INDUCTION OF MITOCHONDRIAL-MEDIATED APOPTOSIS IN HT-29 HUMAN COLORECTAL ADENOCARCINOMA CELLS BY AQUEOUS FRACTION OF NEPHELIUM RAMBOUTAN-AKE RIND.

CHAN CHIM KEI

DISSERTATION SUBMITTED IN FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

INSTITUTE OF BIOLOGICAL SCIENCES FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2013

UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Chan Chim Kei

(I.C/Passport No:**870414385334**)

Registration/Matric No: SGR100069

Name of Degree: Master of Science

Title of Project Paper/Research Report/Dissertation/Thesis ("this Work"):

Induction of Mitochondrial-mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells by Aqueous Fraction of *Nephelium ramboutan-ake* Rind.

Field of Study: **Biochemistry**

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;

(2) This Work is original;

(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;

(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work;

(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya ("UM"), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained;

(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate's Signature

Date

Subscribed and solemnly declared before,

Witness's Signature Name: Habsah Abdul Kadir Designation: Associate Professor Dr. Date

ABSTRACT

The objective of this study was to evaluate the cytotoxic effect and elucidate the possible underlying apoptotic mechanisms of Nephelium ramboutan-ake (pulasan) rind in selected human cancer cell lines. The crude ethanol extract and fractions (ethyl acetate and aqueous) of N. ramboutan-ake reduced the cell viability of HT-29, HCT-116, MDA-MB-231, Ca Ski cells by MTT assay. The N. ramboutan-ake aqueous fraction (NRAF) was found to exert the most potent cytotoxic effect against HT-29 cells in a dose-dependent manner. Further investigation for its plausible mechanisms was conducted by using flow cytometry and fluorescence microscopy. This study confirmed the induction of apoptosis by a series of archetypal apoptotic features such as chromatin condensation, DNA fragmentation, cell shrinkage and apoptotic body formation by Hoechst 33342/PI dual staining. The apoptotic mechanisms were further substantiated with the detection of DNA fragmentation by TUNEL assay and phosphatidylserine (PS) externalization on the outer leaflet of plasma membrane which detected by annexin V-FITC/PI binding confirming the early stage of apoptosis. In addition, mitochondrial permeability transition is a vital step in the induction of cellular apoptosis, and data clearly revealed that NRAF resulted in disruption of mitochondrial transmembrane potential ($\Delta \psi$ m) in HT-29 cells. Dissipation of $\Delta \psi$ m was indicated through a series of evidences such as increased generation of ROS and depletion of GSH, upregulation of Bax protein expression, as well as activation of caspase-3/7 and caspase-9. Collectively, these results suggested that NRAF induced mitochondrial-mediated apoptosis.

ABSTRAK

Objektif kajian ini adalah untuk menilai kesan sitotosik dan menyiasat mekanisme apoptosis oleh kulit Nephelium ramboutan-ake (pulasan) terhadap beberapa jenis sel kanser yand terpilih. Dengan menggunakan asai MTT (3,4 [dimetiltiazol-2-vl]-2, 5-difeniltetrazolium bromida), ekstrak etanol dan pecahan-pecahan lain (etil asetat dan akueus) dari kulit N. ramboutan-ake didapati menurunkan kebolehhidupan sel HT-29, HCT-116, MDA-MB-231 dan Ca Ski. Pecahan akueus kulit N. ramboutan-ake (NRAF) mempamerkan kesan sitotoksik yang paling kuat terhadap sel HT-29 secara bersandarkan dos. Kajian mendalam bagi menjelaskan mekanisme apoptosis telah dilakukan dengan menggunakan sitometer alir dan mikroskopi pendarfluor. Kajian menggunakan Hoechst 33342/PI menbuktikan apoptosis dengan mendedahkan ciri-ciri seperti kondensasi kromatin, serpihan DNA, pengecutan sel dan pembentukan jasad apoptotik. Mekanisme apoptotis telah dijelaskan melalui pengesanan serpihan DNA menggunakan asai TUNEL dan pendedahan fosfatidilserina sisi luar membrane plasma yang diperhatikan melalui asai Annexin-V/PI. Di samping itu, kebolehtelapan peralihan mitokondria merupakan langkah yang penting bagi apoptosis. Oleh itu, data menunjukkan NRAF menyebabkan gangguan dalam potensi diantara membran mitokondria ($\Delta \psi m$) pada sel HT-29. Gangguan $\Delta \psi$ m telah dijelaskan serta berkorelasi dengan bukti-bukti seperti peningkatan penjanaan spesies oksigen reaktif intrasel dan pengurangan GSH intrasel, tahap ekspresi protein Bax yang tinggi serta pengaktifan kaspase-3/7 dan kaspase-9. Keseluruhannya, keputusan mengesahkan bahawa NRAF dapat menginduksikan apoptosis mempengantarakan mitokondria.

ACKNOWLEDGEMENT

All praise and thanks to everyone who made me moved towards successful and accomplishment of this dissertation. First and foremost, my heartfelt gratitude and appreciation go to my supervisor Associate Prof Dr Habsah Abdul Kadir. Throughout the development and completion of this thesis, I am of utmost gratitude and appreciation for her valuable advice, encouragement, relentless assistance and guidance in seeing that my goals are achieved. Without her support, I may not have been able to conclude my research.

I would like to express my special appreciation and heartfelt thanks to my colleagues, Wong Yau Hsiung, Daniel Wong Zhi Hua, Goh Bey Hing, Muhamad Noor Alfarizal Kamarudin and Lee Choy Long for their patience, assistance and inspiration. I am appreciative of the interest, support and the friendly atmosphere provided by everyone. Besides, I am also thankful for their constructive comments and moral support throughout the years. Special thanks to all my friends for their ongoing support and encouragement.

Special thanks to Ms Ng Swee Yee, Ms Hazwani, Mr Izuan, Ms Zanariah and others for their support and cooperation in the laboratory. They attended patiently to me whenever I needed any help. Additionally, I would like to thank the University of Malaya for providing the research grant (RG005/09BIO), High Impact Research Grant (F000020-21001) and PPP grant (PV073-2011A) for completing this study.

Last but not least, much love and sincere thanks to my lovely parents for their love, sacrifice and support. interest, unfailing support and endless encouragement all the ways whenever I encountered problems.

v

TABLE OF CONTENTS

		Page
ABSTRA	СТ	iii
ABSTRA	K	iv
ACKNOV	VLEDGEMENT	v
TABLE O	DF CONTENTS	vi
LIST OF	FIGURES	Х
LIST OF	TABLES	xii
LIST OF	ABBREVIATIONS	xii
LIST OF	SYMBOL	xvi
LIST OF	PUBLICATIONS/ PRESENTATIONS	xvii
CHAPTE	R 1 INTRODUCTION	1
CHAPTE	R 2 LITERATURE REVIEW	
2.1	Cancer	4
2.2	Colorectal cancer and carcinogenesis	5
2.3	Treatments for colorectal cancer	7
2.4	Mode of cell death	9
2.5	Apoptosis and cancer	9
2.6	Apoptotic pathways	12
	2.6.1 Extrinsic pathway	12
	2.6.2 Intrinsic pathway	15
2.7	Redox homeostasis and cancer	18
	2.7.1 Oxidative stress	18
	2.7.2 Reactive Oxygen Species	19
	2.7.3 Antioxidants	24

	2.7.4 Glutathione	25
2.8	Caspases	26
2.9	Bcl-2 family	31
2.10	Nephelium ramboutan-ake	34
CHAPTER	R 3 MATERIALS AND METHODS	
3.1.	Materials	
	3.1.1 Solvents	37
	3.1.2 Cell lines	37
	3.1.3 Growth medium	37
	3.1.4 Antibodies, chemical, drugs and reagents	37
	3.1.5 Assay kits	38
	3.1.6 Miscellaneous	38
	3.1.7 Instrument/ Equipment	39
3.2.	Methods	
	3.2.1. Plant Material	39
	3.2.2. Preparation of Crude N. ramboutan-ake Extract and	39

Fractions

3.2.3.	Cell culture	
	3.2.3.1 Maintenance of cells	40
	3.2.3.2 Subculturing cells	40
	3.2.3.3 Cryopreservation of cells	41
	3.2.3.4 Reviving cells	41
	3.2.3.5 Cell counting	41
	3.2.3.6 Treatment of cells	42

3.2.4. Evaluation of cytotoxic effects of extract and fractions of *N.ramboutan-ake*

3.2.4.1 In vitro MTT cell viability assay	42
3.2.4.2 Total cell count	43

- 3.2.5. Assessment of apoptotic effect of the bioactive fraction of *N.ramboutan-ake*
 - 3.2.5.1 Nuclear morphology detection using Hoechst 44 33342/PI
 - 3.2.5.2 Terminal Deoxynucleotidyl Transferase dUTP 45 Nick End Labeling (TUNEL) Assay
 - 3.2.5.3 Annexin V/PI staining for the assessment of 45 phosphatidylserine externalization
 - 3.2.5.4 Measurement of mitochondrial membrane 46 potential $(\Delta \psi m)$
 - 3.2.5.5 Determination of intracellular total glutathione 47 (GSH) content
 - 3.2.5.6 Measurement of intracellular reactive oxygen 48 species (ROS)
 - 3.2.5.7 Determination of Bax and Bcl-2 protein 49 expression level
 - 3.2.5.8 Measurement of Caspase-3/7 and Caspase-9 50 activities

3.2.6 Preliminary phytochemical screening

- 3.2.6.1 Test for alkaloids 51
- 3.2.6.2 Sakowski test for sterols 51
- 3.2.6.3 Frothing Test for saponins 51
- 3.2.6.4 Test for tannins 51

3.2.6.5 Test for flavonoids 51

CHAPTER 4 RESULTS

4.1 Reduction of HT-29 cell viability by NRAF	53
4.2 The effect of NRAF on nuclear morphological changes of HT-29 cells	57
by Hoescht 33342 and PI staining	
4.3 Induction of DNA fragmentation detected by TUNEL assay	60
4.4 Externalization of phosphatidylserine by using Annexin V/PI staining	62
4.5 Alteration of Mitochondrial membrane potential $(\Delta \Psi m)$	66
4.6 Effect of NRAF induced formation of ROS	69
4.7 Depletion of Glutathione Content by NRAF	75
4.8 Modulation of apoptotic proteins by NRAF	77
4.9 NRAF induced caspase-3/7 and caspase-9 activation	83
4.10 Phytochemical content analysis	88
CHAPTER 5 DISCUSSION	89
CHAPTER 6 CONCLUSION	100
REFERENCES	102
APPENDIX	

52

LIST OF FIGURES

Figure 2.1	The development of colorectal cancer	6
Figure 2.2	Diagram illustrated key molecular events which is death receptor-mediated procaspases-activation pathway.	14
Figure 2.3	Extrinsic and intrinsic pathways which in turn initiate caspases activation are illustrated.	17
Figure 2.4	A diverse of mechanisms are involved in the generation of ROS.	21
Figure 2.5	Schematic illustrated the caspases with the domains such as CARD (green), DED (yellow) which involved in recruitment and activation, N-peptide (red) which will be eliminated during the occurrence of apoptosis, large subunit (cyan) and small unit (blue).	27
Figure 2.6	Caspase-dependent death receptor-mediated and mitochondrial-mediated apoptosis mechanism.	30
Figure 2.7	Bcl-2 proteins family members classified into proapoptotic and anti-apoptotic.	33
Figure 2.8	The outlook and inner look of the <i>N. ramboutan-ake</i> fruits.	35
Figure 3.1	Reduction of tetrazolium 3-(4,5-dimethylthiazol-2-yl)- 2,5 diphenyltetrazolium bromide (MTT) adapted from Ebada <i>et al.</i> , 2008.	43
Figure 3.2	Quadrants showed under the view of inverted light microscope.	44
Figure 3.3	The chemical structure of 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolylcarbocyanine iodide (JC-1) dye.	47
Figure 3.4	Mechanism of 2', 7'- dichlorodihydrofluorescein diacetate (DCFH-DA) convert to DCF, DCFH as intermediate through de-esterification and oxidation, adapted from (Gomes <i>et al.</i> , 2005).	49
Figure 4.1	The cytotoxicity effect of NRAF extract and fractions against selected cancer cell lines at 72 h.	55
Figure 4.2	Graph represented the cytotoxicity effect of <i>N</i> . <i>ramboutan-ake</i> rind ethanol extract (NREE), ethyl	56

acetate fraction (NREAF) and aqueous fraction (NRAF) against HT-29 cell line.

- Figure 4.3 Nuclear morphological changes of HT-29 cells by 59 NRAF.
- Figure 4.4 Effect of NRAF on DNA fragmentation of HT-29 cells. 61 HT-29 cells were treated with different concentrations of NRAF (50 µg/ml, 100 µg/ml and 200 µg/ml) at 24 h incubation period.
- Figure 4.5 Dose-dependent induction of early and late apoptosis by 63 NRAF (25-200 µg/ml) at 24 h.
- Figure 4.6 Dose-dependent attenuation of mitochondrial membrane 67 potential in HT-29 cells elicited by NRAF.
- Figure 4.7 Effect of NRAF on intracellular ROS level. 70
- Figure 4.8 Effect of NRAF on intracellular total glutathione 76 content of HT-29 cells at 24 h. There was a significant reduction in intracellular GSH content (> 50%) after treatment with varying concentrations of NRAF (50 200 µg/ml).
- Figure 4.9 Effect of NRAF on protein expression level of Bax and 78 Bcl-2 in HT-29 cells. Cells were treated with 50 µg/ml of NRAF for different times.
- Figure 4.10 Effect of 50 µg/mL NRAF on caspase activities. 85
- Figure 6.1 Schematic illustration of a hypothetical pathway of 101 NRAF-induced apoptosis in human colorectal adenocarcinoma HT-29 cells.

LIST OF TABLES

Table 2.1Table illustrated subfamily members of caspases.28Table 4.1IC₅₀ values of extract and fractions of Nephelium
ramboutan-ake rind against different cancer cell lines
and normal cell line.54Table 4.2Preliminary phytochemical analysis of N. 89
ramboutan-ake aqueous fraction (NRAF)N. 89

LIST OF ABBREVIATIONS

3'-ОН	3' hydroxyl
AJCC	American Joint Committee on Cancer
APC	adenomatous polyposis coli
Apaf-1	apoptotic protease-activating factor 1
ATP	Adenosine triphosphate
ВН	Bcl-2 homology
BrdU	Bromodeoxyuridine
CIN	chromosomal instability
CO ₂	Carbon dioxide
CRC	Colorectal cancer

Page

CTC	computed tomographic colonography
dATP	deoxyadenosine 5'-triphosphate
DCF	dichlorofluorescein
DCFH-DA	2'-7'-dichlorofluorescein diacetate
DED	death effector domain
DISC	death-induced signaling complex
DMSO	dimethyl sulfoxide
DNA	Deoxyribonucleic acid
DR	death receptor
DSBs	DNA strand breaks
DTNB	5,5'-dithiobis-2-nitrobenzoic acid
FADD	Fas-associated death domain
FasL	Fas ligand
FBS	Fetal bovine serum
FITC	Fluorescein isothiocyanate
FL-1/FL-2	Fluorescence channel1/2
FOBT	fecal occult blood test
5-FU	5-fluorouracil

GR	Glutathione reductase
GCL	γ-glutamate-cysteine ligase
GSH	reduced glutathione
GS	Glutathione synthetase
GSSG	Glutahione disulfide
h	Hour
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
IAP	inhibitor of apoptosis protein
IC ₅₀	50% inhibitory concentration
ICAD	inhibitor of caspase-activated deoxyribonuclease
Ig G	Immnoglobulin G
JC-1	5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolylcarbocyanine iodide
MDA	malondialdehyde
miRNAs	microRNAs
min	Minutes
MMR	mismatch repair
MOMP	mitochondrial outer membrane permeabilization
MPTPs	mitochondrion permeability transition pores

MSI	microsatellite instability
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
Na ₂ CO ₃	Sodium bicarbonate
NADPH	Nicotinamide adenine dinucleotide phosphate
NRAF	N. ramboutan-ake rind aqueous fraction
NREAF	N. ramboutan-ake rind ethyl acetate fraction
NREE	N. ramboutan-ake rind ethanol extract
PBS	Phosphate buffer
PI	Propidium iodide
PS	phosphatidylserine
РТ	permeability transition
PT RNase	permeability transition Ribonuclease
RNase	Ribonuclease
RNase ROS	Ribonuclease reactive oxygen species
RNase ROS rpm	Ribonuclease reactive oxygen species Rounds per minute
RNase ROS rpm sDNA	Ribonuclease reactive oxygen species Rounds per minute Stool DNA

TdT	polymerase terminal deoxynucleotidyl transferase
TNF	tumor necrosis factor
TNFR1	tumor necrosis factor receptor1
TRAIL	tumor necrosis factor related apoptosis inducing ligand
TRAIL-R1	tumor necrosis factor related apoptosis inducing ligand receptor I
TUNEL	Terminal Deoxynucleotidyl Transferase UTP Nick End Labeling
VDAC	voltage-dependent anion channel

List of symbols

G	gram
μg	microgram
mg	miligram
mL	mililiter
μΙ	microliter
\mathfrak{C}	Degree celcius
$\Delta \psi m$	Mitochondrial membrane potential
%	Percentage

List of publication/ proceeding

- Chan, C.K. and Kadir, H.A. (2011) Antiproliferative and apoptosis effects of Nephelium mutabile in HT-29 Human Colorectal adenocarcinoma cells. Proceedings of the 16th Biological Sciences of Graduate Congress held at National University of Singapore, Singapore on December 12-14, 2011. Abstract PP-2-03, pp. 70.
- Chan C.K., Goh B.H., Kamarudin M.N.A., Kadir H.A. (2012) Aqueous Fraction of *Nephelium ramboutan-ake* Rind Induces Mitochondrial-Mediated Apoptosis in HT-29 Human Colorectal Adenocarcinoma Cells. *Molecules*. 17(6), 6633-6657.