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Abstract 

In electrical resistivity imaging surveys, the field data along a profile are normally 

acquired as a subsurface distribution of apparent resistivity. One common method to obtain 

the true resistivity distribution is by inverting the apparent resistivity values. However, the 

inversion of DC resistivity imaging data is complex due to its non-linearity. This is 

especially true for regions with high resistivity contrast. 

For the complicated subsurface structure, especially when regions of high resistivity 

contrast exist, a conventional inversion technique based on least squares methods may not 

be able to invert the DC resistivity data with adequate accuracy. Therefore, in this study, we 

investigate the applicability of artificial neural networks in the inversion of 2D and 3D 

electrical resistivity imaging data obtained with five common electrode arrays, i.e., 

Wenner-Schlumberger, Wenner, dipole-dipole, pole-dipole, and pole-pole arrays. The 

basics of the DC resistivity survey and that of the 1D, 2D and 3D surveys are discussed in 

this thesis. The common arrays used for the 2D and 3D surveys are compared using the 

following characteristics: (i) the signal strength, (ii) the horizontal data coverage, (iii) the 

sensitivity of the array to horizontal structures, (iv) the sensitivity of the array to vertical 

structures, and (v) the depth of investigation for each array. 

In order to study the numerical simulation of the measured data for a given 

subsurface parameter, the basis of the finite difference method and the various boundary 

conditions are explained here. By comparing the common non-linear least square inversion 

methods (i.e., the steepest descent method, the nonlinear conjugate gradients method, 

Newton-type methods and smoothness-constrained least squares methods), the L1_ norm 

smoothness-constrained optimization method (or robust inversion technique) has been 
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recognized as the most efficient of the least squares methods mentioned here, because it 

sometimes gives relatively better results in high resistivity zones with sharp boundaries.  

In order to study the effect of data pool formation in training the neural network, 

two methods have been used to generate the synthetic data. These methods are M1 and M2, 

and they basically differ in the type of input-output data used to train the artificial neural 

network. The effect of the input-output data type is investigated by 2D and 3D study. The 

results suggest that the synthetic data generated by M2_2D and M2_3D methods may be 

the best data type for training and testing the neural networks in this study. 

The effect of the number of nodes in each layer of the network (for 2D and 3D 

cases) have been studied which determined the simplest architecture for the neural network 

that can reach the desired threshold error for each array. The effect of the training data pool 

volume in the 2D and 3D parts of this study has also been evaluated, and the sufficient 

volume for each data type is selected. 

Furthermore, five common training paradigms, i.e., batch training with weight and 

bias learning rules, conjugate gradient with Fletcher reverse updates, resilient propagation, 

gradient descent with momentum and adaptive learning rate and Levenberg-Marquardt with 

weight and bias learning rules, are compared for both 2D and 3D. These results show that, 

for all the arrays (2D and 3D) except 3D pole - dipole data, resilient propagation is the most 

efficient algorithm for training the DC resistivity data. In the case of 3D study of pole - 

dipole data, the gradient descent with momentum and an adaptive learning rate algorithm is 

found to be the most efficient paradigm. 

In addition, an interpolation and extrapolation properties of the neural network have 

been studied using another 24 synthetic datasets generated for each array. The RMS errors 
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for all the interpolation and extrapolation test sets related to each array are in the range of 

0.3 - 9.0%. It is therefore, concluded that the networks are properly designed and trained.   

The ability of the trained neural networks to invert the 2D and 3D DC resistivity 

imaging data is also checked using real field datasets from a site with high resistivity 

contrast. The inverted field data from the neural network is then compared with inverted 

results from the conventional robust inversion method for each array. Further study using a 

synthetic example similar to the field data is conducted for each array in order to evaluate 

the reliability and accuracy of the inversion results using both the neural network and the 

robust inversion technique. 

All the subsurface features were nearly resolved by the results of both these 

methods. However, the neural network results are found to be more realistic, especially for 

the vertical columns and horizontal pipes. In contrast, the robust inversion method 

produced a relatively smaller vertical dimension than the actual size of the real field data.   

When the inversion results of both the neural network and the robust inversion 

methods for the synthetic test models were compared with their corresponding physical 

resistivity models, it has been found that the depths of the anomalies in the results of the 

robust inversion method results are less pronounced than their actual values. In addition, 

the robust inversion method produced smaller resistivity values than their actual values, but 

in comparison the result from neural network produced better physical models. It is thus, 

concluded that the neural network results are more accurate than the results from robust 

inversion method. 
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Chapter 1 

Introduction 

1.1. Background and scope of research 

Electrical resistivity surveys have been widely used to study the electrical properties 

of underground structures. Two of the earliest recorded electrical resistivity studies in earth 

science were executed by Gray and Wheeler in 1720 and Watson in 1746 (Jakosky, 1950; 

Van and Cook, 1966). Gray and Wheeler have measured the electrical conductivities of 

various subsurface materials and Watson has discovered that ground transmits electricity 

(Van and Cook, 1966). However, they did not use quantitative techniques in their studies. 

The first successful attempt on the application of direct currents (DC) to evaluate earth 

resistivity was made by Conrad Schlumberger in 1920 (Loke, 2009). Although electrical 

resistivity studies in geology were performed in the early eighteenth century, their 

applications came into wide use only after the advent of computer technology during 1970s 

(Reynolds, 1997). Modern multi-channel resistivity instrumentation has then facilitated an 

increased use of electrical resistivity surveying over large and complex areas. 

In the past few years, the technique of electrical resistivity imaging (ERI) has 

become one of the most significant geophysical approaches to investigating underground 

near-surface structures. In electrical resistivity imaging surveys, field data along a profile 

are normally acquired as a subsurface distribution of the apparent resistivity. One common 

procedure to obtain the true resistivity distribution is by inverting the apparent resistivity 

values. However, the inversion of DC ERI data is complex due to its non-linear behavior 

(Singh et al., 2005). This is especially true for regions with high resistivity contrast (El-
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Qady and Ushijima, 2001). During the past few decades, various approaches to inverting 

1D DC resistivity data have been published (e.g., Pekeris, 1940; Argilo, 1967; Meheni et 

al., 1996). The inversion of 2D DC resistivity method (based on the finite difference or 

finite element method) has been used to interpret geoelectrical resistivity data (Dey and 

Morrison, 1979; Loke and Barker, 1996a). Because many of the problems associated with 

geophysical exploration are of three-dimensional (3D) nature, several algorithms for 

treating the 3D ERI problem have been developed (Loke and Barker, 1996a; Zhao and 

Yedlin, 1996; Dahlin and Loke, 1997; Spitzer, 1998; Tsourlos and Ogilvy, 1999). These 

algorithms are also based on the finite element, finite difference, and integral method. 

Developing a stable inverse problem solution that could resolves complicated geological 

structures is an obstacle in the inversion of geophysical data (El-Qady and Ushijima, 2001). 

Geophysical prospecting uses various techniques that can be addressed using 

artificial neural networks. These include:  interpreting well logs (Wiener  et al., 1991), 

processing EM sounding data (Poulton et al., 1992; Winkler, 1994), ground penetration 

radar (Poulton and El-Fouly, 1991; Al-Nuaimy et al, 2000), filtering (Wang and Mendel, 

1992), recognizing seismic waveforms (Ashida, 1996), sub-basalt imaging (Elaine  et al, 

2001), seismic deconvolution (Kahoo et al., 2006) and inverting vertical electrical sounding 

(VES) data to delineate  geothermal reservoirs (El-Qady et al., 2000). Neural networks 

have been used by the petroleum industry to process seismic data during the past few years 

(Murat and Rudman, 1992). Singh et al. (2005) and Calderon-Macias et al. (2000) studied 

the applicability of neural networks to solve some geophysical inverse problems for 1D 

VES and seismic data, respectively. El-Qady and Ushijima (2001) launched an 

investigation into the applicability of neural networks in inverting 1D and 2D resistivity 

data obtained by VES surveys for area with nearly low resistivity regions. Ho (2009) has 
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performed a 3D inversion of borehole-to-surface electrical resistivity data using neural 

networks. 

1.2. Aims and objectives 

In 2D and 3D ERI surveys, a few hundred to several thousand measured data points 

are used. For a complicated subsurface structure, especially with high resistivity contrast 

pockets, the conventional inversion technique based on least squares methods may not be a 

suitable choice to invert the DC resistivity data accurately. Therefore, the aim of this study 

is to investigate the applicability of artificial neural networks in the inversion of 2D and 3D 

electrical resistivity imaging data obtained from five common electrode arrays, i.e., 

Wenner-Schlumberger, Wenner, dipole-dipole, pole-dipole and pole-pole arrays. The main 

research objectives are: 

 To create 2D and 3D synthetic datasets to train and test the neural networks. 

 To  examine the effect of the input-output data type in the training process. 

 To examine the effect of the number of nodes in each layer of the networks for 2D 

and 3D studies and set the proper learning rate and momentum. 

 To investigate the effect of the training data pool volume in 2D and 3D study. 

 To determine an efficient neural network learning paradigm.  

 To apply the trained neural networks to 2D and 3D DC resistivity data collected 

from a site with high resistivity contrast regions. 
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1.3. Thesis structure 

           Chapter two of this thesis reviews conventional methods allowing the measurement 

of DC electrical resistivity. The DC resistivity method is based on the stationary flow of 

electric current. A thorough understanding of DC resistivity is important because the 

inversion of measured field data using artificial neural networks can be regarded as a 

generalization of the DC method. Here, an explanation is given about  the common arrays 

used in 2D, quasi-3D and 3D surveys; i.e., Wenner-Schlumberger, Wenner, dipole-dipole, 

pole-dipole and pole-pole arrays, and analyze the published literature regarding the 3D 

resistivity problem from 1991 onward. The following characteristics is then compared for 

these common arrays: (i) the signal strength, (ii) the horizontal data coverage, (iii) the 

sensitivity of the array to horizontal structures, (iv) the sensitivity of the array to vertical 

structures, and (v) the depth of investigation.  

In order to study the suitability of different arrays in resistivity surveys, several 

parameters are considered for this study, including the depth of investigation and the 

vertical and horizontal resolutions. As a common way to study these parameters, the 

sensitivity functions for each array is calculated and the respective 2D and 3D plots are 

then prepared.  

The third chapter provides an insight into the inversion process in an abstract way 

without touching the special problems of DC data. The importance of the inversion of the 

measured data obtained through DC resistivity surveys is presented in this chapter. Firstly, 

the basis of the finite difference method and different boundary conditions is discussed, in 

order to study the numerical simulation of the measured data for given subsurface 

parameters. Here, it is also demonstrated how the DC sensitivities can be obtained for a 

given physical model. Then, the methodology of non-linear inversion and the common 
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inversion methods is discussed, i.e., steepest descent method, nonlinear conjugate gradients 

method, Newton-type methods and smoothness constrained least squares methods. These 

methods have been used to evaluate which non-linear inversion method is the most 

appropriate for our study. 

Chapter four briefly describes the architectures of the artificial neural network. One 

of the widely used neural networks for multivariate correlation and pattern recognition is 

the feed-forward network. The mathematical basis of the most common learning law, i.e., 

back propagation, is discussed as a training law for the feed forward neural network. In 

order to find an efficient training paradigm, the following, most common training 

algorithms are compared, i.e., batch training with weight and bias learning rules, conjugate 

gradient with Fletcher reverse updates, resilient propagation, gradient descent with 

momentum and adaptive learning rate, and Levenberg-Marquardt with weight and bias 

learning rules. The mathematical aspect of the resilient propagation algorithm (RPROP) is 

discussed because it has been recognized as the most efficient algorithm in this study as 

mentioned in chapter five. A brief introduction of some important terms is also presented in 

this chapter, e.g., the learning rate and momentum coefficient, choosing the number of 

hidden layers and selecting the initial weights to design and train the artificial neural 

network. The network generalization ability is discussed at the end of this chapter. 

The synthetic data generation used to train and test the neural networks is explained 

in chapter five. The process of training the ANN and selecting training parameters is 

discussed for data obtained from five common arrays of the  2D and 3D surveys.  

In order to study the effect of data pool formation in the training process, two 

methods were used to generate the synthetic data. These methods are called M1 and M2, 

which basically differ in terms of input-output data in training the network. The details of 

each method are discussed for both 2D and 3D synthetic datasets.     
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           The effects of the number of nodes in each layer and the training data pool volume 

in 2D and 3D parts of this study are investigated. A comparison between five common 

training paradigms as mentioned in chapter four for 2D and 3D has been made for data 

obtained by each array.   

In order to study the interpolation and extrapolation properties of the 2D and 3D 

trained networks, 24 synthetic datasets were generated for each array. The range of 100 – 

1000 Ωm was divided into 100, 200, 300, 400, 500, and 600 Ωm as background resistivity, 

and different resistivity values for the anomalous body were considered.  

In chapter six, the ability of the trained networks to invert the DC resistivity 

imaging data using real field data related to a site with high resistivity contrast regions is 

checked. Therefore, in this chapter the application of the neural networks in inverting 2D 

and 3D DC resistivity data obtained from five common electrode configurations, i.e., 

Wenner-Schlumberger, Wenner, dipole-dipole, pole-dipole and pole-pole arrays, is 

explained. The inverted field data from the neural networks is then compared with those 

obtained from conventional robust inversion technique for each array. Further study using a 

synthetic example similar to the field data is carried out for each array in order to compare 

the reliability of the results of both methods. Furthermore, known information about the 

subsurface features of the site help us check the network performance. 
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isotropic conductive half space (Kuras, 2002). Following Maxwell’s equations of the 

stationary case, the electric field EሬሬԦ is the negative gradient of the electrical potential V 

(Telford et al., 1990):      

EሬሬԦ  ൌ  െ׏V,                                                                                                                          ሺ2.1ሻ                    

since ׏ ൈ EሬሬԦ ൌ  0 for பBሬሬԦ

ப୲
 = 0, this is a comprehensive assumption because it excludes any 

variation of the field with time. The current density jԦ is related to the electrical field, EሬሬԦ,  by 

the conductivity ߪ, represented by Ohm’s law: 

          jԦ ൌ  ો EሬሬԦ .                                                                                                                               ሺ2.2ሻ                     

In general, the material parameter ࣌ (Conductivity) connecting the vectors ଔԦ and ܧሬԦ, is a 

tensor. Derivations from multiples of the identity matrix can be physically interpreted as 

anisotropy (Thomas, 2004). Since, many subsurface materials have their preferential 

directions defined by the original pressure conditions of the sedimentary formations; 

anisotropy is very much expected for such rocks. However, in geophysical studies, 

anisotropy is rarely incorporated into inversion algorithms (Pain et al., 2003). As a 

consequence,  ߪ is considered to be a scalar parameter. The conductivity is often related to 

hydrological parameters such as salinity, while the resistivity ρ= ଵ
ఙ  

 often represents the 

petrophysical description of rocks.  

Since for a stationary current in a homogeneous medium ׏. jԦ= 0, therefore 

.σ׏         V׏ ൅ σ׏ଶV ൌ 0 .                                                                                                          ሺ2.3ሻ                        
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In regions with constant σ (׏σ = 0), it reduces to Laplace’s equation: 

ଶܸ׏       ൌ 0.                                                                                                                                ሺ2.4ሻ                        

For a single source of current I at a position ݎԦ࢙ , the term Iδ(rԦ – rԦୱ) must be considered as its 

divergence, which leads to the following equation: 

.׏     ሺσ ׏Vሻ ൌ .σ׏  V׏ ൅ σ׏ଶV ൌ  െ Iδ൫rԦ – rԦୱ൯.                                                                ሺ2.5ሻ                        

Equation (2.5) symbolizes an elliptical partial differential operator of the Poisson type. A 

difficult task for solving equation (2.5) is the infinite source term, which must be 

considered in the discrete problem. Since equation (2.5) is linear, the potential of an 

electrode combination can be obtained by superposing the individual potentials related to 

each electrode. 

2.1.1. Single current electrode  
Ideally, an electrical current is injected by a single point electrode located at the 

ground surface. The point at which the current returned to the source of voltage is supposed 

to be at infinity, so its effect can be neglected. Since, spherical symmetry exists in the earth, 

the Laplace’s equation is considered in spherical coordinates. As a result, the potential will 

be a function of the radial distance r from the current electrode only. For an isotropic half-

space of constant conductivity ߪ଴  with a single current source located at rԦୱ= (x, y, 0),  

૛V׏ ൌ  
∂ଶV
∂rଶ ൅

2 ∂V
r ∂r ൌ 0.                                                                                                          ሺ2.6ሻ 

Since the air is nonconductive (σ = 0), E୸ ൌ பV
ப୸

ൌ 0 is required at ݖ ൌ 0  to satisfy the 

boundary condition. Then, the solution is  

ܸሺݎሻ ൌ  െ ஺
ห ࢘ሬԦ – ࢘ሬԦ࢙ ห

 ൅                       ሺ2.7ሻ                                                                                                               ,ܤ 
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where A and B are constant with respect to r.  It is convenient to require a potential gauge 

such as V ൌ  0 for r →∞ so that B ൌ  0. The total current crossing a hemispherical surface 

into the underground is  

ܫ ൌ Ԧ௦ |ଶ݆ ൌݎ – Ԧݎ |ߨ2   െ 2ݎ |ߨԦ – ݎԦ௦ |ଶߪ଴
డ௩
డ௥

 ൌ  െ 2ߪߨ଴ܣ,                                                    ሺ 2.8ሻ                    

where 

ܣ   ൌ  െ ூ
ଶగఙబ

,                                                                                                                                 ሺ2.9ሻ                     

and by substituting (2.9) into equation (2.7), we get    

ܸሺݎሻ ൌ  ூ
ଶగ ఙబ| ௥Ԧି ௥Ԧೞ |

 .                                                                                                                  ሺ2.10ሻ                     

This means that the potential is constant at a given radial distance from the current 

electrode. Thus, the equipotential surfaces are hemispheres around the point of current 

injection. 

In order to incorporate the effect of the earth’s surface, i.e., ܧ௭ ൌ 0  at ݖ ൌ 0, the solution 

can be superposed by the source rԦܛ = (xୱ, yୱ, zୱ) and a mirror source rԦܛ
′  = (xୱ, yୱ, െ zୱ), 

giving  

ܸ ൌ  ூ
ସగ ఙబ

  ( ଵ
| ௥Ԧି ௥Ԧೞ |

 + ଵ
| ௥Ԧି ௥Ԧೞ′  |

) .                                                                                        (2.11)      

Note that equation (2.11) is identical to (2.10) for ݖ ൌ 0. Potentials that satisfy the above 

equation are possible solutions of the geoelectrical problem. 

2.1.2. The four-electrode array 
In practice, two electrodes are required in order to inject an electrical current into 

the ground (Fig. 2.1). In general, the current electrodes are referred to as C1 and C2. The 

potential at any surface point nearby will be affected by both these electrodes, because of 

the finite distance between them.  
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From equation (2.10), the potential due to current electrode C1 observed at a 

potential electrode P1 is 

Vଶ ൌ I
ଶπσబCଵPଵതതതതതതത  .                                                                                                                                                                     (2.13) 

The electric current at C2 is of equal size but opposite in direction, hence the observed 

potential at P1 due to C2 is 

Vଶ ൌ െ I
ଶπσబCଶPଵതതതതതതത .                                                                                                                                                        (2.14) 

The superposition of both potentials observed at P1 

VPଵ ൌ  V1 ൅  V2 ൌ  
I

2πσ଴
൬

1
C1P1തതതതതതത െ

1
C2P1തതതതതതത൰ .                                                                     ሺ2.15ሻ 

                                                                                  

The equipotential and the current flow lines are shown in Figure 2.1. A potential difference 

observed between the potential electrodes P1 and P2 (Fig. 2.1) is given by 

ΔVP ൌ  VPଵ െ  VPଶ  ൌ  I
ଶπσబ

 ( ଵ
CଵPଵതതതതതതത െ ଵ

CଶPଵതതതതതതത െ ଵ
CଵPଶതതതതതതത   ൅ ଵ

CଶPଶതതതതതതത) .                                      (2.16) 

where, ΔV is a function of the half space conductivity, σ଴, the injected current, ܫ, and the 

geometry of the electrode spread. 

2.1.3. Geometric factor and apparent resistivity 

A resistivity, ρ= ଵ
σబ  

, can be obtained from equation (2.16) and is equal to the bulk 

resistivity of the homogeneous half space and hence constant for any injection current and 

electrode geometry 

ρ ൌ K ൈ ΔV
I

 .                                                                                                                                  ሺ2.17ሻ                     

where the parameter K denotes a geometric factor 
 

K ൌ  
2π

1
C1P1തതതതതതത െ 1

C2P1തതതതതതത െ 1
C1P2തതതതതതത   ൅ 1

C2P2തതതതതതത
 .                                                                                 ሺ2.18ሻ 
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The geometric factor K depends on the arrangement of  four electrodes C1, C2, P1 and P2. 

In the general case of subsurface electrodes, the positions of the mirror current electrodes 

ܥ ′1 and ܥ ′2 must be incorporated to calculate the geometric factor, yielding 

K ൌ  
2π

1
C1P1തതതതതതത ൅ 1

C′1 P1തതതതതതതത െ 1
C1P2തതതതതതത ൅ 1

C′1 P2തതതതതതതത െ 1
C2P1തതതതതതത െ 1

C′2P1തതതതതതതത ൅ 1
C2P2തതതതതതത െ 1

C′2P2തതതതതതതത
 .             ሺ2.19ሻ 

In case of inhomogeneous earth, when the array is moved or the geometry of the electrode 

spread changed, different values of ρ are measured. The measured quantity by equation 

(2.17), ρ, is hence referred to as the apparent resistivity ߩ௔, indicating that it reflects the 

properties of a homogeneous half space that may not exist in practice (Kuras, 2002). 

Equations (2.18) and (2.19) are valid only for a ground with a flat surface. In case of 

variable topography, the geometric factor is unknown and can only be evaluated by 

numerical modeling using a homogeneous resistivity (Thomas, 2004).  

2.2. One-dimensional resistivity survey 
The electrical resistivity technique has been first applied in 1920s by the 

Schlumberger brothers (Loke, 2009). For the next 60 years, one-dimensional (1D) 

conventional sounding surveys were used for numerical interpretation (Koefoed, 1979). In 

general, the 1D-arrays using four electrodes, (C1, C2, P1 and P2), have been used in the 

laboratory for resistivity calibration (Rhoades and van Schilfgaarde, 1976).They are also 

used in surveys for vertical electrical sounding (VES).  

In VES, the distances between the electrodes are successively increased, in order to 

attain a deeper depth of penetration. Typical values for the electric current (I) and voltage 

(V) are 1 to 1000 mA and 10 to 400 V, respectively. The measurement then displays the 
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distribution of subsurface resistivity with respect to depth without considering lateral 

changes (Loke, 2009). In the interpretation of VES data, it is common to assume that 

underground structures are made up of several horizontal layers (Pozdnyakova et al., 2001). 

Thus, this technique can give useful information about the subsurface geological 

conditions, such as water table, for which the 1D model is the most appropriate (Loke, 

2009). One of the successful studies implementing the VES to record information about the 

vertical discontinuities associated with various soil horizons was reported by Bottraud et al. 

(1984). Al- Amri (1998) applied a VES survey to delineate the hydrostratigraphy of the 

southern Red Sea coastal area, Saudi Arabia. 

During geophysical explorations, the lateral resistivity of the subsurface geology 

can vary over short distances. Thus, horizontal changes in the subsurface resistivity may 

cause considerable changes in the apparent resistivity data, which can be misinterpreted as 

changes in the resistivity of the subsurface with depth. As a result, for complex formations 

with lateral changes over short distances, the VES technique may not be sufficiently 

accurate (Loke, 2009). 

2.3. Two-dimensional resistivity surveys 
In two-dimensional (2D) surveys, multi-electrode arrays provide a 2D cross-section 

of the underground structures. The current and potential electrodes are kept at a regular 

fixed distance from each other. The whole array is then progressively moved along a line at 

the surface. In each step, one measurement is recorded by the resistivity meter. The set of 

all measured data using the first inner electrode spacing gives a data level of resistivity 

values. The inter-electrode spacing is then increased by a factor of two, and a second data 

level is measured. This process is repeated until the maximum spacing between the 

electrodes is reached (Fig. 2.2). The depth of the measured data points will be discussed in 
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section 2.6.1 in detail. The data are then arranged in a 2D ‘‘pseudo-section’’ plot that 

represents a simultaneous display of both the lateral and vertical changes in resistivity 

(Edwards, 1977; Loke, 2009).  

2.3.1. Common array types for 2D resistivity surveys 
Several electrode configurations are commonly used with DC resistivity surveys. 

Each configuration has specific advantages and limitations. The simplicity of their use in 

the field and spatial resolution of underground inhomogeneities play essential roles in 

choosing an array for a particular survey. Since the signal-to-noise ratios during the survey 

vary between different arrays, the quality of measured data is affected by the choice of 

electrode configuration. In practice, the most commonly used arrays for 2D imaging are the 

Wenner (W), dipole-dipole (DD), Wenner-Schlumberger (WS), pole-pole (PP) and pole-

dipole (PD) configurations. Figures 2.2 to 2.6 show these electrode configurations together 

with their geometric factors. The geometric factor K differs from one configuration to 

other. Table 2.1 compares the following characteristics for these common arrays: (i) the 

signal strength, (ii) the horizontal data coverage, (iii) the sensitivity of the array to 

horizontal structures, (iv) the sensitivity of the array to vertical structures, and (v) the depth 

of investigation (Hesse, 1986; Griffiths and Barker, 1993; Loke, 2009). The signal strength 

is related to the joint signal-response of the measured data, which is reciprocally 

proportional to the geometric factor K. When a survey is carried out in areas with high 

background noise, the signal strength is important and must be taken into account. Seaton 

and Burbey (2002) reported that the electrode layout has an important effect on the 

horizontal data coverage, resolution, sensitivity and depth of investigation. Hesse et al. 

(1986) reported that in some situations using multiple arrays may help to investigate 

different features of the underground structures and their interpretation in a better way. 
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Table 2. 1. Attributes of the different array types classified from 1 to 4, representing poor to 
good.  

Array type Signal strength 
Horizontal 

data 
coverage 

Sensitivity to 
horizontal 
structures 

Sensitivity to 
vertical 

structures 

Depth of 
investigation 

W 4 1 4 1 1 

WS 3 2 2 2 2 

DD 1 3 1 4 3 

PD 2 3 2 1 3 

PP 
4 4 2 2 4 

 

2.3.1.1. The W array 
The W array is a robust electrode configuration that was popularized by the work of 

researchers at the University of Birmingham (Griffiths and Turnbull, 1985; Griffiths, 

Turnbull and Olayinka, 1990). The W array maintains a constant spacing between the 

electrodes, as shown in Figure 2.2. The W array can be used to investigate vertical changes 

in a better way as compared to horizontal changes (Loke, 2009). For this array, there are 

three types of electrode configurations (Carpenter and Habberjam, 1956), i.e., the W Alpha 

array, the W Gamma array and the W Beta array the W (Fig. 2.2). As compared to other 

two arrays, the W Alpha array has a moderate depth of investigation. The geometric factor 

for the W Alpha array is smaller than that of the other arrays, but it has the strongest signal 

strength. This can be important if the survey is conducted in areas with high background 

noise. However, the horizontal coverage of the W Alpha array is relatively poor, as the 

electrode spacing is increased (Loke, 2009). The W Gamma array has an unusual electrode 

configuration in which the current and potential electrodes are interleaved. The W Beta 
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array is a special case of the DD array, which maintain the same spacing between the 

electrodes (see section 2.3.1.2).  

 

Figure 2. 2. Pseudo-section data pattern for the W array with 24 electrodes. Three types of 
W arrays together with their geometric factors are also shown at the bottom. 

 

2.3.1.2. The DD array 
The DD array has been widely used in resistivity surveys because of the low 

electromagnetic coupling between the current and potential circuits. The arrangement of the 

electrodes is shown in Figure 2.3. The spacing between the current electrode pair, C2-C1, 

and between the potential electrode pair P1-P2 is given as “a.” The DD array has another 

factor called “n” (Fig. 2.3), which is the ratio of the distance between C1 and P1 to C2-C1 

(or P1-P2) dipole length “a.” During surveys with DD array, the “a” spacing is initially 

kept fixed with smallest unit electrode separation and the “n” factor is increased from 1 to 6 

in order to increase the depth of investigation. The DD array is useful in mapping vertical 

structures, such as dikes, but it is relatively poor in mapping horizontal structures, such as 

sedimentary layers (Loke, 2009). The median depth of investigation of the DD array 

depends on both the “a” spacing and the “n” factor. This array generally has a shallower 

depth of investigation than the W array. The pseudo-section data pattern for the DD array 



17 
 

with 24 electrodes is shown in Figure 2.3, where the two numbers on the left side of each 

data level are the factor “n” and electrode spacing “a”, respectively. The geometric factor 

for this array is also shown at the top of the pseudo-section. As an advantage, the DD array 

has better horizontal data coverage than the W array (Fig. 2.3). This is an important 

advantage when the number of electrodes available with the multi-electrode system is 

small. The very small signal strength for large values of “n” is one disadvantage of the DD 

array. While surviving with this array, there should be agood contact between the 

electrodes and the ground.  

 

Figure 2. 3. Pseudo-section data pattern for the DD array with 24 electrodes. The two 
numbers on the left side of each data level are the “n” factor and electrode spacing “a,” 
respectively. 

 

2.3.1.3. The WS array 
The WS array is a new hybrid between the Wenner and Schlumberger arrays 

(Pazdirek and Blaha, 1996). The positive and negative current electrodes are denoted by C1 

and C2, respectively. Similarly, the positive and negative potential are denoted by P1 and 

P2, respectively. The “n” factor for this array is the ratio of the distance between the C1-P1 
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(or P2-C2) electrodes to the spacing between the P1-P2 potential pair. In areas where both 

horizontal and vertical subsurface structures are expected, this array might be a good 

compromise as compared with W and DD arrays. The signal strength for WS array is 

weaker than that of the W array, but it is stronger than the DD array and twice that of the 

PP array (Loke, 2009).  Figure 2.4 shows the pattern of the data points through a pseudo-

section for the WS arrays. For the red data points, the “n” factor and electrode spacing “a” 

are both 2 and 2. As shown in the Figure 2.4, the WS array has a slightly better horizontal 

coverage than the W array, but narrower than that obtained with the DD array. 

 

 

Figure 2. 4. Pseudo-section data pattern for the WS array with 24 electrodes. The two 
numbers on the left side of each data level are the “n” factor and electrode spacing “a,” 
respectively. 

 

2.3.1.4. The PP array 
The use of PP array is not as common as the W, DD and WS arrays. This array 

ideally has only one current and one potential electrode. In practice, to approximate the PP 

array, the electrodes C2 and P2 must be placed at a distance more than 20 times the 
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maximum separation between the C1 and P1 electrodes (Loke, 2009). In surveys where the 

inter-electrode spacing is more than a few meters, there might be practical problems in 

finding suitable locations for the remote electrodes. Large distance between the potential 

electrodes pair can also be susceptible to strong telluric noise, which can degrade the 

quality of the measured data. Thus, the PP array is often used in surveys where all electrode 

spacings are less than a few meters (such as archaeological surveys). Figure 2.5 shows the 

pattern of data points in the pseudo-section for the PP array. As shown in the electrode 

configuration, the electrode separation “a” in this Figure has been increased from 1 to 23 in 

order to obtain all possible measurements. Although the PP array has the widest horizontal 

coverage and the deepest depth of investigation (Fig. 2.5), it has the poorest resolution of 

the arrays. Nevertheless, it has also been used for 3D surveys (Li and Oldenburg, 1992). 

 

Figure 2. 5. Pseudo-section data pattern for the PP array with 24 electrodes. 

 

2.3.1.5. The PD array 
The PD array has a remote electrode (C2), which must be located far from the 

survey line. This array is less affected by the remote electrode than the PP array (Loke, 

2009) and it is an asymmetrical array (Fig. 2.6). In some cases, a asymmetry in the 
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measured apparent resistivity values can affect the calculated model after inversion. One 

option to eliminate the effect of this asymmetry is to repeat the measurements by arranging 

the electrodes in reverse manner (Fig. 2.6). Similar to DD array, the PD array is more 

sensitive to vertical structures (Loke, 2009). Because of its good horizontal coverage, the 

PD array is useful for surveys with a small number of electrodes. The signal strength is 

higher than the DD array but lower than those from the W and WS arrays (Loke, 2009). It 

is not advisable to use values greater than 8 for the “n” factor, otherwise the “a” spacing 

between the P1-P2 dipole pair should be increased to obtain a stronger signal.  

 

Figure 2. 6. Pseudo-section data pattern for the PD array with 24 electrodes. The forward 
and reverse orientations of this array are shown. The two numbers on the left side of each 
data level are the “n” factor and the electrode spacing “a,” respectively 

2.4. Three-dimensional resistivity survey 
Many of the problems associated with geophysical exploration are due to three-

dimensional (3D) effects. Nowadays, 3D survey is the subject of active research, but its use 

has not yet reached the level as that of the 2D surveys (Loke, 2009). The main reason for 

this is that the cost of 3D surveys is much higher for large areas as compared to 2D surveys. 

The development of multi-channel resistivity meters that can take more than one reading at 



21 
 

a time and faster micro computers to enable the inversion of large datasets should make 3D 

resistivity surveys a more cost–effective. 

2.4.1. Common array types for 3D resistivity surveys 
The PP, PD and DD arrays are used for 3D resistivity surveys more frequently than 

the W and WS arrays. This is because the W and WS arrays have poorer data coverage near 

the edges of the survey grid. The advantages and disadvantages of the PP, PD, DD, W and 

WS arrays that were discussed for 2D resistivity surveys are also valid for 3D resistivity 

surveys. The PP electrode configuration is commonly used for 3D resistivity surveys, as in 

the ESCAN method (Li and Oldenburg, 1994). One alternative to the PP array for surveys 

grids 12 by 12 and above is the PD array. It has a better resolving power and is less 

susceptible to telluric noise as compared to the pole-pole array. The DD array is used for 

grids larger than 12 by 12 because the horizontal data coverage at the sides is poor.  

2.4.2. Measurement methods in 3D resistivity survey  
One possible measurement for a 3D resistivity survey is shown in Figure 2.7, where a grid 

of 25 electrode positions is used. The electrodes are usually arranged in a square grid, with 

the same electrode spacing along x and y directions. 

 

Figure 2. 7. Measurement sequences for a 3D survey. The locations of potential electrodes 
(blue) correspond to a single current electrode (red) in the arrangement used by a survey to 
measure the complete dataset. 
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 Habberjam and Watkins (1967) reported that such an array provides a measure of 

resistivity that is less orientation-dependent than that given by in-line array. Matias (2002) 

also emphasized that the data were orientationally stable, so there was no need for prior 

knowledge of the electrical heterogeneity orientation. The maximum number of 

independent measurements, nmax, which can be made with ne electrodes, is given by 

                                   n୫ୟ୶  ൌ  
nୣሺnୣ െ 1ሻ

2 .                                                                               ሺ2.20ሻ 

 In this case, each electrode can be used as a current electrode and a potential where all the 

other electrodes are measured (Loke, 2009). The reciprocity makes it necessary to measure 

the potentials at the electrodes with a higher index number than the current electrode. There 

are 300 possible measurements for 5 by 5 electrode grid and 2016 for 8 by 8 electrode grid. 

It can take several hours to take up to such a large number of measurements. To reduce the 

number of measurements required and eventually the measurement time, without seriously 

degrading the quality of the obtained model, an alternative method, the "cross-diagonal 

survey", can be introduced. By this method, the potential measurements are only made at 

the electrodes along the x- and, y-directions and along the 45 degree diagonal lines passing 

through the current electrode (Fig. 2.8).  

 

Figure 2. 8. Measurement sequences for a 3D survey. The locations of potential electrodes 
(blue) correspond to a single current electrode (red) in the arrangement used by a cross-
diagonal survey. 
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Several suggestions have been made to help migrate 2D techniques in to 3D acquisition, 

including the serpentine roll-along (Loke et al., 1996) and the leap frog roll-along (Dahlin 

and Bernstone., 1997; Dahlin et al., 2002). These enhanced 3D acquisition techniques have 

an improvement over the traditional methods of running individual wires to the electrodes 

because they use recently developed multi-electrode cables and multi-channel meters. To 

map slightly elongated bodies, a rectangular grid with different numbers of electrodes and 

spacings in the x and y directions could be used (Fig. 2.9). In the Figure 2.9, two cables 

were used, with 20 used take outs in each cable. A roll-along measurement can be carried 

out to cover the entire grid. If 3D resistivity survey is carried out with a series of parallel 

lines, and the cross-line measurements are not made, the distance between the lines should 

be two to three times as compared to electrode spacing (Loke, 2009). This procedure has 

been followed to ensure that the subsurface material between different lines is sufficiently 

mapped by the in-line measurements (al Hagrey et al., 1999; Chambers et al., 1999, 2002; 

Oglivy et al., 1999; Zhou et al., 2001, 2002; Oglivy et al., 1999; Zhou et al., 2001). 

                    

Figure 2. 9. A possible measurement sequence for a 3D survey. 

2.5. Quasi-3D resistivity survey 
The 3D roll-along method has proven to be a useful tool only for small survey area, 

because a large number of cables and electrodes are needed for 3D data acquisitions in 

large areas. One technique that can be suitable for larger survey areas is quasi-3D 
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acquisition, where 2D data are collected along parallel and orthogonal lines in a grid pattern  

(Dahlin and Loke, 1997). By this way, less number of electrodes, cables and time will be 

required for 3D data acquisition. Gharibi et al. (2005) have been reported that data acquired 

by the quasi-3D technique using the proper geometric constraints are suitable for 

processing and interpretation. An analysis of 3D resistivity surveys in the literature (Table 

2.2) suggests that the quasi-3D approach is the most practical one among different 

techniques. The table lists the progression of the 3D resistivity problem from Park et al. 

(1991), who used a pure 3D grid, to the most recent results of Koch et al. (2009), who used 

the quasi-3D technique.  

2.6. Sensitivity analysis 
To study the suitability of different arrays in resistivity surveys, several parameters 

must be considered, including the depth of investigation and the vertical and horizontal 

resolutions. One common way to study such parameters is by calculating the sensitivity 

function (Edwards, 1977). Consider the simplest possible electrode configuration with just 

one current electrode located at the origin (0, 0, 0) and one potential electrode located at (a, 

0, 0). Mathematically, the sensitivity function for a homogeneous half-space is given by the 

Frechet derivative (McGillivray and Oldenburg 1990) 

Fଷୢሺx, y, zሻ ൌ
xሺx െ aሻ ൅  yଶ ൅ zଶ

4πଶ൫ሺxଶ ൅ yଶ ൅ zଶሻሺሺx െ aሻଶ ൅ yଶ ൅ zଶሻ൯ଵ.ହ  .                                        ሺ2.21ሻ 

This is the sensitivity function for the pole-pole array. The sensitivity function shows the 

degree to which a change in the resistivity of the subsurface can influence the potential 

measured by the array (Edwards, 1977; Loke, 2009). To obtain the sensitivity function for  
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four-electrode array, the contributions from the appropriate four current-potential pairs of 

current-potential electrodes must be added up. 

Table 2. 2. Published studies using three-dimensional electrical resistivity imaging. 

Authors  Location  Data 
Acquisition 

T

Electrode Spacing 
(m)  

Array 
Type  

Processing Year  

Park et al.  Nevada  3D grid  50  PP  3D (1991) 

Loke et al.  UK  3D grid  0.5  PP  3D (1996) 

Chambers et 
al.  

UK  2D orthogonal 5  PD  3D (1999) 

Jackson et al.  UK  3D grid  1  PD  3D (2001) 

Yi et al.  Korea  3D grid  20   PP & 
DD  

3D (2001) 

Chambers et 
al.  

UK  2D orthogonal  0.5  DD & W  3D (2001) 

chambers et 
al. 

UK 2D parallel 0.25 DD & W 3D (2001) 

Dahlin et al.  Sweden  3D roll-along  5  PP  3D (2002) 

Ogilvy et al.  UK  2D parallel  5  PD  3D (2002) 

Gemail  et al. Egypt 3D grid 10 &20 PD & PP 3D (2004) 

Bentley et al.  Canada  2D orthogonal 1  DD  3D (2004) 

Nyquist et al.  New Jersey  2D orthogonal 3  DD  3D (2005) 

Lebourg et al. French 2D orthogonal 10-15 PP & DD 3D (2005) 

Freidel et al.  Switzerland  2D orthogonal 0.5  WS & 
DD  

3D (2006) 

Chambers et 
al.  

Scotland  2D orthogonal 5  W & WS  3D (2006) 

Mansoor et 
al.  

New Jersey  2D orthogonal 1.5  W  3D (2007) 

Chambers et 
al.  

UK  2D orthogonal 1  DD  3D (2007) 

Drahor et al. Turkey 2D orthogonal 1 W 3D (2008) 

Soupios  et 
al. 

Greece  2D parallel 0.25 & 1 DD 3D (2008) 

Park et al. Korea 2D parallel 5 DD &PP 3D (2009) 

Koch  et al. Germany 2D parallel 0.5 DD & W 3D (2009) 
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2.6.1. Depth of investigation 
  By increasing the electrode spacing, the array can evaluate the resistivity of the 

deeper layers. To get a numerical value for the depth of investigation, the sensitivity 

function of the array is used (Loke, 2009). In VES surveys, a change in the potential is 

estimated if the resistivity of a thin horizontal layer is changed. For a horizontal layer, the x 

and y limits extend from -∞ to +∞. Thus, the sensitivity function is obtained by integrating 

the 3D Frechet derivative (2.21) in the x and y directions, i.e. 

Fଵୢሺzሻ ൌ ඵ
xሺx െ aሻ ൅  yଶ ൅ zଶ

4πଶ൫ሺxଶ ൅ yଶ ൅ zଶሻሺሺx െ aሻଶ ൅ yଶ ൅ zଶሻ൯ଵ.ହ

ା∞

ିஶ

  dxdy .                        ሺ2.22ሻ 

 

A simple analytical solution for equation (2.22) is given by Roy and Apparao (1971) as 

following 

Fଵୢ ൌ  
2z

πሺaଶ ൅  4zଶሻଵ.ହ  .                                                                                                   ሺ2.23ሻ 

Equation (2.23) is called the depth investigation characteristic and has been used by many 

authors to determine the properties of various arrays in resistivity sounding surveys 

(Edwards, 1977, Barker, 1991, Merrick, 1997). Figure 2.10 shows a plot of sensitivity 

function for the PP array. Some authors have used the maximum point as depth of 

investigation. However, the median depth of investigation is a more robust estimate 

introduced by Edwards (1977) and Barker (1991). This is the depth above which the area 

under the curve is equal to half the total area under the curve (Loke, 2009). The median 

depth of investigation does not depend on the measured data. Although the depths are 

strictly valid for a homogeneous earth model, they are probably sufficient for planning field 

surveys (Loke, 2009). Table 2.3 gives the median depth of investigation for different 

arrays. For WS, DD and PD arrays, the n factor must also be taken into account.  
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Figure 2. 10. Plot of the 1D sensitivity function for the PP array. Note that the median 
depth of investigation (0.876a) is more than twice the depth of maximum sensitivity 
(0.35a). In this plot, the electrode spacing, a, is 2 meters. 

Table 2. 3. Median depth of investigation (z) for the different arrays (after Edwards, 1977). 

Array type z /a Array type z /a 

W 
Alpha 0.519 

DD 

n = 1 0.416 

Beta 0.416 n = 2 0.697 

Gamma 0.594 n = 3 0.962 

 WS 

n=1 0.519 n = 4 1.220 

n=2 0.925 n = 5 1.476 

n=3 1.318 n = 6 1.730 

n=4 1.706 

PD 

n = 1 0.519 

n=5 2.093 n = 2 0.925 

n=6 2.478 n = 3 1.318 

n=7 2.863 n = 4 1.706 

n=8 3.247 n = 5 2.093 

n=9 3.632 n = 6 2.478 

n=10 4.015 n = 7 2.863 

PP 0.867 n = 8 3.247 

2.6.2. Horizontal and vertical resolutions of different arrays  
For a particular (x, z) location in 2D case, all points contribute y-values ranging 

from +∞ to -∞. This involves integrating the 3D Frechet derivative (2.21) with respect to y, 

which is 
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Fଶୢሺzሻ ൌ න
xሺx െ aሻ ൅  yଶ ൅ zଶ

4πଶ൫ሺxଶ ൅ yଶ ൅ zଶሻሺሺx െ aሻଶ ൅ yଶ ൅ zଶሻ൯ଵ.ହ

ା∞

ିஶ

 dy.             ሺ 2.24ሻ 

 
Loke and Barker (1995) reported an analytical solution for equation (2.24). The difference 

in the contour patterns of the sensitivity function plots are studied in order to explain the 

response of the different arrays to different structures and to compare the suitability of 

various arrays for particular surveys. In the following plots of sensitivity sections, the 

distance between the first and last electrodes is normalized to 1.0 meter. The sensitivity 

values are shown from a depth of 0.01, in order to avoid the singularities at the electrodes 

down to 1.0. 

2.6.2.1. The W array 
Figure 2.11 shows the sensitivity plots for W Alpha and W Gamma arrays. The W 

Beta is a special case of the DD array with n=1, so it is described in the sensitivity section 

of the DD array. The contours in the sensitivity plot for W Alpha array are almost 

horizontal beneath the center of the array. This array is relatively more sensitive to vertical 

changes than to horizontal changes in subsurface resistivity. Furthermore, the W Alpha 

array has a moderate depth of investigation as compared to the other arrays. In Figure 2.11, 

the minimum electrode spacing, a, is 3.333(= 10/3). Thus, according to Table 2.3 the 

median depth of investigation for the W Alpha array is 0.1730 (=3.333×0.519). The 

sensitivity section in Figure 2.11 shows that the deepest regions mapped by the W Gamma 

array are below the two outer electrodes (C1 and P2). Similar to the W Alpha array, the 

median depth of investigation for the W Gamma array in Figure 2.11 can be calculated and 

is about 0.1980 (=3.333×0.594). 
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Figure 2. 11. 2D sensitivity sections for the W Alpha and W Gamma arrays. The median 
depths of investigation are denoted by “+.” The horizontal distance between the outer 
electrodes is normalized to 1.  

 

2.6.2.2. The WS array 
Figure 2.12 shows the sensitivity pattern for the WS array; where as the n factor is 

increased from 1 to 8. As the n factor is increased, the highest positive sensitivity zone 

below the center of the array becomes more concentrated beneath the central P1-P2 

electrodes. At n=4 to n=8, the high positive sensitivity lobe beneath the P1-P2 electrodes 

moves away from the high positive sensitivity values near the C1 and C2 electrodes. This 

means that this array is moderately sensitive to both horizontal (low n values) and vertical 

structures (high n values). The median depths of investigation for n=1 to n=10 in Figure 

2.12 are shown in Table 2.4. 

Table 2. 4. Depth of investigation for the WS array in Figure 2.12. 

n-factor 1 2 3 4 5 6 7 8 9 10 

Depth 
of investigation 

×104 

1730 1850 1882 1896 1902 1906 1909 1910 1911 1912
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Figure 2. 12. 2D sensitivity sections for WS arrays. The median depths of investigation are 
denoted by “+.” Both the vertical and the horizontal axes are in meters. The horizontal 
distance between the outer electrodes is normalized to 1. 

 

2.6.2.3. The DD array 
Figure 2.13 shows the sensitivity sections for the DD array with n values ranging 

from 1 to 6. This array is very sensitive to resistivity changes below each dipole pair, 

because the highest sensitivity values are located between the current and potential dipole 

pairs. As the n factor is increased, the sensitivity values beneath the center of the array 

decrease and the high sensitivity values become more concentrated beneath the current and 

potential dipole pairs. The sensitivity values at the pseudo-section plotting points “+” for n 
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൒2 become negligible, and the sensitivity contour patterns become almost vertical. Thus, 

the DD array is very sensitive to horizontal changes in resistivity, but it is relatively 

insensitive to vertical changes in resistivity (Loke, 2009). The median depth of 

investigation for n=1 to 6 in Figure 2.13 are shown in Table 2.5. 

 

Figure 2. 13. 2D sensitivity sections for DD arrays. The median depths of investigation are 
denoted by “ +.” The units of both the vertical and the horizontal axes are meters. The 
horizontal distance between the outer electrodes is normalized to 1. 

 

Table 2. 5. Median depth of investigation for the DD array in Figure 2.13. 

n-factor 1 2 3 4 5 6 

Depth 
of investigation ×104 

1386 1743 1923 2034 2108 2162 

 

2.6.2.4. The PP array 
Figure 2.14 shows the sensitivity plots for the PP array. This array is sensitive to 

resistivity changes below each electrode because the high sensitivity values become more 

concentrated beneath the current and potential electrodes. The sensitivity values beneath 

the center of the array are almost negative from the surface down to a depth of about 0.36 
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m. The sensitivity value at point “+” in the pseudo-section is still positive. The median 

depth of investigation in Figure 2.14 is 0.8413. Thus the PP array has the deepest depth of 

investigation as compared to all the other.  

 

Figure 2. 14. PP array 2D sensitivity section. The median depth of investigation is denoted 
by “ +.” The vertical and horizontal axes are in meters. The horizontal distance between the 
outer electrodes is normalized to 1. 

 

 2.6.2.5. The PD array 
Figure 2.15 shows the sensitivity sections for the PD array for n values ranging 

from 1 to 8. Since the high positive sensitive region beneath the potential dipole (n ൒2) 

becomes vertical, the PD array is more sensitive to vertical structures. Because of the 

negative sensitivity values between C1 and P1 electrodes and the high positive values to the 

left of the C1, the measurements of this array should be repeated in the reverse manner in 

order to obtain better results. The median depths of investigation for n=1 to 8 in Figure 2.15 

are shown in Table 2.6. 
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Figure 2. 15. 2D sensitivity sections for PD arrays. The median depths of investigation are 
denoted by “+.” Both the vertical and the horizontal axes are in meters. The horizontal 
distance between the outer electrodes is normalized to 1. 

 

Table 2. 6. Depth of investigation for the PD array in Figure 2.15. 

n-factor 1 2 3 4 5 6 7 8 

Depth 
of investigation ×104 

2595 3083 3294 3412 3484 3540 3579 3609

 

2.6.3. 3D Sensitivity Analysis 
Loke (2009) has studied the 3D sensitivity plots for the W (Alpha and Gamma), 

WS, DD, PD, PP arrays. According to his work, the W Alpha array is less sensitive to off-

line structures than the DD array, i.e., it is less sensitive to 3D structures. The sensitivity 

plots for W Gamma array show that this array is more sensitive to 3D structures near the 

C1 and C2 electrodes. He found that the DD array is more sensitive to 3D structures off the 

array axis than the W, WS, PP and PD arrays. According his sensitivity plots from PP and 
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PD –arrays, he has concluded that to attain a complete 3D coverage, if the measurements 

are only made in the x-direction, the spacing between the lines should not be much more 

than the smallest electrode spacing. 

2.7. Summary 
As evident from the contents of this chapter, the basics of the DC resistivity survey 

and the 1D, 2D and 3D surveys are discussed here. The common arrays used in the 2D and 

3D surveys, i.e., the WS, W, DD, PD and PP arrays have been explained. In addition, all 

the published literatures regarding the 3D resistivity problem from 1991 onward have been 

analyzed. The W array detected vertical changes in a better way but relatively poor results 

have been obtained for horizontal changes. The W array has the strongest signal strength 

but relatively poor horizontal coverage as compared to other common arrays. The signal 

strength for the WS array is found to be weaker than that of the W array, but it is stronger 

than that of the DD array and twice that of the PP array. On the other hand, the DD array 

has better horizontal coverage than the W array. This is an important advantage when the 

number of electrodes available with the multi-electrode system is small. Although, the PP 

array has the widest horizontal coverage and the deepest depth of investigation, it has the 

poorest resolution of the arrays used. Similar to the DD array, the PD array is more 

sensitive to vertical structures. Because of its good horizontal coverage, the PD array is 

useful for surveys with a small number of electrodes, and its signal strength is higher than 

that of the DD array but lower than the W and WS arrays. As a common way to study the 

suitability of different arrays, the sensitivity function of each array  is calculated and  their 

respective 2D and 3D sensitivity plots have been prepared.  
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Chapter 3 

Forward modeling and non-linear inversion  

The measured apparent resistivity data from DC surveys can give some useful 

information about the locations of subsurface structures, but their size, depth and extent 

cannot be correctly estimated. Furthermore, using pseudo-sections as a base for reliable 

interpretation can be misleading (Dahlin et al., 2002). Therefore, in order to obtain more 

realistic images of the underground structures, the apparent resistivity data should be 

inverted in to true resistivity of the subsurface materials.  

In geophysics, every inversion scheme includes an essential numerical simulation of 

the measured data for a given parameter distribution. This forward modeling is normally 

made by solving the partial differential equations (PDE). The first numerical solutions for 

arbitrary 2D resistivity were presented by Mufti (1976) and Dey and Morrison (1979b) 

using the finite difference methods.  

3.1. DC Forward modeling 
The term forward modeling refers to the simulation of synthetic data for a given 

model parameterization (Thomas, 2004). The Poisson equation for a point source of current 

 ሬሬԦ௦  yields࢘   at the position ܫ

.׏ ሺσ׏Vሻ ൌ .σ׏ V׏ ൅ ଶV׏ ൌ െIδሺrԦ െ rԦୱሻ,                                                                     ሺ3.1ሻ 

which must be solved for the potential ܸሺݎሻ by appropriate methods. Note that a non-

unique solution for the domain Ω requires specifying boundary conditions at its boundary Γ. 

The continuity equation (3.1) is defined if the potential is twice differentiable (ܸ א  ଶ) andܥ 

the conductivity is differentiable once (ߪ א  ଵ), which holds within the sub-domains Ω ofܥ 

the constant ߪ௜ (Thomas, 2004). At the inner boundaries of two sub-domains Ω௠ and Ω௡, 
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the continuity equation  ߪ௠׏ ௠ܸ ൌ ׏௡ߪ ௡ܸ must be satisfied. For bodies with close geometry, 

boundary integral methods can be used, which are seldom of interest in inverse problems 

(Thomas, 2004). With the rapid development of computers in the last decades, finite 

difference (FD) and finite element (FE) techniques have been applied to solve differential 

equations in many aspects. The FD and FE methods are better suited to model any complex 

arbitrary 3D earth (Spitzer, 1995). In the following sections, it has been explained that how 

FD calculations can be used efficiently.  

3.1.1. Finite Difference Discretization 
The aim of the finite difference technique is the construction of a discrete model in 

the form of hexahedral grid with nodes at the cell corners (Thomas, 2004). The existing 

partial derivatives are replaced by finite differences. An overview of the finite difference 

modeling techniques and discretization schemes for DC problems has been given by 

Spitzer (1999). The basis of the forward calculation based on finite differences is reported 

by various authors, e.g., Dey and Morrison (1979a), Spitzer (1995). Lowry et al. (1989) and 

Zong et al. (1995) have conducted their studies to improve the quality of the modeling. 

Spitzer and Wurmstich (1995) have also investigated the speed and accuracy of various 

discretization methods and equation solvers. Rapid advancement in computer technology 

has enabled geophysicists to carry out accurate computations for large models with high 

resistivity contrast regions.  The three dimensions of the modeling domain are subdivided 

into a grid by the node positions ݔ ௜ (i 1 א . . . ݅௠௔௫), ݕ ௝  (j 1 א . . . ݅௠௔௫) and  ݖ ௞  (k 1א . . . 

݇௠௔௫). Many discretization schemes exist with various locations of conductivities and 

partial derivatives (Dey and Morrison, 1979a; Zhang et al., 1995; Spitzer, 1995). In the 

following paragraph, the discretization technique of Dey and Morrison (1979a) has been 

discussed.  
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  Figure 3.1 shows a section of the finite difference grid. As a reference, the 

elementary domain Ω௜,௝,௞ with the conductivity ߪ௜,௝,௞  is bounded by the grid nodes (i, j, k), 

(i+1,j,k), (i,j+1,k), (i+1,j+1,k), (i,j,k+1), (i+1,j,k+1), (i,j+1,k+1) and (i+1,j+1,k+1). 

Similarly, the elementary domain Ω௜ିଵ,௝ିଵ,௞ିଵ is bounded by the grid nodes (݅ െ 1, ݆ െ

1, ݇ െ 1), (݅ െ 1, ݆, ݇ െ 1), (݅, ݆, ݇ െ 1), (݅, ݆ െ 1, ݇ െ 1), (݅ െ 1, ݆ െ 1, ݇), (݅ െ 1, ݆, ݇), 

(݅, ݆, ݇) and (݅, ݆ െ 1, ݇), and its conductivity supposed to be ߪ௜ିଵ,௝ିଵ,௞ିଵ . Integration of 

equation (3.1) on the elementary domain  ω௜,௝,௞  ,   which surrounds the grid node (i, j, k) in 

Figure 3.1, yields:  

ශ .׏ ሺσ׏Vሻdଷ rԦ ൌ  ශ Iδଷ ሺrԦ െ  rୱሬሬሬԦ ሻdଷrԦ ൌ  െIሺrୱሬሬሬԦሻ.                                                   ሺ3.2ሻ.  

Using Gauss’ theorem, the volume integral is transformed into a surface integral: 

 

ශ .׏ ሺσ׏Vሻdଷ rԦ ൌ ඾ σ
∂V
∂η dΓ ൌ  െIሺrୱሬሬሬԦሻ.                                                                       ሺ3.3ሻ 

where Γ௜,௝,௞  denotes the enclosing surface of ω௜,௝,௞  and ߟ  is its normal vector. The potential 

gradient డ௏
డఎ

   is approximated using central differences on every edge. Thus, an integral is 

replaced by a sum over  six faces.  

ISΔΓ
౟,ౠ,ౡశభ

మ

శౡ ൅ ISΔΓ౟,ౠ,ౡషభ/మ
షౡ ൅ ISΔΓ౟,ౠషభ/మ,ౡ

షౠ ൅ ISΔΓ౟,ౠశభ/మ,ౡ
శౠ ൅  ISΔΓ౟షభ/మ,ౠ,ౡ

ష౟ ൅  ISΔΓ౟శభ/మ,ౠ,ౡ
శ౟

ൌ  െIሺxୱ, yୱ, zୱሻ.                                                                                         ሺ3.4ሻ 
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Figure 3. 1. The FD grid for the grid node (i, j, k). The dashed line denotes the definition of 
the average conductivity at the grid nodes (Thomas, 2004). 

 

Figure 3.2 shows the conductivities at the edge in the +i, -i, +j, -j, +k and -k-directions. 

The conductivity ߪ is the weighted mean of four adjacent conductivity cells, so the 

integrals at the bottom, top, front, back, left and right faces are as follows: 

 

Bottom face: 

 ISΔΓ
౟,ౠ,ౡశభ

మ

శౡ ൌ ׭ σ பV
ப୸

dx dy ൌ V౟,ౠ,ౡశభିV౟,ౠ,ౡ

Δ୸ౡశభ
ቀσ୧ିଵ,୨ିଵ,୩

Δ୶౟షభൈ Δ୷ౠషభ

ସ
൅ σ୧,୨ିଵ,୩

Δ୶౟శభൈ Δ୷ౠషభ

ସ
൅

 σ୧ିଵ,୨,୩
Δ୶౟షభൈ Δ୷ౠశభ

ସ
൅ σ୧,୨,୩

Δ୶౟శభൈ Δ୷ౠశభ

ସ
ቁ.           

Top face:    

ISΔΓ౟,ౠ,ౡషభ/మ
షౡ ൌ ඵ σ

∂V
∂z dx dy

ൌ
V୧,୨,୩ െ  V୧,୨,୩ିଵ

Δz୩ିଵ
൬σ୧ିଵ,୨ିଵ,୩ିଵ

Δx୧ିଵ ൈ  Δy୨ିଵ

4 ൅ σ୧ିଵ,୨,୩ିଵ
Δx୧ିଵ ൈ  Δy୨ାଵ

4

൅ σ୧,୨,୩ିଵ
Δx୧ାଵ ൈ  Δy୨ାଵ

4 ൅  σ୧,୨ିଵ,୩ିଵ
Δx୧ାଵ ൈ  Δy୨ିଵ

4
൰.         
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Front face: 

ISΔΓ
౟,ౠషభ

మ,ౡ
షౠ ൌ ׭ σ பV

ப୷
dx dz ൌ

 V౟,ౠ,ౡି V౟,ౠషభ,ౡ

Δ୷ౠషభ
ቌ
σ୧ିଵ,୨ିଵ,୩ିଵ

Δ୶౟షభൈ Δ୸ౡషభ
ସ

൅ σ୧,୨ିଵ,୩ିଵ
Δ୶౟శభൈ Δ୸ౡషభ

ସ
൅

 σ୧,୨ିଵ,୩
Δ୶౟శభൈ Δ୸ౡశభ

ସ
൅ σ୧ିଵ,୨ିଵ,୩

Δ୶౟షభൈ Δ୸ౡశభ
ସ

ቍ.            

Back face: 

 ISΔΓ౟,ౠశభ/మ,ౡ
శౠ ൌ ׭ σ பV

ப୷
dx dz ൌ V౟,ౠశభ,ౡିV౟,ౠ,ౡ

Δ୷ౠశభ
ቀσ୧ିଵ,୨,୩ିଵ

Δ୶౟షభൈ Δ୸ౡషభ
ସ

൅ σ୧,୨,୩ିଵ
Δ୶౟శభൈ Δ୸ౡషభ

ସ
൅

 σ୧ିଵ,୨,୩
Δ୶౟షభൈ Δ୸ౡశభ

ସ
൅ σ୧,୨,୩

Δ୶౟శభൈ Δ୸ౡశభ
ସ

ቁ.            

Left face: 

ISΔΓ
౟షభ

మ,ౠ,ౡ
ష౟ ൌ ׭ σ பV

ப୶
dy dz ൌ V౟,ౠ,ౡି V౟షభ,ౠ,ౡ

Δ୶౟షభ
ቀσ୧ିଵ,୨ିଵ,୩ିଵ

Δ୷ౠషభൈ Δ୸ౡషభ

ସ
൅ σ୧ିଵ,୨,୩ିଵ

Δ୷ౠశభൈ Δ୸ౡషభ

ସ
൅

 σ୧ିଵ,୨,୩
Δ୷ౠశభൈ Δ୸ౡశభ

ସ
൅  σ୧ିଵ,୨ିଵ,୩

Δ୷ౠషభൈ Δ୸ౡశభ

ସ
ቁ.         

Right face: 

 ISΔΓ౟శభ/మ,ౠ,ౡ
శ౟ ൌ ׭ σ பV

ப୶
dx dy ൌ V౟శభ,ౠ,ౡିV౟,ౠ,ౡ

Δ୶౟శభ
ቀσ୧,୨ିଵ,୩ିଵ

Δ୷ౠషభൈ Δ୸ౡషభ

ସ
൅ σ୧,୨,୩ିଵ

Δ୷ౠశభൈ Δ୸ౡషభ

ସ
൅

 σ୧,୨,୩
Δ୷ౠశభൈ Δ୸ౡశభ

ସ
൅  σ୧,୨ିଵ,୩

Δ୷ౠషభൈ Δ୸ౡశభ

ସ
ቁ.           

3.1.2. Boundary conditions 
At the boundary of the modeling domain, the neighbors in the outward directions are 

missing. Therefore, the behavior of the potential field must be defined by boundary 

conditions. In general, there exist three different types of conditions: 

 Neumann boundary conditions fix the potential derivative with respect to the 

outward direction. This is essential for the earth’s surface, where the current flow 

perpendicular to the surface is zero. They can be applied by introducing an 

additional conductivity-free layer above the surface. 
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Figure 3. 2. Plan view of the different faces of the grid and the domain ω_(i,j,k) shown in 
Figure 3.1 (a-bottom face, b-top face, c-front face, d- back face, e- left face and f- right 
face). The dashed lines denote the average conductivity at the grid nodes. 

 

 Dirichlet boundary conditions are used to fix the potential values. They can be 

calculated analytically for a homogeneous or layered half-space. Since the 

potentials are not known, their outward values are usually set to zero. To improve 

the accuracy in the modeling domain, layers with prolonged grid spacings are added 

to the parameter model boundaries. 

 Mixed boundary conditions relate the potential and its derivative by assuming the 

potential characteristics. Dey and Morrison (1979a) presented boundary conditions 

for a single current electrode at the origin: 

∂V
∂η

൅  
V
|rԦ| cos θ  ൌ 0 .                                                                                                        ሺ3.5ሻ 
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 where ߠ is the angle between the position vector rԦ and the outward vector ߟԦ. Using           

the dot product for the boundary at x the following equation can be obtained: 

∂V
∂η ൅ 

x
rଶ V ൌ 0,                                                                                                                    ሺ3.6ሻ      

 which can easily be discretized and introduced into the system of equations. 

Using equation (24.2) for all nodes yields a discrete differential equation represented by a 

system of equations: 

    ۹ ൉ ൌ ܄   ሺ3.7ሻ                                                                                                                         ,܊ 

which must be solved for the vector ܄  containing the potentials for all existing nodes. The 

coupling matrix K works as discretized differential operator, which is a sparse matrix of 

band-structure. K is guaranteed to be positive semi-definite and regular and thus has a 

unique solution for all b. The source vector b represents a discrete Dirac function, where all 

elements are zero except for the node where the current electrode is placed. All electrodes 

must match the finite difference grid, which can lead to huge node numbers for irregular 

electrode positions. Since the potential follows a behavior proportional to 1/r, it can hardly 

be discretized by a piecewise linear function (Thomas, 2004). Hence, large discretization 

errors occur near the electrodes, which can only be reduced by using a very fine grid 

(Thomas, 2004). The matrix becomes singular if Neumann conditions are applied to all 

boundaries. Hence, at least at one point Dirichlet or mixed conditions must be installed. 

3.2. Non-linear inversion 
In the early 1980s, some initial approaches to 2D inversion were developed (e.g., 

Inman, 1975, Tripp et al., 1984). The first attempt on 3D inversion of the PP data by Park 

and Van (1991) was followed by Newton methods (e.g., Li and Oldenburg, 1999). Ellis and 

Oldenburg (1994) and Zhang et al. (1995) used algorithms based on non-linear conjugate 

gradient methods. Most inversion programs assume a flat earth surface. Topography in 2D 
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models can be included by means of a Schwarz-Christoffel transformation (Tong and Yang, 

1990). Finite difference methods cannot solve the 3D problems in which the effect of 

topography must be considered (Thomas, 2004); a suitable alternative in such cases is the 

finite element method (Sasaki, 1994; Sugimoto, 1999).   

Besides the development of inversion routines, the resolution properties have also 

been improved (e.g., Narayan, 1992; Sasaki, 1992; Dahlin and Loke, 1998). The first 

numerical resolution for DC data was carried out by Oldenburg and Li (1999). Friedel 

(1997), Spitzer (1998) and Dietrich (1999) gained an intuitive understanding of resolution 

by sensitivity studies. Meke (1989) has studied the uncertainty in linear problems. The 

resolution matrices for nonlinear problems were also defined by Meju (1994a), and they 

have been investigated in detail for DC resistivity by Friedel (2000). As suggested by 

Friedel (2000), the quality of the inversion results can be appraised directly from the 

resolution matrices. Moreover, resolution analysis provides a base for optimizing 

experimental design (Maurer et al., 2000), which can be of particular interest in multi-

electrode DC measurements (Stummer et al., 2004).  

3.2.1. Inversion methodology 
Assume a set of ܰ measured data points, ܌ ൌ (݀1, ݀2, ݀3, …݀N)T, affected by the 

physical property ܙ of the subsurface. The goal is to find a spatial parameter distribution 

 Since the collected data are usually .܌ of this property that explains the parameter (rԦ)ܙ

contaminated with noise, efforts have been made to fit a part of the data that is generated by 

parameter variations (Thomas, 2004). The function ܙ(rԦ) is represented using a limited 

number ܯ of model parameters ݉௜ serving as weighting coefficients for the basis functions 

  ;(rԦ)܅

∑ = (rԦ)ܙ          ܓܕ Ԧሻܚሺܓ܅
ெ
௞ୀଵ  .                                                                                        (3.8) 
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where   ܕ ൌ (݉1, ݉2, ݉3, …݉N)T .  

One usual way to define the ܹi is to subdivide the region of interest into sub-domains ߆i    

that are convex bodies such as hexahedrons: 

                where           ௞ܹሺݎԦሻ ൌ ൜  1      ݂ݎ݋  rԦ߳ ߆
݁ݎ݄݁ݓ݁ݏ݈݁  0

i             

The main objective of the inversion process is to obtain a model ܕ, whose response (ܕ)ܙ 

should fits in the data ܌. For non-linear problems, the forward operation depends on the 

model ܕ itself, which holds the key for all methods based on Maxwell’s equations. 

Beginning from the initial stage ( model ܕ୸ୣ୰୭ ሻ, an iterative process is applied to update 

the model until the data fit well or convergence is achieved (Thomas, 2004). In each 

iteration of the inversion process (k), a new model is calculated by adding an update ݉߂௞: 

ା૚ܓܕ ൌ ܓܕ ൅ ઢܓܕ.                                                                                                                     ሺ3.9ሻ 

The Taylor approximation of the first order yields: 

ܓܕሺܙ ൅ ሻܓܕ∆ ൌ ሻܓܕሺܙ  ൅ ൜
૒ܙ
૒ܕ

ሺܓܕሻൠ ܓܕ∆ ൅  … ൎ ሻܓܕሺܙ ൅     ܓܕ∆۸ 

The coefficient of the second term of the above equation is called the Jacobian or 

sensitivity matrix ۸ א বN×M with the following  elements: 

ሻܓܕ௜௝ሺܬ ൌ  డ௤೔
డ௠ೕ

ሺܓܕሻ .                                                                                                                   ሺ3.10ሻ  

In fact, the Jacobian matrix ۸,  is the partial derivative of the model response with respect to 

the its parameters. Setting a response of the new model ܕ)ܙ ൅  ઢܕ) equal to data  , the 

non-quadratic equation is obtained as following: 

ܕ ∆ ۸ ൌ ܌ െ  ሻ.                                                                                                                      ሺ3.11ሻܕሺܙ

This equation must be solved in a sense to minimize the residual vector ܌ െ  ሻ. . Anܕሺܙ

error ߦi can be estimated for each data point di that is used to weight the residual. A data 

function ߖd is defined using the Lp-norm of the weighted residual.  
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ሻܕௗሺߖ ൌ  ෍ ฬ
ሾ݀௜ െ ሻሿܕ௜ሺݍ

iߦ ฬ
௣ே

௜ୀଵ

ൌ ԡ۲ሺ܌ െ ሻሻԡ௣ܕሺܙ
௣ .                                                   ሺ3.12ሻ 

    with      D = diag ( 1 / ߦi), where ߖd must be minimized in the inversion process. 

Depending on the expected noise characteristics, different values of p can be used 

(Farquharson and Oldenburg, 1998). If the noise has a long-tailed distribution, the L1-norm 

is advantageous (Thomas, 2004). An L1 minimization procedure is often called “robust 

inversion” (Claerbout and Muir, 1973), because it is less sensitive to outliers in the data. 

However, if the noise has a Gaussian distribution, the L2-norm is the advantageous 

(Thomas, 2004). From a statistical point of view, the mean value of the data function is:  

      χ2 = ߖd /N 

when χ2 is equal to one, the fitted data are within their errors. Thus, the functional norm can 

be written as: 

Ψௗ ൌ ሾ۲ሺ܌ െ ܌ሻሻሿTൣ۲൫ܕሺܙ െ ሻ൯൧ܕሺܙ ൌ ൫܌ െ ܌ሻ൯T۲T۲൫ܕሺܙ െ  ሻ൯ .                 ሺ3.13ሻܕሺܙ

 The product ۲T۲ is the inverse of the data covariance matrix Cd as used by Tarantola 

(1978) in the case of uncorrelated errors with standard deviations ߦi and variances ߦi
 2. If 

correlations between the individual errors are present, the covariance matrix Cd does not 

remain diagonal (Thomas, 2004). Some of the common inversion methods are discussed as 

following. 

3.2.1.1. Steepest descent method 
The minimum of Ψ in the direction of the steepest descent of Ψ must be sought. The 

model update is ߜ௞ ൌ  െ ׏௠Ψ 

where  ׏௠ ൌ  ሺ ߲
߲݉1

 , ߲
߲݉2

 , … , ߲
ܯ߲݉

ሻ். 

A step length ࣂ must be estimated so that Ψሺܓܕ ൅ ી઼ܓሻ is minimized. After that, a ‘Line 

Search’ procedure inquires for an optimum solution along the line defined by varying ߠ 
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(Thomas, 2004). In every iteration, the functional’s gradient is calculated by the precise use 

of the Jacobian matrix. Since the convergence rate of the steepest descent technique for ill-

posed problems is very slow, forward calculations using this method are very time-

consuming. This technique is very simple to implement, but rarely of practical use.  

3.2.1.2. Nonlinear conjugate gradients method 
Hestenes and Stiefel (1952) developed the method of conjugate gradients to solve a 

linear system of Ax = b for a sparse matrix A. The principle of this technique is to find a 

set of perpendicular directions and to compute their corresponding weights. Since each 

search direction is used only once, the convergence is thus fast as compared to the steepest 

descent method. This technique can also be useful for non-linear minimization (Shewchuk, 

1994; Vogel, 2002; Mackie and Madden, 1993; Rodi and Mackie, 2001), because it is 

based on an iterative minimization of the function 1/2xTAx − xTb (Thomas, 2004). Zhang 

et al. (1995) has successfully used the conjugate gradients equation solver to invert 3D DC 

resistivity data. The gradient Gd of the function ߖd can be computed from the Jacobian 

matrix using the chain rule: 

ௗ,௞ܩ  ൌ ሻܓܕ௠Ψୢሺ׏2 ൌ ሻܓܕሺܙ۲ሺ܂۲܂۸  െ   .ሻ܌ 

For each iteration (k), the model response q (ܓܕ) and the gradient ܩ௞ must be calculated.  

3.2.1.3. Newton-type methods 
         Assume a second order Taylor series for the function Ψ of an updated model m+ Δm 

Ψሺܕ ൅ ሻܕ∆ ൎ Ψሺܕሻ ൅ ሺ׏୫ΨሺܕሻሻT∆ܕ ൅ ଵ
ଶ

୫׏Tሺܕ∆
ଶ ΨሺܕሻሻT∆ܕ ൅         ሺ3.14ሻ            ڮ

where ׏୫
ଶ is the Hessian matrix with elements:  

ሺߘ௠
ଶ ߖሻ௜௝ ൌ  ሺߘ௠ߘ௠

ሻ௜௝ߖ் ൌ  డమఅ
డ௠೔డ௠ೕ

 . 
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The second order Taylor series in the equation 3.14 is minimized by setting its first partial 

derivative with respect to Δm to zero:  ׏୫Ψሺܕሻ ൅ ୫׏
ଶ Ψሺܕሻ∆ܕ ൌ 0. Thus, the model 

update Δܓܕ is calculated by solving the equation 

൫ሺ׏୫
ଶ Ψ൯∆ܓܕ ൌ  െ ׏୫Ψ .                                                                                                  ሺ3.15ሻ 

For the function Ψ d as defined by (3.13), the following holds 

܌,ܓ۶ ൌ ୫׏୫׏ 
TΨୢ ൌ ሻܓܕሺܙ۲ሺ܂۲܂୫ቀ2۸׏ െ ሻቁ܌

ൌ ۲۸܂۲܂2۸ ൅ 2ሺ׏୫
T ሻܓܕሺܙ۲ሺ܂ሻ۲܂۸ െ  ሻ.                                              ሺ3.16ሻ܌

The term 2ሺ׏୫
T ሻܓܕሺܙ۲ሺ܂ሻ۲܂۸ െ -ሻ can be neglected if the problem is not strongly non܌

linear (Thomas, 2004). 

3.2.1.3.1. Gauss-Newton method 

The technique using the Hessian approximation ۶܌,ܓ ൌ  is called the  ۲۸܂۲܂2۸

Gauss-Newton method. This method has two advantages: 1) the computation is easier than 

the other methods and 2) Hessian approximation in this method is positive semi-definite, 

where the latter one guarantees that the Gauss-Newton step is a descent direction. However, 

the quadratic convergence of the Newton’s method loses its effectiveness due to strong 

non-linearity. If Δܓ܌ = d − q (ܓܕ), the linear equation (3.15) can be written as: 

ቀሺ۲۸ሻTሺ۲۸ሻቁ∆ܓܕ ൌ ሺ۲۸ሻT۲∆ܓ܌                                                                                      ሺ3.17ሻ 

which is a least squares solution of ۲۸∆ܓܕ ൌ  Newton’s method has a quadratic . ܓ܌∆۲

convergence, due to second order of the Taylor approximation (Vogel, 2002). Thus, if the 

starting model is in the neighborhood of the minimum, the number of iterations will be 

small (Thomas, 2004). However, if there are several local minima, the solution may not 

produce unique results. In order to overcome this deficiency, a different starting 

model,  .should be tested ܗܚ܍ܢܕ
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3.2.1.3.2. The Marquardt-Levenberg modification  

In some cases, the matrix product ۲۸ may be singular or nearly-singular. If it is 

singular, the least-squares equation does not have a solution for ∆ܕ. The near- singular 

state for ۲۸ can occur if an initial model that is quite different from the optimum model is 

used. The calculation of  ∆ܕ using equation (3.11) can have too large components such 

that the new model calculated with (3.9), ܓܕା૚, might have unrealistic values. The 

Marquardt-Levenberg modification (Lines and Treitel 1984) to the Gauss-Newton equation 

is one common way to avoid the singularity problem. This method which is also known as 

the ridge regression method (Inman, 1975) is given by   

ሺ۲ ۸ ൅  ζ ۷ሻ∆ܓܕ ൌ                     ሺ3.18ሻ                                                                                           .ܓܕ∆۲

where I is the identity matrix and the symbol ζ is known as the Marquardt factor. The 

Marquardt factor effectively constrains the range of values that the elements of  Δܓܕ
  can 

take. while the Gauss-Newton method in equation (3.17) attempts to minimize the sum of 

the squares of the  Δܓ܌ .  The method of Marquardt-Levenberg modification also 

minimizes a combination of the magnitude of the Δܓ܌ and the  Δܓܕ. This method has been 

successfully used to invert VES data where the model consists of a small number of layers.  

3.2.1.3.3. Quasi-Newton method 

Newton’s method assumes that the functional norm, ࢊࢸ, can be locally 

approximated as a quadratic Taylor expansion in the region around the optimum, where the 

first and second derivatives are used  to find the stationary point. Recalculation of the 

Hessian matrix in Newton’s method for each iteration might be very time-consuming. 

However as an alternative choice the quasi-Newton technique can be used, which updates 

the Hessian by previous gradients (Thomas, 2004). In quasi-Newton methods, the Hessian 

matrix of second derivatives of  ࢊࢸ to be minimized and does not need to be computed at 
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any stage. The Hessian is instead updated by analyzing successive gradient vectors. The 

Quasi-Newton method is a generalization of the secant method to find the root of the first 

derivative for a multidimensional problem. 

The Broyden-Fletcher-Goldfarb–Shanno (BFGS) method is a technique to solve an 

unconstrained nonlinear optimization problem. It is derived from Newton’s method, which 

seeks the stationary point of a function where the gradient is zero (Broyden, 1970, 1972). 

The BFGS method uses the following approximation:  

ା૚ܓ۶ ൌ ܓ۶  െ  
ܓܕΔܓܕΔ ܓ۶

ܓ۶܂

Δܓܕ
 ܕΔ ܓ۶ ܂

൅  
૑ܓ ૑ܓ

܂

Δܓܕ
  ܓ૑ ܂

 ,                                             ሺ3.19ሻ  

        where   ૑ ൌ ା૚ሻܓܕ୫Ψሺ׏  െ  ሻܓܕ୫Ψሺ׏

A slightly different form of this equation is used by Loke and Barker (1996b):  

ା૚ܓ۶ ൌ ܓ۶  ൅  
ሾܙሺܓܕା૚ሻ െ ሻܓܕሺܙ െ ܓܕሿΔܓܕΔ ܓ۶

܂

Δܓܕ
 ܕΔ  ܂

 .                                         ሺ3.20ሻ  

This method can sufficiently be used for most 2D DC resistivity problems (Loke and 

Dahlin, 2002).  

3.2.1.4. Smoothness-constrained least squares method  
In the inversion of 2D and 3D resistivity data with  large number of model 

parameters, the produced model can have an erratic resistivity distribution with spurious 

low or high resistivity anomalies (Constable et al., 1987). To overcome this problem, the 

Gauss-Newton least-squares equation is further modified, which change the model 

resistivity values in a gradual manner.  

3.2.1.4.1. L2_norm smoothness-constrained optimization method 

The mathematical form of this smoothness-constrained method (Ellis and 

Oldenburg, 1994) is given by 

ሺ۲۸ ൅ ζ۴ሻΔ۲ܓܕΔܓ܌ െ ζ۴ܓܕ.                                                                                             ሺ3.21ሻ 
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where  ۴ ൌ હܠ۱ܠ
ܠ۱܂ ൅ હܡ۱ܡ

ܡ۱܂ ൅ હܢ۱ܢ
 are the smoothing ܢand ۱ ܡ۱ ,ܠand  ۱ ܢ۱܂

matrices. The αx, αy and αz are the relative weights given to the smoothness filters in the x, 

y- and z-directions. One common form of the smoothing matrix is: 

       -1  1  0 0 .. .. .. 0 
        0 -1  1 0 .. .. .. 0 
        0  0 -1 1 0 .. .. 0 
                   ..                                                                                                           (3.22) 
C=                  .. 
                         ..  
                              0        
 

In this equation, C is the first-order difference matrix (de Groot-Hedlin and Constable, 

1990). In fact, equation (3.21) represents an L2 _ norm smoothness-constrained optimization 

method. This tends to produce a model with a smooth variation of resistivity values. This 

approach is acceptable if the actual subsurface resistivity varies in a smooth and gradational 

manner (Loke, 2009).  

3.2.1.4.2. L1_ norm smoothness-constrained optimization method 

In some cases, the subsurface geology consists of a number of zones that are almost 

homogeneous but with sharp boundaries between different zones. For such cases, equation 

(3.21) can be modified as follows: 

ሺ۲۸ ൅ ζ۴ሻΔܓܕ ൌ ܓ܌Δ܌܀۲ െ ζ۴ܓܕ܀ ,                                                                                   ሺ3.23ሻ 

where ۴܀ ൌ હܠ۱ܠ
ܠ۱ܕ܀܂ ൅ હܡ۱ܡ

ܡ۱ܕ܀܂ ൅ હܢ۱ܢ
 ܢ۱ܕ܀܂

In this equation, ܌܀ and ܕ܀are weighting matrices introduced so that different elements of 

the data misfit and model roughness vectors are given equal weights in the inversion 

process. With equation (3.23) the absolute changes in the model resistivity values can be 

minimized (Claerbout and Muir, 1973). Technically this is referred to as an L1_ norm 

smoothness-constrained optimization method or a blocky inversion method (robust 

inversion technique), which can sometimes give significantly better results (Loke, 2009), 
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for instance, in a situation where the subsurface geology consists of high resistivity zones 

with sharp boundaries. It also provides a general technique that can be further modified to 

include known information about the subsurface geology (Loke, 2009). 

3.3. Summary 
In this chapter, the importance of inverting measured apparent resistivity data 

obtained with DC resistivity surveys has been discussed. Aspects of the finite difference 

method and different boundary conditions have also been explained to study the numerical 

simulation of measured data for given subsurface parameters. In addition, the methodology 

of non-linear inversion and the common inversion methods ( i.e., steepest descent method, 

nonlinear conjugate gradients method, Newton-type methods and smoothness-constrained 

least squares methods) is introduced. Because the convergence rate of the steepest descent 

technique for ill-posed problems is very slow, forward calculations using this method are 

found to be very time-consuming.  

In the nonlinear conjugate gradients technique, each search direction is used only 

once. Thus, convergence is fast compared with the steepest descent method. This technique 

can also be useful for non-linear minimization. In the Gauss-Newton method, the 

computation is found to be easier than the other methods. The Hessian approximation in 

this method is positive semi-definite, which provide a guarantee that the Gauss-Newton 

step is a descent direction. The singularity problem in the Newton-type methods can be 

avoided by using the Marquardt-Levenberg modification of the Gauss-Newton equation. 

Recalculating the Hessian matrix in the Newton’s method for each iteration might be very 

time-consuming. However, the use of quasi-Newton technique, which updates the Hessian 

by previous gradients can be considered as an alternative option. The L2_ norm smoothness-

constrained optimization method tends to produce a model with a smooth variation of 
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resistivity values. This approach is acceptable if the actual subsurface resistivity varies in a 

smooth and gradational manner. The L1_ norm smoothness-constrained optimization 

method (robust inversion technique) can be used to minimize the absolute changes in the 

model resistivity values. This method can sometimes give significantly better results if 

zones of high resistivity contrast ( with sharp boundaries) exist beneath the earth surface. 
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Chapter 4 

Artificial neural network system 

  Nowadays, the geophysical inverse problem is a very active research area. It 

involves representing geophysical measurements by realistic geological models. Most 

geophysical inverse problems belong to a class of nonlinear inversion, and a misfit function 

is introduced. The inversion process seeks subsurface parameters in order to minimize the 

misfit function. In nonlinear inverse problems with a few degrees of freedom, the Monte 

Carlo method has been used. However when the complexity of the problem  increases, this 

method cannot find an appropriate subsurface model (Press, 1968). In that case, an 

alternative of the Monte Carlo method, the gradient technique can be used. When the 

starting model is close to the global minima, the gradient method provides a correct 

solution. However, the problems of how to deal with local minima, too high memory 

requirements and time consumption are the disadvantages attached with this method 

(Tarantola, 1986, 1987; Fei, 1995). 

Only a brief introduction of artificial neural networks (ANNs)  is given in this 

section since several reviews of these systems have already been published in the literature 

(e.g., Lippman, 1987; Haykin, 1999). The ANN system is well suited to solving difficult 

and complex problems (Haykin, 1999). Recently, ANNs have been developed, which  can 

provide a new geophysical inversion technique to overcome some of the inversion 

limitations. The training procedure of the ANN is considered as one of the global 

optimization methods (Fei, 1995). Research on ANNs started about 50 years ago, when the 

theory of perceptrons was presented by Rosenblatt (1962). During the mid-1960s, interest 

in ANNs decreased because of the limitations of the theory of perceptrons (Minsky and 
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papert, 1969). Since new paradigms in this system have overcome some of these 

limitations, the ANN has been emerged again as an active research area in the field of  

computer science, engineering, physics and geophysics. An ANN is a simplified computer 

simulation of the human brain. Unlike conventional computer programs that use a fixed 

algorithm to solve a particular problem, ANNs use a non-linear learning method to solve a 

complex problem. The ANN is trained by repetitively presenting samples of the inputs and 

desired outputs of the problem to be solved. One of the advantages of ANNs compared to 

multivariate linear analysis is that the underlying relationships between dependent and 

independent variables do not need to be known a priori. The ANN adjusts itself with 

examples to find the relationships between variables (Bui, 2004). Other advantages are that 

ANNs can have several outputs and can use discrete variables as inputs or outputs. As a 

result, the ANN is able to learn like a human brain in order to find the hidden relationships 

between inputs and outputs in the training phase. In addition, it is also able to predict the 

desired output from a new set of input data. 

4.1. Neural network architectures 
ANNs are computational systems that simulate the biological neural networks of the 

human brain. The human brain contains several billion neurons interconnected via synapses 

that constitute the network. ANNs are systems made up of a number of simple, highly 

interconnected processing algorithms (neurons), which process information by their 

dynamic state response to external inputs (Fausett, 1994). ANNs are also considered as 

exploration and development tools that can easily transform input data into desired output 

parameters. ANNs can use knowledge gained from past experiences and apply that to new 

problems and situations (Ripley, 1996). Figure (4.1) shows a schematic diagram of the 

ANN architecture. The system consists of (1) a set of nodes (artificial neurons) that perform 
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simple computations, (2) a set of interconnections, or synapses, linking pairs of nodes, and 

(3) a set of labels, known as weights, associated with each interconnection that identify 

some property of the interconnection. These weights correspond to the synaptic efficiency 

of the biological neurons (Aristodemou et al., 2005). Each node uses its input signals to 

compute an output signal; the output is the result of networking between nodes performing 

specific individual tasks. The mathematical relation between the input and output signals of 

a node is called the activation function. Several activation functions can be used. The 

choice of proper activation function depends on the problem to be solved. It is often 

determined by computational considerations of the training process (Bui, 2004). The most 

commonly used functions are the linear, fሺxሻ ൌ ax ൅ b, the sigmoidal, fሺxሻ ൌ  ଵ
ଵାୣష౮   and 

the Gaussian   fሺxሻ ൌ ୟାୠୣ౮మ

ୣ౮మ  . 

 

Figure 4. 1. Artificial Neural Network architecture used in this study. 

4.1.1. Feed-Forward neural networks  
ANN systems are specified by their respective architectures and training rules 

(Fausett, 1994). The rules specify the initial set of network connection weights, and the 

training indicates how the weights should be adapted to improve performance. One of the 

ANNs that is widely used for multivariate correlation and pattern recognition is the feed-
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forward neural network (FFNN) (Rumelhart and McClelland, 1986; Bishop, 1995; Fausett, 

1994; Garson, 1998). 

      The FFNNs, which are widely used in engineering applications, are parallel 

distributed information processing structures consisting of neurons interconnected via 

unidirectional signal channels. In FFNN, there are at least three successive layers of 

neurons: an input layer, one or more hidden layers and an output layer. The number of 

neurons  in  the input layer  is  equal  to  the  number  of variables  in  the  input  data. 

These neurons do not have input connections but only output ones. The number of neurons 

in the hidden layer can vary based on the complexity of the problem and the size of the 

input dataset. Neurons in the hidden layer have both input and output connections. The 

number of neurons in the output layer is the same as the number of output variables. These 

neurons have only input connections. The output of a node in one layer is directed as the 

input to each and every node in the immediately following layer. There are no lateral 

connections between nodes in the same layer and no feedback connection to the nodes in 

previous layers. 

A signal ݔ௜ at the input of synapse i connected to neuron j is multiplied by the 

synaptic weight ݓ௜௝. A summing junction adds the input signals, which are weighted by the 

respective synapses of the neuron. Each processing unit (neuron) has an activation function 

that is commonly chosen to be the sigmoid function. We used the logsig function, which is 

a special type of sigmoid function: 

f ൌ
1

1 ൅ eି୶  .                                                                                                                                 ሺ4.1ሻ 

  The activation function limits the amplitude of a neuron, by that it restricts the 

permissible amplitude range of the output signal to some finite value. The net input to a 

processing unit j is given by: 
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௝ݐ݁݊ ൌ ∑ ௜௝௜ݓ ௜ݔ ൅ ௝ܾ                                                                                                     ሺ4.2ሻ 

where ݔ௜ is the output from previous layer, and ݓ௜௝ is the weight of the link 

connecting unit i to  j. The weights associated with each connection indicate the extent to 

which the conveyed signal is amplified or diminished. The externally applied bias 

(threshold) ௝ܾ  increases or decreases the net input of the activation function, depending on 

whether it is positive or negative, respectively. It has a role similar to the constant term in 

multiple linear regressions, e.g., it allows the origin to be shifted depending on the input 

variables for the network output. It also determines the location of the logsig function on 

the horizontal axis. The activation value (output) of unit j is given by: 

௝ܽ ൌ f൫݊݁ݐ௝൯ ൌ  
1

1 ൅ eି௡௘௧ೕ
                                                                                                  ሺ4.3ሻ 

 Suppose that at each neuron in the first and second hidden layers (Fig. 4.1), activation 

functions ௛݂ଵ and ௛݂ଶ are applied, respectively, and at each node in the output layer, the 

function ௢݂௨௧ is applied; then, the network shown in Figure 1 can be mathematically 

expressed as:  

fሺx, wሻ ൌ f୭୳୲ ൞෍ ௞ଵݓ

N౞మ

୩ୀଵ

fଶ ൮෍ ௝௞ݓ

N౞భ

୨ୀଵ

fଵ ቌ෍ ௜ݔ௜௝ݓ

N౟

୧ୀଵ

ቍ൲ൢ                                                   ሺ4.4ሻ 

where ݔ௜ denotes the input value at input neuron i, ݓ௜௝ is the connection weight between 

input neuron i and hidden neuron j in the first hidden layer, ݓ௝௞ is the connection weight 

between hidden neuron j in the first hidden layer and hidden neuron k in the second hidden 

layer, ݓ௞ଵ is the connection weight between hidden neuron k in the second hidden layer and 

output neuron 1, and  ௜ܰ=4, ௛ܰଵ=84 and ௛ܰଵ=24 are the number of input and hidden nodes. 

The notation ݂ሺܠ,  ሻ  implies that the output of the network at the output node is a functionܟ

of given vector values x of the exploratory variable and the weight vector w.  
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Hornik et al. (1990) reported that FFNNs with one hidden layer are capable of estimating 

any mathematical continuous function. ANNs with more hidden layers, however, can speed 

up the training process (Hirose et al., 1991).  

In the present study, the most common learning law, i.e., back propagation (BP)  is 

applied. 

4.1.2. Back-Propagation algorithm 
The back propagation (BP) method is the most widely used training algorithm for 

FFNNs because of its simplicity and small programming cost (Rumelhart and McClelland, 

1986; Ripley, 1996; Bishop, 1995). 

With the BP learning rules, the goal of learning is to minimize the error between the 

desired outputs and the calculated outputs of the network. The learning process for the 

BPNN involves sending the input values forward through the network and then computing 

the difference between the calculated output and the corresponding desired output from the 

training dataset. In this algorithm, the error function is minimized using a gradient-descent 

technique. The necessary corrections to the weights of the network for each moment are 

obtained by calculating the partial derivative of the error function with respect to each 

weight. The resulting weight update is then computed.  

In its simplest form, the weight-update is a scaled step in the opposite direction of 

the gradient. Hence, the weight-update rule is: 

∆௣ݓ௜௝ሺݐሻ ൌ െߝ ൈ
௣ܧ߲

௜௝ݓ߲
ሺݐሻ ൅ ߙ ൈ ∆௣ݓ௜௝ሺݐ െ 1ሻ .                                                                  ሺ4.5ሻ 

where ߙ is the momentum term that determines the influence of the previous iteration on 

the present one. ߝ  is a parameter that determines the step size and is called the learning 

rate. In this equation, the total error is given by  
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E ൌ MSE ൌ ෍
௣ܧ

Q

Q

୮ୀଵ

ൌ
1
Q ෍ ෍ሺ

N

୨ୀଵ

Q

୮ୀଵ

݀௣௝ െ ܽ௣௝ሻଶ .                                                                   ሺ4.6ሻ     

  where ݀௣௝ and ܽ௣௝ are the target and the actual response value of the output neuron j, 

which corresponds to each training sample pth. Q is the number of training samples and N 

represents the number of output units. This error information is propagated backwards 

through the ANN and the weights are adjusted. After some number of iterations, the 

training stops when the calculated output values best approximate the desired values.   

The BP includes several kinds of paradigms (e.g., batch back propagation, gradient 

descent, conjugate gradient, Levenberg-Marquardt, and resilient propagation). The main 

difference between these paradigms is the method of calculating the weights and their 

updating (Werbos, 1994; El-Qady and Ushijima, 2001). The mathematical basis of these 

paradigms is well described in the literature (e.g., Scales, 1985; Battiti, 1992; Riedmiller, 

1993; Hagan et al., 1996; Powell, 1977; El-Qady and Ushijima, 2001).  

The mathematical basis of resilient propagation (RPROP) is considered to be the most 

successful paradigm in this study. 

4.1.2.1. Resilient propagation algorithm 
The resilient propagation (RPROP) algorithm is a local adaptive learning scheme, 

performing supervised batch learning in the FFNNs, and was introduced by Riedmiller and 

Braun in 1993. The mathematical basis of the RPROP algorithm is discussed here because 

the results in chapter five will show that it is the most efficient algorithm for this study.  It 

is introduced as a second learning rule that determines the evolution of the updated value. 

This estimation is based on the observed behavior of the partial derivative during two 

successive weight-steps. Each weight (Wij) has its own step size or update value (∆ij), which 

varies with time t according to the following equation 
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∆௜௝ሺݐሻ ൌ

ە
ۖ
۔

ۖ
ηାۓ ൈ ∆௜௝ሺݐ െ 1ሻ        if       డா

డௐ೔ೕ
ሺݐሻ ൈ  డா

డௐ೔ೕ
ሺݐ െ 1ሻ ൐ 0 

ηି ൈ ∆௜௝ሺݐ െ 1ሻ        if       డா
డௐ೔ೕ

ሺݐሻ ൈ డா
డௐ೔ೕ

ሺݐ െ 1ሻ ൏ 0

∆௜௝ሺݐ െ 1ሻ                                              else       

         ,                          ሺ4.7ሻ                    

where 0< η- < 1 < η+, and the weights are updated according to  

ሻݐ௜௝ሺݓ∆ ൌ

ە
ۖ
۔

ۖ
ݐെ∆௜௝ሺۓ െ 1ሻ        if       

ܧ߲
߲ ௜ܹ௝

ሺݐሻ ൐ 0 

൅∆௜௝ሺݐ െ 1ሻ        if       
ܧ߲

߲ ௜ܹ௝
ሺݐሻ ൏ 0

0                                           else       

                    ,                                      ሺ4.8ሻ     

4.1.3. Learning rate and momentum coefficient  
The efficient selection of the training parameters and the network learning paradigm 

are very important to achieve good performance with  ANN (Buam and Haussler, 1989). In 

BP algorithms, the learning rate, ε, is a small number (0 < ε ൑1.0) (Aristodemou et al., 

2005) that controls the amount of error that will be negatively added to the interconnection 

weights for the next iteration (Cranganu, 2007). If the learning rate is large,  large weight 

changes are then allowed, and no learning occurs. Conversely, if the learning rate is small, 

then only small changes are allowed, which can increase the learning time. The momentum, 

α, dampens the amount of weight change by adding in a portion of weight change from the 

previous iteration. The momentum is credited with smoothing out large changes in the 

weights as well as helping the network converge faster when the error is changing in the 

correct direction. Typical values for the momentum fall between 0 and 1.0 (Aristodemou et 

al., 2005).  
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4.1.4. Choosing the number of hidden neurons 
The number of hidden neurons affects the ability of the ANN to separate the data. A 

large number of hidden neurons will ensure correct learning (De Villiers and Barnard, 

1993), and the network is able to correctly estimate the training data, but its performance on 

new data is compromised. On the other hand, the network may not be able to learn the 

relationships between the datasets with  few hidden neurons and the error will not reach an 

acceptable threshold. As a result, the proper selection of the number of hidden neurons is 

important. 

 

4.1.5. Selection of the initial weights 
The first values of the weight vector are called the initial weights. The learning 

paradigms seek a valley in the weight space using a steepest descent technique. Thus, the 

choice of initial weights in the multidimensional weight space plays a critical role. 

However, there are no recommended rules for this selection, and several different initial 

weight values (randomly generated around zero) can be tried in order to improve the ANN 

results.  

 

4.2. Artificial neural network paradigms 
It is very difficult to know which ANN training paradigm will be the fastest for a 

given problem, as this depends on many factors, including the complexity of the problem, 

the number of data points in the training set, the number of weights and biases in the 

network, the error goal, and whether the network is being used for pattern recognition or 

function approximation. This section compares some of the most common training 

algorithms.  
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 4.2.1. Batch training with weight and bias learning rules 

(BTWB) 
         In a BTWB algorithm, the weights and biases of the network are updated only after 

the entire training set has been applied to the network. The gradients calculated for each 

training example are added together to determine the change in the weights and biases. 

Momentum allows a network to respond not only to the local gradient but also to recent 

trends in the error surface (Hagan et al., 1996). Acting like a low-pass filter, the momentum 

allows the network to ignore small features in the error surface. This is important because 

without momentum, a network may get stuck in a shallow local minimum.  

 

 4.2.2. Conjugate gradient with Fletcher reverse updates 

(CGFR) 
The CGFR method is an algorithm that numerically solves particular systems of 

linear equations, namely those with symmetric and positive–definite matrices. This method 

is iterative, so it can be applied to sparse systems that are too large to be handled by 

direction. Such systems arise regularly when numerically solving partial differential 

equations (Hagan et al., 1996).  

 

4.2.3. Resilient propagation (RPROP) 
Resilient propagation (RPROP) algorithms are local adaptive learning schemes, 

performing supervised batch learning in feed-forward neural networks. The basic principle 

of RPROP is to eliminate the harmful influence of the size of the partial derivative on the 

weight step. Only the sign of the derivative can determine the direction of the weight 

update; the magnitude of the derivative has no effect. The size of the weight change is 

determined by a separate update value. The update value for each weight and bias is 
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increased whenever the derivative of the performance function, with respect to that weight, 

has the same sign for two successive iterations. The update value is decreased whenever the 

derivative, with respect to that weight, changes sign from the previous iteration. If the 

derivative is zero, the update value remains the same. Whenever the weights oscillate, the 

weight change is reduced. If the weight continues to change in the same direction for 

several iterations, the magnitude of the weight change increases. The RPROP algorithm is 

the fastest one for pattern recognition problems and the memory requirements for this are 

relatively small as compared to the other considered algorithms. 

  

4.2.4. Gradient descent with momentum and adaptive learning 

rate (GDMA) 
The GDMA algorithm adjusts the weights in the direction of steepest descent 

(negative of the gradient), which is the direction in which the performance function is 

decreasing most rapidly. It turns out that although the function decreases most rapidly 

along the negative of the gradient, this does not necessarily produce the fastest 

convergence. The GDMA is usually much slower than the other methods, but it has about 

the same storage requirements as the RPROP. It can still be useful for some problems, 

however (Battiti, 1992).  

 

4.2.5. Levenberg-Marquardt with weight and bias learning rules 

(LMWB) 
The LMWB algorithm (Hagan and Menhaj, 1994) was designed to approach 

second-order training speeds without having to compute the Hessian matrix. This 

optimization technique is more sophisticated and powerful than gradient descent (Singh et 

al., 2005). In general, for function approximation problems and for networks that contain 
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up to a few hundred weights, the Levenberg-Marquardt algorithm will have the fastest 

convergence. In many cases, the LMWB obtains lower mean square errors than any of the 

other algorithms tested. However, as the number of weights in the network increases, the 

advantage of LMWB decreases. In addition, the LMWB performs relatively poorly for 

pattern recognition problems. The storage requirements of the LMWB are larger than the 

other algorithms tested (Hagan et al., 1996).    

 

4.3. Training and testing neural networks 
To achieve a best training procedure, a wide range of examples must be compiled. 

Thus,  for complex problems, more examples are required. In turn, poor training data give 

rise to an unreliable network. In some cases, the ANN is overtrained because the output 

error falls below a particular error threshold. By overtraining, the network may become too 

adapted to learn the training data and may not be able to predict new data accurately. To 

familiarize the ANN with noise in real data, some noise can be added to the training data.  

 

4.4. Network generalization ability 
  In all parameter determination problems, the degree of determination of the system, 

  :ௗ௦, is defined asܦ

Dୢୱ ൌ Number of available data points / Number of unknown parameters                    (4.9) 

Since the ANN deals with parameter determination problems, its solution depends on ܦௗ௦ . 

The unknown parameters for an ANN are the connection weights. The trained ANN is 

called over-determined if Dୢୱ ൐ 1. The solution of an ANN probably over-fits the observed 

data if  Dୢୱ ൏ 1. In this case, although, the training error reaches a threshold error, the 

ANN may be unable to predict the desired target correctly. To overcome this problem, the 
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architecture of the ANN should be as simple as possible, so that, it can still estimate the 

desired target adequately.   

One technique to select a simple network with good generalization ability is to start 

with a large number of hidden layers and their corresponding neurons, then iteratively 

simplify the architecture (LeCun et al., 1990). Another way is to start with a simple 

architecture and iteratively add neurons or hidden layers (Ash, 1989). Bishop (1995) and 

Ripley (1996) used validation approach to avoid over-fitting, in which the data pool volume 

is divided into two subsets: a training dataset used to train the ANN and a validating dataset 

used to evaluate the generalization ability of the ANN. During the training phase, once the 

error for the validation dataset starts to increase, the training is terminated; otherwise, the 

training continues and the error for the training dataset is calculated until the threshold error 

is reached (Wessels and Barnard, 1992; Bowden et al., 2002).   

 

4.5. Summary   
In this chapter, the architectures of ANNs are briefly descibed. The mathematical 

basis of the most common learning law (i.e., BP), which is a training law for the FFNN, is 

also discussed. In order to design and train the ANN,  a brief introduction of some 

important terms is also presented, e.g., the learning rate, momentum coefficient, choosing 

the number of hidden layers and selection of the initial weights. As a next step, five 

common training paradigms: (including, BTWB, CGFR, RPROP, GDMA and LMWB) 

have been compared for 2D and 3D surveys. In a BTWB algorithm, which acts like a low-

pass filter, the momentum allows the network to ignore small features in the error surface. 

This is important because without momentum, a network may get stuck in a shallow local 

minimum. The CGFR method is an algorithm that numerically solves particular systems of 
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the linear equations, i.e., those with symmetric and positive–definite matrices. The RPROP 

algorithm is the fastest algorithm for pattern recognition problems, and the memory 

requirement for this is relatively small as compared to other algorithms. The GDMA is 

usually much slower than the other methods, but it has about the same storage requirements 

as the RPROP.  In general, for function approximation problems and networks that contain 

up to few hundred weights, the LMWB algorithm has the fastest convergence. However, as 

the number of weights in the network increases, the advantage of LMWB decreases. In 

addition, the LMWB performance is also relatively poor for pattern recognition problems. 

The storage requirements of the LMWB are larger than those of the other algorithms tested 

(Hagan et al., 1996). Finally, the network generalization ability is discussed.  
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Chapter 5 

Training and testing the ANN using 2D and 3D 

synthetic data 

In this chapter, a synthetic data generation is explained in order to train and test the 

ANN. The process of training the ANN and the selection of training parameters are 

discussed here for five common arrays (i.e., the WS, W, DD, PD and PP arrays) used in 2D 

and 3D surveys. 

 

5.1. Generation of training and testing data pool 

formation 
The model used here to produce synthetic data consists of a homogeneous medium 

of 100 Ωm resistivity with an embedded anomalous body of 1000 Ωm. High-resistivity 

contrast regions are expected from the target site that has been used for the real field data 

collection. In the synthetic data, these high-resistivity values were selected in order to train 

the ANN.  

In order to reduce the computation time (without loss of generality), the data base 

used for this study was smaller than the total data base, where about 40% of the generated 

data were randomly selected for training, while 20% ~ 25% was randomly selected to test 

the ANN. In order to study the interpolation and extrapolation properties of the ANN, the 

remaining 35% ~ 40% of the synthetic datasets were generated with different resistivities 

for background and anomalous body, ranging from 100-1000 Ωm. The synthetic datasets 

were normalized in a range of [0, 1] for training and testing the ANN; this range allows the 
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logistic sigmoid activation function to restrict the size of the input data (El-Qady and 

Ushijima, 2001). 

 

5.1.1. Synthetic data creation 
In order to study the effect of data pool formation in training the ANN, two methods 

were used to generate the synthetic data. These methods are called M1 and M2, which 

basically differ in the type of input-output data used to train the ANN. In the following 

sections, details of each method for both 2D and 3D synthetic datasets are discussed.     

 

5.1.1.1. 2D synthetic data creation using the method M1_2D 
In the method M1_2D, a cross-section of the subsurface is divided into a mesh of 

elements with background resistivity of 100 Ωm and an anomalous element of 1000 Ωm 

moving to all of the model mesh elements (see Fig. 5.1). At each anomalous element 

position, forward modeling using the desired array configuration is carried out, and then 

their apparent resistivity data are calculated. In this method, the apparent resistivity data are 

considered as the input data and the true resistivity of all mesh elements is used as the 

output data in the training phase of the ANN. The testing set corresponds to a model that 

has been used only to test the performance of the ANN, not for the training. The anomalous 

body in the testing set was chosen on basis of several mesh elements, e.g., four mesh 

elements, instead of one in the training sets (Fig. 5.2). This anomalous body is moved in the 

whole layers of the model mesh (100×6). A total of 600 training patterns and 150 testing 

patterns (with four mesh elements as the anomalous body) were generated using the method 

shown in Fig. 5.1. 
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Figure 5. 1. Generation of training datasets using the method M1_2D. 

 

Figure 5. 2. Generation of testing datasets using the method M1_2D. 
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5.1.1.2. 2D synthetic data creation using the method M2_2D 
In the second method, M2_2D, different sizes are selected for anomalous body, and 

their locations are moved to different positions within the homogeneous model mesh 

elements. Each element in the mesh is permitted to be either resistive or conductive. The 

2D datasets are generated using a finite element forward modeling code adopted from Loke 

and Barker (1996b). Each synthetic profile consists of 101 electrodes, and the desired 

electrode configuration is used to generate synthetic data (Fig. 5.3).  

 

Figure 5. 3. Forward model used to generate the synthetic resistivity dataset using the 
method M2_2D. The Figure shows one of the positions of the anomalous body. 

 

In the following paragraph, it is explained that how the horizontal and vertical 

locations of the synthetic resistivity data are determined. These locations are required to 

train and test the ANN. The horizontal location of the data point is placed at mid-point of 

the set of electrodes used to make measurements (Loke, 2009), while the vertical position 

of the plotting point (depth of investigation) is placed at the median depth of investigation 

(Edward, 1977) of the electrode array used. One quantitative means to put a numerical 

value on the depth of investigation involves the use of sensitivity function, or the Frechet 

derivative of the array. The sensitivity function essentially indicates the degree to which a 

change in the resistivity of a subsurface will influence the potential measured by the array. 
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The higher the value of the sensitivity function, greater will be the influence of the 

subsurface region on the measurement. Mathematically, the sensitivity function is given by 

the Frechet derivative (McGillivray and Oldenburg, 1990). Following Edwards (1977), the 

median depth of investigation for each electrode configuration is the electrode spacing (a) 

multiplied by a coefficient K. Table 2.3 shows K-values (as z/a) for each data level. As an 

example for M2_2D method, consider the simplest possible dipole-dipole configuration 

shown in Fig. 5.4.   

 

Figure 5. 4. Typical setup for a dipole-dipole configuration with a given number of 
electrodes along a straight line attached to a multi-core cable. 

 

As shown in above Figure, the current electrode (C2) is located at x=0 (with all 

electrodes on the ground surface) and the spacing between C2-C1 is denoted by a=2 meters. 

The measured apparent resistivity corresponding to these electrodes belongs to data level 

n=4 and is denoted by the letter A. The horizontal location of this point is x=4 (the mid-

point of C2 and P2) and its vertical location, which is 2.440 meters (=2×1.220) as listed in 

Table 2.3. The apparent resistivity and corresponding true resistivity of this point (4, 2.44) 

can therefore be obtained from the corresponding apparent pseudo-section and resistivity 

model. The same procedure can be used for all data points. As a result, in our synthetic data 
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for each data point, there are four characteristics: the x- and z-locations and the apparent 

and true resistivities. 

 

5.1.1.3. 3D synthetic data creation using the method M1_3D 
In this section, it is explained that how the 3D synthetic data are generated, which 

are  required to train and test the ANN. Similar to the 2D model, the 3D model used to 

produce synthetic data for a homogeneous medium of 100 Ωm resistivity, with an 

embedded anomalous body of 1000 Ωm. The selection of the number of training and 

testing datasets is similar to the procedure mentioned for 2D synthetic datasets.  

In the method M1_3D, the 3D subsurface model with a homogeneous and isotropic 

underground condition is divided into a block matrix with a background resistivity of 100 

Ωm and an anomalous block of 1000 Ωm moving to all the model mesh element points 

(Fig. 5.5). As an example, Figure 5.5 shows the schematic model matrix (14×14×8) used to 

generate synthetic datasets by the method M1_3D. The sizes of the block matrices used to 

generate the 3D synthetic data for different electrode configurations are shown in Table 5.1. 

In each position of the anomalous block, forward modeling was performed to calculate the 

apparent resistivity data using the desire configuration. The apparent resistivity data were 

considered as the input data, while the resistivities of all mesh elements were used as the 

output data in the training phase of the ANN.  

Using the model shown in Figure 5.5, 1568 training patterns were generated. In 

order to produce the testing datasets, four anomalous blocks were considered instead of 

one, which were used to generate the training datasets with a total of 392 testing datasets. 
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Figure 5. 5. Generation of training datasets using the method M1_3D. 

 

Table 5. 1. Sizes of block matrices used to generate 3D synthetic data for different 
electrode configurations. 

Array Size of the block matrix

PP 14×14×8 

PD 80×14×8 

DD 40×12×7 

WS 40×12×5 

W 40×12×5 
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5.1.1.4. 3D synthetic data creation using the method M2_3D 
In the method M2_3D, the horizontal location of the data point is at mid-point of 

the set of electrodes used to make that measurement (Loke, 2000). The vertical position of 

the plotting point is also calculated in a similar way as of the 2D model. As an example, the 

method M2_3D is explained for PP array. Following Edwards (1977), the median depth of 

investigation for the PP configuration is found to be 0.867 multiplied by the electrode 

spacing (a). Consider the simplest possible array configuration shown in Figure 5.6(e) with 

the current electrode located at (12, 6, 0) and the potential electrode located at (2, 6, 0), i.e., 

with both the electrodes on the surface and “a=10” meters apart.  

 

Figure 5. 6. Model used to produce synthetic data using the method M2_3D (a). Vertical 
section at y=6m (b). Locations of data points in y-direction view (c). Pseudo-section of the 
measured apparent resistivity along y=6m (d). Pole-pole array with the current electrode 
located at (12,6,0) and the potential electrode located at (2,6,0), i.e., both electrodes are on 
the ground surface (e). 

 

The corresponding measured apparent resistivity is denoted by the number four. 

According to Figures 5.6(b and c), the horizontal location of this point is (7,6) and its 

vertical location is 8.67 meters (=10×0.867). The apparent resistivity and corresponding 



74 
 

true resistivity of this point (7, 6, 8.67) from Figures 5.5(d and b), can therefore be find 

respectively. The same could be done for all the data points. For the data point numbers 1, 

2, 3, 4 and 5 of Figure 5.6(c), the horizontal and vertical locations together with apparent 

and true resistivities are shown in Table 5.2. As a result, in our synthetic data at each point, 

there are five characteristics; the x-, y-, and z-locations, and the apparent and true 

resistivities. 

Table 5. 2. The horizontal location, vertical location, apparent resistivity, and true 
resistivity for the data points 1, 2, 3, 4 and 5 in Figure 5.6(c). 

Data point 1 2 3 4 5 

Number of current electrode 26 28 27 26 29 

Number of potential electrode 27 29 30 31 32 

Location of data point 
(meters) 

(11,6,1.73) (7,6,1.73) (7,6,5.20) (7,6,8.67) (3,6,5.20)

Measured apparent resistivity 
(Ωm) 

115.83 423.64 50.35 97.70 112.10 

True resistivity 
(Ωm) 

100 1000 1000 1000 100 

 

5.2. Training the ANN using 2D and 3D synthetic data  
This section presents detailed explanation about training the ANN with 2D synthetic 

data obtained by the WS, W, DD, PD and PP arrays.  

 

5.2.1. Effect of the input-output data type  
The results of the ANN-based parameter recognition depend on the data type used 

in the training (Spichak, 2000). In order to estimate the effect of input-output data type on 

inversion results, the following two types of data are investigated: 
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5.2.1.1. 2D synthetic data generated by the method M1_2D 
The synthetic data were produced by the same conditions as in the field data 

acquisition using the desired array; the number of electrodes used (Ne), the minimum 

electrode spacing (a) and the ratios of different electrode spacings to the minimum 

electrode spacing used for each array (Ke) are presented in Table 5.3. The horizontal levels 

used in Figure 5.1 for each array are shown in Table 5.4. Table 2.3 is used to select the 

proper horizontal levels, which were approximately in accordance with data levels in the 

apparent resistivity datasets obtained in the field for each array. 

 

Table 5. 3. Number of electrodes used (Ne ), minimum electrode spacing (a) and ratios of 
different electrode spacings to the minimum electrode spacing used for each array (Kୣ). 

Array Ne a (m) Ke 

WS 41 3 1, 2 and 3 

W 20 2 1, 2, 3 and 4 

DD 20 2 1, 2 and 3 

PD 41 1 1, 2 and 3 

PP 41 1 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 

 

Table 5.4 shows the size of the grids used, number of patterns, number of data points in 

each pattern and total number of data points for each array. 3% noise uniformly in the 

generated synthetic apparent resistivity data is considered. To train the ANN with such 

data, the number of nodes in the input layer should be equal to the number of measured 

apparent resistivities in each pattern. The number of nodes in the output layer should be 

equal to the number of mesh elements (or of patterns), because the true resistivities of all 

mesh elements are used as output of the ANN. To gain reliable measurements with DD 
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array, the “n’’ values not greater than 6 are used. The “n’’ values of 1 to 8 have also been 

used to produce the synthetic data following the WS array. To produce the synthetic data 

by the PD array, both the forward and reverse methods are considered, which gave a dataset 

of 1440(=2×720) data points for each set.  

5.2.1.2. 3D synthetic data generated by the method M1_3D 
The 3D synthetic data were produced by the same conditions as those in the 3D 

surveys using the five common arrays similar to previous section. One node is considered 

between each pair of the electrodes in the x- and y- directions.  

In the method M1_3D, the 3D subsurface model, for which the underground 

condition is considered to be homogeneous, was divided into a block matrix with a 

background resistivity of 100 Ωm and an anomalous block of 1000 Ωm moving to all of the 

model mesh elements (Fig. 5.5). For each position of the anomalous block, forward 

modeling using the desired array was performed to calculate the apparent resistivity data. In 

order to produce the testing datasets, four anomalous blocks were considered instead of the 

one block that was used to generate the training datasets. The apparent resistivity data were 

considered as the input data, while the resistivities of all mesh elements were used as the 

output data in the training phase of the ANN. 3% noise uniformly in the generated synthetic 

apparent resistivity data is considered. Since for data obtained by the PP array only the 

cross-diagonal measurements were considered, each synthetic pattern consists of 728 data 

points. 

In the 3D survey of the PP array, the minimum electrode spacing used in a square 

grid (8×8) was 2 m, and the size of the block matrix was (14×14×8). As shown in Figure 

5.5 the horizontal levels (0 to Z8) were 0, 1, 2, 3.5, 5.0, 7.0, 9.0, 11.0 and 14.0 m. Using the 

PP array, 1568 (=14×14×8) training patterns (1568×728=1141504 data points) were 
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generated. The number of testing datasets was 392 (392×728=285376 data points). In order 

to train the ANN with PP data, the number of nodes in the input and output layers must be 

728 and 1568, respectively. In the 3D survey of the PD array, the minimum electrode 

spacings along the x and y directions that is used in an orthogonal grid (41×8) were 1 and 2 

m, respectively. 

 

Table 5. 4. Horizontal levels, size of the grids, number of patterns, number of data points in 
each pattern and total number of data points for each array. 

Array Horizontal 
levels 

Size of 
grid 

Number of data 
points in each pattern 

Number of 
patterns 

Total number of 
data points 

WS 

Z1 1.5 

40×6 330 240 79200 
Z2 3 
Z3 5 
Z4 8.5 
Z5 12.5 
Z6 17 

W 

Z1 0.52 

19×5 50 95 4750 
Z2 1.10 
Z3 2.20 
Z4 3.50 
Z5 5.0 

DD 

Z1 0.9 

19×6 85 114 9690 
Z2 1.5 
Z3 2.0 
Z4 2.5 
Z5 3.0 
Z6 4.0 

PD 

Z1 0.7 

40×6 1440 240 345600 
Z2 2.0 
Z3 3.5 
Z4 5.0 
Z5 7.0 
Z6 10 

PP 

Z1 0.9 

40×6 335 240 85200 
Z2 1.7 
Z3 3.5 
Z4 5.0 
Z5 7.0 
Z6 9.0 
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The size of the block matrix was (80×14×8) and the horizontal levels (0 to Z8) were 

0, 0.4, 0.9, 2.1, 3.6, 5.6, 7.9, 10.9 and 14.0 m. In each pattern of the PD data, the number of 

data points in the x- and y- directions were 8032 (=8×1004) and 1189, respectively, making 

a total of 9221 data points. Accordingly, 8960 (=80×14×8) training patterns are generated 

and the total number of data points is 82620160 (=8960×9221). The number of testing 

datasets was 2240 (2240×9221=20655040). To train the ANN with PD data, the number of 

nodes in the input layer must be 9221 and in the output layer should be 8960.  

In the 3D surveys using the four electrode array (i.e., the DD, WS and W arrays) the 

minimum electrode spacings used along both the x and y directions in an orthogonal grid 

(21×7) was 2 m. In a block matrix (40×12×7) for the DD array the horizontal levels (0 to 

Z7) were 0, 0.5, 1.0, 1.5, 2.5, 3.8, 5.3 and 7.0 m. A block matrix (40×12×5) for both the 

WS and W arrays is considered. The horizontal levels (0 to Z5) for the WS array were 0, 

0.5, 1.5, 3.0, 5.0 and 7.0 m and for the W array were 0, 0.8, 1.6, 3.2, 5.0 and 7.0 m. The 

number of data points in the x- and y- directions, the total number of data points in each 

pattern and the number of training and testing patterns for the DD, WS and W arrays are 

shown in Table 5.5. The same table also shows the number of nodes in the input (NI) and 

output layers (NO). 

 

5.2.1.3. 2D synthetic data generated by the method M2_2D 
In the synthetic data produced by the method M2_2D, the position (horizontal 

location x and vertical location z) and values of the apparent resistivity of each data point 

were used as input data. The true resistivity was also selected as an output of the ANN 

output. Thus, the number of nodes in the input and output layers should be 3 and 1, 

respectively. The model used to produce synthetic data is a homogeneous medium of 
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Table 5. 5. Number of data points in the x- and y- directions, total number of data points in 
each pattern and number of training and testing patterns for the DD, WS and W arrays. In 
this table, NI and No are the number of nodes in the input and output layers, respectively. 

Array DD WS W 

Number of data points in the x-direction 1302 903 399 

Number of data points in the y-direction 220 140 100 

Total number of data points in each pattern 1522 1043 499 

Number of training patterns 3360 2400 2400 

Number of testing patterns 840 600 600 

NI 1522 1043 499 

NO 3360 2400 2400 

 

 
resistivity 100 Ωm with an embedded anomalous body of 1000 Ωm (Fig. 5.3). In each 

synthetic profile, 101 electrodes were used, and the horizontal levels in Figure 5.3 for 

different arrays were as follows: 

 WS array (0 to Z6): 0, 1.5, 3, 5, 8.5,13 and 17 m 

 W array (0 to Z5): 0, 0.52, 1.5, 3.0, 5.0 and 7.0m 

 DD array (0 to Z6): 0, 0.3, 0.8, 1.3, 1.8, 3.0 and 5.0m 

 PD array (0 to Z9): 0, 0.5, 1.0, 1.5, 2.2, 2.8, 3.6, 5.2, 8.0 and 11.0 m 

 PP array (0 to Z10): 0, 0.5, 1.0, 1.5, 2.2, 2.8, 3.6, 5.0, 6.5, 8.0 and 11.0 m. 

Thus, the sizes of the model grids for the WS, W, DD, PD and PP arrays were 100×6, 

100×5, 100×6, 100×9, and 100×10, respectively. Using different electrode spacings, sizes, 

and positions for the anomalous body, the training and testing patterns for each array was 

produced. The number of data points in each pattern and the number of training and testing 

patterns for the five previously mentioned arrays are shown in Table 5.6. This 2D dataset 
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was generated using a finite element forward modeling code by means of RES2DMOD 

(Loke, 2007b). 

Table 5. 6. Number of data point in each pattern and number of training and testing patterns 
for the WS, W, DD, PD and PP arrays. 

Array Number of data points in each 
pattern 

Number of training 
patterns 

Number of testing 
patterns 

WS 890 21 16 

W 978 16 12 

DD 579 21 11 

PD 1122 32 (forward+ reverse) 20(forward+ reverse) 

PP 1134 16 9 

 

 

 5.2.1.4. 3D synthetic data generated by the method M2_3D 
In the synthetic data produced by the method M2_3D, the apparent resistivity 

position (horizontal locations x, y and vertical location z) and apparent resistivity of each 

data point were used as input data. The true resistivity was also selected as an output of the 

ANN. Thus, the number of nodes in the input and output layers should be four and one, 

respectively. The model used to produce the 3D synthetic data by the PP array is shown in 

Figure 5.6. However, similar models were used for the PD, DD, WS and W arrays, in 

which the main difference is the use of orthogonal grids instead of square grids. The sizes 

of the grids for the PD, DD, WS and W –arrays are (41×8), (21×7), (21×7) and (21×7), 

respectively. Similar to method M1_3D, one node between each pair of electrodes is to use 

considered in the x- and y- directions. The horizontal levels and the size of the matrix 

blocks in the method M2_3D are the same as those used for the method M1_3D. The 
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anomalous block was placed in different positions within the block matrix. All the possible 

measurements in the x and y directions were considered using different sizes and positions 

for the anomalous body. The number of data points in each pattern and the number of 

training and testing patterns for each array are shown in Table 5.7. The 3D datasets for 

training and testing the ANN were generated using a finite element forward modeling code 

adopted from Loke and Barker (1996b). 

 

Table 5. 7. Number of data points in each pattern and number of training and testing 
patterns for the PP, PD, DD, WS and W arrays. 

Array Number of data points in each Number of training Number of testing 

PP 2016 18 9 

PD 9221 15 8 

DD 1522 20 10 

WS 1043 28 16 

W 499 50 20 

 

5.2.2. Effect of the number of nodes in each layer and the data 

pool formation 
             There is no general theory on the dependence of the recognition errors on the 

number of neurons in hidden layers. However, the approximation properties of an ANN 

improve when the number of hidden neurons increases (Spichak et al., 2000). Therefore, 

the effect of the number of neurons in the hidden layers on the performance of the ANN 

was studied using the 2D and 3D synthetic data generated by the methods M1 and M2. 
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5.2.2.1. Effect of the number of nodes in each layer and the 2D data pool 

formation 
             The ANN architecture was NI- Nh1-Nh2-NO, where NI, Nh1, Nh2 and NO are the 

number of neurons in the input layer, the first hidden layer, the second hidden layer and the 

output layer, respectively. The values of NI and NO are discussed in sections 5.2.1.1 and 

5.2.1.3. The values of Nh1 and Nh2 were assigned according to the values shown in the 

appendix Tables A1 to A5 for the WS, W, DD, PD and PP –arrays, respectively. Table 5.8 

shows the teaching precision and the number of epochs for each array.  

            Tables A1 to A5 also show the dependence of the MSE error on the number of 

neurons in the hidden layers of two types synthetic data produced by methods M1_2D and 

M2_2D. Although the number of epochs for each array was set to the value mentioned in 

Table 5.8, in the case of method M2_2D, the MSE performance of the ANN for the WS, 

W, DD, PD and PP arrays reached the desired performance goal (Table 5.8) after 16, 77,  

2282, 1275 and 373 epochs, respectively.   

Table 5. 8. Training precision and the number of epochs in training of the ANN with the 
WS, W, DD, PD and PP –data. 

Array Training precision Number of epochs 

WS 0.000100 4000 

W 0.000058 5000 

DD 0.000100 8000 

PD 0.000200 10000 

PP 0.000010 10000 
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The higher MSE error for method M1_2D could be explained by the size of the elements in 

the mesh. Because fixed sizes were used for each element of the mesh, which might affect 

the accuracy of the results. It is therefore concluded that the synthetic data generated by the 

method M2_2D may be the best data type for training and testing the ANN in this study. 

It has been proven theoretically that a three-layer structure network can estimate 

any kind of logic function, provided that enough neurons are set in the hidden layer (Irie 

and Miyake, 1988). However, the results of this study shown in the Tables A1 to A5 

suggest that an ANN with two hidden layers of the following values for Nh1 and Nh2 has 

the lowest MSE error for each array: 

 WS array: Nh1=28, Nh2= 16 

 W array:  Nh1=24, Nh2= 80 

 DD array: Nh1=28, Nh2= 4 

 PD array: Nh1=30, Nh2= 12 

 PP array: Nh1=30, Nh2= 90 

5.2.2.2. Effect of the number of nodes in each layer and the 3D data pool 

formation 
             The effect of the number of neurons in the hidden layers on the performance of the 

ANN using the 3D synthetic data produced by the methods M1_3D and M2_3D was 

studied. Similar to the 2D study in the previous section, the ANN architecture was NI- 

Nh1-Nh2-NO; the values of NI and NO are discussed in sections 5.2.1.2 and 5.2.1.4. The 

values of Nh1 and Nh2 were selected according to the appendix Tables A6 to A10 for the 

PP, PD, DD, WS and W –arrays, respectively. The teaching precision and the number of 

epochs for the above 3D arrays are shown in Table 5.9.  
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Table 5. 9. The training precision and number of epochs in training of the ANN with the 
PP, PD, DD, WS and W –data. 

Array Training precision Number of epochs 
PP 0.00030 5000
PD 0.000085 10000
DD 0.0008 8000 
WS 0.00025 100000
W 0.00007 10000

 Tables A6 to A10 also show the dependence of the MSE error on the number of neurons in 

the hidden layers for two types of synthetic data produced by methods M1_3D and M2_3D. 

In the case of method M2_3D, the MSE performance of the ANN for the PP, PD, DD, WS 

and W arrays reached the desired goal as mentioned in Table 5.9 after 1340, 1560, 700, 

34077 and 1677 epochs, respectively. According to Tables A6 to A10, the MSE error for 

method M1_3D in most cases is higher than that of the method M2_3D. This might be for 

the same reason as the 2D study. The results of 3D study shown in Tables A6 to A10 

suggest that the simplest architectures for the ANN that can reach the desired threshold 

error (Table 5.9) for the PP, PD, DD, WS and W arrays are (4-84-24-1), (4-35-25-1), (4-35-

25-1), (4-45-60-1) and (4-30-50-1), respectively. Since, it is reasonable to select the ANN 

with simplest architecture, i.e., the smallest number of neurons in each hidden layer, it is 

concluded that the synthetic data generated by method M2_3D may be the best data type 

for training and testing the ANN in this study.  

5.2.3. Effect of training data pool volume 

The optimum training data pool volume required for good generalization has been 

studied by several authors (e.g., Mehrotra et al., 1991; Spichak, 2000). In fact, large 

networks and complex input patterns require more training data for optimum generalization 

(Rajavelu et al., 1989).  
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5.2.3.1. 2D study of the effect of training data pool volume 
In order to study the effect of training data pool volume, three collections of training 

datasets were made using the method M2_2D for the WS, W, DD, PD and PP –arrays. 

These collections of datasets are shown in Table 5.10. The ANN architecture for each array 

was the same as explained in section 5.2.2.1. Tables A11 to A15 show the MSE 

performance of the ANN for the WS, W, DD, PD and PP –arrays, respectively. In these 

tables, the MSE performance for each collection after three different numbers of epochs is 

shown.  

Table 5. 10. Three collections of training datasets generated using method M2_2D for the 
WS, W, DD, PD and PP –arrays. 

Array Dataset Number of sets Number of data points 

WS 

WS2DV1 7 6230 

WS2DV2 21 18690 

WS2DV3 42 37380 

W 

W2DV1 8 7824 

W2DV2 16 15648 

W2DV3 24 23472 

DD 

DD2DV1 10 5790 

DD2DV2 21 12159 

DD2DV3 30 17370 

PD 

PD2DV1 16 17952 

PD2DV2 32 35904 

PD2DV3 64 71808 

PP 

PP2DV1 8 9072 

PP2DV2 16 18144 

PP2DV3 32 36288 
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Although the MSE errors for WS2DV3, W2DV3 and DD2DV3 reached the values close to 

their performance goal, their volumes are more than 1.5 times those of WS2DV2, W2DV2 

and DD2DV2, and they need more epochs to attain the threshold error. Since the large data 

pool volume takes a long time to train the ANN with other learning paradigms, the results 

of this study, which are shown in Tables A11 to A15, suggest that the data pool volumes of 

WS2DV2, W2DV2, DD2DV2, PD2DV2 and PP2DV2 should be sufficient for this study. 

5.2.3.2. 3D study on the effect of training data pool volume 

Similar to the 2D study described in section 5.2.3.1, three collections of datasets are 

considered for each of the PP, PD, DD, WS and W data in order to study the effect of 3D 

training data pool volume produced by method M2_3D. The details of these datasets are 

shown in Table 5.11. The ANN architecture for each array was in accordance with that 

given in section 5.2.2.2. The results of the MSE performance of the ANN for the PP, PD, 

DD, WS and W arrays are shown in Tables A16 to A20. In these tables the performance of 

the ANN is shown after three different numbers of epochs to determine the effect of both 

the number of epochs and the data pool volumes in training the ANN for each array. The 

results from this part of the study show that PP3DV2, PD3DV2, DD3DV2, WS3DV2 and 

W3DV2 might be sufficient. The results in Tables A16 to A20 also show that the datasets 

PP3DV3, PD3DV3, DD3DV3 and W3DV3 reached the performance goal of training the 

ANN. However, their volumes and the number of epochs required to reach the performance 

goal are more than the previous datasets. 

There are some limitations to the use of a too-large data pool volume in training the 

ANN. For example, training the ANN with the LMWB paradigm using  too-large data pool 
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volume may occupies most of the CPU memory of the computers, and sometimes the 

computer cannot run the training process.  

Table 5. 11. Three collections of training datasets generated using method M2_3D for the 
PP, PD, DD, WS and W arrays 

Array Dataset Number of sets Number of data points 

PP PP3DV1 9 18144 

PP3DV2 18 36288 

PP3DV3 27 54432 

PD PD3DV1 8 73768 

PD3DV2 15 138315 

PD3DV3 20 184420 

DD DD3DV1 10 15220 

DD3DV2 20 30440 

DD3DV3 30 45660 

WS WS3DV1 16 16688 

WS3DV2 28 29204 

WS3DV3 56 29204 

W W3DV1 20 9980 

W3DV2 50 24950 

W3DV3 80 39920 

 

5.2.4. Setting the learning rate and momentum 
An efficient selection of the training parameters and the network learning paradigm 

is very important to achieve good performance with ANN (Baum and Hausler, 1989). The 

momentum and learning rate are obviously related, but their mathematical relation is still 

not clear (Singh et al., 2005). The effect of these two parameters for five common arrays 

used in 2D and 3D surveys; the WS, W, DD, PD and PP arrays; were studied. Details of the 
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analysis are shown in Tables A21 to A30 (in Appendix A) for each array, respectively. The 

numbers of epochs correspond to the number required to reach the threshold error for each 

case (Tables A21 to A30). The results of this study suggest the most appropriate learning 

rate and momentum for each array, as shown in Table 5.12. 

 

Table 5. 12. Selected values of the learning rate and momentum for each array from the 
results shown in Tables A21 to A30 in Appendix A. 

Array Learning rate Momentum coefficient 

WS 2D 0.20 0.90 

3D 0.20 0.95 

W 2D 0.01 0.40 

3D 0.10 0.60 

DD 2D 0.01 0.20 

3D 0.20 0.90 

PD 2D 0.02 0.20 

3D 0.10 0.90 

PP 2D 0.02 0.30 

3D 0.15 0.80 

 

 

5.2.5. Comparison of the ANN paradigms 
The following learning paradigms are tested for networks: BTWB, GDMA, CGFR, 

LMWB, and RPROP. These paradigms are mostly based on back-propagation, and the 

weights are updated after each epoch. 
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5.2.5.1. 2D comparison study 
 Figures 5.7 to 5.11 show the mean square error (MSE) as a function of the number 

of iterations during the ANN training by different paradigms. These Figures are related to 

training the ANN using 2D synthetic data produced by the WS, W, DD, PD and PP arrays, 

respectively. 

According to the variation of the errors, it is concluded that the RPROP paradigm is 

the most efficient for training the 2D dataset related to all arrays. In the case of WS, W and 

DD arrays, the initial errors for the RPROP algorithm are about 0.52, 0.001 and 0.4, 

respectively, and they decrease as the iteration proceeds, until an attainment in value equal 

to the desired performance goal for each array is achieved, such that the network 

converges. The other algorithms could not achieve the performance goal even with 

maximum number of iterations defined for each array. In the case of PD and PP arrays, 

however, the LMDB paradigm achieved the desired threshold error after 3000 and 2853 

iterations, respectively, while the RPROP paradigm attained a value of about 0.0002 after 

1275 iterations for the PD array and of about 0.00001 after 373 iterations for the PP array. 

The initial error for the RPROP algorithm was about 2.61 for the PD array and about 0.035 

for the PP array, and decreased as the iteration proceeded. The other algorithms could not 

achieve the performance goal even after 10000 iterations. The results for each paradigm in 

terms of training speed and epochs (iterations) are summarized in Table 5.13.  
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Figure 5. 7. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 2D WS data. 

 

 

Figure 5. 8. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 2D W data. 
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Table 5. 13. Comparison of the 2D study for each paradigm in terms of training speed and 
epochs. 

Array  Paradigm Time (s) Epochs Training speed MSE Error 

WS 

BTWB 2473 4000 1.62 0.0184 

CGFR 1871 4000 2.14 0.0032 

GDMA 20 16 0.80 0.0001 

RPROP 979 4000 4.09 0.0049 

LMWB 1653 4000 2.42 0.0009 

W 

BTWB 2907 5000 1.72 0.000992 

CGFR 2551 5000 1.96 0.000628 

GDMA 90.6 77 0.85 0.000058 

RPROP 1292 5000 3.87 0.007998 

LMWB 2146 5000 2.33 0.000715 

DD 

BTWB 11880.7 8000 0.67 0.0004 

CGFR 10980.1 8000 0.73 0.0064 

GDMA 2402.1 2282 0.95 0.0001 

RPROP 10080.2 8000 0.79 0.0009 

LMWB 10341.6 8000 0.77 0.0032 

PD 

BTWB 4098 10000 2.44 0.00028 

CGFR 4739 10000 2.11 0.00031 

GDMA 2639 10000 3.79  0.00314 

RPROP 1301 1275 0.98 0.00020 

LMWB 2206 3000 1.36  0.00020 

PP 

BTWB 3703.7 10000 2.70 0.000413 

CGFR 4166.7 10000 2.40 0.000045 

GDMA 8849.6 10000 1.13  0.000012 

RPROP 282.6 373 1.32 0.000010 

LMWB 1135.6 2853 2.50  0.000010 
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Figure 5. 9. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 2D DD data. 

 

 

 

Figure 5. 10. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 2D PD data. 
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Figure 5. 11. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 2D PP data. 

5.2.5.2. 3D comparison study 
The mean square error (MSE) as function of the number of iterations during the 

training of the ANN by different paradigms is shown in Figures 5.12 to 5.16 for the PP, PD, 

DD, WS and W arrays, respectively. In this part of the study, the datasets generated by the 

method M2_3D have been used. 

According to the variation of the errors in Figures 5.12, 5.14, 5.15, 5.16, it is 

concluded that the RPROP paradigm was the most efficient algorithm for training the ANN 

using the 3D dataset related to the PP, DD, WS and W arrays. The initial error for the 

RPROP algorithm in these Figures is about 0.352, 0.002, 0.201 and 0.022, respectively, 

which decreases as the iteration proceeds such that the network converges to a value equal 

to the desired performance goal for each array. The other algorithms could not achieve the 

performance goal even after the maximum number of iterations for each array, i.e., 10000 

epochs for the PP, DD and W arrays and 100000 epochs for the WS array. In the case of the 

PD array, however, the RPROP paradigm achieved a value of about 0.000113 for 
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performance error of the ANN after 10000 iterations, while the GDMA paradigm attained a 

value of about 0.000058 after 1560 iterations (Fig. 5.13). The initial error for the GDMA 

algorithm was about 0.34 and then decreases as the iteration proceeded. The other 

algorithms could not achieve the performance goal after 10000 iterations. It is therefore 

concluded that the GDMA paradigm is the most efficient algorithm for training the ANN 

by the 3D datasets related to the PD array. Similar to 2D comparative study discussed in 

section 5.2.5.1, the comparative results for each paradigm in terms of training speed and 

epochs are summarized in Table 5.14. The training procedure was carried out on a 1.73-

GHz Dual-Core PC. Once the ANN converged, the weights were adapted and stored. The 

ANN then performed the inversion of the field data in a few seconds, using the updated 

weights, without any further training. 

 

Figure 5. 12. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 3D PP data. 
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Figure 5. 13. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 3D PD data. 

 

 

 

 

Figure 5. 14. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 3D DD data. 
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Figure 5. 15. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 3D WS data. 

 

 

 

 

Figure 5. 16. Mean square (MSE) error as a function of the number of iterations during the 
training of different ANN paradigms for 3D W data. 
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Table 5. 14. Comparison of the 3D study for each paradigm in terms of training speed and 
epochs. 

Array Paradigm Time (s) Epochs Training speed MSE Error 

PP 

BTWB 4504.5 5000 1.11 0.00075 

CGFR 4424.8 5000 1.13 0.00070 

GDMA 4098.4 5000 1.22 0.00090 

RPROP 917.8 1340 1.46 0.00030 

LMWB 4950.5 5000 1.01 0.00045 

PD 

BTWB 8000 10000 1.25 0.00171 

CGFR 6993 10000 1.43 0.00039 

GDMA 939.8 1560 1.66 0.00005 

RPROP 5848 10000 1.71 0.00011 

LMWB 9009 10000 1.11 0.00019 

DD 

BTWB 5714.3 8000 1.40 0.0018 

CGFR 5161.3 8000 1.55 0.0039 

GDMA 4551.2 8000 1.72 0.0018 

RPROP 426.8 700 1.64 0.0008 

LMWB 4968.9 8000 1.61 0.0028 

WS 

BTWB 72992.7 100000 1.37 0.00070 

CGFR 63694.3 100000 1.57 0.00029 

GDMA 58479.5 100000 1.71 0.00032 

RPROP 18520.1 34077 1.84 0.00025 

LMWB 59171.6 100000 1.69 0.00049 

W 

BTWB 7692.3 10000 1.30 0.00214 

CGFR 7299.3 10000 1.37 0.00029 

GDMA 6097.6 10000 1.64 0.00026 

RPROP 1096.1 1677 1.53 0.00007 

LMWB 8130.1 10000 1.23 0.00018 
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5.2.6. ANN interpolation and extrapolation properties 
The ANN performance was tested using the generated test datasets for each array. 

These datasets were not used during the training stage of the ANN. The number of test 

datasets and their respective error range for the WS, W, DD, PD and PP arrays are 

summarized in Table 5.15. As evidence from the listed values the errors are higher for the 

test datasets than the training datasets of each array.   

 

Table 5. 15. Number of test datasets and error range for the test data for the WS, W, DD, 
PD and PP arrays. 

Array Number of test datasets Error range
WS 2D 16 0.001 – 0.020

3D 16 0.020 – 0.040
W 2D 12 0.060 – 0.090

3D 20 0.030 – 0.070
DD 2D 11 0.010 – 0.060

3D 10 0.020 – 0.080
PD 2D 20 0.002 – 0.040 

3D 8 0.010 – 0.050
PP 2D 9 0.001 – 0.010

3D 9 0.003 – 0.060
 

 

In order to study the 2D and 3D interpolation and extrapolation properties of the 

ANN, another 24 synthetic datasets were generated for each array. The total number of test 

data points for each array is summarized in Table 5.16. The range from 100 – 1000 Ωm 

was divided into 100, 200, 300, 400, 500, and 600 Ωm as the background resistivity, and 

different resistivity values were considered for the anomalous body. For example, when the 

background resistivity was 100 Ωm, the resistivity values for the anomalous body were 

300, 700, 2000, and 4000 Ωm to cover the interpolation and extrapolation properties of the 

ANN. The details of the resistivity distribution for other test sets can be seen in Tables 

A.31 to A.40 in Appendix A. In these tables, the root mean square (RMS) error between the 
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results of the ANN and the corresponding true resistivity distributions are shown for each 

test set. The RMS errors for all interpolation and extrapolation test sets related to each array 

are summarized in Table 5.16 are in the range of 0.8 – 5.8%. Since the RMS errors for all 

datasets are in the range of 0.3 - 9.0%, it is thus concluded that the networks are properly 

designed and trained.   

 

Table 5. 16. Total number of test data points and range of RMS error for each array. 

Array Total number of data points Error range (%) 

WS 2D 21360 0.8 – 5.8 

3D 25032 2.0 – 8.0 

W 2D 23472 0.7 – 6.2  

3D 11976 3.0– 9.0 

DD 2D 13896 0.9 – 8.2  

3D 36528 3.0 – 8.0 

PD 2D 26928 1.0 – 7.1  

3D 221304 2.0 – 6.0 

PP 2D 27216 3.0 – 6.5  

3D 48384 0.3 – 9.0 

 

5.3. Summary  

In this chapter, the generation of synthetic data used to train and test the ANN is 

explained. The process of training the ANN and the selection of training parameters are 

discussed for five common arrays, i.e., the Ws, W, DD, PD and PP arrays, and then used in 

2D and 3D surveys. 
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In order to study the effect of data pool formation in training the ANN, two methods 

were used to generate the synthetic data. These methods are called M1 and M2, and they 

basically differ in the type of input-output data used to train the ANN. In the first methods 

(M1_2D and M1_3D), the apparent resistivity data were considered as the input data and 

the true resistivities of all mesh elements were used as the output data in the training phase 

of the ANN. In second method, M2_2D and M2_3D, the locations (x and y for the 2D case 

and x, y and z for the 3D case) and the apparent resistivity of data points were considered 

as the input data and the true resistivities of all mesh elements were used as the output data 

in the training process. The effect of the input-output data (obtained by the methods M1 

and M2) was investigated in terms of 2D and 3D surveys. The higher MSE error for the 

methods M1_2D and M1_3D as compared to that of the methods M2_2D and M2_3D can 

be explained as an effect of the size of the mesh elements. Because fixed sizes were used 

for each element of the mesh, this might affect the accuracy of the results. It is therefore 

concluded that the synthetic data generated using method M2_2D and M2_3D may be the 

best data type for training and testing the ANN in this study. 

The results of the 2D study suggest that the simplest architectures for the ANN that 

can reach the desired  threshold error for the PP, PD, DD, WS and W  arrays are (3-30-90-

1), (3-30-12-1), (3-28-4-1), (3-28-16-1) and (3-24-80-1), respectively. The simplest 

architectures for the ANN in the 3D study are (4-84-24-1), (4-35-25-1), (4-35-25-1), (4-45-

60-1) and (4-30-50-1). We also evaluated the effect of the training data pool volume in the 

2D and 3D parts of our study and determined the sufficient data pool volume for each 

array.  

Five common training paradigms, i.e., BTWB, CGFR, RPROP, GDMA and 

LMWB, are compared in the cases of 2D and 3D imaging. The results showed that for all 

arrays of 2D and 3D study with the  exception of 3D PD data, the RPROP is the most 
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efficient algorithm for training the DC resistivity data. In the case of 3D PD data the 

GDMA algorithm was the most efficient. 

In order to study the 2D and 3D interpolation and extrapolation properties of the 

ANN, another 24 synthetic datasets were generated for each array. The range from 100 – 

1000 Ωm was divided into 100, 200, 300, 400, 500, and 600 Ωm as the background 

resistivity, and different resistivity values for the anomalous body were considered. In the 

appendix Tables A31 to A40, the root mean square (RMS) error between the results of the 

ANN and the corresponding true resistivity distributions are shown for each test set. The 

RMS errors for all interpolation and extrapolation test sets related to each array are in the 

range of 0.8 – 5.8%. Since the RMS errors for all datasets are less than 9.0%, it is 

concluded that the networks are properly designed and trained.   
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Chapter 6  

Inversion of 2D and 3D DC resistivity field data 

using the ANN 

The ability of the trained ANNs to invert the DC resistivity imaging data must be 

checked by real field data related to a site with high resistivity contrast regions. Therefore, 

in this chapter, the ANN is applied to invert 2D and 3D DC resistivity data obtained by five 

common electrode configurations, i.e., the WS, W, DD, PD and PP arrays. The inversions 

of the field data using the ANN are then compared with the results of the inversion using 

the conventional RIT for each array. Further study using a synthetic example with a 

condition close to the field data is done for each array in order to compare the reliability of 

the results of both the ANN and the RIT. Furthermore, known information about the 

subsurface features of the site help us to check the network performance. 

 

6.1. Study site description  
The site used for this study is located south of the University of Malaya, Kuala 

Lumpur, Malaysia. It consists of an underground concrete wastewater pipe system and its 

square manhole columns (Fig. 6.1). 

The survey area stretches over a flat playground covered with grass. The direct 

resistivity measurement of the soil at the surface gives values ranging from 150 to 600 Ωm. 

The soil is relatively porous and very sandy that is probably originated from weathered 

bedrock. There are, however, areas of more resistive materials within the soil as well. The 

high resistivity values are caused by construction materials left behind during the 

construction of the wastewater system. There is a horizontal concrete pipe and 
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corresponding vertical manhole columns (A and B) at 7 and 6 meters depth, respectively, at 

the north side of the site (Fig. 6.1). The pipe is almost horizontal, buried at a depth of about 

6 m. Column B is located 4 meters southwest of column A and is connected to column F, 

which is more than ten meters deep. At the north side of the site, column A has been linked 

to a watercourse at a depth of 8 meters. In addition, the study site consists of a large cavity 

and a corresponding vertical manhole column (C) approximately at the center of the site 

(Fig. 6.1). Furthermore, there is another near-horizontal pipe at a depth of about 7 m. This 

pipe connects the vertical columns D and A. Another horizontal pipe connects the vertical 

columns D and E. Column E is located at the southwest corner of the study site (Fig. 6.1). 

In Figure 6.1, the corners of the study area (1 to 4) are shown with blue flags. Columns A, 

B, C, D, E and F are about one square meter (inner dimension) and set vertically from the 

surface to the cavity and the pipes.  

Table 6.1 shows the longitude and latitude of these flags as well as the vertical 

columns located in the site. The resistivity values of the concrete, measured directly, range 

from 950 to 1550 Ωm. Thus, the average resistivity of the concrete is 1250 Ωm. This value 

is used to determine the boundaries of the concrete structures in the inversion results. 

Values greater than 1250 Ωm were assumed to correspond to the empty space within the 

concrete or the cavity.  At the study site, several 2D and 3D surveys using W, WS, DD, PD 

and PP arrays were carried out over the pipes, the columns and the cavity. The details of 

these surveys are discussed in the corresponding subsections of this chapter.  
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Figure 6. 1. Location of the study site. The longitude and latitude of columns A to F and the 
corners of the site are shown in Table 6.1. 

 

 

 

 



105 
 

Table 6. 1. Longitude and the latitude of the corners of the site and the vertical columns 
located in the site. 

 Latitude Longitude 

1 3⁰ - 07΄- 10.69˝ - N   101⁰ - 39΄-18.49˝ - E  

2 3⁰ - 07΄- 12.30˝ - N  101⁰ - 39΄-17.35˝ - E   

3 3⁰ - 07΄- 10.15˝ - N  101⁰ - 39΄-20.25˝ - E   

4 3⁰ - 07΄- 09.54˝ - N  101⁰ - 39΄-19.14˝ - E   

A 3⁰ - 07΄- 11.17˝ - N  101⁰ - 39΄-18.83˝ - E   

B 3⁰ - 07΄- 11.13˝ - N  101⁰ - 39΄-18.71˝ - E   

C 3⁰ - 07΄- 10.62˝ - N  101⁰ - 39΄-18.32˝ - E   

D 3⁰ - 07΄- 11.00˝ - N  101⁰ - 39΄-17.61˝ - E   

E 3⁰ - 07΄- 10.39˝ - N  101⁰ - 39΄-17.39˝ - E   

F 3⁰ - 07΄- 10.24˝ - N  101⁰ - 39΄-17.19˝ - E   

 

6.2. Inversion of 2D DC resistivity imaging data using the 

ANN and RIT 
In this section, the ANNs have been trained with 2D synthetic data obtained by the 

WS, W, DD, PD and PP array to invert a real 2D field data for each array. The ANN 

architectures found for the WS, W, DD, PD and PP datasets in section 5.2.2.1 are (3-28-16-

1), (3-24-80-1), (3-28-4-1), (3-30-12-1) and (3-30-90-1), respectively. The study area and 

the corresponding profiles used in this part of the study are shown in Figures 6.2 to 6.6 for 

the WS, W, DD, PD and PP arrays, respectively. The WS, W, DD, PD and PP arrays are 

used in the 2D field data acquisition along the lines L1-L’1, L2-L’2, L3-L’3, L4-L’4, L5-

L’5 (Figs. 6.2 to 6.6), which supposed to be along the x-axes. The latitude and longitude of 

the first and last electrodes of each profile are summarized in Table 6.2. 
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Table 6. 2. Latitude and longitude of the first and last electrodes of each profile in the 2D 
surveys by the WS, W,  DD, PD and PP arrays. 

Array latitude longitude 

WS 
L1 3⁰ - 07΄- 9.89˝ - N 101⁰ - 39΄-20.41˝ - E 

L’1 3⁰ - 07΄- 12.38˝ - N 101⁰ - 39΄-17.33˝ - E 

W 
L2 3⁰ - 07΄- 11.52˝ - N 101⁰ - 39΄-19.02˝ - E 

L’2 3⁰ - 07΄- 10.25˝ - N 101⁰ - 39΄-19.11˝ - E 

DD 
L3 3⁰ - 07΄- 11.45˝ - N; 101⁰ - 39΄-1852˝ - E 

L’3 3⁰ - 07΄- 10.23˝ - N 101⁰ - 39΄-18.47˝ - E 

PD 
L4 3⁰ - 07΄- 11.06˝ - N 101⁰ - 39΄-17.08˝ - E 

L’4 3⁰ - 07΄- 11.04˝ - N 101⁰ - 39΄-18.38˝ - E 

PP 
L5 3⁰ - 07΄- 10.95˝ - N 101⁰ - 39΄-17.10˝ - E 

L’5 3⁰ - 07΄- 10.97˝ - N 101⁰ - 39΄-18.39˝ - E 

 

 

Figure 6. 2. Location of line L1-L’1 in the 2D survey using the WS-array. 
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Figure 6. 3. Location of line L2-L’2 in the 2D survey using the W array. 

 

 

Figure 6. 4. Location of line L3-L’3 in the 2D survey using the DD array. 
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Figure 6. 5. Location of line L4-L’4 in the 2D survey using the PD array. 

 

 

Figure 6. 6. Location of line L5-L’5 in the 2D survey using the PD array. 

 

The cable covers 120 m for the WS array, 38 m for both the W and DD arrays and 40 m for 

both the PD and PP arrays between the first and last take-out. The minimum electrode 

spacings for the WS, W, DD, PD and PP arrays are 3, 2, 2, 1, and 1 m, respectively. Three 

different electrode spacings (at 1 to 3 times the minimum spacing for the WS, DD and PD 

arrays, at 1 to 4 times the minimum spacing for the W array and at 1 to 10 times the 



109 
 

minimum spacing for the PP array) were measured. We used n=1 to 8 in the field data 

measuring by the WS array and n=1 to 6 for measurements using the DD array. The 

numbers of data points in the field dataset for each array are summarized in Table 6.3.  

Table 6. 3. Number of data points in the field dataset for each array and the RMS error for 
the results of the ANN and RIT. 

Array Number of data 
points 

RMS error (%) for the ANN 
result 

RMS error (%) for the RIT 
result 

WS 330 0.60 8.35 

W 50 3.70 5.13 

DD 85 4.45 5.57 

PD 1440 (=2×720) 4.47 5.13 

PP 355 3.88 5.03 

 

 Figures 6.7 to 6.11 show the measured apparent resistivity and calculated apparent 

resistivity data using the RIT for the WS, W, DD, PD and PP array, respectively. 

 

Figure 6. 7. Pseudo-section of measured (a) and calculated (b) apparent resistivity data 
using the WS array along line L1-L’1. 
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Figure 6. 8. Pseudo-section of measured (a) and calculated (b) apparent resistivity data 
using the W alpha array along line L2-L’2. 

 

 

 

Figure 6. 9. Pseudo-section of measured (a) and calculated (b) apparent resistivity data 
using the DD array along line L3-L’3. 
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Figure 6. 10. Pseudo-section of measured (a) and calculated (b) apparent resistivity data 
using the PD array along line L4-L’4. 

 

 

Figure 6. 11. Pseudo-section of measured (a) and calculated (b) apparent resistivity data 
using the PD array along line L5-L’5. 
 

A 2D cross-section was also constructed using the output data of the ANN for each array 

together with the result of the inversion using the conventional RIT (Figs. 6.12 to 6.16). 

The RMS error for the results of the ANN and RIT are summarized in Table 6.3. According 

to these results, the RMS error for the ANN results is less than that of the RIT. 
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Figure 6. 12. Cross-sections of inverted results for the real field data for the WS array using 
(a) the ANN and (b) the conventional RIT.  

 

Figure 6. 13. Cross-sections of the inverted results for the real field data for the W array 
using (a) the ANN and (b) the conventional RIT. 
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Figure 6. 14. Cross-sections of the inverted results for the real field data for the DD array 
using (a) the ANN and (b) the conventional RIT.  

 

Figure 6. 15. Cross-sections of the inverted results for the real field data for the PD array 
using (a) the ANN and (b) the conventional RIT.  
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Figure 6. 16. Cross-sections of the inverted results for the real field data for the PP array 
using (a) the ANN and (b) the conventional RIT. 

In Figure 6.12, although all of the subsurface features were resolved both methods, 

the ANN results, especially for the dimension of the vertical column, are found to be more 

realistic. In contrast, the RIT produces a smaller vertical dimension than the actual size of 

the real field data. The resistivity area between 10 and 17 m at the right side of the cross-

section (Fig. 6.12) is related to the roots of the tree located between column A and point 

L1. The near-surface resistive zone (between 15 and 40 m) at the right side of the cross-

section is due to construction materials left during the construction of the road near point 

L1. The high resistivity zone located between -50 and -30 m at the left side of the cross-

section in Figure 6.12 is probably due to the roots of the trees near point L’1 in Figure 6.2. 

This zone is observed in the results of the ANN and RIT.  

According to Figure 6.13, the result of the ANN, especially for the depth of the 

anomalous zones, is more realistic than the results of the RIT. The RIT produces a smaller 

vertical dimension than the actual size for the real field data. The high resistivity zone 

between -17  and -5 m at the right side of the cross-section (Fig. 6.13) is related to the 

horizontal pipe that is connected to columns A and B and the construction materials 
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(concrete) surrounding the pipe and the columns. The resistive zone (between -38 and -30 

m) at the left side of the cross-section (Fig. 6.13) is due to the connection between the 

columns B and F near point L’2 (Fig. 6.3).  

 In Figure 6.14, the high resistivity zone between -18  and -5 m at the right side of 

the cross-section is related to the horizontal pipe that is connected to columns A and B and 

the construction materials (concrete) surrounding the pipe and the columns. The resistive 

zone (between -38  and -32 m) at the left side of the cross-section is due to the cavity to 

which column C connects (Fig. 6.4). High resistivity zones are not observed at a distance 

between -32  and -20 m (Fig. 6.14). 

In the inversion result shown in Figure 6.15, the high resistivity zone between 20 

and 27 m in the cross-section is related to the D columns (Fig. 6.5). The resistive zone 

(between 12 and 18 m) (Fig. 6.15) is probably due to the construction material (concrete) 

left during the construction of the horizontal pipe located between columns D and B 

(Fig.6.5). High resistivity zones (> 600 Ωm) were not observed at depths of more than 6.5 

m and on both sides of the line L4-L’4. 

With respect to the results for the PP array, the high resistivity zone between 21 and 

24 m in the cross-section (Fig. 6.16) is related to the connection between columns D and E 

(Fig. 6.6). The resistive zone colored in red (600 - 800 Ωm), which is located between 15 

and 33 m (Fig. 6.16), is probably due to the construction material (concrete) left during the 

construction of the connection between columns D and E. High resistivity zones (> 400 

Ωm) were not observed at depths of more than 5.0 and 7.0 m for the results of the RIT and 

the ANN, respectively. The depth for the connection between columns D and E produced 

by the ANN (6.5 m) is more than that produced by the RIT (3.6 m). The depth of column D 

is measured directly; it was about 7 m. Thus, it is concluded that the produced depth for the 
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connection between columns D and E by the ANN is more realistic than the result of the 

RIT.  

 

6.2.1. 2D Synthetic model close to the fieldwork 
In order to evaluate the reliability and accuracy of the inversion results using both 

the ANN and the RIT, a synthetic test model with the corresponding apparent resistivity 

pseudo-section is constructed for the WS, W, DD, PD and PP arrays as (shown in Figures 

6.17 to 6.21, respectively). These models were generated using a finite elements code 

(Loke and Barker, 1996b). The number of electrodes and the minimum electrode spacing 

were the same as in the fieldwork. The resistivity of anomalies was 1000 Ωm and the 

background resistivity 100 Ωm. The resistivity models in Figures 6.17, 6.20 and 6.21 

consist of a rectangular shaped anomaly near the middle of the profile. The resistivity 

model in Figures 6.18 and 6.19 indicate two rectangular shaped as anomalous bodies. The 

details of the positions and sizes of the anomalies are mentioned in Figures 6.17 to 6.21. 

 

Figure 6. 17. An example of the synthetic test model and its pseudo-section for the WS 
array. 
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Figure 6. 18. An example synthetic test model and its pseudo-section for the W array. 

  

 

 

Figure 6. 19. An example synthetic test model and its pseudo-section for the DD array. 
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Figure 6. 20. An example synthetic test model and its pseudo-section for the PD array. 

  

 

Figure 6. 21. An example synthetic test model and its pseudo-section for the PP array. 
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Figures 6.22 to 6.26 show the results of the inversion by the RIT and the ANN method for 

the WS, W, DD, PD and PP arrays, respectively. The RMS errors for the result of the RIT 

and the ANN are summarized in Table 6.4. A 3% uniform Gaussian noise in the apparent 

resistivity data is used to obtain these results.  

Although both methods could resolve the anomalous bodies, the results from ANN 

are found as more realistic than those of the RIT. For example, when the inversion results 

in Figures 6.44 to 6.46 are compared with the resistivity model (Figs. 6.22 to 6.24), the 

depth of the anomaly in the RIT result is found to be less than the actual size. According to 

Figures 6.25 and 6.26, the RIT produces smaller resistivity values than the actual values, 

and the result of the ANN represents the physical model shown in Figures 6.20 and 6.21 

better than the result of the RIT. It is therefore concluded that the ANN results produced 

more accuracy than the RIT results. 

 

Table 6. 4. RMS error in the results of the ANN and RIT for 2D synthetic models close to 
the investigation field. 

Array RMS error (%) for the result of the ANN RMS error (%) for the result of the RIT

WS 1.53 4.46 

W 1.86 2.99 

DD 2.25 2.33 

PD 1.55 1.86 

PP 3.00 3.30 
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Figure 6. 22. Cross-sections of the inverted results related to the synthetic example model 
for the WS array: (a) apparent resistivity pseudo-section, (b) the result of the ANN and (c) 
the result of the RIT.  

 

 

Figure 6. 23. Cross-sections of the inverted results related to the synthetic example model 
for the W array: (a) apparent resistivity pseudo-section, (b) the result of the ANN and (c) 
the result of the RIT. 
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Figure 6. 24. Cross-sections of the inverted results related to the synthetic example model 
for the DD array: (a) result of the RIT and (b) result of the ANN. 

 

 

 

Figure 6. 25. Cross-sections of the inverted results related to the synthetic example model 
for the PD array: (a) result of the ANN and (b) result of the RIT. 
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Figure 6. 26. Cross-sections of the inverted results related to the synthetic example model 
for the PP array: (a) result of the ANN and (b) result of the RIT. 

 

6.3. Inversion of 3D DC resistivity imaging data using the 

ANN and RIT 

The results of the 3D study shown in chapter 5 (section 5.2.2.2) suggest that the 

simplest architecture for the ANN that can reach the desired  threshold error for the PP, 

PD, DD, WS and W arrays  are  (4-84-24-1), (4-35-25-1), (4-35-25-1), (4-45-60-1) and  

(4-30-50-1), respectively. In this section, a trained ANN is applied to a real 3D field 

dataset for each array. The investigation site and the corresponding grids used in the 3D 

surveys of this study are shown in Figures 6.27 and 6.28 for the PP and PD arrays, 

respectively, and in Figure 6.29 for the DD, WS and W arrays.  
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Figure 6. 27. Location of the square grid in the 3D survey using the PP array. G1, G2, G3 
and G4 are the corners of the grid. 

 

 

Figure 6. 28. Location of the square grid in the 3D survey using the PD array. K1, K2, K3 
and K4 are the corners of the grid. 
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Figure 6. 29. Location of the square grid in the 3D survey using the DD, WS and W arrays. 
H1, H2, H3 and H4 are the corners of the grid. 

  

The 3D field data were acquired in a square grid (8×8) for the PP array and in a 

rectangular grid (41×8) for the PD array. A rectangular grid (21×7) is also used for the 

DD, WS and W arrays. The schematic cable layout for each array is shown in Figures 6.30 

to 6.32.  

 

 

Figure 6. 30. Alignment of the 3D resistivity imaging grid used in the survey with the PP 
array. 
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Figure 6. 31. Alignment of the 3D resistivity imaging grid used in the survey with the PD 
array. 

 

 

 

Figure 6. 32. Alignment of the 3D resistivity imaging grid used in the survey with the DD, 
WS and W arrays. 

 

The latitude and longitude of the grid corners are summarized in Table 6.5. The remote 

electrodes (C2 and P2) in the 3D survey with the PP array and the remote electrode (C2) in 

the 3D survey with the PD array were located more than 800 m from the instruments.  
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The field datasets were inherently noisier than the synthetic data. Figures 6.33 to 6.37 

show the horizontal depth slices of the apparent resistivity collected from the 3D surveys 

of each array.  

The numbers of measured data points in the 3D surveys with the PP, PD, DD, Ws 

and W arrays were 728, 1522, 1043 and 499, respectively. The input data for the ANN 

consist of the x-, y-, and z-location and the apparent resistivity for all data points of the 

field data. The set of these data was used as input for the ANN inversion. The output data 

as a result of the inversion are a set of true resistivity values of all points for which their 

locations have already been used in the input data for each array. 

Table 6. 5. Latitude and longitude of the grid corners used in the 3D surveys. 

Array latitude longitude 

PP 

G1 3⁰ - 07΄- 11.32˝ - N 101⁰ - 39΄-18.96˝ - E 

G2 3⁰ - 07΄- 10.87˝ - N 101⁰ - 39΄-19.01˝ - E 

G3 3⁰ - 07΄- 10.79˝ - N 101⁰ - 39΄-18.56˝ - E 

G4 3⁰ - 07΄- 11.27˝ - N 101⁰ - 39΄-18.50˝ - E 

PD 

K1 3⁰ - 07΄- 11.31˝ - N  101⁰ - 39΄-18.20˝ - E 

K2 3⁰ - 07΄- 10.84˝ - N 101⁰ - 39΄-18.26˝ - E 

K3 3⁰ - 07΄- 10.69˝ - N 101⁰ - 39΄-16.98˝ - E 

K4 3⁰ - 07΄- 11.13˝ - N 101⁰ - 39΄-16.92˝ - E 

DD, WS and W

H1 3⁰ - 07΄- 10.24˝ - N 101⁰ - 39΄-18.73˝ - E 

H2 ⁰ - 07΄- 11.49˝ - N 101⁰ - 39΄-18.95˝ - E 

H3 3⁰ - 07΄- 11.47˝ - N 101⁰ - 39΄-18.50˝ - E 

H4 3⁰ - 07΄- 10.16˝ - N 101⁰ - 39΄-18.35˝ - E 
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Figure 6. 33. Horizontal depth slices of apparent resistivities collected from the 3D survey 
with the PP array. The depths (m) for the different layers are: layer (1): 0.0 - 1.5, (2): 1.5 - 
3.0, (3): 3.0 – 5.0, (4): 5.0 – 7.0, (5): 7.0 – 9.0, and (6): 9.0 – 12.0.  
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Figure 6. 34. Horizontal depth slices of apparent resistivities collected from the 3D survey 
with the PD array. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 
1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, (5): 5.0 – 7.0, and (6): 7.0 – 10.0. 
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Figure 6. 35. Horizontal depth slices of apparent resistivities collected from the 3D survey 
with the DD array. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 
1.0, (3): 1.0 – 1.5, (4): 1.5 – 2.5, (5): 2.5 – 3.8, (6): 3.8 – 5.3, and (7): 5.3 – 7.0. 
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Figure 6. 36. Horizontal depth slices of the apparent resistivities collected from the 3D 
survey using the WS array. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, 
(2): 0.5 – 1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, and (5): 5.0 – 7.0. 

 

 

 

Figure 6. 37. Horizontal depth slices of the apparent resistivities collected from the 3D 
survey  using the W array. The depths (m) for the different layers are: layer (1): 0.0 – 0.8, 
(2): 0.8 – 1.6, (3): 1.6 – 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 

 



131 
 

3D depth slices were constructed using the results of the ANN (Figs. 6.38 to 6.42). 

The RMS misfit was calculated between the forward modeling results of the constructed 

model and the field data (Table 6.5). According to Table 6.6, the RMS error for the ANN 

results is less than that of the RIT. 

According to Figure 6.38, the horizontal part of the wastewater system that connects 

columns B and D (Fig. 6.27) is detected at a depth of up to 7 meters. The connection 

between the vertical columns B and F is denoted with the capital letter L (Fig. 6.38, layers 

4 and 5). This connection continues from a depth of 5 to 10 m. High resistivities (greater 

than 300 Ωm) are not observed below 10 m. The inversion results of the ANN are in 

accordance with the findings obtained from the investigation area and sufficient agreement 

was found.  

 
Table 6. 6. RMS error in the results of the ANN and RIT for 3D field data. 

Array RMS error (%) for the result 
of the ANN 

RMS error (%) for the result 
of the RIT 

PP 0.60 3.42 

PD 2.40 4.95 

DD 6.22 10.35 

WS 2.58 3.07 

W 3.80 4.21 
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Figure 6. 38. 3D depth slices constructed using the results of the ANN for inverting the PP 
data. The connection between columns B and F is denoted by (L) and shown in layers 4-5. 
The depths (m) for the different layers are: layer (1): 0.0 - 1.5, (2): 1.5 - 3.0, (3): 3.0 – 5.0, 
(4): 5.0 – 7.0, (5): 7.0 – 9.0, and (6): 9.0 – 12.0.  
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Figure 6. 39. 3D depth slices constructed using the results of the ANN for inverting the PD 
data. The connection between columns D and E is denoted by (DE) and is shown in layers 
3-5. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.5, (3): 1.5 – 
3.0, (4): 3.0 – 5.0, (5): 5.0 – 7.0, and (6): 7.0 – 10.0. 
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Figure 6. 40. 3D depth slices constructed using the results of the ANN for inverting the DD 
data. The connection between columns B and F is denoted by (L) and is shown in layers 5-
7. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.0, (3): 1.0 – 
1.5, (4): 1.5 – 2.5, (5): 2.5 – 3.8, (6): 3.8 – 5.3, and (7): 5.3 – 7.0. 
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Figure 6. 41. 3D depth slices constructed using the results of the ANN for inverting the WS 
data. The connection between columns B and F is denoted by (L) and is shown in layers 3-
5. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.5, (3): 1.5 – 
3.0, (4): 3.0 – 5.0, and (5): 5.0 – 7.0. 

 

 

 

Figure 6. 42. 3D depth slices constructed using the results of the ANN for inverting the W 
data. The depths (m) for the different layers are: layer (1): 0.0 – 0.8, (2): 0.8 – 1.6, (3): 1.6 
– 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 
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According to Figure 6.39, the horizontal pipe that connects columns D and B (Fig. 

6.28) is detected at a depth of up to 7 meters. The connection between vertical columns D 

and E is denoted with the capital letters DE (Fig. 6.39 layers 3, 4 and 5). High resistivities 

(greater than 900 Ωm) are not observed at depths greater than 7 m, except for the small 

zone located at the left side of layer 6.  

In Figures 6.40 and 6.41, the horizontal pipe that connects columns D and B (Fig. 

6.29) is detected at depths of up to 7 meters. The connection between vertical columns B 

and F is denoted with the capital letters L (Fig. 6.40 layers 5, 6 and 7 and Fig. 6.41 layers 

3, 4 and 5). High resistivities (greater than 700 Ωm) are not observed in the middle of the 

investigation area.  

With respect to the results of the inversion of the W data (Fig. 6.42),  similar to 

those of the DD and WS data, the horizontal pipe that connects columns D and B (Fig. 

6.29) is also observed at depths of up to 7 meters. The connection between vertical columns 

B and F was not detected clearly in the ANN results. This might be due to insufficient 

horizontal data coverage and the horizontal resolution of the W array compared to the DD 

and WS arrays. However, we will show that the connection L is  resolved in the synthetic 

test using the ANN (next section). Note that the field data contain more noise than the 

synthetic data.    

      In order to display the three-dimensional extent of high resistivity zones, an 

isoresistivity surface was also produced from the results of the ANN for each array, which 

corresponds to resistivities higher than 1500 Ωm for the PP data and 1300 Ωm for the PD, 

DD, WS and W data. The isoresistivity surface is derived from the data volume by 

specifying an isovalue that forms an isosurface. The isosurface connects data points of 

equal resistivity values, yielding the three- dimensional anomaly representation (Figs.6.43 

to 6.47).   
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Figure 6. 43. Isoresistivity surface of the resistivity values higher than 1500Ωm (the 
resistivity of concrete) using the ANN results for the PP-data. The connection between 
columns B and F was denoted by (L). 

 

Figure 6. 44. Isoresistivity surface of the resistivity values higher than 1300Ωm using the 
ANN results for the PD-data. The connection between columns D and E was denoted by 
(DE). 
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Figure 6. 45. Isoresistivity surface of the resistivity values higher than 1300Ωm using the 
ANN results for the DD-data. The connection between columns B and Fwas denoted by 
(L). 

 

 

Figure 6. 46. Isoresistivity surface of the resistivity values higher than 1400Ωm using the 
ANN results for the WS-data.  
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Figure 6. 47. Isoresistivity surface of the resistivity values higher than 1300Ωm using the 
ANN results for the W-data.  

According to the Figure 6.43, the location of the vertical columns (A and B) and the 

horizontal part of wastewater system in the north are detected clearly. Although the 

connection (L) between columns B and F is observed in the Figures 6.43 and 6.45 but the 

same has not been detected it in Figure 6.46 and 6.47, which are related to the results of the 

WS and W-data. In addition, the resistive zone related to the horizontal pipe (between 

columns D and B) is also detected approximately at the right place but some parts of this 

pipe which is near the H2 corner is not accurately detected. This lake of resolution might be 

due to poor data coverage of the WS and W array near the corners of the grids in the 3D 

surveys. However, in Figures 6.46 and 6.47, the resistive zone at the left side of the grid 

(near corners H1 and H4) can be seen clearly. Using the isoresistivity surface produced 

using the results of the PD data (Fig. 6.44), it can be seen that the locations of the vertical 

columns (D), the horizontal part of pipe system and the connection (DE) between columns 

D and E are clearly detected.  

     To compare the inverted results of the ANN with the conventional RIT, the Res3Dinv 

software (Loke, 2007) was used to invert the same real field data for each array. In this 
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connection the RMS errors for each dataset are summarized in Table 6.5. The calculated 

apparent resistivity data for the PP, PD, DD, WS and W arrays are presented in Figures 

6.48 to 6.52 as horizontal depth slices.  

 

Figure 6. 48. Horizontal depth slices extracted using the calculated apparent resistivities for 
the PP data. The depths (m) for different layers are: layer (1): 0.0 - 1.5, (2): 1.5 - 3.0, (3): 
3.0 – 5.0, (4): 5.0 – 7.0, (5): 7.0 – 9.0, and (6): 9.0 – 12.0.  

 



141 
 

 

Figure 6. 49. Horizontal depth slices extracted using the calculated apparent resistivities for 
the PD data. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.5, 
(3): 1.5 – 3.0, (4): 3.0 – 5.0, (5): 5.0 – 7.0, and (6): 7.0 – 10.0. 
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Figure 6. 50. Horizontal depth slices extracted using the calculated apparent resistivities for 
the DD data. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.0, 
(3): 1.0 – 1.5, (4): 1.5 – 2.5, (5): 2.5 – 3.8, (6): 3.8 – 5.3, and (7): 5.3 – 7.0. 
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Figure 6. 51. Horizontal depth slices extracted using the calculated apparent resistivities for 
the WS data. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.5, 
(3): 1.5 – 3.0, (4): 3.0 – 5.0, and (5): 5.0 – 7.0. 
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Figure 6. 52. Horizontal depth slices extracted using the calculated apparent resistivities for 
the W data. The depths (m) for the different layers are: layer (1): 0.0 – 0.8, (2): 0.8 – 1.6, 
(3): 1.6 – 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 

Using the RIT result, the horizontal depth slices were also extracted, in order to 

display the lateral extent of the high resistivity zones for each array (Figs. 6.53 to 6.57). 

According to the RIT result for the PP data ( as shown in Figure 6.48), the horizontal part 

of the wastewater system is detected at a depth of less than 7 meters, which agrees with the 
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ANN results. The connection between columns B and F is also shown in the RIT result 

(Fig. 6.53.6; layers 2, 3, and 4).   

With respect to the RIT result for the PD data (Fig. 6.54), the horizontal pipe is 

detected at depths of up to 5 m, which is less than the depth calculated from the ANN 

results. The connection between columns D and E is also shown in the RIT result (Fig. 

6.54; layers 2- 5). There is an unconfirmed anomalous zone in layers 2 and 3 that is not 

observed in the ANN results. In the RIT results, high resistivity zones (> 900 Ωm) are not 

observed at depths greater than 7 m. 

According to the RIT result for the DD data, the horizontal pipe (between columns 

B and D) and its surrounding high resistivity materials located on the right side of the gird 

are  detected at depths of up to 7 m, which agrees with the ANN results (Fig. 6.54). The 

results of the RIT and the ANN for the anomalous body located on the left side of the slices 

are the same. Since the RIT result for the real field data does not show the presence of the L 

connection, it can be concluded that the ANN results are more accurate than the RIT 

results. Similar to the ANN result, high resistivity zones (> 700 Ωm) are not observed in 

middle of the study area by the RIT results of the DD data. 

Using the RIT result, horizontal depth slices were extracted, in order to display the 

lateral extent of the high resistivity zones (Fig. 6.55). According to these slices, the 

horizontal pipe (between columns D and B) is detected at depths of up to 5 m by the RIT 

result for the WS data (Fig. 6.51) and up to 7 m for the W data (Fig. 6.52). The resistive 

zone related to connection L is not detected by the RIT results for either the WS or W data 

(Figs. 6.55 and 6.57), because the RIT result for the real field data does not detect the 

presence of connection L (Figs. 6.55 and 6.57). The resistive zone near corners H1 and H4 

are clearly detected in the RIT results, but the width of this anomaly is found to be greater 

than its size detected by the ANN results. In the RIT results, high resistivity zones (> 700 
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Ωm for the WS data and > 900 Ωm for the W data) are not observed in the middle of the 

study area. 

 

Figure 6. 53. 3D depth slices constructed using the results of the RIT for the PP data. The 
connection between columns B and C is denoted by (L) and is shown in layers 2-4. The 
depths (m) for the different layers are: layer (1): 0.0 - 1.5, (2): 1.5 - 3.0, (3): 3.0 – 5.0, (4): 
5.0 – 7.0, (5): 7.0 – 9.0, and (6): 9.0 – 12.0.  
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Figure 6. 54. 3D depth slices constructed using the results of the RIT for the PD data. The 
connection between columns D and E is denoted by (DE) and shown in layers 2-5. An 
unconfirmed anomaly is also denoted by the letter (x) in layers 2-3. The depths (m) for the 
different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, (5): 5.0 – 
7.0, and (6): 7.0 – 10.0. 

 

 

Figure 6. 55. 3D depth slices constructed using the results of the RIT for the DD data. The 
depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.0, (3): 1.0 – 1.5, (4): 
1.5 – 2.5, (5): 2.5 – 3.8, (6): 3.8 – 5.3, and (7): 5.3 – 7.0. 
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Figure 6. 56. 3D depth slices constructed using the results of the RIT for the WS data. The 
depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.5, (3): 1.5 – 3.0, (4): 
3.0 – 5.0, and (5): 5.0 – 7.0. 

 

 

 

Figure 6. 57. 3D depth slices constructed using the results of the RIT for the W data. The 
depths (m) for the different layers are: layer (1): 0.0 – 0.8, (2): 0.8 – 1.6, (3): 1.6 – 3.2, (4): 
3.2 – 5.0, and (5): 5.0 – 7.0. 

 

6.3.1. 3D Synthetic model close to the fieldwork  
Similar to the 2D study, a synthetic test model is also considered that is close to the 

real field; this model is investigated for each array in order to evaluate the reliability and 
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accuracy of the inversion results using both the ANN and the RIT methods,. The details of 

the horizontal location of the anomalous body and the resistivity distribution are shown in 

Figures 6.58 to 6.62 as a horizontal slice. The depth of the anomalous structure in Figures 

6.58 and 6.59 is considered to be 7 meters. The details of the horizontal location of the 

anomalous body and resistivity distribution for the DD, WS and W data are shown in 

Figures 6.60 to 6.62. This model was generated using a finite elements code (Loke and 

Barker, 1996b). In which 3% uniform noise is considered for the generated synthetic 

apparent resistivity data. 

 

Figure 6. 58. Horizontal location of the anomalous body and resistivity distribution for the 
synthetic  model close to the study site for the PP array. A depth of 7 m is considered for 
this model. 
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Figure 6. 59. Horizontal location of the anomalous body and resistivity distribution for the 
synthetic model close to the study site for the PD array. A depth of 7 m is considered for 
this model. 

 

Figure 6. 60. Horizontal location of the anomalous body and resistivity distribution for the 
synthetic model close to the study site for the DD array. The depths (m) of the different 
layers are: layer (1): 0.0 – 0.5, (2): 0.5 – 1.0, (3): 1.0 – 1.5, (4): 1.5 – 2.5, (5): 2.5 – 3.8, (6): 
3.8 – 5.3, and (7): 5.3 – 7.0. 
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Figure 6. 61. Horizontal location of the anomalous body and resistivity distribution for the 
synthetic  model close to the study site for the WS array. The depths (m) of the different 
layers are: layer (1): 0.0 – 0.8, (2): 0.8 – 1.6, (3): 1.6 – 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 

 

Figure 6. 62. Horizontal location of the anomalous body and resistivity distribution for the 
synthetic  model close to the study site for the W array. The depths (m) for the different 
layers are: layer (1): 0.0 – 0.8, (2): 0.8 – 1.6, (3): 1.6 – 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 

 

The horizontal depth slices were constructed using the ANN results for these examples 

(Figs. 63.6 to 6.67). According to these slices, most of the anomalous bodies described in 

Figs. 6.58 to 6.62 are detected at depths of up to 7 meters and are in the right positions.  
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Figure 6. 63. Horizontal depth slices constructed using the ANN results for the example 
described in Fig. 6.58. The depths (m) for the different layers are: layer (1): 0.0 - 1.5, (2): 
1.5 - 3.0, (3): 3.0 – 5.0, (4): 5.0 – 7.0, (5): 7.0 – 9.0, and (6): 9.0 – 12.0. 

 



153 
 

 

Figure 6. 64. Horizontal depth slices constructed using the ANN results for the example 
described in Fig. 6.59. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 
0.5 – 1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, (5): 5.0 – 7.0, and (6): 7.0 – 10.0. 

 

Figure 6. 65. Horizontal depth slices constructed using the ANN results for the example 
described in Fig. 6.60. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 
0.5 – 1.0, (3): 1.0 – 1.5, (4): 1.5 – 2.5, (5): 2.5 – 3.8, (6): 3.8 – 5.3, and (7): 5.3 – 7.0 
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Figure 6. 66. Horizontal depth slices constructed using the ANN results for the example 
described in Fig. 61.6. The depths (m) for the different layers are: layer (1): 0.0 – 0.5, (2): 
0.5 – 1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, and (5): 5.0 – 7.0. 

 

 

Figure 6. 67. Horizontal depth slices constructed using the ANN results for the example 
described in Fig. 62.6. The depths (m) for the different layers are: layer (1): 0.0 – 0.8, (2): 
0.8 – 1.6, (3): 1.6 – 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 

 

 



155 
 

In order to compare the results of the ANN with the RIT, the Res3Dinv software 

was used to invert the same synthetic data. The RMS error for the result of the RIT and the 

ANN are summarized in Table 6.7. The horizontal depth slices were constructed using the 

inversion results of each array (Figs. 6.68 to 6.72). 

In Figure 6.68, the anomalous body observed by the RIT is seen at depths of up to 7 

meters as in the results of the ANN. However, the ANN results show more details of the 

subsurface structure as compared to RIT. According to Figure 6.69, which is produced 

using the PD data, the anomalous body is seen at the same horizontal position but its depth 

is observed at about 5 m, which is 2 m less than the actual depth.  

 

Table 6. 7. RMS error in the results of the ANN and RIT for 3D synthetic models close to 
the study area. 

Array RMS error (%) for the 
result of the ANN

RMS error (%) for the 
result of the RIT 

PP 2.54 3.01 

PD 1.6 4.12 

DD 2.61 3.23 

WS 2.17 2.99 

W 2.05 2.66 

 

In the results of the DD-data (Fig. 6.70), the anomalous bodies on both sides of the 

grid are also observed at the same horizontal position, but the anomalous body Q (Fig 6.60, 

layers 5 and 6) is not clearly resolved. The ANN results are more accurate for the anomaly 

Q as compared to the RIT results.  
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With respect to Figures 6.71 and 6.72, the anomalous bodies on both sides of the 

grid can be seen at the same horizontal positions, but the anomalous body Q (layers 3 and 4 

in Fig. 6.61 and Fig.6.62) is not clearly resolved. The ANN results show relatively better 

results for the anomaly Q as compared to the RIT results for both the WS and W-data.  

Although, the connection L (or Q in the synthetic test models) has been detected in 

the synthetic test by the ANN, its presence was not clear in the inverted result of the field 

data by both the ANN and RIT and in the synthetic test by the RIT. Therefore, it can be 

concluded that for such cases, the WS and W arrays might not be the proper arrays to use in 

the fieldwork.  

 

Figure 6. 68. Horizontal depth slices constructed using the results of the RIT for the 
example described in Fig. 6.58. The depths (m) for the different layers are: layer (1): 0.0 - 
1.5, (2): 1.5 - 3.0, (3): 3.0 – 5.0, (4): 5.0 – 7.0, (5): 7.0 – 9.0, and (6): 9.0 – 12.0.  
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Figure 6. 69. Horizontal depth slices constructed using the results of the RIT for the 
example described in Fig. 6.59. The depths (m) for the different layers are: layer (1): 0.0 – 
0.5, (2): 0.5 – 1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, (5): 5.0 – 7.0, and (6): 7.0 – 10.0. 

 

 

 

Figure 6. 70. Horizontal depth slices constructed using the results of the RIT for the 
example described in Fig. 6.60. The depths (m) for the different layers are: layer (1): 0.0 – 
0.5, (2): 0.5 – 1.0, (3): 1.0 – 1.5, (4): 1.5 – 2.5, (5): 2.5 – 3.8, (6): 3.8 – 5.3, and (7): 5.3 – 
7.0. 
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Figure 6. 71. Horizontal depth slices constructed using the results of the RIT for the 
example described in Fig. 6.61. The depths (m) for the different layers are: layer (1): 0.0 – 
0.5, (2): 0.5 – 1.5, (3): 1.5 – 3.0, (4): 3.0 – 5.0, and (5): 5.0 – 7.0. 

 

 

Figure 6. 72. Horizontal depth slices constructed using the results of the RIT for the 
example described in Fig. 62.6. The depths (m) for the different layers are: layer (1): 0.0 – 
0.8, (2): 0.8 – 1.6, (3): 1.6 – 3.2, (4): 3.2 – 5.0, and (5): 5.0 – 7.0. 
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6.4. Summary 
In this chapter, an investigation about the ability of the trained ANNs has been 

made to invert the 2D and 3D DC resistivity imaging data using real field datasets from a 

site with high resistivity contrast regions. The study site is located south of the University 

of Malaya, Kuala Lumpur, Malaysia. It consists of an underground concrete waste water 

pipe system and its square manhole columns. The survey area stretches over a flat 

playground covered with grass. 

 Five common electrode configurations i.e., the WS, W, DD, PD and PP arrays were 

used in 2D profiles and 3D grids by the DC resistivity surveys. The inversion of the field 

data using the ANN was then compared with the inversion results from the conventional 

RIT for each array. In order to evaluate the reliability and accuracy of the inversion results 

using both the ANN and the RIT, further study using a synthetic example similar to the 

field data was conducted for each array. Almost all the subsurface features have been 

resolved by the results of the ANN and RIT. However, the result from the ANN is found to 

be more realistic (especially for the dimension of the vertical columns and the horizontal 

pipes), while the RIT produced a smaller vertical dimension than the actual size of the real 

field data. When the inversion results of both the ANN and the RIT methods for synthetic 

test models were compared with their corresponding physical resistivity models, it has been 

observed that the depth of anomalies from the RIT results is smaller than the actual size. In 

addition, the resistivity values obtained from the RIT were smaller than the actual values, 

but the ANN produced relatively better physical models. It is therefore concluded that the 

ANN results are more accurate than the RIT results. 

In the inversion results of the 3D W data and 3D WS data, the horizontal pipe that 

connects columns D and B is observed at a depth of up to 7 meters. However, a connection 
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between the vertical columns B and F has not been was not detected clearly in the ANN 

results. This might be due to insufficient horizontal data coverage and poor horizontal 

resolution of the 3D W and 3D WS arrays as compared to 3D PP, PD and DD arrays. 

However, the connection L (or Q in the synthetic test models) has been resolved by the 

synthetic test using the ANN. This anomaly (Q) was not detected by the inversion results of 

the RIT for either the real field data or the synthetic data. It can be noted that the field data 

contain more noise than the synthetic data. It is therefore concluded that for such cases, the 

WS and W arrays might not be the suitable configuration to use separately in 3D DC 

resistivity surveys. However, in some situations where the field conditions do not allow the 

use of 3D PP and 3D PD arrays, a combination of the 3D W and 3D DD arrays or the 3D 

WS and 3D DD arrays can be useful. 
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Chapter 7 

Conclusion  

In this thesis, the basis of 1D, 2D and 3D DC resistivity surveys have been 

discussed. The common arrays used in 2D and 3D surveys were compared, i.e., the WS, W, 

DD, PD and PP-arrays, with respect to the following characteristics: (i) signal strength, (ii) 

horizontal data coverage, (iii) sensitivity of the array to horizontal structures, (iv) 

sensitivity of the array to vertical structures and (v) depth of investigation for each array. 

The W array is good at showing vertical changes but relatively poor at detecting horizontal 

changes. This array has the strongest signal strength compared to other arrays. This can be 

an important factor if the survey is carried in areas with high background noise. However, 

the horizontal coverage of the W array is relatively poor, as the electrode spacing is 

increased. The signal strength for the WS array is weaker than that for the W array, but it is 

stronger than the DD array and twice that of the PP array. The DD array has better 

horizontal data coverage than the W array. This is an important advantage when the number 

of electrodes available with the multi-electrode system is small. The PP array has the 

widest horizontal coverage and the deepest depth. However, it has the poorest resolution 

compared to other arrays. Nevertheless, it has also been used for 3D surveys. The PD array 

is more sensitive to vertical structures. Because of its good horizontal coverage, the PD 

array is useful for surveys with a small number of electrodes. The signal strength is higher 

than the DD array but lower compared to the W and WS arrays. As a common way to study 

the suitability of different arrays, in resistivity survey, the sensitivity function for each array 

in 2D and 3D studies has been calculated. This was important to compare the depth of 
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investigation and the vertical and horizontal resolutions of arrays used in 2D and 3D 

surveys. 

            In order to study the numerical simulation of the measured data for given subsurface 

parameters, the basis of the finite difference method and different boundary conditions is 

discussed. The methodologies of non-linear inversion and the common inversion methods ( 

i.e., steepest descent method, nonlinear conjugate gradients method, Newton-type methods 

and smoothness-constrained least squares methods) have also been explained. Since the 

convergence rate of the steepest descent technique for ill-posed problems is very slow, 

much time has to be needed to carry on with forward calculations using this. An 

implementation of this technique is very simple, but practically it can be rarely used. In the 

nonlinear conjugate gradients technique, each search direction is used only once. Thus, 

convergence is fast as compared to the steepest descent method. The Gauss-Newton 

method has two advantages: 1) the computation is easier than the other methods, and 2) 

Hessian approximation in this method is positive semi-definite, which guarantees that the 

Gauss-Newton step is a descent direction. However, the quadratic convergence of the 

Newton’s method loose its applicability as a result of strong non-linearity. The Marquardt-

Levenberg modification to the Gauss-Newton equation is one common way to avoid the 

singularity problem. Another alternative for Newton’s method is the quasi- Newton 

technique, which updates the Hessian approximation by previous gradients. The L2_norm 

smoothness-constrained optimization method tends to produce a model with a smooth 

variation of resistivity values. This approach is acceptable if the actual subsurface 

resistivity varies in a smooth and gradational manner. By L1_ norm smoothness-

constrained optimization method the absolute changes in the model resistivity values can be 

minimized. Technically, this is referred as a blocky inversion method (robust inversion 
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technique), which can sometimes give significantly better results in areas with high 

resistivity zones of sharp boundaries. It is therefore concluded that for this study the robust 

inversion technique (RIT) is the most efficient method among the other least squares 

methods because the field site used for data acquisition consists of high subsurface 

resistivity regions. The inversion of field data using the RIT method was contacted to 

compare the results of the ANN and the conventional least squares inversion methods.  

In order to study the effect of data pool formation in training the ANN, two methods 

were used to generate the synthetic data. These methods are called M1 and M2, which 

basically differ in the type of input-output data used to train the ANN. In the first method, 

M1_2D and M1_3D, a cross-section of the subsurface was divided into a mesh of elements 

with a background resistivity of 100 Ωm and an anomalous element of 1000 Ωm moving to 

all the model mesh element positions. In this method, the apparent resistivity data were 

considered as the input data and the true resistivities of all mesh elements were used as the 

output data in the training phase of the ANN. In the second method, M2_2D and M2_3D, 

different sizes were selected for the anomalous body, and it was moved to different 

positions within the homogeneous model mesh elements. In this method, the locations (x 

and y for the 2D case and x, y and z for the 3D case) and the apparent resistivities of data 

points were considered as the input data and the true resistivities of all mesh elements were 

used as the output data in the training process of the ANN. The effect of the input-output 

data type (obtained by the methods M1 and M2) was investigated in 2D and 3D. The higher 

MSE error for the method M1_2D and M1_3D compared to the MSE error for the method 

M2_2D and M2_3D can be explained as due to the sizes of the mesh elements, because the 

fixed sizes were used for each element of the mesh; this might affect the accuracy of the 
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results. It is therefore concluded that the synthetic data generated using the method M2_2D 

and M2_3D may be the best data type for training and testing the ANN in this study. 

With respect to the effect of the number of nodes in each layer of the ANN, the 

results of our 2D study suggest that the simplest architectures for the ANN that can reach 

the desired threshold error for the PP, PD, DD, WS and W arrays are (3-30-90-1), (3-30-12-

1), (3-28-4-1), (3-28-16-1) and (3-24-80-1). The simplest architectures for the ANN in 3D 

study are (4-84-24-1), (4-35-25-1), (4-35-25-1), (4-45-60-1) and (4-30-50-1), respectively. 

  The effect of the training data pool volume in the 2D and 3D parts of this study and 

the sufficient volume for each data type have been also evaluated . 

Five common training paradigms, i.e., BTWB, CGFR, RPROP, GDMA and 

LMWB, in the cases of 2D and 3D have been compared. The results show that for all arrays 

(2D and 3D) except for 3D PD data, the RPROP is the most efficient algorithm at training 

the DC resistivity data. In the case of 3D PD data, the GDMA algorithm is the most 

efficient paradigm. 

The interpolation and extrapolation properties of the ANN using another 24 

synthetic datasets generated for each array have been studied. The range from 100 – 1000 

Ωm was divided into 100, 200, 300, 400, 500, and 600 Ωm as the background resistivity, 

and different resistivity values for the anomalous body were considered. The RMS errors 

for all interpolation and extrapolation test sets related to each array are in the range of 0.3  - 

9.0% Since the RMS errors for all datasets are less than 9.0%, it can be concluded that the 

networks are  properly designed and trained.   

The ability of the trained ANNs to invert the 2D and 3D DC resistivity imaging data 

was checked by real field datasets related to a site with high resistivity contrast regions. 

The study site consists of an underground concrete wastewater pipe system and its square 

manhole columns. Five common electrode configurations, i.e., the WS, W, DD, PD and PP 
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arrays, were used in 2D profiles and 3D grids in the DC resistivity surveys. The inversion 

of the field data using the ANN was then compared with the results of the inversion using 

the conventional RIT for each array. Further study using a synthetic example similar to the 

field data was done for each array in order to evaluate the reliability and accuracy of the 

inversion results using both the ANN and RIT methods. 

Although all subsurface features were almost resolved in the results of both 

methods, the ANN results, especially for the dimension of the vertical columns and the 

horizontal pipes, were more realistic. In contrast, the RIT produced smaller vertical 

dimensions than the actual size of the real field data.   

With respect to the inversion results of both the ANN and RIT methods for 

synthetic test models, when these results were compared with their corresponding physical  

resistivity models, it is concluded that the depths of the anomalies in the RIT results were 

less than the actual size. In addition, the RIT produced resistivity values that were almost 

smaller than the actual values, and the ANN represented the physical models better than the 

RIT. Thus, it can be conclude the ANN results are more accurate than the RIT results. 

In the inversion of the 3D W data (Fig. 6.42), similar to the inversion of 3D WS 

data, the horizontal pipe that connects columns D and B (Fig. 6.29) was observed at depths 

of up to 7 meters. The connection between vertical columns B and F was not detected 

clearly in the ANN results. This might be due to insufficient horizontal data coverage and 

poor horizontal resolution of the 3D W and 3D WS arrays compared to the 3D PP, PD and 

DD arrays. However, connection L (or Q in the synthetic test models) was resolved in the 

synthetic test using the ANN. This anomaly was not detected by the inversion results of the 

RIT for either the real field data or the synthetic data. Note that the field data contain more 

noise than the synthetic data. Therefore, it can be conclude for such cases that the WS and 

W arrays might not be the proper arrays to use separately in 3D DC resistivity surveys. 
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However, in some situations in which the field conditions do not allow the use of 3D PP 

and 3D PD arrays, a combination of the 3D W array and 3D DD array or the 3D WS array 

and 3D DD array can be useful.  

As a suggestion for further work, it would be useful if the ANN were applied to the 

joint inversion of DC resistivity imaging data obtained by different arrays. For example, the 

joint inversion of W and DD arrays in 2D surveys using conventional inversion methods 

would enhance the quality of the results because the W array is good at detecting vertical 

changes and the DD array can detect horizontal changes in subsurface resistivities. 

Therefore, the use of the ANN in the joint inversion of W and DD data are promising.   
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Appendix A 
Table A 1. Dependence of the MSE error on the number of neurons in hidden layers for the 
WS-synthetic data produced by methods M1_2D and M2_2D. 

Nh1 Nh2 MSE Error  
for 

Method M1_2D

MSE Error  
for 

Method M2_2D 

7 0 0.3756 0.6604 
8 0.2233 0.1520 

16 0.1225 0.0453 
24 0.2942 0.0606 
32 0.1059 0.0350 
40 0.0450 0.0141 

14 0 0.2436 0.0912 
8 0.1929 0.0377 

16 0.0135 0.0066 
24 0.2821 0.0068 
32 0.0989 0.0053 
40 0.0422 0.0031 

21 0 0.0846 0.0024 
8 0.0042 0.0041 

16 0.0898 0.0005 
24 0.0022 0.0002 
32 0.0097 0.0007 
40 0.0031 0.0004 

28 0 0.0061 0.0006 
8 0.0010 0.0003 

16 0.0004 0.0001 
24 0.0210 0.0004 
32 0.0044 0.0004 
40 0.0072 0.0002 

35 0 0.0061 0.0005 
4 0.0091 0.0002 

12 0.0005 0.0005 
20 0.0011 0.0004 
28 0.0004 0.0003 
32 0.0003 0.0002 
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Table A 2. Dependence of the MSE error on the number of neurons in hidden layers for the 
W-synthetic data produced by methods M1_2D and M2_2D. 

Nh1 Nh2 MSE Error  
for 

Method M1_2D

MSE Error  
for 

Method M2_2D 

6 0 0.004253 0.031252 
20 0.000851 0.007578 
40 0.000912 0.002264 
60 0.000531 0.003028 
80 0.000975 0.001749 
90 0.001347 0.000704 

12 0 0.000613 0.004555 
20 0.000714 0.001884 
40 0.001867 0.000329 
60 0.000546 0.000339 
80 0.001005 0.000264 
90 0.001374 0.000154 

18 0 0.001072 0.001193 
20 0.002376 0.000204 
40 0.001046 0.000088 
60 0.002657 0.000092 
80 0.002013 0.000076 
90 0.002508 0.000072 

24 0 0.002214 0.000999 
20 0.003000 0.000082 
40 0.003397 0.000088 
60 0.001677 0.000069 
80 0.000135 0.000058 
90 0.002142 0.000066 

30 0 0.002214 0.000249 
20 0.002040 0.000099 
40 0.003301 0.000072 
60 0.002958 0.000067 
80 0.003397 0.000099 
90 0.003522 0.000629 
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Table A 3. Dependence of the MSE error on the number of neurons in hidden layers for the 
DD-synthetic data produced by methods M1_2D and M2_2D. 

Nh1 Nh2 MSE Error  
for 

Method M1_2D

MSE Error  
for 

Method M2_2D 

4 0 0.3471 0.1649 
4 0.1195 0.1608 

12 0.1012 0.0251 
20 0.0988 0.0204 
28 1.1382 0.0499 
32 0.0743 0.0225 

12 0 0.0326 0.0989 
4 0.0215 0.0793 

12 0.0064 0.0052 
20 0.0010 0.0097 
28 0.0071 0.0088 
32 0.0047 0.0016 

20 0 0.068 0.0027 
4 0.0020 0.0050 

12 0.0009 0.0007 
20 0.0055 0.0003 
28 0.0062 0.0008 
32 0.0008 0.0006 

28 0 0.082 0.0006 
4 0.0012 0.0001 

12 0.0063 0.0004 
20 0.0621 0.0002 
28 0.0032 0.0006 
32 0.0062 0.0004 

32 0 0.0019 0.006 
4 0.0037 0.0009 

12 0.0068 0.0003 
20 0.0014 0.0007 
28 0.0011 0.0004 
32 0.0008 0.0002 
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Table A 4. Dependence of the MSE error on the number of neurons in hidden layers for the 
PD-synthetic data produced by methods M1_2D and M2_2D. 

Nh1 Nh2 MSE Error  
for 

Method M1_2D

MSE Error  
for 

Method M2_2D 

5 0 0.0393 0.2394 
4 0.0979 0.0341 

12 0.0539 0.0009 
16 0.0293 0.0018 
20 0.0008 0.0003 
24 0.0008 0.0004 

15 0 0.0009 0.0009 
4 0.0072 0.0006 

12 0.0012 0.0006 
16 0.0030 0.0004 
20 0.0006 0.0003 
24 0.0006 0.0004 

30 0 0.0061 0.0007 
4 0.0017 0.0003 

12 0.0005 0.0002 
16 0.0004 0.0008 
20 0.0069 0.0007 
24 0.0004 0.0008 

45 0 0.0015 0.0078 
4 0.0024 0.0010 

12 0.0008 0.0011 
16 0.0003 0.0005 
20 0.0006 0.0004 
24 0.0005 0.0007 

60 0 0.0027 0.0073 
4 0.0008 0.0006 

12 0.0004 0.0011 
16 0.0003 0.0005 
20 0.0004 0.0011 
24 0.0003 0.0010 
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Table A 5. Dependence of the MSE error on the number of neurons in hidden layers for the 
PP-synthetic data produced by methods M1_2D and M2_2D. 

Nh1 Nh2 MSE Error  
for 

Method M1_2D

MSE Error  
for 

Method M2_2D 

10 0 0.00928 0.00237 
15 0.00049 0.00031 
30 0.00053 0.00008 
60 0.00029 0.00019 
90 0.00022 0.00016 

120 0.00019 0.00039 
20 0 0.00089 0.00089 

15 0.00071 0.00059 
30 0.00011 0.00059 
60 0.00029 0.00039 
90 0.00059 0.00029 

120 0.00050 0.00039 
30 0 0.00385 0.00096 

15 0.00026 0.00009 
30 0.00185 0.00009 
60 0.00008 0.00007 
90 0.00007 0.00001 

120 0.00005 0.00005 
40 0 0.00149 0.00779 

15 0.00031 0.00099 
30 0.00079 0.00003 
60 0.00029 0.00004 
90 0.00059 0.00003 

120 0.00049 0.00006 
50 0 0.00269 0.00729 

15 0.00017 0.00009 
30 0.00003 0.00006 
60 0.00009 0.00004 
90 0.00003 0.00006 

120 0.00009 0.00003 
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Table A 6. Dependence of the MSE error on the number of neurons in hidden layers for the 
PP-synthetic data produced by methods M1_3D and M2_3D. 

Nh1 Nh2 MSE Error  
for 

Method M1_3D

MSE Error  
for 

Method M2_3D 

21 0 0.0139 0.0070 
8 0.0072 0.0007 

24 0.0084 0.0008 
48 0.0043 0.0007 
72 0.0066 0.0006 
96 0.0058 0.0006 

42 0 0.013 0.0013 
8 0.0010 0.0009 

24 0.0054 0.0006 
48 0.0034 0.0005 
72 0.0008 0.0005 
96 0.0007 0.0004 

63 0 0.0571 0.0028 
8 0.0017 0.0051 

24 0.0011 0.0010 
48 0.0008 0.0006 
72 0.0008 0.0006 
96 0.0007 0.0004 

84 0 0.0022 0.0025 
8 0.0009 0.0007 

24 0.0007 0.0003 
48 0.0006 0.0004 
72 0.0008 0.0009 
96 0.0005 0.0004 

105 0 0.0040 0.0016 
8 0.0009 0.0007 

24 0.0006 0.0006 
48 0.0005 0.0004 
72 0.0005 0.0003 
96 0.0005 0.0003 
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Table A 7. Dependence of the MSE error on the number of neurons in hidden layers for the 
PD-synthetic data produced by methods M1_3D and M2_3D. 

Nh1 Nh
2 

MSE Error  
for 

Method M1_3D 

MSE Error  
for 

Method M2_3D 

21 0 0.009267 0.005252 
5 0.004812 0.000525 
15 0.001106 0.000600 
25 0.000865 0.000525 
35 0.000441 0.000401 
45 0.000386 0.000150 

28 0 0.008652 0.000275 
5 0.000667 0.000175 
15 0.000536 0.000450 
25 0.002260 0.000375 
35 0.000533 0.000115 
45 0.000466 0.000102 

35 0 0.003806 0.002111 
5 0.001132 0.003825 
15 0.000733 0.000751 
25 0.000105 0.000085 
35 0.000096 0.000088 
45 0.000085 0.000085 

42 0 0.001466 0.001875 
5 0.000614 0.000165 
15 0.000466 0.000025 
25 0.000098 0.000016 
35 0.000088 0.000012 
45 0.000085 0.000010 

 

 

 

 

 

 

 

 



174 
 

Table A 8. Dependence of the MSE error on the number of neurons in hidden layers for the 
DD-synthetic data produced by methods M1_3D and M2_3D. 

Nh1 Nh2 MSE Error  
for 

Method M1_3D

MSE Error  
for 

Method M2_3D 

25 0 0.00729 0.00311 

5 0.00332 0.00431 

15 0.00310 0.00151 

25 0.00274 0.00132 

35 0.00249 0.00112 

45 0.00364 0.00108 

30 0 0.00887 0.00714 

5 0.00122 0.00767 

15 0.00127 0.00099 

25 0.00113 0.00096 

35 0.00097 0.00086 

45 0.00091 0.00063 

35 0 0.00391 0.00231 

5 0.00120 0.00087 

15 0.00089 0.00086 

25 0.00010 0.00080 

35 0.00086 0.00088 

45 0.00085 0.00089 

40 0 0.00156 0.00135 

5 0.00914 0.00286 

15 0.00476 0.00085 

25 0.00088 0.00086 

35 0.00087 0.00084 

45 0.00086 0.00090 
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Table A 9. Dependence of the MSE error on the number of neurons in hidden layers for the 
WS-synthetic data produced by methods M1_3D and M2_3D. 

Nh1 Nh
2 

MSE Error  
for 

Method M1_3D 

MSE Error  
for 

Method M2_3D 

15 0 0.06281 0.08937 
15 0.00571 0.00679 
30 0.00563 0.00314 
45 0.00552 0.00255 
60 0.00531 0.00231 
75 0.00441 0.00125 

30 0 0.00762 0.00197 
15 0.00201 0.00099 
30 0.00134 0.00058 
45 0.00111 0.00051 
60 0.00055 0.00039 
75 0.00042 0.00036 

45 0 0.00219 0.00102 
15 0.00104 0.00099 
30 0.00077 0.00072 
45 0.00058 0.00064 
60 0.00034 0.00025 
75 0.00029 0.00030 

60 0 0.0010 0.0011 
15 0.00082 0.00079 
30 0.00060 0.00089 
45 0.00048 0.00046 
60 0.00039 0.00042 
75 0.00025 0.00025 
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Table A 10. Dependence of the MSE error on the number of neurons in hidden layers for 
the W-synthetic data produced by methods M1_3D and M2_3D. 

Nh1 Nh
2 

MSE Error  
for 

Method M1_3D 

MSE Error  
for 

Method M2_3D 

20 0 0.009003 0.007638 
5 0.006429 0.002649 
20 0.001127 0.001008 
35 0.000731 0.000988 
50 0.000335 0.000657 
65 0.000241 0.000103 

30 0 0.007108 0.000989 
5 0.003999 0.000769 
20 0.003861 0.000099 
35 0.001000 0.000081 
50 0.000412 0.000070 
65 0.000136 0.000074 

40 0 0.004256 0.006879 
5 0.001002 0.000869 
20 0.000628 0.000097 
35 0.000211 0.000075 
50 0.000099 0.000079 
65 0.000082 0.000076 

50 0 0.004963 0.001650 
5 0.001241 0.000866 
20 0.000967 0.000431 
35 0.000084 0.000079 
50 0.000083 0.000070 
65 0.000075 0.000072 
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Table A 11. MSE performance of the ANN for different   data pool volumes WS2DV1, 
WS2DV2 and WS2DV3 

Data pool volume MSE error after 16 
epochs 

MSE error after 
1000 

epochs 

MSE error after 
4000 

epochs 
WS2DV1 0.0049 0.0040 0.0031 
WS2DV2 0.0001 

Performance goal 
was 

Reached 

Performance goal 
was 

Reached 

Performance goal 
was 

Reached 

WS2DV3  
0.0004 

 

0.0002 0.0001 
Performance goal 

was 
Reached 

 

Table A 12.  MSE performance of the ANN for different   data pool volumes W2DV1, 
W2DV2 and W2DV3 

Data pool 
volume 

MSE error after 
 77 

epochs 

MSE error 
after 1348 

epochs 

MSE error after 
2500 

epochs 

MSE error after 
5000 

epochs 
W2DV1 0.006899 0.000664 0.000547 0.0001062 
W2DV2 0.000058 

Performance goal 
was Reached 

Performance 
goal was 
Reached 

Performance 
goal was 
Reached 

Performance  
goal was 
Reached 

W2DV3 0.000072 
 

0.000060 
Performance 

goal was 
Reached 

Performance 
goal was 
Reached  

Performance goal 
was 

Reached 

 

Table A 13. MSE performance of the ANN for different   data pool volumes DD2DV1, 
DD2DV2 and DD2DV3 

Data pool 
volume 

MSE error after 
 2282 

epochs 

MSE error after 
4258 

epochs 

MSE error after 
8000 

epochs 
DD2DV1 0.0679 0.0499 0.0097 
DD2DV2 0.0001 

Performance goal 
was Reached 

Performance 
goal was 
Reached 

Performance  
goal was 
Reached 

DD2DV3 0.0004 
 

0.0001 
Performance 

goal was 
Reached 

Performance goal 
was 

Reached 
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Table A 14.  MSE performance of the ANN for different   data pool volumes PD2DV1, 
PD2DV2 and PD2DV3 

Data pool 
volume 

MSE error after 
1275 

epochs 

MSE error after 
5000 

epochs 

MSE error after 
10000 
epochs 

PD2DV1 0.00074 0.00061 0.00044 
PD2DV2 0.00020 

Performance goal 
was Reached 

Performance 
goal was 
Reached 

Performance  
goal was 
Reached 

PD2DV3 0.00041 0.000037 0.00032 
 

Table A 15. MSE performance of the ANN for different   data pool volumes PP2DV1, 
PP2DV2 and PP2DV3 

Data pool 
volume 

MSE error after 
1275 

epochs 

MSE error after 
5000 

epochs 

MSE error after 
10000 
epochs 

PP2DV1 0.000141 0.000071 0.000054 
PP2DV2 0.00001 

Performance goal 
was Reached 

Performance 
goal was 
Reached 

Performance  
goal was 
Reached 

PP2DV3 0.000032 0.000026 0.000022 
 

 

Table A 16.  MSE performance of the ANN for different   data pool volumes PP3DV1, 
PP3DV2 and PP3DV3 

Data pool 
volume 

MSE error after 
1340 

epochs 

MSE error after 
3000 

epochs 

MSE error after 
5000 

epochs 
PP3DV1 0.07039 0.04886 0.03539 

PP3DV2 0.00032 
Performance goal 

was 
Reached 

Performance 
goal was 
Reached 

Performance goal 
was 

reached 

PP3DV3 0.00024 
Performance goal 

was 
Reached 

Performance 
goal was 
reached 

Performance goal 
was 

reached 
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Table A 17. MSE performance of the ANN for different   data pool volumes PD3DV1, 
PD3DV2 and PD3DV3 

Data pool 
volume 

MSE error after 
1560 

epochs 

MSE error after 
5000 

epochs 

MSE error after 
10000 
epochs 

PD3DV1 0.000526 0.000281 0.000212 

PD3DV2 0.000085 
Performance goal 

was 
Reached 

Performance 
goal was 
Reached 

Performance goal 
was 

Reached 

PD3DV3 0.000016 0.000070 
Performance 

goal was 
Reached 

Performance goal 
was 

reached 

 

 

 

Table A 18. MSE performance of the ANN for different   data pool volumes DD3DV1, 
DD3DV2 and DD3DV3 

Data pool 
volume 

MSE error after 
700 

epochs 

MSE error after 
4000 

epochs 

MSE error after 
8000 

epochs 
DD3DV1 0.00346 0.00125 0.00105 

DD3DV2 0.00080 
Performance goal 

was 
Reached 

Performance 
goal was 
Reached 

Performance goal 
was 

Reached 

DD3DV3 0.00087 0.000082 
Performance 

goal was 
Reached 

Performance goal 
was 

reached 
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Table A 19. MSE performance of the ANN for different   data pool volumes WS3DV1, 
WS3DV2 and WS3DV3 

Data pool 
volume 

MSE error after 
34077 
epochs 

MSE error after 
50000 
epochs 

MSE error after 
100000 
epochs 

WS3DV1 0.00259 0.00106 0.0009 

WS3DV2 0.00025 
Performance goal 

was 
Reached 

Performance 
goal was 
Reached 

Performance goal 
was 

Reached 

WS3DV3 0.00041 0.00030 
 

0.00027 

 

 

 

Table A 20. MSE performance of the ANN for diferent   data pool volumes W3DV1, 
W3DV2 and W3DV3 

Data pool 
volume 

MSE error after 
1677 

epochs 

MSE error after 
6000 

epochs 

MSE error after 
10000 
epochs 

W3DV1 0.000267 0.000103 0.000098 

W3DV2 0.000070 
Performance goal 

was 
Reached 

Performance 
goal was 
Reached 

Performance goal 
was 

Reached 

W3DV3 0.000096 0.000070 
Performance 

goal was 
Reached 

Performance goal 
was 

reached 
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Table A 21. Effect of learning rate and momentum coefficient in training the ANN using 
the 2D WS-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error for each case. 

Learning 
Rate 

Momentum Epoch Time(s) Learning 
speed 

0.002 0 3693 3393.3 2.83 
0.1 4315 2713.8 1.59 
0.3 2638 2544.1 1.43 
0.6 2531 1861.0 1.36 
0.9 1384 1224.8 1.13 

0.02 0 3647 1814.4 2.01 
0.1 2000 1379.3 1.45 
0.3 2411 1812.8 1.33 
0.6 1308 730.7 1.79 
0.9 637 478.9 1.33 

0.2 0 4000 1459.9 2.74 
0.1 483 405.9 1.19 
0.3 209 178.6 1.17 
0.6 176 167.6 1.05 
0.9 16 20 0.8 

1 0 635 341.4 1.86 
0.1 739 671.8 1.10 
0.3 518 319.8 1.62 
0.6 219 123.7 1.77 
0.9 183 146.4 1.25 
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Table A 22. Effect of learning rate and momentum coefficient in training the ANN using 
the 2D W-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.00006) for each case. 

Learning 
Rate

Momentum Epoch Time(s) Learning 
speed

0.001 0 4900 1611.8 3.04 
0.2 4015 1723.2 2.33 
0.4 2861 1663.4 1.72 
0.6 1673 1013.9 1.65 
0.8 968 864.3 1.12 

0.01 0 4216 1825.1 2.31 
0.2 2845 1962.1 1.45 
0.4 77 90.6 0.85 
0.6 1406 1495.7 0.94 
0.8 866 651.1 1.33 

0.1 0 4735 2453.4 1.93 
0.2 649 480.7 1.35 
0.4 559 440.2 1.27 
0.6 388 340.4 1.14 
0.8 217 166.9 1.30 

1 0 2312 1313.6 1.76 
0.2 934 924.8 1.01 
0.4 416 261.6 1.59 
0.6 157 121.7 1.29 
0.8 218 171.7 1.27 
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Table A 23. Effect of learning rate and momentum coefficient in training the ANN using 
the 2D DD-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.0001) for each case. 

Learning Rate Momentum Epoch Time(s) Learning speed 

0.001 0 18521 9123.65 2.03 
0.2 8659 6097.89 1.42 
0.4 14887 9482.17 1.57 
0.6 10094 5072.36 1.99 
0.8 9553 8027.73 1.19 

0.01 0 3269 2867.54 1.14 
0.2 2282 2402.10 0.95 
0.4 5834 3241.11 1.80 
0.6 8159 4458.47 1.83 
0.8 7598 6279.34 1.21 

0.1 0 3908 2605.33 1.50 
0.2 5635 2981.48 1.89 
0.4 9601 5106.91 1.88 
0.6 10214 4621.72 2.21 
0.8 12497 8501.36 1.47 

1 0 16097 10385.16 1.55 
0.2 9024 8129.73 1.11 
0.4 24511 12832.98 1.91 
0.6 29005 14648.99 1.98 
0.8 42849 26450.00 1.62 
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Table A 24. Effect of learning rate and momentum coefficient in training the ANN using 
the 2D PD-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.0002) for each case. 

Learning Rate Momentum Epoch Time(s) Learning speed 

0.002 0 10000 2207.5 4.53 
0.2 7629 2311.8 3.30 
0.4 5491 2056.6 2.67 
0.6 3720 1653.3 2.25 
0.8 2396 2047.9 1.17 

0.02 0 8959 2434.5 3.68 
0.2 1275 1301 0.98 
0.4 6829 3191.1 2.14 
0.6 6137 2324.6 2.64 
0.8 4217 2451.7 1.72 

0.2 0 6876 2292 3.0 
0.2 5455 4040.7 1.35 
0.4 3989 1890.5 2.11 
0.6 2391 2321.4 1.03 
0.8 1990 1644.6 1.21 

1 0 7869 2649.5 2.97 
0.2 4780 2914.6 1.64 
0.4 3264 2133.3 1.53 
0.6 2483 2458.4 1.01 
0.8 3201 2623.8 1.22 
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Table A 25. Effect of learning rate and momentum coefficient in training the ANN using 
the  2D PP-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.0002) for each case. 

Learning Rate Momentum Epoch Time(s) Learning speed 

0.002 0 10000 7518.8 1.33 
0.1 10000 5319.1 1.88 
0.3 7651 3255.7 2.35 
0.6 3962 1868.9 2.12 
0.9 2968 2104.9 1.41 

0.02 0 10000 6211.2 1.61 
0.1 6359 5728.8 1.11 
0.3 373 282.6 1.32 
0.6 5682 2974.9 1.91 
0.9 3901 3120.8 1.25 

0.2 0 10000 6097.6 1.64 
0.1 7639 6419.3 1.19 
0.3 4202 2101.0 2.0 
0.6 3266 3170.9 1.03 
0.9 2136 1405.3 1.52 

1 0 10000 5076.1 1.97 
0.1 6875 5635.2 1.22 
0.3 4238 3235.1 1.31 
0.6 3244 2680.9 1.21 
0.9 1989 1969.3 1.01 
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Table A 26. Effect of learning rate and momentum coefficient in training the ANN using 
the 3D WS-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.00025) for each case. 

Learning 
Rate 

Momentum Epoch Time(s) Learning 
speed 

0.02 0 100000 103092.8 0.97 
0.15 100000 89285.7 1.12 
0.30 100000 75757.6 1.32 
0.60 87229 57767.5 1.51 
0.95 80766 60726.3 1.33 

1 79580 48524.4 1.64 
0.2 0 100000 87719.3 1.14 

0.15 100000 65789.5 1.52 
0.30 100000 83333.3 1.20 
0.60 78694 56586.4 1.32 
0.95 34077 18520.1 1.84 

1 46139 31387.1 1.47 
0.6 0 100000 88495.6 1.13 

0.15 100000 87719.3 1.14 
0.30 86972 53357.1 1.63 
0.60 85680 61200.0 1.40 
0.95 54281 43424.8 1.25 

1 54382 41832.3 1.30 
1 0 100000 114942.5 0.87 

0.15 100000 90090.1 1.11 
0.30 100000 60241.0 1.66 
0.60 73897 47068.2 1.57 

0.95 46928 34761.5 1.35 
1 53192 3116.8 1.73 
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Table A 27. Effect of learning rate and momentum coefficient in training the ANN using 
the 3D W-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.00007) for each case. 

Learning Rate Momentum Epoch Time(s) Learning speed 

0.01 0 10000 12048.2 0.83 
0.1 10000 9090.9 1.10 
0.3 10000 8000.0 1.25 
0.6 8694 6392.6 1.36 
0.9 8427 6796.0 1.24 
1 4969 3247.7 1.53 

0.1 0 10000 8196.7 1.22 
0.1 10000 7042.3 1.42 
0.3 7638 6472.9 1.18 
0.6 1677 1096.1 1.53 
0.9 5618 3304.7 1.70 
1 5226 4248.8 1.23 

0.50 0 10000 8264.5 1.21 
0.1 10000 7936.5 1.26 
0.3 10000 6896.6 1.45 
0.6 7692 5614.6 1.37 
0.9 7124 5887.6 1.21 
1 6385 5700.9 1.12 

1 0 10000 10869.6 0.92 
0.1 9682 8275.2 1.17 
0.3 7968 5107.7 1.56 
0.6 8326 6077.4 1.37 
0.9 6768 4423.5 1.53 
1 5967 5375.7 1.11 
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Table A 28. Effect of learning rate and momentum coefficient in training the ANN using 
the 3D DD-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.0008) for each case. 

Learning 
Rate 

Momentum Epoch Time(s) Learning 
speed 

0.02 0 8000 9638.6 0.83 
0.1 8000 7017.5 1.14 
0.3 7921 5955.6 1.33 
0.6 7834 4835.8 1.62 
0.9 6682 4877.4 1.37 
1 5140 3337.7 1.54 

0.2 0 8000 7272.7 1.10 
0.1 8000 6015.0 1.13 
0.3 7398 6063.9 1.22 
0.6 4979 3800.8 1.31 
0.9 700 426.8 164 
1 3677 2607.8 1.41 

0.4 0 8000 8247.4 0.97 
0.1 7698 5744.8 1.34 
0.3 7501 6000.8 1.25 
0.6 6524 4762.0 1.37 
0.9 5124 4132.3 1.24 
1 4018 3043.9 1.32 

0.6 0 8000 7920.8 1.01 
0.1 8000 7207.2 1.11 
0.3 5367 3946.3 1.36 
0.6 4972 3382.3 1.47 
0.9 4666 3049.7 1.53 
1 4000 2836.9 1.41 

             
1 

0 8000 9876.5 0.81 
0.1 6791 5432.8 1.25 
0.3 4210 2275.7 1.85 
0.6 4613 3442.5 1.34 
0.9 5470 3798.6 1.44 
1 4019 3464.7 1.16 

 

 
 
 
 
 



189 
 

 
 
Table A 29. Effect of learning rate and momentum coefficient in training the ANN using 
the 3D PD-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.000085) for each case. 

Learning Rate Momentum Epoch Time(s) Learning speed 

0.01 0 10000 10989 0.91 
0.1 9650 9460.8 1.02 
0.3 9816 8112.4 1.21 
0.6 7398 5173.5 1.44 
0.9 6361 4479.6 1.42 
1 3506 2191.3 1.60 

0.1 0 10000 9009 1.11 
0.1 8694 6488.1 1.34 
0.3 5361 4786.6 1.12 
0.6 3357 2707.3 1.24 
0.9 1560 939.8 1.66 
1 3201 2406.8 1.33 

0.30 0 10000 9708.7 1.03 
0.1 8679 8508.8 1.02 
0.3 8523 5498.7 1.55 
0.6 5386 4240.9 1.27 
0.9 4212 3694.7 1.14 
1 4115 3578.3 1.15 

1 0 10000 10204.1 0.98 
0.1 8339 8256.4 1.01 
0.3 5769 3554.1 1.72 
0.6 4662 3700 1.26 
0.9 3914 2680.8 1.46 
1 3700 3245.6 1.14 
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Table A 30. Effect of learning rate and momentum coefficient in training the ANN using 
the 3D PP-data. The numbers of epochs are corresponding to reach the ANN to the 
threshold error (0.0003) for each case. 

Learning Rate Momentum Epoch Time(s) Learning speed 

0.05 0 5000 4550.5 1.01 
0.2 5000 4629.6 1.08 
0.4 3721 2976.8 1.25 
0.6 3558 2068.6 1.72 
0.8 2689 1670.2 1.61 
1 2054 1697.5 1.21 

0.15 0 5000 3759.4 1.33 
0.2 4262 2899.3 1.47 
0.4 3600 2322.6 1.55 
0.6 2947 2090.1 1.41 
0.8 1340 917.8 1.46 
1 2366 1908.1 1.24 

0.30 0 5000 3472.2 1.44 
0.2 3628 3239.3 1.12 
0.4 4577 3415.7 1.34 
0.6 2395 2119.5 1.13 
0.8 2253 2208.8 1.02 
1 3128 2818.0 1.11 

1 0 5000 4672.9 1.07 
0.2 3729 3655.9 1.02 
0.4 4015 2658.9 1.51 
0.6 2733 1687.0 1.62 
0.8 1900 1165.6 1.63 
1 2258 1297.7 1.74 
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Table A 31. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 2D WS-data 

Resistivity  
of  

back ground 
(Ωm) 

100
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 5.8 2.6 2.9 4.1 

200
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 5.2 1.6 4.9 5.0 

300
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 3.9 1.0 1.4 1.4 

400
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 2.8 1.3 2.1 2.5 

500
Resistivity 

of anomaly (Ωm) 700 900 9000 11000 

RMS error (%) 5.3 0.9 1.1 1.1 

600
Resistivity 

of anomaly (Ωm) 800 900 15000 20000 

RMS error (%) 4.0 1.4 0.8 1.0 
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Table A 32. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 2D W-data 

Resistivity  
of  

back ground 
(Ωm) 

100
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 6.2 2.9 0.7 2.4 

200
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 5.7 2.5 1.2 3.6 

300
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 3.9 1.0 0.8 1.4 

400
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 5.3 3.3 2.9 4.6 

500
Resistivity 

of anomaly (Ωm) 700 900 9000 11000 

RMS error (%) 6.0 2.2 3.1 2.5 

600
Resistivity 

of anomaly (Ωm) 800 900 15000 20000 

RMS error (%) 4.7 3.9 1.1 2.4 
 

Table A 33. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 2D DD-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 5.9 2.7 0.93 1.0 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 5.1 3.3 1.5 2.0 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 4.6 3.5 1.6 1.6 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 5.8 3.0 1.8 2.2 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 8.2 2.6 1.1 1.4 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 7.3 6.1 2.7 2.4 
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Table A 34. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 2D PD-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 7.1 6.5 1.0 2.4 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 5.9 3.7 1.4 3.5 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 4.4 2.9 3.2 1.8 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 5.4 3.9 2.1 2.6 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 6.7 2.0 3.5 1.8 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 5.6 4.7 1.5 3.4 
 

Table A 35. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 2D PP-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 6.5 5.1 3.7 3.0 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 6.2 5.7 3.4 3.1 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 6.0 5.8 4.5 4.1 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 5.9 6.0 3.7 4.0 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 6.4 4.2 3.3 3.1 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 6.5 5.0 3.9 3.8 
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Table A 36. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 3D WS-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 8.0 8.0 5.1 3.3 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 7.7 6.5 4.5 4.2 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 6.4 5.7 4.7 2.1 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 7.6 7.4 3.7 2.0 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 6.4 5.3 3.2 2.0 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 4.7 4.5 2.7 2.1 
 

Table A 37. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 3D W-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 8.4 7.9 5.1 4.3 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 7.5 6.4 3.8 3.1 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 9.0 7.3 5.7 5.1 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 7.3 6.4 4.7 3.0 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 7.6 6.7 5.4 3.0 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 6.6 5.5 4.3 3.4 
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Table A 38. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 3D DD-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 8.0 6.9 6.2 5.5 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 7.1 5.9 3.2 5.3 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 5.7 5.7 3.5 3.0 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 8.0 6.14 5.0 2.7 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 6.9 7.6 3.4 3.0 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 7.7 4.1 4.7 3.8 
 
 

Table A 39. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 3D PD-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 6.0 5.4 3.5 3.2 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 5.9 5.1 4.6 2.0 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 5.9 5.5 4.7 3.1 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 6.0 5.4 3.8 4.0 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 6.0 4.7 2.4 3.0 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 5.8 4.5 3.8 2.2 
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Table A 40. RMS error between the results of the ANN and the corresponding true 
resistivity distributions for each test set of 3D PP-data 

Resistivity  
of  

back ground 
(Ωm) 

100 
Resistivity 

of anomaly (Ωm) 300 700 2000 4000 

RMS error (%) 5.8 4.7 3.0 4.1 

200 
Resistivity 

of anomaly (Ωm) 400 800 4000 6000 

RMS error (%) 6.3 5.5 7.0 9.3 

300 
Resistivity 

of anomaly (Ωm) 500 700 5000 7000 

RMS error (%) 5.4 3.6 6.7 7.8 

400 
Resistivity 

of anomaly (Ωm) 600 800 6000 8000 

RMS error (%) 5.3 0.8 0.9 

500 
Resistivity 

of anomaly (Ωm) 700 900 9000 11000

RMS error (%) 7.2 4.0 0.7 0.3 

600 
Resistivity 

of anomaly (Ωm) 800 900 15000 20000

RMS error (%) 9.4 8.5 4.0 2 
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