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ABSTRACT

Econophysics is an interdisciplinary research field applying the mathematical methods of

statistical physics to economics and finance. It emphasizes quantitative analysis of large

amounts of economic and financial data as oppose to the more philosophical approach of

political economics. A popular topic studied in econophysics is the distribution of wealth.

Many models have been proposed to explain the trading dynamics [12,13] leading to the

distribution of wealth universally observed in many countries. A more recent topic in

econophysics is the movement of money studied by Brockmann in [19,20]. In this work, we

are interested in studying the relation between the distribution of wealth and anomalous

diffusion using a trading model. We plan to do this by studying the diffusion of money in

correspondence to a particular trading model. In particular, our objective is to observe if the

distribution of money displacement lengths and waiting times exhibit scale free behavior

for a particular trading model. We conclude from the observations we made that a trading

model with a resultant mixed distributions of wealth with a scale free tail exhibits

anomalous diffusion. A trading model with a resultant mixed distributions of wealth with

an exponential tail exhibits subdiffusion. A trading model with a resultant exponential

distribution of wealth does not exhibit anomalous diffusion.
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ABSTRAK

Ekonofizik adalah bidang penyelidikan interdisipliner yang menerapkan kaedah-kaedah

matematik dalam fizik statistik untuk ekonomi dan kewangan. Ia menekankan analisis

kuantitatif data ekonomi dan kewangan berbanding pendekatan yang lebih falsafah seperti

politik ekonomi. Topik popular yang dipelajari dalam ekonofizik adalah pengagihan

kekayaan. Banyak model telah dicadangkan untuk menjelaskan dinamika perdagangan

[12,13] seperti yang dilihat dalam taburan pengagihan kekayaan banyak negara. Topik yang

lebih baru dalam ekonofizik adalah pergerakan wang yang diselidiki oleh Brockmann di

[19,20]. Dalam tesis ini, kita tertarik untuk mempelajari hubungan antara pengagihan

kekayaan dan anomali difusi menggunakan model perniagaan. Kami merancang untuk

melakukan hal ini dengan mempelajari difusi wang dalam korespondensi untuk model

perniagaan tertentu. Secara khusus, tujuan kami adalah untuk mengamati jika edaran

perpindahan wang dan masa tunggu menunjukkan perilaku bebas skala untuk model

perniagaan tertentu. Kita simpulkan daripada pemerhatian kami bahawa model perniagaan

dengan ekor taburan pengagihan kekayaan bebas skala mengalami anomali difusi. Sebuah

model perniagaan dengan ekor taburan pengagihan kekayaan eksponen mengalami

“subdiffusion”. Model perniagaan dengan taburan pengagihan kekayaan eksponen tidak

menunjukkan anomali difusi.
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CHAPTER 1 : INTRODUCTION

1.1 Background

Econophysics is an interdisciplinary research field applying the mathematical

methods of statistical physics to economics and finance. It was introduced by analogy with

similar terms such as geophysics and biophysics which describe applications of physics to

different fields. The term was firstly introduced by H Eugene Stanley in 1995 at the

Conference of Dynamic Systems in Kolkata in part to legitimize why doctorates in physics

are allowed to work on economic problems [1]. Here, the author argued that the behavior of

humans might conform to analogs of the scaling laws used to describe systems composed

of large numbers of inanimate objects.

Econophysics emphasizes quantitative analysis of large amounts of economic and

financial data as oppose to the more philosophical approach of political economics. It

distances itself from the traditional representative-agent approach which eschews economic

heterogeneity and is pushed to a stable economic equilibrium by an 'invisible hand' [2].

This traditional approach in studying the economy causes discrepancies between theory and

empirical data [47]. Econophysics is thus closer to econometrics and quantitative finance

but with more emphasis on actual phenomena. It adopts more statistical physics concepts

such as scaling, universality, disordered systems and self-organized systems to describe

observations. Besides these tools, econophysics is also strongly tied to the agent based



modeling approach. With this approach, interacting agents throughout the system will result
in the emergence of universal laws which are independent of microscopic details and
dependent just on a few macroscopic factors [3].

The application of physics concepts to economics has a deep history. The origins of
statistical physics has close ties with statistics which was mainly applied in economic
studies. James Clerk Maxwell, in developing the kinetic theory of gases was influenced by
social statistics [4]. Ludwig Boltzmann once stated that “molecules are like individuals”
and to “consider to apply this method to the statistics of living beings, society, sociology
and so forth..” [5]. With these influences, 19" century economists such as Vilfredo Pareto
[6] who were originally trained in the hard sciences transferred mathematical tools such as
Newtonian mechanics and classical thermodynamics to economics. In modern times, the
advent of studies in nonlinearity and chaos renewed interest of scientists in economics
where questions of predictability in financial time series were asked. This brought upon a
large employment of scientists with familiarity in time series and statistical analysis to
Wall Street [7].

Besides the statistical physics approach to economics, which is the thrust of this
current work, there are also significant overlaps with the complex adaptive systems
approach which is related to the Santa Fe Institute [8] and the Agent-Based Computational

Economics approach [9]. In terms of other physics tools, there has been use of gauge theory



in stock pricing [10] and also quantum field theory in studying in interest rates [11]. We

however are not discussing these approaches in this current work.

1.2 Problem statement and objective

A popular topic studied in econophysics is the distribution of wealth. Many models
have been proposed to explain the trading dynamics [12,13] leading to the distribution of
wealth universally observed in many countries. A more recent topic in econophysics is the
movement of money studied by Brockmann in [19,20]. In this work, we are interested in
studying the relation between the distribution of wealth and anomalous diffusion using a
trading model. We plan to do this by studying the diffusion of money in correspondence to
a particular trading model. In particular, our objective is to observe if the distribution of
money displacement lengths and waiting times exhibit scale free behavior for a particular

trading model.

1.3 Scope

We firstly describe the distribution of wealth. We state its universal characteristics
by citing empirical distributions of wealth of the US , the UK [12] and other countries. We
then discuss the statistical mechanics behind the distribution of wealth citing three different

theories [13-15]. We then proceed to discuss anomalous diffusion. We firstly discuss



normal diffusion and derive the diffusion equation [16]. We then introduce anomalous
diffusion in particular superdiffusion and subdiffusion and we reproduce its analytical
results based on [16,17]. With this background of anomalous diffusion, we proceed to study
the diffusion of money in the Chakrabarti trading model [13], the Yakovenko trading model
[15] and the Kinetic Economies trading model [18]. We then introduce the theory behind
the analysis methods discussed from [19,20] to determine the type of diffusion in the
trading models. This constitutes the literature review portion of the work.

In our methodology, we elaborated on the algorithm of the three models mentioned
before and our modifications on their algorithms that allows us to calculate the diffusion of
money. Since we will be analyzing power laws [21], our analysis simply concerns
obtaining scaling exponents from the power law distributions. We elaborate on how we
performed this analysis on the pdf of wealth on the trading models, the pdf of displacement
lengths of money and the pdf of waiting times of money.

We then present the pdf of wealth for all the three models and we compare this
original result with our modifications on the trading model algorithm. This is to be sure that
our modifications still allow the emergence of the wealth distribution similar to that of the
original trading model. We then present the results of the pdf of displacement length of
money and waiting time of money for all three models. We further confirmed those results

by presenting the plots of mean-squared displacement over time for each of the trading



models. Finally, for each of the models, we compare the resultant exponents with the

analytical results as given by [20].

Finally we present a summary of our results and we discuss further efforts that we

will do to expand this work.



CHAPTER 2 : A REVIEW OF THE DISTRIBUTION OF WEALTH,

ANOMALOUS DIFFUSION AND ITS APPLICATION IN THE

MOVEMENT OF MONEY

The boom in research in econophysics started around 1995 with the advent of huge
computerized databases giving minute by minute transactions on financial markets. The
goal at this early stage was to find universal observations from the data. The initial interest

was to study stock market data, exchange rates, interest rates and wealth and income data.

2.1 Wealth and income distributions in empirical data

The distribution of wealth and income has been a long studied area in economics
[6]. Empirical data of wealth, which is defined as the net value of assets (financial holdings
and tangible items) however is not attainable in many countries as it is seldom reported by
individuals to the government. Most of the time, income is taken as a proxy for wealth.
However in Britain, assets of the deceased must be reported for inheritance tax. With this
data, the Inland Revenue plotted the income distribution of the whole United Kingdom [2].

An analysis was performed in [12] on this income distribution where a cumulative



distribution function of personal net income is plotted.

Fig. 2.1 shows that the cumulative distribution of income shows a mix scaling on a
log-log scale. For income above 100k pounds, a straight line indicating a power law was
observed. This observation was originally noted by Vilfredo Pareto [6] in which his
statistical analysis on income and wealth in a society show the observation of a power law
given by

P(m)Nm_(HV) 2.1
Where the exponent v is defined as the Pareto exponent for a distribution of income

given by m
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100% .
100%
LM‘!\..-’.. \'
.-’o.. oL L
E i 10% :
8 S A
x 10%} L] 1
E [
5 e 01%
= . 0 I 50 10k0 g 200
5 100% . . . ncome, kpounds
(0] .
= \ .c.
ST e, :
t_U L]
=5 ‘.- .
g 10%} . e .
(@] o o e
0 10 20 30 40 -
01%}+ Income, kpounds LA

10 100
Individual income, kpounds

Figure 2.1 Cumulative distribution of income for the UK between 1994-1998. Adapted from [12].

Earlier researchers were mainly interested in the power law region of the distribution. The

power law is characterized as a region which is scale-free. This means it is characterized by



the same functions on log-log plots. These plots however are nonintegrable as they have
infinite variance. However, thanks to efforts by Levy [23] in probability theory, Mandelbrot
[24] who found applications of power laws in financial data and Stanley who applied
scaling analysis to phase transitions in [25], power laws have seen greater application in
real world phenomena.
In [26] the authors modeled the lower income region, which is the income below
100k dollars by an approximation of the Gamma distribution specifically
P(m)=Cm “exp|—m/T| (2.2)
where T=1/(a+1) and C=(a+1)""/I'(x+1) . « is related to the saving
propensity by
ax=3A/(1-2A) (2.3)
The saving propensity will be elaborated in Section 2.2.2 on the description of
Chakrabarti's Trading Model. It was Dragulescu et. al in [12], Souma et. al in [27] and
Chakraborti et. al in [13] who performed the fitting to the exponential distribution for the
lower income region. It was mentioned in [12] that the exponentially fitted part is
dominated by the distribution of money but not significantly affected by invested assets.
The upper tail however shows a distribution of money dominated by invested assets.
Though there was a report of mixed distribution in this analysis, a mixed income

distribution was reported in [28] where the lower income region was fitted to a lognormal



distribution. Besides the observation here, a lognormal distribution was fitted originally in

[14].

United States, IRS data for 1997
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Figure 2.2 Cumulative distribution of income for the USA for 1997. Adapted from [12].

Besides work done on inheritance tax data from the UK, an analysis was also
performed on income, as given by tax returns of the United States in 1997 [12]. As seen in
Figure 2.2, there was a similar mixed scaling distribution as the data from the UK. It was
proposed that a two class structure exists in income distributions where the higher end of
the tail usually accounts for less than 10% of the population. It can also be observed that the
exponential portion of this data, in regards to the lower income group collapses in a similar
fashion to the UK data. This observation proves to be robust as seen by Yakovenko in [29]
where a plot of income distribution over many years for the USA and after normalizing to

the so called 'wealth temperature', an exponential distribution appears in each income



distribution in the time interval. This shows that the lower class income distribution has
stable properties similar to a system being in thermal equilibrium. The higher income
groups however seem to have more fluctuation with observations of fatter and thinner tails

with the former occurring during boom periods. This is shown in Figure 2.3 below.
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Adjusted gross income in 2001 dollars, k$

1009017 40.17 401.70 4017
+ 1990, 27 06
: = 1991, 277
19905 . }21 5:1_{;_‘
10% - —»  41a,2a
» Bolizmann-Gibbs - i b A The rescaled
E 1996, 32.9 exponential
2 ' + 1997, 346
2 100% 1998.36.3 part does not
] 5 * 1984, 8.0
2 i e 2000, 397 change,
§ \X 2001, 401
S 10%; 3
@ b
B 19.35 k$ : but the
Z « 1984, 20.27 k§ - power-law
‘_é {o,.  *+ 1985, 2I,15£§ N ' . -0.01% | part Changeg
+ 1986, 22.28 % v .
3 » 1987, 2 k_\ -— Parelo | significantly.

< 1988,

0.1%. 2535k
+ 1989, 26.38 k§

Ll Ty 10 100
Rescaled adjusted gross income [income / temperature)

Figure 2.3 Cumulative distribution of income for the USA for 1983-2001. Adapted from [29].

Besides data from the UK and USA showing a mixed distribution of income and

wealth, work has been done on Japanese personal income data based on detailed records

obtained from the Japanese National Tax Administration. The findings in [30] show that a

power law is observed at the high income tail and its mean value fluctuates around 2. Kim

and Yoon [31] have analyzed income distributions for current, labor and property markets

and they have found that their result is inconsistent with the power law observation.

Clementi and Gallegatti [32] have found that the personal income distribution in Italy

10



follows a power law in the high income range which considers a percent of the population

and the lower-middle income range has a lognormal distribution which accounts for 99

percent of the population. They have also performed a time dependent analysis similar to

that done by Yakovenko and have found that change in the power law distribution for the

high income range is related to economic growth.

2.2 Statistical Mechanics of Income and Wealth Distributions

It has been noted since Pareto and later Mandelbrot [24] that the distribution of

income for the higher income group can be fitted to a power law. The distribution of

income for the lower income group however has been fitted as either a lognormal

distribution by Simon [14] and later by Montroll and Shlesinger [35] or as a Boltzmann-

Gibbs distribution by Souma [27], Chakrabarti [13] and Yakovenko [15] . Here we attempt

to discuss the phenomenology behind these distributions and its relation to economic

systems.

2.2.1 Boltzmann-Gibbs distribution of wealth

Physicists attempting to model economic behavior adopt the analogy of large

systems of interacting particles as seen in the kinetic theory of gases. This methodology is

similar to agent-based simulation. The chief goal of agent-based simulation is to explain

11



economic results that are not accounted for in traditional models. It does this by pre-
supposing rules of behavior applied to agents and verifying whether these micro-based
rules can explain macroscopic regularities in the form of complex social patterns from
interactions with multiple agents [49]. These macroscopic regularities of course are
difficult to explain using conventional behavioral theories and empirical observations.

Econophysicists hypothesized that the regular patterns observed in income and
wealth distribution are due to a natural law for the statistical properties of many body
systems interacting as an economy analogous to gases and liquids. Thus the description of
an economy as a thermodynamic system allows the identification of the income distribution
with the distribution of energies of particles in a gas.

The Boltzmann-Gibbs distribution states that the probability of finding a physical
system in a state with energy & is given as

P(e)=ce " 2.4

where c is the normalizing constant and T is the scaled temperature. The derivation of this
distribution assumes the statistical character of the system (central limit theorem) and
conservation of energy. Consider N particles with the total energy E. Assuming the
particles are distributed by ascending energy levels, the number of permutations of particles
between different energy levels is given by

N!
Wes——-"-"-— (2.5)
NIN,IN!.

12



The logarithm of the multiplicity, W is defined as the entropy, S. For large numbers the

entropy per particle is written as

N N
iz—Z—kln —t Z—Z P InP, (2.6)
N r N N k

Using the method of Lagrange Multipliers, the distribution of particles with highest
multiplicity is given by the Boltzmann-Gibbs distribution.

Due to the general derivation behind the Boltzmann-Gibbs distribution, it was
proposed that phenomena distributed according to it will be seen in other statistical systems
besides gases. In [15], the argument was that a many body interacting system such as the
economy can be described by the Boltzmann-Gibbs distribution by choosing the conserved
quantity as money. The interaction process (trade) is described by the relation

m'l,zml,—Am m’jzijrAm 2.7)
where agents i and j complete a transaction with the total amount of money before and after
the transaction conserved. This disallows the manufacturing of money by an agent. This
entire process is similar to the transfer of energy between colliding molecules during the
gas phase. An agent based model based on the relations given above was performed.

The authors discovered that with any arbitrarily set of rules determining Am the
resultant distribution of wealth can be fitted to a Boltzmann-Gibbs distribution as shown in

Figure 2.4 below.

13
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Figure 2.4 Boltzmann-Gibbs distribution of money. Adapted from [15].

Income exchange models are based on two agent interactions, analogous to a two
particle collision exchanging kinetic energy. The basis of this model is two randomly
selected agents trade money based on predefined rules with no memory of occurrences
during previous trading, making this a Markovian process. There is a predefined total
amount of money and total number of agents in the system. No production, consumption or
migration occurs.

Boltzmann-Gibbs statistics applies to classical systems with short range forces and
relatively simple dynamics in equilibrium. For non-classical systems which are
nonequilibrium systems with a long term stationary state possessing spatio-temporally

fluctuating intensive quantities, Tsallis [53] has introduced the general Boltzmann factor

14



given by

1 —-1/(g—1)

B=[exp(—BE)f(B)dB=|

—_———— 2.8
! I+(g—1)B, E (28)

which is dependent on the entropic index q in which g=1 leads to the ordinary Boltzmann
factor. The use of the generalized Boltzmann factor has found many applications in

complex systems research but we will not apply it in this study.

2.2.2 Mixed distribution : Boltzmann-Gibbs and Power law distribution of wealth

The resultant wealth distribution depicted previously is unable to account for the
occurrence of a power law. A model designed by Chakrabarti et al. in [13] allows a
distribution of wealth with a mixed distribution as observed in empirical data. The model
is similar to the assumptions made by Yakovenko et al in [15] particularly conservation of
money during a trade.

Every agent is initialized with a randomly or arbitrarily set amount of money. In a
trade, a pair of agents exchange their money based on the predefined rules. The important
property of this interaction however is that the total amount of money in a trade is
conserved and there is no negative money after a trade. In specific terms,

mi(t)+mj(t)=mi(t+1)+mj(t+1) (2.9)

where m(r) isthe money of agents i or j attime ¢ .

15



There are two forms of this model . The first model [33] allows each agent to be
initialized by a parameter called saving propensity given by A which is a fraction

between (0,1) which determines how much an agent will trade and how much it will save at

the moment of trading. More specifically

i

mi(t+1)=/\mi(t)+€ij(1—)\)[m (t)—i—mj(t)]

m (t+1)=Am (1) +(1=€,)(1=A)[m (1) +m (1)] 2.10)

Here € isarandom fraction as well, meant to simulate the stochasticity of trading.

The result of such interaction is a shift in the most probable number of monies owned by an
agent as the uniform saving propensity changes. This is shown in Figure 5.5. In this case,
the interactions do not seem to be Markovian anymore as there is memory of past

interactions causing the distribution to move away from the Boltzmann-Gibbs distribution.

2.5

0000
oo

I
cocoo

4 b O O

Figure 2.5 PDF of wealth for the Chakraborti model with fixed saving propensities. Adapted from [13].
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The second model [33] initializes A as an inhomogeneous parameter. The rules

of trading can be written as
ml,(t—|- 1)=/\imi(t)+€ij[( 1 —)\i)m[(t)—i-( 1 —Aj)mj(t)]
m (t+1)=A m (1)+(1—€ )[(1=2)m (1)+(1=A )m (1)] (2.11)
where A, and A ; are saving propensities for agent i and j respectively. These saving

propensities are fixed over time, distributed independently, randomly and uniformly

between (0<A<1 . The first model has a homogeneous A for all agents in the

simulation.
10 . . . . :
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102 . 7
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Figure 2.6 PDF of wealth for the Chakraborti model with randomly distributed saving propensities.
Adapted from [33].

The goal of the simulation is to observe the emergent wealth distribution as a result of
trading. The distribution was obtained by checking the steady state after successive

iterations. After a typical relaxation time, which is dependent on the agent population and
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the distribution of A , a stationary distribution was observed. We show the stationary

distribution in Figure 2.6 above.

A power law decay in the high income range is observed. The exponent of the

power law is found to fit v=1. The method of analysis to obtain the exponent was to

perform a least-squares regression on a log-log plot of distribution of wealth. We ran the

same model using the same parameters as mentioned by the author and performed a power

law analysis as described in the next chapter.

2.2.3 Mixed distribution : LLognormal and Power law distribution of wealth

In [34] it was claimed that the distribution of income follows a lognormal

distribution but transitions into a power law in the last few percentiles. This claim is made

by plotting annual US income distribution for the year 1935-36 on log-normal graph paper.

They found the income is distributed on a straight line, indicating a lognormal distribution,

for the first 98-99 percent of the sample and followed by an inverse power law for the rest.

A model [35,36] was subsequently developed to explain the existence of the mixed

distribution of income. The basis of the model is also analogous from colliding gas

molecules transferring energy. Interestingly, they hinted on a different rate of obtaining

money similar to that of the saving propensity citing “..training, motivation, risk-taking,

inheritance, luck, intimidation, skill, etc” as constraints to people. Assuming the income
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distribution is log-normal, the probability that annual income is between x and

x+dx is given by

2
p(x)dr=————exp(—log 2 120%)dx/ x (2.12)

(2_”_0_2)1/2

X

where x/Xx denotes income between the interval whose mean income is given by X .
This formulation is chosen because a transfer of money dx has different meaning to
persons of different levels of income. It is assumed however that transactions are equivalent
if they involved the same fraction of income of the participants. This means that mean
income shifts as the level goes higher but relative to the mean, the distribution in a given
interval is invariant.

Pareto-Levy tails can be derived from the log-normal distributions by accounting for
the process of amplification. Let g(x/x) be defined as the basic distribution. Given a
probability A which determines the range of the initial distribution g, the next amplified
class is also denoted by g but X is denoted by N X . The basic distribution can
thus be written instead of g(x/x)dx/x as g(x/Nx)dx/Nx . For continuing levels of

amplification, the distribution can be written as

2

G (y)=(1-1)| g (V) +- g (v N )+ g (yIN?) 2.13)
N N

where y=x/x . (1—A) is introduced to ensure the proper normalization of G(y).

Replacing y by y/N ,we can obtain
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G(y)=%G(y/N)+(l—?\)g(y) (2.14)

We now obtain the asymptotics for the distribution. If A—0 there is no amplifier
class and G(y) goes to g(y). If y islarge g(y)—0 as seen in the distributions of

incomes. Here the asymptotic form of G(y) is given by
A
G(y)=EG(y/N) (2.15)

Writing  G(y)=Ay"'™ , we obtain u=log(1/A)/logN which relates the Pareto
exponent to the fractal dimension.

Trading models which are based on randomly choosing agents to lose or gain wealth
at arbitrarily set rates can be depicted as a clustering system. These systems have a self-
similar geometry. In clustering systems, small clusters are observed more frequently
compared to larger size clusters. Thus poorer and middle class agents have a higher
frequency in the data as oppose to higher income agents which are more scarce.

The lognormal and Boltzmann-Gibbs distribution could be easily mistaken for one
another as they both decay exponentially. However, the Boltzmann-Gibbs distribution is
found to decay slower compared to the lognormal distribution. The generating mechanisms
are also different in which the Boltzmann-Gibbs distribution is the distribution of energy
for a closed system of interacting particles with no memory and the lognormal distribution

is the distribution of multiplicative growth processes.
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2.3 Diffusion

Diffusion is defined as a net transport of molecules from a region of higher

concentration to one of lower concentration by random molecular motion. In this work, we

will consider two types of diffusion, normal and anomalous. We will use these two to

characterize the movement of money in the trading models.

2.3.1 Normal Diffusion

Diffusion occurs if there is a spatial difference in concentration of particles or heat.

It occurs to reduce the spatial inhomogeneities in concentration. The basis of diffusion can

be illustrated by Brownian motion shown in Figure 5.7. It was discovered by Robert Brown

in 1827 who observed the jittery motion of pollen grains in fluid. It was interpreted as

random motion of particles suspended inside a fluid.

Figure 2.7 Normal diffusion obtained from a random walk simulation with a Gaussian pdf .
Obtained from [37]
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We have obtained the formalisms below from [16]. Consider the position r in

1,2 or 3-D space. Assuming the position changes in random steps Ar and the time

At Dbetween the two subsequent steps is constant, the position 7, of a particle after n
steps is given by

rnZArn+Ar(n_1>+Ar(n_2)+...+Ar1+ArO (2.16)

and ¢ =nAt . r ~and Ar, are random variables. We thus draw these random

values from the probability density function (pdf) p(Ar) . It yields the probability for

the particle to make a certain step A7, . We assume the steps are independent of each

other. This assumption is similar to that of the Boltzmann-Gibbs distribution as mentioned
previously. Under this assumption and the conservation of energy, we propose that physical
systems whose energy level are distributed according to the Boltzmann-Gibbs distribution
undergo normal diffusion.

To find the mean squared displacement , we find the value of (r*) from (2.16) to

obtain

(rh)= Z <Arj>+ Z (Ar,Ar,) (2.17)

j=Lk=j j=Lk#j
If we assume the mean value for the pdf is at zero, we can rewrite the first and the second

terms on the right hand side as the variance and covariance respectively.
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<ri>= Z O—ir,j+ Z cov(Arj,Ark) (2.18)

j=Lk=j j=1Lk#j
Since we assume the steps the particles take are independent of each other, the covariance is

zero. Thus we can rewrite (2.18) as

=2 o, (2.19)

j=Lk=j
This is the basis of modeling the Brownian random walk. For this work we will employ the
diffusion equation used in Fickian diffusion explained below.
We assume particle diffusion occurs along the z-dimension in 3-D space between
two areas on the x-y plane perpendicular to the flow. For particle conservation, time
variation of the density n(z,t) inside a volume AxAyAz equals the inflow, minus

the outflow of particles. If J(z,r) is the particle flux,

%AXAyAZZJ(z)AxAy—J(Z-i-Az)AxAy
t
—-0J
= —AxAyAz (2.20)
0z
This leads to the diffusion equation
on(z,t) —0J
nlz.1)_ (2.21)
ot 0z
Physically, particle flux means
J(z,t)=n(z,t)v(z,1) (2.22)
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Fick's law states that the flux of particles crossing a certain area is proportional to the

density gradient along the axis perpendicular to the area,

2.23
0z ( )

where D is the diffusion coefficient. Thus, we can rewrite (2.21) as

on(z,t) iDﬁn(z,t)

= 2.24
ot 0z 0z (229
assuming the diffusion coefficient is constant

an(z,t):Dazn(z,t)
ot 07’

(2.25)

The solution to this equation is given by the error function, given by

2

N, 74th
(2.26)

n(z,t)J=———e
V41t Dt

where N is the total number of particles inside the volume.
If we were to find the mean squared displacement given by,
(Z()=[ Zn(z,1)dz

N
0 ¢ Py (2.27)

2
- IZV4nDt

Applying the Gaussian integral to solve the integration, we finally obtain
(Z*(1))=2 Dt (2.28)

Thus we have shown that the mean squared displacement of the random walk has a linear
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relation with relaxation time. This is characteristic of systems in or close to equilibrium

(ergodic). This result was first reported by Einstein who added that the trajectories of a

Brownian particle can be regarded as memory-less and nondifferentiable so that its motion

is not ballistic.

2.3.2 Phenomenology of Anomalous Diffusion

Normal diffusion is characterized by particle trajectories in fluids close to
equilibrium being irregular but still homogeneous. Anomalous diffusion however occurs in
fluids far from equilibrium (non-ergodic) where there exists different types of orbits [38].
This is due to the existence of trajectories 'trapped' for long times in small spatial areas and
long flights of particles, where particles are carried in one step over large distances.

Processes deviating from the classical Gaussian diffusion occur in a multitude of
systems. These systems can be characterized as disordered systems which can be modeled
by fractal geometry [39]. These anomalous features are seen over the entire data set but
they can develop after an initial sampling period or they may be transient, fluctuating
between an anomalous transport to a normal transport process [17]. The fundamental
signature of an anomalous transport process is the deviation of the mean squared

displacement

(r)=(r=(r)y)~1" (2.29)
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where the process is deviating from a linear dependence with time. This finding is

attributed to Paul Levy who obtained a probability distribution for a class of random walks

with infinite second moments. These Levy flights do not possess the smooth flow of a

diffusion process. The exponent «#1 determines if the process will be categorized as

subdiffusive if ( O<a<1 ) or superdiffusive if «>1 . These Levy processes can be

generated by random processes that are scale-invariant.

Figure 2.8 Anomalous diffusion obtained from a random walk simulation with non-Gaussian pdf .
Obtained from [37]

Thus if the trajectories of a sufficient number of particles inside a system are
known, plotting log (r°) over log t will enable a determination of the type of diffusion

occurring in a given system.
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2.3.3 Continuous Time Random Walks

Continuous time random walks (CTRW) are random walks whose time interval
between successive steps are random intervals. It is a non-Markovian model in which the
knowledge of the diffusing quantity and the time where the last step took place is required
to predict the evolution of the walk. Its statistics are dependent on the failure of the central
limit theorem. This is due to the fact that the CTRW is governed by a wide waiting time
distribution and a wide jump length distribution, in particular, these distributions have an
infinite second moment or there exists long range correlations. The jump length and
waiting time distribution are drawn from the probability distribution function (x,7)
The formalisms for the CTRW as given below is adapted from [16,17].

The jump length probability distribution function is defined by

A(x)=Tdtw(x,t) (2.30)

0

while the waiting time probability distribution function is defined by
wit)=] dew(x,) 2.31)
Thus, if A(x) and w(¢) are independent random variables we can then define
w(x,t)=w(t)A(x) (2.32)
If they are dependent random variables we can define the probability distribution function

based on either choosing to bound the displacement or time random variable. If we allow a
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jump length to occur only over a certain period of time, we define the probability
distribution function as
w(x,t)=p(x[t)w(t) (2.33)
If we allow the random walker to only travel a certain maximum distance, we define the
probability density function (pdf) as
w(x,t)=p(x[t)w(t) (2.34)
We thus relate superdiffusion to the CTRW process where the characteristic waiting

time given by (2.30) is finite and the jump length variance given by
2 h 2
o :f dxA(x)x (2.35)
which is diverging. We also relate subdiffusion to the CTRW process of diverging

characteristic waiting time and the jump length variance being finite.

The CTRW process is described by
n(x,0)=[ ax [drn(x,t)p(x—x"1-1")+5(x)5(1) (2.36)
Ca ’
It describes the probability distribution function of jumping to x at time t currently in  x'

at t' . O6(x) and &(r) are the initial position and time respectively. Thus the

probability of beingin x attime ¢’ after traveling fort is given by

W(x,t)=[din(x,t)p(t—1") (2.37)

0

The probability of not jumping after arriving at x is given by
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Wi(x,t)=1-[di'w(t’) (2.38)

0

Montroll and Weiss [40] have shown that the Fourier-Laplace transform of the pdf
p(x,t) can be obtained as follows. In Fourier-Laplace space, we rewrite (2.36) as
Ak, s)=(k ', s YAk (s)+1 (2.39)

assuming independence of jump length and waiting time. Similarly, we can rewrite (2.37)

as
Wk, s)=R(k,s)@(s—s") (2.40)
and (2.38) as
i (5)=1228) (2.41)
R

A

Solving for W (k,s) we obtain
Wk, s)=———"— (1= (s))/s (242)

W, (k) denotes the Fourier transform of the initial condition W (x) .

2.3.4 Subdiffusion

As mentioned above, subdiffusion occurs when the characteristic waiting time

diverges but the jump length variance is finite. Subdiffusion has been seen in the studies of

membranes and electrochemical systems. A recent work being [54]. In these cases the
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diffusion of ions through membranes or electrochemical systems will be constrained due to
their clustered structure. We adapt the formalisms of subdiffusion from [17]. We thus
define a long-tailed waiting time pdf given by
w(t)~Aa(t/t)"H (2.43)
whose Laplace space asymptotics is given by
w(s)~1—(sT)" (2.44)
The waiting time distribution is thus the pdf of transition by a single displacement exactly
at given time prior to it. With relation (2.44) and the jump length pdf of a finite jump length

variance given by

Alk)~1—0’k® (2.45)
we obtain from (2.42)
W, (k)/s
W(k,s)zﬁ (2.46)
1+K, s "k

We can now derive the fractional diffusion equation.
We start by rewriting (2.46) as
Wk, s)(s"+K k*)=W (k)s""" (2.47)
Rearranging it to
sS“Wik,s)-W_(k)s“ "=—W(k,s)K Kk’ (2.48)

0 (4

A Fourier transform of a spatial derivative is given by
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d (z)=]2 [ d

dZ nf e dZn

f(2)e " N dz=(2mik)" F{f(z)} (2.49)

Choosing n=2 for the finite jump length similar to the Gaussian case, we can write (2.48) as

sS“Wik,s)—W (k)s“ V=K “—W(x,1) (2.50)

We now define the Caputo derivative which is a derivative of fractional order

1 d"

t
Dl w ) —wl(t)dt’ (2.51)
_ { —1t ,)(ﬂ+1—n) dtn
The Laplace transform of the Caputo derivative is given by
1 1 d"
L{D'y(1)}= L{( ) L{—w(t')}dr’
o r n—B)'{ (t—p)Fm dr"
= s Sw(t)=sw(0)]
= sSyt)-s"""y(0) (2.52)

Thus we can rewrite (2.50) using the relation (2.52) as

2
D*W(x,1)=K, aa—W(x t) (2.53)
X

0

Using the symmetry property of the Caputo fractional derivative

2
W(x,t)zoD[“Ka%W(x,t) (2.54)
X

An application of the differential operator 0/0t gives

OW (x,1) _ DK G_W(x ) (2.55)

ot ox*
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where

o 1 ¢, ,Wix,t')
D' Wx,t)=——= | dt' ———— 2.56
DIW (x,1) WW{ P (2.56)

To calculate the mean squared displacement we start by finding

2

(x*)=lim o Wik, u) (2.57)
k—0
Taking W (k,u) from (2.46) we obtain
2 1 d2 1
()= =W (k) =2 K, W (k)u " (2.58)

dk*

Performing the inverse Fourier-Laplace transform, we obtain

(x (t)>=2mt (2.59)

To show analytically the reason behind the large waiting times, we redefine (2.50)

o « e O
DW (x,1)= DW (x)=K, = W(x,1) (2.60)

0 ox
From the definition of the Caputo derivative, the second term on the left hand side is easily

integrable to solve the above equation as

_t
I'(l+«)

2
W, (x)=K a—ZW(x,r) (2.61)

D‘:W(x,t)— N
ox

0

The rate of decay of the initial value is an inverse power law as can be seen in the second

term of the left hand side and not exponential as in the standard diffusion situation.
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2.3.5 Superdiffusion
We adapt the formalisms of superdiffusion from [17]. For the case of a finite
characteristic waiting time and diverging jump length variance, the pdf describing the
random walk is modeled by a Poissonian waiting time and a Levy distribution for the jump
length, given by
A(k)=exp(—d”|k|") (2.62)
whose asymptotics is defined by
Alk)~1—o"|k|" (2.63)
Due to time being finite, this process is of a Markovian nature. Levy processes are
stochastic processes obeying a generalized central limit theorem. They are stable processes
where the sum of two independent Levy processes is itself a Levy process.
We can obtain the Fourier-Laplace transform of W (x,7) for Levy flights by

using (2.63) and the Poissonian waiting time given by

w(s)=1-sT1 (2.64)
onto (2.46) to obtain
Wik, s)=—— (2.65)
U s+KYKY '

O_N

where K'=— . Using the same method as above, we can then obtain the fractional
T

diffusion equation for Levy flights
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ow _
ot

K" D'Wi(x,t) (2.66)
Levy flights have been documented to describe motion of fluorescent probes in living
polymers, tracer particles in rotating flows [38] and cooled atoms in laser fields [48].

We can also find the characteristic function of the Levy distribution used to generate
the Levy flight. We do so by performing a Fourier transform to obtain

W (k,t)=exp(—K"+|k"|) (2.67)

As can be observed from (2.65) the long jumps are due to the asymptotic property of
the jump length pdf. These long jumps are seen in the figure coupled with clusters which
also contain long jumps but on different length scales. Thus the jump length distribution is

the origin of the scaling nature of the Levy flight.

It can be shown that the power law asyptotics can be described [17] as

Wi(x,t)~

(2.68)

x|

Due to this property, the mean squared displacement diverges as (x’)—o0 .

2.3.6 Anomalous diffusion in the movement of money

The objective behind [19,20] is to infer the statistics of human travel by analyzing

the circulation of bank notes in the United States. Specifically, finding a probability

distribution function of finding a displacement of length r in time &¢ given by
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P(r) .If a typical length scale exists for P(r) , dispersal of humans can be described
by diffusion equations on large spatiotemporal scales. If there is no typical length scale, the
diffusion approximation fails. Random processes with these single step distributions are

defined as Levy Flights [17].

Figure 2.9 Movement of money throughout the United States. Obtained from [20].

A statistically reliable estimate of human dispersal on all spatial scales does not
exist, an inference of human movement was performed by analyzing trajectories of a
sample size of 464,670 dollar bills obtained from the bill-tracking website

www.wheresgeorge.com. From this data, a calculation of geographical displacement r =

X,—X, betweensecond, X, andfirst, X, reports were calculated respectively.

During a time interval between 1 to 4 days, 14,730 out of 20,540 bills were reported
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again outside a short range radius =10 km. Between L . and the average East-

min in

West extension of the United States L, =3200 km, the probability distribution of
displacement can be plotted as a power law given by

P(r)~r""*P (2.69)

where [=0.59+0.02 as shown in Figure 2.10.

1071 ¢ ﬁ:l]—"ﬁltﬂtl
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Figure 2.10 Jump length pdf of money for the USA .Obtained from [20]

It is observed that for r<L . . P(r) increases linearly with r which means
that displacements are distributed uniformly inside this region. The inset of this figure
shows that for different population densities (i.e. small towns, intermediate sized cities and
large metropolitan areas) P(r) can still be defined as a power law with the same
exponent S =0.6. This shows that there is universality in the dispersal of bills.

The description of the dispersal of money as a Levy Flight is however incomplete.
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This is because bills dispersing due to Levy Flights would have equilibrated after 2 to 3
months. The data shows however that after an average of one year, only 23.6% of bills have

travelled further than 800km while 57.3% have travelled between 50 to 800 km. This is

significantly less ground travelled compared to L

Two explanations have been proposed by the authors. First, spatial inhomogeneities
in the form of surroundings, where city life allows localization of bill transfer due to many
economic players in an area as oppose to a suburban surroundings will cause a slowing
down of the dispersal of bills. Secondly, a scale free observation of times t between

successive displacements leads to subdiffusion [20].

100f
=
101
10° 10" 102

Time (days)

Figure 2.11 Waiting time pdf of money for different population sizes .Obtained from [19]

Thus the ambivalence between scale free displacements and scale free periods of rest might
contribute to the attenuation in the Levy Flights of bills. Thus, bills reported back at a small

radius from the initial entry location as a function of time was plotted for metropolitan
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cities, intermediate city sizes and small towns. The same asymptotic behavior was observed
again as shown in Figure 2.11 above.

The probability distribution of waiting times can be defined as

P(t)=Ar""" (2.70)

where «=0.60+0.03 . It was reported by the authors that the theoretical exponent «
if B=0.60 where B is the power law exponent from the jump length distribution in
(2.68) should be « =3.33. Since the measured decay of waiting times is considerably
slower, it was concluded that long waiting times play a significant role in the dispersal of
bills.

Thus, the authors have performed an analysis of the distribution of money by
modeling the process as a CTRW. This is due to the apparent interplay between the scale

free displacements and waiting times observed. As mentioned previously, the CTRW

consists of a succession random displacements Ax ~ and random waiting time Af?,

drawn from the probability distributions p(Ax) and ¢ (At) respectively. After N

iterations, the position of the walker is given by

N
X =D Ax (2.71)
the time of the walker is given by
N
T, =D At (2.72)
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The object of interest is the functional relationship of position and time. If
p(Ax) and w(At) posses existing moments, the central limit theorem implies

X ~N'" (2.73)

N

and T, ~N (2.74)
after long times. Thus the scaling relationship between displacement and time can be
defined using the above equations heuristically as

X(t)~¢"? (2.75)

However if the spatial increments and waiting time posses an algebraic tail, we define the

pdf of displacement as

1
P(Ax)~|A R where 0<B<2 (2.76)
X
and the pdf of waiting time as
1
w(At)~|A T where 0<a<l1 (2.77)
t

The second moment for these distributions are divergent. Thus the scaling for the
successive displacements and successive time steps scale as

_ArliB

X, ~N (2.78)

and T ~N" (2.79)
respectively. Thus it is heuristically seen that the position and time variable scale according

to the exponents « and B . Specifically,
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X (¢)~r"" (2.80)
In this simple way we can observe that long waiting times, signified by the exponent «
will allow latency to occur in the displacements as it increases the traveling time.
Thus, by choosing suitable waiting time and jump length exponents in a specific

range, any process with spatio-temporal scaling can be generated. We mention a few

examples in Table 1.

Exponents Process
200> Superdiffusive
200<B Subdiffusive
x=1,0<B<2 Levy Flights
O<ux<l, B= 2 Fractional Brownian Motion
x=1,p8=2 Brownian Motion

Table 1 Spatio-temporal scaling processes generated from suitable waiting

time and jump length exponents

In order to further understand the properties of ambivalent process, we have to
compute the pdf of W(x,7) for X(¢) . We have obtained the formalisms described
below from [19,20]. The pdf W (x,?) can be expressed in terms of the spatial distribution

p(Ax) and the temporal distribution ¢ (A¢) . As shown in (2.42) the Fourier-Laplace

transform of W (x,t) is

W(k,s)=——"——— (1= (s))/s (2.81)



An inverse Fourier-Laplace transform of this equation is given by

1

= [ ds [ dce” ™ w(k,s) (2.82)
TT

Wi(x,t)

Opting for both p(Ax) and (At) to exhibit algebraic tails as shown in (2.76) and
(2.77) we can write the asymptotics of the expansion of the Laplace transform for the pdf of

jump length as

p(k)=1-Dlk[" (2.83)
and the pdf of waiting time as
y(s)=1-D_s" (2.84)
Inserting this into (2.80), we obtain
u—l
Wi(k,s) (2.85)

1+D, B|k|ﬁ/u“
where D, =Dy/D, is the generalized diffusion constant.

The inverse Laplace transform of (2.81) was obtained as

0

Y. (-, k')

1 ke n=
W(x,t)z—fdke e n 0
21 I'(l+an)

1 —i o
_ W(x,t):z—fdke “E(-D_ k') (2.86)
T

is the Mittag-Leffler function. Ea(—Da, B|k|ﬁla) is the
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characteristic function of the process. It is a function of  kt*’*

. Thus, the probability was
expressed as

W(x,0)=t "L (x1t™") (2.87)

B

1 .
where L B(Z):Z—)f dk E (—|k|"—ikz) is the universal scaling function. The spatio-
e

temporal scaling X (t)~#*"" can be extracted from this relation.
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CHAPTER 3 : DESCRIPTION OF TRADING MODELS, THEIR

MODIFICATIONS TO ANALYZE THE DIFFUSION OF MONEY AND

POWER LAW ANALYSIS METHODS

3.1 Introduction

As has been elaborated in the earlier chapter, anomalous diffusion has been

observed in the diffusion of money across the United States. This observation has

motivated us to study the diffusion of money in trading models. This was because of the

observation by Brockmann as shown before, that the spatial inhomogeneities existing in a

real economy in the form of geographical location and socioeconomic factors such as

population density between geographic locations (please refer to Figure 2.10), will result in

the observation of Levy flights in money displacement as well as long waiting times of

money in a location (please refer to Figure 2.11). A trading model is a suitable candidate

for these observations to occur as its well defined trading rules will result in both a trapping

of money with specific agents as well as a more vibrant moving money with other agents.

If anomalous diffusion is observed, this means the system is non-ergodic and explains why

the Boltzmann-Gibbs distribution is not obtained even in conservative systems.

The Chakrabarti trading model as discussed in section 2.2.2, is a suitable candidate

to study anomalous diffusion in a trading model as the occurrence of long waiting times

will naturally happen due to the existence of agents who have large saving propensities.
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These agents will hold on to monies for longer periods of times due to its propensity to save

more and trade less. Before any analysis can be done, we have to perform a modification on

the Chakrabarti trading model to allow it to trade only with its neighbors and not randomly

with any other agent. This gives spatial coordinates to agents. This is so that we can have a

solidly defined statement of length so that we can measure the displacement of money in

order to determine if it is distributed according to a scale free distribution.

Thus in order to achieve our goal, we have to firstly determine in a very simplistic

way if the trading model is undergoing anomalous diffusion. As mentioned in the earlier

chapter, a commonly used method by experimentalists to determine the type of diffusion is

to determine the relation between the log mean squared displacement and the log relaxation

time. If we do obtain a log mean squared displacement which changes non linearly with log

relaxation, the diffusion is anomalous.

We then have to determine the waiting times of money between trades among

agents and consequently plot the pdf of waiting times. Similarly, we have to determine the

jump lengths made by the monies in arbitrarily fixed time intervals and plot the pdf of jump

lengths. If we can observe long tails in these plots, we can conclude from the asymptotics

of the waiting time pdf and jump length pdf discussed in the previous chapter that the

waiting times and the jump lengths do not correspond to the normal diffusion case. We thus

obtain the scaling exponents from the waiting time and jump length pdf's in the long tail
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regions. With these scaling exponents, we can finally determine if money is undergoing

anomalous diffusion using the treatment given by Brockmann.

3.2 Trading models and their modifications

We elaborate on the modifications required to calculate the diffusion of money in

the Chakrabarti trading model, the Yakovenko trading model (described in section 2.2.1

and 2.2.2 respectively) and the Kinetic Economies trading model [18]. We refer the reader

to the appendices where we have included the computer simulation code for the trading

models to further illuminate the modifications.

3.2.1 Modified Chakrabarti trading model

As mentioned above, the Chakrabarti trading model has to be modified to allow
proper calculations of jump lengths and waiting times. Only then can we attempt to perform
diffusion analysis. We now discuss the modifications performed on the Chakrabarti trading
model. We have included the code for this simulation in Appendix A and will highlight the
portions of code related to the discussion.

As mentioned in the previous chapter, the Chakrabarti trading model obtains its
heterogeneity from the distributed saving propensity among its agents and with this

property, what is obtained is a wealth distribution similar to that seen in data. The
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attractiveness of the model lies in its simplicity as many variables are randomly
determined. Particularly in the case of randomly choosing a trading partner and randomly
dividing the profit between two agents. As the paradigm for our study is oriented towards
the money in the trading model, we have to clearly define a path the money will flow to and
also a proper mechanism to track the money's position and time at each location throughout
the trading process.

For the path the money will flow to, the clearly defined path will be determined by
the agents trading money from one to another. For agents on a 2D square lattice this is
illustrated in Figure 3.1 below. Since we have predetermined that agents can only trade
with its immediate neighbors, Figure 3.1 shows how money will hypothetically be traded

between the black celled agents.

Figure 3.1 Path money flows from one agent to another

The following steps were taken,
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1. We firstly define a suitable lattice of agents. Since our goal is to determine if the

displacement is scale free, our lattice must be at least 3 orders of magnitude in length.

The lattice size is simply our definition of the area populated by the agents. We have

thus chosen a lattice of 1700 by 10 agents.

2. Once we have determined the lattice, we have to randomly choose an agent to perform a

trade. This agent can only trade with its nearest neighbor. The definition of these

neighbors are dependent on where the agent is located. There are three locations which

determine who are the neighbors of an agent. These locations are the edges, the

corners of the main lattices. The code simulating this is presented in page 5 and 6 of

Appendix A.

After two agents are chosen, they will perform a trade with each other. For the

original Chakrabarti trading model, the trading process was more straightforward. A

random fraction determined by an agents' saving propensity will deduct a fraction of money

from the original amount owned by that agent. The deducted fraction will then be tallied

with the other partner's deducted fraction and another random fraction will divide this tally

and add it to each agents current amount of money respectively.

Since we want to study the diffusion of money, we have to know its location and

time during each trade. In programming terms, this is accomplished by saving into an array

a money's owners. Thus as the trading process goes on and money changes hands, the

47



previous owners of a money will be noted and since we have defined the agents position as

the spatial variable we have knowledge of the money's trajectory. Similarly after a trade,

the current iteration time will be saved into a array. Thus we currently have knowledge of
time between one trade and another which allows us to calculate the waiting time between
trades.

The following steps were taken

1. We firstly initialize a fixed amount of money owned by each agent. This money is
labeled numerically so that we can track the money's position and time. We initialize
each agent with 10 units of money. Thus the first agent is initialized with monies labeled
0 to 9, the second agent with monies 10 to 19 and so on. We will thus initialize 170000
monies in this simulation. The code simulating this is presented in page 2 of Appendix
A.

2. A count will firstly be performed on both agents to determine how much money each
agent has. We then define how much money is used to trade by each agent as the trading
volume. This is accomplished by using the saving propensity similar to the original
trading model. In [13] it was mentioned that a random or arbitrarily distributed saving
propensity produces a robust distribution of wealth. It is thus not dependent on choice of
initial parameters. The code simulating this is presented in page 7 of Appendix A.

3. We then draw a collection of random numbers which is limited by complement of the
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saving propensity, which is the amount to be traded. Each of these random numbers are
distinct of each other.

. Since the total number of random numbers drawn are determined by the total amount of
money owned, the random numbers not allocated for trading will be allocated for saving.
Each of these are also random numbers distinct of each other. The purpose of drawing
these random numbers is to introduce stochasticity in the choosing of monies for trading.
. The chosen random numbers will determine which monies will be traded. They will be
used to call the monies originally initialized. These steps are presented in pages 8 to 9 of
Appendix A.

. At the same time, an update of the time a trade occurred is performed.

. Finally the money labels owned by the agents are cleared and the new money labels as a
result of trading are reinitialized to each agent. The code simulating this is presented in
page 10 of Appendix A.

Now that we have stated the modifications we have made to track the money's

position and time throughout the trading process, we can subsequently determine the

displacements of each money in the system after a given period of time and also the waiting

times between trades. We choose to run the simulation over 4 billion iterations and

calculate the displacements over a 40 million iteration interval. We assume that after 4

billion iterations we obtain stable observations of displacement length and waiting time and
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they converge to stable distributions. To calculate the displacements, we have to know after

a certain period of time where the money currently is and what was it's original position.

We then make use of the determination of distance by applying the Pythagoras theorem.

The following steps were taken,

1. We firstly determine the horizontal coordinate by simply multiplying the money labels
by 0.1 and apply the floor() function because each agent was originally initialized with
10 units of money. For example if an agent owns the money labeled 211, it was
originally initialized to agent 21.

2. The vertical coordinate is determined by how many deductions from the money label the
length of a row in the lattice of agents till it is less than the length. The code simulating
this is presented in page 11 of Appendix A.

The data that we obtain of the displacements has to be sorted into bins in order to
plot a distribution of displacement. This is done by simply conducting a census of
frequency of a displacement over the entire displacement data. We then perform a measure
of mean square displacement over time which will be elaborated in the sections below.
After the simulation is completed, our next step is to obtain data that will allow us to plot
the waiting time distribution. This is done by simply finding the time difference between
successive jumps of money from one agent to another. This data will then be sorted into

bins in order to plot a distribution of waiting time. This is done by simply conducting a
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census of frequency of a waiting time over the entire waiting time data. These steps are

presented in page 12 of Appendix A.

3.2.2 Modified Yakovenko trading model

We would now attempt to confirm that the underlying structure behind the

Chakrabarti trading model, in particular the distributed saving propensities plays an

important role behind the anomalous diffusion of money. We aim to achieve this by

performing an analysis of diffusion of money in the Yakovenko trading model. As

mentioned in the previous chapter, the resultant wealth distribution from the Yakovenko

trading model is an exponential distribution and its dynamics is unit increments and

decrements of money between two respective agents chosen randomly throughout the entire

simulation. As the dynamics and resultant wealth distribution differ from the Chakrabarti

trading model, a diffusion analysis which shows non-anomalous diffusion will show that

not all trading dynamics will result in anomalous diffusion.

Similar to the Chakrabarti trading model, we performed modifications on the

Yakovenko trading model to allow proper calculations of spatial and temporal analysis of

money diffusion. These modifications are in a similar method as described above. We

however elaborate on some distinctions below.

The first distinction is the method of choosing random numbers used to call the
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initialized monies. Since we opt to trade one unit of money during a trade, we randomly
choose one money from both agents. The rest of the monies will be saved by the agents.
The code simulating this is presented in page 1 of Appendix B. The second distinction is
the dynamics. A winner and a loser will be chosen among the two agents. The winner will
gain a unit of money while the loser loses it. Both agents will then update the number of
monies it owns. This is show in page 2 of Appendix B. Calculation of the pdf of jump
lengths, waiting times and mean squared displacement is similar to that of the previous
model. We also initialize 170000 units of money to 17000 agents over a 1700 by 10 lattice
of agents over a 6 million iterations simulation which is the amount of simulations before
equilibration based on the rules we have initialized. We assume that after 6 million
iterations we obtain stable observations of displacement length and waiting time and they

converge to stable distributions.

3.2.3 Kinetic Economy trading model

We would like to investigate if other trading models would also allow an
observation of anomalous diffusion in its movement of money. We adopt the Kinetic
Economy trading model which was designed by Wan Abdullah [18]. In this model, an array
of agents are initialized with an arbitrary number of money, goods and price of said goods.

Two agents are randomly chosen to trade where the agent with the higher priced goods
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buys all that he can from the lower priced agent. The buying agent then changes the price of

his goods to the selling agents price. If the lower priced agent finds he has no more goods,

he buys all that he can from the higher priced agent. The selling agent then changes the

price of his goods to the buying agents price. This trading model is different from the

Chakrabarti trading model as it introduces goods and price fluctuations into the simulation.

Thus, trading agents will trade goods whose price will be randomly initialized but will

fluctuate based on predefined rules which also means that the wealth is not conserved. This

will allow an analysis of the movement of money in a more realistic environment in

comparison to the Chakrabarti trading model which is simply trading money. Nevertheless

spatial inhomogeneity that made the Chakrabarti trading model an attractive model to study

also exists in this trading model in the form of high prices causing a trapping of the goods

with an agent or agents unable to trade due to insufficient funds.

The model is simulated as follows :

1. Initialize money, goods and the price of a good to each agent.

2. Randomly choose two agents.

3. The agent with the higher price of goods buys all that he can of goods from the agent

with the lower price.

4. If the agent with the lower price has no more goods, he in turn will buy all that he can

from the agent with the higher price. He will then change his price to that of the agent
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with the higher price.

5. If the agent with the lower price ends the trade still with goods, the agent with the higher
price will simply switch his price to the lower price.

6. For agents with the same price of goods, we randomly determine who will be the buying

agents and who will be the selling agents.

3.2.4 Modified Kinetic Economy trading model

Similar to the Chakrabarti trading model, the Kinetic Economy trading model was
latticized to allow an analysis of anomalous diffusion. For this analysis, we will concentrate
on the spatial and temporal tracking of money instead of the other parameters.

The modified trading model is simulated as below :

1. In terms of choice of trading partners, agents are allowed to trade only with its
neighbors.

2. After randomly choosing two neighbors, a count of the amount of money and goods of
the two agents is performed. The count of money is similar to page 2 and 3 of Appendix
A. The count of goods is presented in the first part of page 1 Appendix C.

3. It will then be determined which agent will be the agent who sells and who buys from
the price's of goods.

4. A count of how many goods will be bought from the seller based on the amount of
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money owned by the buyer and the availability of goods from the seller is performed.
These are presented as the second part in page 1 Appendix C.

As before, the monies are labeled numerically to allow a spatial and temporal
tracking. Thus, monies will be chosen randomly to be traded for the purchase of goods and
money moved from one agent to another will be tracked of it's new owner and time of trade
thus obtaining spatial and temporal data. This is carried out as follows:

1. The first step is to determine which of the buyers monies are going to be used for
purchasing goods. These monies are chosen randomly and are unique from one another.
The process that allows this to occur is the same as explained above.

2. Then these monies will be stacked to the sellers monies, while the buyer is initialized
with goods from the seller. Thus the buyers and sellers have a new amount of money and
goods respectively from the trade. These are presented in page 2 of Appendix C.

3. After a trade, if the seller has no more goods, he will then proceed to buy back all the
goods from the buyer. At this point, a choice of monies will be performed similar to that
mentioned above. If this occurs, the price of the seller will be changed to that of the
buyer.

4. If the above does not occur, the price of the buyer will be changed to that of the seller.

These are presented in page 3 of Appendix C.
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Finally a calculation of the jump length and the waiting time will be performed as

described above.

3.3 Statistical Analysis of Monte Carlo Data

The Monte Carlo method is one of the main approaches to computer simulations in
statistical physics. Its goal is to provide a probabilistic description of a phenomena using
randomly generated numbers as the analogy. Errors from these descriptions can be
estimated and are systematically improvable by using more sample configurations and
larger systems.

We refer to the section on statistical errors in page 30 of [50] in this portion of our

work. If a quantity X is distributed by a Gaussian distribution with mean value (X) and

width o , n statistically independent observations of X, has a mean given by

X=

S |-

2 X,
i=1

with a standard error given by o/n . In order to calculate the variance, o~ , we

consider the deviations §X,=X,—X where

This gives the variance as o =(X’)—(X)* . The expectation value of this quantity is
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given by (5X*)=c(1—1/n) . Using this relation and the standard error relation, we

obtain

error =\ 63(2/(11—1): Zn: (8%)

i=1 l’l(l’l—1>

which is used for simple sampling Monte Carlo methods and applied to calculate errors in
this work. Importance sampling Monte Carlo methods which requires the consideration of

time correlations is not considered in the calculation of errors for this work.

34  Calculating mean squared displacement

To determine if a diffusive process is undergoing normal or anomalous diffusion, a
method frequently used by experimentalists [38] is the mean squared displacement. The
determination is done by plotting the log of mean squared displacements versus time given
by

(x*)=¢ (3.1
and obtaining the slope of the plot if it is a straight line. As mentioned in (2.28) if we obtain
y=1 , the diffusion is normal. Anomalous diffusion occurs for y>1 and y<I1

named superdiffusive and subdiffusive respectively.

To perform a measurement of the mean squared displacement we added some

instructions to the code written to calculate the pdf of displacement. After the binning
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process for the displacement is complete and we have obtained a pdf of displacement, we

calculate the mean of the displacement using the formula

1000

<x>=§ x P(x) (3.2)

Thus we simply multiply each unit of displacement with the probability of obtaining it. The

next step is to calculate the mean squared displacement or the variance.

1000

2_L x —{x 2
(x >—IOGZ< —(x)) (3.3)

i=0
This is calculated by subtracting each unit of displacement with the mean, squaring it,

summing the whole data set and normalizing it with the population size.

3.5 Power Law Analysis

Measurable quantities usually have a typical scale, such as the heights of human
beings or 1.Q's . There are however quantities which do not have a typical scale such as
city sizes [41], earthquakes [42] or wealth. The distributions of these quantities seem to be
right-skewed where there exist uncharacteristic and rarely occurring measurements. These
distributions are candidates that follow a power law. The pure power law distribution,
known as the zeta distribution or discrete Pareto distribution is expressed as

p(k)=kIC(y) (3.4)

where k is the measured positive value, y is the power law exponent and C(y) is the
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Riemann-zeta function given by

C(y)=2 k (3.5)

Other names associated with the power law is the Zipf's law [43], named after George Zipf
who claimed the shortest and most efficient words occurred more frequently.

As mentioned above, distributions that are right skewed are good candidates for
power law distributions. The most common method to present these distributions is by
fitting it onto a log scale. This method however allows a noisy tail in the distribution due to
lack of samples in this region. One method proposed by [44] is to bin data in logarithmic
instead of linear sizes with each bin normalized to the size of its respective bin. Another
method to present these distributions is be plotting the cumulative distribution function.
This is basically a distribution which is stacked from the largest value to the second largest
value and so on till the end of the distribution, giving a cumulative probability distribution
of 1 at the end of the plot. The benefit of cumulative distributions are that there is less noise
at the end of the tail with outlier data not needing to be removed from this region. Fitting a
power law by using methods such as least squares regression on a log-log scale is biased
and inaccurate [46]. A quantitative measure of goodness of fit is needed to assess how well
data approximates to a power law distribution. This enables identification of interesting
phenomena that cause the distribution to deviate to a power law. In some cases the

underlying process may not be generating power law distributed data but sampling error
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will lead to an impersonification of the distribution.

Consider the continuous power law distribution [45]

—x

(3.6)

where « is the scaling parameter and X, . is the minimum value in a dataset of an

observed power-law region. Say we have a data set with n observations X,=Zx . that can

seemingly be fitted to a power law, we want to know the o« that will generate that power

law. We thus introduce the likelihood given as

‘ o—1 xi

p(x|er)= (3.7)

i=1 X . | X .

which gives the probability that the data were drawn from the model. The scaling exponent
which gives the highest probability, effectively maximizing the function is the most likely

to generate the data set. Taking the logarithm of the likelihood we obtain

L=1np(x|a):nln(o<—1)—n1n(xmm)—0(Zn: In(x/x ) (3.8)

i=1
Setting O0L/0x=0 and solving for « we obtain the maximum likelihood estimate

6(21—#11[2ln(xi/xmm)]fl (3.9)

i=1
We calculate the statistical error of the estimation as given in Section 3.3. We referred to

the description given in [51] to calculate the statistical error.
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There has to be an assessment of the goodness of fit of the parameter estimate of the
scaling exponent. This is because even data sampled from an exponential or log-normal
distribution can be fitted to a power law model. We thus define the Kolmogorov-Smirnov
test based on the following statistic, taken from [45]

D= max |S(x)—P(x)| (3.10)

(x= xmin)
where S(x) is the hypothesized cumulative distribution function and P (x) is the
empirical cumulative distribution function. We thus have to perform the calculation above
returning a value that if suitably small is a possible fit for a power law.

We thus introduce the p-value which calculates the probability that the data was
drawn from the hypothesized distribution based on the goodness of fit [21]. There is no
known formula for calculating the p-value but a Monte Carlo numerical calculation can be
performed. We include the code that calculates the p-value in Appendix D. The procedure
is to firstly generate a large number of synthetic data sets drawn from the hypothesized
power-law distribution. This is done by randomly choosing an arbitrarily determined
number of data's from the hypothesized power law distribution data. The code simulating
this is presented in page 2 of Appendix D. The number of data sets that are obtained are
typically 100 units less than the sample. After this, we apply the bubble sort to ensure the
distribution is distributed ascendingly. The code simulating this is presented in page 2 of

Appendix D. Then we fit each data set to its own hypothesized power law distribution by
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using the maximum likelihood estimation as elaborated above. The code simulating this is

presented in page 3 of Appendix D. We then proceed to evaluate the probability

distribution functions based on the estimated exponent and subsequently calculate its

cumulative distribution functions. The code simulating this is presented in page 3 of

Appendix D. We finally calculate the Kolmogorov-Smirnov statistic. This is accomplished

by calculating the difference between the hypothetical and empirical data sets and sorting

the difference ascendingly. The top most value of each data set is the statistic. The code

simulating this is presented in page 4 of Appendix D. We then count the number of times

the statistic is larger than the statistic of the observed data. We then calculate the fraction of

this number over the total of number of synthetic data sets to finally obtain the p-value. If

this value is close to 1, the original data set may be drawn from a power-law. In [45] where

much of this section is referred to, the authors have chosen to rule out a power-law

hypothesis if p<0.10 . The p-value becomes a more reliable test statistic if there is a

large data set because the Kolmogorov-Smirnov statistic becomes smaller.
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CHAPTER 4 : STUDY ON THE RELATION BETWEEN

DISTRIBUTIONS OF WEALTH AND DIFFUSION OF MONEY IN

VARIOUS TRADING MODELS

In this chapter, we present the results of our analysis for the Chakrabarti trading

model with fixed and randomly distributed saving propensity, the Yakovenko trading

model and the Kinetic Economies trading model. For each trading model, we firstly present

its resultant distribution of wealth and perform a comparison with the nearest neighbors

trading modification of the trading model. We then obtain the pdf of displacement length of

money, p(r) and pdf of waiting time of money, p(t). We finally obtain the mean squared

displacement of money over time.

4.1 Chakrabarti trading model with random saving propensity

4.1.1 Wealth distribution

In Fig. 4.1 we obtain the cumulative distribution of agents over a spectrum of wealth

for the off lattice models. There is also the occurrence of the Boltzmann-Gibbs distribution

and long tail similar to that seen in empirical data as well as in the original Chakrabarti and

Chatterjee results [13]. We will use the wealth data in the long tail region to calculate the

power-law exponent using the maximum likelihood estimation, given by (3.9), and the
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cumulative distribution of wealth to calculate the Kolmogorov-Smirnov statistic, given by
(3.10). Cumulative plots of the distribution of wealth are employed to obtain a good initial
indicator of the minimum wealth value on a power law distribution. We initialize 17000
agents with 1000 units of money per agent and a randomly distributed saving propensity

with a simulation time of 4000 million iterations.

-0.5

log10(C(Wealth))

1.5

-2 T 1 T
-1 0 1 2 3 4

log10(Wealth)

Figure 4.1 Cumulative distribution function (cdf) of wealth for the on lattice
Chakrabarti trading model

We firstly notice that there seems to be fluctuations at the end of the tail. This
region will be occupied by agents with a high saving propensity as they will eventually own
the most wealth in the simulation. The number of agents with high saving propensity is
small as seen in Appendix A as the saving propensity of agents is a randomly chosen using
the rand() function between (0,1).

We observe a straight line on a log-log plot for the wealth range of 10>’ and
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10** . Thus, we opt to carry out our analysis in the range between 10> and 10> to
assure that our data is scale free and to avoid sampling in areas with scarce data. We start
by calculating the maximum likelihood estimation of the power law exponent for the
distribution in that range. We get an estimate of «=1.6419+0.0652

The cdf and the estimated cdf is shown in Figure 4.2. We observed that the fitting
between the empirical cdf and the hypothetical cdf is good only in the extremes of the
distribution but deviates in the middle ranges. This is probably due to an inadequate amount
of samples used to plot this distribution. More simulations need to be run to obtain a better

averaged distribution.
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Figure 4.2 Kolmogorov-Smirnov test of the cdf of wealth for the Charabarti Trading Model

Nevertheless, we can calculate the Kolmogorov-Smirnov statistic using this
comparison. We calculate the Kolmogorov-Smirnov metric as D=0.0759. The final step is

to calculate the p-value of the data. We obtain a p-value of 0.572 (57.2%). We obtain this

65



result from the observation that 286 out of 500 generated distributions have values greater
than the calculated D. This is in good standing with the typical hypothesis testing limit of
0.05 where the null hypothesis is rejected with a value lower than this.

The range 10*° and 10°° of wealth is not sufficient to perform a power law
exponent estimation as scale-free distributions have to be observed on many length scales
and not simply a decade. To rectify this problem, we need to increase the amount of money
that each agent is initialized with. Unfortunately the initialization of dynamic memory
vectors in our program as shown in Appendix A will only allow 17000 agents to be

initialized with 1000 monies each.
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Figure 4.3 cdf of wealth for the Chakrabarti trading model

To ensure that our modified on-lattice Chakrabarti trading model preserves the

original characteristics of the off lattice original Chakrabarti trading model, particularly

since agents are now only able to trade with its nearest neighbors, we have performed a
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similar analysis of wealth distribution as elaborated above on the modified Chakrabarti
trading model. We present in Figure 4.3 the wealth distribution using the same parameters

as given above.

We observe a straight line on a log-log plot for the wealth range of 10°° to

10’7 . However we opt to carry out our analysis in the range between 10>’ and
10> to assure that our data is scale free. We start by calculating the maximum likelihood
estimation of the power law exponent using (3.9) for the distribution in that range. We get

an estimate of «=1.8412+0.0424
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Figure 4.4 K-S test of the cdf of wealth for the Modified Charabarti Trading Model

The cdf and the estimated cdf is shown in Figure 4.4. We can see that the fit is
relatively good in the tail area but is diverging at the lower ends. Nevertheless, we can

calculate the Kolmogorov-Smirnov statistic, given by (3.10) using this comparison. We
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calculate D=0.0504. The final step is to calculate the p-value of the data. We obtain a p-
value of 0.63 (63.0%). As described in Chapter 3, we obtain this result from the observation
that 315 out of 500 generated distributions have values greater than the calculated D. This
is in good standing with the typical hypothesis testing limit of 0.05 where the null
hypothesis is rejected with a value lower than this.

The sampled range of wealth of 10*° to 10°’ is again an insignificant range to
to perform a power law exponent estimation. As mentioned before, memory allocation
limits the amount of wealth that can be initialized to each agent thus limiting the maximum
amount of wealth that can be owned by an agent.

Thus we have seen that the modification that we have performed on the Chakrabarti
trading model allows the emergence of a mixed distribution of wealth as seen in empirical
data and the original off-lattice model. However the obtained power law exponent is larger
as compared to the original simulation indicating less agents in the high income region.
This is because there is more restriction as to whom an agent can trade with thus denying

the opportunity for higher saving propensity agents to trade with more agents.

4.1.2 Probability distribution function of displacement

For the Chakrabarti trading model, we want to study the displacement of money

from its original positions through its random trajectories over arbitrarily set time steps. We
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have introduced a modification to the Chakrabarti trading model algorithm that will allow
us to do so in Chapter 3. In this section, we present the resultant pdf of the displacement
and its subsequent data analysis.

We firstly present the surface plot for the distribution of displacement which shows
the change of its morphology with time in Figure 4.5. The distributions are plotted for
every 4x10’ iterations over a 4x10’ iteration interval which allows us to present

100 distributions. We use gnuplot to obtain this image.
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Figure 4.5 Surface plot of the distribution of displacement

We notice as the iterations increase, the number of monies that have not moved

further than 10 units of displacements scales linearly and decreases with time. Furthermore,

the displacements between 10 and 100 units seems to resemble a plateau which spreads out

with time. This is followed by the scale free tail which is seen between 200 and 1000
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displacement units and we observe it increasing with thickness over time.
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Figure 4.6 pdfs of displacement after 4000 million iterations for different iterations
We illustrate this clearer by presenting a few pdfs of displacement after 4x10°
iterations in 2-D in the Figure 4.6. As was reported by Brockmann, displacement between 1
to 10 units is also seen to scale linearly. We show this region in Figure 4.7. We obtain the

function describing this equation as y=0.0004x+0.0015.
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Figure 4.7 pdfs of displacement between the range O to 10 units of displacement
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This means there is an exponential growth in displacement during this range. Brockmann
however did not report of a plateau as seen in displacements between 10 to 200 units. We
propose that these displacements are due to monies being in the vicinity of agents with a
high saving propensity. Thus, these agents will hold onto monies for longer periods of time.
We propose that this observation was not seen by Brockmann because displacements that
were reported in wheresgeorge.com are of significant distance.

Now that we have observed the change of the pdf of displacement with time, we
want to perform a power law analysis to allow us to obtain the scaling exponent S as
mentioned in Chapter 2. We firstly present the region of the pdf of displacement which we

propose has scale free behavior in the Figure 4.8.
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Figure 4.8 pdf of displacement between 200 and 631 units of displacement

We opt to sample 465 data points between 200 and 631 units of displacement as the scale
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free region. However we will try to estimate S . We perform a maximum limit

estimation given by (3.9). We choose X, as 200. We obtain the parameter estimate of

the scaling exponent fS=2.4631+0.0196

We then asses the goodness of fit of the parameter estimate of the scaling exponent
with the Kolmogorov-Smirnov statistic given by (3.10). We firstly show a plot of the
hypothesized cdf of displacement and the empirical cumulative distribution function of
displacement in Figure 4.9.

The value of D that we obtained is D=0.080. The final step is to determine the p-
value for the obtained statistic. From the dataset of 431 points we randomly choose 400
data points to calculate the p-value based on the description given in Chapter 3. We observe
that 227 out of 500 data points have a Kolmogorov-Smirnov statistic greater than 0.080.

We therefore obtain a p-value of 45.4% which is an agreeable value.
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Figure 4.9 Hypothesized and empirical cdf of displacements

72



The sampling of 465 data points between 200 and 631 units of displacement is
actually insufficient to calculate the power law exponent for the tail in the distribution of
displacement. We are however unable to increase the calculation time any further because
of the inherent nature of the simulation itself where after many iterations, most of the
monies will be owned by agents with high saving propensity. Thus, money will not likely

move after a long period of time.

4.1.3 Probability distribution function of waiting time

Our next task will be to plot the distribution of waiting time of money with agents
and infer the scaling exponent from the distribution. We show the pdf after 4x 10’
iterations in Figure 4.10. We however normalize the waiting times over 17000 agents. We

therefore define a unit of time as the hypothetical time after each agent has been sampled.
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Figure 4.10 pdf of waiting time after 4000 million iterations
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We firstly observe the existence of ripples on the distribution. This is actually due to the

statistical nature of the random number generation which have a tendency to bias their

choice of numbers. If we were to repeat the experiment with a fairer random number

generator, the Mersenne Twister random number generator for example [52] the ripples

will be less obvious. We observe that half the portion of observations occurred under

10*

iterations and we hypothesize scale free behavior occurring in this region between

iterations. There are however cases where monies have to wait longer than

10*

10*

and 10° iterations.
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Figure 4.11 pdf of waiting time between 10000 and 100000 iterations

Our next step is to perform a power law analysis on the scale free region. We

present the region in Figure 4.11. The first step is to perform a maximum likelihood

estimation of the scaling exponent (3.9) . We choose

X

min

as 4 in this case and the

sample size 1s 900 data points. We obtain the parameter estimate of the scaling exponent as
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x=16411+0.0655 - Ve then asses the goodness of fit of the parameter estimate of the

scaling exponent with the Kolmogorov-Smirnov statistic given by (3.10). We firstly show a
plot of the hypothesized cumulative distribution function of waiting time and the empirical
cumulative distribution function of waiting time in Figure 4.12. We observe that the fit to a
power law is better for the distribution of waiting time compared to the distribution of
displacement. The value of D we obtain is D=0.033.

Our final step is to determine the p-value for the obtained statistic. From the dataset
of 900 data points we randomly choose 700 data points to calculate the p-value based on
the description given in Chapter 3. From a collection of 500 datasets we observe that 275
out of 500 have a Kolmogorov-Smirnov statistic greater than 0.033. We obtain a p-value of

55.0% which is an agreeable value.

1 \
0.9

0.8 \

\
\\ \ .

\ Hypothetical
0.7 7 \\}\

N Empirical

0.6
= 0.5
0.4
0.3 7
0.2
0.1

0 T \ \ T - |
0 20000 40000 60000 80000 100000

Figure 4.12 Hypothesized and empirical cdf of waiting times

With the derivation provided by Brockmann stated in (2.80) and using the
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estimations as obtained above, we find that o/B=0.6663 . This indicates that a diffusion

of money in the trading model that is closer to superdiffusion.

4.1.4 Mean square displacement of Chakrabarti trading model

By measuring how the mean squared displacement varies with time we would like
to investigate the type of money diffusion. We present the log-log graph of mean squared
displacement with time in Figure 4.13 below. There seems to be two regions in the MSD
distribution over time. Before 1 unit of time, the MSD seems to be quite uniform. However
after 1 unit time the MSD seems to change linearly with time. A unit of time is normalized
to the number of agents in the system. Assuming the system has equilibrated after 1 unit of
time, we can calculate the slope to observe the type of diffusion in the system. The slope we
obtain in this region is y=0.8478x-0.4225. This indicates subdiffusion as shown in (2.28).
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Figure 4.13 Mean squared displacement for the Chakrabarti trading model

76



4.2 Yakovenko's Trading Model

4.2.1 Wealth distribution

The emergent wealth distribution from the Yakovenko trading model differs from
the Chakrabarti trading model as the former is an exponential distribution. As mentioned in
Chapter 2, the Boltzmann-Gibbs distribution is the distribution of energy of a gas at
equilibrium and this has been used by Yakovenko as an analogy for his trading model. We
would now like to observe the resultant diffusion of money in the Yakovenko trading
model where if a non anomalous diffusion result is observed, this indicates that the trading

rule in the Chakrabarti trading model plays the main role in the emergence of anomalous

diffusion.
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Figure 4.14 Comparison of the wealth distributions from the original and
modified Yakovenko trading model

Before we perform this analysis however, we would like to see if a modified Yakovenko

trading model, in which agents on-lattice can only trade with its nearest neighbors can
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reproduce the Boltzmann-Gibbs wealth distribution similar to the original Yakovenko

trading model. We initialize 17000 agents with a randomly set amount of money between

(1-1000) per agent over 100 million iterations. We present the distributions of wealth in

Figure 4.14. We observe on a log-log plot the two distributions only differ slightly in the

lower income region where the distribution is a bit fatter for the lower income region. This

means that the rate of equilibration is slower in the modified trading model. However we

are still able to observe a similar wealth distribution as the original model. We do not

present the cumulative distribution of wealth in this study because we are unable to see a

clear difference between the original and modified distributions of wealth.

4.2.2 Probability distribution function of displacement length and mean squared

displacement

We would now like to perform an analysis of anomalous diffusion for the modified

Yakovenko's trading model to compare with Chakrabarti's trading model. We initialized

17000 agents with 10 units of money and the simulation program is ran over 5 million

iterations. We are unable to run the simulation over a longer period of time than this and we

propose the reason below. We firstly obtain the data for jump lengths and present it in

Figure 4.15 and 4.16.
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Figure 4.16 Distribution of displacement after 5 million iterations on log scaling

Using the gnuplot curve fitting function, we have fitted the distribution after 2 units of

length to an exponential distribution (0.26304+0.0138)¢ "

—(2.0357+0.372)r

reduced chi-square of 0.0012. We observe that the distribution of displacement is not scale

free. We then present the mean squared displacement in Figure 4.17. We observe that the

variance of the distribution of displacement equilibrates around 100 normalized units of
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time. This means that there is very little movement after this period of time. This
observation allows us to assume that the equilibration rate for the Yakovenko trading model
is faster compared to the Chakrabarti trading model. This can be attributed to allowing
agents to only trade according to the Yakovenko trading rules and with its neighbors as

described above.
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Figure 4.17 Variance of distribution of displacement over 5 million iterations (normalized by

dividing with total number of monies)

4.2.3 Probability distribution function of waiting time

We present the pdf of waiting time in Figure 4.18 below. As in the previous waiting
time distribution, we observe a tail that spans over 2 decades between 10* and 10°
units of time. We also observe that the pdf of waiting time does not have a scale-free
distribution as obvious as the Chakrabarti trading model. Using the gnuplot curve fitting
function, we have fitted the tail of the waiting time pdf to an exponential distribution. We

obtain a reduced chi-square of 0.5029.
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Figure 4.18 PDF of waiting time after 5 million iterations and the
fitting of the tail to an exponential distribution

4.3 Chakrabarti's trading model with fixed saving propensity

Based on the results of the modified Yakovenko trading model, we are interested to
study a Chakrabarti trading model that allows agents to only trade a fixed amount of money

per trade. The motivation behind this is that a fixed saving propensity among agents will
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allow every trade of money between agents to be equal and this allows the money to flow at
a homogeneous rate. We would thus want to observe the type of diffusion for this case. We
use the same initializations as the Chakrabarti trading model with a random saving

propensity.

4.3.1 Probability distribution function of displacement

We present the pdf of displacement after 4000 million iterations in Figure 4.19.
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Figure 4.19 PDFs of displacement after 4000 million iterations

We firstly observe that the pdf of displacement is similar to Figure 4.4. We then performed
a power law analysis. We present the region of the pdf of displacement which we propose
has scale free behavior in Figure 4.20. Sampling in the same region as the previous
simulation which is between 200 and 631 units of displacement and using the same analysis

methods, we obtain the scaling exponent of S=2.4631+0.0196 . This range is again
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inadequate to calculate the scaling exponent but as mentioned in Section 4.1.2, a more

thorough analysis cannot be done due to the inherent nature of the system where after long

periods of time, high saving propensity agents will hold on to the money.
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Figure 4.20 PDF of displacement between 200 and 631 units of displacement

We next present the hypothetical and empirical cumulative distribution functions in order

to calculate the Kolmogorov-Smirnov statistic in Figure 4.21.
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Figure 4.21 Hypothesized and empirical CDF of jump length
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We observe that the fit to a power law with an exponent of S is not as good as compared
to the randomly distributed saving propensity model. This is seen with a D=0.1983.
Performing a p-value analysis, we obtain a p-value of 34.8% which is still acceptable but
not as high as the p-value of the Chakrabarti trading model with randomly distributed

saving propensity.

4.3.2 Probability distribution function of waiting time

We then present the pdf of waiting time in Figure 4.22.
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Figure 4.22 pdf of waiting time after 4000 million iterations

After 4000 million iterations, this appears to be similar to that for the Chakrabarti trading
model with a randomly distributed saving propensity (Figure 4.6). In comparison, we
observe that the trading model with a fixed saving propensity produces a thinner power law
tail. This means that a fixed saving propensity allows the waiting time for the monies to be
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shorter. As mentioned in section 4.1.3, the ripples are due to an improper choice of random
number generator which is biased in choosing numbers.
The next step is to perform the maximum likelihood estimation for the scaling

exponent. We sample in the region of 10000 to 40000 iterations and this is shown in Figure

4.23. Choosing x =4 We obtain the scaling exponent «=2.1755+0.0278 . We

nun

observe here that the scale-free region is shorter than previously (Figure 4.8) and the
scaling exponent is larger than initially observed. These both mean that there are less

observations in this region and more in the non scale free region.

-2.5

log10(C(t))

-3.5 s M“ﬂm\k\

-4 \ \ \ \

3.8 4 4.2 4.4 4.6 4.8
log10(t)

Figure 4.23 pdf of waiting time between 10000 and 40000 iterations

A Kolmogorov-Smirnov analysis is performed and we present the cumulative
hypothetical and empirical distributions in Figure 4.24. We obtain D=0.0060. Choosing 250
out of 300 data points to perform a p-value analysis we find that 234 out of 500 statistics

are greater than D. This gives a p-value of 46.8%.

85



09\

0.8
0.7 7

0.6

0.4 7
0.3
0.2

0.1 7

AN Hypothetical
\\EmpMCm

10000

I I I I —
15000 20000 25000 30000 35000 40000

t

Figure 4.24 Hypothesized and empirical cdf of waiting times

With the derivation provided by Brockmann stated in (2.80) and using the

estimations as obtained above, we find that «/B=0.8832 . This indicates that a diffusion

of money in the trading model that is anomalous.

4.3.3 Mean square displacement

We can confirm an observation of anomalous diffusion by comparing this result

with a log-log plot of mean squared displacement over time. We present this result in

Figure 4.25. As seen in Figure 4.13, we observe a mean squared displacement which varies

linearly over time after 1 unit of time normalized by the total number of agents. Using the

gnuplot curve fitting function, however the slope we obtain is given by m=

0.9748£0.0679 . Since this value is close to 1, this indicates normal diffusion.
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Figure 4.25 Mean squared displacement for the Chakrabarti trading model

4.4 Kinetic Economy trading model

4.4.1 Wealth distribution

As has been mentioned in the previous chapter, the Kinetic Economy trading model allows
a more realistic study of an economy as it includes economic commodities and price
fluctuations. We would like to see if a more elaborate trading model will allow the
observation of anomalous diffusion. We firstly want to observe the cumulative distribution
of wealth for this trading model. We present the distributions in the figure below. We have
initialized 1000 agents with a ratio of money to goods as shown in the figure and the
simulation is ran over 10 million iterations. Each agent's price is initialized with a randomly
set value between 0.01 and 1. We note in this case that wealth is not simply the total

amount of money owned per agent but considered as the amount of money and goods at the
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price at sampling time that each agent owns.
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Figure 4.26 Cumulative distribution function of wealth for the Kinetic Economies trading
model for 10 units of money with varied units of goods
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Figure 4.27 Cumulative distribution function of wealth for the Kinetic Economies trading

model for 100 units of money with varied units of goods

1.0000

0.1000 T~
~0.0100 |
=
'S N money=1000 goods=100

0.0010 — "\ money=1000 goods=300
AN money=1000 goods=500
N money=1000 goods=700
0.0001 | "\ money=1000 goods=1000

0.0000 I \ 1 \
1 10 100 1000 10000

w

Figure 4.28 Cumulative distribution function of wealth for the Kinetic Economies trading
model for 1000 units of money with varied units of goods
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We observe a scale free behavior in the ratio of money to goods in the wealth distributions.
We find that a ratio of money to goods given by money=10, goods=7 and money=10,
goods=10 provides a distribution of wealth that has two clear regions of low and high
income. However the Boltzmann-Gibbs distribution is not the distribution in the lower
income region. A power law seems to be observed however in the distribution money=100
goods=70, money=100 goods=100, money=1000 goods=700 and money=1000 goods=1000
however the number of samples in this region is very scarce to perform an analysis. This is
due to the nature of the model itself where most agents will end up with almost no wealth
or none at all. A ratio of goods to money where we vary money does not produce a
distribution of wealth resembling empirical data.

We have observed from Figures 4.26 to 4.28 that a ratio of initialized goods to
money that is 1:1 will allow the emergence of a distribution of wealth that has two regions
of low income and high income in the trading model. Each agent's price is initialized with a
randomly set value between 0.01 and 1. With this knowledge, we would like to run the
trading model until it reaches equilibrium for both the off-lattice and a modified on-lattice
version of Kinetic Economies trading model and perform a comparison.

For the original trading model, we initialized 17000 agents with the amount of
money and goods as indicated in the figure below over 16000 million iterations. We present

the distribution of wealth in Figure 4.29. As expected, a distribution of wealth with a long
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tail is seen. We are unable to certify if this region is power-law as the statistics in this
region is scarce. For the low income region, nearly 70% of the population of agents end up
with almost no wealth. Around 20% of the population will be distributed between fairly

between the agents with no wealth and the high income tail.

1.0000 —
AN money=10 goods=10
AN money=100 goods=100
0.1000 — N money=1000 goods=1000
0.0100 —| N
< N\
S \
15) N
0.0010 — ;“H._:
0.0001 —
0.0000 T T T ]
1 10 100 1000 10000

W

Figure 4.29 Cumulative distribution function of wealth for the Kinetic Economies trading model

for a ratio of 10, 100 and 1000 units of goods and money without trading without nearest neighbors
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Figure 4.30 Cumulative distribution function of wealth for the Kinetic Economies trading model
for a ratio of 10, 100 and 1000 units of goods and money without trading with nearest neighbors

If we were to observe the distribution of wealth from the modified trading model we
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find that after 16000 million iterations, the distribution of wealth does not equilibrate
similarly to the original trading model. This is presented in Figure 4.30. We observe that

the high income region is not scale free and it is better fitted by an exponential distribution.

We show the fittings in the Figure 4.31.
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Figure 4.31 Tail of the cdf of wealth fitted to an exponential distribution for 10 and 100 units of

goods and money
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Using the gnuplot curve fitting function, for the case of money=10 goods=10, the tail can
be fitted to  C(w)=0.004¢ *""*" and for money=100 goods=100 the tail can be fitted to
a power law  C(w)=0.8524w " . For money=1000 goods=1000 however, the
distribution is fitted to a inverse linear distribution y=-0.000011x.

money=1000 goods=1000

0.08 7

0.05

0.03

0 \ \ \ \ \
10000 11000 12000 13000 14000 15000
w
Figure 4.32 Tail of the cdf of wealth fitted to a inverse linear distribution for 1000 and 1000 units

of goods and money

We have thus seen that the modification of trading with only nearest neighbors results in a
distribution of wealth that has an exponentially fitted tail. This reflect a faster decay
compared to the proposed power law indicating that the simulation equilibrates at a faster
rate when modified to trade with its nearest neighbors. The sample in the tails are less than

10% of the entire population.

4.4.2 pdf of displacement and mean squared displacement

Now that we have seen the wealth distribution for both the original and modified
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Kinetic Economies trading model, we would like to observe the type of diffusion of money

in the simulation. We initialized 17000 agents with 10 units of money and 10 units of goods

and the simulation is performed over 100 million iterations. We present the pdf of jump

length after 100 million iterations in Figures 4.33 and 4.34.
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Figure 4.34 Log-log plots of pdfs of displacement after 100 million iterations

Similar to the Yakovenko trading model money, does not seem to move over large

distances. Most of the monies seem to move less than 2 units of displacement. If we were to
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perform a fit on P(r), using the gnuplot curve fitting function, we find that it also fits an
exponential distribution given by (0.3510i0.0162)67(0‘298&0'0166)" . We obtain a reduced
chi-square of 0.2065. The jump lengths of the distribution are therefore not scale free. This
indicates that the diffusion is not anomalous. This is seen as well in the relation between
mean squared displacement and time in the Figure 4.35. We observe that the mean squared
displacement is finite after 100 million iterations. It does not increase to large values as
seen in the previous Chakrabarti trading model. This also indicates that the diffusion is not

superdiffusion. We normalized the time over 17000 agents.

10
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Figure 4.35 Mean squared displacement for the Kinetic Economies trading model

Performing a least square regression in the region between 1000 and 10000 units of time,

we find the slope as m=0.3606.
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4.4.3 Probability distribution function of waiting time

Our next task will be to plot the distribution of waiting time of money with agents
and infer the scaling exponent from the distribution. We show the pdf after 100 million
iterations in Figure 4.36. We normalize the waiting times over 17000 agents. We therefore
define a unit of time as the hypothetical time after each agent has been sampled. We
observe that half the portion of observations occurred under 10* iterations. There are
however cases where monies have to wait longer than 10 iterations and we hypothesize

scale free behavior occurring in this region between 10* and 10° iterations.
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Figure 4.36 pdf of waiting time after 4000 million iterations

Our next step is to perform a power law analysis on the scale free region. We

present the region in Figure 4.37. The first step is to perform a maximum likelihood

estimation of the scaling exponent (3.9) . We choose X = as 4 in this case and the

min
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sample size is 900 data points. We obtain the parameter estimate of the scaling exponent

as . We then asses the goodness of fit of the parameter estimate of the scaling exponent

with the Kolmogorov-Smirnov statistic given by (3.10).
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Figure 4.37 pdf of waiting time between 10000 and 100000 iterations

We firstly show a plot of the hypothesized cumulative distribution function of waiting time

and the empirical cumulative distribution function of waiting time in Figure 4.38.
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Figure 4.38 Hypothesized and empirical cdf of waiting times
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The value of D we obtain is D=0.0538. Our final step is to determine the p-value for the
obtained statistic. From the dataset of 9000 data points we randomly choose 1000 data
points to calculate the p-value based on the description given in Chapter 3. From a
collection of we observe that 401 out of 500 have a Kolmogorov-Smirnov statistic greater
than 0.0538. We obtain a p-value of 80.2% which is an agreeable value.

As defined in [17], a finite pdf of displacement length and a diverging pdf of

waiting time of money means that money is undergoing subdiffusion.
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CHAPTER 5 : CONCLUSION

The cdf of wealth in the Chakrabarti trading model with a random saving propensity
is seen to be a mixed distribution of a Boltzmann-Gibbs distribution and power law
distribution in the low and high income regions respectively as shown in [13]. This is
observed in our modification to this trading model as well. The cdf of wealth in the
Yakovenko trading model is observed as an exponential distribution as shown in [15]. This
is observed in our modification to this trading model as well. The cdf of wealth in the
Kinetic Economies trading model is observed as a mixed distribution where we propose the
tail as scale free. Our modification to the trading model however allows an emergent tail
which is shown to be an exponential distribution but the entire distribution is also mixed.

The diffusion of money in the Chakrabarti trading model with a random saving
propensity has been shown to exhibit anomalous diffusion. This is seen in a scale free
distribution of the tail of the displacement length pdf and waiting time pdf and a mean
squared displacement relation which is linearly dependent with time with a slope which is
less than 1. The determination of the power law exponent for the displacement length pdf
however has to be improved by learning new ways to increase memory allocation for a
vector. This is so that more money can be initialized per agent and thus more money can be
traded, moved and tracked over the course of the simulation. The solution probably lies in

the realm of high performance computing. Ripples seem to exist in the waiting time pdf and
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it is probably attributed to the standard C++ random number generator which is known to
bias to certain numbers. We will further the Monte Carlo calculations using the well known
Mersenne Twister [52] random number generator. The diffusion of money in the
Yakovenko trading model has been shown to not exhibit anomalous diffusion. This is
because the displacement length pdf decays exponentially. The waiting time pdf has a long
tail but it is not scale free and scales as an exponential. The mean squared displacement
relation with time is also finite. The analysis of the diffusion of money in the Chakrabarti
trading model with a fixed saving propensity shows that is not obvious if anomalous
diffusion exhibited. A scale free distribution of the tail of the displacement length pdf and
waiting time pdf is seen. However, the analysis of the tails however show that it is less
likely to be scale free compared to the first experiment. The mean squared displacement
relation however is seen to vary linearly with time with a slope which is almost 1 indicating
normal diffusion. As mentioned above, we hope to overcome the memory allocation
problem to ensure that an improved analysis of the power-law exponents can be made. The
diffusion of money in the Kinetic Economies trading model has been shown to exhibit
subdiffusion. This is because the displacement length pdf decays exponentially. The
waiting time pdf however has a scale free tail. The mean squared displacement relation with
time is finite.

As has been defined in Chapter 2, inserting into (2.85) the empirical value of the
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power law exponent « and p for the waiting time and jump length pdf's respectively

will allow us to perform a fitting of the ambivalence of the empirical waiting time and jump

length distributions and the analytical solution. This however could not be done as we did

not have the software needed to perform the fitting. We suggest the use of the software

Mathematica to perform the fitting in the future.

We can thus conclude from the observations we made that a trading model with a

resultant mixed distributions of wealth with a scale free tail exhibits anomalous diffusion. A

trading model with a resultant mixed distributions of wealth with an exponential tail

exhibits subdiffusion. A trading model with a resultant exponential distribution of wealth

does not exhibit anomalous diffusion.
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APPENDIX A : MODIFIED CHAKRABARTI TRADING MODEL

#include<iostream>
#include<time.h>
#include<math.h>
#include<fstream>
#include<vector>

int main() {

using namespace std;

int 1, j, k, m, c, d, e, disp, agentx, agenty, numagents, arrayrange, moneyrange, marker, moneycounterx, moneycountery,
complement, compx, compy, dummy, X, y, disprange, length, avgcount;

float tradevolumex, tradevolumey, total, x1, y1, x2, y2, hypothenus;

numagents=17000;
arrayrange=10000;
moneyrange=170000;
marker=0;
moneycounterx=0;
moneycountery=0;
disprange=100;
length=1700;
timerange=100;

vector<int> agentcells1 (arrayrange);
vector<vector<int> > agentcells(numagents,agentcells1);

vector<float> displacementcount] (moneyrange);
vector<vector<float> > displacementcount(disprange,displacementcount1);

vector<float> timecountl (timerange);
vector<vector<float> > timecount(moneyrange,timecountl);

vector<float> waittimel (timerange);
vector<vector<float> > waittime(moneyrange,waittime1);

long double counta=0,countb=0,avgdisp[disprange],vardisp[disprange];

double binwaittime[moneyrange],avgbinwaittime[moneyrange];

float saving[numagents], sumdisp[disprange], sumvardisp[disprange], avgvardisp[disprange];

int save[numagents], neighbour, rightside, bindispcount[disprange][length];

int shelfl[arrayrange], shelf2[arrayrange], shelf3[arrayrange], shelf4[arrayrange], drawerl[arrayrange],drawer2
[arrayrange], drawer3[arrayrange], drawer4[arrayrange];

srand((unsigned)time(0));

ofstream out;

out.open("ergooutput.txt");



//nitializations

for(i=0;i<numagents;i++)

{
save[i]=(rand()%99)+1;
saving[i]=0.01*save[i];

for(j=0;j<arrayrange:j++)

{
agentcells[i][j]=0;
}
for(j=0;j<10;j++)
{
agentcells[i][j]=j+(*10);
}
}
disp=0;

for(i=0;i<disprange;i++)
{
for(j=0;j<moneyrange;j++)
{
displacementcount[i][j]=0;

}

sumdisp[i]=0;
avgdisp[i]=0;
sumvardisp[i]=0;
vardisp[i]=0;

e=0;

for(i=0;i<disprange;i++)
{
for(j=0;j<length;j++)
{
bindispcount[i][j]=0;
}



//Trade

for(k=0;k<4000;k++)
{
for(m=0;m<1000001;m++)

{

/Mnitialize shelves and drawers before trading

i=0;
while(1)
{
if(((shelf1[i]!=0)& & (shelf1[i+1]!=0))lI((shelf1[i]!=0)& & (shelf1[i+1]
==0))ll((shelf1[i]==0)&&(shelf1[i+1]!=0))) {shelf1[i]=0;}
else{break;}
1++;

}

1=0;
while(1)
{
if(((shelf2[i]!=0)& & (shelf2[i+1]!=0))lI((shelf2[i]!=0)& & (shelf2[i+1]
==0))ll((shelf2[i]==0)& & (shelf2[i+1]!=0))) {shelf2[i]=0;}
else{break;}
1++;

}

1=0;
while(1)
{
if(((shelf3[i]!=0)& & (shelf3[i+1]!=0))ll((shelf3[i]!=0)& & (shelf3[i+1]
==0))ll((shelf3[i]==0)&&(shelf3[i+1]!=0))) {shelf3[i]=0;}
else{break;}
1++;

}

1=0;
while(1)
{
if(((shelf4[i]!=0)& & (shelf4[i+1]!=0))ll((shelf4[i]!=0)& & (shelf4[i+1]
==0))ll((shelf4[i]==0)&&(shelf4[i+1]!=0))) {shelf4[i]=0;}
else{break;}
1++;



}

1=0;
while(1)
{
if(((drawerl[i]!=0)& & (drawerl[i+1]!=0))lI((drawer1[i]!=0)& & (drawerl
[i+1]==0))li((drawer1[i]==0)&&(drawer1[i+1]!=0))) {drawerl[i]=0;}
else{break;}
I++;

}

1=0;
while(1)
{
if(((drawer2[i]!=0)& & (drawer2[i+1]!=0))ll((drawer2[i]!=0)& & (drawer2
[i+1]==0))ll((drawer2[i]==0)&&(drawer2[i+1]!=0))) {drawer2[i]=0;}
else{break;}
1++;

}

1=0;
while(1)
{
if(((drawer3[i]!=0)& & (drawer3[i+1]!=0))ll((drawer3[i]!=0)& & (drawer3
[i+1]==0))ll((drawer3[i]==0)&&(drawer3[i+1]!=0))) {drawer3[i]=0;}
else{break;}
1++;

}

i=0;
while(1)
{
if(((drawer4[i]!=0)& & (drawerd[i+1]!=0))ll((drawer4[i]!=0)& & (drawer4
[i+1]==0))ll((drawer4[i]==0)& & (drawer4[i+1]!=0))) {drawer4[i]=0;}
else{break;}
1++;

}



//Choose two neighbouring agents

while(1)
{
while(1)
{
agentx=rand()%numagents;
rightside=agentx-(length-1);

/ledges if(agentx==0) {
neighbour=rand()%3;
if(neighbour==0){agenty=agentx+1;}
else if(neighbour==1){agenty=agentx+length;}
else if(neighbour==2){agenty=agentx+(length+1);}

break;
}
else if(agentx==(length-1)) {
neighbour=rand()%3;

if(neighbour==0){agenty=agentx-1;}
else if(neighbour==1){agenty=agentx+(length-1);}
else if(neighbour==2){agenty=agentx+length;}
break;
}
else if(agentx==(numagents-length)) {
neighbour=rand()%3;
if(neighbour==0){agenty=agentx-length;}
else if(neighbour==1){agenty=agentx-(length-1);}
else if(neighbour==2){agenty=agentx+1;}
break;
}
else if(agentx==(numagents-1)) {
neighbour=rand()%3;
if(neighbour==0){agenty=agentx-(length+1);}
else if(neighbour==1){agenty=agentx-length; }
else if(neighbour==2){agenty=agentx-1;}
break;

//corners else if((agentx<length)&&(agentx!=0)&&(agentx!=(length-1))) {
neighbour=rand()%35;
if(neighbour==0){agenty=agentx-1;}
else if(neighbour==1){agenty=agentx+1;}
else if(neighbour==2){agenty=agentx+(length-1);}
else if(neighbour==3){agenty=agentx+length;}
else if(neighbour==4){agenty=agentx+(length+1);}
break;



else if((agentx>(numagents-length- 1))&&(agentx!=(numagents-length))&&(agentx !=(numagents-1))) {
neighbour=rand()%35;
if(neighbour==0){agenty=agentx-(length+1);}
else if(neighbour==1){agenty=agentx-length;}
else if(neighbour==2){agenty=agentx-(length-1);}
else if(neighbour==3){agenty=agentx-1;}
else if(neighbour==4){agenty=agentx+1;}
break;

}

else if((agentx%length==0)& & (agentx !=0)& &(agentx !=(numagents-length))) {
neighbour=rand()%35;
if(neighbour==0){agenty=agentx-length;}
else if(neighbour==1){agenty=agentx-(length-1);}
else if(neighbour==2){agenty=agentx+1;}
else if(neighbour==3){agenty=agentx+length;}
else if(neighbour==4){agenty=agentx+(length+1);}
break;

}

else if((rightside%length==0)& & (agentx!=(length-1))&&(agentx!=(numagents-1))) {
neighbour=rand()%35;
if(neighbour==0){agenty=agentx-(length+1);}
else if(neighbour==1){agenty=agentx-length; }
else if(neighbour==2){agenty=agentx-1;}
else if(neighbour==3){agenty=agentx+(length-1);}
else if(neighbour==4){agenty=agentx+length;}
break;

/ot edges or corners else

neighbour=rand()%8§;
if(neighbour==0){agenty=agentx-(length+1);}

else if(neighbour==1){agenty=agentx-length;}

else if(neighbour==2){agenty=agentx-(length-1);}
else if(neighbour==3){agenty=agentx-1;}

else if(neighbour==4){agenty=agentx+1;}

else if(neighbour==5){agenty=agentx+(length-1);}
else if(neighbour==6){agenty=agentx+length;}

else if(neighbour==7){agenty=agentx+(length+1);}
break;



//Count how much money agentx and agenty have respectively

moneycounterx=0;
moneycountery=0;

i=0;

while(1)

{

if(((agentcells[agentx][i]!=0)&&(agentcells[agentx][i+1]!=0))ll((agentcells[agentx][i] !=0)
&&(agentcells[agentx][i+1]==0))ll((agentcells[agentx][i]==0)& &(agentcells[agentx][i+1]!=0)))
{moneycounterx++;}

else{break;}

1++;

}

i=0;

while(1)

{

if(((agentcells[agenty][i]!=0)&&(agentcells[agenty][i+1]!=0))lI((agentcells[agenty][i]!=0)
&&(agentcells[agenty][i+1]==0))ll((agentcells[agenty][i]==0)& &(agentcells[agenty][i+1]!=0)))
{moneycountery++;}

else{break;}

i++;

}

if((moneycounterx!=0)&&(moneycountery !=0)){break;}

}
//How much to trade?

if((1-saving[agentx])*moneycounterx-floor((1-saving[agentx])*moneycounterx)>=0.50)
{tradevolumex=ceil((1-saving[agentx])*moneycounterx); }

else if((1-saving[agentx])*moneycounterx-floor((1-saving[agentx])*moneycounterx)<0.50)
{tradevolumex=floor((1-saving[agentx])*moneycounterx); }

if((1-saving[agenty])*moneycountery-floor((1-saving[agenty])*moneycountery)>=0.50)
{tradevolumey=ceil((1-saving[agenty])*moneycountery); }

else if((1-saving[agenty])*moneycountery-floor((1-saving[agenty])*moneycountery)<0.50)
{tradevolumey=floor((1-saving[agenty])*moneycountery); }



//Choose a random collection of numbers based on the counted monies and place into shelves for trading

X=moneycounterx;

shelf1[0]=rand()%moneycounterx;

for(i=1;i<tradevolumex;i++)

{
dummy=rand()%moneycounterx;
for(j=0;j<i;j++)

{
if(shelf1[j]==dummy)

{
dummy=rand()%moneycounterx;
=L

}

}
shelf1[i]=dummy;

}

y=moneycountery,

shelf2[0]=rand()%moneycountery;

for(i=1;i<tradevolumey;i++)

{
dummy=rand()%moneycountery;
for(G=0;j<i;j++)

{
if(shelf2[j]==dummy)

{
dummy=rand()%moneycountery;
=L

}

}
shelf2[i]=dummy;

}



//Choose a random collection of numbers not in the trading shelves to place in the saving shelves

complement=0;
for(i=0;i<moneycounterx;i++)
{
for(j=0;j<tradevolumex;j++) {if(i==shelf1[j]) {marker++;}}
if(marker==0)
{
shelf3[complement]=i;
complement++;
1
marker=0;

}

compx=complement;

complement=0;
for(i=0;i<moneycountery;i++)
{
for(j=0;j<tradevolumey;j++) {if(i==shelf2[j]) {marker++;}}
if(marker==0)
{
shelf4[complement]=i;
complement++;
1
marker=0;

}

compy=complement;

//Assign randomized numbers stored in shelves to drawers containing the label of money

for(i=0;i<tradevolumex;i++) {
drawerl1[i]=agentcells[agentx][shelf1[i]];
timecount[drawer1[i]][timer[drawer]1[i]]]=1000000*k+m;
timer[drawerl[i]]+=1;}

for(i=0;i<tradevolumey;i++) {
drawer2[i]=agentcells[agenty][shelf2[i]];
timecount[drawer2[i]][timer[drawer2[i]]]=1000000*k+m;
timer[drawer2[i]]+=1;}

for(i=0;i<compx;i++) {drawer3[i]=agentcells[agentx][shelf3[i]];}

for(i=0;i<compy;i++) {drawer4[i]=agentcells[agenty][shelf4[i]];}



//Temporarily clear agentcells to place new collections inside

1=0;

while(1)

{

if(((agentcells[agentx][i]!=0)&&(agentcells[agentx][i+1]!=0))ll((agentcells[agentx][i] !=0)
&&(agentcells[agentx][i+1]==0))ll((agentcells[agentx][i]==0)& &(agentcells[agentx][i+1]!=0)))

{agentcells[agentx][i]=0;}

else{break;}

i++;

}

i=0;

while(1)

{

if(((agentcells[agenty][i]!=0)& & (agentcells[agenty][i+1]!=0))ll((agentcells[agenty][i]!=0)
&&(agentcells[agenty][i+1]==0))lI((agentcells[agenty][i]==0)& &(agentcells[agenty][i+1]!=0)))

{agentcells[agenty][i]=0;}

else{break;}

i++;

}
//Place back money's into agents via the drawers

for(i=0;i<compx;i++)
{agentcells[agentx][i]=drawer3[i];}

=L
for(i=0;i<tradevolumey;i++)
{
agentcells[agentx][j]=drawer2[i];
J++;
}

for(i=0;i<compy;i++)
{agentcells[agenty][i]=drawer4[i];}

=L
for(i=0;i<tradevolumex;i++)
{
agentcells[agenty][j]=drawerl[i];
I+t
}
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if((k%40==0)& & (m==1000000))
{
for(i=0;i<numagents;i++)
{
for(j=0;j<arrayrange;j++)
{
//current position X2=i;
if(x2>(length-1)) {
while(x2>=length)
{
x2=x2-length;
y2++;
}
}
else {
X2=1;
y2=0;
}

if(((agentcells[i][j]!=0)&&(agentcells[i][j]!=0))lI((agentcells[i][j]!=0)& &(agentcells[i][j]
==0))ll((agentcells[i][j]==0)& &(agentcells[i][j]!=0)))
{
/loriginal position x1=floor(agentcells[i][j]*0.1);
if(x1>(length-1)) {
while(x I >=length)
{
x1=x1-length;

yl++;

}
}
else {
x1=floor(agentcells[i][j]*0.1);
y1=0;
}

hypothenus=(x2-x1)*(x2-x 1 )+(y2-y 1) *(y2-y1);
displacementcount[e][agentcells[i][j]]=sqrt(hypothenus);

x1=0;
y1=0;
}

x2=0;
y2=0;
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for(i=0;i<length;i++)

{
for(j=0;j<moneyrange;j++)
{
if((displacementcount[e][j]>=i)&&(displacementcount[e][j]<(i+1)))
{ bindispcount[e][i]+=1; }
}
}

for(i=0;i<moneyrange;i++)
{
avgdisp[e]+=displacementcount[e][i];
if(displacementcount[e][i]!=0)
{ avgcount++;}

avgdisp[e]=avgdisp[e]/avgcount;

avgcount=0;

for(i=0;i<moneyrange;i++)

{
vardisp[e]+=(displacementcount[e][i]-avgdisp[e])*(displacementcount[e][i]-avgdisp[e]);
}
vardisp[e]=vardisp[e]/moneyrange;
e++;
}
}
}
for(i=0;i<moneyrange;i++)
{
waittime[i][0]=timecount[i][0];
}
for(i=0;i<moneyrange;i++)
{
for(j=1;j<timerange;j++)
{
if(timecount[i][j]>timecount[i][j-1])
{
waittime[i][j]=timecount[i][j]-timecount[i][j-1];
}
}
}

12



for(k=0;k<10000;k++)

{
for(i=0;i<moneyrange;i++)
{
for(j=0;j<timerange;j++)
{
if((waittime[i][j]>=(k*100))& & (waittime[i][jI<((k+1)*100)))
{
binwaittime[k]+=1;
}
}
}
}

for(i=0;i<disprange;i++)
{
for(j=0;j<length;j++)
{

out<<

}

out<<"\n";

}

"non

<<j<<"\t "<<i<<"\t "<<bindispcount[i][j]<<"\n";

for(i=0;i<10000;i++)
{

out<<" "<<i*100<<"\t "<<binwaittime[i]<<"\n";

for(i=0;i<disprange;i++)
{

out<<" "<<i*40000000<<"\t "<<vardisp[i]<<"\n";

}
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APPENDIX B : MODIFIED YAKOVENKO TRADING MODEL

/Choose a random collection of numbers based on the counted monies and place into shelves for trading
shelf1=rand()%moneycounterx;
shelf2=rand()%moneycountery;

//Choose a random collection of numbers not in the trading shelves to place in the saving shelves

complement=0;
for(i=0;i<moneycounterx;i++)

{
if(i==shelf1) { marker++; }

if(marker==0) {
shelf3[complement]=i;
complement++;

}

marker=0;

}

compx=complement;

complement=0;
for(i=0;i<moneycountery;i++)

{
if(i==shelf2) { marker++; }

if(marker==0) {

shelf4[complement]=i;
complement++;

}

marker=0;

}

compy=complement;

//Assign randomized numbers stored in shelves to drawers containing the label of money
drawerl=agentcells[agentx][shelf1];
drawer2=agentcells[agenty][shelf2];
for(i=0;i<compx;i++) {drawer3[i]=agentcells[agentx][shelf3[i]]; }

for(i=0;i<compy;i++) {drawer4[i]=agentcells[agenty][shelf4[i]]; }



//Temporarily clear agentcells to place new collections inside

i=0;
while(1)

{
if(((agentcells[agentx][i]!=0)&&(agentcells[agentx][i+1]!=0))lI((agentcells[agentx][i]!

=0)&&(agentcells[agentx][i+1]==0))ll((agentcells[agentx][i]==0)& & (agentcells[agentx][i+1]!=0)))
{ agentcells[agentx][i]=0;}
else{break;}
i++;

}

i=0;
while(1)

{
if(((agentcells[agenty][i]!=0)& & (agentcells[agenty][i+1]!=0))lI((agentcells[agenty][i]!

=0)& & (agentcells[agenty][i+1]==0))ll((agentcells[agenty][i]==0)& &(agentcells[agenty][i+1]!=0)))
{agentcells[agenty][i]=0;}
else{break;}
i++;

}

//Place back money's into agents via the drawers
coin=rand()%?2;

if(coin==1) {
for(i=0;i<compx;i++) {agentcells[agentx][i]=drawer3[i];}
for(i=0;i<compy;i++) {agentcells[agenty][i]=drawer4[i];}
J=is
agentcells[agenty][j]=drawer2;
J++;
agentcells[agenty][j]=drawerl;

}

else if(coin==0) {
for(i=0;i<compy;i++) { agentcells[agenty][i]=drawer4[i]; }
for(i=0;i<compx;i++) {agentcells[agentx][i]=drawer3[i];}
J=h
agentcells[agentx][j]=drawerl;
j++
agentcells[agentx][j]=drawer2;

}



APPENDIX C : MODIFIED KINETIC ECONOMIES TRADING MODEL

if(price[agentx]>price[agenty) {
buyagent=agentx;
buymoneycounter=moneycounterx;
sellagent=agenty;
sellmoneycounter=moneycountery; }

if(price[agenty]>price[agentx]) {
buyagent=agenty;
buymoneycounter=moneycountery;
sellagent=agentx;

sellmoneycounter=moneycounterx; }

if(price[agentx]==price[agenty]) {

coin=rand()%?2;

if(coin==1) {
buyagent=agentx;
buymoneycounter=moneycounterx;
sellagent=agenty;
sellmoneycounter=moneycountery; }

else if(coin==0) {
buyagent=agenty;
buymoneycounter=moneycountery;
sellagent=agentx;
sellmoneycounter=moneycounterx; }

numgoods=0;
while(1) {
pricegoods=price[sellagent]*numgoods;
if((pricegoods>buymoneycounter)ll(numgoods==goods[sellagent])) {
if(pricegoods>buymoneycounter) {
pricegoods=price[sellagent]*(numgoods-1);
numgoods--;}
break; }
numgoods++; }

if(pricegoods-floor(pricegoods)>=0.50) {tradevolume=ceil(pricegoods);}
else if(pricegoods-floor(pricegoods)<0.50) {tradevolume=floor(pricegoods);}



shelf1[0]=rand()%buymoneycounter;
for(i=1;i<tradevolume;i++) {
dummy=rand()%buymoneycounter;
for(j=0;j<i;j++) {
if(shelf1[j]==dummy) {
dummy=rand() %pbuymoneycounter;
=1}
}
shelf1[i]=dummy;}

complement=0;
for(i=0;i<buymoneycounter;i++) {
for(j=0;j<tradevolume;j++) {if(i==shelf1[j]) {marker++;}}
if(marker==0) {
shelf3[complement]=i;
complement++; }
marker=0;}
compx=complement;

for(i=0;i<tradevolume;i++) {drawerl[i]=agentcells[buyagent][shelf1[i]];}
for(i=0;i<compx;i++) {drawer3[i]=agentcells[buyagent][shelf3[i]];}
for(i=0;i<arrayrange;i++) {agentcells[buyagent][i]=0;}
for(i=0;i<compx;i++) {agentcells[buyagent][i]=drawer3[i];}
d=0;
for(i=sellmoneycounter;i<(sellmoneycounter+tradevolume);i++) {
agentcells[sellagent][i]=drawer1[d];
d++; }
pricegoods=0;

goods[buyagent]=goods[buyagent]+numgoods;
goods[sellagent]=goods[sellagent]-numgoods;



if(goods[sellagent]<=0) {
numgoods=0;
while(1) {
pricegoods=price[buyagent]*numgoods;
if((pricegoods>sellmoneycounter)ll(numgoods==goods[buyagent])) {
if(pricegoods>sellmoneycounter) {
pricegoods=price[buyagent]*(numgoods-1);
numgoods--; }
break;}
numgoods++; }
if(pricegoods-floor(pricegoods)>=0.50) {tradevolume=ceil(pricegoods);}
else if(pricegoods-floor(pricegoods)<0.50) {tradevolume=floor(pricegoods);}

shelf2[0]=rand()%sellmoneycounter;
for(i=1;i<tradevolume;i++) {
dummy=rand()%sellmoneycounter;
for(j=0;j<i;j++) {
if(shelf2[j]l==dummy) {
dummy=rand()%sellmoneycounter;
=1L}
}
shelf2[i]=dummy;}

complement=0;
for(i=0;i<sellmoneycounter;i++) {
for(j=0;j<tradevolume;j++) { if(i==shelf2[j]) { marker++;}}
if(marker==0) {
shelf4[complement]=i;
complement++; }
marker=0; }
compy=complement;

for(i=0;i<tradevolume;i++){drawer2[i]=agentcells[sellagent][shelf2[i]]; }

for(i=0;i<compy;i++) {drawer4[i]=agentcells[sellagent][shelf4[i]];}

for(i=0;i<arrayrange;i++) {agentcells[sellagent][i]=0;}

for(i=0;i<compy;i++) {agentcells[sellagent][i]=drawer4[i];}

d=0;
for(i=buymoneycounter;i<(buymoneycounter+tradevolume);i++){
agentcells[buyagent][i]=drawer2[d];
d++; }

goods[buyagent]=goods[buyagent]-numgoods;
goods[sellagent]=goods[sellagent]+numgoods;
price[sellagent]=price[buyagent];
}
}

else {price[buyagent]=price[sellagent];}






APPENDIX D : P-VALUE ANALYSIS

#include<iostream>
#include<fstream>
#include<time.h>
#include<math.h>

int main()

{

using namespace std;

int inputs=432, obse=500, vals=300, youtubeismylife, i, j, k;
float values[inputs][2], randvalueO[obse][vals], randvaluel[obse][vals], dummy0O, dummy1, total=0, alpha[obse],
sedated, Sx[obse][vals], Px[obse][vals], Cpx[obse][vals], sumPx[obse], sumSx[obse], diff[obse][vals];

srand((unsigned) time(0));
ofstream out;
out.open("pvalue.txt");
ifstream in;
in.open("matzoball.txt");

/Mnitialize arrays

for(i=0;i<inputs;i++)
{
for(j=0;j<2;j++)
{
values[i][j]=0;
}

for(i=0;i<obse;i++)
{
for(j=0;j<vals;j++)

{
randvalueO[i][j]=0;
randvaluel[i][j]=0;
Sx[i][j1=0;
Px[i][j1=0;
CPx[i][jI=0;

}

sumPx[i]=0;
sumSx[i]=0;

}



//data input

for(i=0;i<inputs;i++)
{
in>>values[i][0];
in>>values[i][1];

}

/lrandomly choose data to place in arrays

for(i=0;i<obse;i++)

{
for(j=0;j<vals;j++)
{
youtubeismylife=rand() %inputs;
randvalueO[i][j]=values[youtubeismylife][0];
randvaluel[i][j]=values[youtubeismylife][1];
sumSx[i]+=randvaluel[i][j];
}
}

/lsort data in arrays

for(i=0;i<obse;i++)
{
for(k=0;k<5000;k++)
{
for(j=0;j<vals;j++)
{
if(randvalueO[i][j+1]<randvalueO[i][j])
{
dummyO=randvalueO[i][j];
dummy l=randvalueO[i][j+1];
randvalueO[i][j]=dummy1;
randvalueO[i][j+1]=dummyO;
dummyO=randvaluel[i][j];
dummy I=randvaluel[i][j+1];
randvaluel[i][j]l=dummy1;
randvaluel[i][j+1]=dummy0;



//find exponent with MLE

for(i=0;i<obse;i++)
{
for(j=0;j<vals;j++){ total+=log(randvalueO[i][j]/randvalueO[i][1]); }
alpha[i]=1+(vals/total);
total=0;

}

/lroundup exponent to two decimal places

for(i=0;i<obse;i++)

{
sedated=alpha[i]-floor(alphali]);
sedated=sedated*100;
if((sedated-floor(sedated))>=0.5){sedated=floor(sedated)+1;}
else if((sedated-floor(sedated))<0.5){ sedated=floor(sedated); }
alpha[i]=floor(alphali])+sedated*0.01;

}

//P(x) and C(x)

for(i=0;i<obse;i++)

{
for(j=0;j<vals;j++)

{
Px[i][j]=pow(randvalueO[i][j],-1*alpha[i]);
sumPx[i]+=Px[i][j];

}

}

for(i=0;i<obse;i++)
{
Sx[i][0]=1;
CPx[i][0]=1;
}

for(i=0;i<obse;i++)
{
for(j=1;j<vals;j++)

{
Sx[i1[jlI=(Sx[il[j-1]-randvalue[i][j}/sumSx[i]);
CPx[i][j]l=(CPx[i][j-1]-Px[i][j}/sumPx[i]);

}



//difference between the two

for(i=0;i<obse;i++)

{
for(j=0;j<vals;j++)
{
diff[i][j]=fabs(Sx[i][j]-CPx[il[j]);
}
}
for(i=0;i<obse;i++)
{
for(k=0;k<5000;k++)
{
for(j=0;j<vals;j++)
{
if(diff[i][j+1]1>diff[i][j])
{
dummy0=diff[i][j];
dummy 1=diff[i][j+1];
diff[i][jl=dummy1;
diff[i][j+1]=dummyO;
}
}
}
}

for(i=0;i<obse;i++)

{

out<<" "<<diff[i][0]<<"\n";



