PREPARATION OF STYRENE ACRYLIC COPOLYMER TONER RESIN BY SOLUTION POLYMERIZATION

NEO SU SIANG

DISERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

APRIL 2010

ACKNOWLEDGEMENT

I would like to extend my appreciation and gratitude to Prof Dr Gan Seng Neon and Dr Mohd Tahir Abdul Rahman for their patience, help, encouragement and advices throughout this work.

I would like to express my sincere gratitude to the staff members of the Chemistry Department, Faculty of Science, University Malaya for their cooperation and support, I take this opportunity to acknowledge the financial assistance of Jadi Imaging Technologies Sdn Bhd.

Finally, I would like to thank my parents, Neo Sewi Yang and Ong Yew Choo, for their genuine care, unfailing help and support.

ABSTRACT

This project has investigated solution polymerization to produce toner resins. There are three stages: (i) synthesis of low molecular weight styrene acrylic copolymer; (ii) synthesis of high molecular weight styrene acrylic copolymer; (iii) mixing high and low molecular weight copolymers. Gel Permeation Chromatography (GPC) was used to study molecular weight distributions. Melt Flow Index (MFI) Instrument to study the flowability of resin, Differential Scanning Calorimetry (DSC) to study the thermal properties of resin, and acid number to quantitate the amount of acidic group in the resin. A comparison of properties between the experimental samples, patent's claims, and commercial resins had been carried out. Preparation of low molecular weight resin has carried out by using monomers, initiator and solvent. The effects of initiator concentration on the resin's properties of low molecular weight resin had been studied. High molecular weight resin was produced by using monomers, initiator, solvent and crosslinking agent in the system. The process started with bulk polymerization followed by solution polymerization. The variation on amount of tetra(ethylene glycol)diacrylate (TD) during solution polymerization was carried out to study the effects on resin's properties. Commercial toner resins contain a high molecular weight portion and a low molecular weight portion. The commercial resins have glass transition temperature in the range of 63~66°C, Melt Flow Index in the range of 4~10 g/10 min, and acid number in the range of 8.5~10.2 mg KOH g⁻¹. As for high molecular weight portion, M_n is in the range of 1.93×10⁵~3.02×10⁵ gmol⁻¹, M_n in the range of $8.07 \times 10^{5} \sim 1.7 \times 10^{6} \text{ gmol}^{-1}$, M_{w} in the range of $5.5 \times 10^{5} \sim 6.77 \times 10^{5} \text{ gmol}^{-1}$, M_{z} in the range of $1.2 \times 10^6 \sim 1.5 \times 10^6$ gmol⁻¹, polydispersity in the range of $2.24 \sim 3.92$. While for low molecular weight portion, M_n is roughly 4×10^3 gmol⁻¹, M_n around 5×10^3 gmol⁻¹, M_w in the range of $6\times10^3\sim7\times10^3$ gmol⁻¹, M_z in the range of $9\times10^3\sim1.1\times10^4$ gmol⁻¹, polydispersity in the range of 1.68~1.80. The ratio of low molecular weight portion to

high molecular weight portion varies from 36:64 to 60:40. In this project, the low and high molecular weight portions were synthesized separately and they were mixed at various proportions to achieve the required properties as toner resins.

ABSTRAK

Tujuan utama projek ini adalah untuk menghasilkan resin toner yang melibatkan tiga peringkat eksperimen. (i) sintesis kopolimer stirena akrilik berberat molekul rendah; (ii) sintesis kopolimer stirena akrilik berberat molekul tinggi; (iii) percampuran keduadua kopolimer berberat molekul rendah dan tinggi. Kromatograf Penelapan Gel (GPC) telah diguna untuk mengkaji taburan berat molekul; Alat Indeks Aliran Leburan (MFI) diguna untuk mengkaji keupayaan leburan resin beralir; Kalorimetri Pengimbasan Pembezaan (DSC) untuk mengkaji sifat therma and nombor asid (AN) untuk mengkaji kandungan asid yang terdapat dalam resin. Satu perbandingan di antara resin perdagangan, paten US dan sampel eksperimen telah dianalisiskan. Resin berberat molekul rendah adalah disintesis melalui proses pempolimeran larutan dengan menggunakan hanya pelarut, monomer dan initiator. Manakala, resin berberat molekul tinggi adalah disediakan melalui proses pempolimeran bulk diikuti dengan pempolimeran larutan dengan menggunakan monomer, pelarut, initiator dan juga agen crosslinking. Dengan merujuk kepada resin perdagangan, terdapat dua bahagian dalam resin tersebut; bahagian berberat molekul rendah dan bahagian berberat molekul tinggi. Merujuk kepada resin perdagangan, Tg adalah dalam linkungan 63~66°C, MFI dalam linkungan 4~10 g/10 min, dan AN dalam linkungan 8.5~10.2 mg KOH/g. Keputusan GPC untuk bahagian berberat molekul tinggi, M_n dalam linkungan 1.93x10⁵~3.02x10⁵ $gmol^{-1}$, M_p dalam linkungan $8.07x10^5 \sim 1.7x10^6$ $gmol^{-1}$, M_w dalam linkungan $5.5 \times 10^{5} \sim 6.77 \times 10^{5} \text{ gmol}^{-1}$, M_z dalam linkungan $1.2 \times 10^{6} \sim 1.5 \times 10^{6} \text{ gmol}^{-1}$ dan I_p dalam linkungan 2.24~3.92. Manakala untuk bahagian berberat molekul rendah, M_n adalah dalam linkungan $3.5 \times 10^3 \sim 3.8 \times 10^3$ gmol⁻¹, M_p dalam linkungan $4.7 \times 10^3 \sim 4.9 \times 10^3$ gmol⁻¹, M_w dalam linkungan 5.9x10³~6.9x10³ gmol⁻¹, Mz dalam linkungan 9x10³~1.1x10⁴ gmol⁻¹ dan Ip dalam linkungan 1.68~1.80. Nisbah bahagian berberat molecul tinggi kepada bahagian berberat molecul rendah berubah daripada 36:64 kepada 60:40. Dalam

projek ini, bahagian resin berberat molekul tinggi dan rendah adalah disintesis berasingan dan dicampurkan dalam pelbagai nisbah untuk mencapai sifat-sifat yang diperlukan oleh toner resin.

CONTENT

ACKNOWLEDGEMENT

ABSTRAC	Γ	iii
ABSTRAK		v
CONTENT		vii
LIST OF FI	IGURES	xi
LIST OF TA	ABLES	xiv
LIST OF A	BBREVIATIONS	xvi
CHAPTER	ONE: INTRODUCTION	
1.1	Laser Printer	1
1.2	Toner	3
1.3	Print Defects	7
1.4	Bulk and Solution Polymerization	8
1.5	Mechanism for Free Radical Addition Polymerization	12
1.6	Thermal Initiation in Absence of an Initiator	13
1.7	Radical Initiator	14
1.8	Transfer Constants in Free Radical Polymerization	15
1.9	Crosslinking Reaction in Free Radical Polymerization	16
1.10	Styrene acrylic Copolymerization	18
1.11	Selection of Monomer	22
1.12	.12 Scope of Study	
CHAPTER	TWO: EXPERIMENTAL	
2.1	Synthesis of Low Molecular Weight Styrene acrylic	•
	Copolymer	23
2.1.1	Materials	23
2.1.2	Apparatus	23
2.1.3	Formulations	24

	2.1.4	Process	24
	2.1.5	Sample Drying	25
2.2		Synthesis of High Molecular Weight Styrene acrylic	25
		Copolymer	23
	2.2.1	Materials	25
	2.2.2	Apparatus	25
	2.2.3	Formulations	26
	2.2.4	Process	27
	2.2.5	Sample Drying	27
2.3		Mixing of High and Low Molecular Weight Styrene acrylic	20
		Copolymer	29
	2.3.1	Materials	29
	2.3.2	Apparatus	29
	2.3.3	Formulations	30
	2.3.4	Processes	30
	2.3.5	Sample Drying	30
2.4		Characterization for Series of Styrene acrylic Copolymer	31
	2.4.1	DSC	31
	2.4.2	GPC	32
	2.4.3	MFI	33
	2.4.4		
	2.4.5	TSC	35
2.5		Preparation of Finished Toner by using Pilot Plant	36
	2.5.1	Materials	36
	2.5.2	Formulations	36
	2.5.3	Pilot Line Processes	37

2.6		Print Test	43
2.7		Toner Characterization	4 4
	2.7.1	Apparent Density	4 4
	2.7.2	Flowability	45
	2.7.3	Tribocharge	46
	2.7.4	Magnetic Content	47
	2.7.5	Particle Size Distribution	48
СНА	APTER	THREE: RESULTS AND DISCUSSIONS	
3.1		Characterization for Low Molecular Weight Styrene acrylic	49
		Copolymer	45
	3.1.1	DSC	49
	3.1.2	GPC	49
	3.1.3	MFI	52
	3.1.4	AN	53
	3.1.5	TSC	55
	3.1.6	Summary for Low Molecular Weight Resin	56
3.2		Characterization for High Molecular Weight Styrene acrylic	60
		Copolymer	U
	3.2.1	Summary for High Molecular Weight Resin	60
3.3		Characterization for Mixture of High and Low Molecular	67
		Weight Styrene acrylic Copolymer	0,
	3.3.1	Determination of GPC Peak Ratio	67
	3.3.2	Calculation for Mixing Ratio	69
	3.3.3	Summary for Mixed Resin	71
3.4		Characterization for Styrene acrylic Commercial Resin	7 4

3.4.1	Summary for Commercial Resins	74
3.5	Print Test	77
CHAPTER	FOUR: CONCLUSION	
4.1	Summary	80
4.2	Further Works as Extension to the Project	81

List of Figure

Figure 1.1 The basic components of a laser printer includes fuser,

2

		photoreceptor drum assembly, developer roller, laser	
		scanning unit, toner hopper, corona wire and discharge lamp	
Figure	1.2	Comparison between manufacturing processes of	5
		conventional toner with chemically prepared toner	
Figure	1.3	Picture of conventional toner resin particles under 3 Mega	6
		Pixel camera by magnification 10×	
Figure	1.4	Mechanism of thermal polymerization for styrene, which	14
		involve initial formation of Diels-Alder dimmer (compound	
		A in figure 1.4), which transfers a hydrogen atom to	
		monomer to yield an initiator styryl radical (compound B in	
		figure 1.4) and a benzylic radical (compound C in figure 1.4).	
Figure	1.5	Copolymer configurations can be either in random,	21
		alternating, block or graft configuration depends on the	
		comonomer reactivity and concentration as well as the	
		polymerization condition and processes	
Figure	2.1	Apparatus set up for preparation of low molecular weight	23
		resin (A: mechanical stirrer, B: digital thermometer, C:	
		heater, D: reactor flask, E: oil bath)	
Figure	2.2	Apparatus set up for preparation of high molecular weight	25
		resin (A: mechanical stirrer, B: digital thermometer, C:	
		heater, D: reactor flask, E: oil bath)	
Figure	2.3	Glass tray contained precipitated polymer (before dried in	28
		oven)	
Figure	2.4	Apparatus for mixing of high and low molecular weight	29
		resins	
Figure	2.5	DSC	31

Figure	2.6	GPC	32
Figure	2.7	MFI	33
Figure	2.8	Aluminium cups contained dried polymer samples	36
Figure	2.9	Processes to produce finished toner	38
Figure	2.10	Mixer used to mix the resin, magnetite pigment, wax and	39
		charge control agent.	
Figure	2.11	Extruder was used to melt the mixture and extrude the	40
		mixture of resin, magnetite pigment, wax and charge control	
		agent.	
Figure	2.12	Crusher was used to crush down the extruded mixture into	41
		rough powder	
Figure	2.13	Miller was used to reduce the size of the rough powder,	42
		wherein classifier was used to produce toner powder in more	
		even sizes.	
Figure	2.14	Blender was used to blend the toner powder together with	43
		magnetite pigment, silica and zinc stearate to produce a	
		finished toner.	
Figure	2.15	Apparent density equipment (A: sample hopper, B: sample	4 4
		container)	
Figure	2.16	Flowability equipment (A: sample hopper, B: sample	45
		container, C: disc with different pore size)	
Figure	2.17	Keithley Instruments 610C solid state electrometer (A:	46
		sample container)	
Figure	2.18	Tectron Ag. 916 Fluxmeter	47
Figure	2.19	CILAS 1064 particle size analyzer	48
Figure	3.1	GPC curve for low molecular weight resin	51

Figure	3.2	GPC curve for high molecular weight sample	51
Figure	3.3	Phenolphthalein appear colourless in acidic system (pH 0 to	53
		8.2) and appear in pink colour when the system change to	
		alkaline (pH 8.2 to 12)	
Figure	3.4	Mechanism of MAA incorporated into the copolymer	63
Figure	3.5	Generation of radical for TD in the polymerization system	65
Figure	3.6	Network morphology in the crosslinking reaction	66
Figure	3.7	GPC curve of mixed sample	68
Figure	3.8	The figure shows that larger molecules which continued	68
		down the columns and eluted faster whereas smaller	
		molecules can penetrate the pores of the columns and are	
		therefore retained to a greater extent than the larger	
		molecules.	
Figure	3.9	Finish toner prepared by using resin M30 was observed by	78
		using microscope under magnification 100×, the toner	
		particles were found in irregular shape.	
Figure	3.10	Finish toner prepared by using resin SJ700 was observed by	7 9
		using microscope under magnification 100×, the toner	
		particles were found in irregular shape.	

List of Table

Table	1.1	Examples of common print defects	7
Table	1.2	Comparison between various processes of polymerization	10,11
Table	1.3	Examples of crosslinking agents for synthesis of styrene	18
		acrylic copolymer	
Table	2.1	Formulation for preparation of low molecular weight resin	24
		by solution polymerization at 130°C	
Table	2.2	Formulation for preparation of high molecular weight resin	20
Table	2.3	Formulation for preparation of mixing between high and	30
		low molecular weight resins	
Table	2.4	Formulation for pilot line processing to produce raw toner	37
Table	2.5	Formulation for final blending to produce finished toner	37
Table	3.1	Formulation and properties results for low molecular	57
		weight resin	
Table	3.2	Formulation and properties results for high molecular	60
		weight resin prepared by using 2 parts MAA by weight	
Table	3.3	Formulation and properties results for high molecular	61
		weight resin prepared by using 3 parts MAA by weight	
Table	3.4	Formulation and properties results for mixed sample M28	7 1
		to M31	
Table	3.5	Formulation and properties results for mixed sample M40	72
		to M43	
Table	3.6	Properties results for commercial resins	74
Table	3.7	Comparison between commercial resins, patent literature	70
		and experimental samples	
Table	3.8	Comparison of properties between finished toner produced	77
		by using M30 and SJ700.	

List of abbreviations

MAA Methacrylic acid

TD Tetra ethylene glycol diacrylate

GPC Gel permeation chromatography

DSC Differential scanning calorimetry

MFI Melt flow indexes

TSC Total solid content

AN Acid number

MWD Molecular weight distribution

T_g Glass transition temperature

M_n Number average molecular weight

M_w Weight average molecular weight

M_z Z average molecular weight

M_p Peak value for molecular weight distribution

I_p Polydispersity of molecular weight

Al aluminium

THF Tetrahydrofuran

CHAPTER ONE: INTRODUCTION

1.1. Laser Printer

Nowadays, colour laser and inkjet printers have become common facilities to almost all big companies that require printings of various types. A laser printer can print faster and with better quality compared with an inkjet printer. This is due to the unvarying diameter of the laser beam that makes laser printer prints sharper. The toner powder which is used in laser printers is cheaper and lasts a long time. Moreover, the printed image is water resistant.

The main components of a laser printer are; a photoconductive drum (OPC drum) and laser within a highly precise optic-mechanical ray system. Other components are to ensure the correct functioning of the two main components¹. Figure 1.1 shows the basic components of a laser printer, which included discharge lamp, corona wire, toner hopper, laser scanning unit, fuser, photoreceptor drum assembly and developer roller.

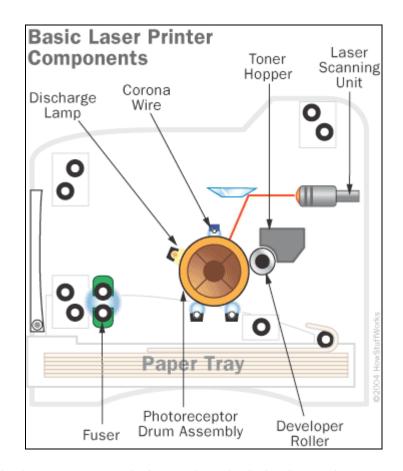


Figure 1.1 The basic components of a laser printer includes fuser, photoreceptor drum assembly, developer roller, laser scanning unit, toner hopper, corona wire and discharge lamp

Initially, the charged corona wire (a wire with an electrical current running through it) gives a total positive charge to the drum. As the drum revolves, the printer shines a tiny laser beam across the surface to discharge certain points. In this way, the laser "draws" the letters and images (which is also known as electrostatic image) to be printed as a pattern of electrical charges. The system can also work with the charges reversed, where a positive electrostatic image is "drown" on a negative background.

After setting the pattern, a positively charged toner will be coated on the drum and cling on the negative discharged areas of the drum.

With the powder pattern affixed, the drum rolls over a sheet of paper, which is given a negative charge by the transfer corona wire (charged roller). This charge is stronger

than the negative charge of the electrostatic image, so the paper can pull the toner powder away. Since it is moving at the same speed as the drum, the paper picks up the image pattern exactly. The paper is discharged by the detac corona wire immediately after picking up the toner to avoid it from clinging to the drum.

The paper was passed through the fuser (a pair of heated rollers) which apply heats on the paper to melt down the toner powder and fuse with the fibers in the paper. The fuser rolls the paper to the output tray, and one complete printing image is obtained.

After depositing toner on the paper, the drum surface passes through the discharge lamp, where bright light exposes the entire photoreceptor surface, erasing the electrical image. The drum surface then passes the charge corona wire, which reapplies the positive charge.

1.2. Toner

Toner is a pigmented powder used in laser printers and photocopiers to form the text and picture images on the printed paper. In its earliest form it was simply carbon black powder. Then, to improve the quality of the printout the carbon black was blended with a polymer. Toner particles are melted by the heat of the fuser, causing them to bind to the paper. The specific polymer used varies from one manufacturer to another but can be a styrene acrylic copolymer or a polyester resin.

Toner formulations vary from one manufacturer to manufacturer to meet the requirements of different machine designs. Toner usually contains resin, imaging dye, stabilizer, charger, antioxidants and substances preventing particles from spontaneous sticking together. There are now two main types of toner in the market; conventional (traditional) toner and chemically produced toners (CPT).

Conventional toner is manufactured through mechanical milling of the carbon black mixture. A large solid mass of carbon black mixture is crushed and ground to a fine powder with a fairly narrow particle size distribution. Meanwhile, CPT is the toner synthesized chemically through processes such as emulsion aggregation process or suspension polymerization process. Although CPT is better than the conventional toner in terms of quality, but the manufacturing of CPT is still a costly process. Comparison between the processes to produce conventional toner and CPT is shown in Figure 1.2. ^{2,3}

Most of the commercial resins contain two fractions: a high and a low molecular weight portions. The low molecular weight portion imparts a good fixing property on paper during printing process. The low molecular weight faction has M_n in the range 1×10^3 gmol⁻¹ to 5×10^3 gmol⁻¹ (preferably 1.5×10^3 gmol⁻¹ to 2.8×10^3 gmol⁻¹) and T_g in the range 40 to 75° C in order to provide heat melting ability at low temperature. ⁴

Meanwhile, the high molecular weight portion has sufficiently high molecular weight to ensure a good offset property for printing quality. 5-23

The mixed resin should have M_n in the range of 2×10^3 gmol⁻¹ to 1.5×10^4 gmol⁻¹ (preferably 2×10^3 gmol⁻¹ to 1×10^4 gmol⁻¹) to provide heat melting ability at low temperature. In case M_n was less than 2×10^3 gmol⁻¹, this would lead to poor dispersion of the colouring agent due to the viscosity reduction during kneading process. In case M_n was more than 1.5×10^4 gmol⁻¹, this would result in poor fixing ability.

 M_z value for mixed resin should be higher than 4×10^5 gmol⁻¹ (preferably higher than 5×10^5 gmol⁻¹) to enhance resin strength, increased viscosity during the hot kneading, improved the dispersability of colouring agent, reduced the variation of electrostatic changed during the duplication, maintained the image concentration more constantly, and reduced fogging problem.

The polydispersity, I_p, which is the ratio of M_w: M_n, should be in the range of 5 to 15 to make sure the resin having good offset and fixing properties. In case I_p was too low, the toner resins typically exhibit a viscosity profile wherein viscosity decreased sharply at higher temperatures which lead to poor offset properties. Conversely, if the polydispersity was too high, the fixing properties of the toner resins were adversely affected. Lastly, T_g should be in the range of 40°C to 90°C (preferably 50°C to 80°C) in order to provide heat melting ability at low temperature. ^{4, 19}

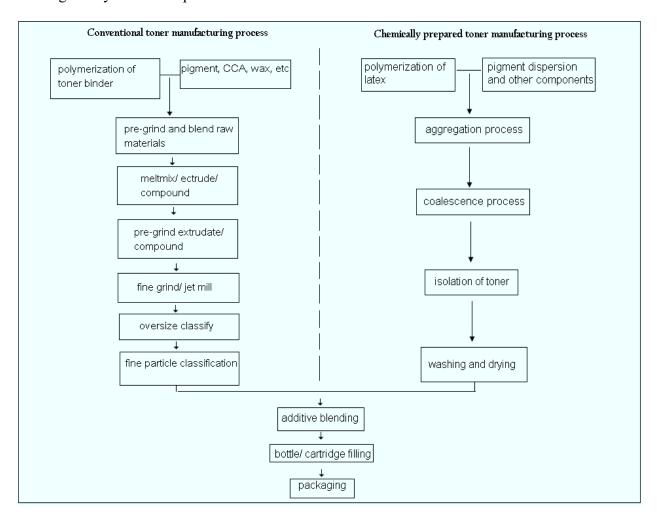


Figure 1.2 Comparison between manufacturing processes of conventional toner with chemically prepared toner ²⁴

Certain characteristics of the toner are critical to the performance of the toner.

Charge properties of toner are crucial for the proper transfer of the toner particles.

Improper charge properties of the toner leading to print defects such as background, blasting or light print. This is strongly affected by the toner particle size and shape.

Another important characteristic of the toner is the fusing ability which requires specific melting and adhering properties. The toner must be able to melt at the proper temperature to be compatible with the fusing system where it will be used. The melting point as well as the fusing rate is also very important. Improper fusing leads to print defects such as cold offset or hot offset, ghost image picked up in the fuser and low density of prints.

All of the previously mentioned properties are important to the imaging quality of the print out. Toner must charge, transfer, and fuse properly to produce a good image. Therefore, the use of suitable resin in toner production is very important in order to produce finished toners with the required properties. Figure 1.3 shows the appearance of conventional toner, SJ700, which clearly showed that the conventional toner particles are irregular in shape and size.

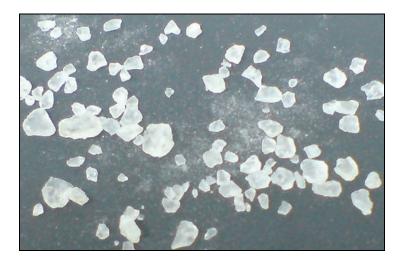


Figure 1.3 Picture of conventional toner resin particles under 3 Mega Pixel camera by magnification $10\times$

1.3. Print defects

Some of the common print defects are shown in Table 1.1.

Table 1.1 Examples of common print defects

Print defect	Description
Ac	Background is scatter.
AaBbCc AaBbCc AaBbCc AaBbCc AaBbCc	Background is gray in colour.
AaBbCc	The toner fixing is poor; toner is loose
AaBbCc AaBbCc AaBbCc	and easy rubs out from paper.
AaB Cc AaB Cc AaB Cc AaB Cc AaB Cc	The printing is too light, too dark or fade.
AaBbCc AaBbCc AaBbCc AaBbCc AcBbCc	There are some repetitive defects obtain in the printing.

1.4. Bulk and Solution Polymerization

Binder resin is the major component in the toner accounting for 50-90%, therefore, the properties of the binder resin that strongly affects the properties of finished toner are molecular weight, softening point, melting point and melt flow indexes.

There are various methods of manufacturing conventional binder resin such as solution polymerization, bulk polymerization, suspension polymerization and dispersion polymerization. In this study, we are using the bulk polymerization and solution polymerization processes to produce the binder resin.

Bulk polymerization of a pure monomer offers the simplest process with minimum contamination of the product. However, this process is difficult to control due to the characteristics of radical chain polymerization, which is highly exothermic, coupled with the rapid increase in viscosity leading to difficulty on heat dissipation. ²⁵

Free-radical polymerization is an important commercial method to produce acrylic resins for paints, adhesives and coatings.

Solution polymerization takes place in a solvent where the monomers and initiator are dissolved in. The solvent must have suitable boiling points for the conditions of the polymerization, and any subsequent solvent-removal step. Selection of solvent may be also influenced by other factors such as flash point, cost, and toxicity. The initiator dissolves in the solvent and decomposes to form free radicals which initiate the polymerization of the monomer to produce the polymer particles. ^{26, 27}

Solution polymerization offers an easier temperature control compare to the bulk polymerization because of the added heat capacity of solvent and lower viscosity. The level of impurities in the copolymer can be low since the initiators residues can be removed. The disadvantages of solution polymerization are firstly, the removal of solvent and unreacted monomer can be difficult. Secondly, polymers are usually in lower molecular

weight because of certain amount of chain transfer reaction. Thirdly, the reaction temperature is limited by the boiling point of the solvent used. Finally, the organic solvent used in the polymerization process is often expensive, toxic and flammable and the solvent recovery process is costly. ^{26, 27, 28, 29}

In this study, both solution and bulk polymerization were investigated, the high molecular weight polymer can easily built up by undergo bulk polymerization and the difficulties of heat dissipation can be solved by switching the bulk polymerization to solution polymerization after certain percentage of conversion.

The comparison on the advantages and disadvantages of different polymerization processes is shown in Table 1.2.

Table 1.2 Comparison between various processes of polymerization

Polymerization processes	Bulk	Solution	Suspension	Emulsion
Materials	Monomer + initiator +	Monomer + initiator + organic	Monomer + oil soluble	Monomer + water
	water	solvent	Initiator + Inorganic Stabilizer + water	soluble initiator + surfactant + water
Advantages	Separation of	Overcome problems of	System properly	• Easier
	polymer from the	intractably viscous and heat	conducted, where it	temperature
	solvents/dispersio	dissipation thus produces an	will remain completely	control,
	n medium is easy	easier temperature control	fluid over the entire	since the
	because of the	system.	course of the reaction.	viscosity
	absence of added	 Product precipitate 	 Heat dissipation 	changes
	substance.	gradually as reaction	problem better than in	very little
	 The molecular 	proceeds in a heterogeneous	bulk polymerization	with
	weight of the	system. (product not soluble	process.	conversion.
	polymer is high	in solvent)	• If water is used as the	 Water is
	because of the	 Level of impurities can be 	medium, problems of	used as the
	absence of	very low, since the initiator	inflammability,	medium,
	solvent (which	residues can be washed out.	toxicity and expense	thus provide
	acts as chain	 In a system that polymer 	are minimized.	better
	transfer agent) in	soluble in solvent, with	 Product polymer is 	thermal
	the	provided sufficient solvent	easy to be separate	conductivity
	polymerization	present, system remain fluid	from the dispersion	
	reaction.	right up to the completion	medium.	
		of the reaction.		

Table 1.2, continued

Polymerization processes	Bulk	Solution	Suspension	Emulsion
Disadvantages	System becomes	Solvents are usually	The purity of the	Removal of
	intractably	expensive, toxic and often	product polymer is	monomer can
	viscous as the	flammable.	lower than those	be difficult
	reaction	 Molecular weight of 	obtained by bulk	without
	proceeds.	product polymer seriously	polymerization, but is	coagulating
	 Dissipation of the 	curtailed by the reaction of	better than those	the latex.
	heat of	radical transfer-to-solvent.	obtained by emulsion	 Impurities
	polymerization	 Removal of last traces of 	polymerization.	levels are
	 Product polymer 	solvent and unreacted	 Careful attention to 	usually rather
	often	monomer can be difficult.	stirring is necessary.	high because
	branched/cross		 The product polymer 	surfactant
	linked.		has very large	and coagulant
			particles size.	residues are
				hard to
				remove.

1.5. Mechanism for free-radical additional polymerization

There are two fundamental polymerization mechanisms; free-radical addition polymerization and step-growth polymerization. Preparations of binder resin in this study undergo the additional polymerization. Additional polymerization involves three district steps: initiation, propagation and termination.

Initiation involves the dissociation of initiator (usually at the suitable temperature) to generate free-radical entities, and followed by the addition of a monomer molecule to the initiating radical as shown in equation 1.1a and 1.1b where k_d is the constant for the initiation dissociation and k_i is the rate constant for initiation.

$$\mathbf{I} \xrightarrow{k_d} \mathbf{2R} \bullet \tag{1.1a}$$

$$\mathbf{R} \bullet + \mathbf{M} \xrightarrow{k_i} \mathbf{R} \mathbf{M}_1 \bullet$$
 [1.1b]

The propagation step is the step where the monomer units are added to the initiated monomer species, this can be represent in equation 1.2a to 1.2c. The propagation rate constant is denoted as k_p .

$$\mathbf{RM_1}^{\bullet} + \mathbf{M} \xrightarrow{k_p} \mathbf{RM_2}^{\bullet}$$
 [1.2a]

$$\mathbf{RM_2} \bullet + \mathbf{M} \xrightarrow{k_p} \mathbf{RM_3} \bullet$$
 [1.2b]

$$\mathbf{RM_{n-1}} \bullet + \mathbf{M} \xrightarrow{k_p} \mathbf{RM_n} \bullet$$
 [1.2c]

The propagation step is the fundamental reaction in any polymerization. Compared to condensation polymerization, the propagation rate for addition polymerization is very rapid. Very high molecular-weight polymer can be formed in relatively short time. This propagation step will continue until some termination process occurs.

One of the obvious termination mechanism occurs when two propagating radical chains of arbitrary degrees of polymerization of x and y meet at their free-radical ends. This kind of termination occurs by combination (by the formation of covalent bond

between two radical chains) to give a single terminated chain of degree of polymerization (x + y) as illustrated by equation 1.3. The rate of termination in this manner is denoted as k_{tc} .

$$\mathbf{R}\mathbf{M}_{\mathbf{m}^{\bullet}} + \mathbf{R}\mathbf{M}_{\mathbf{n}^{\bullet}} \xrightarrow{k_{nc}} \mathbf{R}\mathbf{M}_{\mathbf{m}+\mathbf{n}}\mathbf{R}$$
 [1.3]

Termination can also occurs by a disproportionation reaction, where one terminated chain will have an unsaturated carbon group, and another fully saturated terminated end. This reaction is illustrated as in equation 1.4, where the rate of termination by disproportionation is denoted as k_{td} . ^{30, 31}

$$RM_{m} \bullet + RM_{n} \bullet \xrightarrow{k_{td}} RM_{n} + RM_{m}$$
 [1.4]

1.6. Thermal Initiation in Absence of an Initiator

Monomers such as styrene and acrylate are known to be capable of self initiated polymerization at elevated temperatures. In most cases of thermal spontaneous polymerization, the initiation mechanism and the kinetics involved appear obscure and sometimes irreproducible because of the presence of traces or uncertain amount of impurities and their direct or indirect role in radical forming reactions with or without involvement of monomer molecules. ³¹

The mechanism of thermal polymerization for styrene with no added initiator is shown as Figure 1.4.

$$2CH_2 = CHPh \longrightarrow \bigoplus_{H \text{ Ph}} (A)$$

$$+ CH_2 = CHPh \longrightarrow CH_3\dot{C}HPh + \bigoplus_{Ph} (B) (C)$$

Figure 1.4 Mechanism of thermal polymerization for styrene, which involve initial formation of Diels-Alder dimmer (compound **A** in Figure 1.4), which transfers a hydrogen atom to monomer to yield an initiator styryl radical (compound **B** in Figure 1.4) and a benzylic radical (compound **C** in Figure 1.4). ³²

1.7. Radical Initiator

Radical initiators refer to substances that can produce radical species under specific conditions and kick start the radical polymerization reactions. These substances generally possess weak bonds with low bond dissociation energies; examples like halogen molecules, azo compounds, and organic peroxides.

Halogens can generate two free radicals resulting from the homolysis of the bond easily, for example, chlorine molecule can generate two chlorine radicals (Cl•) by irradiation with ultraviolet light. This process is used for chlorination of alkanes.

Azo compounds (R-N=N-R') tends to generate two carbon-centered radicals (R• and R'•) and nitrogen gas upon decomposition by heating or irradiation.

Organic peroxides each have a peroxide bond (-O-O-), which is readily cleaved to give two oxygen-centered radicals. The radicals are rather unstable and believed to be transformed into relatively stable carbon-centered radicals. For example, benzoyl peroxide

((PhCOO)₂) generates benzoyloxyl radicals (PhCOO•), each of which loses carbon dioxide to be converted into a phenyl radical (Ph•).

Radical initiators, especially azo compounds and organic peroxides, are inherently unstable. They must be kept in a cool place or refrigerated. Care should be taken with the handling of the compounds or an explosion may occur. Figure 1.5 shows the chemical structure of benzoyl peroxide which is used as the initiator in this study. 30, 31, 32

1.8. Transfer Constants in Free Radical Polymerization

Transfer reaction in radical polymerization means a process in which the polymer radical reacts with another species in the system (such as monomer, polymer, catalyst, solvent or modifier) to form a dead polymer and new radical which can continue the kinetic chain by following equations:

$$\mathbf{P} \bullet_{\mathbf{n}-1} + \mathbf{M} \xrightarrow{k_p} \mathbf{P} \bullet_{\mathbf{n}}$$
 [1.5a]

$$\mathbf{P} \bullet_{\mathbf{n}} + \mathbf{R} \mathbf{X} \xrightarrow{k_{rr}} \mathbf{P}_{\mathbf{n}} \mathbf{R} + \mathbf{X} \bullet$$
 [1.5b]

$$\mathbf{X} \bullet + \mathbf{M} \xrightarrow{k_i} \mathbf{P} \bullet_{\mathbf{I}}$$
 [1.5c]

By making the following assumptions:

- a) All new radicals X• react only by formation of growing polymer radicals;
- b) All polymer radicals have equal reactivity independent of their size;
- c) All rate constants are independent of solvent;
- d) The consumption of monomer by initiation and transfer is negligible compared with propagation;
- e) A steady-state concentration of polymer radicals is quickly established ($d[P^{\bullet}]/dt = 0$). Then we can define the dimensionless transfer constant, C_x , by using the equation as followed:

$$C_x = k_{tr}/k_p ag{1.6}$$

Where k_p is the rate constant of propagation,

 k_{tr} is the rate of chain transfer,

 k_i is the rate of chain reinitiation. ^{34, 36}

1.9. Crosslinking Reaction in Free Radical Polymerization

Both addition and condensation polymers can be linear, branched, or crosslinked. Linear polymers are made up of one long continuous chain, without any excess appendages or attachments.

There are two types of chemical crosslinking. The first type is crosslinking during polymerization by use of polyfunctional instead of difunctional monomers; the crosslinks may contain the same repeating structure as the main chains. Second type of chemical crosslinking occurred in a separate processing step after the linear (or branched) polymer is formed, the crosslinks may have an entirely different structure.

There are number of significant changes that accompany chemical crosslinking. At high level of crosslinking, the polymer cannot be dissolved or molded, thus difficult to recycle. The polymers are no longer dissolve but swelling in the present of solvent except for some ionically crosslinked polymers. A solvent swollen crosslinked polymer is referred to as gel. Covalently crosslinked polymers also lose their flow properties. They may still undergo deformation, but the deformation will be reversible; that is, the polymer will exhibit elastic properties.

Crosslinking density, Γ , refers to the number average molecular weight of uncrosslinked polymer, $(M_n)_0$, divided by the number average molecular weight between crosslinks, $(M_n)_c$, as shown in equation 1.7.

$$\Gamma = (M_n)_0/(M_n)_c$$
 [1.7]

The higher the crosslink density, the polymer becomes more rigid. Very high crosslink densities lead to embrittlement because crosslinking reduces segmental motion; it is frequently employed to increase the glass transition temperature.

On the other hand, there could be the physical crosslinking, which is due to strong secondary bonding attraction between polymer chains such that the polymer exhibits properties of a thermosetting material while remaining thermoplastic.

Many of the mechanical and solution properties of crystalline polymers resemble those of crosslinked amorphous polymers due to the very strong secondary forces arising from close chain packing. The existing of intermolecular hydrogen bonding in certain materials also behaves like crosslinked polymers, example like gelatin (an animal-derived protein that exhibits elastomeric properties).^{32, 33}

Table 1.3 shows some examples of crosslinking agents that used for synthesis of styrene acrylic copolymer.

Table 1.3 Examples of crosslinking agents for synthesis of styrene acrylic copolymer

Cross linking agent	Chemical structure
Divinylbenzene	CH ₂
Ethylene glycol diacrylate	о о н,с=сн-с-о-сн,-сн,-о-с-сн=сн,
Ethylene glycol dimethacrylate	CH ₃ O CH ₂ CH ₂ CH ₃
1,6-Hexanediol diacrylate	$\left({{{\rm{H}}_2}{\rm{c}} \!=\! {\rm{cH}} \!-\! \overset{\rm{O}}{{\rm{c}}} \!-\! {\rm{o}} \!-\! {\rm{c}} {{\rm{H}}_{{\overline 2}}} \!-\! {\rm{c}}{{\rm{H}}_{{\overline 2}}} \!-\! {\rm{c}}{{\rm{c}}} \!-\! {\rm{c}} \!-\! {\rm{c}} \!-\! {\rm{c}}{{\rm{c}}} \!-\! {\rm{c}}{{\rm{c}}} \!-\! {\rm{c}} \!-\! {\rm{c}}$
Tetra(ethylene glycol) diacrylate	(ңс=сн-Ё-о-сң-сң-о-сң-сң-), о

1.10. Styrene acrylic Copolymerization

There are four separate propagation steps (equation 1.8a, 1.8b, 1.8c, 1.8d) in a free-radical copolymerization (with their own rate constant).

$$\sim \mathbf{M}_1 \bullet + \mathbf{M}_1 \xrightarrow{k_{11}} \sim \mathbf{M}_1 \mathbf{M}_1 \bullet$$
 [1.8a]

$$\sim \mathbf{M}_1 \bullet + \mathbf{M}_2 \xrightarrow{k_{12}} \sim \mathbf{M}_1 \mathbf{M}_2 \bullet$$
 [1.8b]

$$\sim \mathbf{M}_2 \bullet + \mathbf{M}_1 \xrightarrow{k_{21}} \sim \mathbf{M}_2 \mathbf{M}_1 \bullet$$
 [1.8c]

$$\sim \mathbf{M}_{2} \bullet + \mathbf{M}_{2} \xrightarrow{k_{22}} \sim \mathbf{M}_{2} \mathbf{M}_{2} \bullet$$
 [1.8d]

The rates of disappearance of comonomers M_1 and M_2 can be obtained by considering the individual steps by which M_1 and M_2 are consumed. The rate equations are shown in equation 1.9a and 1.9b.

$$-d[\mathbf{M}_1]/d_t = k_{11}[\mathbf{M}_1 \bullet][\mathbf{M}_1] + k_{21}[\mathbf{M}_2 \bullet][\mathbf{M}_1]$$
 [1.9a]

$$-d[\mathbf{M}_2]/d_t = k_{12}[\mathbf{M}_1 \bullet][\mathbf{M}_2] + k_{22}[\mathbf{M}_2 \bullet][\mathbf{M}_2]$$
 [1.9b]

Where M_1 = styrene monomer, and

 M_2 = n-butyl acrylate monomer

Under steady-state, the concentration of M_1 • and M_2 • remaining constant, the rates of interconversion of chain radicals are equal, which prescribes that rates of reactions for equation 1.8b and 1.8d are equal,

$$k_{12}[\mathbf{M}_1 \bullet][\mathbf{M}_2] = k_{21}[\mathbf{M}_2 \bullet][\mathbf{M}_1]$$
 [1.10]

Therefore, combining equation 1.9a and 1.9b and expressing $[M_1 \bullet]$ in terms of $[M_2 \bullet]$ (or vice versa) with the help of equation 1.10, the ratio of disappearance of monomers M_1 and M_2 is described by

$$\frac{d[\mathbf{M}_{1}]}{d[\mathbf{M}_{2}]} = \frac{[\mathbf{M}_{1}]}{[\mathbf{M}_{2}]} \left(\frac{k_{11}[\mathbf{M}_{1}^{\bullet}] + k_{21}[\mathbf{M}_{2}^{\bullet}]}{k_{12}[\mathbf{M}_{1}^{\bullet}] + k_{22}[\mathbf{M}_{2}^{\bullet}]} \right)$$
[1.11]

The copolymer composition can be predicted by considering the comonomer reactivity and concentration. The relative change in the comonomer composition is given by the instantaneous copolymerization equation (obtained by dividing equation 1.9a by equation 1.9b), thus the monomer reactivity ratio can be defined as equation 1.12a and 1.12b. ²⁷

$$\mathbf{r}_1 = k_{11}/k_{12} \tag{1.12a}$$

$$\mathbf{r}_2 = k_{22}/k_{21} \tag{1.12b}$$

Where r_1 = reactivity ratio for styrene monomer, and

 r_2 = reactivity ratio for n-butyl acrylate monomer

The reactivity ratios for many important combinations of monomers had been determined and been tabulated in several reference sources. ^{30, 31, 32, 34} The reactivity ratios for less common monomer pairs can be calculated by using the Q-e scheme (shown in equation 1.13a and 1.13b) which proposed by Alfrey and Price.

$$r_1 = (Q_1/Q_2)\exp[-e_1(e_1-e_2)]$$
 [1.13a]

$$\mathbf{r}_2 = (\mathbf{Q}_2/\mathbf{Q}_1)\exp[-\mathbf{e}_2(\mathbf{e}_2-\mathbf{e}_1)]$$
 [1.13b]

Where Q_1 , Q_2 = reactivity of the monomer M_1 and M_2 , and

 e_1 , e_2 = polarity of the radical $M_1 \cdot$ and $M_2 \cdot$

The r_1 , r_2 value for styrene and n-butyl acrylate monomers respectively are calculated as followed.³⁴

$$\begin{aligned} \mathbf{r}_1 &= (\mathbf{Q}_1/\mathbf{Q}_2) \exp[-\mathbf{e}_1(\mathbf{e}_1 - \mathbf{e}_2)] \\ &= (1.00/0.38) \exp[0.80(-0.80 - 0.85)] \\ &= 0.70 \\ \mathbf{r}_2 &= (\mathbf{Q}_2/\mathbf{Q}_1) \exp[-\mathbf{e}_2(\mathbf{e}_2 - \mathbf{e}_1)] \\ &= (0.38/1.00) \exp[-0.85(0.85 + 0.80)] \\ &= 0.09 \end{aligned}$$

The reactivity ratio $r_1 = k_{11}/k_{12}$ and $r_2 = k_{22}/k_{21}$, the copolymer equation on the composition of the copolymer can be obtained by substitute r_1 , r_2 into equation 1.11.

$$n = \frac{d[M_1]}{d[M_2]} = \left(\frac{r_1[M_1]/[M_2] + 1}{r_2[M_2]/[M_1] + 1}\right) = \frac{r_1x + 1}{(r_2x) + 1}$$
[1.14]

Where n = composition of the copolymer

x = composition of the feed

Therefore, an equimolar ratio of styrene and n-butyl acrylate would produce a styrene-rich copolymer in which there would be three molecules of styrene to every two molecules of n-butyl acrylate in the polymer chain. ³⁰ The calculation is shown as below.

$$n = \frac{r_1 x + 1}{(r_2 x) + 1} = \frac{0.70(1) + 1}{(0.09 \times 1) + 1} = \frac{1.7}{1.09} = 1.56$$

Copolymer can have several configurations or arrangements of the monomers along the chain. The four main configurations are depicted as in Figure 1.5 and the configuration for copolymer produced from this study is in random form.

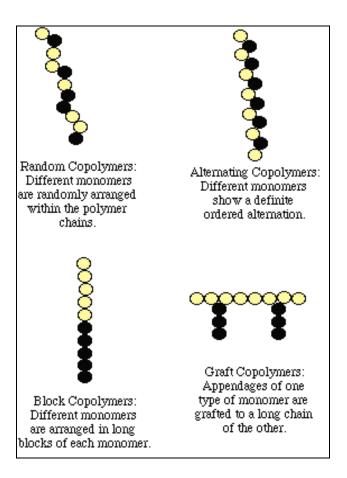


Figure 1.5 Copolymer configurations can be either in random, alternating, block or graft configuration depends on the comonomer reactivity and concentration as well as the polymerization condition and processes

1.11. Selection of Monomer

The two main monomers used in this study are styrene and n-butyl acrylate. Acrylic esters such as n-butyl acrylate are commercially important in the synthesis of acrylic resins because of their optical clarity, mechanical properties, adhesion and chemical stability to apply in paints, adhesives and coatings.

Polystyrene comprise about 14% of the total thermoplastic market. An especially important application for styrenic polymers is the manufacturing of foam-insulation and packaging materials. Polystyrene provides better high temperature performance, toughness, lower permeability, provide higher strength and good chemical resistance. ²⁷

1.12. Scope of Study

The objective of this study is to investigate the production of binder resin that could be used for toner manufacturing. Both bulk and solution polymerization processes were investigated. A series of styrene acrylic copolymer samples with different amount of methyl methacrylic acid and tetra (ethylene glycol) diacrylate were prepared to undergo a series of characterization tests. The result of each test was collected and the comparisons with the commercial resins had been carried out.

CHAPTER TWO: EXPERIMENTAL

2.1 Synthesis of Low Molecular Weight Styrene acrylic Copolymer

2.1.1 Materials

Industrial grade xylene, styrene, n-butyl acrylate, industrial grade methanol, and benzoyl peroxide (moistened with 25% water) were used to synthesize the low molecular weight styrene acrylic copolymer.

2.1.2 Apparatus

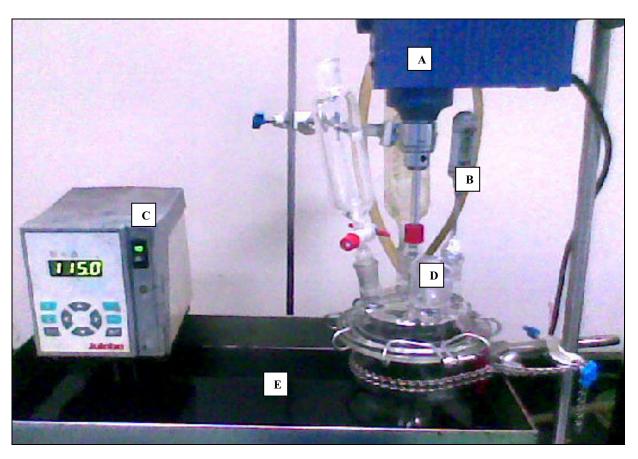


Figure 2.1 Apparatus set up for preparation of low molecular weight resin (A: mechanical stirrer, B: digital thermometer, C: heater, D: reactor flask, E: oil bath)

2.1.3 Formulations

The formulations of low molecular weight resins are shown in Table 2.1.

Table 2.1 Formulation for preparation of low molecular weight resin by solution polymerization at 130°C.

Code	L10	L11	L12
Formulation/	 Parts per 100 part	s of monomer	
Styrene	90	90	90
n-butyl acrylate	10	10	10
Benzoyl peroxide	10	12.5	15
Xylene	100	100	100
Total	210	212.5	215

2.1.4 Process

The initial formulation and process in this study was adapted from a patent literature ⁴. A flask was charged with 100 parts of xylene and heated to 130°C in an oil bath. A mixture of 90 parts of styrene, 10 parts of n-butyl acrylate and 10 parts of benzoyl peroxide (for experiment L12) was being purge by nitrogen gas for 3 minutes to displace dissolved oxygen. The mixture was continuously added into the reactor flask drop-wise over 5 hours. The reaction was carried on for another 2 hours to ensure complete polymerization. The reactor was allowed to cool down to room temperature before the product was isolated.

2.1.5 Sample Drying

The copolymer was precipitated by addition of methanol. The precipitated copolymer was spread on a glass tray (A4 x A4 size) and dried in an oven at 130°C for 10 hours. The dried film was collected and used to run the series of property tests.

2.2 Synthesis of High Molecular Weight Styrene acrylic Copolymer

2.2.1 Materials

Industrial grade xylene, styrene, n-butyl acrylate, methacrylic acid, methanol and benzoyl peroxide, and analytical grade tetra (ethylene glycol) diacrylate, were used to synthesize the high molecular weight styrene acrylic copolymer.

2.2.2 Apparatus

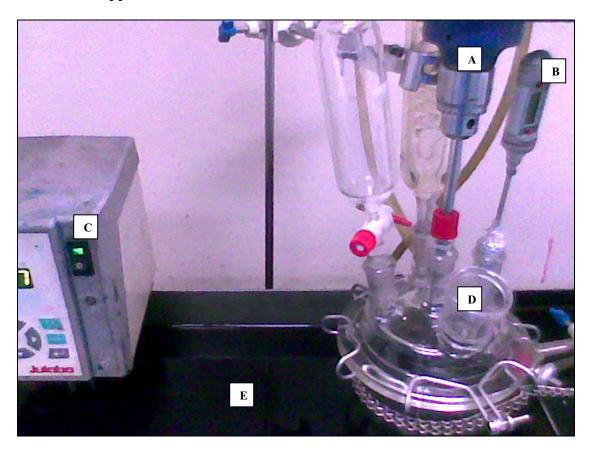


Figure 2.2 Apparatus set up for preparation of high molecular weight resin (A: mechanical stirrer, B: digital thermometer, C: heater, D: reactor flask, E: oil bath)

2.2.3 Formulations

The preparation of high molecular weight resins are listed in Table 2.2.

Table 2.2 Formulation for preparation of high molecular weight resin

Code	H55	H29	H26	H58	H57	09Н	H61	Н62	Н63	H64
F0	Formulation/ Parts per 100 parts of monomer	ı/ Parts p	er 100 p	arts of m	onomer					
Styrene	73.5	73.5	73.5	73.5	73.5	72.8	72.8	72.8	72.8	72.8
n-butyl acrylate	24.5	24.5	24.5	24.5	24.5	24.2	24.2	24.2	24.2	24.2
Methacrylic acid	2	2	2	2	2	3	3	3	3	3
Tetra ethylene glycol diacylate	0.5	9.0	0.7	8.0	6.0	0.5	9.0	0.7	0.8	6.0
Benzoyl peroxide	1	1	1	1	1	1	1	1	_	1
Xylene (A)	40	40	40	40	40	40	40	40	40	40
(B)	09	09	09	09	09	09	09	09	09	09

2.2.4 Process

The initial formulation and processes in this study was adapted from a patent literature^{4, 35}. A flask was charged with 73.5 parts of styrene, 24.5 parts of n- butyl acrylate and 2 parts of methacrylic acid (for experiment H55). The mixture was being purge by nitrogen gas for 10 minutes to displace dissolved oxygen. The mixture was heated in an oil bath and polymerized in bulk for 4 hours by maintaining the reaction temperature at 120°C. A conversion of around 50% was obtained by the bulk polymerization in the absence of polymerization initiator.

In the next step, 0.5 parts of tetra (ethylene glycol) diacrylate in 60 parts of xylene was poured into the system. A mixture of 1 part of benzoyl peroxide in 40 parts of xylene was dripped in continuously over 2 hours into the system at 130°C. The polymerization was left for further 3 hours while maintained the temperature at 130°C. The reactor was then allowed to cool down to 70°C before the copolymer was isolated.

2.2.5 Sample Drying

The copolymer was precipitated by adding methanol. The precipitated polymer was spread on a glass tray (A4 x A4 size) and dried in an oven at 130°C for 10 hours. The dried film was collected and used to run the series of property tests. Figure 2.3 shows a glass tray contained precipitated polymer.

Figure 2.3 Glass tray contained precipitated polymer (before dried in oven)

2.3 Mixing of High and Low Molecular Weight Styrene acrylic Copolymer

2.3.1 Materials

Low molecular weight polymer solution (polymer A, as described in section 2.1) and high molecular weight polymer solution (polymer B, as described in section 2.2) were used in mixing of high and low molecular weight styrene acrylic copolymer.

2.3.2 Apparatus

The apparatus set up for mixing is as described in Figure 2.4.

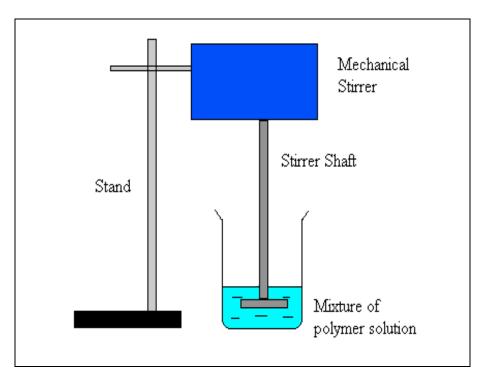


Figure 2.4 Apparatus for mixing of high and low molecular weight resins

2.3.3 Formulations

The formulations of the mixing samples were shown in Table 2.3.

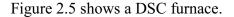
Table 2.3 Formulation for preparation of mixing between high and low molecular weight resins

Code	Mixing ration	o /% in TSC	
Code	H58	L12	
M28	50	50	
M29	60	40	
M30	70	30	
M31	80	20	
Code	Mixing ratio /% in TSC		
Code	Н63	L12	
M40	50	50	
M41	60	40	
M42	70	30	
M43	80	20	

2.3.4 Processes

Polymer A and B were mixed in different ratios into a 250 ml beaker. The mixture was stirred under mechanical stirrer at 300 rpm for first 2 minutes and then at 100 rpm for 20 minutes.

2.3.5 Sample Drying


The copolymer was precipitated by adding the industrial grade methanol. The precipitated copolymer was spread on a glass tray (A4 x A4 size) and dried in oven under temperature 130°C for 10 hours. The dried film was collected and used to run the series of property tests.

2.4 Characterization for Series of Styrene acrylic Copolymer

2.4.1 Differential Scanning Calorimetry (DSC)

DSC test was carried out by using Mettle Toledo DSC822^e. DSC furnace was calibrated by using Indium. Around 10 mg of sample was weighed accurately and be pressed into the aluminium crucible (40 µl). The sample was inserted into the DSC machine and heated from 25 to 100°C at heating rate 10°C min⁻¹, the scan was repeated for second time.

The first scan of the DSC represent the thermal history of the sample, therefore, the second scan was took parts in the results interpretation. ³⁷

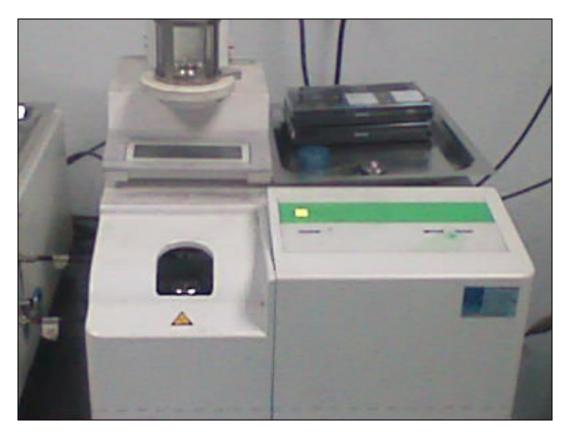


Figure 2.5 Differential Scanning Calorimetry (DSC)

2.4.2 Gel Permeation Chromotography (GPC)

GPC measuring furnace was built up from Water 1515 Isocratic HPLC Pump, Water 2414 Refractive Index Detector, and Water HPLC columns (one of Styragel®HR 4 THF 7.8 x 300 mm column and two of Styragel®HR 5E THF 7.8 x 300 mm column). Those parts were all connected to a normal PC and were operated by using Breeze software.

Standard solutions were prepared by dissolving 0.0 5g of monodisperse polystyrene standard with known molecular weights into 5 ml of THF. Measurements of these standard solutions were carried out to establish the calibration curve. Polymer samples were also prepared in the same way by dissolving 0.05 g of each sample into 5 ml of THF. Each sample was filtered by Minisart NY 0.45 µm single filter before injected manually into the GPC column. Figure 2.6 shows a GPC furnace.

Figure 2.6 Gel Permeation Chromotography (GPC)

2.4.3 Melt Flow Indexer (MFI)

MFI was determined by using a Rayran Melt Flow Index Instrument. This testing was started by taking a small amount (around 8 to 10 grams) of the polymer sample and put into the specially designed MFI apparatus (which is a miniature extruder consists of a small die inside). The polymer sample was packed inside the extruder barrel. A piston would act as the medium which caused the extrusion of the molten polymer. The sample was then preheated for a specified duration of time under certain temperature (360 s at 150°C for raw resin samples). A weight shear was exerted on the molten polymer and immediately started the flow through the die. Sample of the melt was taken after desired period of time (recorded as t) and is weighed accurately (recorded as w). The MFI could be calculated through the following equation.

$$MFI = (w/t) \times 600 \text{ g/}10 \text{ min}$$
 [2.1]

Where w = weight of sample collected after flow through the die

t = time of sample used to flow the melt

Figure 2.7 Melt Flow Indexer (MFI)

2.4.4 Acid Number (AN)

0.5 g potassium hydrogen phthalate was titrated with kalium hydroxide (KOH) solution. The volume of KOH was recorded down and titration was repeated for three times to get the average value. The concentration of KOH could be calculated through the following equation.

$$N = (1000 \text{ x W}_{\text{KHP}})/(204.23 \text{ x V}_{\text{eq}})$$
 [2.2]

Where N = Normality for the standardized NaOH solution

 W_{KHP} = weight (in g) of potassium hydrogen phthalate in 50 ml solution

 V_{eq} = volume of titrant consume (in ml)

204.23 = molecular weight of potassium hydrogen phthalate

A blank titration was carried on the solvent. 0.5 ml of phenolphthalein (Hln) was added into 50 ml of xylene and was titrated with 0.05 N standardized KOH solution, the volume was recorded down as V_{blank} . Titration was repeated for three times to get the average value.

About 1 g of resin sample was weighed accurately and dissolved in 50 ml of xylene in a 250 ml Erlenmeyer flask. 0.5 ml of phenolphthalein (Hln) was added and the solution was titrated with standardized KOH solution. Titration was repeated three times. The average of three determinations was reported. The acid number for samples could be calculated by using the following equation.

Acid Number =
$$AN = (V-V_{blank} \times N \times 56.1)/W$$
 [2.3]

Where V= KOH solution required for titration, ml

V_{blank}= KOH solution required for blank titration, ml

N= Normality for the standardized KOH solution

W= Weight of the specimen

2.4.5 Total Solid Content (TSC)

1 g monomer should produce 1g polymers at 100% conversion, thus the solid content for sample obtained from both bulk and solution polymerization could be calculated by using the following equation.

As the polymerization may not achieve 100% conversion, there is a need to determine the experimental total solid content. The weight of an empty aluminium cup was weighed and recorded down as W₀. About 2 g of solution sample was weighed accurately into the aluminium cup and recorded as W₁. The weighed sample was then dried in oven at 130 °C for 4 hours and the final weight was W₂. The experimental TSC was calculated by using the following equation.

$$TSC = (W_2 - W_0) / (W_1 - W_0) \times 100\%$$
 [2.5]

Where W_0 = weight of empty container

 W_1 = weight of resin sample used

W₂= dry weight for resin sample plus container

From the total solid content obtained from experiment, the percentage conversion of the polymer can be calculated through the following equation.

Percentage conversion of copolymer

= wt of dried copolymer isolated experimentally x 100% [2.6]
Wt of monomer in the copolymer solution assuming all converted to polymer

The followed figure shows three aluminium cups contained dried polymer samples.

Figure 2.8 Aluminium cups contained dried polymer samples

2.5 Preparation of Finished Toner by using Pilot Plant

2.5.1 Materials

Mixed resin M30 (as described in section 2.3.3), Bayoxide E8706 (magnetite pigment), N30 CCA (charge control agent), Viscol 550P (wax), RY200-L2 (surface treatment silica), and Zinc Stearate (lubricant).

2.5.2 Formulations

Table 2.4 and 2.5 shows the formulation for pilot line processing and the formulation for final blending accordingly.

Table 2.4 Formulation for pilot line processing to produce raw toner

Materials	Amount/%	Weight/g
M30	54.5	1635
Bayoxide E8706	44	1320
(magnetite pigment)		
N30 CCA	0.5	15
(charge control agent)		
Viscol 550P	1	30
(wax)		
Total	100	3000

Table 2.5 Formulation for final blending to produce finished toner

Materials	Amount/%	Weight/g
Raw toner	97.925	293.775
RY200-L2	1	3
(surface treatment silica)		
Bayoxide E8706	1	3
(magnetite pigment)		
Zinc Stearate	0.075	0.225
Total	100	300

2.5.3 Pilot Line Processes

Resin need to go through a series of processes in pilot line to produce a raw toner before it can further produced to finished toner. The flow charts of this series of processes are shown in Figure 2.9.

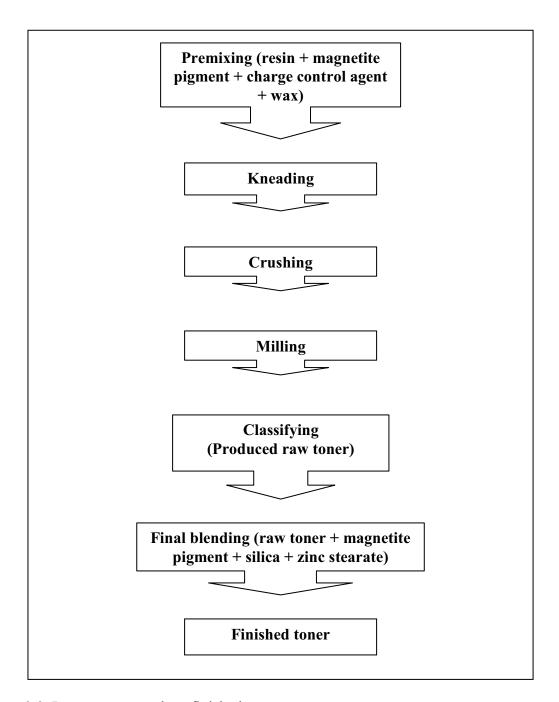


Figure 2.9 Processes to produce finished toner

The toner resin, pigment (magnetite type), wax and charge control agent were mixed in a mechanical mixer. The mixture was transferred into a kneading machine (extruder) and temperature was raised to melt and extrude the mixture into flat pieces. The extruded sample was then crushed into small pieces before being fed into the milling machine to grind down to very fine powder.

The powder was then subjected to a classifying process by sieving. Larger particles were returned for further crushing, and the undersize particles were recovered for melting and extrusion.

Raw toner particles of fairly even size between 8-10 microns were than blended with additives of around 1-2% of magnetite pigment, silica and zinc stearate to produce the finished toner. Physical properties of the toner were checked. These include the apparent density, flowability, tribocharge, magnetic content, and particle size distribution.

The diagrams of the series of instruments were shown in Figure 2.10 to 2.14.

Figure 2.10 Mixer used to mix the resin, magnetite pigment, wax and charge control agent.

Figure 2.11 Extruder was used to melt the mixture and extrude the mixture of resin, magnetite pigment, wax and charge control agent.

Figure 2.12 Crusher was used to crush down the extruded mixture into rough powder

Figure 2.13 Miller was used to reduce the size of the rough powder, wherein classifier was used to produce toner powder in more even sizes.

Figure 2.14 Blender was used to blend the toner powder together with magnetite pigment, silica and zinc stearate to produce a finished toner.

2.6 Print Test

After final blending, the finished toner was filled in to a toner cartridge and carried out a series of print test (ISO-IEC 19752 monochrome print test).

2.7 Toner Characterization

2.7.1 Apparent Density

Apparent density was studied to obtain the density of finished toner in gcm⁻³. The toner powder was allowed to flow into a weighed steel container, w_0 ; after the powder was fully filled up the container, recorded down the weight of sample with container, w_1 . The apparent density can be calculated using following equation.

Apparent density = $(w_1 - w_0)/100$ [2.7]

Figure 2.15 showed the equipment used to measure the apparent density.

Figure 2.15 Apparent density equipment (A: sample hopper, B: sample container)

2.7.2 Flowability

The ability of flow for a toner powder was determined by using disc method; toner powder was tested on the ability to flow through discs with different pore sizes within 10 seconds. The equipment was shown in Figure 2.16.

Figure 2.16 Flowability equipment (A: sample hopper, B: sample container, C: disc with different pore size)

2.7.3 Tribocharge

Keithley Instruments 610C solid state electrometer was used to determine the tribocharge of finished toner. The charge content was measured in μCg^{-1} . 0.1 g sample was mixed with 2 g of carrier; the mixture was then being blow by oxygen continuously until a stable reading can be obtained. Figure 2.17 indicated the diagram of electrometer.

Figure 2.17 Keithley Instruments 610C solid state electrometer (A: sample container)

2.7.4 Magnetic Content

The percentage of magnetic component contained inside a toner resin was measured by using Tectron Ag. 916 Fluxmeter. 1.5 g of sample was filled into a test tube, the test tube was then be inserted into fluxmeter. The testing was repeated 2 times to get a stable value.

The diagram of a fluxmeter was as indicated in Figure 2.18.

Figure 2.18 Tectron Ag. 916 Fluxmeter

2.7.5 Particle Size Distribution

The particle size distribution of toner particles was determined by using SILAS 1064. 0.5 g of toner powder was dispersed into 50 ml of dilute detergent solution. The dispersion was then being poured into the CILAS 1064 particle size analyzer (As shown in Figure 2.19) to go through osmometry light scattering measurement.

Figure 2.19 CILAS 1064 particle size analyzer

CHAPTER THREE: RESULTS AND DISCUSSION

3.1 Characterization for Low Molecular Weight Styrene acrylic Copolymer

3.1.1 Different Scanning Calorimetry (DSC)

DSC is most often used for characterizing the glass transition temperature, T_g , melting point, T_m , crystallization point, T_c , and heat of fusion of polymers, ΔH . T_g is important in describing the properties and potential end use of a polymer. $^{30,\,37}$

The test sample and the reference material are heated separately by individually controlled units. The power input to these heaters are controlled and continuously adjusted consequent to any thermal effect in the test sample as to maintain the two at identical temperatures. The differential power or heat energy required to achieve this state of affairs is recorded against the programmed temperature of the system.³⁸

3.1.2 Gel Permeation Chromatography (GPC)

GPC is used to determine the molecular weight distribution of a polymer sample. GPC functions by separates the polymers according to size or hydrodynamic radius. A small amount of polymer solution was injected into a set of columns that are packed with porous beads. Smaller molecules can penetrate the pores and therefore retain to a greater extent than the larger molecules which continue down the columns and is eluted faster. ³⁷

The following are some equations that are important in interpreting the curve for GPC. Number-average molecular weight, M_n , is the number of molecules present in a given weight of a sample.

$$\mathbf{M_n} = (\sum \mathbf{N_i} \mathbf{M_i}) / \sum \mathbf{N_i}$$
 [3.1]

Where N_i = number of molecules with molecular weight M_i

 M_i = molecular weight of i^{th} fraction

The evaluation of number average molecular weight is useful in analysis of kinetic data to examine the effects of many side reactions including chain transfer, inhibition, retardation, autoacceleration or gel effect in vinyl polymerization.

Weight-average molecular weight, $M_{\rm w}$, is the sum of the contributions based on the weight fraction of each species.

$$\mathbf{M}_{\mathbf{w}} = (\sum \mathbf{w}_{i} \mathbf{M}_{i}) / \sum \mathbf{w}_{i} = (\sum \mathbf{N}_{i} \mathbf{M}_{i}^{2}) / (\sum \mathbf{N}_{i} \mathbf{M}_{i})$$
 [3.2]

 w_i = weight of i species having molecular weight M_i

Weight average molecular weight is important in relation to bulk properties of polymers that reflect their load bearing capacity. Softening, hot deformation, tensile and compressive strength, modulus and elongation, toughness and impact resistance and some other related bulk properties of polymer are better appreciated on the basis of weight average molecular weight.³⁸

The polydispersity index, I_p , indicates the distribution of individual molecular masses in a given polymer sample. The I_p is calculated by using weight average molecular weight divided by number average molecular weight.

$$I_{p} = M_{w}/M_{n}$$
 [3.3]

Melt elasticity properties of polymer sample is more closely dependent on the Z average molecular weight, M_z . As for toner resin, melt elasticity properties is the main key in the toner resin process ability. M_z is the third power average and is shown mathematically as equation 3.4. 30

$$M_z = (\sum n_i M_i^3) / (\sum n_i M_i^2)$$
 [3.4]

Figure 3.1 shows the M_n , M_w , M_p , and M_z in a GPC curve. ^{32, 38}

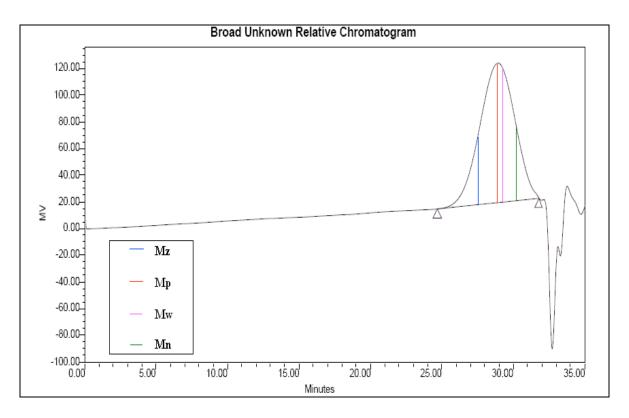


Figure 3.1 GPC curve for low molecular weight resin

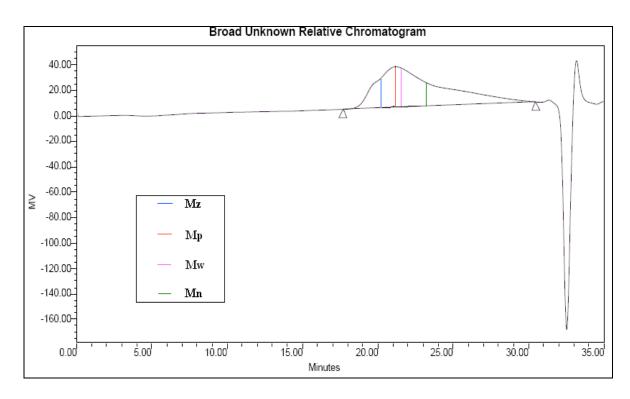


Figure 3.2 GPC curve for high molecular weight resin

3.1.3 Melt Flow Indexes (MFI)

Melt flow index is carried out to test the ability of molten resin to flow under pressure. The test polymer can be used in any convenient from; powder, granules or moulded pieces. The polymer sample is contained in a vertical metal cylinder, subjected to controlled heating at required temperature and then extruded through a jet by a loaded piston. MFI is defined as the amount of polymer in gram extruded in 10 minutes. The melt flow index for a resin can be calculated by using the following equation. The calculation of flow rate (given by RayRan Melt Flow Indexer) is given by the equation 3.5a.

Flow rate =
$$(427 \times L \times d)/t$$
 [3.5a]

Where,

427 = Mean of areas of Piston and cylinder x 600

L =length of piston travel, cm

 $d = \text{density of sample at test temperature, g/cm}^3$

t = time of piston travel for L in seconds

MFI is calculated by using equation 3.5b.

$$MFI = \frac{w}{t} x600$$
 [3.5b]

Where, w = weight of sample flown through (g)

t = time for sample flow (s)

Melt flow rate is an indirect measure of molecular weight, high melt flow rate corresponding to low molecular weight. At the same time, melt flow rate is a measure of the ability of the material's melt to flow under pressure. Melt flow rate is inversely proportional to viscosity of the melt at the conditions of the test.

3.1.4 Acid Number (AN)

Acid number test is carried out to check the acidity of resin samples in mg KOH/g of samples. In order to assure the accuracy of the acid number, the molarity of KOH used need to be standardized by undergoes titration with potassium hydrogen phthalate, KHP, by known concentration. Before taking on the testing, the solvent which used to dissolve samples also need to be standardized to determine the amount of impurities present in the solvent.

In this study, phenolphthalein was used as the indicator for the titration and the changes of colour in different pH is shown in figure below. 40,41

Figure 3.3 Phenolphthalein appear colourless in acidic system (pH 0 to 8.2) and appear in pink colour when the system change to alkaline (pH 8.2 to 12)

Standardization of KHP

Amount of KHP used = 0.5g

	Amount of KHP used/g	Initial burette reading/ml	Final burette reading/ml	Volume used/ml	Normality for KOH
First	0.50	0.80	45.10	44.30	0.055
determination					
Second	0.50	0.00	44.85	44.85	0.055
determination					
	Ave	rage normality			0.055

Standardization of KOH can be done by applying the following equation.

$$N = (1000 \text{ x W}_{KHP})/(204.23 \text{ x V}_{eq})$$
 [3.6]

Where N = Normality for the standardized KOH solution

 W_{KHP} = weight of KHP in 50 ml solution, g

 V_{eq} = volume of titrant consume, ml

204.23 = molecular weight of KHP

Blank titration of xylene

	Initial burette reading/ml	Final burette reading/ml	Volume used/ml
First	0.85	1.00	0.15
determination			
Second	1.00	1.15	0.15
determination			
	Average volume (V _{blank})		0.15

Titration of sample (example, L10)

	Amount of L10 used/g	Initial burette reading/ml	Final burette reading/ml	Volume used/ml
First	1.00	29.30	29.50	0.20
determination				
Second	1.00	29.50	29.70	0.20
determination				
	Average v	volume (V)		0.20

The acid number for samples can be obtained by using the following calculation, and the results for low molecular weight samples are displayed in Table 3.4.

Acid Number =
$$AN = \{(V-V_{blank}) \times N \times 56.1\}/W$$
 [3.7]

Where V= KOH solution required for titration, ml

V_{blank}= KOH solution required for blank titration, ml

N= Normality for the standardized KOH solution

W= Weight of the specimen, g

Acid number for sample, example L10

AN=
$$\{(V-V_{blank}) \times N \times 56.1\}/W$$

= $\{(0.20-0.15)\times 0.055\times 56.1\}/1$
= 0.2 mg KOHg^{-1}

3.1.5 Total Solid Content (TSC)

Total solid content is used to determine the percentage of solid material present in the samples; as well as to calculate the percentage of conversion for those samples (As shown by equation 2.4 and 2.6)

The experimental TSC results and percentage of conversion for low molecular weight resins are shown in Table 3.1

Calculation for TSC (experimental method) for example L12

	Weight of container/g	Weight of sample L12/g	Dry weight for (sample + container)/g	TSC/%
Experimental Determination	94.34	95.87	95.11	50.3

TSC = Wt of dried copolymer isolated experimentally x 100 % Weight of copolymer solution

$$= (W_2 - W_0) / (W_1 - W_0) \times 100\%$$
 [2.5]

Where W_0 = weight of empty container

 W_1 = weight of resin sample used plus container

W₂= dry weight for resin sample plus container

$$= 100 \times (95.11-94.34)/(95.87-94.34)$$

= 50.3%

Calculation for percentage of conversion, for example L12

Percentage conversion of copolymer

 $= 0.77/0.818 \times 100\%$

= 94.1%

3.1.6 Summary for Low Molecular Weight Resin

The formulation together with properties results for low molecular weight resins in terms of $T_{\rm g}$, molecular weight, acid number, total solid content and percentage of conversion were summarized in Table 3.1.

Table 3.1 Formulation and properties results for low molecular weight resin

Code	L10	L11	L12
Formulation/ Parts per	100 parts of mono	mer	
Styrene	90	90	90
n-butyl acrylate	10	10	10
Benzoyl peroxide	10	12.5	15
Xylene	100	100	100
Propertie	es results	<u> </u>	
$M_n \times 10^3 / gmol^{-1}$	4.5	4.0	3.4
$ m M_w imes 10^3 / gmol^{-1}$	8.5	7.2	6.0
$M_p \times 10^3 / gmol^{-1}$	6.0	5.3	4.0
$M_z \times 10^4 / gmol^{-1}$	1.4	1.1	1
I_{p}	1.87	1.78	1.78
${ m T_g}/{ m ^{\circ}C}$	54	54	53
MFI (130°C)/(g/10min)	34.2	46.7	57.4
Acid number/mg KOHg ⁻¹	0.2	0	0
Experimental TSC/%	50.7	50.4	50.3
Conversion/%	98.9	97.7	94.1
Conversion/%	98.9	97.7	94.1

Resins L10 to L12 were prepared by using solution polymerization for 7 hours at reaction temperature 130°C. The GPC, DSC, MFI, and AN results were obtained by using dried resin which have been dried in oven for 130°C for 10 hours.

By referring to Table 3.1, the amount of initiator used was increased from L10 to L12. The increase in the amount of initiator had no significant effects on the glass

transition temperature of the copolymer. The $T_{\rm g}$ was determined by the structure of the copolymer. ³⁰

The GPC result for low molecular weight resin was shown in Table 3.1 above. The narrow GPC peak meant that the molecular weight distribution for the resins was quite narrow. The increased in the initiator amount tends to lower down the overall molecular weight of copolymer. This might be due to the increased amount of initiator used tends to increase the concentration of free radicals in the system; therefore the termination of polymer chain occurred faster. As a result from this, the overall molecular weight of copolymer was shifted lower. ³⁹

The melt flow index for low molecular weight resins increased in inversed proportional to molecular weight. The higher the overall molecular weight of copolymer, the harder was the copolymer. Therefore, the melt flow index became high when the overall molecular weight for resin was low. ³⁸

Overall, the acid numbers for the low molecular weight resins were near to zero. This is because there were no acid group present in the system (the monomers used are styrene and n-butyl acrylate); hence, the acidity for the system was near to neutral.

In commercial production, higher conversion will ensure lower lost due to unreacted monomer. Percentage conversion for the three samples were exceeded 90%, this value was more than satisfactory. ⁵⁻²³

In this study, with the intention to obtain heat-melting ability of the toner resin composition at lower temperatures; the low molecular weight fraction was prepared by solution polymerization of styrene and n-butyl acrylate in xylene using benzoyl peroxide as initiator. Meanwhile, the overall molecular weight of resins were adjusted to a satisfactory low extend by varying the amount of initiator used during reaction.

In a radical polymerization, an increase in initiator concentration causes an increase in the number of radicals. A termination reaction is second order; therefore, the average molecular weight reduces with simultaneous increase in rate of reaction; consequently, rate of polymerization would tend to increase while the average degree of polymerization decreases. ³⁹

In the experiment, by lowering the molecular weight of resins, the glass transition temperature, percentage of conversion, and acid number still remain the same. The Melt flow index was affected by the molecular weight of resins, the value of MFI increased with the reduction of the molecular weight. ³⁸

3.2 Characterization for High Molecular Weight Styrene acrylic Copolymer

Testing procedures of properties tests and the determination of GPC, DSC, AN, MFI, TSC and percentage of conversion are same as described in section 3.1.1 to 3.1.5.

3.2.1 Summary for High Molecular Weight Resin

The formulation together with properties results for high molecular weight resins were summarized in Table 3.2 and 3.3.

Table 3.2 Formulation and properties results for high molecular weight resin prepared by using 2 parts methacrylic acid by weight

Code	H55	H59	H56	H58	H57
Formulation/ Page 1981	arts per 1	00 parts o	of monome	er	•
Styrene	73.5	73.5	73.5	73.5	73.5
n-butyl acrylate	24.5	24.5	24.5	24.5	24.5
Methacrylic acid	2	2	2	2	2
Tetra ethylene glycol diacrylate	0.5	0.6	0.7	0.8	0.9
benzoyl peroxide	1	1	1	1	1
Xylene (A)	40	40	40	40	40
(B)	60	60	60	60	60
P	roperties	results	•		1
T _g /°C	62	60	65	61	
M _n ×10 ⁴ /gmol ⁻¹	2.91	3.20	3.42	3.12	
M _w ×10 ⁵ /gmol ⁻¹	2.44	2.24	2.06	3.42	
M _p ×10 ⁵ /gmol ⁻¹	2.87	2.77	2.83	3.03	h
M _z ×10 ⁵ /gmol ⁻¹	6.73	6.13	5.39	12.41	Formed insoluble gel
I_p	8.38	7.01	6.02	10.94	ed in
MFI (150°C)/(g/10min)	1.8	2.4	4.7	1.5	solu
Acid number /mgKOHg ⁻¹	13.5	14.0	13.7	13.7	ble g
Experimental TSC Part (A)/%	58.4	52.3	47.5	47.2	gel
Experimental TSC Part (B) /%	48.7	48.9	48.2	48.7	
Conversion Part (A) /%	58.4	52.5	47.5	47.2	
Conversion Part (B) /%	95.8	96.1	94.7	95.5	

Table 3.3 Formulation and properties results for high molecular weight resin prepared by using 3 parts methacrylic acid by weight

Sample name	H60	H61	H62	Н63	H64
Formulation	/ Parts per	r 100 parts	of monomer		
Styrene	72.8	72.8	72.8	72.8	72.8
n-butyl acrylate	24.2	24.2	24.2	24.2	24.2
Methacrylic acid	3	3	3	3	3
Tetra ethylene glycol diacrylate	0.5	0.6	0.7	0.8	0.9
benzoyl peroxide	1	1	1	1	1
Xylene (A)	40	40	40	40	40
(B)	60	60	60	60	60
	Properti	es results			
T _g /°C	60	64	63	63	
M _n ×10 ⁴ /gmol ⁻¹	4.08	3.97	3.69	3.24	
M _w ×10 ⁵ /gmol ⁻¹	2.48	3.51	3.19	2.87	
M _p ×10 ⁵ /gmol ⁻¹	2.91	3.40	2.96	2.75	
M _z ×10 ⁵ /gmol ⁻¹	6.55	10.93	10.84	9.59	For
I _p	6.08	8.83	8.63	8.85	Formed insoluble gel
MFI (150 °C) /(g/10 min)	2.2	0.9	Too hard to flow	Too hard to flow	ısolub
Acid number/ mg KOHg ⁻¹	19.4	19.7	19.1	19.5	le gel
Experimental TSC Part (A)/%	49.7	45.9	50.0	49.4	1
Experimental TSC Part (B) /%	49.8	51.1	50.0	49.2	1
Conversion Part (A) /%	49.7	45.9	50.0	49.4	1
Conversion Part (B) /%	97.4	99.9	97.8	96.1	

Sample H55 to H59 and sample H60 to H64 were prepared by using bulk polymerization for 4 hours under reaction temperature 120°C followed by solution polymerization for 5 hours under reaction temperature 130°C. The DSC, GPC, MFI and AN tests were carried out by using dried copolymers, which had dried in oven for 10 hours at 130°C.

The properties results for samples prepared by using 2 and 3 parts methacrylic acid incorporated with 0.5 to 0.8 parts tetra ethylene glycol diacrylate were listed in Table 3.2 and 3.3. The glass transition temperature for samples prepared by using 2 and 3 parts methacrylic acid incorporated with 0.5 to 0.8 parts tetra ethylene glycol diacrylate were in the range of 60 to 64° C. In these experiments, the resulting copolymer should be of random structure (by referring to section 1.10) and the monomer used was just different in 1 part of methacrylic acid. T_g was mostly depend on the structure of polymer. Consequently, the T_g for all the samples were quite close to each others. Nevertheless, the samples with 2 and 3 parts methacrylic acid incorporated with 0.9 parts tetra ethylene glycol diacrylate encountered gelation problem in the system.

The GPC curve for high molecular weight resin was shown as Figure 3.3. The GPC peak was broad which meant the molecular weight distribution for the sample was also broad. The polydispersity, I_p , which indicates how broad the molecular weights were distributed, were in the range of 6 to 10. 38

Overall, the M_z for those samples prepared by using 2 and 3 parts methacrylic acid incorporated with 0.5 to 0.8 parts tetra ethylene glycol diacrylate were in increasing trend when the amount of tetra ethylene glycol diacrylate were increased. This was due to the tetra ethylene glycol diacrylate which incorporated into the system act as crosslinking agent; it crosslinked the polymers by free radical reaction. ⁴² However, the M_n, M_w and M_p did not have much change with the increased amount of tetra ethylene glycol diacrylate.

MFI for all samples were quite low, which was in the range of 0.9 g/ 10 min to 4 g/ 10 min. The MFI was inversely related to average molecular weight. The higher the overall molecular weight of copolymer, the harder was the copolymer; hence, melt flow index became lower when overall molecular weight of copolymer increased. ³⁸ MFI for samples H62 and H63 were too low to be detected, which meant the two samples were very hard, the copolymers were unable to melt and flow at 150°C.

Acid number for samples prepared by using 2 parts methacrylic acid incorporated with different amount of tetra ethylene glycol diacrylate produced very similar results, which were around 13 mg KOH/g of sample. In the meantime, the samples prepared by using 3 parts methacrylic acid incorporated with different amount of tetra ethylene glycol diacrylate also gave very similar acid number results, which were around 19 mg KOH/g of sample. The acid number increased significantly when the amount of methacrylic acid used was increased from 2 parts to 3 parts, this phenomenon was due to the increasing of acid group in the polymer sample which provided by methacrylic acid. ⁴² The incorporation of methacrylic acid, MAA, into the copolymer was randomly through free radical reaction and the mechanism was shown in Figure 3.4.

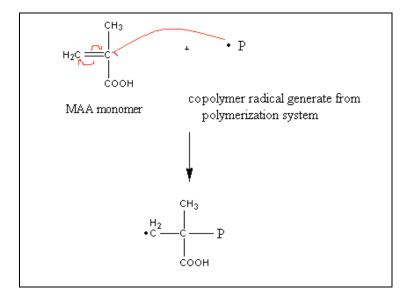


Figure 3.4 Mechanism of methacrylic acid incorporated into the copolymer

The percentage of conversion after bulk polymerization (part A) was roughly around 46% to 58%. After continued with solution polymerization, the percentage of conversion at the end of reaction was in the range of 95% to 99%. Percentage conversions for all samples were higher than 95%, the high percentage of conversion meant indicating that the polymerization process was near completion; therefore very little free monomer remained in the system.

There were two ways to prepare an ultra-high molecular weight polymer; firstly by addition of 0.01 to 1 parts by weight of divinyl compound (kind of ethylenically unsaturated monomer) into the termination stage of bulk polymerization or solution polymerization stage. The addition of this divinyl compound could increase the M_z accompanying with three dimensional crosslinking reactions. The greater amount used would result a higher M_z ; however, when the amount used was more than 1 part, a gel like insoluble matter would be formed. ⁵⁻²³

The second way to prepare an ultra-high molecular weight polymer was by addition of methacrylic acid in the range of 1 to 15 parts by weight of the ethylenically unsaturated monomer employed in the bulk polymerization stage. This addition of methacrylic acid after completion of bulk polymerization would no longer affect the M_z . ⁴

In these studies, 2 to 3 parts of methacrylic acid were added into the system during bulk polymerization stage, and followed by the addition of 0.5 to 0.9 parts of tetra (ethylene glycol) diacarylate, tetra ethylene glycol diacrylate, into the solution polymerization stage to increase the M_z of the copolymer. For both series with 2 and 3 parts methacrylic acid incorporated with 0.5 to 0.8 parts of tetra ethylene glycol diacrylate, the M_z had been increased effectively from 6×10^5 gmol⁻¹ to over 1×10^6 gmol⁻¹. Samples which incorporated with 0.9 parts of tetra ethylene glycol diacrylate formed a gel like insoluble matter in the system. The occurrence of the gelation problem might due to the over crosslinked process

between methacrylic acid and tetra ethylene glycol diacrylate. When the amount of tetra ethylene glycol diacrylate was increased, the level of crosslinking was increased correspondingly. Once the amount of tetra ethylene glycol diacrylate exceeded 0.8 parts, the crosslinked level became too high that the copolymer no longer soluble in the xylene and formed an insoluble matter in the system. ^{32, 42}

In a copolymerization system of methacrylic acid and tetra ethylene glycol diacrylate, TD, which contained multiacrylates, two types of network chains might take part in the crosslinking reaction. The first type of network chain was the poly(acrylate-co-acrylic acid) chain that was built up as the polymerization proceeded by radical propagation through acrylate and methacrylic acid double bonds (As shown in Figure 3.4). The chain was marked as chain A in Figure 3.6. The second type of network chain was the tetra ethylene glycol diacrylate chain which connected acrylate functionalities within each macromer unit (As shown in Figure 3.5). The chain was marked as chain B in Figure 3.6.

Figure 3.5 Generation of radical for tetra ethylene glycol diacrylate in the polymerization system

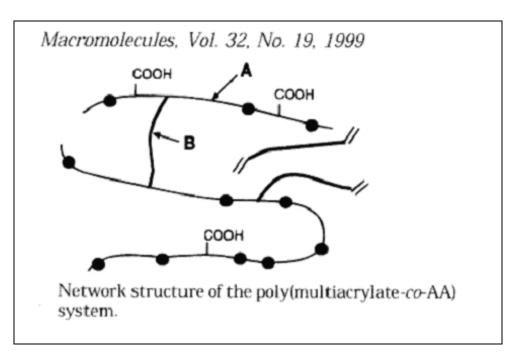


Figure 3.6 Network morphology in the crosslinking reaction ⁴²

3.3 Characterization for Mixture of High and Low Molecular Weight Styrene acrylic Copolymer

As refer to section 3.1.2, the melt elasticity properties of resins are determined by the M_z value. M_z for high molecular weight sample should be high enough to make sure toner resin is not stick on the roller during toner production; M_z for low molecular weight should be low enough to make sure toner resin is able to stick on the paper during printing process. Therefore, in this study, H58 and H63 (As described in section 2.2.3) were chose due to the highest value of M_z in the high molecular weight series; at the meanwhile, L12 (by referring to section 2.1.3) was chose due to the lowest value of M_z in the low molecular weight series. Testing procedures of GPC, AN, DSC, TSC and percentage of conversion are same as described in section 3.1.1 to 3.1.5. The determination of AN and MFI are same as described in section 3.1.3 and 3.1.4, whereas the determination of GPC peak ratio and the calculation for mixing ratio are described as below.

3.3.1 Determination of GPC Peak Ratio

As for sample M28, GPC peak area for high molecular weight fraction = 4109305; whereas GPC peak area for low molecular weight fraction = 8174495.

ratio for high molecular weight fraction =

$$= \frac{4109305}{4109305 + 8174495} \times 100\%$$

=33%

GPC peak ratio for low molecular weight fraction =

$$= \frac{8174495}{4109305 + 8174495} \times 100\%$$
$$= 67\%$$

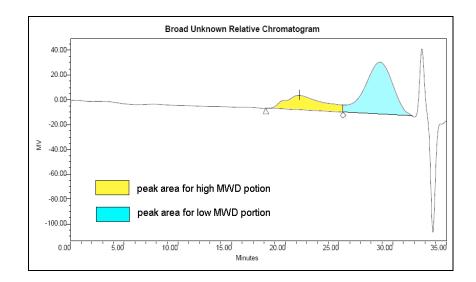


Figure 3.7 GPC curve of mixed sample

In a GPC system, smaller molecules can penetrate the pores of the columns and are therefore retained to a greater extent than the larger molecules which continued down the columns and eluted faster (as shown in Figure 3.8). With regards to Figure 3.7, there were two major peaks; high molecular weight fraction which eluted out first (yellow colour peak) and low molecular weight fraction (blue colour peak) which eluted out later. ³⁷

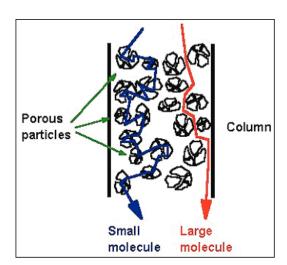


Figure 3.8 The figure shows that larger molecules which continued down the columns and eluted faster whereas smaller molecules can penetrate the pores of the columns and are therefore retained to a greater extent than the larger molecules.

3.3.2 Calculation for Mixing Ratio

TSC Calculation for L12 (experimental method)

	Weight of Al pan /g	Weight of sample L12 /g	Dry weight (for sample + Al pan) /g	TSC /%
First	0.1215	2.0215	1.2568	56.16
determination				
Second	0.1174	2.0036	1.2423	56.14
determination				
Third	0.1113	2.0070	1.2398	56.23
determination				
	Avo	erage TSC		56.2

TSC Calculation for H58 (experimental method)

	Weight of Al pan /g	Weight of sample H58/g	Dry weight (for sample + Al pan) /g	TSC /%
First	0.1124	2.0074	1.1140	49.90
determination				
Second	0.1335	2.0745	1.1577	49.37
determination				
Third	0.1170	2.0100	1.1245	50.12
determination				
	Avo	erage TSC		49.8

TSC Calculation for H63 (experimental method)

	Weight of Al pan /g	Weight of sample H63/g	Dry weight (for sample + Al pan) /g	TSC /%
First	0.1181	2.0757	1.1962	52.0
determination				
Second	0.1212	2.0399	1.1722	51.5
determination				
Third	0.1063	1.9676	1.1192	51.5
determination				
	Ave	erage TSC		51.7

Calculation for mixing weight-M28 (ratio H:L = 50:50)

Weight of L12 used for mixing

Ratio needs = 50

By referring to the TSC test, 100g L12 copolymer solution contained 56.2 g solid, therefore,

Weight need to get 50g solid = 50/56.2 x 100

$$= 89.0g$$

Weight used to get 50g of mixture =

weight need for high MW sample weight need for low MW sample total weight of mixture

$$=\frac{89.0}{89.0+100.4}\times50$$

= **23.5** g (in solution)

Weight of H58 used for mixing

Ratio needs = 50

By referring to the TSC test, 100g H58 solution polymer contained 49.8 g solid, therefore,

Weight need to get 50g solid = 50/49.8x100

$$= 100.4 g$$

Weight used to get 50g of mixture =

weight need for high MW sample weight need for low MW sample total weight of mixture

$$=\frac{100.4}{89.0+100.4}\times50$$

= **26.5** g (in solution)

Calculation for TSC after mixing

Theoretical TSC for sample M28

TSC M28 =

(weight used × TSC)of high MW sample + (weight used × TSC) of low MW sample total weight used for high and low MW sample

$$=\frac{\left(23.5\times56.2\right)+\left(26.5\times49.8\right)}{50}=52.8\%$$

3.3.3 Summary for Mixed Resins

Formulation and properties results for mixed resins were summarized in Table 3.4 and 3.5 below.

Table 3.4 Formulation and properties results for mixed sample M28 to M31

Code		M	28	M	29	M	30	M3	1
Mixing ratio	H58	5	0	6	0	7	0	80)
/% in TSC	L12	5	0	4	0	3	0	20)
T _g /°C		6	2	6	0	6	0	62	,
MFI (150°C (g/10 min)		33	3.0	32	2.2	20	.1	9.1	
Acid numbe		6	6.7 7.9		.9	9.	3	10.6	
Theoretica	ıl	52.8		51.8		51	.3	51.	0
Molecular we	eight	High	Low	High	Low	High Low		High	Low
$M_n \times 10^3$ / gm	ol ⁻¹	216	4	176	4	146	4	150	5
$M_w \times 10^3$ / gm	ol ⁻¹	530	9	471	9	449	8	437	10
$M_p \times 10^3$ / gm	ol ⁻¹	329	5	318	5	300	5	284	6
$M_z \times 10^3$ / gm	ol ⁻¹	1254	16	1209	18	1245	14	1190	17
I _p		2.45	1.94	2.67	2.20	3.06	2.00	2.91	2.05
GPC peak rati	io /%	33	67	41	59	54	46	60	40

Table 3.5 Formulation and properties results for mixed sample M40 to M43

Code)	M	40	M	41	M	42	M	43
Mixing	H63	5	0	6	0	7	0	8	0
ratio /% in TSC	L12	5	0	4	0	3	0	2	0
T _g /°(C	6	2	6	4	6	2	6.	2
MFI (150 (g/10 m	,	38	3.3	40.1		9.	.4	7.	2
Acid num mg KOI			.8		.6		.6	15	
Theoret TSC /9		53	.4	53	3.0	52.7		52	3
Molecular	weight	High	Low	High	Low	High	Low	High	Low
$M_n \times 10^3/g$	mol ⁻¹	191	4	158	4	197	5	149	5
M _w ×10 ³ / g	gmol ⁻¹	447	10	374	10	454	12	382	12
$M_p \times 10^3 / g$		318	5	286	5	331	5	301	6
$M_z \times 10^3 / g$	mol ⁻¹	1049	20	875	19	1017	23	937	21
$\mathbf{I}_{\mathbf{p}}$		2.35	2.29	2.37	2.25	2.30	2.47	2.57	2.38
GPC peak r	atio /%	31	69	41	59	47	53	59	41

The glass transition temperature for all the mixed samples were almost the same (by referring to Table 3.4 and 3.5), in the range of 60 to 63°C. For all mixed samples, the low molecular weight sample used was the same, the only difference was the high molecular weight sample (differ in 1 part of methacrylic acid) used and the ratio of mixing. T_g is mostly depends on the structure of polymer, thus the T_g for all samples were quite close to each others.

The GPC results for samples M28 to M31 were shown in Table 3.4. The average molecular weights for samples were similar to each others for both high and low molecular

weight fraction. This result showed that the changing in mixing ratio did not affect much on the molecular weight. The only difference observed from the GPC results was the GPC peak ratio. The GPC peak ratio for high molecular weight fraction was in increasing trend while the mixing ratio changed from H:L=50:50 to H:L=80:20.

By referring to Table 3.5, we noticed that the average molecular weight for samples M40 to M43 were also close to each others for both high and low molecular weight fraction. This result showed that the changing in mixing ratio did not have significant effects on the molecular weight. The GPC peak ratio for high molecular weight fraction was in increasing trend while the mixing ratio changed from H:L=50:50 to H:L=80:20. This phenomenon was as expected; when the amount of high molecular weight resin used increased in a sample, the percentage of high molecular weight fraction should increase accordingly.

MFI value was in decreasing trend while the mixing ratio changed from H:L=50:50 to H:L=80:20. The result showed that the changing in mixing ratio had significantly lower down the ability of resin to flow. Increased amount of high molecular weight resin used in the sample tends to harden the sample and thus brought down the MFI value.

By referring to Tables 3.4 and 3.5, TSC and acid number for mixed resins were increased when the mixing ratio changed from H:L=50:50 to H:L=80:20. By increasing the amount of high molecular weight resin used in the sample, the properties of the mixed product would become closer to the properties of the high molecular weight resin; hence, TSC and acid number was increased consequently because the TSC and AN of high molecular weight resin was higher than TSC and AN of low molecular weight resin.

3.4 Characterization for Styrene acrylic Commercial Resin

Three commonly used styrene acrylic commercial resins (SJ 700, CPR 350 and CPR 400) had been chosen to undergo a series of characterization tests to compare the properties between commercial resins and the experimental mixed samples.

3.4.1 Summary for Commercial Resins

Table 3.6 shows the properties results for commercial resin.

Table 3.6 Properties results for commercial resins

Commercial resin	SJ	700	CPF	R350	CPR	4400
T _g /°C	(63	6	7	6	4
MFI (150°C) /(g/10 min)	4	1.4	4.	.2	10	.3
Acid Number /mg KOHg ⁻¹	1	0.2	9.	.1	8.	5
Molecular weight	High	Low	High	Low	High	Low
$M_n \times 10^3 / \text{ gmol}^{-1}$	159	4	193	4	302	4
M _w ×10 ³ / gmol ⁻¹	625	6	550	7	677	7
$M_p \times 10^3 / \text{ gmol}^{-1}$	1074	5	807	5	892	5
M _z ×10 ³ / gmol ⁻¹	1521	9	1199	11	1309	10
Ip	3.92	1.68	2.85	1.80	2.24	1.73
GPC peak ratio /%	36	64	50	50	60	40

 $T_{\rm g}$ for three commercial resins were quite closed to each others; in the range of 63 to 67 $^{\circ}\text{C}.$

The results in the Table 3.6 obviously showed that all the three commercial resins, as for their high molecular weight fraction, contained extra high average molecular weight.

As for low molecular weight fraction, all three resins showed very similar molecular weight with each others. The only difference that could be observed was the GPC peak ratio. This ratio for high molecular weight fraction was varied from 40% to 64% from resin to resin.

MFI results were shown as in Table 3.6. MFI values for SJ700 and CPR350 were quite similar to each others, while the CPR400 had a higher MFI. This result showed that the ability of flow for CPR400 was greater than the rest.

With regards to Table 3.6, acid numbers for the three commercial resins were in the range of 8 to 10 mg KOH/g of sample. By comparing the Table 3.4, 3.5 and 3.6, we found that the properties for mixed sample M30 was closed to commercial resin SJ700 in term of $T_{\rm g}$, $M_{\rm z}$, and AN.

Comparison between commercial resins, patent literature and experimental samples

Table 3.7

Sample name	ame								Properties	es						
		\mathbf{Z}				Mc	Molecular weight	· weig	ht				GPC	GPC peak	MFI	AN/
		(C) 	Mn (gmol ⁻¹ / 10³)	mol ⁻¹ /	Mw (gmol ⁻¹ / 10³)	gmol ⁻¹	Mp (gmol ⁻¹ / 10 ³)	p 51 ⁻¹	Mz (gmol ⁻¹ / 10³)	nol ⁻¹	dI	d	ra	ratio	/ (g/10 min)	(mg KOH/g)
			Н	Г	Н	Τ	Н	Г	Н	Г	Н	Т	Н	Т		
Commercial	SJ700	63.0	155	4	618	9	992	5	1,509	6	4.00	1.68	36	64	4.4	10.2
resin	CPR350	9.99	193	4	550	7	807	S	1,199	11	2.85	1.80	50	50	4.2	9.1
	CPR400	64.4	302	4	229	7	892	5	1,309	10	3.24	1.73	09	40	10.3	9.5
Experimenta	M28	62.4	216	4	530	6	329	5	1,254	16	2.45	1.94	33	<i>L</i> 9	33.0	6.7
l sample	M29	60.4	176	4	471	6	318	5	1,209	18	2.67	2.20	41	69	32.2	7.9
	M30	60.2	146	4	449	8	300	5	1,245	14	3.06	2.00	54	46	20.1	9.3
	M31	61.8	150	5	437	10	284	9	1,190	17	2.91	2.05	09	40	9.1	10.6
	M40	62.4	191	4	447	10	318	5	1,049	20	2.35	2.29	31	69	38.3	8.6
	M41	63.5	158	4	374	10	286	2	875	61	2.37	2.25	41	69	40.1	11.6
	M42	61.8	197	5	454	12	331	5	1,017	23	2.30	2.47	47	53	9.4	13.6
	M43	62.2	149	5	382	12	301	9	937	21	2.57	2.38	69	41	7.2	15.9
US patent 5,084,368		40~90	2~15	1~5					>400							

3.5 Print Test

M30 and SJ700 were used as the resin binder in the toner formulation to produce the finished toners. Sample M30 were chose because of its closest properties with the commercial resin SJ700 (in terms of T_g , M_z , and AN). Print tests were carried out for the two toners to compare the quality of the two resins. Table 3.7 indicated the comparison of properties between finished toner produced by using M30 and SJ700.

Table 3.8 Comparison of properties between finished toner produced by using M30 and SJ700.

	Tonei	· M30	Toner	SJ700
Particle size distribution				
5% / μm	4.	10	5.	29
50% / μm	8	52	9.	95
95% / μm	16.	.12	18	.43
5 μm / %	7.9	93	4.	02
24 μm / %	99.	.72	99	.55
Sharpness Index, D95/D5	3.9	93	3.	48
Tribocharge / μCg ⁻¹	-18	3.5	-1′	7.0
Magnetic Content / %	4	8	5	0
Flowability / mm	4	5		5
Apparent Density / gcm ⁻³	0.594		0.5	579
Melt Flow Index 160°C, (g/10 min)	29		26	
Glass Transition Temperature / °C	60		62	
Molecular weight	High	Low	High	Low
$M_n \times 10^3 / \text{ gmol}^{-1}$	195	4	213	3
$M_w \times 10^3 / \text{ gmol}^{-1}$	388	8	499	6
$M_p \times 10^3 / \text{ gmol}^{-1}$	270	5	929	5
$M_z \times 10^3 / \text{ gmol}^{-1}$	801	12	924	8
I_p	1.99	1.85	2.34	1.66

With reference to Table 3.7 above, all the properties for toner prepared by using resin M30 (referred to Table 3.4) was similar with the properties of toner prepared by using commercial resin, SJ700.

The print out of toner prepared by using resin M30 was found to have a better colour tone by comparing to resin SJ700. However, there were minor background problem existed for both toner M30 and SJ700 (by referring to section 1.3, Table 1.1). The print out results were attached in Appendix I and II respectively. Figure 3.9 and Figure 3.10 show the diagrams of finish toner prepared by using resin M30 and SJ700 respectively.

Figure 3.9 Finish toner prepared by using resin M30 was observed by using microscope under magnification 100×, the toner particles were found in irregular shape.

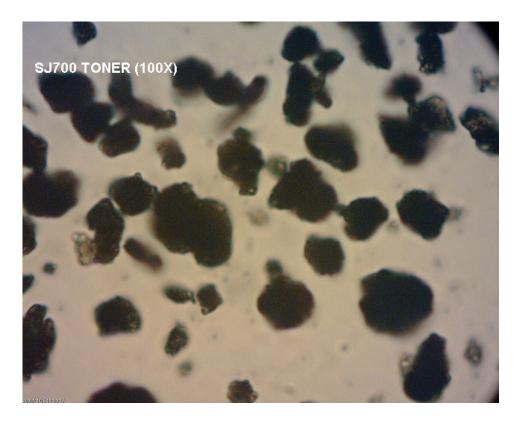


Figure 3.10 Finish toner prepared by using resin SJ700 was observed by using microscope under magnification 100×, the toner particles were found in irregular shape.

CHAPTER 4: CONCLUSION

4.1 Summary

With reference to Table 3.8 in section 3.4.1, all the properties for toner prepared by using resin M30 (referred to Table 3.4) were similar with the properties of toner prepared by using commercial resin, SJ700.

Particle size distribution for toner M30 at 5%, 50% and 95% were 4.1 μ m, 8.52 μ m and 16.12 μ m; the percentage at 5 μ m and 24 μ m was 7.93% and 99.72% relatively. As for toner SJ700, particle size distribution at 5%, 50% and 95% were 5.29 μ m, 9.95 μ m and 18.43 μ m, it was slightly higher than toner M30; the percentage at 5 μ m and 24 μ m was 4.02% and 99.55% respectively. Sharpness index was similar; 3.93 for toner M30 and 3.48 for toner SJ700.

Tribocharge for toner M30 was slightly stronger than toner SJ700; -18.5 and -17 μ Cg⁻¹ correspondingly. Magnetic content was similar for both toners; 48% for toner M30 and 50% for toner SJ700. Flowability for both toners was identical; 5 mm for both toners.

As for apparent density, the results for toner M30 was 0.594 gcm⁻¹, this result was similar with apparent density for toner SJ700, 0.579 gcm⁻¹. The melt flow index for both toners were also comparable with each other, where melt flow index for toner M30 was 29 g/ 10 min and results for toner SJ700 was 26 g/ 10 min. This similarity was also observed for glass transition temperature where results for toner M30 and SJ700 were 60°C and 62°C respectively.

The low molecular weight distributions for both toners were similar in terms of M_n , M_w , M_p , M_z and I_p . As for high molecular weight distribution, M_n , M_w , M_z and I_p for both toners were comparable to each others, only M_p value for toner M30 was lower than toner SJ700; 2.7×10^5 gmol⁻¹ for toner M30 and 9.29×10^5 gmol⁻¹ for toner SJ700.

In terms of the print test, toner M30 produced a good printing colour tone by comparing to the performance of the commercial toner SJ700, which was chosen as the benchmark for the present project. There was minor background problem for both samples of toners made from M30 and SJ700. (by referring to section 3.5).

4.2 Further Works as Extension to the Project

- a) In the preparation of high molecular weight sample, copolymerization process by using crosslinking agents other than tetra ethylene glycol diacrylate can be carried out.
- b) Instead of preparing the high and low molecular weight resin separately, the experiment can also be carried out to prepare resin sample which contained high and low molecular weight fraction in a single polymerization system.

References

- Belan, G. "The Printer of the Future"; *Recharge East Magazine*. **2006**, 41, 56-58.
- Nabers, S. "Regular Toner: What is it?"; *Recharge East Magazine*. **2005**, 24, 42-44.
- Bogatyrev, V. "Defects in Laser Printers"; *Recharge East Magazine*. **2006**, 42, 28-30.
- Yokohama, N. H.; Fujisawa, M.S.; Yokohama, S. K.; Kamakura, A. M.; Yokohama, A. F.; Odawara, K. U. "Electrophotographic Toner"; *United States Patent* Number 5,084,368, 1992.
- Kato, T.; Ochiai, S.; Niinae, T. "Toner Binder for Electrophotography"; *United States Patent* Number 5,242,777. 1993.
- Ito, H.; Itoh, M.; both of Toyohashi; Takahiro, S.; Yoshida, K.; both of Nagoya;
 Inagaki, M. "Toner Resin"; *United States Patent* Number 5,674,962. 1997.
- Nishida, M.; Ohhama, T. "Resin Compositions for Electrophotographic Toner and Process for Making the Same"; *United States Patent* Number 5,496,888. 1996.
- Funato, R.; Takahiro, S.; Yoshida, K.; Kuba, S.; Inagaki, M. "Process for Producing Resin for A Toner"; *United States Patent* Number 5,071,918. 1991.
- Niinae, T. "Resin Compositions for Electrophotographic Toner"; *United States Patent*Number 5,595,849. 1997.
- Sasada, S.; Nakanishi, H.; Satake, M.; Kamei, N.; Iwata, M. "Toner and Method for Image Formation"; *United States Patent* Number 6,461,782 B1. 2002.
- Shin, M.; Fujiwara, A.; Taniwaki, H. "Electrophotographic Process Uses Toner Comprising Vinyl Copolymer"; *United States Patent* Number 4,727,010. 1988.
- Shin, M.; Uchiyama, K.; Okada, Y. "Electrophotographic Toner and Production Process Thereof"; *United States Patent* Number 5,370,958. 1994.
- ¹³ Kosaka, Y.; Ueyama, T.; Suzuki, T. "Toner Resin Composition and A Method of

- Manufacturing It as well as A Toner and A Method of Manufacturing It"; *United States Patent* Number 5,849,848. 1998.
- Chupka, Jr. F. L. "Process for Making Bimodul, Crossliked Toner Resin"; *United States Patent* Number 5,856,407. 1999.
- Nishida, M. "Resin Compositions for Electrophotographic Toner"; *United States Patent* Number 5,185,405. 1993.
- Niinae, T.; Sasada, S. "Resin Composition for Electrophotographic Toner"; *United States Patent* Number 5,714,542. 1998
- Hirayama, N.; Uchiyama, K.; Kawasaki, S.; Sato, H.;both of Yokohama; Akiyama, H.
 "Electrophotographic Toner Composition"; *United States Patent* Number 5,266,434.
 1993.
- Chupka, Jr. F. L. "Bimodal, Crosslinked Toner Resin and Process for Making Same"; *United States Patent* Number 5,684,090. 1997.
- Kobayashi, N.; Mich, A.; Hively, R. L. "Process for Preparing a Toner Resin, Toner Binder Prepared thereby and Toner Composition Containing Particles of the Toner Resin"; *United States Patent* Number 5,206,319. 1993.
- Aizawa, H.; Shin, M.; Okubo, A. "Resin for Toner and Toner Containing Same"; *United States Patent* Number 5,066,727. 1991.
- Iwata, M. "Binder for Electrostatic Image Developing Toner"; *United States Patent*Number 7,226,984. 2007.
- Haesendonckx, F. "Process and Installation for Manufacturing a Preform, Implementing Improved Drying Means, and Plastic Receipient obtained form the Preform"; *United States Patent Number* 6,745,492. 2004.
- ²³ Crawford, R. R. "Method and Apparatus for Drying Granular Solids with Venturi

- Powered Gas Circulation"; *United States Patent* Number 6,370,797. 2002.
- Galliford, G. Chemically Prepared Toners. A Study of Market and Technologies;
 Galliford Consulting and Marketing: Channel Islands Harbor, 2006.
- Odian, G. Principles of Polymerization; McGraw-Hill: London, 1970
- ²⁶ Tager, A. *Physical Chemistry of Polymers*; Mir Publishers: Moscow, 1972.
- Fried, J.R. *Polymer Science and Technology*, 2nd Edition. Prentice Hall PTR: Upper Saddle River, N.J., 2003.
- Nicholson, J.W. *The Chemistry of Polymers*, 2nd Edition; The Royal Society of Chemistry: Cambridge, 1997.
- ²⁹ Rodriguez, F. *Principles of Polymer Systems*; McGraw-Hill: New York, 1970.
- Seymour, R. B.; Carraher, Jr. C. E. Polymer Chemistry: An Introduction, 3rd Edition.
 Marcel Dekker: New York, 1992.
- Fluharty, A. A Comparison of Conventional Toner to Chemically Produced Toner using Life Cycle Assessment, Final 2005 RET Report; University of Illinois: Chicago, 2005.
- Stevens, M.P. *Polymer Chemistry: An Introduction* 3rd Edition; Oxford University Press: New York, 1999.
- Washington, R.P.; Steinbock, O. "Frontal Free-Radical Polymerization: Applications to Materials Synthesis"; *Polymer News.* **2003**, 28, 303-310.
- ³⁴ Brandrup, J. *Polymer Handbook* 4th Edition; Wiley: New York, 1999
- Otsuki, T.; Tsukamoto, K.; Hirayama, N.; all of Kanagawa. "Binder for Dry Toner"; *United States Patent* Number 5,241,019. 1993.
- Schildknecht, C.E.; Skeist, I. Polymerization Processes; John Wiley & Sons: New York, 1977.

- Cheremisinoff, N. P. Polymer Chacacterization: Laboratory Techniques and Analysis;
 Noyes Publications: Westwood, N. J., 1996.
- Ghosh, P. Polymer Science and Technology: Plastics, Rubbers, Blends and Composites, 2nd Edition; McGraw-Hill: New York, 2002.
- Braun, D.; Cherdron, H.; Ritter, H. *Polymer Synthesis: Theory and Practice Fundamentals, Methods, Experiments* 3rd Edition; Springer: New York, 2001.
- Standard Test Method for Acidity in Volatile Solvents and Chemical Intermediates
 Used in Paint, Varnish, Lacquer, and Related Products; ASTM-D1613, 1996.
- Solomons, T. W. G.; Fryhle, C.B. *Organic Chemistry*, 7th Edition; John Wiley & Sons: New York, 2000.
- Scott, R.A.; Peppas N. A. "Compositional Effects on Network Structure of Highly Cross-linked Copolymers of PEG-Containing Multiacrylates with Acrylate Acid";
 Macromolecules. 1999, 32, 6139-6148.
- Blackley, D.C. *Emulsion Polymerization Theory and Practice*; Applied Science Publishers: London, 1975.
- Huggins, M.L. *Physical Chemistry of High Polymers*; John Wiley & Sons: New York,1958.
- ⁴⁵ Allcock, H.R.; Lampe, F.W. *Contemporary Polymer Chemistry*, 2nd Edition; Prentice Hall: Englewood Cliffs, N.J., 1990.
- Nabers, S. "Understanding Print Performance"; *Recharge East Magazine*, **2005**, 23, 45-46.
- Haines, P. J. Thermal Methods of Analysis: Principles, Applications and Problems;
 Blackie Academic: London, 1996.
- ⁴⁸ Allcock, H.R.; Lampe, F.W. Contemporary Polymer Chemistry, 3rd Edition. Prentice-

- Hall: Upper Saddle River, N.J., 2003.
- Braoun, D.; Cherdron, H.; Kern, W. *Techniques of Polymer Syntheses and Characterization*; Wiley-Interscience: New York, 1972.
- Bikales, N.M. Characterization of Polymers: Encyclopedia Reprints; Wiley-Interscience: New York, 1971.
- Henderson, J.N.; Bouton, T.C. *Polymerization Reactors and Processes*; American Chemical Society: Washington DC, 1979.
- Sandler, S. R. Polymer Synthesis and Characterization: A Laboratory Manual;
 Academic Press: San Diego, 1998.
- Pinner, S. H. A Practical Course in Polymer Chemistry; Pergamon Press: Oxford,1961.
- Platzer, N.A.J. *Polymerization Kinetics and Technology*; American Chemical Society: Washington DC, 1973.
- Ghost, P.; Gupta, S.K.; Saraf D.N. "An Experimental Study on Bulk and Solution Polymerization of Methyl Methacrylate with Resoponses to Step Changes in Temperature"; *Chemical Engineering Journal*, **1998**, 70, 25-35.
- Lefay, C.; Charleux, B.; Save, M.; Chassenieux, C.; Guerret, O.; Magnet S.
 "Amphiphilic Gradient Poly(styrene-co-acrylic acid) Copolymer Prepared via
 Nitroxide-mediated Solution Polymerization. Synthesis, Characterization in Aqueous
 Solution and Evaluation as Emulsion Polymerization Stabilizer"; *Polymer*, 2006, 47, 1935-1945.
- Rantow, F.S.; Soroush, M.; Grady, M.C.; Kalfas G.A. "Spontaneous Polymerization and Chain Microstructure Evolution in High-temperature Solution Polymerization of n-butyl acrylate"; *Polymer*, **2006**, 47, 1423-1435.

- Vega, M. P.; Lima, E.L.; Pinto J.C. "In-line Monitoring of Weight Average Molecular Weight in Solution Polymerizations Using Intrinsic Viscosity Measurements";
 Polymer, 2001, 42, 3909-3914.
- Quan, C.L. *High Temperature Free-Radical Polymerization of n-butyl Acrylate*; Drexel University: Pennsylvania USA, 2002.
- Bershtein, V.A. *Polymer Analysis and Characterization*; Springer-Verlag: Berlin, 1994.
- Ke, B. *Newer Methods of Polymer Characterization;* Interscience Publishers: New York, 1964.
- ⁶² Barth, H.G. *Modern Methods of Polymer Characterization*; J. Wiley: New York, 1991.
- Nicholson, J. W. *The Chemistry of Polymers*; Royal Society of Chemistry: Cambridge,1991.
- Shin, M.; Hirayama, N.; Ishikawa, K.; Misawa, A. "Electrophotographic Toner"; *United States Patent* Number 4,963,456. 1990.
- Yamasaki, E.N.; Patrickios C.S. "Group Transfer Polymerization in the Bulk: Linear Polymers and Randomly Cross-linked Networks"; *European Polymer Journal*, **2003**, 39, 609-616.
- Imai, E.; Skashita, K.; Takagi, S.; Kukimoto, T. "Electrophotographic Method Uses Toner of Polyalkylene and Non-magnetic Inorganic Fine Powder"; *United States* Patent Number 4,702,986. 1987.
- Mitsuhashi, Y. "Fixing Method"; *United States Patent* Number 4,499,168. 1985.
- Inoue, S. "Polymeric Binder for Toner having Specific Weight Distribution"; *United States Patent* Number 4,626,488. 1986.
- ⁶⁹ Bamford, D.H. *The Kinetics of Vinyl Polymerization by Radical Mechanisms*;

- Butterworths Scientific: London, 1958
- Mohammad, F.D. P. *Specialty Polymers: Materials and Applications*; I.K International Publishing House: New Delhi, 2007.
- Kawakatsu, T. Statistical Physics of Polymers: An Introduction; Springer: Berlin, 2004.
- Nicholson, J.W. *The Chemistry of Polymers*, 3rd Edition; RSC Pub.: Cambridge, 2006.
- Rodriguez, F. *Principles of Polymer Systems*, 5 rev. ed.; Taylor & Francis: London,2003.
- Sperling, L. H. *Introduction to Physical Polymer Science*, 4th ed; Wiley-Interscience: Hoboken, NJ, 2006.
- Painter, P. C. Fundamentals of Polymer Science: An Introductory Text, 2nd ed; CRC Press: Boca Raton, 1997.
- Young, R.J.: *Introduction to Polymers*, 2nd ed.; Nelson Thornes: Cheltenham, 2002.
- Ebewele, R.O. *Polymer Science and Technology*; CRC Press: Boca Raton, 2000.
- Davis, F.J. Polymer Chemistry: A Practical Approach; Oxford University Press: Oxford, 2004.
- Walton, D.J. *Polymers*; Oxford University Press: Oxford, 2000.
- Bower, D.I. *An Introduction to Polymer Physics*; Cambridge University Press: Cambridge, 2002.
- Odian, G.G. *Principles of Polymerization*, 4th ed.; Wiley-Interscience: Hoboken, N.J.; 2004.
- Seymour, R.B. *Polymer Chemistry: An Introduction*, 4th rev. ed.; M. Dekker: London, 1996
- Bahadur, P. *Principles of Polymer Science*, 2nd rev. ed.; Alpha Science International:

- London, 2005.
- Peacock, A.J. Polymer Chemistry: Properties and Applications; Hanser Gardner Publications: Munich, 2006
- Osswald, T.A. *Polymer Processing: Modeling and Simulation*; Hanser Publishers: Munich, 2006.
- Michael, R. *Polymer Physics*; Open University Press: Maidenhead, 2003
- Sandler, S.R. Polymer Synthesis and Characterization: A Laboratory Manual;
 Academic Press: San Diego, 1998.
- Hawkins, W.L. *Polymer Stabilization*; Wiley-Interscience: New York, 1972.
- Strepikheev, A.A. *A First Course in Polymer Chemistry*; Mir Publisher: Moscow, 1971.
- Tadmor, Z. Principles of Polymer Processing; J. Wiley: New York, 1979.
- ⁹¹ Holmes, W.S. *Polymer Conversion*; Applied Science Publishers: London, 1975.
- Schildknecht, C.E. Polymer Processes: Chemical Technology of Plastics, Resins, Rubbers, Adhesives and Fibers; Interscience Publishers: New York, 1956.
- Kumar, A. Fundamentals of Polymer Science and Engineering; Tata McGraw-HillPublisher: New Delhi, 1978.
- ⁹⁴ Brydson, J.A. *Flow Properties of Polymer Melts*; Iliffe: London, 1970.
- ⁹⁵ Ke, B. Newer Methods of Polymer Characterization; Interscience Publishers: New York, 1964.
- Pearce, E.M. Contemporary Topics in Polymer Science; Plenum Press: New York, 1977
- ⁹⁷ Allen, J.A. *An Outline of Polymer Chemistry*; Oliver & Boyd: Edinburgh, 1968.
- Craver, C.D. Polymer Characterization: Physical Property, Spectroscopic, and Chromatographic Methods; American Chemical Society: Washington DC, 1990.

- ⁹⁹ Challa, G. *Polymer Chemistry: An Introduction*; Ellis Horwood: New York, 1993.
- Bershtein, V.A. Polymer Analysis and Characterization; Springer-Verlag: Berlin, 1994.
- Hatakeyama, T. *Thermal Analysis: Fundamentals and Applications to Polymer Science*; J. Wiley: New York, 1994.
- Ham, G.E. Vinyl Polymerization; M.Dekker: London, 1967.
- Fried, J.R. *Polymer Science and Technology*, 2nd Edition; PHI Learning: New Delhi, 2009.