Acknowledgements

I wish to express my gratitude to my supervisor Professor Dr. Gan Seng Neon for his invaluable guidance and support in the completion of this project. I would like to express my thanks to my co-supervisor Professor Rosiyah Yahya for her valuable suggestions and her counsel during writing this dissertation. I would also like to thank to Associate Professor Aziz Hassan for assistance in using the tensile and impact machines.

I would like to thank to Mr Tan Kim Hai, Mr Choong Keng Weng and the staff of Szetech Engineering Sdn Bhd for permission in using the compression molding machine. I also like to thank to Mr Ng Kock Leong for repairing the hot press machine and providing the mold to make palm fiberboards. I also thank to Mr Ishak Mahamad and Mr Jalaluddin Zainuddin from chemical engineering for the use of laboratory and facilities. Besides that, many thank to Mr Zulkifli, Miss Ho Wei Ling and other staff of chemistry department.

I would like to thank to Mr Teo Kim Teck, Miss Lee Siang Ying, Mr Ling Kong Teng, Miss Tan Saw Hong, Miss Lee Sook Chin and Miss Azlina Bt Puang for their willingness to share their experiences and expertises. Many thanks to all my friends for their help in one way or another in particular Mr Gan Yik Kang, Miss Neo Su Siang and Miss Nur Shafizah. Finally, I would like to thank to my parents, brother and sister for their love and encouragement throughout my life. Special thanks to my cousin Miss Lim Cheng Kee for her unconditional support, also to my girlfriend, Miss Ng Wei Goon for her invaluable love and care.

ABSTRACT

Palm kernel oil was used as a raw material for the synthesis of polyester polyol. The palm oil based polyester polyol was synthesized using glycerol, phthalic anhydride and fumaric acid. Palm oil based polyester polyol combines with methylene diphenyl diisocyanate (MDI) to form the polyurethane binder. The fibers are derived from empty fruit bunch (EFB) of the palm tree and have the acceptable mechanical properties. In this project, palm fibers were converted into palm fiberboards by using polyurethane (PU) binder under specified pressure and temperature. The binder to fiber ratio was varied from 10% to 30 % by dried weight of the palm fiber. The curing temperature was set from 60°C to 100°C and curing pressure was between 3 MPa to 7 MPa. The curing time was from 5 to 25 minutes. The density, tensile strength, modulus of elasticity, flexural strength, impact strength, water absorption and swelling of fiberboards were determined. Increase of the PU binder content and the NCO/OH ratio would significantly improve the mechanical properties of the fiberboards. The fiberboards made from fine fiber had better mechanical properties than those made from palm fiber mat, which comprise mainly of longer fibers.

ABSTRAK

Minyak isi keras kelapa sawit digunakan untuk mensintesiskan poliester poliol. Poliester poliol yang berdasarkan minyak kelapa sawit disintesiskan dengan menggunakan gliserol, ftalik anhidrida dan asid fumarik. Poliester poliol bergabung dengan MDI menjadi pengikat poliuretana. Serabut kelapa sawit berasal daripada isi batang pokok minyak kelapa sawit dan mempunyai sifat-sifat mekanik yang sesuai. Dalam projek ini, serabut kelapa sawit telah ditukarkan menjadi papan nipis dengan menggunakan pengikat poliuretana (PU) pada suhu dan tekanan yang tertentu. Nisbah pengikat poliuretana kepada serabut kelapa sawit adalah daripada 10% hingga 30% mengikut berat kering serabut kelapa sawit. Suhu pematangan telah ditetapkan daripada 60°C hingga 100°C dan tekanan pematangan dalam linkungan 3 MPa hingga 7 MPa. Masa pematangan dari 5 minit hingga 25 minit. Ketumpatan, kekuatan ketegangan, kekuatan keanjalan, kekuatan *flexural*, kekuatan hentaman dan penyerapan air bagi papan nipis telah ditentukan. Peningkatan kandungan pengikat poliuretana dan nisbah NCO/OH akan memperbaiki sifat-sifat mekanik papan nipis dengan nyata. Papan nipis yang diperbuat daripada serabut kelapa sawit yang pendek mempunyai sifat-sifat mekanik yang lebih baik daripada papan yang diperbuat daripada serabut kelapa sawit yang lebih panjang.

CONTENTS

ACKNOWLEDGEMENT	ii
ABSTRACT	iv
ABSTRAK	v
CONTENTS	vi
LIST OF FIGURES	xi
LIST OF TABLES	xiii
LIST OF ABBREVIATIONS	xvi

CHAPTER 1: INTRODUCTION

1.1	Background	1	
1.2	Wood		
1.3	Agrowastes	5	
	1.3.1 Advantages of argrowastes in composite	6	
	1.3.2 Different types of agrowastes	6	
1.4	Fiberboards		
	1.4.1 Medium-density fiberboard (MDF)	8	
	1.4.2 High-density fiberboard (HDF)	9	
1.5	Particle board	10	
1.6	Plywood	11	
1.7	Oriented strand board (OSB)	12	
1.8	Chemical composition of fiberboard	14	
	1.8.1 Cellulose	14	

	1.8.2	Hemicellulose	15
	1.8.3	Lignin	16
	1.8.4	Peptin	17
	1.8.5	Starch	17
1.9	Binder	rs of wood-based composites	18
	1.9.1	Urea-formaldehyde (UF)	19
	1.9.2	Phenol-formaldehyde (PF)	19
	1.9.3	Melamine formaldehyde (MF)	19
	1.9.4	Diphenylmethane-4,4-diisocynate (MDI)	20
	1.9.5	Polyurethane adhesive	20
1.10	Palm l	kernel oil	21
1.11	Palm I	Fiber	23
1.12	Scope	of study	24

CHAPTER 2: EXPERIMENTAL

2.1	Preparation of palm oil based polyester polyol		
	2.1.1	Materials	25
	2.1.2	Equipment	25
	2.1.3	Apparatus	26
	2.1.4	Preparation of palm oil based polyester polyol	27
2.2	Prepa	ration of fiberboard	28
	2.2.1	Determination of total solid content of palm fiber mat and	28
		fine fiber	

	2.2.2	Formulation of preparation of polyurethane (PU) binder for making	28
		fiberboard	
	2.2.3	Procedure to calculate the standard deviation	31
	2.2.4	Procedures to make fiberboard	33
2.3	Chara	cterization of palm oil based polyester polyol	35
	2.3.1	FTIR analysis	35
	2.3.2	Thermogravimetric analysis	35
	2.3.3	Determination of water content by Karl-Fisher Titrator	35
	2.3.4	Determination of acid value of palm oil based polyester polyol	36
	2.3.5	Determination of hydroxyl value of palm oil based polyester polyol	37
	2.3.6	Gel Permeation Chromatography (GPC)	38
2.4	Physic	cal properties of plam fiberboard	39
	2.4.1	Density	39
	2.4.2	Tensile test	39
	2.4.3	Flexural test	40
	2.4.4	Impact Strength	41
	2.4.5	Water absorption	41
	2.4.6	Optical microscope	42
СНАР	PTER 3	: RESULTS AND DISCUSSION	
3.1	Prepa	ration of palm oil based polyester polyol	43
	3.1.1	Alcoholysis	43
	3.1.2	Esterification	44
3.2	Chara	cteristics of palm oil base polyester polyol	45

	3.2.1	FTIR ar	nalysis	45
	3.2.2	Determi	ination of acid value of palm oil based polyester polyol	48
	3.2.3	Determi	ination of hydroxyl value of plam oil based polyester polyol	51
	3.2.4	Thermo	gravimetric analysis (TGA)	54
	3.2.5	Gel Per	meation Chromatography analysis	55
	3.2.6	Water c	ontent of palm oil based polyester polyol	57
3.3	The m	echanica	l properties of fiberboards made from palm fiber mat	58
	3.3.1	Density		58
	3.3.2	Tensile	strength of the fiberboards	60
		3.3.2.1	The effect of binder content on the tensile strength of the	60
			fiberboards	
		3.3.2.2	The effect of curing temperature on the tensile strength of	64
			the fiberboards	
		3.3.2.3	The effect of curing pressure on the tensile strength of the	66
			fiberboards	
		3.3.2.4	The effect of curing time on the tensile strength of the	68
			fiberboards	
		3.3.2.5	The effect of NCO/OH ratio on the tensile strength of the	70
			fiberboards	
	3.3.3	The Yo	ung's modulus of fiberboards	74
		3.3.3.1	The effect of binder content on the Young's modulus of	74
			fiberboards	
		3.3.3.2	The effect of curing temperature on the Young's modulus	76

of fiberboards

	3.3.3.3	The effect of curing pressure on the Young's modulus of	77
		fiberboards	
	3.3.3.4	The effect of NCO/OH ratio on the Young's modulus of	78
		fiberboards	
3.3.4	Flexura	l strength of the fiberboards	80
	3.3.4.1	The effect of binder content on the flexural strength of	80
		fiberboards	
	3.3.4.2	The effect of curing temperature on the flexural strength of	81
		fiberboards	
	3.3.4.3	The effect of curing pressure on the flexural strength of	82
		fiberboards	
	3.3.4.4	The effect of NCO/OH ratio on the flexural strength of	83
		fiberboards	
3.3.5	Impact	strength of the fiberboards	85
	3.3.5.1	The effect of binder content on the impact strength of the	85
		fiberboards	
	3.3.5.2	The effect of curing temperature on the impact strength of	87
		the fiberboards	
	3.3.5.3	The effect of NCO/OH ratio on the impact strength of the	88
		fiberboards	
3.3.6	Water a	bsorption of fiberboards	90
	3.3.6.1	The effect of binder content on the water absorption of the	90

fiberboards

		3.3.6.2	The effect of NCO/OH ratio on the water absorption of the	92
			fiberboards	
	3.3.7	The swe	lling thickness of the fiberboards	93
		3.3.7.1	The effect of binder content on the swelling thickness of the	93
			fiberboards	
		3.3.7.2	The effect of NCO/OH ratio on the swelling thickness of	94
			the fiberboards	
3.4	The me	echanical	properties of fiberboards make from fine palm fiber	95
	3.4.1	The tens	sile strength of the fiberboards	95
	3.4.2	The You	ang's modulus of the fiberboards	97
	3.4.3	The flex	ural strength of the fiberboards	98
	3.4.4	The imp	act strength of the fiberboards	99
	3.4.5	The wat	er absorption of the fiberboards	101
	3.4.6	The swe	lling thickness of the fiberboards	102
3.5	The su	rface mo	rphology of two sets of fiberboards	103
3.6	Compa	rison of	the two sets of fiberboards with commercial fiberboards and	104
	comme	ercial ply	wood	
CHAP	ГER 4:	CONCI	LUSION	
4.1	Summa	ary		106
4.2	Sugges	stion for f	future works	108
4.3	Refere	nce		109

APPENDIX

LIST OF FIGURES

Figure 1.0:	World round wood production by region, million cubic	
	meters (calculated in percentage)	3
Figure 1.1:	Picture of few pieces of medium-density board	8
Figure 1.2:	Picture of high-density board	9
Figure 1.3:	Side view of particle board	10
Figure 1.4:	Picture of plywood that made from spruce	12
Figure 1.5:	Oriented strand board that made from a mixture of dried small wood	
	chips, glue and additives	13
Figure 1.6:	Cellulose as polymer of β -D-glucose	15
Figure 1.7:	Structure of hemicellulose	15
Figure 1.8:	Structure of lignin	16
Figure 1.9:	Structure of pectin	17
Figure 1.10:	Structure of starch	18
Figure 2.0:	The setup for the preparation of palm oil based polyester	
	polyol	26
Figure 2.1:	Picture of palm fiber mat	33
Figure 2.2:	The procedures of making fiberboard	34
Figure 3.0:	Alcoholysis	43
Figure 3.1:	Suggested reaction pathway of esterification of (A) diol with PA and	
	(B) diol with fumaric acid	44

Figure 3.2:	Comparison of IR spectra between refined palm kernel oil before	
	and after alcoholysis	45
Figure 3.3:	FTIR spectrum of diphenylmethane-4,4-diisocyanate (MDI)	46
Figure 3.4:	FTIR spectrum of (A) diisocyanate terminated prepolymer	
	and (B) polyester polyol	47
Figure 3.5:	Thermogram for palm oil based polyester polyol (FA35-1)	54
Figure 3.6:	The maximum peak molecular weight distribution of the palm oil	
	based polyester polyol (F 35-1)	56
Figure 3.7:	The maximum peak molecular weight distribution of the palm oil	
	based polyester polyol (FA 35-2)	56
Figure 3.8:	Fiberboard made from palm fiber mat	58
Figure 3.9:	The effect of binder content on the density of the fiberboards pressed	
	at 7 MPa at 100°C for 25 minutes curing time	59
Figure 3.10:	The effect of curing pressure on the density of the fiberboards	
	made from 30% binder content and cured at 100°C for 25 minutes	
	curing time	60
Figure 3.11:	The effect of binder content on the tensile strength of the fiberboards	
	cured from 60°C to 100°C, pressed at 7 MPa for 25 minutes curing	
	time	61
Figure 3.12:	The possible reaction of OH groups of hydrophilic cellulose of	
	palm fiber with NCO groups of isocyanate	63

xiii

Figure 3.13:	Figure 3.13: The effect of curing temperature on the tensile strength of	-
	fiberboards made from 10.63% to 28.19% binder content,	
	pressed at 7 MPa for 25 minutes curing time	65
Figure 3.14:	The effect of curing pressure on tensile strength of the fiberboards	
	made at 28.19% binder content, cured from 60°C to 100°C for 25	
	minutes curing time	67
Figure 3.15:	The effect of curing time on the tensile strength of the fiberboards	
	made at 28.19% binder content and pressed at 7MPa at 100°C	69
Figure 3.16:	The effect of NCO/OH ratio on the tensile strength of the fiberboards	
	pressed at 7MPa at 100°C for 25 minutes curing time	72
Figure 3.17:	The possible crosslink between fiber-binder matrix	73
Figure 3.18:	Reaction between NCO with urea and NCO with urethane	73
Figure 3.19:	The effect of PU binder content on Young's modulus of fiberboards	
	cured at 100°C at 7MPa for 25 minutes curing time	75
Figure 3.20:	The effect of curing temperature on Young's modulus of fiberboards	
	made at 28.19% binder content and pressed at 7MPa for 25 minutes	
	curing time	77
Figure 3.21:	The effect of curing pressure on Young's modulus of fiberboards	
	made at 28.19% binder content and cured at 100°C for 25 minutes	
	curing time	78
Figure 3.22:	The effect of NCO/OH ratio on Young's modulus of fiberboards	
	cured at 100°C and pressed at 7 MPa for 25 minutes curing time	79

xiv

Figure 3.23:	The effect of binder content on the flexural strength of the fiberboards	
	cured from 60°C to 100°C pressed at 7 MPa for 25 minutes curing	
	time	81
Figure 3.24:	The effect of temperature on the flexural strength of the fiberboards ma	ade
	at from 10.63% to 28.19% binder content and pressed at 7 MPa for 25 $$	
	minutes curing time	82
Figure 3.25:	The effect of curing pressure on the flexural strength of the fiberboards	5
	made at 28.19% binder content and cured at 100°C for 25 minutes	
	curing time	83
Figure 3.26:	The effect of NCO/OH ratio on the flexural strength of the fiberboards	
	cured at 100°C and pressed at 7 MPa for 25 minutes curing time	84
Figure 3.27:	The effect of binder content on the impact strength of the fiberboards	
	cured at 100°C and pressed at 7 MPa for 25 minutes curing time	86
Figure 3.28:	The effect of curing temperature on the impact strength of the	
	fiberboards made at 28.19% binder content and pressed at 7 MPa for	
	25 minutes curing time	88
Figure 3.29:	The effect of NCO/OH ratio on the impact strength of the fiberboards	
	cured at 100°C and pressed at 7 MPa and for 25 minutes curing	
	time	89
Figure 3.30:	Fiberboard made from fine palm fiber	95
Figure 3.31:	The effect of PU binder content on the tensile strength of two sets of th	e
	fiberboards pressed at 7 MPa at 100°C for 25 minutes curing time	97

xv

Figure 3.32:	The effect of PU binder content on the modulus of elasticity of two	
	sets of the fiberboards pressed at 7 MPa at 100°C for 25	
	minutes curing time	98
Figure 3.33:	The effect of PU binder content on the flexural strength of two sets of	
	the fiberboards pressed at 7 MPa at 100°C for 25 minutes curing time	99
Figure 3.34:	The effect of PU binder content on the impact strength of two sets of the	ne
	fiberboards pressed at 7 MPa at 100°C for 25 minutes curing time	100
Figure 3.35:	Fine fiber	103
Figure 3.36:	Fiber mat (long fiber)	103

LIST OF TABLES

Table 1.0:	Countries with forest product exports greater than 1 billion	
	USD in year 2000	2
Table 1.1:	Chemical composition of fiberboard	14
Table 1.2:	Characteristics of crude palm oil and palm kernel oil	22
Table 1.3:	Fatty acid composition and chemical characteristics of palm	
	kernel oil	23
Table 2.0:	Composition of the reaction mixtures for preparation of the palm oil	
	based polyester polyol in weight (g)	27
Table 2.1:	The weight (g) of MDI, % of polyester polyol and % of PU	
	binder of 80 g palm fiber mat and 80 g fine fiber by dry weight	30
Table 2.2:	The results of tensile strength of fiberboard made at 100% binder	
	Content and pressed at 7 MPa at 100 °C for 25 minutes curing time	31
Table 3.0:	Major absorption peaks of polyester polyol	46
Table 3.1:	Major absorption peaks of diphenylmethane-4,4-diisocyanate	
	(MDI)	47
Table 3.2:	Major absorption peaks of diisocyanate terminated polyester	
	polyol	48
Table 3.3:	Results of standardization of KOH solution	48
Table 3.4:	Acid number determination	49
Table 3.5:	Acid value and % conversion of the acid value of the polyester polyol	
	FA35-1 and FA35-2	50

Page

Table 3.6:	Results of standardization of NaOH solution	51
Table 3.7:	Hydroxyl number determination	52
Table 3.8:	Comparisons between the estimated and experimental hydroxyl values	5
	of both polyester polyol	53
Table 3.9:	Number average molecular weight and weight average molecular weight	ght
	of each of the palm oil based polyester polyols as determined by GPC	55
Table 3.10:	Water content of palm oil based polyester polyol (FA35-1)	57
Table 3.11:	Water absorption of fiberboards with different binder content after	
	soaking in water for 2 hours and 24 hours	90
Table 3.12:	Water absorption of fiberboards with different ratio of NCO/OH	
	after soaking in water for 2 hours and 24 hours	92
Table 3.13:	Swelling thickness of fiberboards with different binder content	
	after soaking in water for 2 hours and 24 hours	93
Table 3.14:	Swelling thickness of fiberboards with different NCO/OH ratio of afte	r
	soaking in water for 2 hours and 24 hours	94
Table 3.15:	Comparison the water absorption of two sets of fiberboards	101
Table 3.16:	Comparison the swelling thickness of two sets of fiberboards	102
Table 3.17:	Mechanical properties of the commercial fiberboards, commercial	
	plywood and two sets of the palm fiberboard	104

LIST OF SYMBOYLS AND ABBREVIATIONS

ASTM	American Society for Testing Materials
EFB	Empty fruit Bunch
FTIR	Fourier Transform Infrared
GPa	Giga Pascal
GPC	Gel Permeation Chromatography
HDF	High Density Fiberboard
HMDI	Hexamethylene Diisocyanate
MDF	Medium Density Fiberboard
MDI	Diphenylmethane-4,4-Diisocyanate
MOE	Modulus of Elasticity
MPa	Mega Pascal
M _n	Number Average Molecular Weight
\mathbf{M}_{w}	Weight Average Molecular Weight
OSB	Oriented Strand Board
PMDI	Polymeric Diphenylmethane-4,4-Diisocyanate
TDI	Toluene Diisocyanate
TGA	Thermogravimetric Analysis
PU	Polyurethane