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Appendix 10 

S-Plus Subroutine to Obtain Row Deletion Statistics for Simple 

Circular Regression Model 

 
 

RowDeletionProcedures<-function(x,y,iter){ 

 

 #---------------- Calculation of the statistics ----------------------# 

 

 

   SCRM<-function(x,y,iter){ 

     

       # To obtain the initial values  

       #----------------------------- 

  

        n<-length(x)   

       

          dat.lm<-lm(y~x) 

  

        dat.lm<-summary(dat.lm) 

    

            dat.lm<-as.vector(dat.lm) 

  

         dat.lm<-dat.lm$coefficients 

 

            dat.lm<-as.vector(dat.lm)   

   

         iniA<-dat.lm[1] 

 

         iniB<-dat.lm[2] 

      

    

    # The begining of the iterative procedure 

    #---------------------------------------- 

 

    bb<-matrix(0,nrow=iter) 

    alpha<-matrix(0,nrow=iter) 

  

    bb[1]<-iniB 

    alpha[1]<-iniA 

  

     for (i in 2:iter){ 

 

          S<-sum(sin(y-bb[i-1]*x)) 

         C<-sum(cos(y-bb[i-1]*x)) 

    

     if (S>0 && C>0){alpha[i]<-atan(S/C)} 

     else if (C<0) {alpha[i]<-atan(S/C)+pi} 

     else if (S<0 && C>0){alpha[i]<-atan(S/C)+2*pi} 

    

    

     K1<-sum(x*sin(y-alpha[i]-bb[i-1]*x)) 

     K2<-sum((x^2)*cos(y-alpha[i]-bb[i-1]*x)) 

     bb[i]<-bb[i-1]+(K1/K2) 

     final<-i 

     if (abs(bb[i-1]-bb[i])<0.001) break 

            } 

 

     alphaEst<-alpha[final] 

     betaEst<-bb[final] 

  

     w<-(sum(cos(y-alpha[final]-betaEst*x)))/n 

     KappaEst<-(9-8*w+3*(w^2))/(8*(1-w)) 

    

  

   # fitted values 

 #--------------- 

 

  yhat<-alpha[final]+betaEst*x  
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   for(i in 1:length(yhat)){ 

      m<-as.integer(yhat[i]/(2*pi)) 

    if (yhat[i]>=2*pi){yhat[i]<-(yhat[i]-(m*2*pi))} 

       else if (yhat[i]<0 &&yhat[i]>(-2*pi)){yhat[i]<-yhat[i]+(2*pi)} 

        else if (yhat[i]<=(-2*pi)){yhat[i]<-

yhat[i]+((abs(m)+1)*2*pi)} 

                 else(yhat[i]<-yhat[i]) 

                   } 

 

 

      #circular distance 

      #----------------- 

 

   d<-pi-abs(pi-abs(y-yhat)) 

 

 

   # Mean circular error statistics 

   #------------------------------- 

 

   MCEc<-sum(1-cos(y-yhat))/n 

   MCEs<-sum(sin(d/2))/n 

 

 

   # Estimation of Concentration parmater 

   #------------------------------------- 

          Concentration<-function(CC){ 

    n<-length(CC)  

      C<-sum(cos(CC)) 

    S<-sum(sin(CC)) 

    Rbar<-((C^2+S^2)^(0.5))/n                      

   

          if (Rbar<0.53){k<-2*(Rbar)+(Rbar)^3+(5/6)*(Rbar)^5} 

   else if (Rbar>=0.53 &&Rbar<0.85){k<-(-0.4+1.39*(Rbar)+(0.43/(1-

Rbar)))} 

    else if (Rbar>=0.85){k<-1/((Rbar)^3-4*(Rbar)^2+3*(Rbar))} 

           list(k=k)  

         } 

 

  kappa<-Concentration(y-yhat)$k 

 

   # The Modified mean circular error statistic 

   #------------------------------------------- 

  

   MDC<-2*sum(1-cos(sqrt(kappa)*(y-yhat))) 

  

 

       # The determinant 

    #---------------- 

 

   determenant<-(1/(KappaEst*w)) 

      

  

 

 Result<-cbind(MCEc,MCEs,MDC,determenant) 

      

    list(Result=Result) 

              } 

    

 

 

 

#------------------- Row deletion approach ------------# 

      

 n<-length(x) 

 ResultAll<-matrix(0,nrow=4)        

 ResultAll<-SCRM(x,y,100)$Result 

 DeletionRowResult<-matrix(0,nrow=n, ncol=4) 

 Statistics<-matrix(0,nrow=n, ncol=4) 
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 Combinexy<-data.frame(x,y) 

        

    for(i in 1:n){ 

     Newdata<-remove.row(Combinexy,i,1) 

     DeletionRowResult[i,]<-SCRM(Newdata$x,Newdata$y,iter)$Result    

                     } 

 

DMCEc<-abs(DeletionRowResult[,1]-ResultAll[1]) 

DMCEs<-abs(DeletionRowResult[,2]-ResultAll[2]) 

MDCi<-abs(DeletionRowResult[,3]-ResultAll[3]) 

COVRATIO<-abs(1-(DeletionRowResult[,4]/ResultAll[4])) 

 

Statistics<-cbind(DMCEc,DMCEs,MDCi,COVRATIO) 

 

 

# Graphical representation of the results 

#---------------------------------------- 

 

par(mfrow=c(2,2)) 

plot(DMCEc) 

plot(DMCEs) 

plot(MDCi) 

plot(COVRATIO) 

 

list(ResultAll=ResultAll,Statistics=Statistics) 

                                 } 

 

#RowDeletionProcedures(x,y,iter) 

 

 

 

 
 


