LIST	OF	TABI	LES
------	----	------	-----

Table		Page
2.1	Characteristic of available bone graft materials and their sources	20
2.2	Composition of PHA produced from various carbon sources by a range of bacteria	30
2.3	Potential applications of PHA in medicine	37
3.1	Modified rich medium	47
3.2	E2 medium	48
3.3	Microelement (MT) stock solution	48
3.4	Summary of the animals and defect profile in this study	57
3.5	Test period before euthanasia	58
3.6	Dehydration and infiltration process	60
3.7	1.0 % Periodic acid	69
3.8	Schiff's reagent	69
4.1	Average mean new bone volume scores for PHA and control groups at specific time intervals	80
4.2	Comparison of average mean new bone volume between PHA group and negative controls according to the time intervals respectively	81
A-1	Score chart obtained to calculate the mean new bone volume	106
A-2	4 % buffered formalsaline	110

Figures		Page
2.1	Examples of monomers that can be incorporated into PHA polymers	27
2.2	Metabolic pathway for the production of short-chain-length PHA in <i>Ralstonia eutropha</i>	32
3.1	Oil palm fruit	49
3.2	Surgical tools and consumables used for the insertion of PHA	53
3.3	Rabbit skull – disclosing the position of the defect at the body of the mandible	54
3.4	The excision of bone from the mandible to create a defect	55
3.5	The PHA film was placed into the defect and then wrapped over it	56
3.6	Specimens in plastic moulds	61
3.7	Plastic moulds with specimen placed in the Light Polymerization Unit (EXAKT 520).	61
3.8	Attachment of first slide to the specimen block with adhesive (mixture of $S1 + S2 +$ Technovit 4000)	62
3.9	Grinding Machine (EXAKT 400 CS) - set up with sand paper	63
3.10	The thickness of the sandwich formed was measured	64
3.11	Thickness of adhesive (Technovit 7210 VLC) between the resin block and the new slide used	64
3.12	The Cutting Machine (EXAKT 300)	66
3.13	A summary of the total amount of thin sections in this study	68
4.1	PHA film in a Petri dish – final product used for insertion	73
4.2	Rabbit 9 at 6 weeks	75
4.3	The harvested specimen of Rabbit 5 showing the defect and its surrounding tissues	76

4.4	Rabbit 7 at 6 weeks	76
4.5	The mandible of Rabbit 4, harvested at week 9	77
4.6	PHA remained mostly intact in this specimen of Rabbit 11 harvested at 3 weeks	77
4.7	Vertical view of the mandible of Rabbit 11 harvested at 3 weeks	78
4.8	Appearance of defect in Rabbit 12 harvested at 3 weeks	78
4.9	Comparison of mean new bone volume between PHA and control groups at 3-, 6-, 9- and 12-week healing intervals	81
4.10	Photomicrograph of the defect grafted with PHA at 12 weeks for Rabbit 2	83
4.11	Photomicrograph of the defect grafted with PHA at 9 weeks for Rabbit 4	84
4.12	Photomicrograph of the defect grafted with PHA at 6 weeks for Rabbit 7	85
4.13	Photomicrograph of the defect grafted with PHA at 3 weeks for Rabbit 10	86
4.14	Photomicrograph of the defect grafted with PHA at 3 weeks for Rabbit 11	87
4.15	Photomicrograph of a negative control defect at 12 weeks for Rabbit 1	88
4.16	Photomicrograph of a negative control defect at 12 weeks for Rabbit 2	89
4.17	Photomicrograph of a negative control defect at 3 weeks for Rabbit 10	90
4.18	Photomicrograph of a negative control defect at 3 weeks for Rabbit 10	91
4.19	Photomicrograph of a negative control defect at 3 weeks for Rabbit 11	92

ABBREVIATIONS

Acetyl-CoA	Acetyl coenzyme A
BMP	bone morphogenetic proteins
cm	centimetre
g	gram
ЗНА	3-hydroxyapatite
3HB	3-hydroxybutyrate
HV	hydroxyvalerate
kg	kilogram
kV	kilovolt
lcl-PHA	long-chain-length polyhydroxyalkanoate
mA	milliAmpere
mcl-PHA	medium-chain-length polyhydroxyalkanoate
mg	milligram
ml	millilitre
mm	millimetre
μm	micrometre
mRNA	Messenger ribonucleic acid
MT solution	Microelement stock solution
NADP	Nicotinamide adenine dinucleotide phosphate
NADPH	Nicotinamide adenine dinucleotide phosphate (reduced)
nm	nanometre
PAS technique	Periodic Acid-Schiff technique
PBS	phosphate buffer solution
РНА	polyhydroxyalkanoate

РНВ	polyhydroxybutyrate
PHB/V or PHBV	poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
РКО	palm kernel oil
PLA	polylactic acid
RNA	ribonucleic acid
rpm	revolution per minute
rRNA	ribosomal ribonucleic acid
S	second
S.D.	standard deviation
scl-PHA	short-chain-length polyhydroxyalkanoate
SPKO	saponified palm kernel oil
TGF	transforming growth factor
w/v	weight over volume