LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Global polyolefin consumption in 2007</td>
</tr>
<tr>
<td>1.2</td>
<td>The molecular structures of HDPE, LDPE and LLDPE</td>
</tr>
<tr>
<td>1.3</td>
<td>Bimetallic structure</td>
</tr>
<tr>
<td>1.4</td>
<td>Bimetallic complex used by Natta et al. for ethylene polymerization</td>
</tr>
<tr>
<td>1.5</td>
<td>Bimetallic mechanism for ethylene polymerization</td>
</tr>
<tr>
<td>1.6</td>
<td>Monometallic structure</td>
</tr>
<tr>
<td>1.7</td>
<td>Ethylene polymerization mechanism</td>
</tr>
<tr>
<td>1.8</td>
<td>Trinuclear carboxylate structure, ([\text{M}_3\text{O(RCO}_2\text{H)}_6\text{L}]^+)</td>
</tr>
<tr>
<td>2.1</td>
<td>Apparatus set-up for the synthesis of chromium(III) complexes</td>
</tr>
<tr>
<td>2.2</td>
<td>Perkin Elmer Fourier Transform Infrared (FT-IR) Spectrometer model 1600</td>
</tr>
<tr>
<td>2.3</td>
<td>Perkin Elmer TGA7</td>
</tr>
<tr>
<td>2.4</td>
<td>Polymerization gas line with constant volume set-up</td>
</tr>
<tr>
<td>2.5</td>
<td>Schematic diagram of polymerization gas line</td>
</tr>
<tr>
<td>2.6</td>
<td>Perkin-Elmer Differential Scanning Calorimeter, DSC 7</td>
</tr>
<tr>
<td>3.1</td>
<td>FT-IR spectrum of ([\text{Cr}_3\text{O(CH}_3\text{COO)}_6\cdot3\text{H}_2\text{O}]\text{NO}_3\cdot7\text{H}_2\text{O}) complex</td>
</tr>
<tr>
<td>3.2</td>
<td>FT-IR spectrum of ([\text{Cr}_3\text{O(ClCH}_2\text{COO)}_6\cdot3\text{H}_2\text{O}]\text{NO}_3\cdot3\text{H}_2\text{O}) complex</td>
</tr>
<tr>
<td>3.3</td>
<td>TGA thermogram for the decomposition of ([\text{Cr}_3\text{O(CH}_3\text{COO)}_6\cdot3\text{H}_2\text{O}]\text{NO}_3\cdot7\text{H}_2\text{O}) complex</td>
</tr>
</tbody>
</table>
3.4 TGA thermogram for the decomposition of
[Cr₃O(CICH₂COO)₆.3H₂O]NO₃.3H₂O complex

3.5 TGA thermogram for the decomposition of
[Cr₃O(Cl₂CHCOO)₆.3H₂O]NO₃.3H₂O complex

3.6 TGA thermogram for the decomposition of
[Cr₃O(Cl₃CCOO)₆.3H₂O]NO₃.2H₂O complex

4.1 Kinetic curve of ethylene polymerization using
[Cr₃O(CICH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio= 30.8, temperature= 29°C,
aging time= 15 minutes, reaction time= 60 minutes,
solvent= toluene

4.2 Kinetic curves for propylene polymerization obtained at
various monomer pressures

4.3 Plot of accumulative polyethylene yield versus reaction time
using [Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl
catalyst system at Al/Cr molar ratio 30.8, temperature 29 °C, aging time= 15 minutes,
reaction time= 60 minutes, solvent= toluene

4.4 Plot of monomer pressure versus time using
[Cr₃O(CICH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio 40, temperature 29 °C, aging time= 15 minutes, reaction time= 60 minutes,
solvent= toluene

4.5 Plot of experimental yield versus calculated yield using
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system, temperature 29 °C, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene

4.6 Plot of ln P versus time using
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio 30.8, temperature 29 °C, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene
4.7 Kinetic curves of ethylene polymerization using
\[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} / \text{AlEt}_2\text{Cl} \] catalyst system at temperature=29 °C, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene,
\(\bullet\), Al/Cr= 23.2; \(\Delta\), Al/Cr-30.8; \(\times\), Al/Cr= 42.2

4.8 Plot of maximum initial activity versus Al/Cr ratio using
\[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} / \text{AlEt}_2\text{Cl} \] catalyst system at temperature 29 °C, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene

4.9 Kinetic curves of ethylene polymerization at various temperatures using \[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} / \text{AlEt}_2\text{Cl} \] catalyst system, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene, temperatures:
\(\bullet\), T= 18°C; \(\Delta\), T= 22°C; \(\circ\), T= 36°C

4.10 Kinetic curves of ethylene polymerization at various temperatures using \[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} / \text{AlEt}_2\text{Cl} \] catalyst system, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene, temperatures:
\(\blacktriangle\), T= 29°C; \(\circ\), T= 40°C

4.11 Arrhenius plot of ethylene polymerization using
\[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} / \text{AlEt}_2\text{Cl} \] catalyst system in the temperature range between 18°C - 40°C, aging time= 15 minutes, reaction time= 60 minutes, solvent= toluene

4.12 Kinetic curves of ethylene polymerization using different chromium(III) catalysts: \(\bullet\), \[\text{[Cr}_3\text{O(CH}_3\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.7\text{H}_2\text{O} \] ;
\(\circ\), \[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} \];
\(\blacktriangle\), \[\text{[Cr}_3\text{O(ClCH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} \];
\(\Delta\), \[\text{[Cr}_3\text{O(Cl}_2\text{CCOO)}_6.3\text{H}_2\text{O}]\text{NO}_3.2\text{H}_2\text{O} \]

4.13 FT-IR spectrum of polyethylene obtained from
\[\text{[Cr}_3\text{O(ClICH}_2\text{COO)}_6.3\text{H}_2\text{O}]\text{NO}_3.3\text{H}_2\text{O} / \text{AlEt}_2\text{Cl} \] catalyst system at Al/Cr molar ratio 23.2
4.14 ATR-IR spectrum of polyethylene obtained from
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio 23.2

4.15 DSC first heating scan of polyethylene obtained from
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio 23.2

4.16 DSC cooling scan of polyethylene obtained from
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio 23.2

4.17 DSC second heating scan of polyethylene obtained from
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/ AlEt₂Cl catalyst
system at Al/Cr molar ratio 23.2

4.18 DSC thermogram of sample obtained from polymerization of
propylene at Al/Cr molar ratio 50.7 and temperature 3°C

5.1 Kinetic curve of ethylene-propylene copolymerization with
Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/AlEt₂Cl catalyst
system; monomer mixture: Ethylene 89.7 %, Propylene 10.3 %

5.2 Kinetic curve of ethylene-propylene copolymerization with
Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/AlEt₂Cl catalyst
system; monomer mixture: Ethylene 50.1 %, Propylene 49.9 %

5.3 Kinetic curves for ethylene-propylene copolymerization using
[Cr₂O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/AlEt₂Cl catalyst
system at different aging time: ●, 15 minutes; x, 60 minutes; o,180 minutes

5.4 Effect of varying Al/Cr molar ratio on the average activity of
ethylene-propylene copolymerization

5.5 Kinetic curves of ethylene-propylene copolymerization with
[Cr₃O(ClCH₂COO)₆.3H₂O]NO₃.3H₂O/AlEt₂Cl catalyst
system at different Al/Cr molar ratios: ▲, Al/Cr= 24.6;
x, Al/Cr= 30.8; o, Al/Cr= 34.3

5.6 Infrared spectrum of ethylene-propylene copolymer
5.7 FT-IR spectrum of E-P copolymer in the range of 1600-600cm\(^{-1}\).
Baseline used for measurement of \(A_{720}, A_{1376}\) and \(A_{1463}\).

5.8 \(A_{720}/A_{1376}\) absorbance ratio versus mol % ethylene

5.9 \(A_{1376}/A_{1463}\) absorbance ratio versus mol % ethylene

5.10 DSC first heating scan of ethylene-propylene copolymer containing 50.1% ethylene and 49.9% propylene

5.11 DSC cooling scan of ethylene-propylene copolymer containing 50.1% ethylene and 49.9% propylene

5.12 DSC second heating scan of ethylene-propylene copolymer containing 50.1% ethylene and 49.9% propylene

5.13 Plot of enthalpy of crystallization versus mol % ethylene

5.14 Comparison between DSC first heating scan of E-P copolymers prepared at different aging time: (a) 30 minutes; (b) 1 hour; (c) 2 hours

A1 Apparatus set-up for toluene distillation

A2 Vacuum oven in IPS lab

A3 Dry box for the preparation of catalyst and cocatalyst mixture

A4 Micro-balance

A5 Normal weighing balance

A6 Drying oven