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Abstract 

 
The advantages of MRAM are so overwhelming which acts as motivation for scientist 

in further investigation for better read and write operation. The types of materials used 

are closely related to the cell performance in forming the ferromagnetic layers. Thus, 

the vibrational frequencies of the MRAM materials are of interest. Clusters for the two 

types of combinations, FexNiy and FexCoyBz are built. Subsequently, vibrational 

frequencies of each cluster are calculated theoretically from the first principles. The 

secular determinant is large when the number of electrons in a cluster is large. For the 

simplest combination of Fe-Ni cluster, (atomic number of an iron atom is 26 and a 

nickel atom is 28) gives secular determinant of 26 × 26 and 28 × 28 respectively. As 

the atomic number increases, the matrix becomes larger which is unlikely to be solved 

manually. These types of matrices are solved by a quadro computer operating at 

2.83GHz with a good computer programme with suitable approximations. The density 

functional theory (DFT) is used to optimize the bond lengths and angles of the clusters 

for the minimum energy of the Schrödinger equation by using double zeta (DZ) and 

double zeta with polarized (DZP) wave functions. The bond distance calculated for 

cluster Fe-Ni is 213.4 picometer and the vibrational frequency shows a peak at 316.5 

cm-1 (intensity = 0.002 km/mole). Larger size clusters show more vibrational 

frequencies. Cluster Fe4Co3B4 shows 16 peaks with the largest peak at 1147.7 cm-1. 

The structure of the atomic combination is important in predicting which material 

works the best for memory performance. Calculations for several different ratios of the 

constituent atoms are performed. 
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Abstrak 

 
Kelebihan MRAM adalah sangat banyak di mana kelebihan tersebut merangsangkan 

ahli sains menjalankan penyelidikan dengan lebih terperinci untuk operasi baca dan 

tulis dengan lebih baik. Jenis bahan yang digunakan berkait secara rapat dengan 

prestasi sel dalam pembentukkan lapisan feromagnet. Maka, frekuensi getaran bahan 

MRAMlah yang menarik minat. Dua jenis kombinasi kluster iaitu FexNiy dan FexCoyBz 

telah dibina. Seterusnya, frekuensi getaran bagi setiap kluster dikira berdasarkan teori 

dari prinsip pertama. Determinan sekular adalah besar apabila bilangan elektron dalam 

kluster besar. Kombinasi kluster Fe-Ni paling mudah, (nombor atom bagi atom ferum 

ialah 26 dan atom nikel ialah 28) memberikan determinan sekular masing-masing 

bernilai 26 × 26 dan 28 × 28. Apabila nombor atom bertambah, matriks menjadi besar 

dan tidak boleh diselesaikan dengan manual. Sebaliknya, matriks jenis ini diselesaikan 

dengan komputer berkelajuan 2.83GHz bersamaan program yang baik dengan 

penganggaran yang sesuai. Teori fungsi ketumpatan mengoptimumkan panjang ikatan 

dan sudut kluster pada tenaga minimum bagi persamaan Schrödinger dengan 

menggunakan fungsi-fungsi gelombang zeta lipat dua dan zeta lipat dua dengan 

pengkutuban. Panjang ikatan bagi kluster Fe-Ni yang dikira oleh program ialah 213.4 

pm dan puncak terunggul ditunjukkan pada frekuensi getaran 316.5 cm-1 (keamatan = 

0.002 km/mole). Lebih banyak frekuensi getaran didapati bagi saiz kluster yang lebih 

besar. Kluster Fe4Co3B4 menunjukkan 16 puncak di mana puncak terbesar ialah 1147.7 

cm-1. Struktur dan kombinasi atom adalah penting dalam meramalkan bahan yang 

terbaik untuk kegunaan prestasi ingatan. Pengiraan bagi beberapa nisbah juzuk atom 

berlainan telah dijalankan. 
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CHAPTER 1 
 
Introduction 

 
The discovery of the giant magnetoresistive (GMR) effect has given hope to the 

scientific community to build a memory device. The addition of GMR to the already 

existing memory technologies will be an advantage for the improved speed of the 

memory material. The magnetoresistive random access memory (MRAM) is believed 

to become a true universal non-volatile computer memory. Wonderful products are 

invented through the applications of MRAM in integrated circuits such as high storage 

devices on computers and notebooks, I-pods, mobile phones, military systems etc. 

 

1.1 Objective of Research 

MRAM performance is dependent on the magnetoresistance ratio (MR), where higher 

MR will have higher sensing signal and produce faster operation in the cell. Electron 

scattering in the ferromagnetic layers is believed to be an important factor affecting MR. 

When electric current passes through the ferromagnetic layers, the spins of the 

electrons get quantized in two possible ways; either spin-up or spin-down. Majority 

spin-up electrons pass through the cell with less scattering while the minority spin-

down are strongly scattered. Thus, the less scattered electrons have lower resistance and 

the strongly scattered electrons have higher resistance. By determining the vibrational 

frequencies through simulation of clusters, force constant of the clusters can be 

achieved. The ability of electrons to be spin polarized on the ferromagnetic surface can 
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be observed. Therefore, the best materials for the ferromagnetic layers in the cell can be 

predicted on the basis of calculations of vibrational spectra. 

An orbiting electron in an atom is like a circulating current and so has an 

associated orbital magnetic dipole moment. But not all the orbits produced the same 

magnetic moment. Different orbits have different effective currents and different 

effective areas. Iron posses a net magnetic moment at the ground state. When the 

number of iron atoms in a cluster increases, the magnetization increases. However, 

when nickel (Ni) is added to the iron cluster, the magnetic moment or magnetization is 

affected. The total resistance is the measure of the cell’s function, changes with the 

relative orientation of the two magnetic layers. It is thus of great importance to 

determine the materials used for the two ferromagnetic plates. In this research, faster 

read time access may be improved compared to the semiconductor device used 

nowdays. 

In this research, the concentration of Ni is varied in Fe-Ni alloy and the material 

composition is found for which there is an extremum in the desired properties such as 

their vibrational frequencies, bond lengths and so on. The models of FeNi, FeNi2, 

FeNi3… Fe10Ni10, Fe9Ni11, Fe8Ni10, etc are made. Similar simulations are performed for 

Fe-Co-B also. The atoms of Fe, Co as well as B are varied to obtain FexCoyBz clusters. 

The vibrational frequencies of these clusters are then compiled and investigated. 

        

1.2 Amsterdam Density Functional (ADF) 

The ADF programme is used. It is based on the density functional theory (DFT) for ab 

initio calculations. Nowdays, ADF is often used in condensed-matter physics, 

computational physics and chemistry to determine the properties of materials which 

have applications in the industrial and in academic research. 
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 The ADF programme can be applied to any gas phase molecules and molecules 

in protein environment. It can excess all elements in the periodic table and can contain 

spin-orbiting methods etc. It is especially appropriate for transition metal and heavy 

nuclei compounds. A periodic structure complement to ADF is known as BAND is 

available to study chain, slab or bulk crystals and surfaces. At the same time, ADF 

programme is available to study frequency, density of states, potential energy surfaces 

and wide range of molecular properties. The programme solves the Schrödinger 

equation for any number of atoms in the density functional approximations. Usually, 

two approximations are available, the local density approximation (LDA) and the 

generalized gradient approximation (GGA). The GGA provides more excellent results 

for non-uniform models as gradients of the density at the same coordinate are also 

included. LDA depends only on the density at the coordinate. In this research, the 

clusters are assumed to be uniform. Hence, LDA calculations are used. There is a 

choice of several types of wave functions with and without spin polarization. 

  

1.3 Overview 

Chapter 2 is basically about MRAM history and the explanation on MRAM. RAM 

exists before MRAM. Due to the improvement in RAM technologies, MRAM is born 

and become dominant in the memory technologies.  

  Theory of molecules is described in chapter 3. A brief picture on how molecules 

behave in ground state and as well as in excited states and the approximations for the 

motion in molecular vibrations are mentioned. The theory used by the ADF programme 

also been described in brief with some equations and definitions.  

 Chapter 4 gives some of the results of the simulation of cluster FexNiy where 

x=1, 2, 3 and 4. Spectra of these clusters and also the values of the vibrational 

frequencies with their intensities are shown.    
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 Chapter 5 describes the clusters of FexCoyBz. This chapter consists of clusters 

with 3 and 4 atoms. The figure of the clusters, bond lengths, vibrational frequencies and 

intensities are shown. Chapter 6 is the continuous part of chapter 5 but consists of 

clusters with total number of 5, 6, 7, 8, 9, 10 and 11 atoms which are categorized as 

large clusters. Lastly, chapter 7 gives the conclusions of the present study.  
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CHAPTER 2 
 
Magnetic random access memory 

 
2.1 Random access memory 

Random access memory (RAM) can be quickly reached by the computer’s processor 

which keeps the operating systems, application programs and data in current form. 

RAM is faster to read and write compared to other computer storages. Whereas, one of 

the weaknesses of RAM is often related to volatile types of memory where the data 

contained is lost when the computer is switched off. RAM is known as random access 

as it takes the form of integrated circuit which allows data to be read from or written to 

in any order despite the physical location and the relation to the previous data. 

 RAM can be described as human’s short-term memory while hard disk as the 

long-term memory. RAM never runs out of memory. When the RAM is filled up, the 

computer’s operation becomes slow as the processor needs to refresh data from the 

hard disk. For the long-term memory, there is limitation for data storage capacity.  

 Although RAM usually related with those volatile types of memory such as 

dynamic random access memory (DRAM) and static random access memory (SRAM), 

they are also available for non-volatile types of memory. For example, the non-volatile 

types of memory are the read only memory (ROM), Flash memory and most types of 

magnetic storage (hard disks, floppy disk and etc.)    
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2.2 Early MRAM devices  

The natural hysteresis as a function of the magnetic field is used for data storage by 

using two or more sets of current-carrying wires. This describes the basics of magnetic 

random access memory (MRAM). Most of the latest MRAM are still using the same 

concept. The magnetic layers were arrayed so that those cells to be written received a 

combination of magnetic field while the other layers in the array do not change the 

storage data. Early ferrite core use binary digits for data storage (“1” or “0”). A 

magnetic field was used to interrogate the memory element and the polarity of the 

induced magnetic element will determine whether a “1” or “0” was stored.  

Raffel and Crowder [1] were the first to propose a magnetoresistive readout 

scheme. The scheme stored data in magnetic body, in turn produced stray of magnetic 

field which could be detected by a separate magnetoresistive sensing element. But this 

does not work out as it is difficult to obtain a sufficiently large external stray field from 

small magnetic storage cell. Cross-tie Cell Random Access Memory (CRAM) [2] was 

then introduced which used magnetic element for storage and magnetoresistive readout. 

But yet there are difficulties in getting the cell to write consistently and the difference 

between “1” and “0” is small. In mid 1980’s, Honeywell developed the first MRAM 

device based on magnetoresistance using Anisotropic Magnetoresistance (AMR) 

materials. The angle of the electrical current with respect to the orientation of magnetic 

field which alters the electrical resistance of the cell is the property of an AMR material. 

With recent advance in MRAM nowdays, better materials were developed such as 

Giant Magnetoresistance (GMR) and Tunnel Magnetoresistance (TMR) materials. 

These materials are significant in our existing technology where these materials are 

applied in our electrical appliances we are using every day.  
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2.3 MRAM Description 

Magnetoresistive random access memory (MRAM) has been developed since 1990s. 

MRAM technology combines the ability of performance, low power and non-volatility. 

MRAM has theoretically an unlimited read and write capability. Akerman [3] 

mentioned that the advantages of MRAM become dominant for all types of memory, 

thereby becoming a truly “universal memory”. 

 RAM data is stored as an electric charge or current flow. But for MRAM, data 

is stored by magnetic storage elements. Data storage is determined by the state of the 

binary digits, either “1” or “0”, which is the basic information unit in a computer. The 

bits are recorded using the magnetic storage elements comprising one or more 

ferromagnetic layers associated to the cell. One of the layers is programmable (free 

magnetic layer) where the layer can change the magnetic field between two possible 

orientations. The magnetization of other or more layers remain unchange which is 

known as pinned magnetic layer. The two layers is separated by a nonmagnetic spacer 

layer. Figure 2.3.1 shows a brief picture of the MRAM cell.  

 

 
 

Figure 2.3.1.  The MRAM cell. 
 

 As other semiconductor memory types, the MRAM core is one or more of 2-D 

array of storage cells. Multiple arrays shorten the signal paths and thus speed up the 

access time [4]. The rows in each array are traversed by the parallel word lines in one 

direction while the columns are traversed by the bit lines running in the orthogonal 
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direction to the word lines. Cross points of the word lines and bit lines are the magnetic 

memory cell where the cell can be identified or accessed easily.    

 Chip performances are determined by write and read operations. Write 

operations can be achieved by the induced magnetic field created by the free layer 

when the current is driven along the bit lines, word lines or digit lines. Read operations 

are achieved by measuring the electrical resistance of the cell. If the applied magnetic 

field causes the angle between the pinned layer and the free layer to change, the 

resistance varies, showing the magnetoresistance (MR) effect. The MR ratio is 

important in determining the MRAM’s quality. The MRAM development effort has 

been required up to over MR ratio of 40% compared to a few percent for the previous 

years. Magnetoresistance ratio, MR = ( )
min

minmax

R
RR − × 100%, where Rmax and Rmin is the 

maximum and minimum value of the magnetoresistance of the cell respectively. 

 

2.3.1 GMR and TMR cells 

The breakthrough of GMR effect in metal multilayer encourages researches and 

scientists in the development of computer memory technologies. Successful GMR in 

MRAM devices act as a motivation for researches to study the MR effects in TMR. 

Experiments done show that the MR ratio of TMR device was much higher compared 

to GMR device with the value larger than 20%.   

 GMR and TMR cell holds a common structure which is constructed by two 

ferromagnetic metal layers that are separated magnetically by a nonmagnetic layer. The 

difference between the two cells is that the nonmagnetic layer of a GMR cell consists 

of a metal layer while that of TMR cell consists of an insulator layer. The effect of the 

common structure can be observed through the change in the electrical resistance. 

Magnetization varies when the ferromagnetic layers vary with different angles, from 
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low to high or high to low resistance. There are two different methods to alternate the 

resistance across the cell: 

(i) Spin-pinning method:  

An antiferromagnet layer is placed on the surface of the ferromagnetic layer to pin 

its orientation, while the other layer is free to rotate with the applied field. The 

device used in this method is known as spin valve. TMR is much likely the 

extension of the spin valve GMR. 

(ii) Using ferromagnetic layers with different coercive force: 

Both the ferromagnetic layers will orientate to a parallel and antiparallel state at a 

small field if the coercive force is different from each another. The type of device 

is known as pseudo spin valve (PSV). 

These two methods have used GMR in the MRAM devices due to their simple structure 

and low working fields. 

 

2.3.2 MRAM using GMR cells 

Discovery of GMR effect has arise hope for the scientific community. While we were 

still wondering the mysterious technology on how electrical resistance changes when 

an applied field acts on ferromagnetic materials, Albert Fert and Peter Grunberg 

independently discovered the GMR effect [5, 6]. Through intense work by the scientist 

and researchers, magnificent products are invented such as high storage device on 

computers and notebooks, I-pods, mobile phones, etc.  

The physics of GMR was the spin-dependent scattering of the electrons in the 

ferromagnetic layers [7]. The GMR cells yet show limitations. The read access time 

was much slower compared to the semiconductor memory due to the low signal. 

Invention of pseudo spin valve (PSV) cell improves the GMR cell. PSV cells consist of 

two magnetic layers with different coercivity insulated by a nonmagnetic metal layer [8, 
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9]. Coercivity measures the resistance of a ferromagnetic material to becoming 

demagnetized. Different coercive force can be defined as different thickness of 

magnetic layers where thinner layer is known as the soft ferromagnetic layer and 

thicker layer as the hard ferromagnetic layer. Usually soft ferromagnetic materials have 

low coercivity and switch at lower field while hard materials have high coercivity and 

switch at higher field. For PSV cell which is at low field, the layer with low coercivity 

is more susceptible to the magnetization change than the layer with high coercivity. 

Thus, the data are stored in the hard ferromagnetic layer and the resistance of the cell 

can be modified by the soft ferromagnetic layer. 

 

2.3.3 MRAM using TMR cells 

Magnetic Tunnel Junction (MTJ) cell or the spin valve MRAM cell holds common 

structure as GMR cell. This component consists of four layers. The orientation of the 

magnetic field of one of the ferromagnetic layer is pinned by the existence of the fourth 

antiferromagnetic layer formed on the surface of that ferromagnetic layer. The other 

layer so called the free layer will modify its magnetic field to match that of the layer 

with fixed magnetic polarity. The free layer is also known as the rotating layer due to 

the circulation of the magnetic field. Both the pinned and free layers are separated by 

an insulating metal often made from copper. 

The theoretical basic of MTJ cell was the tunnel magnetoresistance [10-13] 

which produces a magnetoresistive effect. As a result of the wave-like nature of 

electrons, the spins travel perpendicularly to the layers across the thin insulating tunnel 

barrier. The tunneling conductance depends on the density of states (DOS) of the spins 

at Fermi level of the ferromagnet layers. Due to the tunneling effect, MTJ cell attained 

larger impedance and therefore lower current flows across the cell and higher MR 

effect is produced. Thus, the TMR devices have advantages over GMR device for high 
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speed non-volatility MRAM memory. Nowadays, the TMR devices have replaced the 

GMR devices in disk drives. 
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CHAPTER 3 
 
Theory of molecules 

 
3.1 Density functional Theory (DFT) 

Density functional theory (DFT) description for ground state properties of metals, 

semiconductors and insulators is now very popular. The main idea of DFT is to 

describe an interacting system of electrons via electron density. The wave function (ρ) 

of an N-electron system includes 3*N degrees of freedom, while the density, no matter 

how large the system is, contains only 3 spatial coordinates (x, y, z). The computational 

effort is simplified moving from E (ψ) to E (ρ) in terms of the electronic properties of 

clusters. DFT also provides various chemical properties, such as electronegativity 

(chemical potential), hardness (softness), response function, etc. These important 

concepts can conveniently explain chemical properties upon change of nuclei. 

 The DFT in principle provides good ground state description. It is based on 

approximations used to calculate exchange-correlation potential which will be 

discussed below. The exchange-correlation energy describes the effect of Pauli 

principle and Coulomb potential beyond the pure electrostatic interaction of electrons. 

 

3.1.1 Overview of DFT 

Density functional theory (DFT) can be regarded as the exactification of the two 

Hohenberg-Kohn theorems. Its basic concepts are developed from the Thomas-Fermi 

model which was introduced in 1927 [14, 15, 16, 17]. It is a quantum mechanical 
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theory for the electronic structure of many body systems, developed after the 

Schrödinger equation was introduced. The model was a statistical model using 

mathematical basis to approximate distributions of electrons in a solid. They assumed 

the existence of energy functional, and the kinetic energy based on the density of 

electrons, )r(
r

ρ  which was derived in an infinite potential well. The functional of kinetic 

energy based on electron density, ( )ρTFT :  

 ( ) ( ) ( )∫ ρπ=ρ rrd3
10
3T 3

5
3

22
TF

rr
      (1) 

  = ( ) rdrC 3
5

F
rr

∫ρ   , where ( ) 3
22

F 3
10
3C π=  

While the energy of an atom using kinetic energy functions with electron-nucleus 

attraction, electron-electron repulsion and Hartee energy can be calculated. Thus, the 

Thomas- Fermi energy, ( )ρTHE : 

( ) ( ) ( ) ( ) ( )
∫∫∫ −

ρρ
+

−
ρ

−ρ=ρ
21

21
21TFTH rr

rrrdrd
2
1

rR
rrdZTE rr

rr
rr

rr

r
r   (2) 

Z= nuclear charge, R= position vector of the nucleus, =rr position vector of an electron  

 

Thomas-Fermi model is limited and only correct in an infinite nuclear charge. 

Edward Teller (1962) showed that Thomas-Fermi theory does not predict any 

molecular bonding. The energy calculated of any molecule with Thomas-Fermi theory 

is much higher than the sum of the energies of the constituent atoms. Since this 

precision is not good for atoms, the Hohenberg-Kohn theorem was proposed around 

1965. 

Hohenberg-Kohn theorem relates to that any system consisting of non-

degenerate ground state of electron moving under an external potential Vext ( with the 

absence of magnetic field, where the external potential Vext

)rr

( )rr  is a unique function of 

( )r
r

ρ . 
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Theorem 1: Through the use of the function of electron density ( )r
r

ρ , the ground state 

properties of a many-electron system are uniquely determined by the 

electron densities that depend on the three spatial coordinates. It lays the 

ground work for reducing the many-body problem of N electrons with 3N 

spatial coordinates.   

Theorem 2: The ground state energy can be obtained variationally [18]: the density that 

minimizes the total energy is the exact ground state density. 

Hohenberg-Kohn theorems are useful, but the existence of theorem is not 

enough as the way in computing the ground-state density of a system is not offered. 

Soon, Kohn and Sham (one particle DFT) [19] devised a simple method for carrying-

out the DFT calculations. The comparison between DFT theory and the Hartee-Fock 

theory makes a clearer picture about the deviations of them as given below.  

Initially, the DFT starts from the total energy function, E=E [ , where the 

electron density 

]αρ R,

( )r
r

ρ  is a physically observable fundamental quantity [20]. In contrast, 

to the Hartee-Fock theory (HF) which starts from the total energy containing the wave 

function, E=E [ ]αΨ R, . 

E= ∫Ψ* [ ]ijjiii r1h >Σ+Σ τΨd  (HF theory)    (3) 

E= [ ] [ ] [ ]ρ+ρ+ρ xcEUT   (DFT theory)    (4) 

The total energy for the HF theory is expressed as an expectation value of the exact 

non-relativistic Hamiltonian [21] using the Slater determinant [22] as approximation 

for the total . The total energy of DFT theory is decomposed into three terms, kinetic 

energy term T , Coulomb energy term U

Ψ

[ ]ρ [ ]ρ  and the many- body exchange 

correlations term EXC [ . ]ρ

 For the HF theory, the total wave function is given as ( ) ( ) ( )n,......2,1 n21 ψψψ=ψ , 

and the electron density derived as ( ) ( ) 2
iocc rr
r

ψΣ=ρ  for the DFT theory.  

 
 

14



( ) ( )[ ]rrV21 x
i

c
2 r r

μ++∇− iii ψε=Ψ   (HF equation)   (5) 

( ) ( )[ ]rrV21 xcc
2 rr

μ++∇− iii ψε=ψ   (Kohn-Sham equation) (6) 

Both equations are quite similar. In HF theory, the difference is ( )r
r

μ  which describes 

the exchange effects and depends on the actual orbital. The Kohn-Sham equations:  

(i) charge density, ( ) ( )
2N

i s
i s,rr ∑∑ ψ=ρ
rr

,  

(ii) Schrödinger equation for N non-interacting electron moving in an effective 

potential Veff , ( )rr ( ) ( )[ ]rrV21 xcc
2 rr

μ++∇− iii ψε=ψ  and  

(iii) the effective potential, ( )rVeff
r

= ( ) ( ) [ ]
δρ

ρδ
+

−
ρ

+ ∫ XC2
ext

E'rd
'rr

'rerV r
rr

r
r

  

are sets of eigenvalues in the DFT. The energy functional ( )]r[E r
ρ  postulated by Kohn 

and Sham [19] could be written as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )rdrVrer[Erdrd
'rr
rr

2
e]r[T]r[E 3

ionxc
'33

'2

c
rrrrrr

rr

rr
rr

∫∫∫ ρ+ρ+
−
ρρ

+ρ=ρ  (7) 

where, ( )]r[Tc
r

ρ = Kinetic energy of a system of non-interacting electrons with density 

 and Vion= potential energy due to static ions.  ( )rrρ

These equations are solved iteratively to obtain self-consistency.  

Local density approximation (LDA) is the simplest approximation of Kohn-

Sham theory which is based upon the exchange-correlation (XC) energy functional for 

a uniform gas at each space point via electron density. LDA is also used in the 

Amsterdam Density Functional (ADF) programme for calculating the first principle of 

electronic structures. LDA is derived successfully from the homogeneous electron gas 

(HEG) model. Thus, the LDA is identical to the HEG approximation which is applied 

to molecules and solids.  

LDA exchange-correlation energy for spin-unpolarized system is defined as 

[ ] ( ) ( ) rdr XC
LDA
XC

rr
ρερ=ρΕ ∫ , where ρ is the electron density and is the exchange-XCε
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correlation energy density. When the system is extended to spin-polarizing, further 

approximation is needed for correlation and exchange can be determined by the known 

spin-scaling. Two spin-densities αρ  and βρ can form the local-spin-density 

approximation which is defined as [ ] ( ) ( )βαβα ρρερ=ρρΕ ∫ ,rrd, XC
LSDA
XC

rr  and βα ρ+ρ=ρ . 

Adding spin-polarization, the spin dependence of the correlation energy density can be 

defined as: 

( ) ( ) ( )
( ) ( )rr

rr
r rr

rr
r

βα

βα

ρ+ρ

ρ−ρ
=ξ         (8) 

0=ξ , paramagnetic spin-polarized situation with equal α and β spin densities 

1=ξ , ferromagnetic situation when one spin density vanishes 

 

3.2 Geometry Optimization 

The geometry of molecules determines its physical and chemical properties. Usually, 

the bond angles, bond lengths and dihedral angles are optimized. According to the 

VSEPR (valence shell electron-pair repulsion) model, the geometry of the molecule is 

determined by the repulsive forces of valence electron pairs which directly affect the 

size of the bond angle. The stronger the repulsion length, the larger is the bond angle.  

Arrangement of atoms in the molecules determines the energy levels of those molecules. 

In fact, even small changes in the structure cause the energy in a molecular system to 

vary. The objective of the geometry optimization is to find the point at which the 

energy is at a minimum where the molecule is the most stable and most likely to be 

found in nature. 

 The way to observe the effect of different geometries on energy levels is to 

calculate a potential energy surface (PES). The PES is a mathematical relation 

correlating the particular molecular structure and its point energy. The purpose of 

geometry optimization is to locate the minima based on the geometry of the molecule. 
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The forces are zero at the point on the potential energy surface when it reaches a 

stationary point. It is done by calculating the first derivative of the energy (gradient). 

Usually user begins the geometries of a cluster as Cartesian coordinates. When 

a basis set is specified, the programme will compute the energy and the gradient at the 

point, decide whether it reached a stopping point (convergence) and the geometry 

varies based on the size of the gradient. The new integrals are calculated, new self-

consistent field (SCF) calculations are done, and a new energy and gradient are 

calculated. These steps are repeated until the programme reaches convergence.  

                                                                                                                                                                

3.3 Molecular Vibrations 

Molecular vibrations are delineated as motion of atoms in the molecule which are 

constantly moving with respect to each other in a periodic form while the molecule as a 

whole has a constant translational and rotational motion. The frequency of the periodic 

motion is known as the vibrational frequency. The molecular vibration is excited when 

the molecule at the ground state absorbs a quanta of energy, E= hυ, where υ= frequency 

and h = Plank’s constant. When two quanta of energy are absorbed, the first overtone is 

excited and so on to higher overtones. 

 The first approximation for the motion in a normal vibration is the simple 

harmonic motion. The vibrational energy is a quadratic function with respect to the 

atomic displacement and the first overtone with frequency 2υ. But in reality, the 

vibrations are anharmonic and the first overtone has less energy than 2υ frequency. 

 The normal modes are a set of 3N-6 collective atomic displacements which is 

used to describe the overall vibrational motion of the molecule. The normal modes are 

independent of each other, each represent motions of different parts of the molecule.  
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3.3.1 Normal modes of vibration 

Normal modes are usually the combination of motions involving all atoms to varying 

degrees which move sinusoidally with the same frequency known as natural frequency 

or resonant frequency. The harmonic system can be used to illustrate the frequency of 

the normal mode of a molecule. When a molecule is excited at a frequency, υ, all of the 

atoms will also move at the same frequency. The phases movement are exactly in phase 

or in the opposite phase. 

To obtain the frequencies and coordinates of the normal modes of a polyatomic 

molecule through basic theoretical derivations, the classical equation of motion for 

normal coordinates is initially derived. The normal coordinates can be expressed as 

linear combinations of the Cartesian atomic displacements. The classical expression for 

the total energy, E = kinetic energy (K.E) + potential energy (V) of a collection of N 

atoms is formed [23]. The kinetic energy is given as 

T = (∑
=

++
N

1i

2
i

2
i

2
ii zyxm

2
1

&&& ) = Ttrans + Trot + Tvib  .        (9) 

The kinetic energy above comprises the translational, rotational and vibrational degrees 

of freedom. The potential energy is 
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The V0 may be assumed to be zero and first derivatives vanish at equilibrium geometry. 

The position of the center of mass is preserved when the normal coordinates are 

obtained so that the energies are expressed in mass-weighted Cartesian coordinates.  

These are defined as: η1 = 11 xm , η2 = 11ym , η3 = 11 zm ,  
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          η4 = 22 xm , …, η3N = NN zm   

The general relationship of force constant can be defined as: 
ji

2

ij yx
Vb
∂∂

∂
= . 

If the coordinates of i and j are the same, the force constant is known as the principal 

force constant. While if the coordinates of i and j are different, the force constant is an 

interaction constant since it is related to the way in which the two coordinates interact 

with each other. Kinetic and the potential energies are expressed as: 

T = ∑
=

η
N3

1i

2
i2

1
&          (11) 

V = ∑ ηη
N3

j,i
jiijb

2
1 , bij= elements of the force-constant matrix B.   (12) 

There are 3N classical equations of motion for the system. 

( )
i

ii,x x
Vxm

dt
dF

∂
∂−

== &         (13) 

i,xF  gives a force on atom i in the x-direction.  

Substituting the mass-weighted Cartesian coordinates and the force constants bij, the 

equation of motion are as follows:  

0b
dt
d

j
j

iji =η+η ∑& .        (14) 

We expect that the motion is harmonic for a quadratic field, thus after integration, we 

obtain, 

 ( )δ+λη=η tsin0
ii .        (15) 

where 2πυ=ω λ≡ , = amplitude and δ = phase of the oscillation. Both and δ 

are constants of integration which depend on the boundary.  

0
iη

0
iη

The equation for i=1 to 3N, where 0b
j

0
jij

0
i =η+λη− ∑  is obtained when equation (2) 

is substituted into equation (1). The equation can be written as a matrix equation where   

(B-λI) . A nontrivial solution to the set of equations can be expressed in  00 =η
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det (B-λI)  if only the determinant of the matrix is zero. Solving the nontrivial 

solution is also the procedure of finding the normal coordinates and their frequencies. 

From (B-λI) , we define I as the identity matrix and  is a column vector 

containing the amplitudes of the mass-weighted Cartesian coordinates.  

00 =η

00 =η 0η

 In the matrix notation, potential energy is expressed as T

2
1V η= B , where 

is the transpose of

η

Tη η . After diagonalizing the potential energy or by means of 

transformation to normal coordinates, Qi, stated each normal coordinate as a linear 

combination of the mass-weighted Cartesian coordinates [24].  

Qi = , where lki are the coefficient to be determined.  ∑
=

η
N3

1k
kkil

The matrix equation of Qi is expressed as Q = LTη, given that Q is a column vector 

containing normal coordinates and LT is the transpose of L. The quantum mechanical 

operators can be substituted for the classical expression for the position and momentum. 

A 3N-6 independent and one dimensional equations are obtained, which forms familiar 

harmonic oscillator Schrödinger equation. Thus, a normal analysis provides a set of 

normal modes, their frequencies related to the masses of atoms, geometry of molecules 

and force constants of bonds. Usually these calculations are solved by the computers 

with good programme as they are unlikely to be solved manually. 

In general, the force constant is used as an input for the calculation. The force 

constant is not available form the experimental process, but can be determined by 

fitting the calculated values to the observed vibrational frequencies. Besides that, force 

constant also can be determined through quantum mechanical calculation of the energy 

of an electronic state (ground state) as a function of the geometry.    
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3.3.2 The Classical Harmonic Oscillator  

The molecular vibrations can be treated using the Newtonian mechanics to calculate 

frequencies, υ. The basic assumption is that each vibration treated corresponds to a 

spring. The harmonic approximation obeys the Hooke’s law. The force on the spring is 

directly proportional to the displacement (change in bond length).  

F = - fq 

The negative sign indicates that F is the restoring force which acts in a direction 

opposite to the displacement and f is the force constant. Thus, the force exerted by the 

spring will cause the atoms to return to their original position. 

Equating Newton second law of motion to the exerted force,  

F = ma = 2

2

dt
qdm = -fq 

 2

2

dt
qdm + fq = 0. 

We use the differential equation to solve it,  

                                                              ( )φ+πν= t2cosqq 0  

       ( )φ+πνπν−= t2sinq2q 0&  

       ( ) q4t2cosq4q 22
0

22 νπ−=φ+πννπ−=&& . 

The is substituted into q&& 2

2

dt
qdm + fq = 0 

 ( ) 0fqq4m 22 =+νπ−  0q, ≠  

 
m
f

2
1
π

=ν∴ . 

The force constant can be defined in terms of Hooke’s Law. Alternatively, it may be 

defined in terms of the vibrational potential energy. The exerted force is equal to the 

negative slope of the potential energy, fq
dq
dVF −=−=  

    fq
dq
dV

=  
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    dq = ∫
=

=
q

0q

fqV
2

fq2

. 

Differentiating the potential energy twice with respect to q, 

    
2

2

dq
Vdf = . 

The force constant is found to be equal to the second derivative of the potential energy. 

In heteronuclear diatomic molecule, the reduced mass of the molecule is made from 

two atoms of masses, A and B is given by 
ΒΑ

+=
μ m

1
m
11  and the frequency is 

μπ
=ν

f
2
1 . 

The use of the reduced mass ensures that the centre of mass of the molecule is not 

affected by the vibration. Only one vibrational frequency is allowed although all 

amplitudes are possible. In other words, the two particle system is mathematically 

identical to the one particle system, provided the reduced mass of the pair is used. Thus, 

these principles are still used in the treatment of polyatomic molecules. Assuming no 

energy is lost, the kinetic energy and the potential in a periodic form can be written as: 

( )φ+πν=⎟
⎠
⎞

⎜
⎝
⎛= t2sin

2
fq

dt
dqm

2
1T 0

2
2

0
2

 

== 2fq
2
1V ( )φ+πν t2cos

2
fq

0
2

2
0 . 

Total energy is constant, E = T+V =
2

fq 2
0 . The classical harmonic oscillator can have 

any amplitude and energy. This is quite different to the quantum mechanical harmonic 

oscillator which is discussed below. 

 

3.3.3 The Quantum Mechanical Harmonic Oscillator 

From the classical mechanics, the frequencies of vibrations may be calculated correctly. 

Quantum mechanics also provides greater insight into aspects other than the 

frequencies. Consider two masses by weightless springs as in the classical mechanics of 
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harmonic motion. The Hamiltonian operator for the harmonic oscillator problem is the 

classical total energy of the system [25]. 

 H (q) = T (q) + V (q)       (16) 

 H = 22
22

2
11 fq

2
1rm

2
1rm

2
1

++ &&  

     = 22 fq
2
1q

2
1

+μ&          (17) 

The quantum mechanical Hamiltonian operator is then, 2
2

22

fq
2
1

dq
d

2
ˆ +

μ
−=Η
h  

The eigenvalues of this Hamiltonian are the energy levels:  

 E
μπ

⎟
⎠
⎞

⎜
⎝
⎛ +=

f
2
h

2
1n , where n = quantum number   0, 1, 2…,∞ . 

There is only one quantum number allowed to change for each transition. Therefore, 

the transition energy is given by 
μπ

=ΔΕ
f

2
h . Since νh=ΔΕ , the frequency associated 

with the change is 
μπ

=ν
f

2
1 . It is shown that the result is the same as in classical 

mechanics. In quantum mechanics, n=0, gives a finite energy, whereas, there is no 

analogue of the zero-point motion in the classical mechanics. 

There are many possible vibrational levels within each electronic state at which 

they vibrate corresponding to energy levels. According to the Born-Opphenheimer and 

simple harmonic approximations, the vibrational frequencies are determined by the 

normal modes corresponding to the molecular electronic ground state potential energy 

surface. Thus, the vibrational frequencies are related to the strength of the bond and the 

masses of the atoms. The electronic levels usually occur in the visible region whereas 

the vibrational and rotational levels occur in the infra-red. 

 In simple molecules the spectra are clearly resolved. In contrast, more complex 

molecular structures will lead to more absorption bands which give a more complex 

and poorly resolved spectrum. 
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CHAPTER 4 
 
Computerized Simulation of 

Magnetoresistance Random Access Memory 

Material (FexNiy) 
 
An alloy of Ni and Fe is proposed to be used as a random access memory material in 

computers and in data storage devices. The Ni and Fe atoms are simulated by using the 

density-functional theory. The vibrational frequencies of materials are calculated of 

variable ratio of Ni and Fe atoms and the anomalies in the concentration as a function 

of the largest vibrational frequency is observed. 

    

4.1 Introduction 

The modern computers use semiconductors for data storage. It is possible to replace 

these semiconductor films by a suitable magnetic material. An effort is being made to 

use the Ni-Fe alloy. The ratio of Ni and Fe metals in the alloy is not known. By means 

of computerized simulations, it may be possible to find the concentration of Ni in Fe 

for which the material works the best. Magnetic tunnel transistors are used to study 

spin-dependent transport in Ni81F19 and Co84Fe16 films [26]. The spin-polarized current 

can be much more efficient as a switch than the magnetic fields [27]. The film 

thickness and shape is important for the optimum hysteresis [28, 29].  
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The calculation of vibrational frequencies of clusters containing Ni and Fe 

atoms is reported. Since, the numbers of atoms are varied; the concentration of Ni in Fe 

is found for which the material has maxima or minima in the vibrational frequency.       

 

4.2 Methodology 

Density-functional theory in the local-density approximation (LDA) is used to calculate 

the vibrational frequencies of clusters of atoms. The details of the derivation are given 

by Lopez-Duran et. al [30]. The clusters of atoms are first optimized for the minimum 

energy. Then bond lengths and angles are determined for the stable configuration. The 

vibrational frequencies are calculated for the optimized clusters by using the double 

zeta spin polarized orbitals. The calculated clusters are then described. 

 

4.3 Clusters of NixFey Atoms 

(i) NiFe. The diatomic linear molecule has a bond length of 2.1468 Å when double 

zeta wave functions are used and 2.1339 Å when polarized wave functions are 

used. The effect of spin polarization on the bond length is observed to be about 6 

percent. Usually, the effect of magnetism on various thermodynamic properties is 

quite large. Hence, only the polarized double zeta wave functions are used. The 

vibrational frequency of Ni-Fe diatomic molecule is 312.7 cm-1 for the unpolarized 

and 316.4 cm-1 for the polarized wave functions, but the intensity is quite small, 

~0.006 km/mol, indicating that the number of diatomic molecules formed is quite 

small. This is due to the strong Coulomb interactions in the metal. 

(ii) NiFe2 (linear). The vibrations are generated in triatomic molecules which are more 

abundant than the diatomic molecules. The bond lengths in NiFe2 molecule are Fe-

Ni = 2.1376 Å and Fe-Fe = 4.2752 Å. It has a strong vibrational frequency at 302.7 

cm-1 with intensity 5.4 km/mole. 
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(iii) NiFe2 (triangular). In this molecule Fe-Ni = 2.2190 Å and Fe-Fe = 2.1919 Å. There 

is a strong vibrational frequency (intensity) at 253.5 cm-1 (3.4 km/mole) and a weak 

line at 363.1 cm-1 (0.007 km/mole). 

(iv) NiFe3 (triangular). In this system the Fe atoms form a triangle and Ni sits in the 

centre of the triangle with distance Ni-Fe = 2.1573 Å and Fe-Fe = 3.731 Å. There 

is a strong vibration at 328.1 cm-1 (2.5 km/mole). 

(v) NiFe3 (pyramidal). In this cluster, three Fe atoms form a triangle and one Ni atom 

sits on top position. The distance Fe-Ni = 2.3675 Å and Fe-Fe distance is 2.190 Å. 

The vibrational frequencies (intensities) calculated from the first principles with 

polarized orbitals are, 125.5 (1.5), 231.1 (11.3), 252.2 (12.4) and 360.5 (26.4) in 

units of cm-1 (km/mole). The vibrational spectrum calculated from the first 

principles is shown in Figure 4.3.1.  

 

 
 

Figure 4.3.1.  The vibrational spectrum of NiFe3 (pyramidal) calculated with polarized orbitals. 
 

(vi) NiFe4 (square). In this cluster four Fe atoms are on the four corners of a square and 

Ni is in the centre of the square. The bond distances are, Fe-Ni = 2.0946 Å and Fe-

Fe = 2.962 Å. The strong vibrational mode is found at 377.3 (2.5) cm-1 (km/mole). 

(vii) NiFe4 (pyramidal). This molecule has four Fe atoms on a square and one Ni atom is 

on the top position with distances, Fe-Ni = 2.3447 Å, Fe-Fe = 2.073 Å. The 

vibrational frequencies (intensities) are found to be 163.9 (0.002), 263.9 (3.8), 

342.5 (0.44), 394.9 (0.0005) cm-1 (km/mole). 
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(viii) NiFe4 (Td). One Ni atom is in the centre and four Fe atoms form a tetrahedron. The 

bond lengths are Fe-Ni = 2.093 Å and Fe-Fe = 3.419 Å. A very strong vibrational 

mode occurs at 369.8 cm-1 with degeneracy of three. 

  

 The highest frequency of these eights clusters as a function of number of Fe 

atoms is examined. With one atom the largest frequency is 316.4 cm-1, with two atoms 

it is 363.1 cm-1, with three atoms 360.5 cm-1 and with four atoms is 377.3 cm-1. Taken 

as a whole, the trend of the function shows that the largest frequency increases with 

increasing number of Fe atoms. No particular peak is found. For n = 1, the frequency is 

small and for n = 4 it is large. There is approximately a plateau between n = 2 and 3. 

Hence the properties of the alloy near n = 2 or 3 are different from that near n = 1 or 4. 

The alloy of formula NiFe2 is therefore different from those of other concentrations. 

The following clusters are made with two Ni atoms and the numbers of Fe atoms are 

varied. 

 

(ix) Ni2Fe (linear). In this system the distances are Fe-Ni = 2.2701 Å and Ni-Ni = 4.540 

Å, and there is a strong vibrational peak at 267.1 (3.4) cm-1 (km/mole). 

(x) Ni2Fe (triangular). In this molecule the bond lengths are Fe-Ni = 2.1753 Å and Ni-

Ni = 2.256 Å. The vibrational frequencies (intensities) are 134.36 (43.1), 222.6 

(1.8) and 361.6 (0.02) cm-1 (km/mole). 

(xi) Ni2Fe2 (rectangular). The alternate atoms are Ni and Fe with bond distances Fe-Ni 

= 2.1647 Å, Ni-Ni = 2.887 Å and Fe-Fe = 3.248 Å. The strong vibrational 

frequencies (intensities) are found at 63.6 (0.09), 282.2 (0.59) and 294.2 (4.7) cm-1 

(km/mole). The dipole strengths of these modes are 6.13, 8.4 and 63.5 esu 

respectively. 
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(xii) Ni2Fe3 (bipyramidal). The three Fe atoms form a triangle and two Ni atoms sit on 

each side of the triangle. The Fe-Fe distance in 2.291 Å, Ni-Ni distance is 3.844 Å 

and Fe-Ni distance is 2.3332 Å. The vibrational frequencies (intensities) 

{degeneracies} are 121.3 (0.8) {2}, 247.1 (8.3) and 323.5 (0.45) cm-1 (km/mole). 

The vibrational spectrum calculated from the first principles is given in Figure 

4.3.2.  

 

 
 

Figure 4.3.2.  Vibrational spectrum of Ni2Fe3 (bipyramidal) calculated from the first principles. 
 

(xiii) Ni2Fe4 (bipyramidal). The four Fe atoms form a square and two Ni atoms sit on 

each side of the square. The Ni-Ni distance is 3.663 Å, Fe-Fe distance is 2.1028 Å 

and the Fe-Ni distance is 2.3591 Å. The calculated vibrational frequencies 

(intensities) {degeneracies} are 136.5 (2.17) {2}, 299.4 (2.36), 320.3 (1.69) {2} 

cm-1 (km/mole). 

 

The largest vibrational frequency for Ni2Fen is 267.1 (n = 1), 294.2 (n = 2), 

323.5 (n = 3) and 320.3 (n = 4). Although the frequency increases from n = 1 to n = 2, 

it is almost flat near n = 3 or 4. Hence, the flatness in the vibrational frequency for this 

concentration may indicate special physical properties and for this concentration. 

 

(xiv) Ni3Fe (triangular). In this cluster the three Ni atoms form a triangle and Fe atom is 

in the centre. The bond lengths are, Fe-Ni = 2.0723 Å and Ni-Ni = 3.589 Å. The 
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strong vibrational frequencies (intensities) {degeneracies} are, 83.9 (1.7) {2} and 

404.1 (5.2) {2} cm-1 (km/mole). 

(xv) Ni3Fe2 (bipyramidal). The three Ni atoms form a triangle and two Fe atoms are on 

each side of the triangle to form a bipyramid. The bond distances are, Fe-Ni = 

2.3414 Å, Ni-Ni = 2.3044 Å and Fe-Fe = 3.853 Å.  The strong vibrational 

frequencies (intensities) {degeneracies} are as follows: 141.7 (0.5) {2}, 237.2 (1.5) 

{2} and 277.5 (4.3) cm-1 (km/mole). 

(xvi) Ni3Fe3 (hexagonal). The Ni and Fe atoms are on alternate sites. The bond lengths 

are, Fe-Ni = 2.1566 Å, Ni-Ni = 3.372 Å and Fe-Fe = 4.015 Å. The strong 

vibrational frequencies (intensities) {degeneracies} are 112.5 (0.9), 257.6 (10.7) 

{2} and 319.1 (1.1) {2} cm-1 (km/mole). 

(xvii) Ni3Fe3 (triangle inside triangle). Fe atoms form a large triangle and Ni atoms form 

a small triangle such that the smaller triangle fits perfectly inside the bigger 

triangle. The Fe-Ni-Fe forms the sides of the triangle. The distances are Fe-Ni = 

2.2387 Å, Ni-Ni = 2.3069 Å and Fe-Fe = 4.477 Å. The strong vibrational 

frequencies (intensities) {degeneracies} are 147.8 (0.18) {2}, 193.1 (2.7) {2}, 

333.4 (5.9) {2} cm-1 (km/mole). 

 

In the above four clusters the largest frequency reduces as a function of n in 

Ni3Fen only for n going from 1 to 2 but at n = 3 a large value is obtained. Hence n = 2 

maybe indicating unique physical properties.  

 

(xviii) Ni4Fe (pyramidal). In this system four Ni atoms form a square and one Fe sits on 

top position. The Ni-Ni distance is 2.3231 Å and Fe-Ni distance is 2.2319 Å. The 

vibrational frequencies (intensities) {degeneracies} are, 132.1 (2.1) {2}, 188.3 

(4.6), 291.2 (4.1) {2} and 358.9 (2.8) cm-1 (km/mole). 
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(xix) Ni4Fe (planar). In this cluster the Ni ions are on the corners of a square and Fe is in 

the centre. The bond distances are Fe-Ni = 2.0649 Å and Ni-Ni = 2.920 Å. There is 

a strong vibration at 408.9 cm-1.  

(xx)  Ni4Fe2 (bipyramidal). The four Ni form a square and two Ni atoms sit one on each 

side of the square. The bond distances are Fe-Ni = 2.3160 Å, Ni-Ni = 2.3256 Å and 

Fe-Fe = 3.262 Å. The strong vibrational frequencies (intensities) {degeneracies} 

are, 152.9 (0.1) {2}, 274.6 (3.0) and 291.9 (3.6) {2} cm-1 (km/mole). 

(xxi) Ni4Fe3 (boat shape). The four Ni form a rectangle with one Fe in the centre as well 

as one Fe on left side of the rectangle and another Fe on the right hand side of the 

rectangle. The bond distances are Fe-Ni = 2.2709Å, Ni-Ni = 2.4145 Å and Fe-Fe = 

3.195 Å. The vibrational frequencies (intensities) {degeneracies} are as follows 

68.1 (0.1), 99.2 (1.5), 102.2 (1.4), 105.9 (2.0), 139.8 (2.9), 237.1 (0.9), 242.2 

(0.17), 266.3 (0.9), 309.1 (1.6), 323.8 (10.8) and 330.6 (2.1) cm-1 (km/mole). The 

vibrational spectrum calculated from the first principles is shown in Figure 4.3.3.  

 

 
 

Figure 4.3.3.  The vibrational spectrum calculated from the first principles using polarized 

orbitals of Ni4Fe3 (boat shape). 

 

(xxii) Ni4Fe4 (deformed cube). The two Ni atoms and two Fe atoms form a rectangle 

and then one more layer of four atoms is put on top so that Ni is on top of Ni and 

Fe is on top of Fe. The bond distances are Fe-Ni = 2.2926 Å, Ni-Ni = 2.2983 Å 

and Fe-Fe = 2.526 Å. The vibrational frequencies (intensities) {degeneracies} are, 
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135.8 (0.07), 157.8 (0.003), 192.5 (3.1), 235.6 (2.8), 267.7 (6.1) and 291.6 (0.09) 

cm-1 (km/mole).  

(xxiii) Ni4Fe4 (square inside square). The Ni atoms form a small square and Fe forms a 

large square. The inside square is rotated 90 degrees with respect to the outer 

square. The bond distances are, Fe-Ni = 2.2184 Å, Ni-Ni = 2.306 Å and Fe-Fe = 

4.313 Å. The positive frequencies (intensities) are, 127.48 (0.1), 128.5 (0.1), 

144.8 (0.2), 145.2 (0.007), 199.2 (0.0001), 216.8 (0.00002), 223.7 (5.1), 229.7 

(5.86), 298.3 (19.8), 299.6 (10.1), 307.1 (0.008) and 365.1 (0.16) cm-1 (km/mole). 

 

In the series Ni4Fen apparently there is a minimum at n = 2 and the vibrational 

frequencies again shoot up at n = 4 but yet it depends on the structure. The material 

compositions as well as the structures play an important role in determining the 

material with special properties. 

 

4.4 Conclusions 

Several clusters of FeNi atoms are made and the vibrational frequencies are calculated. 

From the largest vibrational frequencies, plateaus in the frequencies as a function of 

concentration are observed for each NiFen, Ni2Fen, Ni3Fen and Ni4Fen. Hence, these 

materials may have special physical properties. Currently, these calculations are 

waiting to be proven experimentally. In this way, a method is found to find 

concentration of the constituent atoms which may be important. The present material is 

of significant importance as a candidate for memory material. 
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CHAPTER 5 
 
DFT Calculation of Vibrational Frequencies 

of FeCoB m-RAM 
 
The present available random access memory materials are semiconductors. It is 

proposed to develop magnetoresistance based random access memory (m-RAM) 

materials. Hence, an alloy of Fe, Co and B is considered which will be strongly 

magnetic and work well as a memory device. The vibrational frequencies of clusters of 

atoms of Fe, Co and B are calculated. The larger vibrational frequencies indicate larger 

force constants, 
μπ

=ν
f

2
1 . FeCoB2 is found to have the largest vibrational frequency 

of 869.5 cm-1 whereas BFeCo2 has 502.59 cm-1. The ratio of constituents and the 

structures which have large force constant are identified. Hence, FeCoB2 is better than 

BFeCo2. The cluster formation depends on the method of quenching. Hence, method of 

preparation can be modified to achieve large force constants. 

 

5.1 Introduction 

The transfer of spin angular momentum from a spin polarized current to a small 

ferromagnet can switch the orientation of the ferromagnet. This process can be faster 

than that produced by a current generated magnetic field. The semiconductors are 

therefore distinguished from the magnetic materials. The spin in a ferromagnet may 
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switch faster than non-polarized semiconductors [27]. Hence, there is a need to develop 

magnetic random access memory devices (MRAM). These magnetic devices depend on 

the shape of the material [29] and naturally on the composition. Hence, the ratios of 

various magnetic atoms are of interest such as Fe and Co in the magnetic material made 

from FeCoB.  

In this chapter, many clusters of varying number of Fe and Co atoms are made 

to determine which ratio will work the best. The vibrational frequencies of the clusters 

are determined which can be used to indicate the force constant. Hence, the ratio of Fe: 

Co for which the force constant is optimum can be determined. Density functional 

theory is used to calculate the vibrational frequencies of clusters of atoms which are 

used to find the material for which the force constant is optimum. 

 

5.2 Methodology 

The density-functional theory is obtained by writing the Hamiltonian in the form of 

electron density,  

( ) ( ) ( ) ( ) N2

2

N2 dx...dxx...xrNˆrˆrˆr ∑∫∑
σ

σ
σ

+
σ σΨ=ΨψψΨ=ΨρΨ=ρ

rrrr  (18) 

where, dx denotes integration over the spatial variable rr  and summation over the spin 

variable σ. The density usually depends on the coordinates, n(x). Hence, the differential 

of the Hamiltonian with respect to coordinate dependent density leads to a functional 

Kohn-Sham equation [19, 31, 32, 33]. Along with this equation and the motion of 

nuclei and can be used to determine vibrational frequencies. Our experience with this 

type of calculation [34-36] shows that the predicted vibrational frequencies are quite 

close to the experimental values. The Amsterdam density functional programme (ADF) 

is used to calculate the vibrational frequencies.  
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5.3 Clusters of Atoms 

(i) FeCoB (linear). The configurations of atoms are optimized for which the energy is a 

minimum. For the linear molecule FeCoB, the bond lengths found by using double-

zeta wave functions are Fe-Co = 206.9 pico meter, Co-B = 192.2 pm and Fe-B = 

399.1 pm. The values are sensitive to the choice of wave functions. For non-

magnetic atoms, the double-zeta wave function works the best as far as obtaining 

agreement with the experimental data is concerned. In the case of Fe and Co which 

have strong magnetic moment, is observed that by using the spin polarized double 

zeta wave functions (DZP) it gave slightly different values where Fe-Co = 207.0 

pm, Co-B = 189.8 pm and Fe-B = 396.8 pm. The distance of Co-B with 189.8 pm 

found for the polarized double zeta wave functions (DZP) is to be compared with 

192.2 pm found from unpolarized wave functions. The values differ by about 2 

percent. Hence, in this chapter, the values given are calculated by using DZP wave 

functions. In the molecule Fe-Co-B, one of the frequencies is due to Fe-Co bond 

and the other is due to Co-B bond. The values of the vibrational frequencies 

(intensity) found are 267.0 (10.1) and 542.5 (13.8) in units of cm-1 (km/mole). 

(ii) Co-Fe-B (linear). In the previous cluster Co was in the centre while in the present 

case, Fe is in the centre. The forces are dependent on the geometric position of the 

atoms and on the electronic configuration which is at the end of the molecule. The 

DZP wave functions for this system gave the bond lengths, Fe-Co = 218.5 pm, Co-

B = 387.7 pm and Fe-B = 169.1 pm. The vibrational frequencies (intensity) are 

247.3 cm-1 (0.61) and 755.1 cm-1 (0.39) in units of cm-1 (km/mole). 

(iii)Fe-B-Co (linear). In this molecule B atom is in the centre. The DZP optimized bond 

lengths are Fe-Co = 351.9 pm, Co-B = 171.5 pm and Fe-B = 180.4 pm. The 

calculated vibrational frequencies (intensities) {degeneracy} are, 194.97 (40) {2}, 

286.84 (2.3) and 912.26 (17.7) cm-1 (km/mole). 
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(iv) FeCoB (triangular). In this configuration, the DZP optimized bond lengths are Fe-

Co = 208.6 pm, Co-B = 181.2 pm and Fe-B = 182.1 pm. The vibrational 

frequencies (intensities) are 324.0 (2.4), 384.7 (16.7) and 764.1 (17.5) cm-1 

(km/mole). 

 

The largest vibrational frequency indicates that the geometrical configuration 

plays an important role. When boron atom is in the centre, the largest vibrational 

frequency is obtained. This largest frequency is also associated with the largest force 

constant.  

 

(v) BFeCoB (linear). The linear molecule is made with the atoms in the same sequence 

as indicated. In this case the bond lengths calculated by DZP wave functions are 

found to be Fe-Co = 246.1 pm, Co-B = 167.8 pm, Fe-B = 169.2 pm and B-B = 

583.1 pm. The vibrational frequencies are 98.35 (3.29) {2}, 173.4 (0.001), 768.54 

(0.14) and 803.6 (0.07) cm-1 (km/mole) {degeneracy}. 

(vi) CoFeB2 (triangular). The atoms CoB2 form a triangle and Fe is located in the centre 

of the triangle. In this case the bond lengths found are Fe-Co = 208.1 pm, Co-B = 

173.3 pm, Fe-B = 367.3 pm and B-B = 180.4 pm. The vibrational frequencies 

calculated are 217.09 (20.6), 346.2 (82), 693.5 (0.52) and 810.9 (7.9) cm-1 

(km/mole). The calculated spectrum is shown in Figure 5.3.1. 

 

 
 

Figure 5.3.1.  Vibrational spectrum of CoFeB2 (triangular) calculated from the first principles. 
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(vii) FeCoB2 (triangular). The FeB2 form a triangle with Co in the centre of the triangle. 

The bond lengths are calculated to be Fe-Co = 217.7 pm, Co-B = 177.0 pm, Fe-B 

= 382.6 pm and B-B = 169.7 pm. The vibrational frequencies calculated are found 

to be 224.6 (7.5), 500.1 (1.4), 632.8 (0.3), and 869.5 (0.02). The calculated 

vibrational spectrum is shown in Figure 5.3.2. 

 

 
 

Figure 5.3.2.  Spectrum of FeCoB2 (triangular) calculated using DZP wave functions. 

 

(viii) FeCo2B (triangular). The FeCo2 form a triangle and B is located in the centre. The 

bond distances are found to be Fe-B = 181.8 pm, B-Co = 185.0 pm, Co-Co = 

208.1 pm and Fe-Co = 350.5 pm. The vibrational frequencies (intensities) found 

are 130 (30), 232.0 (0.3), 360.6 (0.009), 418.5 (11.4) and 813.9 (70) cm-1 

(km/mole). The calculated vibrational spectrum is shown in Figure 5.3.3. 

 

 
 

Figure 5.3.3.  Vibrational spectrum of FeCo2B (triangular).   
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(ix) BFeCo2 (triangular). The atoms BCo2 form a triangle and Fe is located in the centre. 

The DZP bond lengths are B-Fe = 207.3 pm, Fe-Co = 222.9 pm, Co-Co = 214.8 pm 

and Co-B = 416.8 pm. The calculated vibrational frequencies (intensities) are, 22.2 

(0.65), 50.1 (1.8), 218.9 (0.48), 228.1 (3.38), 347.1 (1.5) and 502.6 (0.32) cm-1 

(km/mole). The vibrational spectrum calculated for this molecule is given in  

Figure 5.3.4. 

 

 
 

Figure 5.3.4.  The vibrational spectrum of BFeCo2 (triangular) calculated with polarized 

orbitals. 

 

(x) CoBFe2 (triangular). The atoms CoFe2 are on the corners of a triangle and B is in 

the centre. The DZP bond lengths are Co-B = 182.8 pm, B-Fe = 189.1 pm and Fe-

Fe = 202.0 pm. The vibrational frequencies (intensities) are 128.3 (31), 221.2 (1.8), 

351.2 (11), 396.9 (6.8) and 880.4 (8.2) cm-1 (km/mole). The vibrational spectrum 

calculated from the first principles DFT (LDA) is given in Figure 5.3.5. 

 

 
 

Figure 5.3.5.  The vibrational spectrum of CoBFe2 (triangular) calculated from the first 

principles by using polarized orbitals.  
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(xi) B-Co-B-Fe (rectangular). In this molecule the two B atoms are on two opposite 

corners of a distorted rectangle. The Co and Fe atoms are on the remaining corners. 

The bond lengths are Fe-Co = 252.6 pm, Co-B = 177.7 pm, Fe-B = 177.0 pm and 

B-B = 249.1 pm. The vibrational frequencies (intensities) are 288.8 (1.9), 569.1 

(3.6), 686.9 (5.0), 751.7 (100) and 767.8 (2.2) cm-1 (km/mole). The calculated 

vibrational spectrum is shown as in Figure 5.3.6. 

 

 
 

Figure 5.3.6.  Spectrum of B-Co-B-Fe (rectangular) calculated by using DZP wave functions. 

 

(xii) FeCo2B (rectangular). The Co atoms are on opposite corners of a distorted 

rectangular shaped molecule. The Fe and B are also on the opposite corners. The 

bond lengths are B-Co = 176.0 pm, Fe-Co = 211.7 pm, Co-Co = 308.2 pm and Fe-

B = 230.2 pm. The calculated vibrational frequencies (intensities) are found to be 

114.8 (14.7), 178.7 (7.3), 284.3 (0.87), 311.6 (0.07), 585.9 (2.4) and 811.6 (30.4) 

cm-1 (km/mole). The calculated vibrational spectrum is given in Figure 5.3.7. 

 

 
 

Figure 5.3.7.  Vibrational spectrum of FeCo2B (rectangular).   
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(xiii) Fe2CoB (distorted rectangular). The Fe2 atoms are on the opposite corners of a 

distorted rectangle and the B and Co are also on the opposite corners of the 

rectangle. The bond lengths are Co-B = 196.8 pm, Co-Fe = 220.1 pm and Fe-B = 

182.2 pm. The calculated vibrational frequencies (intensities) are 116.6 (16.7), 

198.2 (1.0), 235.1 (0.92), 272.7 (0.22), 602.2 (4.7) and 708.6 (26.8) cm-1 

(km/mole). The vibrational spectrum calculated from the first principles is given 

in Figure 5.3.8. 

 

 
 

Figure 5.3.8.  Vibrational spectrum of Fe2CoB (distorted rectangular) calculated using DZP 

wave functions. 

 

5.4 Conclusions 

Out of all of the clusters of atoms studied above, the linear configuration Fe-B-Co with 

B in the centre gave the highest frequency of 912.26 cm-1. Hence, the linear material 

has the strongest force constant. The triangular BFeCo2 with Fe in the centre has the 

smallest vibrational frequency of 502.6 cm-1. Hence, it is possible to distinguish the 

memory material for optimum memory performance. 
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CHAPTER 6 
 
Large Clusters 

 
Clusters of atoms of Fe, Co and B have been made by using the density-functional 

theory in the local density approximation (LDA). The structural parameters, such as 

bond lengths and vibrational frequencies have been obtained by using the double zeta 

(DZ) wave functions as well as with spin polarized orbitals (DZP). Since materials of 

MRAM are ferromagnetic, effect of magnetism is large. Thus, only the spin polarized 

values are considered in this study.    

 

6.1 Introduction 

The clusters of atoms containing 3 to 4 atoms each are given in the previous chapters. 

In the present chapter, the clusters containing 5 or more atoms are discussed. Model 1 

contains clusters with 5 atoms, model 2 has clusters of 6 atoms, model 3 has clusters of 

7 atoms, model 4 has clusters of 8 atoms… model 7 has clusters of 11 atoms each. The 

largest frequency in each clusters are examined.       

 

6.2 Computational Results 

6.2.1 Model 1 

Model 1 consists of clusters with 5 atoms. Different structure and combination atoms of 

five are built. For cluster FeCoB3, the bond distance among boron atoms is 169.0 pm, 
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Fe-Co is 211.0 pm and Fe-B is 217.5 pm. While, the bond distance among iron atoms is 

201.9 pm, B-Co is 179.0 pm and B-Fe is 222.9 pm for cluster Fe3CoB as shown below.  

 

Table 6.2.1.1.  Frequencies and intensities of clusters FeCoB3 and Fe3CoB calculated using DZ 

wave functions. 

FeCoB3          Fe3CoB          

Frequency (cm-1)  Intensity 
(km/mole) 

Frequency (cm-1) Intensity 
(km/mole) 

-89.3 
169.3 
268.3 
409.0 
703.6 
933.0 

 (-2.2) 
 (0.8) 
 (22.2) 
 (4.3) 
 (2.4) 
 (50.8) 

-29.6 
213.3 
235.8 
219.0 
385.2 
825.5 

 (-0.9) 
 (0.9) 
 (0.1) 
 (16.3) 
 (8.4) 
 (16.5) 

 

 

 

Figure 6.2.1.1.  The first spectrum on top and the second spectrum shows peaks of FeCoB3 and 

Fe3CoB respectively calculated using double zeta polarized orbitals. 
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 Clusters of FeCo2B2, Fe2CoB2 and Fe2Co2B formed a distorted pyramid. 

Pictures and bond lengths of these clusters are shown in Table 6.2.1.2. The calculated 

vibrational frequencies (intensities) units of cm-1 (km/mole) using spin polarized 

orbitals for cluster FeCo2B2 are 87.4 (0.5), 159.1 (0.1), 327.9 (1.2), 385.7 (0.7), 482.1 

(40.7), 521.2 (34.9), 644.2 (8.6) and 760.8 (2.0). 

 Cluster Fe2CoB2 shows two strong peaks at 458.3 cm-1 and 568.7 cm-1 with 

intensity of 56.4 km/mole and 63.1 km/mole respectively. There are six weak peaks 

where the frequencies (intensities) are 140.7 (0.0004), 183.7 (0.02), 321.1 (0.5), 465.9 

(0.0006), 668.9 (16.6) and 738.4 (0.2) with units cm-1 (km/mole). 

 Vibrational frequencies of cluster Fe2Co2B shows one strong peak at 432.4 cm-1 

(23.9 km/mole) with weak peaks, cm-1 (km/mole), at 96.9 (0.05), 188.1 (0.6), 198.8 

(0.3), 245.0 (2.5), 263.9 (0.2), 590.6 (4.1) and 627.8 (5.5). 

 

Table 6.2.1.2.  Structures and bond lengths of clusters FeCo2B2, Fe2CoB2 and Fe2Co2B. 

Cluster Structure Bond lengths (pm) 

FeCo2B2 

 

Fe-B = 188.2 
Fe-Co = 228.8 
Co-B = 186.6 

Fe2CoB2 

 

Co-Fe = 242.3 
Co-B = 185.3 
B-Fe = 188.8 

 

Fe2Co2B 

 

B-Co = 191.3 
B-Fe = 193.0 
Fe-Co = 224.2 

 

 The clusters FeCoB3, FeCo3B and Fe3CoB formed a symmetric structure of 

bipyramidal where three similar atoms form a triangle in middle and the atoms sit on 

each side of the triangle. The bond lengths in cluster FeCoB3 are B-B = 180.4 pm, Fe-B 
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= 182.1 pm and Co-B = 185.7 pm. The frequencies (intensities) {degeneracy} values 

are 324.9 (12.2) {2}, 359.0 (0.2), 577.9 (0.0003) {2}, 647.0 (5.6) {2}, 714.1 (23.5) and 

858.0 (1.7) in units cm-1 (km/mole).  

 The bond lengths for the cluster FeCo3B are 240.9 pm for Co-Co bond, 184.4 

pm for Co-B bond and 221.7 pm for Fe-Co bond. The strongest peak appears at 500.6 

cm-1 (24.6 km/mole) with degeneracy of two. The weak peaks appear to be 83.2 (0.3) 

{2}, 216.2 (1.6) {2}, 226.6 (4.8), 355.6 (0.002) and 694.7 (16.1), units of cm-1 

(km/mole). 

 For cluster Fe3CoB, there are three strong peaks with three weak peaks. The 

strong peaks are 223.4 cm-1 (6.7 km/mole), 485.6 cm-1 (16.9 km/mole) and 714.0 cm-1 

(14.1 km/mole). While the weak peaks are at 125.7 cm-1 (km/mole), 251.6 cm-1 (3.1 

km/mole) and 365.7 cm-1 (0.8 km/mole). The bond distances are Fe-Fe = 231.7 pm, Fe-

Co = 224.6 pm and Fe-B = 188.7 pm.  

 

6.2.2 Model 2 

Three clusters with chemical composition of FeCoB4, FeCo4B and Fe4CoB forms 

bipyramidal structure. Four of the similar atoms form a square in middle with different 

atoms on each side. The structure of FeCoB4 gives the strongest peak at 737.9 cm-1 

with intensity of 91.1 km/mole and weak peaks with frequencies (intensities) 

{degeneracy} at 243.7 (0.4) {2}, 376.1 (0.05), 492.0 (0.3) {2}, 679.4 (10.3) {2} and 

938.6 (0.8). The bond distances for B-B = 169.9 pm, Fe-B = 188.7 pm and Co-B = 

190.1 pm. 

 The bond lengths in cluster FeCo4B are Co-Co = 223.1 pm, Fe-Co = 233.6 pm 

and Co-B = 193.0 pm. The vibrational frequencies are 135.4 cm-1, 235.8 cm-1, 273.4 

cm-1, 339.5 cm-1, 510.1 cm-1 and 622.4 cm-1 with intensities of 0.2 km/mole, 5.2 

km/mole, 1.8 km/mole, 0.8 km/mole, 15.1 km/mole and 14.3 km/mole respectively.  
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 The cluster Fe4CoB having frequencies (intensities) at 168.7 (0.7) {2}, 243.5 

(3.8), 279.0 (3.1) {2}, 337.5 (0.03), 470.5 (24.1) {2} and 589.6 (5.3) cm-1 (km/mole) 

{degeneracy}. The bond lengths calculated in this clusters are Fe-Fe = 229.2 pm, Fe-B 

= 200.1 pm and Fe-Co = 235.0 pm. The vibrational spectra are shown in Appendix B. 

 Another design for FeCoB4 is like a shape of a building. The iron atom is on top 

of the pyramid, where the pyramid is formed of four boron atoms and a cobalt atom. 

The bond length of B-B is 162.2 pm, B-Co is 207.1 pm and Co-Fe is 218.5 pm. A 

strong peak appears at 780.0 cm-1 with intensity of 69.3 km/mole and degeneracy of 2. 

   

Table 6.2.2.1.  Pictures and bond lengths of clusters FeCo2B3 and CoFe2B3 calculated using 

DFT simulations. 

Cluster Structure Bond lengths (pm) 

FeCo2B3 

 

Fe-Co = 237.9 
Co-Co = 224.7 
Co-B = 175.4 
B-B = 159.8 

CoFe2B3 

 

Co-Fe = 236.5 
Fe-Fe = 230.2 
Fe-B = 175.5 
B-B = 159.5 

  

 Table 6.2.2.1 shows the structure of clusters FeCo2B3 and CoFe2B3. As the 

structure becomes complicated, more vibrational frequencies are obtained. The 

frequencies of FeCo2B3 are -89.6 (-1.9), 69.4 (3.8), 223.6 (3.2), 229.1 (0.8), 275.9 (1.2), 

276.4 (0.003), 497.0 (0.3), 619.2 (0.8), 653.8 (0.5), 775.3 (7.97) and 1188.1 (3.5), cm-1 

(intensities, km/mole). 

 The cluster CoFe2B3 shows vibrations at -93.7 cm-1 (-7.6 km/mole), 117.4 cm-1 

(12.6 km/mole), 220.9 cm-1 (0.5 km/mole), 259.2 cm-1 (1.0 km/mole), 261.5 cm-1 (0.3 

km/mole), 271.6 cm-1 (0.7 km/mole), 491.6 cm-1 (0.3 km/mole), 617.3 cm-1 (3.6 
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km/mole), 649.2 cm-1 (1.2 km/mole), 774.5 cm-1 (12.4 km/mole) and 1166.4 cm-1 (0.2 

km/mole). The negative value of a frequency indicates an imaginary frequency. The 

reasons of negative frequencies are obtained is discussed in Appendix A. 

 The configuration of Fe2Co2B2 is in Figure 6.2.2.1. The bond lengths are Co-Co 

= 206.8 pm, B-B = 166.6 pm, Fe=Fe = 213.1 pm, Co-B = 186.8 pm and B-Fe = 193.9 

pm. The vibrations mode are at -198.4 cm-1, 104.8 cm-1, 232.0 cm-1, 235.2 cm-1,  313.0 

cm-1, 347.6 cm-1, 552.3 cm-1, 699.7 cm-1 and 844.5 cm-1 with intensities of -0.57 

km/mole, 34.5 km/mole, 5.6 km/mole, 0.1 km/mole, 22.2 km/mole, 4.4 km/mole, 14.0 

km/mole, 12.8 km/mole and 8.3 km/mole respectively. 

 

Figure 6.2.2.1.  Picture of the cluster Fe2Co2B2. 

 
 Fe2Co3B, three cobalt atoms and two iron atoms formed a triangular base 

bipyramidal and a boron atom is on top of it. The distance among Co-Co atoms is 252.6 

pm, Co-Fe atoms is 219.4 pm and Fe-B is 175.8 pm. The frequencies (intensities) 

{degeneracy} values are -86.6 (-3.5) {2}, 114.0 (0.5) {2}, 144.5 (0.2), 224.5 (0.5) {2}, 

296.5 (9.3) {2}, 299.2 (2.7), 361.4 (3.7) and 693.9 (1.3) cm-1 (km/mole).  

 

6.2.3 Model 3 

This part contains clusters of seven atoms. FeCo2B4, FeCo4B2, Fe2CoB4, Fe2Co4B and 

Fe4Co2B formed the same structure where four identical atoms are in a square shape in 

the middle and two other atoms of the same are on each side to form a bipyramidal with 
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the only atom on top of the whole. The structure of Fe4CoB2 is a bit different but the 

shape is the same as those of clusters above. 

i. FeCo2B4. The bond lengths are B-B = 176.3 pm, both sides of B-Co are 

equivalent where B-Co = 205.7 pm and Fe-Co = 211.8 pm. The frequencies, 

cm-1 (intensities, km/mole) {degeneracy} are -94.7 (-2.9) {2}, 177.4 (2.2), 

201.3 (1.3) {2}, 327.5 (31.4), 455.8 (110.0), 468.1 (3.6) {2}, 575.9 (45.2) {2} 

and 801.9 (5.5). 

ii. FeCo4B2. The bond lengths are Co-Co = 237.3 pm, B-Co = 190.2 pm with Fe 

attached on top of B = 183.1 pm and the other side of B-Co = 192.0 pm. The 

frequencies (intensities) {degeneracy} are -129.1 (-0.04) {2}, 156.5 (0.3), 165.0 

(0.0004) {2}, 315.1 (7.4), 498.9 (1.1) {2}, 560.4 (28.2) {2}, 598.5 (20.3) and 

879.2 (1.3) cm-1 (km/mole).  

iii. Fe2CoB4. The bond lengths: B-B = 163.4 pm, B-Fe = 206.4 pm with a cobalt 

atom attached on top of Fe = 211.9 pm and the other side of B-Fe = 197.7 pm. 

The frequencies, cm-1 (intensities, km/mole): 186.4 (0.004), 207.4 (0.6), 219.7 

(0.1), 219.9 (0.1), 327.7 (25.1), 408.0 (1.3), 408.2 (1.3), 452.2 (0.001), 546.9 

(25.2), 866.7 (9.3), 869.8 (9.3), 887.0 (0.03) and 953.3 (7.5). 

iv. Fe2Co4B. The bond lengths are Co-Co = 235.0 pm, Co-Fe = 227.4 pm with a 

boron atom attached on top of iron atom giving length of 165.5 pm and the 

distance of Co-Fe on the other side is 226.0 pm. The frequencies, cm-1 

(intensities, km/mole) {degeneracy} are 92.9 (0.003) {2}, 97.9 (0.001) {2}, 

170.7 (0.02), 277.7 (5.3), 288.5 (8.8) {2}, 359.8 (8.0) and 867.9 (2.4).   

v. Fe4Co2B. Distance among Fe-Fe bond is 232.3 pm, Fe-Co is 230.2 pm with B 

on top Fe of length 166.2 pm and Fe-Co on other side with 224.6 pm. The 

strongest frequency is at 305.3 cm-1 (11.8 km/mole) {2}. 
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vi. Fe4CoB2. This cluster contains four Fe atoms as a square with a Co atom and B 

atom at each sides forming bipyramidal. The left B atom is on top of the whole. 

The bond lengths are Fe-Fe = 231.9 pm, Fe-B = 201.1 pm, Fe-Co = 229.2 pm 

and B-B = 165.1 pm. The largest frequency appears at 462.1 cm-1 with intensity 

of 21.8 km/mole and degeneracy of two. 

 

Table 6.2.3.1.  Comparisons between clusters FeCo3B3, Fe3CoB3 and Fe3Co3B. 

Cluster Structure Bond length (pm) Strong peaks, cm-1 
(Intensity, km/mole) 

FeCo3B3 

 

Fe-B = 181.2 
B-B = 190.7 
B-Co = 192.0 
Co-Co = 233.2 

403.0 (28.2) 
848.6 (39.3) 

Fe3CoB3 

 

Co-B = 184.9 
B-B = 191.8 
B-Fe = 189.7 
Fe-Fe = 232.5 

420.6 (42.0) 
837.8 (38.8) 

Fe3Co3B 

 

B-Fe = 191.5 
Fe-Fe = 233.3 
Fe-Co = 228.6 
Co-Co = 226.0 

387.7 (72.5) 

  

 The clusters shown in Table 6.2.3.1 as above are quite unique where the top part 

of the structure is a triangular base pyramid and the three atoms at the bottom part in a 

triangle shape are twisted 60° clockwise to the base. While for clusters in Table 6.2.3.2, 

the structure is long where two similar atoms are at the side of a bipyramid. 
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Table 6.2.3.2.  The comparison between clusters Fe2Co2B3 and Fe3Co2B2. 

Cluster Structure Bond length (pm) Strong peaks, cm-1 
(Intensity, km/mole) 

Fe2Co2B3 

 

B-B = 165.2 
B-Co = 199.1 
Co-Fe = 215.6 

262.7 (73.8) 
460.2 (31.3) 

Fe3Co2B2 

 

Fe-Fe = 229.0 
Fe-Co = 234.2 
Co-B = 165.5 

62.5 (8.9) 
253.6 (15.5) 

  

6.2.4 Model 4 

 

 

Figure 6.2.4.1.  Picture and the vibrational spectrum of cluster FeCo3B4. 
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 The model 4 consists of clusters with eight atoms. The clusters of FeCo3B4, 

Fe3CoB4, Fe3Co3B2, Fe3Co4B and Fe4Co3B having a crystal structure. Figure 6.2.4.1 

shows picture of cluster FeCo3B4 and the spectrum calculated using spin polarized 

double zeta wave functions. The bond lengths are B-B = 182.96 pm, Co-Co = 228.6 pm, 

Fe-Co = 239.9 pm, Co-B = 183.2 pm and B1-B = 158.3 pm. The largest frequency is 

the strongest peak with 1140.4 cm-1 (90.9 km/mole) and the other weak peaks having 

values at frequencies, cm-1 (intensities, km/mole) {degeneracy}: 62.8 (1.2) {2}, 130.6 

(3.9) {2}, 219.5 (3.8), 250.9 (3.5) {2}, 339.8 (2.4), 437.6 (9.3), {2}, 479.3 (2.3) {2}, 

249.1 (0.1), 633.5 (15.0) and 923.8 (17.3) {2}. 

 For cluster Fe3CoB4, the largest frequency is also the strongest peak at 1170.4 

cm-1 (66.2 km/mole). The other peaks remaining are at frequencies, cm-1 (intensities, 

km/mole) {degeneracy}: 93.0 (0.01) {2}, 200.4 (9.04) {2}, 247.2 (0.7), 398.1 (5.6) {2}, 

409.1 (8.1), 485.2 (1.2) {2}, 529.1 (0.2), 669.7 (8.4) and 874.6 (19.0) {2}. 

 The vibrational mode for the cluster Fe3Co3B2 are 89.9 cm-1, 92.9 cm-1, 220.4 

cm-1, 227.8 cm-1,  238.2 cm-1, 254.8 cm-1, 306.8 cm-1, 313.6 cm-1, 337.8 cm-1, 398.5 cm-

1, 659.5 cm-1 and 669.6 cm-1 with intensities {degeneracy} of 0.00002 km/mole, 0.0003 

km/mole {2}, 4.2 km/mole {2}, 0.4 km/mole {2}, 12.3 km/mole {2}, 0.24 km/mole, 

0.003 km/mole, 31.8 km/mole, 0.3 km/mole, 2.5 km/mole {2}, 6.5 km/mole and  1.4 

km/mole respectively. 

 The cluster Fe3Co4B having frequencies (intensities) {degeneracy} values at 

87.4 (0.0001) {2}, 95.6 (0.00002), 134.1 (2.2) {2}, 184.9 (3.6) {2}, 212.7 (1.4), 229.7 

(8.2) {2}, 243.9 (1.5) {2}, 286.7 (3.6), 308.4 (10.6) {2}, 343.4 (3.9), 374.6 (6.9) and 

654.3 (0.7) cm-1 (km/mole). 

 The cluster Fe4Co3B shows frequencies at 28.1 cm-1, 116.3 cm-1, 181.5 cm-1, 

188.8 cm-1, 224.6 cm-1, 240.6 cm-1, 258.1 cm-1, 299.4 cm-1, 360.7 cm-1, 368.5 cm-1 and  

654.4 cm-1 with intensities {degeneracy} of 0.00002 km/mole, 4.7 km/mole {2}, 0.36 
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km/mole, 2.8 km/mole {2}, 2.7 km/mole {2}, 0.08 km/mole {2}, 2.9 km/mole, 0.2 

km/mole, 21.4 km/mole, 3.3 km/mole {2} and  2.9 km/mole respectively. The bond 

lengths of cluster Fe3CoB4, Fe3Co3B2, Fe3Co4B and Fe4Co3B are list in Table 6.2.4.1 as 

below. 

 

Table 6.2.4.1.  Bond lengths for cluster Fe3CoB4, Fe3Co3B2, Fe3Co4B and Fe4Co3B. 

Fe3CoB4 

 

Fe3Co3B2 

 

Fe3Co4B 

 

Fe4Co3B 

 
Bond lengths (pm) 

B1-B = 157.9 
B-B = 181.5 
B-Fe = 190.2 
Fe-Fe = 218.4 
Fe-Co = 233.6 

Bond lengths (pm) 

B-Co = 190.1 
Co-Co = 229.0 
Co-Fe = 226.2 
Fe-Fe = 227.1 
Fe-B = 194.5 

Bond lengths (pm) 

B-Fe = 195.3 
Fe-Fe = 224.4 
Fe-Co = 223.1 
Co-Co = 227.0 
Co1-Co = 227.6 

Bond lengths (pm) 

B-Co = 190.6 
Co-Co = 225.5 
Co-Fe = 235.6 
Fe-Fe = 227.4 
Fe-Fe1 = 234.7 

 

6.2.5 Model 5 

The clusters of nine atoms formed are grouped as model 5. Degenerate states can be 

found for each of the clusters as different possible occupation states for the clusters 

may be related by symmetry. In this chapter there are some clusters which are in 

symmetry shapes. Structures and bond lengths in FeCo4B4 and Fe4CoB4 are shown in 

table 6.2.5.1. 

The vibrational frequencies for cluster FeCo4B4 are 208.8 cm-1, 246.5 cm-1, 

265.1 cm-1, 335.5 cm-1, 572.3 cm-1, 644.3 cm-1, 745.3 cm-1 and  904.8 cm-1 with 

intensities {degeneracy} of 0.07 km/mole {2}, 2.6 km/mole {2}, 7.4 km/mole, 4.1 

km/mole, 0.7 km/mole {2}, 37.0 km/mole, 35.8 km/mole {2} and  13.0 km/mole 

respectively. 
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 Cluster Fe4CoB4 having frequencies (intensities) {degeneracy} values at -184.3 

(-6.8) {2}, 167.3 (2.8) {2}, 211.4 (4.8), 307.0 (8.7) {2}, 359.5 (0.6), 395.5 (50.1) {2}, 

477.1 (11.6), 836.9 (15.9) {2} and 914.9 (2.5) cm-1 (km/mole). 

 

Table 6.2.5.1.  Cluster FeCo4B4 and Fe4CoB4 with their respective bond lengths. 

Cluster Structure Bond lengths (pm) 

FeCo4B4 

 

Fe-B = 190.9 
B-B = 176.4 
B-Co = 179.9 
Co-Co = 224.5 

Fe4CoB4 

 

Co-Fe = 236.4 
Fe-Fe = 215.7 
Fe-B = 198.4 
B-B = 162.7 

 

 Clusters of FeCo4B4 having a crown shape where the top part of the structure is 

made up of four cobalt atoms and an iron atom as a square base pyramid and the other 

four boron atoms left are at the bottom part in a square shape which is twisted 45° 

clockwise to the pyramid’s base. The bond lengths formed are Fe-Co = 227.4 pm, Co-

Co = 261.3 pm, Co-B = 191.9 pm and B-B = 166.4 pm. The vibration modes 

(intensities) {degeneracy} are 122.2 (2.0) {2}, 171.2 (0.8), 247.0 (15.3) {2}, 298.8 

(3.8), 349.1 (0.8) {2}, 444.8 (0.001), 503.3 (56.7) {2}, 577.6 (1.2), 848.9 (0.06) and 

859.6 (4.1) {2} cm-1 (km/mole). 

 Fe3Co3B3, forms a shape where three layers of triangle are stacked on top of 

each other. The cobalt layer is in the middle of the boron layer and iron layer. The 

distance between B-B bond is 163.0 pm, Co-Co bond is 233.6 pm, Fe-Fe bond is 215.7 

pm, B-Co bond is 188.2 pm and Co-Fe bond is 231.6 pm. The frequencies (intensities) 
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{degeneracy} are 58.2 (0.00001), 161.9 (3.5) {2}, 203.8 (4.6) {2}, 214.1 (0.4), 230.2 

(5.1) {2}, 278.4 (0.3), 366.3 (16.9), 442.6 (0.1) {2}, 530.0 (3.7), 698.9 (3.4) {2} and 

1002.2 (3.9) cm-1 (km/mole). 

 

6.2.6 Model 6 

There are two types of structures that are built with total number atoms of 10. Fe4Co4B2, 

Fe4Co2B4 are having structures of the same kind where two bipyramids are combined 

together in a symmetric way. The bond lengths in cluster Fe4Co4B2 are B-Co = 194.4 

pm, Co-Co = 223.5 pm, Co-Fe = 228.9 pm, Fe-Fe = 226.4 pm and Fe-B = 200.8 pm. 

The strongest peak appears to be at 330.7 cm-1 with intensity of 42.4 km/mole and 

degeneracy 2. The other peaks remaining are -90.7 (-0.003) {2}, 195.4 (3.1) {2}, 226.0 

(6.6) {2}, 240.7 (4.7) {2}, 243.6 (0.001), 269.1 (1.8), 287.3 (4.9), 482.0 (9.4) {2}, 

581.1 (0.8) and 595.7 (1.1) cm-1 (km/mole). 

 The bond lengths in cluster Fe4Co2B4 are Co-Fe = 226.2 pm, Fe-Fe = 235.4 pm, 

Fe-B = 188.2 pm, B-B = 177.6 pm and B-Co = 189.8 pm. The frequencies (intensities) 

{degeneracy} are -202.5 (-0.9) {2}, 150.3 (0.06) {2}, 192.7 (0.003), 225.0 (0.01) {2}, 

288.2 (8.8) {2}, 289.3 (6.9), 346.8 (11.1), 524.9 (4.1) {2}, 555.9 (59.50, 703.0 (19.2) 

{2} and 902.6 (15.5) cm-1 (km/mole). 

 

 

Figure 6.2.6.1.  Structure of cluster Fe3Co3B4 and cluster Fe4Co3B3. 
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 The bond lengths in cluster Fe3Co3B4 shown in Figure 6.2.6.1 are B1-B = 158.4 

pm, B-B = 181.5 pm, B-Co = 185.2 pm, Co-Co = 223.4 pm, Co-Fe = 233.6 pm and Fe-

Fe = 221.7 pm. While the bond lengths for Fe4Co3B3 on the right side of the figure are 

Fe1-Fe = 235.8 pm, Fe-Fe = 230.0 pm, Fe-Co = 237.9 pm, Co-Co = 230.1 pm, Co-B = 

186.9 pm and B-B = 162.5 pm.  

The largest frequency value for Fe3Co3B4 is 1157.7 cm-1 with intensity 134.9 

km/mole and the weak peaks having frequencies (intensities) {degeneracy} at -108.2 (-

0.2) {2}, -71.8 (-0.02) {2}, 193.9 (0.02), 194.0 (3.4) {2}, 213.6 (4.7) {2}, 241.3 (1.1) 

{2}, 338.1 (0.3), 357.3 (17.6), 412.2 (0.8) {2}, 471.9 (0.05) {2}, 517.6 (19.0), 644.2 

(14.4) and 900.9 (3.5) {2} cm-1 (km/mole). While cluster Fe4Co3B3 having the largest 

value at 353.6 cm-1 with intensity (21.1 km/mole) and the remaining frequencies, cm-1 

(intensities, km/mole) {degeneracy} are -249.9 (-2.9) {2}, -195.2 (-0.3), -78.6 (-1.3) 

{2}, -46.7 (-0.0009), 123.9 (1.7) {2}, 164.0 (1.3) {2}, 171.9 (1.3), 198.4 (4.1) {2}, 

239.8 (2.4) {2}, 244.9 (5.6), 305.9 (0.1), 493.7 (0.7) {2}, 546.9 (0.4), 719.7 (3.8) {2} 

and 1015.0 (0.25). 

 

6.2.7 Model 7 

Table 6.2.7.1 illustrates the comparisons between clusters Fe4Co3B4 and Fe4Co4B3 in 

terms of structures and bond lengths. In this part, these two clusters contain 11 atoms. 

For cluster Fe4Co3B4, the largest frequency is the strongest peak at 1147.7 cm-1 

with intensity 100.97 km/mole. The remaining frequencies (intensities) {degeneracy} 

are at -117.5 (-2.8) {2}, -88.3 (-0.003) {2}, 108.6 (0.9) {2}, 164.9 (3.8), 177.7 (5.2) {2}, 

182.7 (1.7) {2}, 232.6 (0.96) {2}, 239.1 (9.6), 313.8 (2.9), 343.3 (14.6), 416.3 (0.3) {2}, 

469.9 (0.3) {2}, 521.1 (10.5), 653.6 (17.1) and 887.3 (14.1) {2} cm-1 (km/mole).  

 The cluster Fe4Co4B3 having frequencies, cm-1 (intensities, km/mole) 

{degeneracy} values at -189.8 (-32.7) {2}, -153.9 (-1.6) {2}, 86.3 (2.7) {2}, 90.8 (1.0) 
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{2}, 162.9 (0.6), 164.5 (0.4) {2}, 203.9 (6.7) {2}, 223.7 (11.3) {2}, 236.9 (4.1), 268.7 

(0.4), 342.8 (23.8), 360.6 (10.6), 551.8 (0.3) {2}, 597.0 (6.4) {2}, 675.1 (27.6) and 

841.0 (1.2). 

 

Table 6.2.7.1.  Comparisons between clusters Fe4Co3B4 and Fe4Co4B3. 

Cluster Structure Bond lengths (pm) 

Fe4Co3B4 

 

Fe1-Fe = 234.8 
Fe-Fe = 231.5 
Fe-Co = 237.6 
Co-B = 184.6 
Co-Co = 225.6 
B-B = 181.0 
B-B1 = 158.5 

Fe4Co4B3 

 

Fe1-Fe = 238.8 
Fe-Fe = 225.5 
Fe-B = 200.3 
B-B = 170.8 
B-Co = 187.3 
Co-Co = 231.7 
Co-Co1 = 228.2 

 

6.3 Analysis 

The vibrational frequencies of the clusters are found to be dependent on the local 

environment and on the structure. When there are 5 atoms in a cluster, the largest 

frequency is 933 cm-1. In this system, three B atoms are connected to Fe atoms and Co 

is on top of the Fe atom. The largest frequency indicates the largest force constant. 

When six atoms are present, the largest frequency occurred in a configuration in which 

three B atoms are located in the bottom with two Co atoms in the next line above that 

of B and one Fe is on top. In this configuration of six atoms, the largest frequency is 

found to be 1188 cm-1. Amongst the clusters containing seven atoms, the largest value 

of 953.3 cm-1 is found for Fe2CoB4. Whereas, among the clusters which containing 
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eight atoms, Fe3CoB4, has the largest frequency of 1170.4 cm-1. Next, Fe3Co3B3 has the 

largest frequency of 1002.2 cm-1, Fe3Co3B4 has the largest frequency of 1157.4 cm-1 

and B4Co3Fe4 has the largest frequency of 1147.7 cm-1 for clusters containing 9, 10 and 

11 atoms respectively. Thus, by changing the composition of the atoms, the force 

constant of the material can be changed.                                                                                                

 

6.4 Conclusions 

By very extensive calculation of vibrational frequencies of clusters of atoms, the 

composition and force constants are found to be adjustable. Ability of the electrons to 

be spin-polarized [37] on the ferromagnetic materials can be found. In this way, the 

composition suited for the memory material can be predicted.   
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CHAPTER 7 
 
Conclusions 

 
The first three chapters review the need for a magnetoresistance random access 

memory (MRAM) material and the density-functional theory used to solve the problem 

of the calculation of vibrational frequencies of a very large secular determinant in 

quantum mechanics. In chapter 4, the largest frequency of each group of the cluster 

NiFen, Ni2Fen, Ni3Fen and Ni4Fen as function of concentration is calculated and 

described in detail. The overall trend of clusters NiFen shows a positive gradient 

although there is a plateau between n=2 and 3. The largest value is at n=4 with 

frequency of 377.3 cm-1. The Ni2Fen clusters show an increment from n=1 to 2 and is 

almost flat around n=3 and 4. The turning point from the sloppiest part to the flat part is 

around n=3 where the frequency shows at 323.5 cm-1. At n=3 having both the 

properties of the turning point and the largest phonon frequency, where this cluster may 

be indicating unique physical properties. Ni3Fen shows that the largest frequency 

reduces as a function of n in a parabola shape. The minimum value is at n=2. While for 

cluster group Ni4Fen, the trend is almost the same as in Ni4Fen. 

 The four groups above are summarized, they are identical at n=4 where the 

value goes up to a maximum. NiFen and Ni2Fen shows low value at n=1 but shoot up at 

n=4 whereas Ni3Fen and Ni4Fen show minimum around n=2 and 3 and goes up at n=4. 

As nickel increases with the number, the function of NiFen and Ni2Fen is almost 

equivalent as well as Ni3Fen with Ni4Fen. But as the number of iron increases for each 

 
 

56



group, the value of the frequency increases. Thus, the magnetization of the cluster 

increases. The higher magnetization in the ferromagnetic layers is important for shorter 

read time access.  

 The small clusters of FexCoyBz consist of 3 and 4 atoms as described in chapter 

5. For 3 atoms, cluster Fe-Co-B appears to be having the largest frequency and also the 

strongest peak, 912.3 cm-1 with intensity 17.7 km/mole.  

 When the total number of atoms increases to 4, the cluster with the largest 

vibrational frequency, 880.4 cm-1 is CoBFe2 in a triangular structure. When the 

configuration is changed to BFeCo2 yet in the same structure, it gives a frequency value 

at 502.6 cm-1 (0.32 km/mole), which is the smallest value among all of the clusters for 

total of 4 atoms. Comparing CoBFe2 with BFeCo2, it is found that the atomic 

configuration of a material is important in determining the phonon frequency which 

gives the force constants.  

 Since phonon frequencies are correlated with the resistance between the 

ferromagnetic layers, it is essential knowing the frequencies of the clusters in forming 

the best MRAM materials. Linear Fe-Co-B shows the largest vibrational frequency and 

thus, having the strongest force constant for clusters of a total of 3 atoms. 

 Chapter 6 is the continuous part of chapter 5 which contains of cluster of total 

of 5 atoms. FeCoB3 (enlongated triangle-based pyramid) and FeCoB3 (symmetric 

bipyramid) gives frequency at 933.0 cm-1 (50.8 km/mole) and 858.0 cm-1 (1.7 

km/mole). Although the atomic configuration is the same, but the structure arrangement 

affects the vibrational mode. This also happened to other clusters as Fe3CoB 

(enlongated triangle based pyramid) with 825.5 cm-1 and Fe3CoB (symmetric 

bipyramid) with 714.0 cm-1. The largest phonon frequency of total 5 atoms is FeCoB3 

(enlongated triangle based pyramid) with 933.0 cm-1. 
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 Referring to Appendix B, Table 6.2.2, the trend of the spectra of FeCoB4 

(bipyramidal), FeCo4B (bipyramidal), Fe4CoB (bipyramidal) and FeCoB4 are almost 

the same with a strong peak in the middle. This shows that these four clusters have the 

similar same physical properties. Even though cluster FeCoB4 (bipyramid) and cluster 

FeCoB4 having the same configuration yet the strongest peak (large intensity) differ a 

little between 737.9 cm-1 and 780.0 cm-1. FeCo2B3 having the largest frequency value 

of 1188.1 cm-1 and CoFeB3 is the second largest with value of 1166.4 cm-1. The 

structure with 3 boron atoms at the lower part shows large vibrational mode indicating 

large force constant. 

The clusters with total 7 atoms, Fe2CoB4 give the largest frequency at value 

953.3 cm-1 (7.5 km/mole). In the model 3, the spectra of each cluster vary except for 

FeCo3B3 and Fe3CoB3 which seems to be alike. Comparing the clusters with total 

number of 5 and 6 atoms, clusters with the same number of boron atoms show 

spectrum which are almost identical. 

 Proceeding to clusters of 8 atoms, the largest frequency is at 1170.4 cm-1 of 

cluster Fe3CoB4. The overall function of the largest phonon frequency with respect to 

the number of iron atoms shows a negative gradient. This is in contrast with the 

situation in cluster FexNiy where the frequency increases as a function of number of 

iron atoms. When the iron atoms increases, the boron atoms decreases. Since boron 

atoms have great effect to the cluster configuration, it is believed that the decreasing 

function is due to the number of boron atoms in the cluster. 

 As the number of atoms increases, the number of vibrational modes increases. 

There are more bonding pairs in the cluster and thus each bond will contribute to the 

vibrational mode. For cluster with 9 atoms, the largest frequency is Fe3Co3B3 with 

1002.2 cm-1. 
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 Structure of Fe3Co3B4 gives the largest value at 1157.7 cm-1 and the second 

largest value, Fe4Co3B3 at 1015.0 cm-1 with shapes in stack layers. The ‘stack’ structure 

having group of boron atoms at the edge of both the clusters gives a high frequency 

value. For the last model with 11 atoms, the largest frequency with 1147.7 cm-1 belongs 

to Fe4Co3B4. This cluster also has four of boron atoms at the edge whereas cluster 

Fe4Co4B3 with boron atoms in the middle of the structure only show the largest 

frequency at 841.0 cm-1. The structures are important in the clusters for different 

frequencies and different force constants.  

 Determining the vibrational frequencies through simulation of clusters, force 

constant of different structure of clusters can be achieved. The composition and force 

constants are found to be adjustable due to different structures and configuration of 

clusters. The magnetization changes when nickel is added to the clusters FexNiy as well 

as the boron and cobalt atoms added to clusters FexCoyBz. The capability of electrons to 

be spin-polarized on the surfaces of ferromagnetic layers can be found. Therefore, 

through extensive calculation, better materials based on the largest frequency for the 

ferromagnetic layers in the cell can be predicted for higher MR in MRAM.  
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Appendix A 

 
Observation of harmonics 

Usually the energy level transitions are observed according to quantization of energy as, 

E1 – E2 = hν 

ω1 – ω2 = ω 

For negative values, 

ω1 – (–ω2) = ωo 

ω1 + ω2 = ωo This will be observed. 

The negative frequencies will be observed in the experiments as sum of the frequencies. 

For example: ω1 = 250 cm-1 

ω2 = –100cm-1 

ω1 + ω2 = 150 cm-1 

ω1 – (–ω2) = 350 cm-1 will be observed. 

Harmonics ω1 + nω2 will be observed. The computation performance gives both 

positive as well as negative frequencies.  
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Appendix B 

 
Table 4.3.  The vibrational spectrum for clusters NixFey from chapter 4.   

Cluster Spectrum 

NiFe 

NiFe2  
linear 

NiFe2 
triangular 

NiFe3 
triangular 
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Table 4.3.  Continued 

Cluster Spectrum 

NiFe3 
pyramidal 

NiFe4 
square 

NiFe4 
pyramidal 

NiFe4  
tetrahedral 

Ni2Fe 
linear 
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Table 4.3.  Continued 

Cluster Spectrum 

Ni2Fe 
triangular 

Ni2Fe2 
rectangular 

 

Ni2Fe3 
bipyramidal 

Ni2Fe4 
bipyramidal 

 

Ni3Fe 
triangular 
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Table 4.3.  Continued 

Cluster Spectrum 

Ni3Fe2 
bipyramidal 

Ni3Fe3 

hexagonal 

Ni3Fe3 

triangle 
inside 

triangle 

Ni4Fe 
pyramidal 

Ni4Fe 
planar 
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Table 4.3.  Continued 

Cluster Spectrum 

Ni4Fe2 

bipyramidal 

Ni4Fe3 

boat shape 

 

Ni4Fe4 

deformed 
cube 

 

Ni4Fe4 

square 
inside 
square 
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Table 5.3.  Spectrum of small clusters FexCoyBz using double zeta spin polarized orbitals in 

chapter 5. 
Cluster Spectrum 

FeCoB 
linear 

Co-Fe-B 
linear 

 

Fe-B-Co 
linear 

FeCoB 
triangular 

BFeCoB 
linear 

 
 

67



Table 5.3.  Continued 

Cluster Spectrum 

CoFeB2 
triangular 

 

FeCoB2 
triangular 

 

FeCo2B 
triangular 

BFeCo2 

triangular 

 

CoBFe2 
triangular 
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Table 5.3.  Continued 

Cluster Spectrum 

B-Co-B-Fe 
rectangular 

FeCo2B 
rectangular 

Fe2CoB 
distorted 

rectangular 
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Table 6.2.1.  Spectrum for large clusters FexCoyBz in model 1 of chapter 6.  
Cluster Spectrum 

FeCoB3 

Fe3CoB 

FeCo2B2 

Fe2CoB2 
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Table 6.2.1.  Continued 

Cluster Spectrum 
Fe2Co2B 

FeCoB3 
bipyramidal 

FeCo3B 
bipyramidal 

Fe3CoB 
bipyramidal 
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Table 6.2.2.  Spectrum for large clusters FexCoyBz in model 2 of chapter 6.  
Cluster Spectrum 

FeCoB4 
bipyramidal 

 

FeCo4B 
bipyramidal 

 

Fe4CoB 
bipyramidal 

 

FeCoB4 
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Table 6.2.2.  Continued 
Cluster Spectrum 

FeCo2B3 

 

CoFe2B3 

 

Fe2Co2B2 

 

Fe2Co3B 
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Table 6.2.3.  Spectrum for large clusters FexCoyBz in model 3 of chapter 6. 
Cluster Spectrum 

FeCo2B4 

 

FeCo4B2 

 

Fe2CoB4 

 

Fe2Co4B 
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Table 6.2.3.  Continued 
Cluster Spectrum 

Fe4Co2B 

 

Fe4CoB2 

 

FeCo3B3 

 

Fe3CoB3 
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Table 6.2.3.  Continued 
Cluster Spectrum 

Fe3Co3B 

 

Fe2Co2B3 

 

Fe3Co2B2 
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Table 6.2.4.  Spectrum for large clusters FexCoyBz in model 4 of chapter 6. 
Cluster Spectrum 

FeCo3B4 

 

Fe3CoB4 

 

Fe3Co3B2 

 

Fe3Co4B 

 

Fe4Co3B 
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Table 6.2.5.  Spectrum for large clusters FexCoyBz in model 5 of chapter 6. 
Cluster Spectrum 

FeCo4B4  

 

Fe4CoB4 

 

FeCo4B4 
crown 
shape 

 

Fe3Co3B3 
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Table 6.2.6.  Spectrum for large clusters FexCoyBz in model 6 of chapter 6. 
Cluster Spectrum 

Fe4Co4B2 

 

Fe4Co2B4 

 

Fe3Co3B4 

 

Fe4Co3B3 
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Table 6.2.7.  Spectrum for large clusters FexCoyBz in model 7 of chapter 6. 
Cluster Spectrum 

Fe4Co3B4 

 

Fe4Co4B3 
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