CHAPTER 4

RESULTS

4.1 **Yield of Crude Extracts**

Forty species of vegetables were extracted using two solvents systems namely, methanol and water. The yield of extracts obtained from methanol and water extraction are shown in Table 4.1.

The total yield percentages range from 5.72% to 48.78%. The *Lycopersicum esculentum* showed the highest total yield percentage while *Centella asiatica* showed the lowest. Generally, the yield percentages of the crude methanol extracts (ranged 1.74% to 37.44%) were higher than that of the water extracts (ranged 2.01% to 27.90%).

No	Plant	Extraction	Weight	Yield	Total yield
		Solvent	(g)	(%)	(%)
1	Asparagus officinalis	Methanol	3.23	6.16	15.26
		Water	3.82	9.10	
2	Allium fistulosum	Methanol	2.71	13.58	28.66
		Water	3.01	15.08	
3	Allium tuberosum	Methanol	0.96	4.83	10.32
		Water	1.09	5.48	
4	Capsicum annum	Methanol	4.92	24.63	40.44
		Water	3.16	15.81	
5	Capsicum frutescens	Methanol	0.50	2.50	7.30
		Water	0.95	4.79	
6	Lycopersicum	Methanol	7.48	37.44	48.78
	esculentum	Water	2.26	11.34	
7	Solanum melongena	Methanol	4.15	20.79	35.87
		Water	3.01	15.07	
8	Solanum tuberosum	Methanol	2.61	13.08	18.55
		Water	1.09	5.46	
9	Cucumis sativus	Methanol	3.16	15.83	29.76
		Water	2.78	13.93	

Table 4.1 Yield of crude extracts obtained from selected vegetable species

Table 4.1 Continued

10	Cucurbita moschata	Methanol	4.57	22.89	47.63
		Water	4.94	24.73	
11	Lagenaria sceraria	Methanol	2.36	11.84	17.10
	0	Water	1.05	5.25	
12	Momordica charantia	Methanol	3.37	16.89	32.40
		Water	3.10	15.50	
13	Luffa acutangula	Methanol	1.31	6.56	17.15
		Water	2.11	10.59	
14	Cosmos caudatus	Methanol	1.39	1.39	13.70
		Water	1.34	1.34	
15	Lactuca sativa	Methanol	2.31	2.31	21.32
		Water	1.94	1.94	
16	Archidendron jiringga	Methanol	1.66	1.66	15.89
		Water	1.51	1.51	
17	Neptunia prostrata	Methanol	1.61	1.61	15.66
		Water	1.51	1.51	
18	Pachyrrhizus erosus	Methanol	5.61	5.61	55.98
		Water	5.58	5.58	
19	Psophocarpus	Methanol	0.60	0.60	8.03
	tetragonolobus	Water	1.00	1.00	
20	Parkia speciosa	Methanol	3.82	3.82	30.14
		Water	2.20	2.20	
21	Sesbania grandiflora	Methanol	2.98	2.98	26.71
		Water	2.35	2.35	
22	Vigna sinensis	Methanol	1.05	1.05	15.76
		Water	2.09	2.09	
23	Pisum sativum	Methanol	1.68	8.40	22.22
		Water	2.76	13.82	
24	Phaseolus vulgaris	Methanol	0.98	4.90	13.30
		Water	1.67	8.39	
25	Amaranthus gangeticus	Methanol	1.65	8.25	22.11
		Water	2.77	13.86	
26	Amaranthus viridis	Methanol	0.87	4.36	23.23
		Water	3.77	18.87	
27	Hibiscus esculentus	Methanol	3.95	19.77	24.12
		Water	0.87	4.35	
28	Averrhoa carambola	Methanol	1.67	8.37	12.93
		Water	0.91	4.56	
29	Manihot esculenta	Methanol	0.38	1.94	15.90
		Water	2.79	13.95	
30	Portulaca oleracea	Methanol	2.37	11.86	19.07
		Water	1.44	7.21	
31	Ipomoea batatas	Methanol	2.91	14.58	28.47
		Water	2.77	13.89	

Table 4.1 Continued

32	Ipomoea reptans	Methanol	2.77	13.89	26.97
		Water	2.61	13.08	

33	Apium graveolens	Methanol	1.05	5.29	10.68
		Water	1.07	5.39	
34	Centella asiatica	Methanol	0.70	3.50	5.72
		Water	0.40	2.011	
35	Daucus carota	Methanol	4.76	23.82	28.84
		Water	1.00	5.01	
36	Oenanthe javanica	Methanol	3.16	15.80	28.91
		Water	2.62	13.10	
37	Beta vulgaris	Methanol	2.61	13.07	22.83
		Water	1.95	9.76	
38	Citrus aurantifolia	Methanol	1.98	9.93	16.91
		Water	1.39	6.97	
39	Brassica oleracea var.	Methanol	1.98	9.93	22.41
	alboglabra	Water	2.49	12.48	
40	Petroselium crispum	Methanol	0.34	1.74	18.67
		Water	3.38	16.92	

4.2 Screening For The *In vitro* Cytotoxic Activity of Crude Methanol and Water Extracts of Selected Vegetables In the present study, 80 crude methanol and water vegetable extracts were evaluated for their *in vitro* cytotoxic activity against two cervical cancer-derived cell lines (HeLa and CaSki) and human fibroblast cell line (MRC5) using the neutral red cytotoxic assay. HeLa and CaSki cells were grown in 10% supplemented RPMI 1640 medium and MRC5 cells grown in 10% supplemented EMEM medium were incubated with methanol and water extracts of selected vegetables at varying concentrations (1, 10, 25, 50, 100 μ g/ml) for 72 hours in a 5% CO₂ incubator at 37°C. The negative controls consisted of cells not treated with vegetable extracts. Figure 4.1 shows human cancer cell lines, HeLa, CaSki and MRC5 cells treated with 100 μ g/ml of vegetables crude extracts. The negative controls exhibited normal proliferation rate and showed no sign of death after the incubation time of 72 hours, while HeLa, CaSki and MRC5 cells treated with 100 μ g/ml of vegetables crude extracts and showed signs of death after the incubation period of 72 hours.

The cytotoxicity results obtained were presented as inhibition percentages relative to the negative control and the IC₅₀ values were extrapolated from the dose response curves plotted from the percentage of inhibition values. The IC₅₀ value is the concentration of extract that inhibits the growth 50% of cells. An extract which gives IC₅₀ value of 20 μ g/ml and below is considered cytotoxically active (Geran *et al.*, 1972; Chiang *et al.*, 2003).

(e) (f) Figure 4.1: Photomicrograph (100X) of: (a): Untreated CaSki cells incubated (negative contol) (b): CaSki cell treated with 100 µg/ml of crude extract of *Beta vulgaris* (c): untreated HeLa cells incubated (negative control) (d) CaSki cell treated with 100 µg/ml of crude extract of *Portulaca oleracea* (e): untreated MRC5 cells incubated in EMEM (Negative control) (f): MRC5 cells treated with 100 µg/ml of crude MeoH extract of *Capsicum annum*

4.2.1 Cytotoxic Activity of Doxorubicin Against HeLa and CaSki Cells and MRC5

Cell Lines

The human cervical cancer-derived cell lines, (HeLa and CaSki) and human fibroblast cell line (MRC5), were treated with doxorubicin, a positive control for the neutral red cytotoxic assay.

Cells treated with doxorubicin exhibited decreased proliferation rate and showed signs of death after the incubation of 72 hours. Results showed that the doxorubicin shown significant cytotoxic effects against HeLa, CaSki and MRC5 cells (Table 4.2, Table 4.3, Figure 4.2). Doxorubicin to be cytotoxic of all cell lines tested in a dose-dependent manner with inhibition percentages of 5.89-44.99% at $1 \times 10^{-5} \,\mu g/ml$, 13.08-45.46% at $1 \times 10^{-4} \,\mu g/ml$, 23.86-47.68% at $1 \times 10^{-3} \,\mu g/ml$, 46.81-69.91% at $1 \times 10^{-2} \,\mu g/ml$, 46.95-76.36% at $1 \times 10^{-1} \,\mu g/ml$, 50.91-84.54% at $1 \times 10 \,\mu g/ml$, 53.10-87.82% at $1 \times 10^{1} \,\mu g/ml$ and 63.39-89.48% at $1 \times 10^{2} \,\mu g/ml$.

The inhibition percentages obtained were presented as dose-respone curves. The *in vitro* growth inhibition of doxorubicin against HeLa, CaSki and MRC5 cell lines are shown in Figure 4.2. The IC₅₀ values were estimated from the graph extrapolation and summarized in Table 4.3. The IC₅₀ value refers to the effective dose (concentration of extracts in μ g/ml) that inhibits 50% of cells growth. Extracts having an IC₅₀ value equal to or less than 20 are considered active for cytotoxic assay against cells (Geran *et al.*, 1972).

Cell	Percentage	of inhibition	± standard d	leviation (%)	at different o	concentratior	ι (μg/ml)	
line	1x10 ⁻⁵	1x10 ⁻⁴	1x10 ⁻³	1x10 ⁻²	1x10 ⁻¹	1	10	100
HeLa	20.1±5.5	21.6±9.4	26.5±1.7	46.8±2.8	47.0±0.9	53.6±0.5	55.3±0.7	63.3±1.3
CaSki	5.9±3.7	13.1±1.3	23.9±0.5	69.9±1.5	76.4±0.5	84.5±0.2	87.8±0.4	89.5±0.4
MRC5	45.0±0.12	45.5±0.6	47.7±0.4	48.3±0.3	49.0±0.5	50.9±0.5	53.1±0.4	68.4±1.4

Table 4.2: Inhibition of HeLa, CaSki and MRC5 cells treated with doxorubicin

Figure 4.2: Dose-response curve showing in vitro growth inhibition of HeLa, CaSki and MRC5 cells by doxorubicin (positive control)

Cell lines	IC ₅₀ value (μg/ml)
HeLa	3.00
CaSki	0.05
MRC5	4.00

Table 4.3: The IC₅₀ values of doxorubicin against various cell lines

4.2.2 In vitro Cytotoxic activity of Selected Vegetable Extracts Against HeLa Cells

The *in vitro* growth inhibition of HeLa cells by crude methanol extracts of the 40 vegetables are shown as dose-response curves in Figures 4.3(a) to 4.3(h). The IC₅₀ values were extrapolated from the dose-response curves and summarized in Table 4.4. The inhibition activities ranged from 4.57-41.36% at 1µg/ml, 9.7-65.66% at 10 µg/ml, 14.95-81.93% at 25 µg/ml, 23.65-84.92 at 50 µg/ml and 28.17-87.78 at 100 µg/ml. Out of 40 vegetables evaluated only 7 vegetables (17.5%) methanol extracts, namely *Capsicum annum (lada merah), Capsicum frutescent (cili padi)s, Lycopersicum esculentum (tomato), Cosmos caudatus (ualm rajah), Vigna sinensis (kacang panjang), Amaranthus viridis (bayam merah)* and *Ipomoea reptans (kangkung*) were actively cytotoxic against HeLa cell with IC₅₀ values less than 20 µg/ml. The IC ₅₀ values are 13 µg/ml, 17.5 µg/ml, 17.4 µg/ml, 18.02 µg/ml, 15.9 µg/ml, 15 µg/ml and 5.9 µg/ml, respectively.

Crude methanol extracts of Asparagus officinalis (asparagus), Solanum tuberosum (ubi kentang), Cucumis sativus (timun), Cucurbita moschata (labu merah), Lagenaria sceraria (labu ayer), Momordica charantia (peria), Luffa acutangula (petola segi), Lactuca sativa (salada), Neptunia prostrate (tangki), Pachyrrizus erosus (sengkuwang), Parkia speciosa (petai), Amaranthus gangeticus (bayam pasir), Apium graveolens (selderi), Centella Asiatica (Pegaga), Daucus carota (lobak), Beta vulgaris (bit), Citrus aurantifolia (limau), Pisum sativum (kacang putih), Brassica oleracea var alboglabra (kalian), Phaseolus vulgaris kacang buncis), and Petroselum crispum (parsley) possessed inhibited HeLa cells with percentage inhibition less than 50% at all concentrations tested in this study. Therefore, IC₅₀ values could not be determined from the existing dose-response curve

Figure 4.3(a): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. officinalis*, *C. annum*, *C. frutescens*, *L. esculentum* and *S. melongena* against HeLa cells.

Figure 4.3 (b): Dose-response curves showing cytotoxic activity of crude methanol extracts of *S. tuberosum*, *C. sativus*, *C. moschata*, *L. sceraria* and *M. charantia* against HeLa cells.

Figure 4.3 (c): Dose-response curves showing cytotoxic activity of crude methanol extracts of *L. acutanggula*, *C. caudatus*, *L. sativa*, *A. jiringga* and *N. prostrate* against HeLa cells.

Figure 4.3 (d): Dose-response curves showing cytotoxic activity of crude methanol extracts of *P. erosus, P. tetragonolobus, P. speciosa, S. grandiflora* and *V. sinensis* against HeLa cells.

Figure 4.3 (e): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. gangeticus*, *A. viridis*, *H. esculenthus*, *A. carambola* and M. esculenta against HeLa cells.

Figure 4.3 (f): Dose-response curves showing cytotoxic activity of crude methanol extracts of *P. oleracea, I. batatas, I. reptans, A. graveolens* and *C. asiatica* against HeLa cells.

Figure 4.3 (g): Dose-response curves showing cytotoxic activity of crude methanol extracts of *D. carota, O. javanica, P. crispum, B. vulgaris* and *C. aurantifolia* against HeLa cells.

Figure 4.3 (h): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. tuberosum*, *P. sativum*, *B. oleracea var. alboglabra* and *P. vulgaris* against HeLa cells

No	Plant	Local name	IC ₅₀ (μg/ml)
1	Ipomoea reptans	kangkung	5.90
2	Capsicum annum	lada merah,	13.00
3	Amaranthus viridis	bayam pasir	15.00
4	Vigna sinensis	kacang panjang	15.90
5	Hibiscus esculentus	bendi	17.00
6	Lycopersicum esculentum	tomato	17.40
7	Capsicum frutescens	chabai, lada api, lada kerawit	17.50
8	Cosmos caudatus	ulam rajah	18.02
9	Solanum melongena	terong	20.05
10	Averrhoa carambola	belimbing besi	32.00
11	Sesbania grandiflora	turi	33.50
12	Ipomoea batatas	keledek	33.80
13	Allium tuberosum	Ku chai	36.00
14	Oenanthe javanica	shelum	38.50
15	Manihot esculenta	ubi kayu	39.00
16	Archidendron jiringga	jering	64.00
17	Psophocarpus tetragonolobus	kacang botor,	78.00
18	Allium fistulosum	Daun bawang	80.00
19	Portulaca oleracea	beremi	89.50
20	Asparagus officinalis	Asparagus, saparu keras	>100
21	Solanum tuberosum	ubi benggala, ubi kentang, ubi gendang	>100

 Table 4.4: IC₅₀ values of crude methanol extracts of selected vegetables against HeLa

 cells

Table 4.4 continued

22	Cucumis sativus	timun, timun China, mentimun	>100
23	Cucurbita moschata	labu merah, labu perang,	>100
24	Lagenaria sceraria	labu ayer putih, labu botol	>100
25	Momordica charantia	peria	>100
26	Luffa acutangula	petola segi, ketola segi	>100
27	Lactuca sativa	salad, selada	>100
28	Neptunia prostrata	tangki,	>100
29	Pachyrrhizus erosus	sengkuwang,	>100
30	Parkia speciosa	petai	>100
31	Pisum sativum	kacang puteh	>100
32	Phaseolus vulgaris	kacang buncis	>100
33	Amaranthus gangeticus	bayam merah	>100
34	Apium graveolens	selderi	>100
35	Centella asiatica	pegaga	>100
36	Daucus carota	lobak merah	>100
37	Beta vulgaris	bit	>100
38	Citrus aurantifolia	limau	>100
39	Brassica oleracea var. alboglabra	Kai lan	>100
40	Petroselium crispum	parsley	>100

The *in vitro* growth inhibition of HeLa cells by crude water extracts of the 40 selected vegetables are shown as dose-response curves in Figures 4.4(a) to 4.4(h). The

inhibition rates of HeLa cells were 2.00-48.47% at 1 µg/ml, 7.57-51.47 at 10 µg/ml, 11.33-64.44% at 25 µg/ml, 11.63-67.63% at 50 µg/ml and 12.57-72.15% at 100 µg/ml. Only 2 out of 40 crude water extracts of the selected vegetables studied namely, *C. annum* and *L. sceraria* exhibited IC₅₀ values less than 20 µg/ml and therefore considered actively cytotoxic against HeLa cells (Table 4.5). When compared *L. sceraria* were the more active. The IC₅₀ value for crude water extracts of *L. sceraria* was 6 µg/ml while the IC₅₀ value for crude water extracts of *C. annum* was 17 µg/ml. On the other hand, *C. frutescens, L. esculentum, C. moschata, C. caudatus* and *V. sinensis, A . fistulosum, S. grandiflora, A. graveolens* and *C. aurantifolia* exhibited no cytotoxic rates against HeLa cells. Their IC₅₀ values ranged from 39.5 µg/ml to 90 µg/ml. The remainder of water extracts exhibited IC₅₀ values greater than 100 µg/ml against HeLa cells.

Generally, from 80 crude methanol and water extracts of selected vegetables studied, only 9 of them exerted active cytotoxic effect against HeLa cells. Both crude methanol and water extracts of *C. annum* exhibited the active cytotoxic effects against HeLa cells with IC_{50} values of 13 µg/ml and 17 µg/ml, respectively. The crude methanol extracts of *I. reptans* and the crude water extracts of *L. sceraria* appeared to be more potent as compared to the others due to their abilities to retard more than 50% of cell growth at concentrations lower than as 10wer than 10 µg/ml.

Figure 4.4(a): Dose-response curves showing cytotoxic activity of crude water extracts of *A. officinalis*, *C. annum*, *C. frutescens*, *L. esculentum* and *S. melongena* against HeLa cells.

Figure 4.4 (b): Dose-response curves showing cytotoxic activity of crud water extracts of *S. tuberosum*, *C. sativus*, *C. moschata*, *L. sceraria* and *M. charantia* against HeLa

cells	•	
	100	F
(%)	90	
tion	80	- III
idihi	70	
.= +	00	E

Figure 4.4 (c): Dose-response curves showing cytotoxic activity of crude water extracts of *L. acutanggula, C. caudatus, L. sativa, A. jiringga* and *N. prostrate* against HeLa cells.

Figure 4.4 (d): Dose-response curves showing cytotoxic activity of crude water extracts of *P. erosus, P. tetragonolobus, P. speciosa, S. grandiflora* and *V. sinensis* against HeLa cells

Figure 4.4 (e): Dose-response curves showing cytotoxic activity of crude water extracts of *A. gangeticus, A. viridis, H. esculenthus, A. carambola* and M. esculenta against HeLa cells.

Figure 4.4 (f): Dose-response curves showing cytotoxic activity of crude water extracts of *Pre oleracea*, *I. batatas*, *I. reptans*, *A. graveolens* and *C. asiatica* against HeLa cells.

Figure 4.4 (g): Dose-response curves showing cytotoxic activity of crude water extracts of *D. carota, O. javanica, P. crispum, B. vulgaris* and *C. aurantifolia* against HeLa cells.

Figure 4.4 (h): Dose-response curves showing cytotoxic activity of crude water extracts of *A. tuberosum*, *P. sativum*, *B. oleracea var. alboglabra* and *P. vulgaris* against HeL

No	Plant	Local name	IC ₅₀ (µg/ml)
1	Lagenaria sceraria	labu ayer putih, labu	6.00
		botol	
2	Capsicum annum	lada merah,	17.00
3	Vigna sinensis	kacang panjang	39.50
4	Lycopersicum esculentum	tomato	44.00
5	Capsicum frutescens	chabai, lada api, lada kerawit	50.00
6	Cosmos caudatus	ulam rajah	50.00
7	Cucurbita moschata	labu merah, labu perang,	54.50
8	Apium graveolens	selderi	55.00
9	Allium fistulosum	Daun bawang	80.00
10	Sesbania grandiflora	turi	90.00
11	Citrus aurantifolia	limau	90.00
12	Asparagus officinalis	Asparagus, saparu keras	>100
13	Allium tuberosum	Ku chai	>100
14	Solanum melongena	terong	>100
15	Solanum tuberosum	ubi benggala, ubi kentang, ubi gendang	>100
16	Cucumis sativus	timun, timun China, mentimun	>100
17	Momordica charantia	peria	>100
18	Luffa acutangula	petola segi, ketola segi	>100
19	Lactuca sativa	salad, selada	>100
20	Archidendron jiringga	jering	>100
21	Neptunia prostrata	tangki,	>100

Table 4.5: IC₅₀ values of crude water extracts of selected vegetables against HeLa cells

Table 4.5 continued

22	Pachyrrhizus erosus	sengkuwang,	>100
23	Psophocarpus tetragonolobus	kacang botor,	>100
24	Parkia speciosa	petai	>100
25	Pisum sativum	kacang puteh	>100
26	Phaseolus vulgaris	kacang buncis	>100
27	Amaranthus gangeticus	bayam merah	>100
28	Amaranthus viridis	bayam pasir	>100
29	Hibiscus esculentus	bendi	>100
30	Averrhoa carambola	belimbing besi	>100
31	Manihot esculenta	ubi kayu	>100
32	Portulaca oleracea	beremi	>100
33	Ipomoea batatas	keledek	>100
34	Ipomoea reptans	kangkung	>100
35	Centella asiatica	pegaga	>100
36	Daucus carota	lobak merah	>100
37	Oenanthe javanica	shelum	>100
38	Beta vulgaris	bit	>100
39	Brassica oleracea var. alboglabra	Kai lan	>100
40	Petroselium crispum	parsley	>100

4.2.3 In vitro Cytotoxic Activity of Selected Vegetable Extracts Against CaSki Cells

As illustrated in Figures 4.5-4.6, CaSki cells showed different cytotoxic profiles when treated with different crude extracts from selected vegetables. The *in vitro* growth inhibition of CaSki cells by crude methanol extracts of the 40 vegetables are shown as dose-response curves in Figure 4.5(a) to 4.5(h). The IC₅₀ values were extrapolated from the dose-response curves and summarized in Table 4.6. The inhibition activities ranged from 1.39-44.70% at 1 μ g/ml, 6.38-70.59% at 10 μ g/ml, 14.62-88.94% at 25 μ g/ml, 28.36-92.49% at 50 μ g/ml, 39.89-93.95% at 100 μ g/ml.

Out of 40 vegetables evaluated only 19 vegetables, namely *A. officinalis, A. fistulosum, S. melongena, S. tuberosum, Cucurbita moschata, L. sceraria, A. jiringga, N. prostrata, V. sinensis, P. sativum, P. vulgaris, A. gangeticus, A. viridis, H. esculentus, A. carambola, P. oleracea, I. reptans, B. vulgaris and B. oleracea var. alboglabra were active against CaSki cells with IC₅₀ values less than 20 µg/ml. The IC ₅₀ values ranged from 4.9 µg/ml to 19.8 µg/ml.*

Crude methanol extracts of *Capsicum annum, Lycopersicum esculentum,Manihot esculenta* and *Petroselum crispum* inhibited CaSki cells with percentage of inhibition less than 50% at all concentrations tested in the present study. Therefore, IC₅₀ values could not be determined from the existing dose-response curves.

Figure 4.5 (a): Dose-response curves showing cytotoxic activity of crude methanol extract of *A. officinalis*, *C. annum*, *C. frutescens*, *L. esculentum* and *S. melongena* against CaSki cells

Figure 4.5 (b): Dose-response curves showing cytotoxic activity of crude methanol extracts of *S. tuberosum*, *C. sativus*, *C. moschata*, *L. sceraria* and *M. charantia* against CaSki cells

Figure 4.5 (c): Dose-response curves showing cytotoxic activity of crude methanol extracts of *L. acutanggula*, *C. caudatus*, *L. sativa*, *A. jiringga* and *N. prostrata* against CaSki cells

Figure 4.5 (d): Dose-response curves showing cytotoxic activity of crude methanol extracts of *P. erosus, P. tetragonolobus, P. speciosa, S. grandiflora* and *V. sinensis* against ÇaSki cells

Figure 4.5 (e): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. gangeticus*, *A. viridis*, *H. esculentus*, *A. carambola* and *M. esculenta* against CaSki cells

Figure 4.5 (f): Dose-response curves showing cytotoxic activity of crude methanol extracts of *P. oleracea, I. batatas, I. reptans, A. graveolens* and *C. asiatica* against CaSki cells

igure 4.5 (g): Dose-response curves showing cytotoxic activity of crude methanol <u>extracts of D. carota, O. javanica, P. crispum, B. vulgaris and C. aurantifolia</u> against GaSki cells

Figure 4.5 (h): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A.tuberosum*, *P. sativum*, *B. oleracea* var. *alboglabra*, *a. fistulosum*, and *P. vulgaris* against CaSki cells

No	Plant	Local name	IC ₅₀ (µg/ml)
1	Beta vulgaris	bit	4.90
2	Asparagus officinalis	Asparagus, saparu keras	7.80
3	Solanum tuberosum	ubi benggala, ubi kentang, ubi gendang	7.80
4	Solanum melongena	terong	9.20
5	Brassica oleracea var. alboglabra	Kai lan	11.50
6	Archidendron jiringga	jering	13.90
7	Lagenaria sceraria	labu ayer putih, labu botol	14.10
8	Phaseolus vulgaris	kacang buncis	14.80
9	Pisum sativum	kacang puteh	14.80
10	Amaranthus gangeticus	bayam merah	16.00
11	Amaranthus viridis	bayam pasir	16.00
12	Portulaca oleracea	beremi	16.00
13	Hibiscus esculentus	bendi	17.00
14	Neptunia prostrata	tangki,	17.00
15	Allium fistulosum	Daun bawang	17.80
16	Ipomoea reptans	kangkung	17.80
17	Averrhoa carambola	belimbing besi	19.50
18	Cucurbita moschata	labu merah, labu perang,	19.80
19	Vigna sinensis	kacang panjang	19.80
20	Luffa acutangula	petola segi, ketola segi	21.00
21	Cucumis sativus	timun, timun China, mentimun	22.00

Table 4.6: IC₅₀ values of crude methanol of selected vegetables against CaSki cells

Table 4.6 continued

22	Parkia speciosa	petai	22.00
23	Psophocarpus tetragonolobus	kacang botor,	22.00
24	Cosmos caudatus	ulam rajah	23.50
25	Apium graveolens	selderi	24.00
26	Citrus aurantifolia	limau	29.00
27	Ipomoea batatas	keledek	31.30
28	Centella asiatica	pegaga	32.50
29	Daucus carota	lobak merah	32.50
30	Oenanthe javanica	shelum	33.00
31	Allium tuberosum	Ku chai	35.80
32	Sesbania grandiflora	turi	45.00
33	Momordica charantia	peria	50.50
34	Lactuca sativa	salad, selada	62.00
35	Pachyrrhizus erosus	sengkuwang,	86.90
36	Capsicum annum	lada merah,	>100
37	Capsicum frutescens	chabai, lada api, lada kerawit	100
38	Lycopersicum esculentum	tomato	>100
39	Manihot esculenta	ubi kayu	>100
40	Petroselium crispum	parsley	>100

The *in vitro* growth inhibition of CaSki cells by crude water extracts of the 40 selected vegetables are shown as dose-response curves in Figures 4.6(a) to 4.6(h). The IC₅₀ values were extrapolated from the dose-response curves and summarized in Table 4.7. The results reveal that the water extracts to be cytotoxic of CaSki cells with killing percentages of 4.57-41.36% at 1 μ g/ml, 9.7-65.66% at 10 μ g/ml, 14.95-81.93% at 25 μ g/ml, 23.65-84.92 at 50 μ g/ml and 28.17-87.78 at 100 μ g/ml.

Out of the 40 vegetables evaluated only 11 vegetables water extracts, namely *Asparagus officinalis, Capsicum annum, Lagenaria sceraria, Cosmos caudatus, Neptunia prostrata, psophocarpus tetragonolobus, Parkia speciosa, Vigna sinensis, phaseolus vulgaris, Hibiscus esculentus, Portulaca oleracea, and Beta vulgaris* were actively cytotoxic against CaSki cells with IC₅₀ values less than 20 µg/ml. The IC ₅₀ values ranged were 5.9 µg/ml to 15 µg/ml.

Crude water extracts of *Pachyrrhizus erosus*, *Amaranthus gangeticus*, *Solanum melongena*, *Averrhoa carambola*, *Manihot esculenta*, *Apium graveolens*, *Oenanthe javanica*, *and Citrus aurantifolia* inhibited CaSki cells with percentage of inhibition less than 50% at all concentrations tested in this study. Therefore, IC_{50} values could not be determined from the existing dose-response curves.

Figure 4.6 (a): Dose-response curves showing cytotoxic activity of crude water extracts of *A. officinalis*, *C. annum*, *C. frutescens*, *L. esculentum* and *S. melongena* against CaSki cells

Figure 4.6 (b): Dose-response curves showing cytotoxic activity of crude water extracts of *S. tuberosum*, *C. sativus*, *C. moschata*, *L. sceraria* and *M. charantia* against CaSkiccells

Figure 4.6 (c): Dose-response curves showing cytotoxic activity of crude water extracts of *L. acutanggula, C. caudatus, L. sativa, A. jiringga* and *N. prostrata* against CaSki cells

Figure 4.6 (d): Dose-response curves showing cytotoxic activity of crude water extracts of *P.erosus*, *P. tetragonolobus*, *P. speciosa*, *S. grandiflora* and *V. sinensis*

Figure 4.6 (e): Dose-response curves showing cytotoxic activity of crude water extracts of *A. gangeticus*, *A. viridis*, *H. esculentus*, *A. carambola* and *M. esculenta* against CaSki cells

Figure 4.6 (f): Dose-response curves showing cytotoxic activity of crude water extracts of *P. oleracea, I. batatas, I. reptans, A. graveolens* and *C. asiatica* against CaSki cells

Figure 4.6 (g): Dose-response curves showing cytotoxic activity of crude water extracts of *D. carota, O. javanica, P. crispum, B. vulgaris* and *C. aurantifolia* against CaSki cells

Figure 4.6 (h): Dose-response curves showing cytotoxic activity of crude water extracts of *A.tuberosum*, *P. sativum*, *B. oleracea* var. *alboglabra*, *a. fistulosum* against CaSki cells

No	Plant	Local name	IC ₅₀ (µg/ml)
1	Beta vulgaris	bit	5.90
2	Phaseolus vulgaris	kacang buncis	5.90
3	Cosmos caudatus	ulam rajah	10.00
4	Psophocarpus tetragonolobus	kacang botor,	10.00
5	Parkia speciosa	petai	11.50
6	Asparagus officinalis	Asparagus, saparu keras	15.00
7	Capsicum annum	lada merah,	17.50
8	Hibiscus esculentus	bendi	18.00
9	Lagenaria sceraria	labu ayer putih, labu botol	18.00
10	Vigna sinensis	kacang panjang	18.00
11	Neptunia prostrata	tangki,	18.20
12	Portulaca oleracea	beremi	20.00
13	Ipomoea reptans	kangkung	22.00
14	Solanum tuberosum	ubi benggala, ubi kentang, ubi gendang	22.50
15	Daucus carota	lobak merah	23.00
16	Lactuca sativa	salad, selada	23.50
17	Brassica oleracea var. alboglabra	Kai lan	24.00
18	Archidendron jiringga	jering	29.00
19	Capsicum frutescens	chabai, lada api, lada kerawit	29.50
20	Allium tuberosum	Ku chai	30.00
21	Pisum sativum	kacang puteh	30.00

Table 4.7:IC₅₀ values of crude water extracts of selected vegetables against CaSki cells

Table 4.7 continued

22	Amaranthus viridis	bayam pasir	33.50
23	Cucumis sativus	timun, timun China, mentimun	34.50
24	Ipomoea batatas	keledek	38.00
25	Cucurbita moschata	labu merah, labu perang,	41.50
26	Centella asiatica	pegaga	42.50
27	Lycopersicum esculentum	tomato	48.50
28	Sesbania grandiflora	turi	49.50
29	Luffa acutangula	petola segi, ketola segi	63.00
30	Momordica charantia	peria	63.00
31	Allium fistulosum	Daun bawang	65.00
32	Petroselium crispum	parsley	79.00
33	Amaranthus gangeticus	bayam merah	>100
34	Apium graveolens	selderi	>100
35	Averrhoa carambola	belimbing besi	>100
36	Citrus aurantifolia	limau	>100
37	Manihot esculenta	ubi kayu	>100
38	Oenanthe javanica	shelum	>100
39	Pachyrrhizus erosus	sengkuwang,	>100
40	Solanum melongena	terong	>100

4.2.4 In vitro Cytotoxic Activity of Crude Methanol and Water Extracts of Selected

Vegetable Against MRC5 Cells

The *in vitro* cytotoxicity activities of crude methanol and water extracts against MRC5 cells are illustrated as dose-response curves in Figures 4.7(a-h) and 4.8(a-h). As before the IC_{50} values for all crude extracts were extrapolated from the dose-response curves and summarized in Tables 4.8 and 4.9.

Generally, all crude methanol extracts from the 40 selected vegetables demonstrated no cytotoxic activities against MRC5 cells. The killing percentages produced by the methanol extracts ranged from 2.74-32.33 at 1 µg/ml, 8.2-40.20% at 10 µg/ml, 12.46-44.53% at 25 µg/ml, 20.39-50.35% at 50 µg/ml, 25.00-52.98% at 100 µg/ml. Only 8 out of 40 selected vegetable extracts, have IC₅₀ values which could be extrapolated from doserespone curves. The IC₅₀ values extrapolated were between 48 µg/ml to 96 µg/ml produced by *Asparagus officinalis, Allium tuberosum, A. Centella asiatica, Vigna sinensis, Capsicum annum, Psophocarpus tetragonolobus, Solanum melongena* and *Citrus aurantifolia* (Table 4.8). The IC₅₀ values for the other vegetable extracts could not be determined from the existing killing-curves.

Figure 4.7 (a): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. officinalis*, *C. annum*, *C. frutescens*, *L. esculentum* and *S. melongena* against MRC5 cells

Figure 4.7 (b): Dose-response curves showing cytotoxic activity of crude methanol extracts of *S. tuberosum, C. sativus, C. moschata, L. sceraria* and *M. charantia* against

Figure 4.7 (c): Dose-response curves showing cytotoxic activity of crude methanol extracts of *L. acutanggula, C. caudatus, L. sativa, A. jiringga* and *N. prostrata* against MRC5 cells

Figure 4.7 (d): Dose-response curves showing cytotoxic activity of crude methanol extracts of *P. erosus, P. tetragonolobus, P. speciosa, S. grandiflora* and *V. sinensis* against MRG5 cells

Τ

Figure 4.7 (e): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. gangeticus*, *A. viridis*, *H. esculentus*, *A. carambola* and *M. esculenta* against MRC5 cells

Figure 4.7 (f): Dose-response curves showing cytotoxic activity of crude methanol extracts of *P. oleracea*, *I. batatas*, *I. reptans*, *A. graveolens* and *C. asiatica* against MRC5 cells

Figure 4.7 (g): Dose-response curves showing cytotoxic activity of crude methanol extracts of *D. carota, O. javanica, P. crispum, B. vulgaris* and *C. aurantifolia* against MRC5 cells

Figure 4.7 (h): Dose-response curves showing cytotoxic activity of crude methanol extracts of *A. tuberosum*, *P. sativum*, *B. oleracea var. alboglabra* and *P. vulgaris* against MRC5 cells

Table 4.8: I	C_{50} values of crude methanol extracts of selected vegetables a	against MRC5
cells		

No	Plant	Local name	IC_{50} (µg/ml)
1	Psophocarpus tetragonolobus	kacang botor	48.00
2	Vigna sinensis	kacang panjang	68.500
3	Citrus aurantifolia	limau	77.80
4	Capsicum annum	lada merah	80.00
5	Centella asiatica	Pegaga	87.00
6	Asparagus officinalis	Asparagus, saparu keras	89.00
7	Allium tuberosum	Ku chai	95.00
8	Solanum melongena	terong	96.00
9	Allium fistulosum	Daun bawang	>100
10	Amaranthus gangeticus	bayam merah	>100
11	Amaranthus viridis	bayam pasir	>100
12	Apium graveolens	Selderi	>100
13	Archidendron jiringga	jering	>100
14	Averrhoa carambola	belimbing besi	>100
15	Beta vulgaris	Bit	>100
16	Brassica oleracea var. alboglabra	Kai lan	>100
17	Capsicum frutescens	chabai, lada api, lada kerawit	>100
18	Cosmos caudatus	ulam rajah	>100
19	Cucumis sativus	timun, timun China, mentimun	>100
20	Cucurbita moschata	labu merah, labu perang,	>100
21	Daucus carota	lobak merah	>100

Table 4.8 continued

22	Hibiscus esculentus	Bendi	>100
23	Ipomoea batatas	keledek	>100
24	Ipomoea reptans	kangkung	>100
25	Lactuca sativa	salad, selada	>100
26	Lagenaria sceraria	labu ayer putih, labu botol	>100
27	Luffa acutangula	petola segi, ketola segi	>100
28	Lycopersicum esculentum	tomato	>100
29	Manihot esculenta	ubi kayu	>100
30	Momordica charantia	peria	>100
31	Neptunia prostrata	tangki	>100
32	Oenanthe javanica	shelum	>100
33	Pachyrrhizus erosus	sengkuwang	>100
34	Parkia speciosa	petai	>100
35	Petroselium crispum	parsley	>100
36	Phaseolus vulgaris	kacang buncis	>100
37	Pisum sativum	kacang puteh	>100
38	Portulaca oleracea	beremi	>100
39	Sesbania grandiflora	turi	>100
40	Solanum tuberosum	ubi benggala, ubi kentang, ubi gendang	>100

The *in vitro* cytotoxicity activities of crude water extracts against MRC 5 cells are illustrated as dose-response curves in Figures 4.8(a)-4.8(h). The IC₅₀ values were extrapolated from the dose-response curves and summarized in Table 4.9. Only 7 out of 40 selected vegetable extracts, have IC₅₀ values which could be extrapolated from doserespone curves. The IC₅₀ values extrapolated which were between 59.5 μ g/ml-97.5 μ g/ml was produced by *Allium tuberosum*, *A. fistulosum*, *Centella asiatica*, *Vigna sinensis*, *Luffa acutanggula*, *Hibiscus esculentus*, *Averrhoa carambola*, *Apium graveolen and Citrus aurantifolia*. The IC₅₀ value for the other vegetable extracts could not be determined from the existing killing-curves.

Overall results indicated that, the crude methanol and water extracts from the 40 selected vegetables were found to be not cytotoxic against MRC5 cell lines.

Figure 4.8 (a): Dose-response curves showing cytotoxic activity of crude water extracts of *A. officinalis*, *C. annum*, *C. frutescens*, *L. esculentum* and *S. melongena* against MRC5 cells

Figure 4.8 (b): Dose-response curves showing cytotoxic activity of crude water extracts of *S. tuberosum*, *C. sativus*, *C. moschata*, *L. sceraria* and *M. charantia* against MRC5 cells

Figure 4.8 (c): Dose-response curves showing cytotoxic activity of crude water extracts of *L. acutanggula, C. caudatus, L. sativa, A. jiringga* and *N. prostrata* against MRC5 cells

Figure 4.8 (d): Dose-response curves showing cytotoxic activity of crude water extracts of *P.erosus*, *P. tetragonolobus*, *P. speciosa*, *S. grandiflora* and *V. sinensis* against MRC5 cells

Figure 4.8 (e): Dose-response curves showing cytotoxic activity of crude water extracts of *A. gangeticus, A. viridis, H. esculentus, A. carambola* and *M. esculenta* against MRC5 cells

Figure 4.8 (f): Dose-response curves showing cytotoxic activity of crude water extracts of *P. oleracea, I. batatas, I. reptans, A. graveolens* and *C. asiatica* against MRC5 cells

Figure 4.8 (g): Dose-response curves showing cytotoxic activity of crude water extracts of *D. carota, O. javanica, P. crispum, B. vulgaris* and *C. aurantifolia* against MRC5 cell

Figure 4.8 (h): Dose-response curves showing cytotoxic activity of crude water extracts of *A.tuberosum*, *P. sativum*, *B. oleracea* var. *alboglabra*, *A. fistulosum*, and *P. vulgaris* against MRC5 c

No	Plant	Local name	IC ₅₀ (µg/ml)
1	Averrhoa carambola	belimbing besi	59.50
2	Allium fistulosum	Daun bawang	77.50
3	Vigna sinensis	kacang panjang	83.50
4	Centella asiatica	pegaga	90.00
5	Allium tuberosum	Ku chai	90.80
6	Hibiscus esculentus	bendi	93.00
7	Citrus aurantifolia	limau	96.00
8	Luffa acutangula	petola segi, ketola segi	96.80
9	Apium graveolens	selderi	97.50
10	Amaranthus gangeticus	bayam merah	>100
11	Amaranthus viridis	bayam pasir	>100
12	Archidendron jiringga	jering	>100
13	Asparagus officinalis	Asparagus, saparu keras	>100
14	Beta vulgaris	bit	>100
15	Brassica oleracea var. alboglabra	Kai lan	>100
16	Capsicum annum	lada merah,	>100
17	Capsicum frutescens	chabai, lada api, lada kerawit	>100
18	Cosmos caudatus	ulam rajah	>100
19	Cucumis sativus	timun, timun China, mentimun	>100
20	Cucurbita moschata	labu merah, labu perang,	>100
21	Daucus carota	lobak merah	>100

Table 4.9: IC₅₀ values of crude water extracts of selected vegetables against MRC5 cells

 Table 4.9 continued

22	Ipomoea batatas	keledek	>100
23	Ipomoea reptans	kangkung	>100
24	Lactuca sativa	salad, selada	>100
25	Lagenaria sceraria	labu ayer putih, labu botol	>100
26	Lycopersicum esculentum	tomato	>100
27	Manihot esculenta	ubi kayu	>100
28	Momordica charantia	peria	>100
29	Neptunia prostrata	tangki,	>100
30	Oenanthe javanica	shelum	>100
31	Pachyrrhizus erosus	sengkuwang,	>100
32	Parkia speciosa	petai	>100
33	Petroselium crispum	parsley	>100
34	Phaseolus vulgaris	kacang buncis	>100
35	Pisum sativum	kacang puteh	>100
36	Portulaca oleracea	beremi	>100
37	Psophocarpus tetragonolobus	kacang botor,	>100
38	Sesbania grandiflora	turi	>100
39	Solanum melongena	terong	>100
40	Solanum tuberosum	ubi benggala, ubi kentang, ubi gendang	>100

4.3 Anti-HPV 16 E6 Oncoprotein Activity in Selected Vegetable

The crude methanol and water extracts from 10 selected vegetables were analyzed qualitatively for their anti-HPV 16 E6 protein activity in HPV 16-containing cervical cancerderived cell line, CaSki. The CaSki cells were treated with the vegetable extracts at various concentrations (1, 10, 25, 50 and 100 μ g/ml) for 3 days. The immunocytochemistry technique, 3step Indirect Avidin-Biotin Immunoperoxidase with the anti-HPV 16 monoclonal antibody were successfully applied in this study to analyse the expression of E6 HPV 16 oncoprotein in treated and untreated CaSki cells.

Presence or reddish-brownish coloured products in the cytoplasmic and/or nuclear regions indicate expression/ presence of the HPV 16 E6 oncoprotein. The higher the intensity of the coloured products, the higher the amounts of the protein. On the other hand, the lower the amount of E6 simultaneously suggested evidence of suppression by the vegetable extracts. The staining intensity was classified as no stain (-), very weak (+), weak (2+), moderate (3+), strong (4+) and very strong (5+) as illustrated in Figure 4.9.

Figure 4.9: Staining intensities of HPV 16 E6 oncoprotein in CaSki cells using the 3-step Indiret Avidin-Biotin Immunoperoxidase methods.

In this present study, two types of negative controls were used. The CaSki cells not treated with the extracts and incubated with anti-HPV 16 E6 monoclonal antibody and CaSki cells not treated with the extracts and not incubated with anti-HPV 16 E6 monoclonal antibody. The staining results for untreated CaSki cells with and without anti-HPV monoclonal antibody are shown in Figures 4.10(a) and 4.10(b). All untreated CaSki cells appeared to be morphologically intact. The negative control incubated with anti-HPV monoclonal antibody exerted very strong reddish-brown stain (5+) due to the detection of high expression of E6 protein while no stain (-) was observed for untreated CaSki cells without incubation with anti-HPV 16 E6 monoclonal antibody

(a)

(b)

Figure 4.10 (a): Untreted CaSki cells incubated with anti-HPV 16 E6 monoclonal antibody. Very strong staining (5+) was observed in the nuclear and cytoplasmic regions (400X)

Figure 4.10 (b): Untreated without incubation with anti-HPV 16 E6 monoclonal antibody. No staining (-) was observed (400X)

Expressions of HPV 16 E6 protein after treatment with varying concentrations of vegetable extracts are shown in Figures 4.11-4.20. The staining intensities of the CaSki cell treated with different extracts at various concentrations were compared with each other and with

the negative control. The morphology of the cells and the intensity of the coloured products were analysed.

4.3.1 Asparagus officinalis

As seen in Figure 4.11, the intensity of reddish-brown stain in CaSki cells treated with methanol and water extracts of *Asparagus officinalis* decreased with increasing concentrations of the vegetable extracts. This suggest suppression of HPV 16 E6 oncoprotein in CaSki cells treated with *A. officinalis* extracts at concentration as low as 1 μ g/ml. Suppression increased with increasing concentration of the methanol and water extracts of *A. officinalis*.

The methanol extracts of *A. officinalis* produced just a weak suppression of HPV 16 E6 oncoprotein at 1 μ g/ml and 10 μ g/ml. The suppression increased then on to moderate at 25 μ g/ml, strong at 50 μ g/ml and became very strong at 100 μ g/ml. In contrast, the weak suppression of HPV 16 E6 oncoprotein was observed in CaSki cells treated with water extracts of *A.officinalis* at 1 μ g/ml, 10 μ g/ml, 25 μ g/ml and 50 μ g/ml butbecame very strong at 100 μ g/ml.

Figure 4.11: Staining intensities of Caski cells treated with *Asparagus officinalis* Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+) **4.3.2** *Beta vulgaris*

Figure 4.12, illustrates a reduction in intensity of the reddish-brown stain in CaSki cells treated with methanol and water extracts of *Beta vulgaris*. The expression of HPV 16 E6 oncprotein decreased with increasing concentrations of the *B. vulgaris*. The methanol extracts of *B. vulgaris* exhibited moderate suppression of HPV 16 E6 oncprotein at 1 μ g/ml and 10 μ g/ml. However from then suppression of HPV 16 E6 in Caski cells treated with methanol extracts of *B. vulgaris* became very strong at 25 μ g/ml, 50 μ g/ml and 100 μ g/ml.

Overall indicated that the water extracts of *Beta vulgaris* was slightly more suppressive against HPV 16 E6 oncoprotein at 10 μ g/ml as compared to methanol counterparts. In general, water extracts of *B. vulgaris* exhibited moderate suppression at 1 μ g/ml, and stronger at 10 μ g/ml and became very strong at 25 μ g/ml, 50 μ g/ml and 100 μ g/ml. CaSki cells treated with *B. vulgaris* extracts remain morphologically intact at all concentrations.

Figure 4.12: Staining intensities of Caski cells treated with *Beta vulgaris*

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+) **4.3.3** *Ipomea batatas*

Figure 4.13 shows that, a reduction in intensity of the reddish-brown stain in CaSki cells treated with methanol and water extracts of *I. batatas*. Expression of HPV 16 E6 oncoprotein decreased with increasing concentrations of *I. batatas* extracts. The methanol extracts of *I. batatas* exhibited very strong suppression of HPV 16 E6 oncoprotein at all concentrations tested.

In contrast, the water extracts of *I. batatas* inhibited weak suppression of HPV 16 E6 oncoprotein at 1 μ g/ml and 10 μ g/ml but became strong at 25 μ g/ml, 50 μ g/ml and 100 μ g/ml. In general, CaSki cells treated with *I. batatas* extracts remained morphologically intact at all concentrations.

Figure 4.13: Staining intensities of Caski cells treated with *Ipomea batatas*

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.4. Manihot esculentus

Figure 4.14, shows that methanol and water extracts of the *M. esculentus* exerted inhibition activity against the HPV-16 E6 oncoprotein. All CaSki cells treated with *M. esculentus* extracts remained morphologically intact at all concentrations used.

In general, the *M. esculenta* extracts demonstrated good inhibition activities against HPV16 E6 oncoprotein in CaSki cells. The methanol extracts of *M. esculenta* exhibited strong suppression of HPV 16 E6 oncoprotein at concentrations 1 μ g/ml and 10 μ g/ml. Suppression of HPV 16 E6 became very strong at concentrations 25 μ g/ml, 50 μ g/ml and 100 μ g/ml. In contrast, the water extract of *M. esculentus* exhibited strong suppression of HPV 16 E6 oncoprotein at all concentrations tested.

Figure 4.14: Staining intensities of Caski cells treated with Manihot esculentus

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.5 Pachyrrizus erosus

Figure 4.15 show that, the intensities of reddish-brown stain decreased with increasing concentrations of methanol and water extracts of *P. erosus*. This shows that the expression of HPV-16 E6 oncoprotein in CaSki cells reduced when the concentration of *P. erosus* extracts increased. Overall results showed that the reddish brown stain was seen in both nuclear and cytoplasmic regions of CaSki cells. The methanol extract of *P. erosus* produced no suppression of HPV 16 E6 at 1 μ g/ml, but produced weak suppression at 10 μ g/ml. The suppression increased then on to moderate at 25 μ g/ml and became strong at 50 μ g/ml and 100 μ g/ml.

In contrast, the water extract of *P. erosus* exhibited moderate suppression inhibition of HPV 16 E6 oncoprotein at concentrations as low as 1 μ g/ml. Suppression of HPV 16 E6 became strong at 10 μ g/ml and 25 μ g/ml. The inhibition became very strong then on at concentrations 50 μ g/ml and 100 μ g/ml. The CaSki cells treated with methanol extract started to lysie at concentrations 25 μ g/ml to 100 μ g/ml. In contrast, the CaSki cells remained morphological intact when treated with water extracts at all of concentrations used.

Figure 4.15: Staining intensities of Caski cells treated with Pachyrrizus erosus

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.6 Pertroselium crispum

As seen in Figure 4.16, there is reduction in intensity of the reddish-brown stain at concentrations as low as 1 μ g/ml for methanol and water extracts of *P. crispum*. Very weak suppression of HPV 16 E6 oncoprotein was observed in CaSki cells treated with methanol extracts at all concentrations tested and in CaSki cells treated with water extracts at concentrations 1 μ g/ml, 25 μ g/ml and 50 μ g/ml. The suppression of HPV 16 E6 protein became moderate in cells treated with 100 μ g/ml of the water extract. The integrity of CaSki cells treated with *P. crispum* extracts were negatively affected where the cells lysed at concentrations as low as 1 μ g/ml (for methanol and water extract) and 10 μ g/ml. The distribution of stain was observed either in the cell cytoplasm only or both nucleus and cytoplasm.

Figure 4.16: Staining intensities of Caski cells treated with *Petroselium crispum*

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.7 Phaseolus vulgaris

Figure 4.17, illustrates that the methanol extract of *P. vulgaris* exhibited very strong suppression of HPV 16 E6 at 1 μ g/ml and 10 μ g/ml. However, the suppression weakered from then on resulting in the reddish-brown stain to become stronger with increasing concentrations of the *P. vulgaris* methanol extract.

In contrast, the water extracts did not exhibit any suppression of HPV 16 E6 oncoprotein at 1 μ g/ml and 10 μ g/ml. Weak suppression was seen at 25 μ g/ml, suppression of HPV 16 E6 become strong at 50 μ g/ml and very strong at 100 μ g/ml. Cell lysis was observed at 1 μ g/ml for water extracts and at concentration as low as 25 μ g/ml for methanol extracts.

Figure 4.17: Staining intensities of Caski cells treated with *Phaseolus vulgaris*

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.8 Portulaca oleracea

The resulting staining intensity of CaSki cells treated with *Portulaca oleracea* extracts are shown in Figure 4.18. In general, the *P. oleracea* extracts demonstrated good inhibition activities against HPV16 E6 oncoprotein in CaSki cell. The methanol extract of *P. oleracea* very strongly suppressed HPV 16 E6 oncoprotein at concentrations 1 μ g/ml, 10 μ g/ml and 25 μ g/ml. However, the inhibition weakered a little (though still strong) at concentrations 50 μ g/ml and 100 μ g/ml.

In contrast, the water extract of *P. oleracea* produced strong inhibition of HPV 16 E6 oncoprotein at concentrations as low as 1 μ g/ml and 10 μ g/ml. The inhibition then became very strong at higher concentrations. All the CaSki cells treated with *P. oleracea* extracts appeared to

be morphologically intact. Overall results showed that the reddish brown stain was seen in both nuclear and cytoplasmic regions.

Figure 4.18: Staining intensities of Caski cells treated with Portulaca oleracea

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.9 Sesbania grandiflora

As denoted by the reduction of reddish-brown stain in CaSki cells, the inhibition activities of HPV 16-E6 oncoprotein by *S. grandiflora* extracts increased with the increasing concentrations of the extracts (Figure 4.19). The methanol extract of *S. grandiflora* produced a strong inhibition of HPV 16 E6 oncoprotein at concentrations as low as 1 μ g/ml and remained consistent at concentrations 10 μ g/ml and 25 μ g/ml. The inhibition became very strong from then on at concentrations 50 μ g/ml and 100 μ g/ml.

In contrast the water extract of *S. grandiflora* produced a weak suppression of HPV 16 E6 at 1 μ g/ml. The suppression increased then on to moderate at 10 μ g/ml, strong at 25 μ g/ml

and 50 μ g/ml and became very strong at 100 μ g/ml. Evident here that methanol extract produced a greater inhibition effects as compared to water extract. The integrity of CaSki cells were negatively affected where the cells lysed after treated with methanol at 25 μ g/ml and 50 μ g/ml.

Figure 4.19: Staining intensities of Caski cells treated with Sesbania grandiflora

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.3.10 Solanum tuberosum

The resulting staining intensity of the CaSki cells treated with *Solanum tuberosum* extracts are shown in Figure 4.20. The decrease in staining intensity was observed in CaSki cells treated with increasing concentration of the extracts. This indicates that the *S. tuberosum* extracts inhibited the expression of HPV 16 E6 oncoprotein in a dose-dependent manner, where the suppressing effects increased with increasing concentration of the extracts.

The water extracts of *S. tuberosum* exerted a more suppressive effect against HPV-16 E6 oncoprotein as compared to methanol extracts. Both extracts exerted weak suppressing effects against HPV 16 E6 oncoprotein at concentrations 1 μ g/ml and 10 μ g/ml. However, from then on CaSki cells treated with water extracts exhibited very weak reddish brown stain, indicating very strong suppression at concentrations, 25 μ g/ml, 50 μ g/ml and 100 μ g/ml. Methanol extracts of *S. tuberosum* on the other hand produced just moderate suppression of the oncoprotein at concentrations, 25 μ g/ml, 50 μ g/ml. The integrity of CaSki cells treated with *S. tuberosum* extracts were negatively affected where the cells lysed at concentration as low as 25 μ g/ml (for methanol extract).

Figure 4.20: Staining intensities of Caski cells treated with Solanum tuberosum

Classification for staining intensity as: no stain (0), very weak (1+), weak (2+), moderate (3+), strong (4+) and very strong (5+)

4.4 Comparison of Anti-HPV 16 E6 Oncoprotein Activity in Selected Vegetable

Twenty crude extracts (methanol and water) from ten selected vegetables were analyzed qualitatively for possible anti-HPV 16 E6 oncoprotein activity. The staining intensity of coloured products was observed in CaSki cells treated with the selected vegetable crude extracts indicated that each vegetable extracts possess different ability in suppressing the expression of HPV 16 E6 oncoprotein (Figure 4.21 and Figure 4.22).

Overall results indicate that not all of the vegetable extracts suppressed the HPV 16 E6 oncoprotein in a dose-dependent manner where greater inhibition activity against E6 oncoprotein was observed in higher extract concentration.

Ten out of 20 extracts (50%) were found effective in suppressing the HPV 16 E6 oncoprotein at the lowest extract concentration (25 μ g/ml and below) used in this study. They were both methanol and water extracts for *P. oleracea*, *I. batatas*, *M. esculentus*, methanol extract for *P. erosus*, *B. vulgaris*, *S. grandiflora* and water extracts for *A. officinalis*.

Overall results indicated that *P. oleracea* extracts was the most effective in suppressing the HPV 16 E6 oncoprotein. When compared, water extracts was better than methanol extracts at suppressing the HPV 16 E6 oncoprotein.

	Concentration of extracts (µg/ml)	Morphology of cells	Intensity of reddish- brown stain
	100	Intact	+
	50	Majority intact but some showing lysis	2+
	25	Majority intact but some showing lysis	2+
	10	Intact	4+
2 2 C	1	Intact	4+

Appearance of CaSki cells after treatment with methanol extract of Asparagus officinalis

Figure 4.21: CaSki cells treated with methanol extracts of *Asparagus officinalis* (400x) Note: Classification for the intensity of staining as no stain (-), very weak (+), weak (2+), moderate (3+), strong (4+) and very strong (5+

Concentration of extracts (µg/ml)	Morphology of cells	Intensity of reddish- brown stain
100	Intact	+
50	Intact	+
25	Intact	+
10	Intact	4+
1	Intact	4+

Appearance of CaSki cells after treatment with water extract of Solanum tuberosum

Figure 4.22: CaSki cells treated with water extracts of *Solanum tuberosum* (400x)

Note: Classification for the intensity of staining as no stain (-), very weak (+), weak (2+), moderate (3+), strong (4+) and very strong (5+)