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 ABSTRACT 

 

In this study, primary and secondary screenings were conducted to evaluate the 

antibacterial and anti-yeast potential of the eleven selected marine-derived 

Streptomyces spp., particularly against P. shigelloides. The strains were categorized 

into three colour groups for morphological grouping according to the colour of aerial 

mycelium; namely grey, yellow green, and white colour groups. Diffusible pigments 

were produced by eight of the strains tested. Strain(s) from grey and white with red 

diffusible pigments colour groups displayed strong antibacterial activity. The yeasts 

tested were resistant to the bioactive metabolite(s) produced by some of the 

Streptomyces spp. which had shown high activity against the bacteria tested. In primary 

screening, there was no inhibition of growth of yeasts tested; C. albicans and C. 

parasilopsis. Of the streptomycete strains tested, eight strains were active against at 

least one bacteria tested. In secondary screening, four strains inhibited all the yeasts 

tested. Meanwhile, all strains were active against at least one bacteria tested. 

Streptomyces strain T15 displayed the best antibacterial activity against B. subtilis, P. 

aeruginosa, and P. shigelloides. Of the streptomycetes tested, three strains were found 

to display strong inhibition against at least one pathogen tested in both primary and 

secondary screenings. Meanwhile, two and three strains displayed moderate inhibition 

against at least one pathogen tested in primary and secondary screenings, respectively. 

Furthermore, six and all the strains displayed weak inhibition against at least one 

pathogen tested in primary and secondary screenings, respectively. The antibacterial 

and anti-yeast activities were prominent in secondary screening, where five of the 

strains exhibited broad spectrum activity.   
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Streptomyces strain T15 was selected for further studies. Culture conditions 

(media and agitation or static) were optimised to enhance the production of bioactive 

metabolite(s) in submerged fermentation. It was noted that fermentation of strain T15 

in ISP2 medium at an incubation period of nine days at 28ºC ± 2ºC, pH 6.10 ± 1.70, 

and shaking at a speed of 120 rpm was the most ideal for growth and bioactive 

metabolite(s) production antagonistic to P. shigelloides at laboratory conditions. During 

the twelve days fermentation, the highest bioactive metabolite(s) production of strain 

T15 was noted on day nine in all the fermentation media used in this study. The highest 

bioactive metabolite(s) production by nine-day old strain T15 was achieved in ISP2 

medium; however, the bioactive metabolite(s) production started on day six. The nature 

of culture condition that is, either agitation or static had an effect on the production of 

bioactive metabolite(s). For agitation culture condition, ISP2 medium was considered 

as the best fermentation medium for strain T15 based on the higher production of 

bioactive metabolite(s) that it supported compared to SA medium. Meanwhile, for 

static culture condition, ISP4 medium was the only fermentation medium that 

supported the bioactive metabolite(s) production by strain T15.  
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 ABSTRAK 

 

Dalam kajian ini, penskrinan primer dan sekunder dijalankan ke atas sebelas 

Streptomyces spp. marin bagi menilai aktiviti antibakteria dan anti-yis terutamanya ke 

atas P. shigelloides. Strain-strain dikategorikan kepada tiga kumpulan warna 

berdasarkan warna miselium “aerial”; iaitu kelabu, kuning kehijauan, dan putih. 

Sebanyak lapan strain menghasilkan pigmen difusi. Strain dari kumpulan warna kelabu 

dan putih dengan pigmen difusi merah menunjukkan aktiviti antibakteria yang kuat. Yis 

yang dikaji adalah resistan terhadap Streptomyces spp. yang mempunyai aktiviti 

antibakteria yang kuat. Dalam penskrinan primer, tiada perencatan pertumbuhan yis; C. 

albicans dan C. parasilopsis. Sebanyak lapan strain aktif terhadap sekurang-kurangnya 

satu bakteria yang dikaji. Dalam penskrinan sekunder, empat strain merencatkan 

pertumbuhan semua yis yang dikaji. Manakala, semua strain adalah aktif terhadap 

sekurang-kurangnya satu bakteria yang dikaji. Streptomyces strain T15 adalah agen 

antibakteria paling kuat bagi B. subtilis, P. aeruginosa, dan P. shigelloides. Sebanyak 

tiga strain menunjukkan inhibisi yang kuat terhadap sekurang-kurangnya satu patogen 

dalam penskrinan primer dan sekunder. Manakala, dua dan tiga strain masing-masing 

menunjukkan inhibisi yang sederhana terhadap sekurang-kurangnya satu patogen dalam 

penskrinan primer dan sekunder. Sebanyak enam dan semua strain masing-masing 

menunjukkan inhibisi yang lemah terhadap sekurang-kurangnya satu patogen dalam 

penskrinan primer dan sekunder. Aktiviti antibakteria dan anti-yis adalah lebih 

menyerlah dalam penskrinan sekunder di mana lima strain tersebut mempunyai aktiviti 

berspektrum luas. 

  

Streptomyces strain T15 dipilih untuk kajian selanjutnya. Optimisasi kondisi 

kultur iaitu media dan agitasi atau statik dilakukan untuk meningkatkan penghasilan 
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metabolit bioaktif melalui fermentasi tenggelam (“submerged fermentation”). 

Fermentasi strain T15 dalam medium ISP2 selama sembilan hari pada suhu 28ºC ± 2ºC, 

pH 6.10 ± 1.70, dan kelajuan putaran 120 rpm adalah paling sesuai untuk pertumbuhan 

dan penghasilan metabolit bioaktif yang antagonistik terhadap P. shigelloides dalam 

kondisi makmal. Penghasilan metabolit bioaktif tertinggi dicatatkan pada hari 

kesembilan bagi semua media yang digunakan dalam fermentasi sepanjang dua belas 

hari tersebut. Penghasilan metabolit bioaktif tertinggi diperolehi dalam medium ISP2 

walaupun penghasilan metabolit bioaktif tersebut bermula pada hari keenam. Kondisi 

kultur iaitu sama ada agitasi atau statik mempunyai kesan ke atas penghasilan metabolit 

bioaktif. Medium ISP2 berbanding medium SA adalah medium fermentasi terbaik bagi 

penghasilan metabolit bioaktif dalam kondisi agitasi. Manakala, bagi kondisi statik, 

medium ISP4 adalah satu-satunya medium fermentasi yang dapat menyokong 

penghasilan metabolit bioaktif oleh strain T15. 
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1.0 INTRODUCTION 

 

 Plesiomonas shigelloides is an indigenous inhabitant of freshwater, sediment, 

and the intestinal tract of cold-blooded aquatic animals (Dulger, 2004). It is not only 

found in the aquatic environment in the tropical and subtropical regions, but also in cold 

climates (Lukasiewicz et al., 2006). Based on previous reports, Dulger (2004) 

concluded that the highest isolation rates of these bacteria in surface waters were during 

the summer months, and no, or very few isolations in winter. According to González-

Rey (2003), this bacterium is called the “Asian” bacteria because of the high incidence 

of isolations in countries such as Japan and Thailand. Macro-morphologically, P. 

shigelloides has different colonial appearance depending on the selective or differential 

agar used. Colonies vary from flat, round, and 1-2 mm size with smooth edges on blood 

agar to flat, irregular edge and shape, and around 1 mm size when plesiomonads were 

cultured on deoxycholate agar. Micro-morphologically, P. shigelloides is Gram-

negative, motile, capsulated, flagellated, and non-spore-forming bacilli.   

 

 Plesiomonas shigelloides is an opportunistic pathogen (Jeppesen, 1995). Clark 

and Janda (1991) mentioned that it was unclear whether all P. shigelloides were equally 

virulent, or whether strain-to-strain variation occurred. Over the years, there have been 

a number of reports on the isolation of P. shigelloides from an assortment of clinical 

specimens; including cerebrospinal fluid, wounds, and respiratory tract (Niedziela et 

al., 2002). Diarrhoea is one of the leading causes of morbidity and mortality in 

populations in developing countries, and is a substantial health issue throughout the 

world. Recent epidemiological evidence has strongly implicated P. shigelloides as a 

significant cause of diarrhoeal disease (Theodoropoulos et al., 2001), where it has been 

implicated as an aetiological agent in sporadic cases and outbreaks of diarrhoea in 
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various parts of the world, and the causative agent of gastroenteritis as well as of 

extraintestinal infections (Rager et al., 2000; Wong et al., 2000). Recent attention has 

been drawn to this organism since it also has been implicated as an emerging pathogen 

(Krovacek et al., 2000; Theodoropoulos et al., 2001; Gonzalez-Rey et al., 2004), and a 

causative agent of extraintestinal infections, which include meningitis, sepsis, arthritis, 

cholecystitis, and endophthalmitis (Wiegand and Burak, 2004). It is responsible for 

various extraintestinal infections of gastrointestinal origin, particularly in neonates and 

immunosuppressed adults, or people with an underlying disease (Lukasiewicz et al., 

2006). It also causes localized infections originating from infected wounds, which can 

disseminate to other parts of the body (Niedziela et al., 2002). 

  

Treatment with antibiotics is seldom required. However, appropriate antibiotic 

therapy is necessary for severe infections. Most frequently described severe infections 

are cases of septicaemia and meningitis, occurring mainly in patients with underlying 

health disorders and in immunocompromised patients (Wiegand and Burak, 2004). 

Many of the patients with extraintestinal disease died as a direct result of their 

plesiomonad infections (Clark et al., 1990). Abbott et al. (1991) and Groves (1996) 

highlighted that extraintestinal infections due to P. shigelloides were severe, but rare, 

with a reported fatality rate of 80% in the case of neonatal meningitis. Groves (1996) 

reported that most strains of P. shigelloides were resistant to penicillin, but susceptible 

to penicillin combined with a β-lactamase inhibitor, chloramphenicol, trimethoprim-

sulfamethoxazole, quinolones, cephalosporins, and imipenem. However, susceptibility 

varies greatly from strain to strain. The variability of its susceptibility was proven when 

Wong et al. (2000) reported that most P. shigelloides strains produced β-lactamases, 

and were resistant or partial resistant to ampicillin, tetracycline, co-trimoxazole, and 

chloramphenicol. In addition, according to Obi et al. (2007), P. shigelloides were 
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resistant to neomycin and chloramphenicol, but were susceptible to ciprofloxacin, 

ofloxacin, amikacin, meropenem, imipenem, and co-trimoxazole. There were 

contradiction in the reports by Groves (1996), Wong et al. (2000), and Obi et al. 

(2007), where Groves (1996) reported susceptibility to chloramphenicol, whereas 

Wong et al. (2000) and Obi et al. (2007) reported resistance to it. Plesiomonas 

shigelloides have become a major health problem since they acquired resistance to 

multiple antibiotics (Stock and Wiedemann, 2001).  

 

Multiple antibiotic resistances are becoming increasingly widespread, and 

therefore antimicrobial agents are becoming less and less effective (Obi et al., 2007). 

An increase in the resistance of human pathogen populations to currently available 

antibiotics is of primary concern to the medical community and pharmaceutical 

industry (Saadoun and Gharaibeh, 2003). The continuous emergence of pathogens that 

are resistant to multiple antibiotics has complicated the therapy of many otherwise 

simple infections, which necessitates the continuous search for the development of new 

antibiotics (Saadoun et al., 2008). To combat the increasing emergence of resistant 

pathogens, the availability of new lead structures and novel bioactive compounds is one 

of the most important requirements for a continuing source of therapeutics 

(Vikineswary, 2004). Microbial natural products are the origin of most of the 

antibiotics on the market today (Pelàez, 2006). Screening of microorganisms for the 

production of novel antibiotics has been intensively pursued for many years by 

scientists (Oskay et al., 2004). New antimicrobial agents with a broad spectrum of 

activity against these multi-resistant pathogens are urgently sought, and one of the 

approaches is to expand the screening activity of the actinomycetes as it harbors great 

numbers of antibiotic producers (Saadoun et al., 2008).  
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Actinomycetes are widely recognized as industrially important microorganisms 

because of their ability to produce many kinds of novel secondary metabolites 

including antibiotics (Ceylan et al., 2008). One of the theories that may explain 

antibiotic production is that antimicrobial compounds help the actinomycetes compete 

with other organisms in the relatively nutrient-depleted environment by reducing 

competition (Zheng et al., 2000). Actinomycetes have been the focus of aggressive 

research efforts since the discovery of actinomycin in 1940 from Actinomyces 

antibioticus by Selman Waksman (Mincer et al., 2002). It has been estimated that 

approximately two-third of the thousands of naturally occurring antibiotics have been 

isolated from actinomycetes. Screening projects have focused on species of 

Streptomyces as a source of antibiotics for many years (Saadoun and Gharaibeh, 2002). 

Streptomyces spp. are the producer of about 75% of commercially and medically useful 

antibiotics (Peela et al., 2005).  

 

Actinomycetes are Gram-positive bacteria with branched filaments, which have 

been considered as a group well separated from common bacteria because of their well-

developed morphological and cultural characteristics (Das et al., 2006). Actinomycetes 

reproduce either by fission or by special spores or conidia. They usually form a 

mycelium which may be of a single kind, designated as substrate (vegetative), or of two 

kinds, substrate (vegetative) and aerial (in part sporogenous) (Marwick et al., 1999).  

Actinomycete strains can be divided into two major groups, based on the colour of 

aerial/substrate mycelium: streptomycete-like such as Streptomyces spp. and non-

streptomycete-like such as Micromonospora spp. (Tan et al., 2004). They occur in a 

multiplicity of natural and man-made environments (Augustine et al., 2005b). Most 

species are aerobic, saprophytic, and mesophilic forms whose natural habitat is soil, 

where they contribute significantly to the turnover of complex biopolymers such as 
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lignocellulose, hemicellulose, pectin, keratin, and chitin (Mincer et al., 2002). 

Actinomycetes may also be isolated from terrestrial and aquatic habitats, and recovered 

from the air, where they temporarily exist as spores or mycelial fragments (Demain, 

1992). Actinomycetes are also present in many free-swimming marine vertebrates and 

invertebrates, as well as in sessile ones (Ward and Bora, 2006).     

                                                                                                                                                                                                                        

 The discovery of new antibiotics reached a peak in the 1970s then declined in 

the late 1980s and 1990s due to a decrease in screening efforts rather than an 

exhaustion of compounds (Watve et al., 2001). The screening and isolation of 

promising strains of actinomycete with potential antibiotics is still a thrust area of 

research. Shiburaj (2003) suggested that explorations of materials from new areas and 

habitats were needed urgently in the search for new microbes and novel metabolites. It 

should be noted that for antibiotic production, the number of marine microorganisms 

with antimicrobial activity might be higher than that of terrestrial ones. Therefore, 

marine microorganisms need to be explored and exploited for new biological products 

(Imada, 2005). Actinomycetes have been isolated from the marine environment, largely 

from sediment samples from the continental shelf, or from brackish environments such 

as salt marshes (Labeda and Shearer, 1990). Their populations are denser in shallow sea 

than in deep, particularly at the muddy surface of the bottom of shallow seas (Weyland 

and Helmke, 1988). Tan et al. (2004) demonstrated that 16% actinomycetes isolated 

from marine microorganisms collected offshore had moderate to good activity against 

both test fungi and bacteria. Grein and Meyer (1958); and Okazaki and Okami (1976) 

reported respectively that 50% and 27% of Streptomyces isolated from the marine 

environment showed antimicrobial activity, and these percentages were increased when 

the tests were conducted in the presence of seawater. The exploitation of marine 

actinomycetes has recently surpassed that of their terrestrial counterparts although 



 6 

limited screening efforts have been dedicated to date to marine actinomycetes (Lam, 

2006). 

 

 Most of the clinically important antibacterial agents such as streptomycin, 

chloramphenicol, chlortetracycline, neomycin, oxytetracycline, erythromycin, 

leucomycin, oleandomycin, cycloserine, kanamycin, and rifamycin were discovered as 

actinomycete products by the late 1950s. Several antifungal agents from actinomycetes 

such as cephalosporin C, variotin, and siccanin were also clinically introduced (Imada 

and Hotta, 1992). Gorajana et al. (2005) reported that 1-hydroxy-1-norresistomycin 

from Streptomyces chibaensis AUBN1/7 possessed antibacterial activities against 

Gram-positive and Gram-negative bacteria. Streptomyces venezuelae ISP5230 

produced a group of polyketide-derived angucycline antibiotics, jadomycins, with 

broad-spectrum cytotoxic activities (Zheng et al., 2007). Tobramycin, produced by 

Streptomyces tenebrarius, is important for its activity on Pseudomonas aeruginosa and 

other difficult pathogens (Lancini and Lorenzetti, 1993). Marine actinomycetes may 

provide an alternative source of potential bioactive compounds against bacterial and 

fungal pathogens. Marine actinomycetes also seem to be a promising source as 

producers of drug candidates such as new anticancer drugs salinosporamide A 

produced by Salinispora tropica (Lam, 2006) and thiocoraline produced by a marine 

Micromonospora spp. which are under preclinical assessment, or the antiviral drug 

cyclomarin A produced by a marine Streptomyces spp. (Fiedler et al., 2005). 

Vikineswary et al. (2005) reported that 38% and 64% sponges-derived actinomycetes 

exhibited a broad spectrum of antibacterial and antifungal activities in primary and 

secondary screenings.    
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 The discovery of new antibiotics and other bioactive microbial metabolites 

continues to be an important objective in new drug research. Extensive screening has 

led to the discovery of thousands of bioactive microbial molecules, therefore new 

approaches must be taken in order to reduce the probability of rediscovering known 

compounds (Busti et al., 2006). In recent years, the search for novel antimicrobial 

substances has included actinomycetes obtained from sources other than soil such as 

marine environments (Pisano et al., 1992). Novel secondary metabolites including 

antibiotics from marine bacteria are attracting attention because of the growing demand 

for new antibiotics (Marwick et al., 1999). As marine environmental conditions are 

extremely different from terrestrial ones, it is surmised that marine actinomycetes have 

characteristics different from those of terrestrial actinomycetes, and therefore may 

produce different types of bioactive compounds (Imada, 2005). Screening and isolation 

of promising strains of actinomycete with potential antibiotics is urgent to counter the 

threats posed by the fast emerging phenomenon of antibiotic resistance (Shiburaj, 

2003). 

 

Objectives of study 

The objectives of this study were to :  

a) culture and screen selected strains of indigenous actinomycetes from marine 

ecosystem for antibacterial and antifungal activity,  

b) select the strain that best inhibited Plesiomonas shigelloides and  

c) optimize selected parameters for production of bioactive compound(s) from the 

actinomycete strain in submerged fermentation. 
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2.0 LITERATURE REVIEW  

2.1 Human Pathogens 

 

 In the present study, three Gram-positive test bacteria namely Bacillus subtilis, 

Enterococcus faecalis, and Staphylococcus aureus, two Gram-negative test bacteria; 

Plesiomonas shigelloides and Pseudomonas aeruginosa, and two yeasts; Candida 

albicans and C. parasilopsis were used to investigate the antagonistic bioactivity of the 

selected marine actinomycete strains. The test pathogens selected in this study 

displayed at least one of the criteria of target organisms for antimicrobial research and 

development. As described by Thompson et al. (2004), the criteria for antimicrobial 

research and development include :  

a) organism of sufficient prevalence in population with disease under study, 

b) organism causes serious and severe disease, 

c) drug to which organism is resistant is commonly used in disease under study, 

d) limited available therapies as a results of multidrug-resistance, 

e) drug used to control spread of disease in population, and 

f) clinical correlation of in vitro resistance with poor clinical outcome. 

 

The test pathogens showed resistance to a number of front line antibiotics. 

These resistances have hindered antibiotic therapy, and caused reduction in key 

therapeutic options (Levy, 2005). Resistance continues to compromise the use of old 

and new antimicrobials alike. The clinical impact of resistance often because of 

inappropriate initial antimicrobial therapy is characterized by increased cost, length of 

hospital stay, and mortality (Poole, 2005). Therefore, the discovery of new antibiotics is 

crucial to combat these emerging phenomenons of antibiotic resistances.   
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2.2 Pathogenic Bacteria 

2.2.1 Plesiomonas shigelloides  

2.2.1.1 Introduction on Plesiomonas shigelloides  

 

 The genus Plesiomonas appears to occupy a position between the families 

Enterobacteriaceae and Vibrionaceae in the gamma group of Proteobacteria (Rager et 

al., 2000). Initially, Plesiomonas shigelloides resided in the family Vibrionaceae, and 

was classified based on phenotypic characteristics such as polar flagella, oxidase 

production, and fermentation properties. However, phylogenetic analysis and 

assessment deducted from analysis of 16S rRNA gene sequences indicated a closer 

relationship to the family Enterobacteriaceae (Niedziela et al., 2002; Woo et al., 2004). 

Thus, the genus Plesiomonas was proposed to be moved to the family 

Enterobacteriaceae, either as a member of the genus Proteus, or as the genus 

Plesiomonas. The species name "shigelloides" was derived from the fact that many 

strains cross-reacted antigenically with Shigella, particularly Shigella sonnei 

(Horneman and Morris, 2007). Since 2001, P. shigelloides belongs to the family 

Enterobacteriaceae (González-Rey, 2003). The organism is the only species in the 

genus Plesiomonas (Theodoropoulos et al., 2001; Perales, 2003; Lukasiewicz et al., 

2006).  

 

 Plesiomonas shigelloides was first isolated in 1947 by Ferguson and Henderson 

from a human stool sample without evidence of intestinal disease. This organism was 

described as a motile organism possessing the major somatic antigen of Shigella sonnei 

phase I, and was named Paracolon C27. Since then, this microorganism had been 

renamed several times. It had been variously known as Pseudomonas michigani, 
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Aeromonas shigelloides, Fergusonia shigelloides, and Vibrio shigelloides (Ingram et 

al., 1987; Oviasogie and Ekhaise, 2006).  

 

 Plesiomonas shigelloides is a Gram-negative, capsulated and flagellated rod 

with rounded ends, motile, and non-spore forming. The size of a single cell is 0.7-1 µm 

x 2.1-3 µm. It is a facultative anaerobic bacterium which catabolises carbohydrates with 

acid production without gas, and produces cytochrome oxidase and catalase, but no 

diastase, lipase, or DNase. The G+C content of its DNA is 51 mol% (Chou et al., 1991; 

González-Rey, 2003; Lukasiewicz et al., 2006). According to Stock and Wiedemann 

(2001), P. shigelloides is thermotolerant and pleomorphic. It does not grow at 

temperatures below 8ºC, but grows well at 35ºC, and produce non-haemolytic colonies 

within 24 hours (Groves, 1996; Wong et al., 2000). The primary reservoirs of P. 

shigelloides are freshwater and estuarine water in temperate climates throughout the 

world, while fish and different kinds of seafood act as secondary reservoirs in these 

environments. This bacterium has also been isolated from humans as well as domestic 

animals such as dogs, cats, goats, sheep, and cows (Krovacek et al., 2000). The 

bacterium is not a part of the normal human faecal flora (Niedziela et al., 2002). 

Human infections with P. shigelloides are mostly related to drinking untreated water, 

eating uncooked shellfish, and visiting countries with low sanitary standards. There 

have been reports of outbreaks attributed to contaminated water in Japan, consumption 

of freshwater fish in Zaire, and contaminated raw oysters and shellfish in the United 

States. In a case-control study from the United States in the 1980s, two factors that 

were strongly associated with infection with P. shigelloides were foreign travel and the 

consumption of raw oysters (Wong et al., 2000). Recent studies implicated P. 

shigelloides as an opportunistic pathogen in immunocompromised hosts, and especially 

neonates (Niedziela et al., 2002). 
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2.2.1.2 Pathogenesis and Virulence Factors of Plesiomonas shigelloides 

 Infection 

 

 Plesiomonas shigelloides has been indicated as being an enteric pathogen in 

various clinical and epidemiological studies. However, an understanding of the 

mechanism of pathogenesis has been elusive because information on the virulence 

factors is still scarce. Furthermore, previous in vitro studies of its pathogenesis have 

been inconclusive (Kain and Kelly, 1989; González-Rey, 2003). Several virulence-

associated factors have been described in strains of P. shigelloides, but most have the 

potential to cause infection even in the absence of such virulence factors (Avison et al., 

2000). Vitovec et al. (2001) and Okawa et al. (2004) described that this bacteria 

possessed several seemingly pathogenic properties such as the production of heat-stable 

and heat-labile exotoxins, cytotoxins, haemolysin, hemaglutinin, and other potentially 

virulence factors. The natural resistance is likely to be attributed to the Plesiomonas 

outer membrane, which might prevent the entry of these antibiotics into the cell (Stock 

and Wiedemann, 2001). Endotoxin, the main surface antigen of Gram-negative 

bacteria, was found as a constituent of cytotoxin complex. Plesiomonas shigelloides 

cytotoxin is a new type of cytolytic enterotoxin distinct from cholera toxin. The 

cytotoxin of P. shigelloides is a complex of lipopolysaccharide (LPS) and anti-cholera 

toxin-reactive proteins (ACRP). LPS plays an important role for the effective barrier 

properties of the outer membrane. It constitutes a ‘pathogen-associated molecular 

pattern’ for host infection, and is one of the most powerful natural activators of the 

innate immune system (Lukasiewicz et al., 2006). 

 

 The pathogenicity of a bacterial strain depends on both inherent bacterial and 

host factors. Plesiomonas shigelloides, like Escherichia coli, might consist of both 
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pathogenic and non-pathogenic strains. Pathogenicity might also depend on such 

factors in the host such as age and immunological status (Olsvik et al., 1990). The route 

of entry into the human and animal gastrointestinal tract seems to be the ingestion of P. 

shigelloides-contaminated food or water. Two features thought to play key roles in the 

regulation of gastrointestinal infection by enteropathogenic bacteria are gastric acidity 

and the presence of resident microbial flora in the lower gut. Gastric juices are 

extremely acidic in the healthy adult, with a pH of 2 or less. This acidic environment is 

surmised to act as an obstacle to enteric pathogens since bacteria are rapidly killed in 

the presence of hydrochloric acid (Janda, 1987). Lukasiewicz et al. (2006) reported that 

P. shigelloides entered the human intestinal Caco-2 cells in vitro through a phagocytic-

like process. Moreover, it was found that live bacteria escaped from cytoplasmic 

vacuoles, and induced apoptotic cell death. According to Abbott et al. (1991), P. 

shigelloides possession of a large plasmid (approximately 200 MDa) might facilitate 

its uptake, or invasion in the gastrointestinal tract. 

 

2.2.1.3 Clinical Manifestations of Plesiomonas shigelloides Infection 

 

 Plesiomonas shigelloides is known to cause either secretory or invasive 

diarrhoea, which is defined as the discharge of three or more loose stools in a 24-hour 

period. In healthy individuals, the diarrhoea is usually mild and self-limiting. However, 

the diarrhoea may cause a cholera-like illness, with numerous bowel movements 

occurring during the peak of the illness. Most patients recover spontaneously within 

four weeks of the onset of symptoms, but up to 32% may remain chronically 

symptomatic (Wong et al., 2000). Plesiomonas shigelloides can cause three major types 

of gastroenteritis: (1) a secretory, watery form; (2) an invasive, dysentery-like form; 

and (3) a subacute or chronic form lasting between two weeks and three months 
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(Vitovec et al., 2001). Symptoms associated with gastroenteritis caused by P. 

shigelloides are diarrhoea, abdominal pain, nausea, chills, headache, fever, and 

vomiting. Although there are reports of bloody stools, most of the stools from patients 

with diarrhoea are described as watery. Incubation time varies from 24 to 50 hours, and 

symptoms generally last for one to nine days, although a more invasive Shigella-like 

type can last from two weeks to three months (González-Rey, 2003).  

 

 The outbreaks of travellers’ diarrhoea in Japan and China are likely to be 

predominantly associated with Plesiomonas as it is ranked third among the aetiological 

agents (Lukasiewicz et al., 2006). Traveller’s diarrhoea is a syndrome that occurs when 

people cross international borders from the developed to tropical or semitropical 

developing countries. It is usually defined as the passage of at least three unformed 

stools within a 24-hour period; in association with at least one symptom of 

gastrointestinal disease such as nausea, vomiting, fever, abdominal pain or cramps, 

tenesmus, faecal urgency, or the passage of bloody or mucoid stools (Gomi et al., 2001; 

Diemert, 2006). Typically, symptoms develop within the first week of travel, and more 

than 90% of cases occur within the first two weeks. Normally, the symptom is between 

four and five loose or watery stools a day with little to no fever, without treatment; the 

diarrhoea usually lasts for only three to four days before resolving spontaneously in 

most cases. However, traveller’s diarrhoea can result in disruption to an individual’s 

trip. Severe diarrhoea can cause water and electrolyte losses, leading to significant 

dehydration, electrolyte imbalances, and even impairment of renal function. In most 

cases, traveller’s diarrhea is neither life threatening nor severe. Therefore, treatment is 

for minimising the symptoms and duration of illness (Diemert, 2006). 
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 Plesiomonas shigelloides has occasionally caused extraintestinal diseases in 

both immunocompromised and immunocompetent patients. Such infections include 

septicaemia, meningitis in neonates, cellulitis, septic arthritis, endophthalmitis, and 

acute cholecystitis. Approximately 70% of patients with plesiomonal diarrhoea have 

either an underlying disease such as cancer or cirrhosis, or an identifiable risk factor 

such as foreign travel, or the consumption of seafood or uncooked food. Patients with 

underlying carcinoma of the bowel had been reported to be susceptible to infection with 

P. shigelloides (Wong et al., 2000). Obi and Bessong (2002) reported that P. 

shigelloides was one of the main bacterial pathogens that caused chronic diarrhoea in 

HIV-positive patients. Bacteraemia and pseudoappendicitis are also associated with its 

infection (Henderson et al., 2001). The majority of bacteraemia cases that had been 

reported so far involved immunocompromised states either because of prematurity or 

because of an underlying disease such as Hodgkin’s disease, sickle cell disease, Felty’s 

syndrome, or alcoholic liver disease (Paul et al., 1990; Wong et al., 2000). Table 2.1 

below shows P. shigelloides-associated infections. 
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Table 2.1 Plesiomonas shigelloides-associated infections 

 

Type Reference 

Acute secretory gastroenteritis 

Invasive shigellosis-like disease 

Cholera-like illness 

 
Henderson et al. (2001) 

 
 

Pancreatic  abscess 

Spontaneous bacterial  
peritonitis 

 
Woo et al. (2004) 

 

Sepsis Stock and Wiedemann (2001) 

Pseudoappendicitis Henderson et al. (2001); Okawa et al. (2004) 

Cholecystitis Wong et al. (2000); Woo et al. (2004) 

Osteomyelitis Stock and Wiedemann (2001);  
Woo et al. (2004) 

Septic arthritis 

Cellulitis 
Wong et al. (2000); Okawa et al. (2004);  

Woo et al. (2004) 

Endophthalmitis Wong et al. (2000); Woo et al. (2004); 
Lukasiewicz et al. (2006) 

Bacteraemia Henderson et al. (2001); Woo et al. (2004); 
Lukasiewicz et al. (2006) 

Septicaemia Wong et al. (2000); Okawa et al. (2004); Wiegand 
and Burak (2004); Lukasiewicz et al. (2006) 

Meningitis 
Wong et al. (2000); Henderson et al. (2001); 

Stock and Wiedemann (2001); Okawa et al. (2004); 
Woo et al. (2004); Lukasiewicz et al. (2006) 

 

 

2.2.1.4 Antibiotic Susceptibility and Resistance of Plesiomonas  shigelloides  

 

 Antibiotic therapy is not usually necessary to manage infection with P. 

shigelloides because of the self-limiting nature of the illness in the majority of patients. 

Nevertheless, the infection responds well to antibiotic therapy, which leads to a shorter 

illness compared with that in untreated patients. Patients with severe and protracted 
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symptoms, extra-intestinal infection, or a serious underlying disease may benefit from 

receiving the antibiotic therapy (Wong et al., 2000). Groves (1996) reported that the 

susceptibilities of P. shigelloides vary greatly from strain to strain. Summarisation on 

the susceptibilities of P. shigelloides had been made based on in vitro studies reported 

by Wong et al. (2000), Stock and Wiedemann (2001), and Woo et al. (2004). It is 

shown that P. shigelloides strains were naturally susceptible or naturally susceptible 

and intermediate susceptible to quinolones, several aminoglycosides, imipenem, 

carbapenems, aztreonam, trimethoprim, sulfamethoxazole, azithromycin, 

nitrofurantoin, fosfomycin, cephalothin, cefuroxime, gentamicin, ciprofloxacin, and 

aminopenicillins in combination with -lactamase inhibitors, and all selected 

cephalosporins such as cefotaxime and ceftriaxone, but except cefoperazone and 

cefepime. These authors also described that P. shigelloides strains were sensitive to 

ofloxacin or levofloxacin and ceftriaxone.  

 

 Medical microbiologists confine the use of the term resistance to changes in the 

susceptibility of a previously susceptible organism to such an extent that it no longer 

responds to treatment (Gilbert et al., 2002). Persistent circulation of resistant bacteria 

strains in the environment, and the possible contamination of water and food have 

caused antimicrobial resistance. Several authors suggested that administration of 

antibiotics to food-producing animals for therapeutic purposes, or as growth promoters 

might be a primary factor in selecting for antimicrobial-resistant bacterial pathogens 

(Normanno et al., 2007). In the South East Asian study, as reported by Reilly and 

Kaferstein (1997), it was found that the strains isolated were resistant to tetracycline 

caused by the attribution to the presence of antibiotic supplements in the poultry feed. 

On a cautionary note, tetracycline is one of the effective antibiotics to treat severe 

human illness due to P. shigelloides. 
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 Antimicrobial therapy is indicated for moderate to severe disease to reduce the 

duration of illness. Traditionally, ampicillin, trimethoprim, or sulfamethoxazole and 

doxycycline had been used for the treatment of traveller’s diarrhoea, while more 

recently fluoroquinolones had been recommended as the drugs of choice. Resistance to 

commonly used antimicrobial agents among enteric bacterial pathogens was an 

increasing problem, and had been reported worldwide (Gomi et al., 2001). According 

to Wong et al. (2000), most P. shigelloides strains produced -lactamases, and were 

resistant or partial resistant to ampicillin, tetracycline, co-trimoxazole, and 

chloramphenicol. Stock and Wiedemann (2001) reported that Plesiomonas strains were 

naturally resistant and intermediate to streptomycin, erythromycin, and rifampicin. It 

was shown that P. shigelloides was naturally resistant to -lactam antibiotics, namely 

benzylpenicillin, oxacillin, amoxicillin, acylaminopenicillins (piperacillin, mezlocillin, 

azlocillin), and ticarcillin. Whereas, P. shigelloides was naturally resistant to non--

lactams such as most macrolides, lincosamides, streptogramins, glycopeptides, and 

fusidic acid. According to Gonzalez-Rey et al. (2004), vancomycin-resistant 

plesiomonads were also reported.  

 

2.2.2 Pseudomonas aeruginosa  

 

 Pseudomonas aeruginosa has been one the major pathogens responsible for a 

wide variety of infections and illness. It is particularly problematic for patients in 

intensive care units, where ventilator-associated pneumonia remains a serious 

complication of therapy of those with an underlying immunocompromised state such as 

arises from severe burns, human immunodefiency virus (HIV) infection, or 

chemotherapy for cancer, for patients with indwelling urinary catheters and venous-

access catheters or other artificial medical devices (Pier, 2003). Pseudomonas 
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aeruginosa is mostly a nosocomial pathogen that is becoming increasingly multidrug 

resistant, commonly to β-lactams antibiotics such as imipenem (Hanberger et al., 2001; 

Corvec et al., 2008). It causes a wide array of community acquired clinical infections, 

including endocarditis, otitis externa, osteomyelitis, folliculitis (Foca, 2002), and eye 

infections resulting in the loss of sight (Hugo and Russell, 1992). Pseudomonas is a 

major cause of nosocomial pneumonia, urinary tract infections, and bloodstream 

infections or sepsis (Foca, 2002). Human carriage of the P. aeruginosa is uncommon as 

part of the normal microbial flora unless the person is hospitalised or an 

immunocompromised host. In these persons, the most frequent site of colonisation is 

the gastrointestinal tract followed by other moist body sites, including throat, nasal 

mucosa, axillae, and perineum (Chakraborty, 2004). Pseudomonas aeruginosa is an 

important endobronchial pathogen associated with morbidity and mortality in patients 

with cystic fibrosis (Morlin et al., 1994). It is a secondary infector of wounds, 

especially burns, but is not necessarily pathogenic. With the advent of 

immunosuppressive therapy following organ transplant, systemic infections including 

pneumonia have resulted from infection by this organism (Hugo and Russell, 1992).  

  

2.2.3 Bacillus subtilis  

 

 Bacillus spp. are more usually associated with food poisoning, or they are 

dismissed as contaminants in clinical samples. Serious infections may occur, including 

meningitis, endocarditis, endophthalmitis, respiratory infection (pneumonia, abscess, 

and pleuritis), surgical wound infections, and severe bacteraemia in cancer patients 

(Ozkocaman et al., 2006). Beebe and Koneman (1995) cited a case of B. subtilis sepsis 

in a patient with acute myeloblastic leukaemia. Bacillus spp. other than B. anthracis 

caused serious infections, often in trauma, post surgical, and burn cases, and with 
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predisposing conditions that included alcoholism, diabetes, sickle-cell trait, and cancer. 

Mortality associated with disseminated Bacillus infections is high. Severe neutropenia 

is also associated in leukaemia cases with bacteraemia. Pneumonia commonly occurs 

because of haematogenous dissemination of the organism. Bacillus subtilis can cause 

food-borne gastroenteritis, septicaemia, peritonis, ophthalmitis, and catheter-related 

bloodstream infection (CRBSI) (Ozkocaman et al., 2006). 

 

2.2.4 Enterococcus faecalis  

 

 Enterococcus faecalis is an indigenous flora in the human bowel. Although 

these pathogens are rarely associated with primary infections in the noncompromised 

host, they commonly cause nosocomial infections in hospitalised or 

immunocompromised patients (Takahashi et al., 1999; Elsner et al., 2000). It is an 

opportunistic pathogen that can cause urinary tract infections and endocarditis (Willey 

et al., 2006). Enterococcal endocarditis tends to be more subacute than endocarditis 

caused by other microbial agents. Enterococcus faecalis can also cause pneumonia, or 

bacteraemia (Sijpkens et al., 1995). Aminoglycoside resistance is seen among E. 

faecalis, where there are increasing reports of resistance towards gentamicin and 

vancomycin (Hanberger et al., 2001; Inglis, 2003).  

 

2.2.5 Staphylococcus aureus  

 

 Staphylococcus aureus is a food-borne pathogen. Staphylococcal food 

poisoning (SFP) is one of the leading causes of food-borne diseases (Normanno et al., 

2007). Staphylococcus aureus usually grows on the nasal membranes and skin, and is 

also found in the gastrointestinal and urinary tracts of warm-blooded animals. It can 
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cause boils, abscesses, wound infections, pneumonia, toxic shock syndrome (Willey et 

al., 2006), and is also the most common bacterial cause of conjunctivitis, orbital 

cellulites, septic arthritis, omphalitis, and haematogenous osteomyelitis (Inglis, 2003). 

Todar (2006) added that some strains could also cause pimples, impetigo contagiosa, 

staphylococcal scalded skin syndrome (SSSS), and septicaemia. According to Singh et 

al. (2000), Staphylococcus spp. were multi-resistant to antibiotics like β-lactams, 

tetracyclines, streptomycin, tobramycin, chloramphenicol, quinolones, and rifampin. 

Gravet et al. (1999) reported that meticillin- and gentamicin-resistant S. aureus strains 

were recognized as the causes of outbreaks of enteritis in hospitalised patients who 

were treated with extended-spectrum antibiotics, and in whom mild to fatal illnesses 

were observed. Infections caused by vancomycin-resistant S. aureus generally cannot 

be treated by antibiotic therapy because vancomycin is considered the “drug of last 

resort” (Willey et al., 2006). Staphylococcus aureus is also known as the leading cause 

of hospital-acquired nosocomial infections. It is feared as the causative agent for post-

operative wound infections (Verhoef and Fluit, 2006).  

 

2.3 Pathogenic Yeasts 

 

 Candida spp. have become a common cause of nosocomial bloodstream 

infection (Branchini et al., 1994). Septic arthritis (Inglis, 2003), oral candidiasis in 

newborns, paronychia, onychomycosis, candidal vaginitis, balanitis, AIDS arthritis, 

endophthalmitis, meningitis, myocarditis, myositis, and peritonitis are associated with 

Candida infections (Willey et al., 2006). Candidiasis is the most common mycosis, 

especially in hospitalised patients (Wroblewska et al., 2002) such as 

immunocompromised AIDS patients, and after prolonged antibiotic therapy and 

invasive surgery (Chakraborty, 2004). The dimorphic fungus, C. albicans is one of the 
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most frequent etiologic agents causing candidiasis that can be fatal when progressing to 

systemic dissemination (Villamón et al., 2004). Candida albicans is a part of the 

normal microbial flora that colonizes mucocutanous surfaces of the oral cavity, gastro-

intestinal tract, and vagina. Candida albicans can cause life-threatening systemic 

disease in immunocompromised host who have congenital, induced, or disease-related 

immune dysfunction such as post surgical, burn, leukaemia, organ-transplanted, 

diabetic, and HIV-infected patients, or low-birth-weight infants, or patients with a 

congenital defect in neutrophil function (Buluc et al., 2005). Nasser et al. (2003) 

reported that C. albicans had been recovered from burn wounds. Candida spp. are 

harmless saprophytes as long as they colonize the burn wound, but as invaders of viable 

subeschar tissue, or the blood stream, they are dangerous pathogens with a mortality 

rate exceeding 90%. Candida parasilopsis is a nosocomial pathogen, which causes the 

rare prosthetic valve endocarditis (Tan et al., 2004), and is well known as a cause of 

fungaemia and invasive candidiasis associated with parenteral hyperalimentation, 

intravascular devices, and contaminated ophthalmic solutions (Branchini et al., 1994). 

According to Walsh (1992), The National Nosocomial Infections Survey from the 

Centers for Disease Control estimated that the frequency of deeply invasive candidiasis 

had increased nearly tenfold during the past decade. The limited available antifungal 

antibiotics contrast greatly with the successful discovery of antibacterial antibiotics due 

to the following reasons; (a) selective toxicity is less likely to occur with antifungal 

than with antibacterial agents because fungi are eukaryotes, as are animal and human 

cells, (b) methods in antifungal screening have not progressed rapidly, including the 

lack of standard methods for in vitro evaluation of antifungal activity, reliable animal 

models for evaluation of in vitro efficacy, and sensitive and selective techniques for 

diagnosis of fungal infections, (c) antifungal drugs picked up to date by in vitro 

screening show serious cytotoxicity, and (d) the host defence system and drug action 
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are the two major factors in successful antimicrobial chemotherapy. However, the host 

defence system is not expected to function well in fungal diseases because fungal 

infection is mostly associated with depression in host immune activity (Tanaka, 1992).   

 

2.4 General Overview on Actinomycetes 

 

The actinomycetes are high G+C Gram-positive bacteria that belong to the 

order Actinomycetales of class Actinobacteria. The actinomycete colonies can easily be 

distinguished on the plate from fungi and bacteria. They are recognized by their 

characteristic tough, often leathery, giving a conical appearance, dry surface, branched 

vegetative mycelia, and when present, aerial mycelia and spore formation (Jensen et al., 

1991; Marwick et al., 1999). They are diverse group of heterotrophic prokaryotes 

forming hyphae at some stage of their growth, hence referred as filamentous 

prokaryotes (Augustine et al., 2005b). The filamentous growth and true branching of 

the actinomycetes differentiate these organisms from the true bacteria (Arai, 1976). 

When growing on solid substratum such as soil or agar, the actinomycetes develop a 

branching network of hyphae. The hyphae grow both on the surface of the substratum 

and into it to form a dense mat of hyphae, termed a substrate mycelium. Septae usually 

divide the hyphae into long cells (20 µm and longer), containing several nucleoids. In 

many actinomycetes, substrate hyphae differentiate into upwardly growing hyphae to 

form an aerial mycelium that extends above the substratum. Medically useful 

compounds, often called secondary metabolites are formed at this time. The aerial 

hyphae form thin-walled exospores upon septation. Like spore formation in other 

bacteria, actinomycete sporulation is usually in response to nutrient deprivation (Wiley 

et al., 2006). 

 



 23 

Actinomycetes are present in all types of soil, fresh and marine waters, and 

plant debris (Rabeh et al., 2007). They are found in the mud or the bottom of ponds, 

lakes, streams, and rivers. In freshwater environments, the numbers observed are 

extremely low, most likely reflection of contamination of water with soil or mud. 

Thermophilic actinomycetes are found in silage, dung, and other thermal environments 

(Labeda and Shearer, 1990). Actinomycetes play both detrimental and beneficial roles 

in nature. Among their negative attributes are their opportunistic pathogenic natures in 

diseases of animals, human, forestry, and plants such as “farmers’ lung”, 

hypersensitivity pneumonitis, in water pollution, formation of scums and foams in 

sewage treatment plants, and destroying valuable materials through biodeterioration. 

However, biodegradation by these organisms is useful in waste removal, and as an 

integral part of recycling materials in nature. Other beneficial roles are their activity as 

biological control agents of fungal disease. In addition, they also enhance plant growth 

by unknown mechanisms (Demain, 1992). As cited by Ismet (2003), filtrates and 

eluates of actinomycetes cultures have stimulated growth of maize similarly to auxins 

and gibberellins. The utmost importance of actinomycetes is the production of 

antibiotics and antitumour agents. Furthermore, they are prolific producers of enzyme 

inhibitors and immunomodifiers (Demain, 1992).         

 

Actinomycetes are the most economically and biotechnologically valuable 

prokaryotes. They are responsible for the production of about half of the discovered 

bioactive secondary metabolites, notably antibiotics, antitumour agents, 

immunosuppressive agents, and enzymes (Lam, 2006). Actinomycetes are a source of 

structurally diverse natural products, possessing broad ranges of biological activities 

such as antibiotic (erythromycin and tetracycline), anticancer (mitomycin and 

daunomycin), immunosuppressant (rapamycin and FK506), and veterinary 
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(thiostrepton and monensin) agents (Das et al., 2006). Actinomycetes have been 

famous as producers of antibiotics and other “secondary metabolites” with biological 

activity since the discovery of actinomycin in Selman Waksman’s laboratory at Rutgers 

University in 1940, followed in 1943 by streptomycin, the first effective drug to treat 

tuberculosis. During the Golden Age of antibiotic discovery, in the 50s’ and 60s’ of the 

20th century, antibacterial agents such as tetracycline, erythromycin, and kanamycin; 

and antifungal agents like candicidin and nystatin were discovered (Challis and 

Hopwood, 2003). In the 60s’ and 70s’, 75% to 80% of all discovered antibiotics 

derived from the order Actinomycetales, mainly from Streptomyces spp. In the 70s’ and 

80s’, the ratio and significance of the other non-streptomycete actinomycetes (so called 

rare actinomycetes) increased up to 20% of all microbial antibiotics, and 30% to 35% 

of Actinomycetales species (Moncheva et al., 2000-2002). Commercially important 

products such as antibiotics and enzymes are produced by a range of different genera 

(Labeda and Shearer, 1990). As highlighted by Jensen et al. (2005), actinomycetes 

accounted for approximately 7000 of the compounds reported in the Dictionary of 

Natural Products. In the past two decades, there has been a decline in the discovery of 

new lead compounds from common soil-derived actinomycetes as culture extracts yield 

unacceptably high numbers of previously described metabolites. For this reason, the 

cultivation of rare or novel actinomycete taxa has become a major focus in the search 

for the next generation of pharmaceutical agents (Mincer et al., 2002). 

 

2.5 The Quest for Marine Actinomycetes  

 

 Actinomycetes in marine and estuarine sediments have not been well 

documented (Imada, 2005). Initially, according to review by Jensen et al. (1991), the 

origin of actinomycetes in marine habitats and to what extent these bacteria represent a 
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physiologically active component of the marine microbial community was unknown. 

Although the ecological roles of marine actinomycetes remain undefined, it is possible 

that, like their terrestrial counterparts, they are involved in the decomposition of 

recalcitrant organic materials such as chitin, a biopolymer that is particularly abundant 

in the sea (Jensen et al., 2005). Scepticism about the existence of indigenous 

populations of marine actinomycetes arising from the fact that the terrestrial bacteria 

produced resistant spores that were transported from land into sea, where they remained 

available but dormant for many years, or where the bacteria are exposed to water with 

salt concentrations and temperatures that differ from those of the terrestrial 

environment. As a result, some metabolic changes may occur in the organisms. Thus, it 

is generally assumed that actinomycetes isolated from marine samples are of terrestrial 

origin (Imada, 2005; Lam, 2006). According to Jensen et al. (1991), this conclusion 

was based on the findings that actinomycetes were more abundant in terrestrial soils 

relative to marine sediments, showed varying degrees of salt tolerance, and produced 

spores that were undoubtedly washed in large numbers from shore into the sea. Besides 

that, studies had shown that actinomycetes could grow in a seawater-based medium 

with increased hydrostatic pressures. The occurrence of Micromonospora increased 

with the increasing depth in deep-sea sediments, however due to the common 

observation that actinomycetes decreased in number as distances from shore increased, 

and a lack of experimental evidence of the distribution and metabolic activity of these 

bacteria in marine habitats, have led the authors to such conclusion. 

 

This view is now changing with the discovery of bona fide marine 

actinomycetes (Imada, 2005). Reports by Mincer et al. (2002) showed the first 

evidence for the existence of widespread populations of obligate marine actinomycete, 

where about 99% actinomycete strains displayed an obligate requirement of seawater 
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for growth. More evidence is growing to support the view that the bona fide indigenous 

marine actinomycetes indeed exist in the oceans. These include members of the genera 

Dietzia, Rhodococcus, Streptomyces, Salinispora, Marinophilus, Solwaraspora, 

Salinibacterium, Aeromicrobium, Williamsia, and Verrucosispora. Among these, the 

most exciting finding is the discovery of the first obligate new marine actinomycete 

genus, Salinispora that is formerly known as Salinospora (Mincer et al., 2005; Lam, 

2006).  

 

 Recent findings as reported by Lam (2006) confirmed the presence of 

indigenous marine actinomycetes in the oceans, and indicated that they were widely 

distributed in different marine environments and habitats. Both culture-dependent and 

culture-independent methods demonstrated that novel actinomycetes can be found 

everywhere in the oceans namely deep sea floor, coral reef, sediments, invertebrates, 

and plants. Actinomycetes are present over the complete depth range found in the ocean 

realms, from the surface of the oceans such as in the near-shore and inter-tidal 

environments in French Guiana and Korean tidal flats, right down to the deepest abyss, 

such as below sub-floor sediments. Although many actinomycetes from shallow sea 

resemble those of terrestrial habitat in terms of their morphology and features, they 

have high salt-tolerance compared to those of terrestrial origin (Vikineswary et al., 

1997). In actinomycetes isolation, marine organisms yielded an average of ten 

morphologically different strains per single source: 31% being streptomycetes, and 

69% belonging to rare genera mainly represented by micromonosporas, followed by 

nocardioforms and actinomaduras: microtetrasporas. Therefore, in terms of abundance 

of both types of microbial communities, sponges could be considered a more suitable 

source than sediments. The abundance of microorganisms isolated is different in the 

different species of sponges (Sponga et al., 1999). Novel actinomycete groups have 
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been found in the sponges such as Rhopaloeides odorabile, Pseudoceratina clavata, 

Candidaspongia flabellate, Aplysina aerophoba, and Theonella swinhoei (Bull et al., 

2000).  

 

2.6 Marine and Marine-Derived Actinomycetes as a Source for Novel Metabolites 

 

In the past fifty years, a significant amount of effort has been focused on the 

successful isolation of novel actinomycetes from terrestrial sources for drug screening 

programs. However, the rate of discovery of new compounds from terrestrial 

actinomycetes has decreased, whereas the rate of re-isolation of known compounds has 

increased (Lam, 2006). The decreasing rate of discovery of novel drugs from 

established terrestrial sources has motivated the evaluation of new sources of 

chemically diverse bioactive compounds (Magarvey et al., 2004). Strains isolated from 

the marine environment represent a relatively unexplored frontier for the discovery of 

new actinomycete biodiversity, and a resource for novel secondary metabolites (Mincer 

et al., 2005). As marine environment become a prime resource in search and discovery 

for novel natural products and biological diversity, marine actinomycetes turn out to be 

important contributors (Ward and Bora, 2006). 

                                                                                                                                                       

 The oceans that covered more than 70% of the surface of the earth represent an 

underexplored environment for microbial discovery. Although new methods are under 

development, relatively few have been applied to reveal the microbial diversity of the 

ocean environment (Magarvey et al., 2004). Lam (2006) stated that the distribution of 

actinomycetes in the sea was largely unexplored, and the presence of indigenous 

marine actinomycetes in the oceans remained elusive. Actinomycetes comprise about 

10% of bacteria colonizing marine aggregates, and can be isolated from marine 
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sediments, including those obtained at depths of 10,898 m from the deepest part of the 

Mariana Trench. Many actinomycete strains from this deep-ocean source contain NRPS 

and PKS pathways, the hallmarks of secondary metabolite production (Baltz, 2007). 

Lam (2006) described that as marine environmental conditions were extremely 

different from terrestrial ones, it was surmised that marine actinomycetes had different 

characteristics, and might produced different types of bioactive compounds from those 

of terrestrial counterparts.  

 

The importance of marine sources for the discovery of novel natural products 

with a pharmaceutical potential has been proved during the last decade and was 

emphasized in various review articles (Fiedler et al., 2005; Gorajana et al., 2005). As 

reported by Pisano et al. (1987), several studies demonstrated that actinomycetes of the 

marine origin produced novel bioactive substances. Actinomycetes that produce 

bioactive secondary metabolites are common within the complex bacterial communities 

of prolific producer of novel metabolites sponges (Ward and Bora, 2006). Furthermore, 

Jensen et al. (2005) suggested that taxonomically unique population of marine 

actinomycetes had added an important new dimension to microbial natural product 

research due to the recent discovery of novel secondary metabolites from these 

bacteria. Examples of natural products produced by marine-derived actinomycetes are 

shown in Figure 2.1. Lam (2006) also reported that numerous novel metabolites had 

been isolated from actinomycetes that evolved from and adapted to the unique marine 

ecosystems even though the exploitation of marine actinomycetes as a prolific source 

for discovery of novel secondary metabolites was at an early stage. Examples of novel 

secondary metabolites isolated from marine actinomycetes from 2003 to 2005 are 

shown in Table 2.2.  
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Figure 2.1 A selection of natural products produced by marine-derived actinomycetes. 

Griseorhodin A from an ascidian-derived actinomycete, salinosporamide A from 

Salinospora spp., marinone and lavanducyanin from Streptomyces spp. CNH-099, 

gutingimycin from Streptomyces spp. B8652, and salinamide A from Streptomyces spp. 

CNB-099 (Moore et al., 2005) 
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Table 2.2 Novel metabolites produced by marine actinomycetes during the period          

2003-2005 

 

Compound Source Activity 

Abyssomicins Verrucosispora spp. Antibacterial 

Aureoverticillactam Streptomyces 
aureoverticillatus Anticancer 

Boractin Streptomyces spp. Antibacterial; antifungal 

Caprolactones Streptomyces spp. Anticancer 

Chinikomycins Streptomyces spp. Anticancer 

Chloro-dihydroquinones Novel actinomycete Antibacterial; anticancer 

Diazepinomicin 
(ECO-4601) Micromonospora spp. Antibacterial; anticancer; 

anti-inflammatory 

Frigocyclinone Streptomyces griseus Antibacterial 

Glaciapyrroles Streptomyces spp. Antibacterial 

Gutingimycin Streptomyces spp. Antibacterial 

Helquinoline Janibacter limosus Antibacterial 

Himalomycins Streptomyces spp. Antibacterial 

IB-00208 Actinomadura spp. Anticancer 

Komodoquinone A Streptomyces spp. Neuritogenic activity 

Lajollamycin Streptomyces nodosus Antibacterial 

Marinomycins Marinispora spp. Antibacterial; anticancer 

Mechercharmycins Thermoactinomyces spp. Anticancer 

Salinosporamide A 
(NPI-0052) Salinispora tropica Anticancer 

Trioxacarcins Streptomyces spp. Antibacterial; anticancer; 
antimalarial 

 
Source : Lam (2006) 
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 Fiedler et al. (2005), Lam (2006), and Baltz (2007) described a few examples of 

recently isolated novel secondary metabolites that included abyssomicin C and 

diazepinomicin. Abyssomicin C was produced by a Verrucosispora spp., and being 

evaluated as candidates for treating drug-resistant Gram-positive pathogens, amongst 

them clinical isolates of multiresistant and vancomycin-resistant Staphylococcus aureus 

strains. Diazepinomicin was produced by a Micromonospora spp., and possessed 

antibacterial, anti-inflammatory, and antitumour activity. Balagurunathan and 

Subramanian (1994) added that some of the antibiotics such as neomycin A and B, 

aplasmomycin, istamycin A and B, altemicidin, and tetrozomine were all isolated from 

marine actinomycetes. 

 

2.7 The Genus Streptomyces 

 

 Streptomycetes, which belong to the order Actinomycetales and family 

Streptomycetaceae are Gram-positive, filamentous bacteria that are ubiquitous in soil 

(Davelos et al., 2004). Streptomyces are the most widely studied and well known genus 

of the actinomycetes (Aghighi et al., 2004). Streptomyces is comprised of around 150 

species (Willey et al., 2006). The Streptomyces is not an acid-alcohol-fast bacterium, 

and have an oxidative type of metabolism. The genus Streptomyces is catalase positive, 

and generally reduces nitrates to nitrites and degrades adenine, esculin, casein, gelatin, 

hypoxanthine, starch, and L-tyrosine. The cell wall peptidoglycan contains major 

amounts of L-diaminopimelic acid (L-DAP), and the vegetative hyphae (0.5-2.0 µm in 

diameter) produce an extensively branched mycelium that rarely fragments (Holt et al., 

1994). Willey et al. (2006) described that Streptomyces spp. were determined by means 

of a mixture of morphological and physiological characteristics, including the 

following: the colour of the aerial and substrate mycelia, spore arrangement, surface 
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features of individual spores, carbohydrate use, antibiotic production, melanin 

synthesis, nitrate reduction, and the hydrolysis of urea and hippuric acid. According to 

Holt et al. (1994), the aerial mycelium at maturity forms chains of three to many 

spores. A few species bear short chains of spores on the substrate mycelium. Some 

species may form sclerotia-, pycnidial-, sporangia-, and synnemata-like structures. The 

spores are non-motile. The Streptomyces form colonies that are discrete and lichenoid, 

leathery or butyrous. Initially, colonies are relatively smooth surfaced, but later they 

develop a weft of aerial mycelium that may appear floccose, granular, powdery, or 

velvety. They produce a wide variety of pigments responsible for the colour of the 

vegetative and aerial mycelia. Coloured diffusible pigments may also be formed. 

Organic compounds are their sole sources of carbon for energy and growth. Their 

optimal growth temperature is 25ºC to 35ºC; some species are psychrophilic and 

thermophilic. Meanwhile, optimum pH for their growth ranges from 6.5 to 8.0.  

 

According to Challis and Hopwood (2003), the classical habitat of Streptomyces 

spp. was as free-living saprophytes in terrestrial soils. In soils, they are important 

decomposer (Aghighi et al., 2004). The numerical predominance in soils explains why 

the majority of metabolites from actinomycetes discovered and developed in the 1950s 

and 1960s were secondary metabolites from Streptomyces (Labeda and Shearer, 1990). 

The ecology of streptomycetes is of considerable interest for search and discovery of 

natural products. Currently novel products are sought from organisms isolated from 

extreme or novel environments. There was also good evidence for the growth of 

streptomycetes in marine soils. Streptomyces spp. contributed an average of nearly 4% 

to the bacterial community of in-shore sediments, and concluded that the wash-in of 

spores of terrestrial species was not the source of these populations (Bull et al., 2000). 
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The ability of Streptomyces spp. to produce metabolites capable of inhibiting 

growth and development of pathogenic microorganisms has continued to manifest 

itself. Recent reports showed that the Streptomyces still remains as prolific antibiotic 

producers (Ndonde and Semu, 2000). Streptomycetes are non-motile, so stresses cannot 

be avoided, but have to be met. Antibiotics are typically produced in small amounts at 

the transition phase in colonial development when the growth of the vegetative 

mycelium is slowing as a result of nutrient exhaustion, and the aerial mycelium is about 

to develop at the expense of nutrients released by breakdown of the vegetative hyphae. 

Such antibiotics are proposed to defend the food source when other microorganisms 

threaten it (Challis and Hopwood, 2003). Davelos et al. (2004) and Zheng et al. (2007) 

described that streptomycetes were prolific producers of extracellular enzymes, and 

these microbes require specific nutritional and environmental conditions to express a 

series of enzymes performing coordinated functions to process various precursor 

building blocks into secondary metabolites such as antibiotics. 

 

Antonova-Nikolova et al. (2004) and Jensen et al. (2007) highlighted that the 

genus Streptomyces was the source of the vast majority of actinomycete secondary 

metabolites that had been discovered to date, within which antibiotics were of 

commercial relevance. Peela et al. (2005); and Hugo and Russell (1992) reported that 

Streptomyces spp. produced about 75% of commercially and medically useful 

antibiotics. The productivity of Streptomyces spp. as antibiotic producers remains 

unique amongst Actinomycetales strains (Moncheva et al., 2000-2002). According to 

Holt et al. (1994) and Willey et al. (2006), many strains could produce one or more 

antibiotics. Antibiotic-producing streptomycetes can inhibit a broad range of soil borne 

microbes, including Gram-positive and Gram-negative bacteria, fungi, and nematodes. 

As shown in Figure 2.2, a large selection of antibiotics such as actinomycins, 
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echinomycin, antimycin A, bafilomycin, filipin, lagosin, lipomycin, tetracenomycin D, 

and chromomycin A3 that were originally isolated from terrestrial streptomycetes were 

also found in marine-derived Streptomyces spp. 

 

 
 

Figure 2.2 Known antibiotics from terrestrial streptomycetes produced by marine 

Streptomyces spp. (Fiedler et al., 2005) 
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2.8 Research on Actinomycetes in Malaysia 

 

There are a number of reports on the research of actinomycetes in Malaysia, 

where actinomycetes have been isolated from a wide variety of sources such as soil 

(Al-Tai et al., 1999; Tan et al., 2001), marine organisms (Tan et al., 2004; Tan, 2007; 

Nor Ainy, 2008), plants (Becker, 1983; Zin et al., 2007; Ghadin et al., 2008), 

agriculture soils (Jeffrey, 2008), tropical rainforests soil (Numata and Nimura, 2003), 

and primary dipterocarp forest soil (Ho et al., 2000; Nakajima et al., 2003). Research 

on rare actinomycetes was also conducted in the search of novel antibiotics, where rare 

actinomycetes isolated from mangrove soils and leaf litter was investigated by 

Vikineswary et al. (2003).  

 

The actinomycetes from mangrove ecosystem in Malaysia have been shown to 

have a range of bioactivity, thus they are recognized as a potential source of new and 

novel secondary metabolites and unique lead structures (Vikineswary et al., 1997). 

Ismet et al. (1999; 2002) and Ismet (2003) investigated the diversity, biological, 

molecular, and chemical characteristics of Micromonospora spp. isolated from the 

mangrove rhizosphere ecosystem. In addition, research on production and chemical 

characterization of antifungal metabolites from Micromonospora spp. from mangrove 

rhizosphere soil was carried out by Ismet et al. (2004). Ho et al. (2000) isolated, 

characterized, and screened the bioactivity of actinomycetes from dipterocarp rain 

forest soils. The antifungal activities of Streptomyces spp. against selected plant 

pathogenic fungi were evaluated by Getha et al. (2004; 2005). The utilization of the 

actinomycetes for agriculture industry is the current research by Jeffrey (2008). 
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3.0 MATERIALS AND METHODS  

3.1 Actinomycete Strains 

  

Eleven strains of marine-derived actinomycete from culture collection at Plant 

Pathology and Mycology Lab, Institute of Postgraduate Studies, University of Malaya, 

classified in the genus Streptomyces were investigated in this study. The selection of 

these eleven strains was based on preliminary antibacterial and anti-yeast screenings 

conducted on one hundred thirty six actinomycetes that were isolated from marine 

sponges of Tioman Island. The selected Streptomyces spp. were culturally and 

morphologically grouped into three colour groups according to the colour of their 

mature sporulating aerial mycelium estimated by using a colour chart (Tan et al., 2004; 

Kavithambigai, 2006). Stock cultures, agar plugs of live cultures of the streptomycetes 

were preserved in glycerol solution (Appendix A6), and were revived prior to primary 

screening. Plate cultures in triplicates were prepared on sporulation agar (SA) 

(Appendix A3) except strains T3 and T4, which were prepared on their best growth 

solid medium; inorganic salts-starch agar (ISP4) (Appendix A2), by incubation at 28ºC 

± 2ºC for 2 weeks. 

 

3.2 Bacterial and Fungal Pathogens 

 

 Gram-positive (Bacillus subtilis, Enterococcus faecalis, and Staphylococcus 

aureus) bacteria and Gram-negative (Plesiomonas shigelloides and Pseudomonas 

aeruginosa) bacteria were obtained from Prof. Thong Kwai Lin, Institute of Biological 

Sciences, Faculty of Science, University of Malaya. The bacterial cultures were 

incubated at 37ºC ± 2ºC for 48 h, and maintained on nutrient agar (NA) (Appendix A5) 

plates. Candida albicans and C. parasilopsis were obtained from Prof. Ng Kee Peng, 
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Faculty of Medicine, University of Malaya. The fungal cultures were incubated at 37ºC 

± 2ºC for 48 h, and maintained on Sabouraud dextrose agar (SDA) (Appendix A4) 

plates.   

 

3.3 Primary Screening of Antagonistic Activities 

 3.3.1 Antibacterial assay  

 

The Streptomyces spp. were subjected to primary screening by cross streak 

method against the bacterial pathogens (Kavithambigai, 2006). Primary screening was 

to detect the presence of extracellular metabolite(s) from streptomycetes. In the 

antibacterial assay, all Streptomyces spp. were lawned on one third of the SA plates 

(antibacterial assay was conducted on SA medium as it supported good growth of 

Streptomyces spp. and all the bacteria tested), and incubated at 28ºC ± 2ºC for 2 weeks. 

The bacteria test species were cross-streaked vertically to the border of the one-third 

streptomycetes-lawned SA plates. Then, the cross-streaked plates were reincubated for 

48 h at 37ºC ± 2ºC. These test plates were examined for any sign of inhibition. 

Inhibition, if any was recorded as strong, moderate, or weak, and represented by the 

“+++”, “++”, or “+” symbols, respectively. As indicated in Figure 3.1, strong, 

moderate, or weak inhibitions were defined as complete, half, or one-third bacterial 

growth inhibition lengths, respectively. No inhibition was represented by the “-” 

symbol. Plates streaked with bacterial pathogens with the absence of streptomycetes 

were used as control plates. Plate 3.1 shows a plate cross-streaked with test bacteria and 

streptomycete. 
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Figure 3.1 Quantification of bacterial or fungal growth inhibition based on inhibition 

lengths (i : no inhibition, ii : weak inhibition, iii : moderate inhibition, and iv : strong 

inhibition) 

 

 

 
 

 

Plate 3.1 Cross streak method: Bacteria and streptomycete (Bacteria were streaked on 

SA plate which had been pre-inoculated with streptomycete, and further incubated at 

37ºC ± 2ºC for 48 h) 

 

 

Bacteria 

Streptomycete 
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3.3.2 Anti-yeast assay 

 

 The streptomycetes were primarily screened by cross streak method against the 

fungal pathogens (Kavithambigai, 2006). In anti-yeast assay, all Streptomyces spp. 

were lawned superficially on one third of the SA plates (anti-yeast assay was conducted 

on SA medium as it supported good growth of Streptomyces spp. and all the yeasts 

tested), and incubated at 28ºC ± 2ºC for 2 weeks. The test yeasts were cross-streaked 

vertically to the border of the one-third streptomycetes-lawned SA plates. Then, the 

cross-streaked plates were reincubated for 48 h at 37ºC ± 2ºC. These test plates were 

examined for any strong, moderate, or weak signs of inhibition, which were represented 

by the “+++”, “++” or “+” symbols, respectively. As indicated in Figure 3.1, strong, 

moderate, or weak inhibitions were defined as complete, half, or one-third yeast growth 

inhibition lengths, respectively. No inhibition was represented by the “-” symbol. Plates 

streaked with yeasts without the presence of streptomycetes were used as control plates. 

Plate 3.2 shows a plate cross-streaked with test yeasts and streptomycete. 

 

 

 
 

 

Plate 3.2 Cross streak method: Yeasts and streptomycete (Yeasts were streaked on SA 

plate which had been pre-inoculated with streptomycete, and further incubated at 37ºC 

± 2ºC for 48 h) 

Yeast 

Streptomycete 
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3.4 Secondary Screening of Antagonistic Activities 

 3.4.1 Preparation of crude extracts of actinomycetes 

 

 The crude extracts were prepared by extraction with methanol: dichloromethane 

(1:1) solvent system (Tan et al., 2004; Kavithambigai, 2006). Each full-grown plate 

cultures of the Streptomyces spp. was transferred as 10 ml inoculum suspension in 

sterile distilled water into 250 ml Erlenmeyer flasks containing sterile 90 ml of their 

respective liquid growth media (ISP4 or SA). The liquid culture was set up in 

triplicates. The submerged cultures were incubated for two weeks on a rotary shaker 

(Environ-Shaker 3597-1PR) at 120 rpm and 28ºC ± 2ºC. Then, the culture broth from 

each flask was freeze-dried for 24 h. Freeze-dried material was weighed and soaked in 

100 ml methanol: dichloromethane (1:1) prior to overnight shaking on rotary shaker at 

120 rpm at room temperature, and ultrasonication (Branson 3510) for 30 min at 40 kHz. 

The culture extracts were filtered and rotor-evaporated (Buchi Rotavapor R-114) at 

55ºC ± 2ºC to obtain the crude extracts, which were redissolved in methanol to prepare 

25 mg/ml of crude extracts.   

 

 3.4.2 Antagonistic bioassays   

 

 The eleven streptomycetes were then subjected to secondary screening to assess 

the presence of intracellular metabolite(s). Two pathogenic yeasts C. albicans and C. 

parasilopsis were test species for the detection of anti-yeast activity whereas B. subtilis, 

S. aureus, E. faecalis, P. shigelloides, and P. aeruginosa were test species for the 

detection of antibacterial activity. Bioactivity assays against fungal and bacterial 

pathogens were performed using crude extracts of the streptomycetes. The crude 

extracts were assessed for their bioactivity against the bacteria and yeasts by disc 
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diffusion method (Kavithambigai, 2006). Single colonies of bacteria and yeasts 

cultured for 48 h were lawned, respectively on NA and SDA plates before placing the 

paper discs. Each 6 mm sterile Whatman paper disc on the lawned plates was 

impregnated with 15 µl (equivalent to 0.375 mg of extract) of each extract. Sterile 6 

mm Whatman paper disc impregnated with 15 µl methanol (MeOH) was used as 

negative control. Commercial nystatin discs (100 units per disc) were used as positive 

control for anti-yeast assay. Meanwhile, commercial novobiocin (5 µg per disc) and 

streptomycin (10 µg per disc) discs were used as positive control for antibacterial 

assay. The antimicrobial activity was observed after 48 h incubation at 37ºC ± 2ºC. The 

test plates were examined for clear zones around the paper discs where growth of 

pathogens was inhibited. Diameter of the inhibition zone of growth, if any, for each 

extract against test pathogens was recorded. The actual clear zone from the extracts was 

deducted from the methanol clear zone. The results of antibacterial and anti-yeast 

assays were recorded as strong (“+++”), moderate (“++”), or weak (“+”) inhibitions. 

No inhibition was represented by the “-” symbol. Strong inhibition was defined as 

greater than 15 mm (> 15 mm) diameter of the inhibition zone of growth, while 

moderate and weak inhibitions were defined as 10 to 15 mm (10-15 mm) and less than 

10 mm (< 10 mm), respectively. 

 

3.5 Optimisation of Culture Conditions for Bioactive Metabolite(s) Production by 

Streptomyces Strain T15 against Plesiomonas shigelloides 

 

  Streptomyces strain T15 was chosen for further studies as it best inhibited P. 

shigelloides in both primary and secondary screenings. Three media (ISP2, ISP4, and 

SA) and two culture conditions (agitation and static) were selected for optimisation 

studies. Strain T15 was cultivated in triplicates on ISP2, ISP4, and SA plates. Full-
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grown cultures were transferred as 10 ml inoculum suspension in sterile distilled water 

into 250 ml Erlenmeyer flasks containing sterile 90 ml of liquid fermentation media 

(ISP2, ISP4, and SA). Each medium was set up in triplicates. The inoculated cultures 

were incubated at 28ºC ± 2ºC at 120 rpm for 3 to 12 days on a shaking rotary shaker. A 

set of inoculated cultures were also incubated at 28ºC ± 2ºC for 3 to 12 days in a static 

condition. The parameters monitored were pH, weight of crude extracts, and 

antagonistic activities. The profile of bioactive metabolite(s) production for every three 

days throughout fermentation was evaluated by disc diffusion method (Kavithambigai, 

2006) using P. shigelloides as the target test bacteria. The liquid cultures were 

harvested every three days for twelve days. The pH of the fermentation media was 

noted after harvesting. Then, the culture broth from each flask was freeze-dried for 24 

h. Freeze-dried material was weighed, and subsequently extracted using 100 ml 

dichloromethane and methanol solvents in 1:1 ratio as described in secondary 

screening. The mixture was subjected to 30 min of ultrasonication at 40 kHz, followed 

by filtering and rotor-evaporating at 55ºC ± 2ºC to obtain crude extracts. The crude 

extracts were weighed. Then, the crude extracts were redissolved in dimethyl sulfoxide 

(DMSO) to prepare 25 mg/ml of crude extract. Finally, 15 µl (equivalent to 0.375 mg 

of extract) of each extract was loaded onto sterile 6mm Whatman paper discs that were 

placed on the nutrient agar (NA) plates lawned with single colony of P. shigelloides 

cultured for 48 h. The antibacterial activity was observed after 48 h incubation at 37ºC 

± 2ºC. The test plates were examined for clear zones around paper disc indicating 

growth was inhibited. Diameter of the inhibition zone of growth, if any, was measured. 

Chloramphenicol (30 µg per disc), novobiocin (5 µg per disc), and streptomycin (10 µg 

per disc) served as positive controls for antibiotic susceptibility testing against P. 

shigelloides. Meanwhile, DMSO served as negative control. DMSO was selected as 

negative control as it was less toxic and did not inhibit the growth of P. shigelloides. 
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4.0 RESULTS AND DISCUSSIONS 

4.1 Actinomycete Strains 

 

   The streptomycetes tested in this study were categorized culturally and 

morphologically into four series according to the colour of their mature sporulating 

aerial mycelium (Plate 4.1). Two out of eleven strains of streptomycete tested were 

grouped in the grey colour group; namely strains T3 and T4. Strain T6 was the only 

strain that belonged to the yellow green colour group. Four strains; T9, T12, T13, and 

T15 were assigned to the white with red diffusible pigments colour group. Another four 

strains; T16, T20, T52, and T53 belonged to the white with brown diffusible pigments 

colour group. 

 

4.2 Antagonistic Activity of Selected Marine-Derived Actinomycetes in Primary 

and Secondary Screenings   

 4.2.1 Bioactivity of different colour groups of Streptomyces spp. in primary    

 and secondary screenings 

 

  In primary screening, there was no inhibition of growth of C. albicans and C. 

parasilopsis by all the Streptomyces spp. tested. The Streptomyces spp. from different 

colour groups displayed varying degree of inhibition of bacteria tested. As shown in 

Table 4.1 and Plate 4.2, one out of two strains (T3), belonging to the grey colour group 

exhibited strong antibacterial activity against E. faecalis and S. aureus. The only strain 

in yellow green group, strain T6 was moderately active against E. faecalis but weakly 

inhibited P. aeruginosa. All the strains from the white with red diffusible pigments 

colour group were active against all the bacteria tested. Strain T15 strongly inhibited all 

the bacteria tested except S. aureus which was strongly inhibited by strain T9. Strain 
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T12 moderately inhibited all the bacteria tested. Strains T9 and T13 weakly inhibited 

all the bacteria tested except S. aureus which was weakly inhibited by strains T13 and 

T15. Two of the strains (T52 and T53) from the white with brown diffusible pigments 

colour group were active against at least two bacteria tested. Strain T52 posed weak 

inhibition of all the bacteria tested, while strain T53 weakly suppressed the growth of 

all the Gram-negative bacteria tested; P. aeruginosa and P. shigelloides.  

 

Table 4.1 Antibacterial activity of Streptomyces spp. in primary screening assessed via 

cross streak method 

 

Test bacteria 
Gram-positive Gram-negative 

Strain Colour group 
B. 

subtilis 
E. 

faecalis 
S. 

aureus 
P. 

aeruginosa 
P. 

shigelloides 

T3 Grey - +++ +++ - - 

T6 Yellow green - ++ - + - 

T9 + + +++ + + 

T12 ++ ++ ++ ++ ++ 

T13 + + + + + 

T15 

White/Red 
diffusible 
pigments 

+++ +++ + +++ +++ 

T52 + + + + + 

T53 

White/Brown 
Diffusible 
pigments - - - + + 

* Test bacteria were streaked on SA plates and incubated at 37ºC ± 2ºC for 48 h for the cross 
 streak antibacterial assay. Growth inhibition was defined as +++: strong inhibition (complete 
 bacterial growth inhibition length), ++: moderate inhibition (half bacterial growth inhibition 
 length), +: weak inhibition (one-third bacterial growth inhibition length), and -: no inhibition 
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Streptomyces strain T3 * Streptomyces strain T4 * 

  
Streptomyces strain T6 ** Streptomyces strain T9 *** 

  
Streptomyces strain T12 *** Streptomyces strain T13 *** 

  
Streptomyces strain T15 *** Streptomyces strain T16 **** 

  
Streptomyces strain T20 **** Streptomyces strain T52 **** 

 
Streptomyces strain T53 **** 

 

Plate 4.1 Cultures of the Streptomyces spp. that were lawned on SA plates except 

strains T3 and T4, which were prepared on ISP4 plates and incubation at 28ºC ± 2ºC 

for 2 weeks (*: grey colour group, **: yellow green colour group, ***: white/ red 

diffusible pigments colour group, ****: white/ brown diffusible pigments colour group) 
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Streptomyces strain T3 Streptomyces strain T6 Streptomyces strain T12 

   
Streptomyces strain T13 Streptomyces strain T15 Streptomyces strain T16 

   
Streptomyces strain T52 C1 C2 

   
 

Plate 4.2 Test plates of SA one-third-lawned with streptomycetes and streaked with test 

bacteria were incubated at 37ºC ± 2ºC for 48 h for the cross streak antibacterial assay in 

primary screening. Control SA plates, C1 and C2 streaked with test bacteria (1: E. 

faecalis; 2: S. aureus; 3: P. shigelloides; 4: B. subtilis; 5: P. aeruginosa) and yeasts (7: 

Candida parasilopsis; 8: C. albicans), respectively without the presence of 

streptomycetes were incubated at 37ºC ± 2ºC for 48 h 
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 In secondary screening, as indicated in Table 4.2 and Plate 4.3, all the strains 

from the grey colour group had weak inhibition of all the bacteria tested, except P. 

aeruginosa. Moreover, only strain T4 had weak inhibition of both yeasts. Strain T6 

from the yellow green colour group weakly inhibited E. faecalis, S. aureus, and P. 

shigelloides. All the strains from the white with red diffusible pigments colour group 

were active against E. faecalis, S. aureus, and P. shigelloides. Three strains (T12, T13, 

and T15) were active against B. subtilis, while two strains each inhibited P. aeruginosa 

(T9 and T12) and C. parasilopsis (T13 and T15), and only one strain (T15) inhibited C. 

albicans. Strong inhibition against P. shigelloides was displayed by strain T15. Strain 

T13 and strain T15 moderately inhibited P. shigelloides and B. subtilis, respectively. 

However, all the strains weakly inhibited E. faecalis and S. aureus. Strains T9 and T12 

weakly inhibited both Gram-negative bacteria tested, while strains T12 and T13 weakly 

inhibited B. subtilis. Strain T15 weakly inhibited both yeasts, while strain T13 only 

inhibited C. parasilopsis. All the strains from the white with brown diffusible pigments 

colour group were inhibitory towards B. subtilis, E. faecalis, and S. aureus, while three 

strains (T16, T52, and T53) were active against P. shigelloides. Activity against P. 

aeruginosa was attributed to two strains (T52 and T53). Strain T16 and strain T53 

strongly inhibited P. shigelloides and E. faecalis, respectively. Strain T53 had moderate 

inhibition of all the bacteria tested except E. faecalis. Strains T16, T20, and T52 had 

weak inhibition of all the Gram-positive bacteria tested, while only strain T52 weakly 

inhibited all the Gram-negative bacteria tested. Furthermore, strains T16 and T53 

weakly suppressed the growth of both yeasts. The control plates are shown in Plate 4.4. 
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Table 4.2 Inhibition spectrum (mm) of Streptomyces spp. against the test pathogens in secondary screening assessed via disc diffusion method 

 

Diameter of inhibition zone (mm) 
Gram-positive bacteria Gram-negative bacteria Yeast Strain Colour group 

B. subtilis E. faecalis S. aureus P. 
aeruginosa 

P. 
shigelloides C. albicans C. 

parasilopsis 
T3 4.0 ± 1.9 1.7 ± 0.5 1.7 ± 0.5 - 4.7 ± 0.4 - - 

T4 
Grey 

4.0 ± 0.0 6.0 ± 1.0 4.7 ± 1.0 - 2.7 ± 0.4 5.4 ± 1.7 6.3 ± 1.4 

T6 Yellow green - 1.0 ± 0.0 2.4 ± 0.3 - 4.0 ± 1.0 - - 

T9 - 4.0 ± 2.6 6.4 ± 0.9 2.7 ± 0.6 6.0 ± 1.0 - - 

T12 1.0 ± 3.6 6.3 ± 0.5 2.4 ± 0.8 5.4 ± 1.9 5.0 ± 1.0 - - 

T13 4.0 ± 1.9 2.0 ± 1.0 4.7 ± 1.5 - 12.0 ± 1.0 - 1.6 ± 1.7 

T15 

White/Red 
diffusible 
pigments 

12.0 ± 1.7 7.7 ± 0.5 6.4 ± 0.9 - 16.3 ± 0.4 5.7 ± 1.1 5.0 ± 0.9 

T16 9.4 ± 0.6 6.3 ± 2.8 5.0 ± 0.9 - 15.7 ± 1.1 5.0 ± 0.9 4.6 ± 0.0 

T20 8.0 ± 0.0 8.3 ±  0.4 8.0 ± 0.0 - - - - 

T52 8.4 ± 0.0 9.3 ± 0.4 8.4 ± 0.9 9.0 ± 0.9 8.3 ± 0.4 - - 

T53 

White/Brown 
Diffusible 
pigments 

13.7 ± 0.6 16.0 ± 0.7 14.0 ± 0.0 13.0 ± 0.0 12.0 ± 1.0 6.7 ± 0.6 5.3 ± 1.4 
* Mean of three readings with standard deviation, test bacteria and yeasts were lawned on NA and SDA plates, respectively, and incubated at 37ºC ± 2ºC for 48 h    
 for the disc diffusion antibacterial and anti-yeast assays. Cultures of the Streptomyces spp. were prepared in SA or ISP4 (T3 and T4) liquid media and were 
 incubated at 28ºC ± 2ºC on a rotary shaker at 120 rpm for two weeks. Extracts were prepared by extraction with methanol: dichloromethane (1:1). Strong 
 inhibition was defined as greater than 15 mm (> 15 mm) diameter of the inhibition zone of growth, while moderate and weak inhibitions were defined as 10 to 15 
 mm (10-15 mm) and less than 10 mm (< 10 mm), respectively 
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Inhibition of Streptomyces spp. against Bacillus subtilis 

 
Inhibition of Streptomyces spp. against Plesiomonas shigelloides 

  
Inhibition of  Streptomyces spp. against 

Enterococcus faecalis 
Inhibition of  Streptomyces spp. against 

Staphylococcus aureus 

 
Inhibition of Streptomyces spp. against Pseudomonas aeruginosa 

 
 

Plate 4.3 Test plates of NA lawned with test bacteria displayed antagonistic activities 

by Streptomyces spp. (Test bacteria were incubated at 37ºC ± 2ºC for 48 h; cultures of 

the Streptomyces spp. were prepared in SA or ISP4 (T3 and T4) liquid media and were 

incubated at 28ºC ± 2ºC on a rotary shaker at 120 rpm for two weeks. Extracts were 

prepared by extraction with methanol: dichloromethane (1:1); paper discs seeded in the 

centre of test plates were impregnated with methanol that served as negative control) 
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Bacillus subtilis Enterococcus faecalis Staphylococcus aureus 

                                                  
                         Pseudomonas aeruginosa         Plesiomonas shigelloides 

                                                  
                                Candida albicans                 Candida parasilopsis 

   
 

Plate 4.4 Inhibition zones on control plates lawned with test bacteria and yeasts in 

secondary screening assessed via disc diffusion method. Standard antibiotic discs of 10 

µg streptomycin and 5 µg novobiocin were seeded on the left and right of the NA 

plates, respectively. Standard antibiotic discs of nystatin were seeded in the centre of 

the SDA plates (Test bacteria and yeasts were incubated at 37ºC ± 2ºC for 48 h) 

 

Following incubation in a disc diffusion method, the zones of inhibition of 

growth were measured; the more active the compound, the larger the zone. Therefore, 

some idea of the potency of the bioactive compound(s) was gained from the zone size. 

With poorly soluble compounds which diffused insufficiently in the agar, the zone of 

the inhibition might not reflect the true antimicrobial potential of the compounds (Barry 

and Thornsberry, 1985).  

 



 51 

The antagonistic activity of strains from different colour groups in primary and 

secondary screenings was compared. In primary screening, half of the strains from the 

grey and white with brown diffusible pigments colour groups displayed antagonistic 

bioactivity against at least one of the pathogens tested compared to antagonism by all 

the strains in secondary screening. Contrast results were obtained by Kavithambigai 

(2006), where prominent bioactivity of strains from the grey and white colour groups 

was observed in primary screening. Antagonism by all the strain(s) from the yellow 

green and white with red diffusible pigments colour groups against at least one of the 

pathogens tested were detected in both primary and secondary screenings.  

 

As indicated in Table 4.3, strains from the grey, white with red diffusible 

pigments, and white with brown diffusible pigments colour groups showed improved 

activity in secondary screening. In primary screening, one out of two strains from the 

grey colour group was active against at least one Gram-positive bacteria tested, while 

both strains were active in secondary screening. Antimicrobial activity by strains from 

the grey colour group against Gram-negative bacteria and yeasts tested was not 

detected in primary screening. However, in secondary screening, all of the strains were 

active against at least one Gram-positive and Gram-negative bacteria tested, while half 

of the strains were active against at least one of the yeasts. This result was in good 

agreement with findings by Sujatha et al. (2005) in which a marine-derived 

Streptomyces strain BT-408 from grey colour group showed a broad antimicrobial 

spectrum against Gram-positive and Gram-negative bacteria, fungi, and yeast. In 

secondary screening, all strains from the grey colour group posed weak inhibition 

towards all the bacteria tested, except P. aeruginosa.  
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Table 4.3 Comparison of antagonistic activity of Streptomyces spp. from different 

colour groups against the test pathogens in primary and secondary screenings 

 

Primary screening Secondary screening 

Colour group Gram-
positive 
bacteria 

Gram-
negative 
bacteria 

Yeast 
Gram-
positive 
bacteria 

Gram-
negative 
bacteria 

Yeast 

Grey 
(T3, T4) 1 - - 2 2 1 

Yellow green 
(T6) 1 1 - 1 1 - 

White/ Red 
diffusible pigments 
(T9, T12, T13, T15) 

4 4 - 4 4 2 

White/ Brown 
diffusible pigments 

(T16, T20, T52, T53) 
1 2 - 4 3 2 

* Primary screening: Test bacteria were streaked on SA plates and incubated at 37ºC ± 2ºC for 
 48 h for the cross streak antibacterial assay. Secondary screening: Test bacteria and
 yeasts were lawned on NA and SDA plates, respectively, and incubated at 37ºC ± 2ºC for 48 
 h for the disc diffusion assay.  

 

 

Dhanasekaran et al. (2005) reported a marine Streptomyces sp. strain DPTD 14 

from the grey colour group that weakly inhibited against S. aureus. However, contrary 

to the present results, marine Streptomyces sp. isolate B6921 from the white to reddish 

grey colour group (dependent on the medium) exhibited high antagonistic activity 

against S. aureus and B. subtilis (Maskey et al., 2003). In addition, soil Streptomyces 

halstedii from the grey colour group had strong inhibition towards S. aureus and B. 

subtilis while S. lydicus exhibited moderate inhibition against B. subtilis (Oskay et al., 

2004). Kock et al. (2005) reported that a marine Streptomyces isolate B8005 from the 

grey colour group showed inhibitory activity against S. aureus and C. albicans. In 

accordance to the findings by Kock et al. (2005), bioactivity of one of the strains from 

the grey colour group towards C. albicans was also observed in the present study.  
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As shown in Table 4.3, the single strain from the yellow green colour group 

(T6) displayed similar pattern of antagonism in both primary and secondary screenings. 

The strain was active against at least one Gram-positive and Gram-negative bacteria 

tested but was inactive against the yeasts. These results led to the speculation that the 

same antibacterial bioactive metabolite(s) was produced extracellularly and 

intracellularly. Strain T6 was inactive against B. subtilis in both primary and secondary 

screenings. The bioactivity of strain of the yellow green colour group in the present 

study was compared to that of the green and yellow colour groups in the study by 

Kavithambigai (2006), in which similar pattern of antagonism in both primary and 

secondary screenings was also displayed. Kavithambigai (2006) demonstrated that all 

strains of the green and yellow colour groups showed antibiosis against the test 

microorganisms in both primary and secondary screenings.  

 

All the strains of the white with red diffusible pigments colour group showed 

antibacterial activity against at least one Gram-positive and Gram-negative bacteria 

tested in both primary and secondary screenings (Table 4.3). Moreover, in secondary 

screening, half of the strains were active against at least one of the yeasts, but none was 

active in primary screening. One out of four strains from the white with brown 

diffusible pigments colour group was active against Gram-positive bacteria tested in 

primary screening, while in secondary screening, all strains were active. Two strains in 

primary screening compared to three strains in secondary screening were antagonistic 

towards Gram-negative bacteria tested. Furthermore, anti-yeast activity was displayed 

by two strains in secondary screening, whereas no anti-yeast activity was detected 

among the strains from the white with brown diffusible pigments colour group in 

primary screening. These results were contrary to the results observed by 
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Kavithambigai (2006), where anti-yeast activity was produced by strains from the white 

colour group only in primary screening.  

 

Overall, strain(s) from the grey and white with red diffusible pigments colour 

groups displayed strong antibacterial activity in primary screening. Tan (2007) reported 

that all marine-derived actinomycetes from the grey and yellow green colour groups 

possessed antibacterial activity. In secondary screening, the Streptomyces spp. 

belonging to the white colour group were the most active, where the most prominent 

were strains of white with brown diffusible pigments colour group, followed by strains 

of white with red diffusible pigments colour group. These results were in accordance 

with the findings by Saadoun et al. (2008) that indicated the most active Streptomyces 

had colonies of white or grey aerial mycelium.  

 

  4.2.2 Bioactivity of strains in primary and secondary screenings 

 

In primary screening as indicated in Table 4.1 and Plate 4.2, three strains (T4, 

T16, and T20) showed no antagonistic activity against all the pathogens tested. All the 

strains did not inhibit the yeasts. Eight strains were active against at least one bacteria 

tested. In addition, seven strains were antagonistic against at least one Gram-positive 

and Gram-negative bacteria tested. Five strains (T9, T12, T13, T15, and T52) were 

active against all the Gram-positive bacteria tested; B. subtilis, E. faecalis, and S. 

aureus. Meanwhile, six strains (T9, T12, T13, T15, T52, and T53) were active against 

all the Gram-negative bacteria tested; P. aeruginosa and P. shigelloides. Overall, five 

strains were active against all the bacteria tested. As shown in Table 4.1, three, two, and 

six strains displayed strong, moderate, and weak inhibitions, respectively. Strain T15 

exhibited strong inhibition against most of the bacteria tested, namely E. faecalis, P. 
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shigelloides, B. subtilis, and P. aeruginosa. However, it displayed weak inhibition 

against S. aureus. Strain T9 displayed contrast antagonistic activity from strain T15. It 

exhibited strong inhibition only against S. aureus, while weakly inhibited the remaining 

bacteria tested. Strain T3 exhibited strong antibacterial activity against E. faecalis and 

S. aureus, but did not inhibit the rest of the bacteria tested. Strain T12 showed moderate 

inhibition of all the bacteria tested. Strain T6 only showed moderate and weak 

inhibitions against E. faecalis and P. aeruginosa, respectively. Strains T13 and T52 

showed weak inhibition of all the bacteria tested, while strain T53 weakly inhibited all 

the Gram-negative bacteria tested only.  

 

  In secondary screening, preliminary data as shown in Table 4.2 and Figure 4.1 

showed that all the strains tested were inhibitory to at least one Gram-positive bacteria 

tested, where nine out of eleven strains inhibited all the Gram-positive bacteria tested. 

Meanwhile, ten strains displayed inhibition towards at least one of the Gram-negative 

bacteria tested, where four strains inhibited all the Gram-negative bacteria tested. On 

the other hand, five strains inhibited at least one of the yeasts; C. albicans or C. 

parasilopsis, where four strains inhibited both yeasts. Three out of eleven strains 

exhibited strong and moderate inhibitions, while all the strains tested exhibited weak 

inhibition against at least one pathogen tested. Strain T53 exhibited strong inhibition 

against E. faecalis, while moderately inhibited B. subtilis, S. aureus, and all the Gram-

negative bacteria tested, but weakly inhibited all the yeasts. Strain T15 strongly 

inhibited P. shigelloides, moderately inhibited B. subtilis, but weakly inhibited E. 

faecalis, S. aureus, and all the yeasts. Strain T16 displayed strong inhibition against P. 

shigelloides, but weakly inhibited all the Gram-positive bacteria and yeasts tested. 

Strain T13 moderately inhibited P. shigelloides but weakly inhibited all the Gram-

positive bacteria tested and one of the yeasts; C. parasilopsis. Strain T4 weakly 
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inhibited all the pathogens tested except P. aeruginosa. Strains T12 and T52 weakly 

suppressed the growth of all the bacteria tested. Strain T3 and strain T9 exhibited weak 

inhibition of all the bacteria tested except P. aeruginosa and B. subtilis, respectively. 

Strain T6 weakly inhibited E. faecalis, S. aureus, and P. shigelloides. Meanwhile, strain 

T20 had minimal activity against all the Gram-positive bacteria tested.  

 

Figure 4.1 Percentage of active strains out of eleven strains against at least one test 

pathogen in secondary screening 

 

 Streptomyces spp. investigated in this study showed prominent antibacterial and 

anti-yeast activities in secondary screening compared to primary screening. Table 4.4 

shows the percentage of active streptomycetes in primary and secondary screenings. 

Strains in secondary screening exhibited greater growth inhibition against all the 

pathogens tested except P. aeruginosa, where four strains were active against it 

compared to seven strains in primary screening. The production of low concentration of 

bioactive metabolite(s) against P. aeruginosa in liquid culture could be the main factor 

leading to this observation (Tan et al., 2004).  
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Table 4.4 Comparison of percentage of active Streptomyces spp. against the test 

pathogens in primary and secondary screenings 

 

Percentage of Streptomyces spp. (%) 
Test pathogen Primary 

Screening 
Secondary 
Screening 

Bacillus subtilis 45.5 81.8 

Enterococcus faecalis 63.6 100 
Gram-
positive 
bacteria 

Staphylococcus aureus 54.5 100 

Pseudomonas aeruginosa 63.6 36.4 Gram-
negative 
bacteria Plesiomonas shigelloides 54.5 90.9 

Candida albicans - 36.4 
Yeast 

Candida parasilopsis - 45.5 

* Primary screening: Test bacteria were streaked on SA plates and incubated at 37ºC ± 2ºC for 
 48 h for the cross streak antibacterial assay. Secondary screening: Test bacteria and yeasts 
 were lawned on NA and SDA plates, respectively, and incubated at 37ºC ± 2ºC for 48 h for 
 the disc diffusion antibacterial and anti-yeast assays 

 

 

In primary screening, eight strains were active against at least one bacteria 

tested, where seven strains each were antagonistic against at least one Gram-positive 

and Gram-negative bacteria tested. Five strains were active against all the Gram-

positive bacteria tested, while six strains were active against all the Gram-negative 

bacteria tested. Several authors have reported antibacterial potential of Streptomyces 

spp. Based on Tan’s (2007) investigation, 28.2% marine actinomycetes displayed 

moderate antibacterial activity assessed by cross plug method, where 27.1% and 10.6% 

strains had inhibitory effect against at least one Gram-positive and Gram-negative 

bacteria tested, respectively. Higher antibacterial activity in the present study might be 

caused by the diffusion of higher concentration of bioactive metabolite(s) contained in 
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the one-third actinomycete-lawned plate compared to the actinomycete plug in the 

cross plug method.  

 

The previous findings by Pisano et al. (1986) and Pisano et al. (1989) had 

outdone the present findings in terms of inhibition spectrum, where 15.8% and 40.0% 

strains obtained from marine sediments displayed antimicrobial activity against all the 

microorganisms tested (Gram-positive and Gram-negative bacteria, yeasts, and fungi). 

Therefore, marine actinomycetes in primary screening observed by Pisano et al. (1986) 

and Pisano et al. (1989) had broad antagonistic spectrum compared to the present 

study. Most of the activity was directed against Gram-positive bacteria, but inhibition 

of Gram-negative bacteria and yeasts were also evident. This was contrary to the results 

observed in the present study, where activity against Gram-negative bacteria was 

prominent compared to Gram-positive bacteria.  

 

In secondary screening, all of the strains were observed to have the ability to 

produce growth inhibition of one or other pathogens tested. The findings in the present 

study had exceeded the estimation by Ndonde and Semu (2000), where about 75% of 

Streptomyces spp. were estimated to produce antibiotics of one type or another. This 

may be an indication of the potential of the marine environment sampled in the present 

study to harbour antibiotic-producing Streptomyces spp. In secondary screening, all the 

strains were antagonistic against at least one Gram-positive bacteria tested. Meanwhile, 

90.9% strains were antagonistic against at least one Gram-negative bacteria tested. In 

contrast with the results observed in primary screening, number of active strains against 

all the Gram-positive bacteria tested was higher than that of Gram-negative bacteria 

tested. In secondary screening, activity against all the Gram-positive bacteria tested 

increased by 36.3%, while activity against all the Gram-negative bacteria tested 
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decreased by 18.1%. It could be suggested that higher concentration of bioactive 

metabolite(s) inhibitory towards Gram-positive bacteria tested was produced in liquid 

culture, while higher concentration of bioactive metabolite(s) inhibitory towards Gram-

negative bacteria tested was produced in solid culture (Tan et al., 2004). Activity 

against both Gram-positive and Gram-negative bacteria tested in the present study was 

higher by 3.8% compared to the findings by Zheng et al. (2000).   

 

In the present study, growth inhibition of yeasts was evident in secondary 

screening, but none in primary screening. This result indicated that the diffusible 

extracellular metabolites in solid medium did not induce the anti-yeast activity.  

However, the anti-yeast activity was induced by the intracellular metabolites in liquid 

medium. Kavithambigai (2006) demonstrated that anti-yeast activity was greater in 

secondary screening compared to primary screening. Bioactive metabolite(s) that was 

active against C. parasilopsis and C. albicans was produced by five and four strains, 

respectively. Anti-yeast assay indicated that C. parasilopsis was more susceptible 

compared to C. albicans, which was in contrast with the results observed by Tan 

(2007), where 10.6% and 25.9% strains inhibited C. parasilopsis and C. albicans, 

respectively. Findings by Tan (2007) were corroborated by the findings of 

Kavithambigai (2006) for other actinomycetes. Strains T3, T6, T9, T12, T20, and T52 

did not exhibit anti-yeast activity extracellularly and intracellularly. The solvent used 

for extraction may not be suitable for the strains or the metabolite(s) may not be 

properly extracted by the solvent (Pandey et al., 2002). 

 

Extraction with methanol was needed by strains T4, T13, T15, T16, and T53 

which were inactive against the yeasts in primary screening, but discovered to be 

inhibitory towards the yeasts in secondary screening. However, these methanol extracts 
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had weaker anti-yeast activity compared to that of methanol extracts reported by 

Remya and Vijayakumar (2008). Harindran et al. (1999) reported that a soil-derived 

Streptomyces CDRIL-312 had a promising anti-yeast activity. Furthermore, findings by 

Augustine et al. (2005a) showed that S. albidoflavus PU23 posed inhibition zone 

diameter of 16 mm (strong inhibition) against C. albicans. The present results showed 

that seven strains did not inhibited C. albicans; including strain T13 which inhibited 

only C. parasilopsis. Rabeh et al. (2007) reported that S. viridiviolaceus which was 

isolated from the lake also did not inhibited C. albicans. Therefore, it could be 

suggested that bioactivity of marine-derived actinomycetes against yeasts was very 

minimal compared to that of soil-derived actinomycetes. 

 

Activity of strain T53 was minimal in primary screening, where it only posed 

weak inhibition against the Gram-negative bacteria tested. Interestingly, the activity of 

strain T53 was very promising in secondary screening, where it strongly inhibited E. 

faecalis, moderately inhibited the remaining test bacteria, but weakly inhibited the 

yeasts. Another promising strain was strain T15, where in primary screening, it 

displayed potent activity against all the Gram-positive and Gram-negative bacteria 

tested except for minimal activity against S. aureus. Furthermore, in secondary 

screening, strain T15 was inhibitory towards all the pathogens tested except for P. 

aeruginosa. These findings indicated that strains T53 and T15 had a broad spectrum 

activity. The production of high concentration of bioactive metabolite(s) could possibly 

explain the potent activity by the active strains, and vice versa. Ndonde and Semu 

(2000) reported a strain of Streptomyces which had ability of producing an antibiotic(s) 

which inhibited a number of pathogens, including B. subtilis, S. aureus, and C. 

albicans. In addition, Peela et al. (2005) reported that Streptomyces sp. BT 606 showed 
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antimicrobial activity against three multi-drug resistant pathogens; S. aureus, P. 

aeruginosa, and C. albicans. 

 

Strains T4, T13, T15, T16, and T53 displayed a broad spectrum activity against 

at least one of the yeasts, Gram-positive and Gram-negative bacteria tested in 

secondary screening. Bioactivity of a single strain of Streptomyces against a variety of 

pathogenic microorganisms indicated that a single strain of Streptomyces could 

possibly produce a variety of antibiotics as demonstrated in previous studies. Du et al. 

(2004) reported that a variety of aminoglycoside antibiotics, mainly apromycin, 

tobramycin, and kanamycin B were produced by S. tenebrarius H6. In addition, Betina 

(1994) mentioned that asparenomycins A, B, and C were metabolites of S. 

tokumonensis. According to Hobbs et al. (1992), S. coelicolor A3(2) produced 

actinorhodin, calcium-dependent antibiotic, and methylenomycin A. 

 

As indicated in Table 4.5, antibacterial potential of Streptomyces spp. in 

primary and secondary screenings was compared. Strains T3, T6, T9, T12, T13, T15, 

and T53 were active against at least one same bacteria tested in both primary and 

secondary screenings. This same pattern of activity indicated that the Streptomyces spp. 

produced extracellular and intracellular bioactive metabolite(s) antagonistic towards the 

same bacteria tested. Interestingly, strains T3, T4, T6, T16, T20, and T53 that were 

inactive against at least one of the bacteria tested in primary screening had inhibited 

those particular bacteria in secondary screening. There were few factors that could lead 

to this pattern of improved activity. Probably, the low concentration of the bioactive 

metabolite(s) or the intracellularly-bound bioactive metabolite(s) within the 

Streptomyces spp. was the reason why no inhibition was detected in primary screening. 

In addition, the increased production of the intra- or extracellular bioactive 
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metabolite(s) in liquid medium and subsequently in the crude extracts might have 

increased the antibacterial potential of the strains in secondary screening (Tan, 2007). 

 

Strains T4, T16, and T20 might not have any extracellular antagonistic activity; 

however, they had intracellular activity (Table 4.5). It was possible that the inactive 

strains produced bioactive metabolite(s) extracellularly that might be effective against 

other pathogens not tested presently. The extraction of the intracellular or membrane-

bound bioactive metabolite(s) needed to be performed on these strains. Fragmentation 

of mycelia in liquid medium during fermentation might cause inactivation of the 

bioactive metabolite(s) in the extracts (Shomura et al., 1979; Tan, 2007). Thus, this 

could explain the non-inhibitory effect of strain T9 against B. subtilis and strains T6, 

T13, and T15 against P. aeruginosa in secondary screening, although they were 

inhibitory towards those particular bacteria tested in primary screening. Insufficient 

bioactive metabolite(s) in the crude extracts to reach the effective dose could be another 

possible reason for the non-inhibitory effect (Tan, 2007). Strains T3, T4, T6, T16, T20, 

and T53 were inactive against at least one bacteria tested in both primary and secondary 

screenings. Pseudomonas aeruginosa was the most insensitive bacteria tested, where 

five strains (T3, T4, T16, T20, and T53) were inactive against it in both primary and 

secondary screenings. This result suggested that these strains did not produced 

intracellular and extracellular bioactive metabolite(s) inhibitory towards P. aeruginosa.  
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Table 4.5 Comparison of antibacterial bioactivity of Streptomyces spp. in primary and 

secondary screenings 

 

Test bacteria 
Strain Screening B. 

subtilis 
E. 

faecalis 
S. 

aureus 
P. 

aeruginosa 
P. 

shigelloides 

Primary - √ √ - -  
T3 

 Secondary √ √ √ - √ 

Primary - - - - - 
T4 

Secondary √ √ √ - √ 

Primary - √ - √ - 
T6 

Secondary - √ √ - √ 

Primary √ √ √ √ √ 
T9 

Secondary - √ √ √ √ 

Primary √ √ √ √ √ 
T12 

Secondary √ √ √ √ √ 
T13 Primary √ √ √ √ √ 

Primary √ √ √ √ √ 
T15 

Secondary √ √ √ - √ 

Primary - - - - - 
T16 

Secondary √ √ √ - √ 

Primary - - - - - 
T20 

Secondary √ √ √ - - 
Primary √ √ √ √ √ 

T52 
Secondary √ √ √ √ √ 

Primary - - - √ √ 
T53 

Secondary √ √ √ √ √ 
* Primary screening: Test bacteria were streaked on SA plates and incubated at 37ºC ± 2ºC for 
 48 h for the cross streak antibacterial assay. Secondary screening: Test bacteria and yeasts 
 were lawned on NA and SDA plates, respectively, and incubated at 37ºC ± 2ºC for 48 h for 
 the disc diffusion assay 
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  4.2.3 Susceptibility of test pathogens in primary and secondary screenings 

 

  In primary screening as indicated by Table 4.6, more strains tested displayed 

strong inhibition against Gram-positive bacteria tested compared to Gram-negative 

bacteria tested. Enterococcus faecalis and P. aeruginosa were the most sensitive 

pathogens tested, where seven out of eleven strains tested were active against them, 

followed closely by S. aureus and P. shigelloides that were inhibited by six strains. 

Bacillus subtilis was the less sensitive pathogen tested, where only five strains were 

active against it. It was strongly inhibited by strain T15 and moderately inhibited by 

strain T12, but was weakly inhibited by strains T9, T13, and T52.  

 

  Enterococcus faecalis was strongly inhibited by strains T3 and T15, moderately 

inhibited by strains T6 and T12, but weakly inhibited by strains T9, T13, and T52 

(Table 4.6). Strains T3 and T9 displayed strong inhibition; while, strain T12 displayed 

moderate inhibition against S. aureus. Furthermore, strains T13, T15, and T52 

displayed weak inhibition against it. Both P. aeruginosa and P. shigelloides were 

strongly and moderately inhibited by strain T15 and strain T12, respectively. 

Furthermore, P. aeruginosa was weakly inhibited by strains T6, T9, T13, T52, and T53. 

Meanwhile, the same strains that exhibited weak inhibition towards P. aeruginosa 

except strain T6 also weakly inhibited P. shigelloides.   
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Table 4.6 Sequence of inhibitory levels exhibited by Streptomyces spp. against the test 

bacteria in primary screening 

 

B. subtilis       : 
 

T15 
 

> 
 

T12 
 

> 
 

T9, T13, T52 
 

E. faecalis      : 
 

T3, T15 
 

> 
 

T6, T12 
 

> 
 

T9, T13, T52 
 

S. aureus        : 
 

T3, T9 
 

> 
 

T12 
 

> 
 

T13, T15, T52 
 

P. aeruginosa : 
 

T15 
 

> 
 

T12 
 

> T6, T9, T13, T52, T53 
 

P. shigelloides: 
 

T15 
 

> 
 

T12 
 

> 
 

T9, T13, T52, T53 
 

*  Test bacteria were streaked on SA plates and incubated at 37ºC ± 2ºC for 48 h for the cross 
 streak antibacterial assay 
 

 

  In secondary screening as shown in Table 4.7, Gram-positive bacteria tested 

were inhibited by at least nine strains; meanwhile, Gram-negative bacteria tested were 

inhibited by at least four strains. Furthermore, yeasts were inhibited by at least four 

strains. Enterococcus faecalis and S. aureus were the most sensitive bacteria tested, 

where all the strains were active against them, followed closely by P. shigelloides that 

was inhibited by ten strains then B. subtilis, inhibited by nine strains. Pseudomonas 

aeruginosa was the less sensitive bacteria tested with only four strains active against it. 

Bacillus subtilis was not susceptible to strains T6 and T9. However, strains T15 and 

T53 exhibited moderate antagonistic activity against it. Bacillus subtilis was weakly 

inhibited by strains T3, T4, T12, T13, T16, T20, and T52. Enterococcus faecalis and S. 

aureus were weakly inhibited by all the strains except for strain T53 that had strong and 

moderate inhibitions, respectively. Pseudomonas aeruginosa was insensitive to seven 
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strains. Strain T53 moderately inhibited it, while strains T9, T12, and T52 weakly 

inhibited it. Plesiomonas shigelloides was insensitive to strain T20, but was strongly 

inhibited by strains T15 and T16, moderately inhibited by strains T13 and T53, but 

weakly inhibited by six other strains. Results of anti-yeast assay showed only weak 

inhibition, where C. parasilopsis was more sensitive than C. albicans. Strains T4, T15, 

T16, and T53 inhibited both yeasts. Furthermore, inhibition by strain T13 against C. 

parasilopsis was detected but no inhibition was displayed against C. albicans.   

 

Table 4.7 Sequence of inhibitory levels exhibited by Streptomyces spp. against the test 

pathogens in secondary screening 

 

B. subtilis           : - > 
 

T15, T53 
 

> 
 

T3, T4, T12, T13, T16, T20, T52 
 

E. faecalis          : 
 

T53 
 

> - > 
T3, T4, T6, T9, T12, T13, T15, 

T16, T20, T52 
 

S. aureus            : - > 
 

T53 
 

> 
T3, T4, T6, T9, T12, T13, T15, 

T16, 20, T52 
 

P. aeruginosa    : - > 
 

T53 
 

> 
 

T9, T12, T52 
 

P. shigelloides    : 
 

T15, T16 
 

> 
 

T13, T53 
 

> 
 

T3, T4, T6, T9, T12, T52 
 

C. albicans         : - > - > 
 

T4, T15, T16, T53 
 

C. parasilopsis   : - > - > 
 

T4, T13, T15, T16, T53 
 

* Test bacteria and yeasts were lawned on NA and SDA plates, respectively, and incubated at 
 37ºC ± 2ºC for 48 h for the disc diffusion antibacterial and anti-yeast assays 
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Antagonistic bioactivity of antimicrobial agents towards the pathogens tested 

produced varying inhibition zones (Table 1, Appendix B). In secondary screening, 

novobiocin and streptomycin with the potency of 5 µg and 10 µg, respectively were 

used as the positive controls for antibacterial assay. For novobiocin, the inhibition zone 

against B. subtilis was 15.0 ± 0.0 mm, while the values for E. faecalis, S. aureus, P. 

aeruginosa, and P. shigelloides were 15.0 ± 0.0, 13.0 ± 0.0, 16.0 ± 0.0, and 18.0 ± 0.0 

mm, respectively. However, the inhibition zone produced by streptomycin against B. 

subtilis was 14.0 ± 0.0 mm, while the values for E. faecalis, S. aureus, P. aeruginosa, 

and P. shigelloides were 13.0 ± 0.0, 16.0 ± 0.0, 15.0 ± 0.0, and 14.0 ± 0.0 mm, 

respectively. Nystatin with the potency of 100 units (equivalent to 22.4 µg of pure 

nystatin) served as the positive control for anti-yeast assay. The inhibition zones 

produced against C. albicans and C. parasilopsis were 27.0 ± 0.0 and 28.0 ± 0.0 mm, 

respectively (Table 2, Appendix B). Methanol (solvent used for preparing and diluting 

the extracts) served as the negative control. However, methanol itself posed antagonism 

against the pathogens tested. The antagonistic activity of methanol against B. subtilis, 

E. faecalis, S. aureus, P. aeruginosa, P. shigelloides, C. albicans, and C. parasilopsis 

were measured as 11.3 ± 0.6, 10.0 ± 1.0, 10.3 ± 1.5, 12.3 ± 0.6, 9.0 ± 1.0, 13.3 ± 0.6, 

and 11.7 ± 0.6 mm, respectively (Tables 1 and 2, Appendix B).  

 

In the case of B. subtilis inhibition, the activity of strains T15 and T53 were 

comparable to the inhibitory activity of 5 µg novobiocin and 10 µg streptomycin, where 

inhibition zones of 12.0 ± 1.7 mm and 13.7 ± 0.6 mm were produced, respectively. In 

E. faecalis inhibition, strain T53 had antagonistic activity higher than the inhibitory 

activity of 5 µg novobiocin and 10 µg streptomycin, where inhibition zone of 16.0 ± 0.7 

mm was produced. The activity of strain T53 against S. aureus, indicated by inhibition 

zone of 14.0 ± 0.0 mm, was slightly lower compared to the inhibitory activity of 5 µg 
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novobiocin, but higher than the inhibitory activity of 10 µg streptomycin. In P. 

aeruginosa inhibition, the activity of strain T53 was comparable to the inhibitory 

activity of 5 µg novobiocin and 10 µg streptomycin, where the inhibition zone 

produced was 13.0 ± 0.0 mm. In the case of P. shigelloides inhibition, the antagonistic 

activity of strains T13 and T53 were comparable to the inhibitory activity of 10 µg 

streptomycin, where equal inhibition zones of 12.0 ± 1.0 mm were produced by both 

strains. Meanwhile, the antagonistic activity of strains T15 and T16 were comparable to 

the inhibitory activity of 5 µg novobiocin, where the inhibition zones produced were 

16.3 ± 0.4 mm and 15.7 ± 1.1 mm, respectively. The antagonistic activity of the five 

strains that were found to be active against at least one of the yeasts was very low 

compared to the inhibitory potential possessed by the positive control nystatin.  

 

   In this study, B. subtilis and P. aeruginosa were the most resistant bacteria 

tested in primary screening and secondary screening, respectively. Pisano et al. (1989) 

reported that B. subtilis was the most susceptible bacteria tested in the previous study. 

Pandey et al. (2002) reported that 31 (86.1%) and 27 out of 36 (75%) actinomycetes 

were active against B. subtilis and S. aureus, respectively in primary screening. In 

secondary screening, 23 out of 36 (63.9%) strains were inhibitory towards both B. 

subtilis and S. aureus. The antibacterial activity against B. subtilis and S. aureus in 

primary screening, demonstrated by Pandey et al. (2002) was greater compared to the 

present study. However, the antibacterial activity against those particular bacteria in 

secondary screening was greater in this study. In the present study, B. subtilis was 

inhibited by nine out of eleven strains in which two strains had inhibition zones 

diameter of greater than 10 mm. Zheng et al. (2000) reported that B. subtilis was 

inhibited by nine out of fifteen Streptomyces spp. with inhibition zones diameter of less 

than 10 mm. Hence, the antibacterial activity against B. subtilis in the present study was 
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higher compared to the findings by Zheng et al. (2000). According to Kavithambigai 

(2006), P. aeruginosa was mostly resistant against the metabolites produced by 

actinomycetes. In addition, Drusano (1992) highlighted that P. aeruginosa remained a 

persistent clinical pathogen in which extended-spectrum penicillins, third-generation 

cephalosporins, penem and carbapenems antibiotics, and the new fluoroquinolones 

were not always effective clinically. In the present study, number of active strains 

against P. aeruginosa observed in primary screening was greater than the findings by 

Tan (2007). The antibacterial activity against E. faecalis was highest in both primary 

and secondary screenings; therefore, E. faecalis was described as the most susceptible 

bacteria tested. These results showed that diffusible extracellular metabolites produced 

on agar plate and the intra- or extracellular metabolites in liquid medium and 

subsequently in the crude extracts could greatly induce the antibacterial activity against 

E. faecalis.  

 

   The cross streak anti-yeast assay might not detect the anti-yeast activity 

extracellularly. Although none of the strains were active against the yeasts in primary 

screening, but four and five strains in secondary screening inhibited the growth of C. 

albicans and C. parasilopsis, respectively. This was contrary to the results observed by 

Shomura et al. (1979), which reported that bioactive compound(s) was only produced 

on agar. Unlike the observation in the present study, anti-yeast activity against C. 

albicans and C. parasilopsis in primary screening was demonstrated by Kavithambigai 

(2006). Frequency of activity against C. albicans among the marine actinomycetes 

varied between 23-42% (Bredholt et al., 2008). All strains active against C. 

parasilopsis were also active against C. albicans, but not vice versa. This result was in 

good agreement with findings from other antibiotic fermentation (Tan, 2007). 

Therefore, the bioactive metabolite(s) was assumed to be more selective against C. 
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albicans. The anti-yeast activity might be stimulated by intracellular bioactive 

metabolite(s), which were bound inside the membrane of the strains and released 

during submerged cultivation (Kavithambigai, 2006).Candida parasilopsis was more 

susceptible than C. albicans. The Streptomyces spp. in this study posed poor 

antagonism against the yeasts. Opportunistic infections have increased gradually, with 

Candida spp. as the major fungal pathogens (Tanaka, 1992).  

 

 In accordance to the findings by Kavithambigai (2006), antibacterial activity 

was prominent in secondary screening. In this study, all the strains had antibacterial 

activity. The antibacterial activity in secondary screening was higher than the findings 

by Tan et al. (2004), Peela et al. (2005), and Tan (2007), which showed 51.0%, 44.0%, 

and 75.8% active strains, respectively. The highest antibacterial activity on Gram-

positive bacteria tested; B. subtilis, E. faecalis, and S. aureus was displayed by strain 

T53, where it produced inhibition zone of 13.7 ± 0.6 mm, 16.0 ± 0.7 mm, and 14.0 ± 

0.0 mm, respectively. Meanwhile, the highest antibacterial activity on Gram-negative 

bacteria tested; P. aeruginosa and P. shigelloides was displayed by strain T53 (13.0 ± 

0.0 mm inhibition zone) and strain T15 (16.3 ± 0.4 mm inhibition zone), respectively.  

 

  The antibacterial pattern exhibited by the strains in the present investigation, 

where the antagonism against Gram-positive bacteria was greater than Gram-negative 

bacteria was similar to the ones reported by Kavithambigai (2006) and Tan et al. 

(2004). According to Pandey et al. (2002), the reason for different sensitivity between 

Gram-positive bacteria and Gram-negative bacteria could be ascribed to the 

morphological differences between these microorganisms; Gram-negative bacteria 

having an outer polysaccharide membrane carrying the structural lipopolysaccharide 

components. This makes the cell wall impermeable to lipophilic solutes. The Gram-
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positive bacteria were more susceptible having only an outer peptidoglycan layer, 

which was not an effective permeability barrier. Three strains in secondary screening 

were found to inhibit all the Gram-positive and Gram-negative bacteria tested. These 

strains could possibly produce the same bioactive metabolite(s) inhibitory towards the 

Gram-positive and Gram-negative bacteria tested. Hobbs et al. (1992) reported that 

Gram-positive and Gram-negative bacteria were susceptible to methylenomycin, which 

was produced by S. violaceus and S. coelicolor. 

 

  According to Ndonde and Semu (2000), the sensitivity of the pathogens tested 

to the bioactive metabolite(s) produced by the Streptomyces spp. might imply that the 

pathogens tested might have not been exposed to similar bioactive metabolite(s) 

previously. As a result, they were still susceptible to such metabolite(s). Greater 

resistance of the pathogens tested might be due to previous exposure to antibiotics 

routinely used in disease control which might be similar to those produced by the 

present Streptomyces spp. In addition, the sensitivity of the antimicrobial substances ex-

situ towards light and temperature, natural instability after prolonged storage, or low 

amount of the bioactive substances present in the crude extracts were the possible 

explanations for the low antimicrobial potential (Tan et al., 2004). 

 

4.3 Optimisation of Culture Conditions for Bioactive Metabolite(s) Production by 

 Streptomyces Strain T15 against Plesiomonas shigelloides 

 

Table 4.8 gives the pH profiles during growth of strain T15 in ISP2 medium at 

120 rpm and 28ºC ± 2ºC, pH analysis in twelve days showed that it had changed from 

6.87 ± 0.14 (day 3) to 7.64 ± 0.62 (day 6) to 6.10 ± 1.70 (day 9) and to 6.20 ± 0.01 (day 

12). In ISP2 medium under agitation condition, highest yield of bioactive metabolite(s) 
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was generated when pH level was at its lowest (6.10 ± 1.70). During cultivation in ISP4 

medium under agitation condition, pH levels in twelve days had changed from 6.67 ± 

0.09 (day 3) to 8.25 ± 0.12 (day 6) to 7.01 ± 0.71 (day 9) and to 7.16 ± 0.40 (day 12). 

However, there was no production of bioactive metabolite(s) in ISP4 medium under 

agitation condition. During cultivation in SA medium under agitation condition, pH 

changed from 5.87 ± 0.89 (day 3) to 6.69 ± 0.08 (day 6) to 6.80 ± 0.07 (day 9) and to 

7.34 ± 0.06 (day 12). Highest yield of bioactive metabolite(s) was generated when pH 

level was 6.80 ± 0.07 in SA medium under agitation condition.  

 

During cultivation in ISP2 medium under static condition, pH levels were 

recorded as 6.76 ± 0.00 (day 3), 6.63 ± 0.12 (day 6), 6.96 ± 0.03 (day 9), and 6.40 ± 

0.30 (day 12) (Table 4.8). There was no bioactive metabolite(s) produced in ISP2 

medium under static condition. During cultivation in ISP4 medium under static 

condition, pH levels were recorded as 7.18 ± 0.40 (day 3), 7.10 ± 0.49 (day 6), 7.07 ± 

0.12 (day 9), and 6.71 ± 0.63 (day 12). In ISP4 medium, highest yield of bioactive 

metabolite(s) was generated when pH level was 7.07 ± 0.12. During cultivation in SA 

medium under static condition, changes of pH levels were from 7.10 ± 0.52 (day 3) to 

7.60 ± 0.51 (day 6) to 7.46 ± 0.16 (day 9) and to 7.47 ± 0.54 (day 12). The same case 

with cultivation in ISP2 medium under static condition, there was also no production of 

bioactive metabolite(s) in SA medium under static condition. 
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Table 4.8 pH profiles during growth of 3, 6, 9, and 12 day-old Streptomyces strain T15 

in ISP2, ISP4, and SA media under agitation and static submerged conditions  

 

pH level 

Agitation Static Day 

ISP2 ISP4 SA ISP2 ISP4 SA 

3 
ap 

6.87 ± 0.14 

ap 

6.67 ± 0.09 

ap 

5.87 ± 0.89 

apq 

6.76 ±  0.00 

ap 

7.18 ± 0.40 

ap 

7.10 ± 0.52 

6 
ap 

7.64 ± 0.62 

aq 

8.25 ± 0.12 

bpq 

6.69 ± 0.08 

apr 

6.63 ±  0.12 

abp 

7.10 ± 0.49 

bp 

7.60 ± 0.51 

9 
ap 

6.10 ± 1.70 

ap 

7.01 ± 0.71 

aq 

6.80 ± 0.07 

aq 

6.96 ±  0.03 

ap 

7.07 ± 0.12 

bp 

7.46 ± 0.16 

12 
ap 

6.20 ± 0.01 

bp 

7.16 ± 0.40 

bq 

7.34 ± 0.06 

ar 

6.40 ±  0.30 

abp 

6.71 ± 0.63 

bp 

7.47 ± 0.54 

* Mean of three readings with standard deviation. For the same growth period with different 
 growth media, means with different letters (a-b) in the same row are significantly different 
 (p< 0.05). For the same growth media with different growth period, means with different 
 letters (p-r) in the same column are significantly different (p< 0.05). Streptomyces strain T15 
 was cultivated in ISP2, ISP4, and SA media under agitation and static submerged conditions. 
 The cultures were incubated at 28ºC ± 2ºC for 3-12 days for static condition; meanwhile, 
 28ºC ± 2ºC at 120 rpm for 3-12 days for agitation condition 
 

 

Tables 3 and 4 in Appendix B are referred. Statistically, pH of 3 and 9-day old 

cultures of strain T15 in terms of cultivation in ISP2, ISP4, and SA media under 

agitation condition was not significantly different (p>0.05). Under agitation condition, 

pH of 6-day old culture cultivated in SA medium was significantly different (p<0.05) 

compared to that of cultures cultivated in ISP2 and ISP4 media. The lowest pH (6.69; 

acidic) observed in 6-day old culture was obtained in SA medium. Under agitation 

condition, pH of 12-day old culture cultivated in ISP2 medium was significantly 

different (p<0.05) compared to that of cultures cultivated in ISP4 and SA media. The 
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lowest pH (6.20; acidic) observed in 12-day old culture was obtained in ISP2 medium. 

Tables 5 and 6 in Appendix B are referred. Statistically, pH of 3, 6, and 12-day old 

cultures in terms of cultivation in ISP2, ISP4, and SA media under static condition was 

not significantly different (p>0.05). Under static condition, pH of 9-day old culture 

cultivated in SA medium was significantly different (p<0.05) compared to that of 

cultures cultivated in ISP2 and ISP4 media. The highest pH (7.46; alkaline) observed in 

9-day old culture was obtained in SA medium. 

  

Tables 7 and 8 in Appendix B are referred. Statistically, pH of cultures of strain 

T15 cultivated in ISP2 medium under agitation condition in terms of fermentation 

period of 3, 6, 9, and 12 days was not significantly different (p>0.05). During 

cultivation in ISP4 medium under agitation condition, pH of 6-day old culture was 

significantly different (p<0.05) compared to that of 3, 9, and 12-day old cultures. The 

highest pH (8.25; alkaline) obtained in ISP4 medium was observed from 6-day old 

culture. During cultivation in SA medium under agitation condition, pH of 3-day old 

culture was significantly different (p<0.05) compared to that of 9 and 12-day old 

cultures. The lowest pH (5.87 ± 0.89; acidic) obtained in SA medium was observed 

from 3-day old culture. Tables 9 and 10 in Appendix B are referred. Statistically, pH of 

cultures cultivated in ISP2 medium under static condition in terms of fermentation 

period of 3, 6, 9, and 12 days was significantly different (p<0.05). There was a 

significant difference in the pH of 3-day old and 12-day old cultures, 6-day old and 9-

day old cultures, and 9-day old and 12-day old cultures. The highest pH (6.96 ± 0.03; 

almost neutral) obtained in ISP2 medium was observed from 9-day old culture. 

However, pH of cultures cultivated in ISP4 and SA media under static condition in 

terms of fermentation period of 3, 6, 9, and 12 days was not significantly different 

(p>0.05). 
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Weights of crude extracts that possessed bioactive metabolite(s) inhibitory to P. 

shigelloides are discussed based on the tabulated data in Table 4.9. During cultivation 

in ISP2 medium under agitation condition, weight analysis in twelve days showed that 

it had changed from 0.16 ± 0.13 g (day 3) to 0.14 ± 0.03 g (day 6) to 0.08 ± 0.02 g (day 

9) and to 0.33 ± 0.07 g (day 12). In ISP2 medium, 0.08 ± 0.02 g (day 9) crude extract 

had generated the strongest antagonistic activity against P. shigelloides. During 

cultivation in ISP4 medium under agitation condition, weights of crude extracts were 

recorded as 0.05 ± 0.02 g (day 3), 0.07 ± 0.04 g (day 6), 0.17 ± 0.08 g (day 9), and 0.22 

± 0.06 g (day 12). However, there was no production of bioactive metabolite(s) in ISP4 

medium under agitation condition. During cultivation in SA medium under agitation 

condition, weights of crude extracts were recorded as 0.14 ± 0.06 g (day 3), 0.23 ± 0.12 

g (day 6), 0.25 ± 0.02 g (day 9), and 0.11 ± 0.07 g (day 12). In SA medium, the 

strongest bioactivity against P. shigelloides was produced by bioactive metabolite(s) 

contained in crude extract weighed 0.25 ± 0.02 g (day 9).  

 

During cultivation in ISP2 medium under static condition, weights of crude 

extracts were recorded as 0.26 ± 0.02 g (day 3), 0.22 ± 0.01 g (day 6), 0.25 ± 0.03 g 

(day 9), and 0.17 ± 0.06 g (day 12) (Table 4.9). There was no production of bioactive 

metabolite(s) in ISP2 medium under static condition. During cultivation in ISP4 

medium under static condition, weights of crude extracts were recorded as 0.09 ± 0.07 

g (day 3), 0.07 ± 0.01 g (day 6), 0.14 ± 0.12 g (day 9), and 0.10 ± 0.03 g (day 12). In 

ISP4 medium, the bioactive metabolite(s) with highest antagonistic activity against P. 

shigelloides was produced in crude extract weighed 0.14 ± 0.12 g (day 9). During 

cultivation in SA medium under static condition, weights of crude extracts were 

recorded as 0.12 ± 0.11 g (day 3), 0.24 ± 0.09 g (day 6), 0.14 ± 0.07 g (day 9), and 0.38 
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± 0.17 g (day 12). As in ISP2 medium, there was also no production of bioactive 

metabolite(s) in SA medium under static condition.  

 

Table 4.9 Crude extracts weight (g) profiles during growth of 3, 6, 9, and 12 day-old 

Streptomyces strain T15 in ISP2, ISP4, and SA media under agitation and static 

submerged conditions 

 

Crude extracts weight (g) 

Agitation Static Day 

ISP2 ISP4 SA ISP2 ISP4 SA 

3 
ap 

0.16 ± 0.13 

ap 

0.05 ± 0.02 

ap 

0.14 ± 0.06 

ap 

0.26 ± 0.02 

bp 

0.09 ± 0.07 

abp 

0.12 ± 0.11 

6 
abp 

0.14 ± 0.03 

apq 

0.07 ± 0.04 

bp 

0.23 ± 0.12 

apq 

0.22 ± 0.01 

bp 

0.07 ± 0.01 

apq 

0.24 ± 0.09 

9 
ap 

0.08 ± 0.02 

abqr 

0.17 ± 0.08 

bp 

0.25 ± 0.02 

ap 

0.25 ± 0.03 

ap 

0.13 ± 0.12 

ap 

0.14 ± 0.07 

12 
aq 

0.33 ± 0.07 

abr 

0.22 ± 0.06 

bp 

0.11 ± 0.07 

abq 

0.17 ± 0.06 

ap 

0.10 ± 0.03 

bq 

0.38 ± 0.17 

* Mean of three readings with standard deviation. For the same growth period with different 
 growth media, means with different letters (a-b) in the same row are significantly different 
 (p< 0.05). For the same growth media with different growth period, means with different 
 letters (p-r) in the same column are significantly different (p< 0.05). Streptomyces strain T15 
 was cultivated in ISP2, ISP4, and SA media under agitation and static submerged conditions. 
 The cultures were incubated at 28ºC ± 2ºC for 3-12 days for static condition; meanwhile, 
 28ºC ± 2ºC at 120 rpm for 3-12 days for agitation condition 
 

 

Tables 11 and 12 in Appendix B are referred. Statistically, weight of crude 

extracts of 3 and 6-day old cultures of strain T15 in terms of cultivation in ISP2, ISP4, 

and SA media under agitation condition was not significantly different (p>0.05). Under 

agitation condition, weight of crude extracts of 9-day old cultures cultivated in ISP2 

and SA media was significantly different (p<0.05). Although the crude extract 
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production in ISP2 medium under agitation condition in nine days period was low (0.08 

± 0.02 g); the most potent bioactive metabolite(s) inhibitory to P. shigelloides was 

produced in it compared to other crude extracts from different growth conditions, 

fermentation media, and fermentation period. Under agitation condition, weight of 

crude extracts of 12-day old cultures cultivated in ISP2 and SA media was significantly 

different (p<0.05). The lowest weight of crude extracts (0.11 ± 0.07 g) observed in 12-

day old culture was obtained in SA medium. Tables 13 and 14 in Appendix B are 

referred. Statistically, weight of crude extracts of 3 and 9-day old cultures in terms of 

cultivation in ISP2, ISP4, and SA media under static condition was not significantly 

different (p>0.05). Under static condition, weight of crude extracts of 6-day old culture 

cultivated in ISP4 medium was significantly different (p<0.05) compared to that of 

cultures cultivated in ISP2 and SA media. The lowest weight of crude extracts (0.07 ± 

0.01 g) observed in 6-day old culture was obtained in ISP4 medium. Under static 

condition, weight of crude extracts of 12-day old cultures cultivated in ISP4 and SA 

media was significantly different (p<0.05). The lowest weight of crude extracts (0.10 ± 

0.03 g) observed in 12-day old culture was obtained in ISP4 medium. 

 

Tables 15 and 16 in Appendix B are referred. Statistically, weight of crude 

extracts of 12-day old strain T15 cultivated in ISP2 medium under agitation condition 

was significantly different (p<0.05) compared to that of 3, 6, and 9-day old cultures. 

The highest weight of crude extracts (0.33 ± 0.07 g) obtained in ISP2 medium was 

observed from 12-day old culture. During cultivation in ISP4 medium under agitation 

condition, there was a significant difference (p<0.05) in weight of crude extracts of 3 

and 9-day old cultures,  3 and 12-day old cultures, and 6 and 12-day old cultures. The 

highest weight of crude extracts (0.22 ± 0.06 g) obtained in ISP4 medium was observed 

from 12-day old culture. However, weight of crude extracts of cultures cultivated in SA 
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medium under agitation condition in terms of fermentation period of 3, 6, 9, and 12 

days was not significantly different (p>0.05). Table 17 in Appendix B is referred. 

Statistically, weight of crude extracts of cultures cultivated in ISP2, ISP4, and SA 

media under static condition in terms of fermentation period of 3, 6, 9, and 12 days was 

not significantly different (p>0.05).  

 

As shown in Table 4.10 and Plate 4.5, there was no bioactivity against P. 

shigelloides by strain T15 grown in ISP2 and SA media under static growth condition, 

and in ISP4 medium under agitation growth condition. In agitation condition, however, 

antagonistic activity was detected from crude extracts produced in ISP2 and SA media. 

The largest inhibition zone (11.7 ± 0.6 mm) was produced by bioactive metabolite(s) in 

crude extract grown in ISP2 medium for nine days, followed by bioactive metabolite(s) 

in crude extract grown in SA medium for nine days (11.3 ± 1.2 mm), and bioactive 

metabolite(s) in crude extract grown in ISP2 medium for three days (11.0 ± 0.0 mm). 

Bioactive metabolite(s) in crude extracts from ISP2 medium produced inhibition zones 

in the range of 10.0 ± 0.0 mm (day 12) to 11.7 ± 0.6 mm (day 9). There was no 

inhibitory activity displayed by bioactive metabolite(s) in crude extract produced in day 

3. The inhibitory potential of bioactive metabolite(s) in crude extracts produced in ISP2 

medium was expressed in sequence of decreasing values as 11.7 ± 0.6 mm (day 9), 11.0 

± 0.0 mm (day 6), and 10.0 ± 0.0 mm (day 12). In contrast to ISP2 medium, there was 

bioactive metabolite(s) production in SA medium from day 3. Bioactive metabolite(s) 

in crude extracts from SA medium produced inhibition zones in the range of 9.3 ± 1.2 

mm (day 6) to 11.3 ± 1.2 mm (day 9). The inhibitory potential of crude extracts 

produced in SA medium was expressed in sequence of decreasing values as 11.3 ± 1.2 

mm (day 9), 10.3 ± 0.6 mm (day 12), 10.0 ± 0.0 mm (day 3), and 9.3 ± 1.2 mm (day 6). 

In static condition, antagonistic activity was only observed from bioactive metabolite(s) 
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in crude extracts produced in ISP4 medium. Bioactive metabolite(s) in crude extracts 

from ISP4 medium produced inhibition zones in the range of 8.0 ± 0.0 mm (day 12) to 

9.7 ± 0.6 mm (day 9). The inhibitory potential of bioactive metabolite(s) in crude 

extracts produced in ISP4 medium was expressed in sequence of decreasing values as 

9.7 ± 0.6 mm (day 9), 9.0 ± 0.0 mm (day 6), and 8.0 ± 0.0 mm (day 12). In ISP4 

medium, there was no inhibitory activity displayed by bioactive metabolite(s) in crude 

extract produced in day 3. Plate 4.6 shows the control plates. 

 

Table 4.10 Inhibition spectrum (mm) profiles during growth of 3, 6, 9, and 12-day old 

Streptomyces strain T15 (cultivated in ISP2, ISP4, and SA media under agitation and 

static submerged conditions) against P. shigelloides assessed via disc diffusion method 

 

* Mean of three readings with standard deviation. For the same growth period with different 
 growth media, means with different letters (a-b) in the same row are significantly different 
 (p< 0.05). For the same growth media with different growth period, means with different 
 letters (p-s) in the same column are significantly different (p< 0.05). Streptomyces strain T15 
 was cultivated in ISP2, ISP4, and SA media under agitation and static submerged conditions. 
 The cultures were incubated at 28ºC ± 2ºC for 3-12 days for static condition; meanwhile, 
 28ºC ± 2ºC on a rotary shaker at 120 rpm for 3-12 days for agitation condition. Extracts were 
 prepared by extraction with methanol: dichloromethane (1:1). Plesiomonas shigelloides was 
 lawned on NA plates for the disc diffusion assay, and incubated at 37ºC ± 2ºC for 48 h. 
 Growth inhibition was defined as mm 
 
 
 
 

Diameter of inhibition zone (mm) 

Agitation Static Day 

ISP2 SA ISP4 

3 - ap 10.0 ± 0.0 bpq - 

6 11.0 ± 0.0 aq 9.3 ± 1.2 bp 9.0 ± 0.0 

9 11.7 ± 0.6 ar 11.3 ± 1.2 aq 9.7 ± 0.6 

12 10.0 ± 0.0 as 10.3 ± 0.6 apq 8.0 ± 0.0 
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Plate 4.5 Antagonistic activity of crude extracts of 3-day old (D3), 6-day old (D6), 9-

day old (D9), and 12-day old (D12) Streptomyces strain T15 against P. shigelloides 

(Streptomyces strain T15 was cultivated in ISP2 (T15-ISP2), ISP4 (T15-ISP4), and SA 

(T15-SA) liquid media in agitation (SH) and static (ST) growth conditions. The 

cultures were incubated at 28ºC ± 2ºC for 3-12 days for static condition; meanwhile, 

28ºC ± 2ºC on a rotary shaker at 120 rpm for 3-12 days for agitation condition) 
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Plate 4.6 Inhibition zones on control plates of NA lawned with P. shigelloides assessed 

via disc diffusion method. Standard antibiotic discs of 10 µg streptomycin (S), 5 µg 

novobiocin (NB), and 30 µg chloramphenicol (C) served as positive control; and 

DMSO served as negative control 
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Tables 18 and 19 in Appendix B are referred. Under agitation condition, 

bioactive metabolite(s) production in day 3 was not comparable because bioactive 

metabolite(s) was only produced in SA medium. Therefore, SA medium was 

considered as the best medium for the production of bioactive metabolite(s) in day 3. 

Statistically, in day 6, bioactive metabolite(s) produced through agitation condition in 

ISP2 and SA media (ISP4 medium was not taken into consideration due to the absence 

of antagonistic activity from the crude extracts produced in it) was significantly 

different (p<0.05). Between these media, the highest yield of bioactive metabolite(s) 

was generated in ISP2 medium. Thus, ISP2 was assumed as the best medium for 

supporting the production of bioactive metabolite(s) inhibitory towards P. shigelloides 

in day 6. The bioactive metabolite(s) of crude extract produced in ISP2 medium was 

significantly higher than that of SA medium (p<0.05). The crude extracts produced in 

ISP2 and SA media in day 9 and day 12 had no significant difference in production of 

bioactive metabolite(s) (p>0.05). 

 

 Tables 20 and 21 in Appendix B are referred. In cultivation in ISP2 medium 

under agitation condition, bioactive metabolite(s) production in terms of fermentation 

period of 3, 6, 9, and 12 days was significantly different (p<0.05). Fermentation period 

of 9 days was observed as the optimum period for maximum yield of bioactive 

metabolite(s), followed by 6-day period, and 12-day period. The bioactive metabolite(s) 

production varied with different antagonistic levels (p<0.05). Under agitation condition, 

bioactive metabolite(s) production in SA medium in terms of fermentation period of 3, 

6, 9, and 12 days was not significantly different (p>0.05). 

 

Fermentation conditions are optimized to express larger quantities of compound 

when desirable activity is discovered (Gullo et al., 2006). According to Ndonde and 
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Semu (2000), probably all streptomycetes possessed some antimicrobial properties if 

suitable conditions were provided during culturing of these organisms for purposes of 

evaluating antibiotic production. Antibiotic productivity in the genus Streptomyces is 

profoundly influenced by factors such as the composition of the nutrient medium, 

temperature, and duration of incubation (Srinivasan et al., 1991; Shikura et al., 2002; 

Yu et al., 2008). Nutrition is important for the onset and intensity of secondary 

metabolism, not only because limiting the supply of an essential nutrient is an effective 

means of restricting growth but also because the choice of limiting nutrient can have 

specific metabolic and regulatory effects. There is usually a relationship between the 

media composition and the biosynthesis of antibiotics, and the role of the medium is 

usually considered in terms of the nutrients and precursors it provides to the culture 

(Elibol, 2004). Growth and antibiotic production is dependent on the medium 

composition; carbon and nitrogen sources are the most important impact factors (Yu et 

al., 2008), and on the fermentation conditions (Theobald et al., 2000). It is desirable 

that the fermentation medium allows the formation of a large biomass in the shortest 

possible time, and sustains the productive phase for as long as possible (Lancini and 

Lorenzetti, 1993).  

 

To select the best medium for maximum bioactive metabolite(s) production, 

different carbon and nitrogen sources in different combinations were used. 

Streptomyces strain T15 was cultivated in three different fermentation media; ISP2, 

ISP4, and SA, under agitation and static submerged conditions. ISP2, ISP4, and SA 

media are also referred to as yeast extract-malt extract agar, inorganic salts-starch agar, 

and sporulation agar, respectively. Agar, the solidifying agent was omitted prior to the 

preparation of the liquid fermentation media. The concentrations of carbon and nitrogen 

sources added to ISP2, ISP4, and SA media were varied. ISP2 medium in which the 
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highest yield of bioactive metabolite(s) by strain T15 was obtained had the following 

composition: 4.0 g yeast extract, 10.0 g malt extract, 4.0 g glucose, 6.0 g sodium 

chloride, 20.0 g agar, and 1.0 L distilled water. In ISP2 medium, glucose was the 

carbon source, while yeast extract and malt extract were sources of nitrogen, vitamins, 

and growth factors. Jiangella gansuensis, an actinomycete that is placed in the family 

Nocardioidaceae, grows very well on ISP2 medium (Song et al., 2005). 

Balagurunathan and Subramanian (1994) demonstrated that glucose and soybean meal 

were the best sources for the maximum production of antibiotic from S. griseobrunneus 

(P-33). ISP4 medium is composed of many inorganic salts and soluble starch. 

Meanwhile, SA medium contained soluble starch and glucose as the carbon sources, 

and yeast extract and amino acids as sources of nitrogen, B vitamins, and growth 

factors.  

 

Sujatha et al. (2005) found that carbohydrates, ammonium nitrate, phosphate, 

and magnesium positively affected the antibiotic production by S. psammoticus BT-

408. Iron, zinc, and magnesium ions are the most critical in secondary metabolism 

(Adinarayana et al., 2003). According to Vasavada et al. (2006), starch agar was the 

preferred medium for antibiotic production. The results in this study were in 

accordance to findings by Sujatha et al. (2005), where strain T15 was able to grow in 

all the tested carbon sources. The findings by the authors showed that antibiotic 

production was higher in glucose-grown cells. Glucose is generally used in the 

fermentation as a preferred carbon sources for antibiotic production (Srinivasan et al., 

1991). In this study, bioactive metabolite(s) production was higher in ISP2 and SA 

media in which glucose was the carbon source. However, soluble starch was the carbon 

source in ISP4 medium. Glucose was not supplemented in ISP4 medium, therefore 
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explained the low bioactive metabolite(s) production compared to that of SA and ISP2 

media that were supplemented with 15.0 g and 4.0 g glucose, respectively.  

 

However, in the presence of excess carbon sources especially glucose, many 

bioactive metabolite(s) are not produced. Elibol (2004) demonstrated that actinorhodin 

production was highly sensitive to the concentration of glucose. Marwick et al. (1999) 

reported that the enzyme that catalyzed the formation of the phenoxazinone ring of 

actinomycin was inhibited by glucose. Cruz et al. (1999) had explained the typical 

diauxic effect of the consumption of two carbohydrates in the process of cephalosporin 

C production. In the first phase, an easily metabolisable carbon source like glucose was 

quickly consumed and most of the growth took place. Meanwhile, a slowly 

metabolisable carbon source like sucrose was assimilated and the antibiotic synthesis 

commenced in the second phase. Two carbohydrates; soluble starch and glucose were 

the carbon sources in SA medium. Based on reviews by Cruz et al. (1999) and Ismet et 

al. (2004), presumably glucose acted as the easily metabolised carbon source, while 

soluble starch acted as the slowly metabolised carbon source. Rapid catabolism of 

glucose and other carbohydrates has been shown to cause a decrease in the rate of 

antibiotic biosynthesis (Large et al., 1998). 

 

In this study, yeast extract and malt extract contained in ISP2 medium were 

shown to be excellent sources of nitrogen for the production of bioactive metabolite(s) 

antagonistic towards P. shigelloides. As reported by Voelker and Altaba (2001), there 

was experimental evidence for repression of antibiotic production exerted by some 

nitrogen sources especially ammonium. Thus, explained the low production of 

bioactive metabolite(s) by strain T15 cultivated in ammonium-containing ISP4 

medium. However, this was contrary to the findings by Marwick et al. (1999) who 
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reported that ammonium stimulated an antibiotic produced by S. griseofuscus. Yeast 

extract was the sole nitrogen source in SA medium. The consumption of yeast extract 

in SA medium must be driven primarily by the need of nitrogen because it represented 

the sole source of nitrogen for the cell until its exhaustion in the medium. Thus, the 

nitrogen source in SA medium did not sustained until the end of productive phase 

compared to that of ISP2 medium. Marwick et al. (1999) mentioned that high nitrogen 

levels repressed iodophase production of antibiotics. In addition, the use of unsuitable 

amino acids as a nitrogen source could inhibit good synthesis of secondary metabolites. 

Conversely, specific amino acids could also enhance antibiotic production. 

 

  Phosphate is a major factor in the synthesis of a wide range of antibiotics in 

streptomycetes. The production of actinorhodin by S. coelicolor grown on minimal 

medium containing an inorganic nitrogen source was subject to phosphate regulation 

(Hobbs et al., 1992). However, an excessive amount of inorganic phosphate suppresses 

the production of antibiotics such as tetracycline, actinomycin, and candicidin (Sujatha 

et al., 2005). Both ISP4 and SA media were supplemented with 1.0 g and 0.5 

dipotassium phosphate (K2HPO4), and 2.0 g and 1.0 g CaCO3, respectively. Buffering 

agent was not supplemented in ISP2 medium. According to Tanaka (1992), buffering 

agents to avoid overly acidic conditions such as phosphate salts and calcium carbonate 

occasionally had negative effects on antibiotic production. Hence, the low bioactive 

metabolite(s) production of strain T15 grown in ISP4 medium might have resulted from 

the inhibitory effects of buffering agents; phosphate salts and CaCO3. Many antibiotic-

producing organisms grow adequately in the presence of 0.3 to 500 mM of inorganic 

phosphate but the ranges of phosphate for good antibiotic production are generally 

quite narrow (Srinivasan et al., 1991). According to Marwick et al. (1999), the level of 

adenosine triphosphate (ATP) decreased significantly before secondary metabolism 
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began, being attributed to the rise in phosphatase activity after the cessation of growth. 

Inorganic phosphate repressed the synthesis of phosphatase, allowing the ATP level to 

remain high for repressing secondary metabolism. The stimulation of growth phase 

might give rise to feedback inhibition of secondary metabolism if phosphate was added. 

Moreover, phosphate limitation stimulated phystigimine production by S.  griseofuscus. 

  

 In this study, the greatest yield of antibiotic was obtained in antibiotic 

submerged condition because agitation was an ideal growth condition to provide 

uniform conditions for every cell, as emphasized by Penn (1991). Efficient mixing of 

the liquid, solid, and gaseous phases of which a fermentation system is composed must 

be provided. The solid nutrients and the mycelium must be kept in a homogeneous 

suspension, and the temperature and dissolved nutrient concentration must be equally 

distributed throughout the fermenter (Lancini and Lorenzetti, 1993). In this study, 

cotton plugs were used to seal the flasks in such a way as to permit gaseous exchange, 

but prevent the entry of contaminating microorganisms. The flasks were indented to 

increase the turbulence that enabled dispersion of air in the liquid phase and thus the 

oxygen transfer. According to Smith (1956), the cells of filamentous organisms often 

were broken by striking against the baffle in the flask. Although the baffle increased the 

effective aeration rate to the medium within the flask, it might cause extensive 

disruption of filamentous cells. The aeration efficiency was increased by decreasing the 

volume of medium in the flask to circumvent injury to the cells from striking the baffle.   

 

During the agitation condition experiments, the agitation speed was kept 

constant at 120 rpm. Agitation had promoted the bioactive metabolite(s) production of 

strain T15 cultivated in ISP2 and SA media. Contrarily, agitation had suppressed the 

bioactive metabolite(s) production of strain T15 cultivated in ISP4 medium. According 
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to Augustine et al. (2005b), agitation affected aeration and mixing of the nutrients in 

the fermentation medium. The yield of cephalosporin C is known to increase with 

increased agitation. In general, vigorous agitation is beneficial for mycelial growth in a 

submerged culture, as it increases the uptake rate of oxygen and nutrients (Kim et al., 

2006). The oxygenation of cultures is critical for optimal growth in aerobic 

fermentations. The increase of partial pressure oxygen was found to induce new 

secondary metabolites by S. parvulus. The oxygen transfer from sparged air to the 

bacterial cell is partially dependent on the media composition in which viscous media 

being harder to oxygenate (Marwick et al., 1999).  

 

Interestingly, bioactive metabolite(s) were produced by strain T15 cultivated in 

ISP4 medium only in static condition. In static condition, the highest yield of bioactive 

metabolite(s) was generated in ISP4 medium (day 9) in which the growth rate was at its 

maximum, indicated by the high production of crude extract. According to Tanaka 

(1992), dissolved oxygen tension decreased to its lowest level when the growth rate 

was at its maximum. Therefore, bioactive metabolite(s) in ISP4 medium was produced 

when oxygen level decreased. This result was in good agreement with the findings by 

Keulen et al. (2003) and Keulen et al. (2004), where shaken liquid cultures of S. 

coelicolor did not differentiate, but differentiation occurred in standing (static) liquid 

minimal medium. Furthermore, liquid standing cultures rapidly became anoxic, 

implying the existence of metabolic pathways supporting anaerobic growth or enabling 

the organism to survive long periods of low oxygen conditions. Standing liquid cultures 

might resemble flooded soils; a condition S. coelicolor might escape from by forming 

floating sporulating colonies. Growing standing liquid cultures were expected to 

develop oxygen gradients. It was shown that 7-day old liquid cultures were anoxic at a 

depth of 0.7 and 2 mm, respectively. Yet, biomass still increased as measured by total 
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protein determinations, indicating an active metabolism. Streptomyces coelicolor did 

not form colonies at the air interface in anoxic nutrient-rich standing cultures. Thus, 

oxygen availability may not be the signal for their formation. However, the bioactive 

metabolite(s) biosynthesis was hindered in some organisms if the minimum level of 

oxygen reached zero, and bioactive metabolite(s) production would not start until the 

normal production phase was entered. This was obviously true in the case of strain T15 

grown in ISP2 and SA media in static (anoxic) condition. Carbon dioxide dissolved 

together with oxygen when air was used, and both of these gases affected bioactive 

metabolite(s) production. Tetracycline production by S. aureofaciens was susceptible to 

low oxygen tension, but was not to carbon dioxide. It was found that the antibacterial 

activity of fosfomycin is more potent under anaerobic condition than under aerobic 

condition (Oiwa, 1992). Theobald et al. (2000) demonstrated that an additional drop in 

aeration (beneath 0.5 vvm) caused a decrease in biomass production by S. antibioticus 

Tü 6040 due to oxygen limitation. 

 

In this study, the pH value of medium was adjusted to 7.0 at the beginning of 

cultivation. The pH level of the growth medium has a marked effect on secondary 

metabolites production, with synthesis falling rapidly either side of an optimal level 

(Marwick et al., 1999). In ISP2 medium, highest yield of bioactive metabolite(s) was 

generated when pH level was at its lowest (6.10 ± 1.70), which was in accordance with 

the results obtained by Basak and Majumdar (1973). According to the authors, there 

was a lowering of pH of the broth during the phase of antibiotic synthesis in the case of 

glucose as carbon source. Contrary to the findings by Balagurunathan and Subramanian 

(1994), pH levels were decreasing throughout the static condition fermentation in ISP4 

medium.  
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In a study by Balagurunathan and Subramanian (1994), the changes in the 

acidity of the fermentation medium had a significant effect on the yield of the end 

products, which was presumably connected with increase in ammonium and nitrogen 

due to the decomposition of soy proteins and autolysis of the mycelium. However, for 

fermentation in ISP2 medium in the present study, the changes of acidity were 

presumed to be connected with increase in ammonium and nitrogen caused by 

decomposition of yeast and malt and autolysis of the mycelium. Meanwhile, the 

decomposition of yeasts and mycelium autolysis might cause the acidity reduction in 

SA medium. Overall, pH variation was minimal in the present study. 

 

Basak and Majumdar (1973) highlighted that antibiotic formation was not solely 

dependent on cellular growth. This observation was in good agreement with the 

findings in this study where it could be used to explain the unpredictable relationship 

between the productions of crude extracts in ISP2 and SA media in agitation growth 

condition as measured in weight with the potency of antibacterial metabolite(s) 

contained in the crude extracts. The greatest inhibitory potential of nine days old strain 

T15 grown in ISP2 and SA media against P. shigelloides were measured as 11.5 ± 0.7 

mm and 11.0 ± 1.2 mm, respectively. It was apt to assume that the amount of inhibitory 

substance(s) produced by strain T15 grown in ISP2 medium and that of SA medium 

were not of much difference. However, this assumption was proven wrong. In terms of 

crude extract, nine days old strain T15 grown in SA medium produced about three 

times more crude extract than nine days old strain T15 grown in ISP2 medium. Because 

of the almost equal inhibitory potential that they both possessed, this finding suggested 

that the crude extracts of strain T15 grown in ISP2 medium contained inhibitory 

substance(s) that was about three times greater than the crude extracts of strain T15 

grown in SA medium.  
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The present results were contrary to the results observed by Basak and 

Majumdar (1973). Previous findings by the authors indicated that D-galactose proved 

to be an excellent carbon source for kanamycin production by S. kanamyceticus, 

although soluble starch, potato starch, and maltose allowed greater amounts of growth 

of the organism. It was possible that rapidly utilized carbon sources such as glucose, 

mannose, and arabinose supported abundant growth of the organism, but these sugars 

were poor carbon sources for kanamycin production. Galactose might be utilized less 

rapidly, and thus it was available during the phase of kanamycin production. However, 

ISP2 medium in which glucose was consumed rapidly supported good bioactive 

metabolite(s) production. ISP4 medium, where the amount of crude extract produced 

was the lowest compared to that of ISP2 and SA media had generated low bioactive 

metabolite(s) production. This observation was in good agreement with the concept that 

increasing amount of crude extract (biomass) gives higher bioactivity (Ismet et al., 

2004). It was concluded that strain T15 was a slow growing Streptomyces strain, and 

thus needed a long fermentation time for the bioactive metabolite(s) production 

compared to other producer Streptomyces spp. (Hobbs et al., 1992). Findings tally with 

study by Kavithambigai (2006) in which longer incubation was needed to enhance the 

productivity of bioactive metabolite(s). 

 

According to Lancini and Lorenzetti (1993), the secondary metabolites were 

produced in two phases: a vegetative phase, or trophophase in which there was a 

vigorous growth and a negligible antibiotic production; and a fermentative phase, or 

idiophase in which the culture was stationary and the antibiotic production was 

initiated. As described by Balagurunathan and Subramanian (1994), production of 

bioactive metabolites was activated in the late logarithmic to stationary stage of 

fermentation, after cell division and biomass accumulation had largely ceased. This 
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statement was corroborated by the findings in present study where the highest yield of 

bioactive metabolite(s) was produced in day 9, when strain T15 was grown in ISP2 

medium, and in which the biomass of crude extracts produced was at its lowest.  

 

The majority of antibiotics are the products of complex biosynthetic pathways 

that are activated in a growth phase dependent manner; upon entry into stationary 

phase, or following a reduction in growth rate in liquid-grown (Aigle et al., 2005), or 

has passed an optimum level (Srinivasan et al., 1991). During fermentation, the highest 

bioactive metabolite(s) production of strain T15 was noted on day 9 for all the 

fermentation media used in this study. In accordance to findings by Augustine et al. 

(2005b), the production of bioactive metabolite(s) in ISP2, SA, and ISP4 media took 

place during the late log phase of growth in the fermentation media indicating that the 

metabolite production was directly proportional to the growth rate. In this study, 

contaminations had occurred and hindered the initial stage of study, which was the sub-

culturing of actinomycete strains from stock cultures. Hence, the antimicrobial tests on 

fully-grown cultures could not be conducted in the same batch. The slightest 

differences in growth conditions could possibly affect the production of secondary 

metabolites.  
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5.0 FUTURE RECOMMENDATIONS AND CONCLUSIONS 

                          

 Further test to identify the bioactive metabolite(s) of promising strains in the 

primary and secondary screenings should be conducted in order to detect the presence 

of novel metabolites, if any. The promising strains, which exhibited strong growth 

inhibition against their respective clinical pathogens, are listed in Table 5.1 below.  

 

Table 5.1 Streptomyces spp. with promising antibacterial activities against their 

respective clinical pathogens 

 

Screening Strain  Pathogen  

T3 Enterococcus faecalis and Staphylococcus aureus 

T9 Staphylococcus aureus 
Primary 

 

T15 Enterococcus faecalis, Plesiomonas shigelloides, 
Bacillus subtilis, and Pseudomonas aeruginosa 

T53 Enterococcus faecalis  
Secondary 

 T15 and 
T16 Plesiomonas shigelloides 

  

 

Streptomyces spp. with weak and moderate bioactivities should be subjected to 

media optimisation in order to optimise the growth and to increase the production of 

bioactive metabolite(s). There is an obvious need to develop media, which utilize 

natural nutrients and growth factors derived directly from marine sources in pursue of 

optimum bioactive metabolite(s) production. Unconventional culture methods should 

be employed to enhance the growth of these actinomycetes, and extremely sensitive 

assays should be used to detect low concentrations of bioactive metabolite(s), 
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particularly on strains that posed weak or no inhibition at all. In near future, the present 

study should be conducted through immobilisation method, and the biological material 

to be examined should be expanded in which rare actinomycetes and ‘uncultivable’ 

marine actinomycetes could possibly be the source of novel metabolites. 

 

  From this investigation, the following conclusions were made based on the 

bioactivity of the selected marine Streptomyces spp. The actinomycetes tested were 

good antibacterial agent, but weak anti-yeast agent. Streptomyces strain T15 was 

selected for media optimisation to promote bioactive metabolite(s) production due to 

the findings that it was the best strain in inhibiting the growth of P. shigelloides in both 

primary and secondary screenings. It was found that agitation significantly affected the 

production of bioactive metabolite(s) from Streptomyces strain T15, thereby resulting 

in different levels of antagonistic activities. Batch fermentation in ISP2 medium at an 

incubation period of nine days at 28ºC ± 2ºC, pH 6.10 ± 1.70, and shaking at a speed of 

120 rpm was the most ideal for growth and bioactive metabolite(s) production of 

Streptomyces strain T15 at laboratory conditions. The findings in the present study 

showed that the selected marine-derived Streptomyces spp. had great potential to 

produce bioactive metabolites against multidrug-resistant test bacteria; B. subtilis, E. 

faecalis, S. aureus, P. aeruginosa, and P. shigelloides. The large spectrum of 

inhibitions displayed by the marine Streptomyces spp. provided evidence that marine 

ecosystem harbour species that can produce useful secondary metabolites for discovery 

of novel bioactive metabolites. Furthermore, the optimisation of liquid culture 

conditions had enhanced the yield of metabolites.  
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MEDIA USED 

International Streptomyces Project (ISP) Media (Shirling & Gottlieb, 1966): 

 

A1. Yeast Extract – Malt Extract Agar (ISP2) 

Yeast extract   4.0 g 

Malt extract 10.0 g 

D(+)-glucose 4.0 g 

Sodium chloride  6.0 g 

Agar    20.0 g 

Distilled water 1.0 L 

* pH adjusted to 7.3 with 1 M NaOH prior autoclaving at 121ºC at 15 psi for 20 min 

 

A2. Inorganic Salts – Starch Agar (ISP4) 

Soluble starch    10.0 g 

Potassium phosphate dibasic   1.0 g 

Magnesium sulphate  1.0 g 

Sodium chloride 4.0 g 

Ammonium sulphate  2.0 g 

Calcium carbonate 2.0 g 

Ferrous sulphate  1.0 mg 

Manganous chloride 1.0 mg 

Zinc sulphate    1.0 mg 

Agar  25.0 g 

Distilled water 1.0 L 

* pH adjusted to 7.2 with 1 M NaOH prior autoclaving at 121ºC at 15 psi for 20 min 
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General Laboratory Media:  

 

A3. Sporulation Agar (SA) 

Yeast extract   4.0 g 

Soluble starch   20.0 g 

D(+)-glucose 15.0 g 

Casein   5.0 g 

Instant ocean   17.0 g 

Calcium carbonate  1.0 g 

Potassium phosphate dibasic   0.5 g 

Magnesium sulphate   0.5 g 

Agar    17.0 g 

Distilled water 1.0 L 

* pH adjusted to 7.0 with 1 M NaOH prior autoclaving at 121ºC at 15 psi for 20 min 

 

A4. Sabouraud Dextrose Agar (SDA) 

Casein 10.0 g 

Dextrose 20.0 g 

Agar 15.0 g 

Distilled water 1.0 L 

* pH adjusted to 7.0 with 1 M NaOH prior autoclaving at 121ºC at 15 psi for 20 min 
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A5. Nutrient Agar (NA) 

Nutrient agar powder  23.0 g 

Bacteriological agar 5.0 g 

Distilled water     1.0 L 

* pH adjusted to 7.2 with 1 M NaOH prior autoclaving at 121ºC at 15 psi for 20 min 

 

A6. Glycerol Stock Solution (30%) (Wellington & Williams, 1978) 

Glycerol   30.0 ml 

Yeast extract    0.1 g 

D(+)-glucose   0.375 g 

Casein   0.125 g 

Distilled water 70.0 ml 

* pH adjusted to 7.0 with 1 M NaOH prior autoclaving at 121ºC at 15 psi for 20 min 
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Table 1 Inhibition spectrum (mm) of positive and negative controls against the test 

bacteria assessed via disc diffusion method 

 

Diameter of inhibition zone (mm)  

Positive control 
Negative 

control Test bacteria 

Novobiocin 

(5 µg/disc) 

Streptomycin 

(10 µg/disc) 
Methanol 

Bacillus subtilis 15.0 ± 0.0 14.0 ± 0.0 11.3 ± 0.6 

Enterococcus faecalis 15.0 ± 0.0 13.0 ± 0.0 10.0 ± 1.0 

Gram-

positive 

 
Staphylococcus aureus 13.0 ± 0.0 16.0 ± 0.0 10.3 ± 1.5 

Pseudomonas aeruginosa 16.0 ± 0.0 15.0 ± 0.0 12.3 ± 0.6 Gram-

negative 

 Plesiomonas shigelloides 18.0 ± 0.0 14.0 ± 0.0 9.0 ± 1.0 

* Mean of three readings with standard deviation, test bacteria were lawned on nutrient agar 
 (NA) plates, and incubated at 37ºC ± 2ºC for 48 h. Growth inhibition was defined as mm 
 

 

Table 2 Inhibition spectrum (mm) of positive and negative controls against the test 

yeasts assessed via disc diffusion method 

 

Diameter of inhibition zone (mm) 

Positive control Negative control 
Test yeast 

Nystatin  

(100 unit/disc) 
Methanol 

Candida albicans 27.0 ± 0.0 13.3 ± 0.6 

Candida parasilopsis 28.0 ± 0.0 11.7 ± 0.6 

* Mean of three readings with standard deviation, test yeasts were lawned on Sabouraud 
 dextrose agar (SDA) plates, and incubated at 37ºC ± 2ºC for 48 h. Growth inhibition was 
 defined as mm 
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Table 3 ANOVA: pH of cultures of Streptomyces strain T15 cultivated under agitation 

submerged condition (SH) 

(between fermentation period and media) 

 

Between fermentation period of 3 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 1.68802 2 0.844011 3.05 0.1216 ns 

Within groups 1.65773 6 0.276289   

Total 3.34576 8    

 

Between fermentation period of 6 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 3.72047 2 1.86023 13.77 0.0057 **   

Within groups 0.810333 6 0.135056   

Total 4.5308 8    

 

Between fermentation period of 9 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 1.37627 2 0.688133 0.61 0.5757 ns 

Within groups 6.81033 6    

Total 8.1866 8    
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Table 3, continued 

 

Between fermentation period of 12 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 2.25007 2 1.12503 21.15 0.0019 ** 

Within groups 0.319133 6 0.0531889   

Total 2.5692 8    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  

 
 

Table 4 Multiple range tests: pH of cultures of Streptomyces strain T15 cultivated under 

agitation submerged condition (SH)  

(between fermentation period and media) 

 

Contrast 

 (fermentation period of  

6 days and media) 

Difference +/- Limits 

ISP2-ISP4 -0.616667             0.734226           

ISP2-SA 0.946667              0.734226 *           

ISP4-SA 1.56333               0.734226 *           

 

Contrast 

 (fermentation period of 

12 days and media) 

Difference +/- Limits 

ISP2-ISP4 -0.963333             0.46077 * 

ISP2-SA -1.13667              0.46077 * 

ISP4-SA -0.173333             0.46077 

  * denotes a statistically significant difference 
 



 118 

Table 5 ANOVA: pH of cultures of Streptomyces strain T15 cultivated under static 

submerged condition (ST) 

(between fermentation period and media) 

 

Between fermentation period of 3 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.296867 2 0.148433 1.02 0.4157 ns 

Within groups 0.873333 6 0.145556   

Total 1.1702 8    

 

Between fermentation period of 6 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 1.41162 2 0.705811 4.07 0.0764 ns 

Within groups 1.04073 6 0.173456   

Total 2.45236 8    

 

Between fermentation period of 9 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.410556 2 0.205278 15.43 0.0043 ** 

Within groups 0.0798 6 0.0133   

Total 0.490356 8    
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Table 5, continued 

 

Between fermentation period of 12 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 1.83387 2 0.916933 3.55 0.0961 ns 

Within groups 1.54953 6 0.258256   

Total 3.3834 8    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)                              

 

Table 6 Multiple range tests: pH of cultures of Streptomyces strain T15 cultivated under 

static submerged condition (ST) 

(between fermentation period and media) 

 

Contrast 

 (fermentation period of  

9 days and media) 

Difference +/- Limits 

ISP2-ISP4 -0.116667             0.230409           

ISP2-SA -0.5                  0.230409 *           

ISP4-SA -0.383333             0.230409 *           

* denotes a statistically significant difference 
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Table 7 ANOVA: pH of cultures of Streptomyces strain T15 cultivated under agitation 

submerged condition (SH) 

 (between fermentation media and fermentation period) 

 

Between fermentation medium ISP2 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 4.56076       3 1.52025       1.85        0.2172 ns 

Within groups 6.59133       8 0.823917   

Total 11.1521      11    

 

Between fermentation medium ISP4 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 4.22967       3 1.40989       8.19        0.0080 ** 

Within groups 1.378       8 0.17225   

Total 5.60767      11    

 

Between fermentation medium SA and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 3.32369       3 1.1079        5.44        0.0247 ** 

Within groups 1.6282       8 0.203525   

Total 4.95189      11    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
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Table 8 Multiple range tests: pH of cultures of Streptomyces strain T15 cultivated under 

agitation submerged condition (SH)  

(between fermentation media and fermentation period) 

 

Contrast 

(fermentation medium 

ISP4 and fermentation 

period) 

Difference +/- Limits 

3-6 -1.58667              0.781439 *           

3-9 -0.343333 0.781439           

3-12 -0.496667             0.781439           

6-9 1.24333               0.781439 *           

6-12 1.09                  0.781439 *           

9-12 -0.153333               0.781439           

  

Contrast 

(fermentation medium SA 

and fermentation period) 

Difference +/- Limits 

3-6 -0.823333             0.849424           

3-9 -0.936667             0.849424 *           

3-12 -1.47                 0.849424 *            

6-9 -0.113333             0.849424           

6-12 -0.646667             0.849424           

9-12 -0.533333             0.849424           

* denotes a statistically significant difference 
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Table 9 ANOVA: pH of cultures of Streptomyces strain T15 cultivated under static 

submerged condition (ST) 

 (between fermentation media and fermentation period) 

 

Between fermentation medium ISP2 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.492158       3 0.164053       6.16        0.0178 ** 

Within groups 0.212933       8 0.0266167   

Total 0.705092      11    

 

Between fermentation medium ISP4 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.395492       3 0.131831       0.65        0.6056 ns 

Within groups 1.626       8 0.20325   

Total 2.02149      11    

 

Between fermentation medium SA and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.405158       3 0.135053       0.63        0.6137 ns 

Within groups 1.70447       8 0.213058   

Total 2.10963      11    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
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Table 10 Multiple range tests: pH of cultures of Streptomyces strain T15 cultivated 

under static submerged condition (ST) 

(between fermentation media and fermentation period) 

 

 Contrast 

(fermentation medium 

ISP2 and fermentation 

period) 

Difference +/- Limits 

3-6 0.133333              0.30718            

3-9 -0.196667             0.30718            

3-12   0.36                  0.30718 *            

6-9 -0.33                 0.30718 *            

6-12 0.226667              0.30718            

9-12 0.556667              0.30718 *            

 

Contrast 

(fermentation medium 

ISP4 and fermentation 

period) 

Difference +/- Limits 

3-6 0.0766667             0.84885            

3-9 0.103333              0.84885            

3-12 0.47                  0.84885            

6-9 0.0266667             0.84885            

6-12 0.393333              0.84885            

9-12 0.366667              0.84885            

* denotes a statistically significant difference 
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Table 11 ANOVA: Weight of crude extracts of Streptomyces strain T15 cultivated 

under agitation submerged condition (SH)  

(between fermentation period and media) 

 

Between fermentation period of 3 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0222087       2 0.0111043       1.56        0.2852 ns 

Within groups 0.0427739       6 0.00712899   

Total 0.0649826       8    

 

Between fermentation period of 6 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0398547       2 0.0199274       3.64        0.0923 ns 

Within groups 0.032873       6 0.00547883   

Total 0.0727277       8    

 

Between fermentation period of 9 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0406652       2 0.0203326       8.06        0.0199 ** 

Within groups 0.0151286       6 0.00252143   

Total 0.0557938       8    
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Table 11, continued 

 

Between fermentation period of 12 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0707666       2 0.0353833       8.95        0.0158 ** 

Within groups 0.0237211       6 0.00395351   

Total 0.0944877       8    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
 

 

Table 12 Multiple range tests: Weight of crude extracts of Streptomyces strain T15 

cultivated under agitation submerged condition (SH)  

(between fermentation period and media) 

 

Contrast 

 (fermentation period of  

9 days and media) 

Difference +/- Limits 

ISP2-ISP4 -0.0844333            0.100322           

ISP2-SA -0.164633             0.100322 *           

ISP4-SA -0.0802               0.100322           

 

Contrast 

 (fermentation period of 

12 days and media) 

Difference +/- Limits 

ISP2-ISP4 0.1074                0.125622           

ISP2-SA 0.2172                0.125622 *           

ISP4-SA 0.1098                0.125622           

  * denotes a statistically significant difference 
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Table 13 ANOVA: Weight of crude extracts of Streptomyces strain T15 cultivated 

under static submerged condition (ST) 

(between fermentation period and media) 

 

Between fermentation period of 3 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0485       2 0.02425       4.21        0.0722 ns 

Within groups 0.0345985       6 0.00576641   

Total 0.0830985       8    

 

Between fermentation period of 6 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0547431       2 0.0273715      10.68        0.0105 ** 

Within groups 0.0153756       6 0.00256261   

Total 0.0701187       8    

 

Between fermentation period of 9 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0247978       2 0.0123989       1.87        0.2340 ns 

Within groups 0.0398216       6 0.00663693   

Total 0.0646194       8    

 

 

 

 



 127 

Table 13, continued 

 

Between fermentation period of 12 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.125209       2 0.0626045       5.49        0.0442 ** 

Within groups 0.0684702       6 0.0114117   

Total 0.193679       8    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  

 
 

Table 14 Multiple range tests: Weight of crude extracts of Streptomyces strain T15 

cultivated under static submerged condition (ST) 

(between fermentation period and media) 

 

Contrast 

 (fermentation period of  

6 days and media) 

Difference +/- Limits 

ISP2-ISP4 0.1573                0.101138 *           

ISP2-SA -0.0152333            0.101138           

ISP4-SA -0.172533             0.101138 *           

 

Contrast 

 (fermentation period of 

12 days and media) 

Difference +/- Limits 

ISP2-ISP4 0.0795                0.213427           

ISP2-SA -0.2008               0.213427           

ISP4-SA -0.2803               0.213427 *           

* denotes a statistically significant difference 
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Table 15 ANOVA: Weight of crude extracts of Streptomyces strain T15 cultivated 

under agitation submerged condition (SH) 

 (between fermentation media and fermentation period) 

 

Between fermentation medium ISP2 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.101001       3 0.033667       5.96        0.0195 ** 

Within groups 0.045174       8 0.00564675   

Total 0.146175      11    

 

Between fermentation medium ISP4 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0586781       3 0.0195594       6.42        0.0159 ** 

Within groups 0.0243585       8 0.00304481   

Total 0.0830366      11    

 

Between fermentation medium SA and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0404348       3 0.0134783       2.40        0.1435 ns 

Within groups 0.0449641       8 0.00562052   

Total 0.0853989      11    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
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Table 16 Multiple range tests: Weight of crude extracts of Streptomyces strain T15 

cultivated under agitation submerged condition (SH)  

(between fermentation media and fermentation period) 

 

Contrast 

(fermentation medium 

ISP2 and fermentation 

period) 

Difference +/- Limits 

3-6 0.0236                0.141486           

3-9 0.0776                0.141486           

3-12 -0.167933             0.141486 *           

6-9 0.054                 0.141486           

6-12 -0.191533             0.141486 *           

9-12 -0.245533             0.141486 *           

 

Contrast 

(fermentation medium 

ISP4 and fermentation 

period) 

Difference +/- Limits 

3-6 -0.0252               0.103895           

3-9 -0.119167             0.103895 *           

3-12 -0.172867             0.103895 *          

6-9 -0.0939667            0.103895           

6-12 -0.147667             0.103895 *           

9-12 -0.0537               0.103895           

* denotes a statistically significant difference 
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Table 17 ANOVA: Weight of crude extracts of Streptomyces strain T15 cultivated 

under static submerged condition (ST) 

 (between fermentation media and fermentation period) 

 

Between fermentation medium ISP2 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.0125026       3 0.00416752       3.30        0.0785 ns 

Within groups 0.0100987       8 0.00126234   

Total 0.0226013      11    

 

Between fermentation medium ISP4 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.00742072      3 0.00247357       0.47        0.7125 ns 

Within groups 0.0422518       8 0.00528147   

Total 0.0496725      11    

  

Between fermentation medium SA and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 0.12378       3 0.04126       3.12        0.0882 ns 

Within groups 0.105915       8 0.0132394   

Total 0.229695      11    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
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Table 18 ANOVA: Bioactive metabolite(s) production by Streptomyces strain T15 

cultivated under agitation submerged condition (SH) 

(between fermentation period and media) 

 

Between fermentation period of 6 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 210.889 2 105.444 237.25 0.0000 * 

Within groups 2.66667 6 0.444444   

Total 213.556 8    

 

Between fermentation period of 9 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 264.667 2 132.333 238.20 0.0000 * 

Within groups 3.33333 6 0.555556   

Total 268.0 8    

 
Between fermentation period of 12 days and media 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 206.889 2 103.444 931.00 0.0000 * 

Within groups 0.666667 6 0.111111   

Total 207.556 8    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
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Table 19 Multiple range tests: Bioactive metabolite(s) production by Streptomyces 

strain T15 cultivated under agitation submerged condition (SH) 

(between fermentation period and media)  

 

Contrast 

(fermentation period of 

3 days and media) 

Difference +/- Limits 

ISP2-ISP4 0.0 0.0 

ISP2-SA -10.0 0.0 * 

ISP4-SA -10.0 0.0 * 

 

Contrast 

(fermentation period of 

6 days and media) 

Difference +/- Limits 

ISP2-ISP4 11.0 1.33193 * 

ISP2-SA 1.66667 1.33193 * 

ISP4-SA -9.33333 1.33193 * 

 

Contrast 

(fermentation period of  

9 days and media) 

Difference +/- Limits 

ISP2-ISP4 11.6667 1.48915 * 

ISP2-SA 0.333333 1.48915 

ISP4-SA -11.3333 1.48915 * 
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Table 19, continued 

 

Contrast 

(fermentation period of 

12 days and media) 

Difference +/- Limits 

ISP2-ISP4 10.0 0.665967 * 

ISP2-SA -0.333333 0.665967 

ISP4-SA -10.3333 0.665967 * 

* denotes a statistically significant difference 
 

 

Table 20 ANOVA: Bioactive metabolite(s) production by Streptomyces strain T15 

cultivated under agitation submerged condition (SH) 

(between fermentation media and fermentation period) 

 

Between fermentation medium ISP2 and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 271.0 3 90.3333 1084.00 0.0000 * 

Within groups 0.666667 8 0.0833333   

Total 271.667 11    

 

Between fermentation medium SA and fermentation period 

Source of 

variation 
Sum of squares d.f Mean square F-ratio 

Significance 

level 

Between groups 6.25 3 2.08333 2.78 0.1102 ns 

Within groups 6.0 8 0.75   

Total 12.25 11    

*: (p= 0); **: (p< 0.05); ns: not significant (p> 0.05)  
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Table 21 Multiple range tests: Bioactive metabolite(s) production by Streptomyces 

strain T15 cultivated under agitation submerged condition (SH) 

(between fermentation media and fermentation period) 

 

Contrast 

(fermentation medium ISP2 and 

fermentation period) 

Difference +/- Limits 

3-6 -11.0 0.543532 * 

3-9 -11.6667 0.543532 * 

3-12 -10.0 0.543532 * 

6-9 -0.666667 0.543532 * 

6-12 1.0 0.543532 * 

9-12 1.66667 0.543532 * 

* denotes a statistically significant difference 
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Table 1 Raw data for antibacterial bioactivity of Streptomyces spp. in primary 

screening assessed via cross streak method (Chapter 4)  

 

Test Bacteria 

Gram-positive Gram-negative 
 

Streptomyces strain 

 
B. subtilis E. faecalis S. aureus 

P. 

aeruginosa 

P. 

shigelloides 

R1 - +++ +++ - - 

R2 - +++ +++ - - T3 

R3 - +++ +++ - - 

R1 - - - - - 

R2 - - - - - T4 

R3 - - - - - 

R1 - ++ - + - 

R2 - ++ - + - T6 

R3 - + - + - 

R1 + + +++ + + 

R2 + + +++ + + T9 

R3 + + +++ + + 

R1 ++ ++ ++ ++ ++ 

R2 ++ ++ ++ ++ ++ T12 

R3 ++ ++ + ++ ++ 

R1 + + + + + 

R2 + + + + + T13 

R3 + + + + + 
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Table 1, continued 

 

Test Bacteria 

Gram-positive Gram-negative 

 

Streptomyces 

strain 

 B. subtilis E. faecalis S. aureus 
P. 

aeruginosa 

P. 

shigelloides 

R1 +++ +++ + +++ +++ 

R2 +++ +++ + +++ +++ T15 

R3 +++ +++ + +++ +++ 

R1 - - - - - 

R2 - - - - - T16 

R3 - - - - - 

R1 - - - - - 

R2 - - - - - T20 

R3 - - - - - 

R1 + + + + + 

R2 + + + + + T52 

R3 + + - + + 

R1 + + - + + 

R2 - - - + + T53 

R3 - - - + + 

* R1, R2, and R3: Replicates 
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Table 2 Raw data for inhibition spectrum (mm) of Streptomyces spp. against the test pathogens in secondary screening assessed via disc diffusion 

method (Chapter 4) 

Diameter of inhibition zone (mm) 
Gram-positive bacteria Gram-negative bacteria Yeast Streptomyces strain 

E. faecalis S. aureus B. subtilis P. 
shigelloides 

P. 
aeruginosa 

C. 
parasilopsis C. albicans 

R1 10 13 18 13 - 11 10 
R2 13 12 15 14 - 11 11 T3 
R3 12 11 13 14 - 11 10 
R1 16 13 15 12 - 20 20 
R2 16 18 16 12 - 16 20 T4 
R3 16 16 15 11 - 18 16 
R1 10 12 11 13 - 10 10 
R2 11 14 12 13 - 11 11 T6 
R3 12 12 12 13 - 12 11 
R1 15 17 10 15 15 14 11 
R2 17 17 9 15 15 11 11 T9 
R3 10 16 15 15 15 11 11 
R1 18 14 17 14 18 11 11 
R2 16 14 9 16 20 15 13 T12 
R3 15 10 11 12 15 11 12 
R1 12 15 15 21 - 12 - T13 
R2 12 15 13 21 - 12 - 
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R3 12 15 18 21 - 16 - 
Table 2, continued 

 

Diameter of inhibition zone (mm) 
Gram-positive bacteria Gram-negative bacteria Yeast Streptomyces strain 

E. faecalis S. aureus B. subtilis P. 
shigelloides 

P. 
aeruginosa 

C. 
parasilopsis C. albicans 

R1 19 17 22 25 - 18 20 
R2 16 17 22 25 - 15 17 T15 
R3 18 16 26 26 - 17 20 
R1 19 16 20 24 - 17 20 
R2 18 15 22 23 - 16 18 T16 
R3 12 15 20 27 - 16 17 
R1 19 18 19 9 - 10 12 
R2 18 20 20 11 - 11 12 T20 
R3 18 17 19 8 - 11 13 
R1 20 19 19 17 21 11 13 
R2 19 19 20 17 20 11 12 T52 
R3 19 18 20 18 23 12 13 
R1 25 23 25 19 25 19 20 
R2 28 24 25 23 26 15 20 T53 
R3 25 26 25 21 25 17 20 

* R1, R2, and R3: Replicates 
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Table 3 Raw data for inhibition spectrum (mm) of methanol (negative control) against 

the test pathogens in secondary screening assessed via disc diffusion method  

(Chapter 4) 

 

Diameter of inhibition zone (mm) 
Test pathogen 

R1 R2 R3 

Bacillus subtilis 11 11 12 

Enterococcus faecalis 9 10 11 

Gram-

positive 

bacteria 
Staphylococcus aureus 9 10 12 

Pseudomonas aeruginosa 12 12 13 Gram-

negative 

bacteria Plesiomonas shigelloides 8 9 10 

Candida albicans 13 13 14 

Yeast 

Candida parasilopsis 11 12 12 

* R1, R2, and R3: Replicates 
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Table 4 Raw data for pH level of 3, 6, 9, and 12-day old Streptomyces strain T15 

cultivated in ISP2, ISP4, and SA media under agitation and static submerged conditions 

(Chapter 4) 

 

pH level 

Agitation Static 

 

Day 

 ISP2 ISP4 SA ISP2 ISP4 SA 

R1 6.94 6.64 5.36 6.76 6.71 6.50 

R2 6.71 6.77 5.34 6.76 7.40 7.39 3 

R3 6.96 6.59 6.90 6.76 7.42 7.42 

R1 8.00 8.20 6.61 6.58 7.42 7.95 

R2 7.99 8.39 6.70 6.54 6.53 7.01 6 

R3 6.92 8.17 6.76 6.76 7.35 7.83 

R1 8.06 6.24 6.76 6.94 7.15 7.62 

R2 5.12 7.65 6.77 6.94 7.13 7.30 9 

R3 5.11 7.14 6.88 6.99 6.94 7.45 

R1 6.20 6.94 7.40 6.22 6.89 7.80 

R2 6.21 7.62 7.31 6.23 6.01 6.85 12 

R3 6.19 6.93 7.30 6.75 7.22 7.77 

* R1, R2, and R3: Replicates 
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Table 5 Raw data for weight of crude extracts (g) of 3, 6, 9, and 12-day old 

Streptomyces strain T15 cultivated in ISP2, ISP4, and SA media under agitation and 

static submerged conditions (Chapter 4)  

 

Crude extracts weight (g) 

Agitation Static 

 

Day 

 ISP2 ISP4 SA ISP2 ISP4 SA 

R1 0.24 0.03 0.07 0.27 0.17 0.24 

R2 0.23 0.04 0.19 0.26 0.06 0.09 
 

3 

R3 0.01 0.06 0.17 0.24 0.04 0.02 

R1 0.15 0.12 0.35 0.23 0.08 0.14 

R2 0.15 0.03 0.12 0.24 0.05 0.27 
 

6 

R3 0.10 0.06 0.23 0.21 0.07 0.30 

R1 0.08 0.25 0.24 0.25 0.26 0.07 

R2 0.10 0.17 0.23 0.22 0.13 0.20 
 

9 

R3 0.06 0.08 0.27 0.28 0.02 0.15 

R1 0.25 0.20 0.16 0.20 0.13 0.52 

R2 0.36 0.28 0.03 0.10 0.06 0.19 
 

12 

R3 0.37 0.17 0.14 0.22 0.10 0.42 

* R1, R2, and R3: Replicates 
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Table 6 Raw data for inhibition spectrum (mm) of 3, 6, 9, and 12-day old Streptomyces 

strain T15 (cultivated in ISP2, ISP4, and SA media under agitation and static 

submerged conditions) against Plesiomonas shigelloides assessed via disc diffusion 

method (Chapter 4) 

 

Diameter of inhibition zone (mm) 

Agitation Static 

 

Day 

 ISP2 ISP4 SA ISP2 ISP4 SA 

R1 - - 10 - - - 

R2 - - 10 - - - 
 

3 

R3 - - 10 - - - 

R1 11 - 8 - 9 - 

R2 11 - 10 - 9 - 
 

6 

R3 11 - 10 - 9 - 

R1 11 - 12 - 9 - 

R2 12 - 12 - 10 - 
 

9 

R3 12 - 10 - 10 - 

R1 10 - 10 - 8 - 

R2 10 - 11 - 8 - 
 

12 

R3 10 - 10 - 8 - 

* R1, R2, and R3: Replicates 
 

 
 


