THE ELECTROCHEMICAL AND THEORETICAL STUDIES OF CORROSION INHIBITION OF ALUMINIUM IN ACIDIC AND BASIC SOLUTIONS BY BENZENE-1, 2, 4, 5-TETRACARBOXYLIC DIANHYDRIDE (PMDH)

ZOHREH SHAHNAVAZ

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2009

THE ELECTROCHEMICAL AND THEORETICAL STUDIES OF CORROSION INHIBITION OF ALUMINIUM IN ACIDIC AND BASIC SOLUTIONS BY BENZENE-1, 2, 4, 5-TETRACARBOXYLIC DIANHYDRIDE (PMDH)

ZOHREH SHAHNAVAZ

DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

FACULTY OF SCIENCE

UNIVERSITY OF MALAYA

KUALA LUMPUR

2009

To my parents, sister and brothers.

For their love and prayers.

Abstract

The inhibitory activity of benzene -1, 2, 4, 5-tetracarboxylic dianhydride (pyromellitic dianhydride) on aluminium corrosion in hydrochloric acid (1.0 M HCl), sodium chloride (1.0 M NaCl) and potassium hydroxide (1.0 M KOH) was measured by means of electrochemical techniques such as electrochemical impedance spectroscopy (EIS) and polarization curves. The surface morphology was studied using scanning electron microscopy (SEM). The results indicate that benzene -1, 2, 4, 5-tetracarboxylic dianhydride suppress aluminium corrosion in these three media by its adsorption on the aluminium surface according to Langmuir adsorption isotherm. Potentiodynamic and EIS measurements indicate that the inhibition efficiency increases with the decrease in temperature and increase in the concentration of the inhibitor. On the other hand quantum chemical calculations show a correlation between molecular parameters and the corrosion behavior of PMDH.

ACKNOWLEDGEMENTS

I would like to express my extreme gratitude to both of my supervisors for their invaluable help during this project: Associate Professor Dr. Wan Jeffrey Basirun, who continuously shared his knowledge, advised and supported me all the way through and Associate Professor Dr. Shariffudin Mohd. Zain, for his sincere guidance, support and comments.

I would like to thank as well the PhD students Mehdi Ebadi and Mohammad Reza Mahmoudian for their experience was of great help to me.

I would like to express my thanks to all my friends for their help, moral support and memorable days we shared together.

I sincerely thank to my parents, my sister and my brothers who gave me so much support and encouragement throughout these years.

TABLE OF CONTENTS

	Page
LIST OF TABLES	vi
LIST OF FIGURES	viii
LIST OF SYMBOLS	xi
LIST OF ABBREVIATIONS	xiii
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	
2.1 Corrosion definition	5
2.2 Consequences of corrosion	5
2.3 Cost of corrosion	6
2.4 Types of corrosion on aluminium2.4.1 Uniform corrosion2.4.2 Pitting corrosion	7 7 7
2.5 Pourbaix diagrams	8
2.6 The advantages of aluminium	10
2.7 Aluminium corrosion in hydrochloric acid media	11
2.8 Aluminium corrosion in Potassium Hydroxide solution	14
2.9 Aluminium corrosion in inorganic salts 2.9.1 Sodium Sulphate	15 15

2.9.2 Sodium Chlorides	16
 2.10 Corrosion inhibitor	16 18 19 20 21 22 22
 2.11Corrosion studies using linear sweep Voltammetry (LSV), electrochemical impedance spectroscopy (EIS) and Scanning electron microscopy (SEM)	24 24 25 26 28 29 32 32 32 32 32 33 34 35 39 40
CHAPTER 3 : RESEARCH METHODOLOGY	
 3.1 Experimental Section	42 42 43 44 45 46
3.2 Computational Section	47 47

Part 1 The electrochemical study	
 4.1 Effect of Benzene -1, 2, 4, 5-tetracarboxylic dianhydride (PMDH) on aluminium corrosion in 1M hydrochloric acid (HCI) solution 4.1.1 Linear polarization method	49 49 52 57 58 62
4.1.2 Electrochemical impedance spectroscopy4.1.3 SEM technique	62 65
 4.2 Effect of Benzene -1, 2, 4, 5-tetracarboxylic dianhydride (PMDH) on aluminium corrosion in 1 M NaCl solution	67 69 76 77 79 79 81 85
Part 2 Theoretical study	
4.4 Structure of inhibitor molecule	88
CHAPTER 5: CONCLUSION	93
REFERENCES	94

LIST OF TABLES

Table		Page
2.1	Dissolution rate in hydrochloride acid (mm per year)	13
2.2	Dissolution rate of 1050 in potassium hydroxide at 20°C	14
2.3	Classification of inhibitors	20
2.4	Characterizations of Physical and Chemical adsorption	23
4.1	Fitting corrosion parameters of aluminum in 1 M HCl on the presence and absence of 0.01 M of PMDH obtained from polarization measurements at 25°C	51
4.2	Fitting corrosion parameters of aluminum in 1 M HCl on the presence and absence of different concentrations of PMDH obtained from polarization measurements at 4 temperatures	54
4.3	Thermodynamic corrosion parameters for aluminium corrosion in absence and presence of various concentrations of PMDH.	62
4.4	Fitting impedance data of aluminum in 1M HCl in absence and presence of different concentrations of PMDH	65
4.5	Fitting impedance data of aluminum in 1M NaCl in absence and presence of different concentrations of PMDH at 25°C	69
4.6	Fitting impedance data of aluminum in 1M NaCl in absence and presence of different concentrations of PMDH at three different temperatures	73
4.7	Fitting impedance data of aluminum in 1M KOH in absence and presence of different concentrations of PMDH	81
4.8	Fitting impedance data of aluminum in 1M KOH in absence and presence of 0.01M of PMDH at three	

	different temperatures	83
4.9	Calculated quantum chemical parameters of PMDH using B3LYP/6-311G ^{**} method	89

LIST OF FIGURES

Figure		Page
2.1	Potential-pH diagram for aluminum	8
2.2	Schematic polarization curve showing Tafel extrapolation	27
2.3	Ideal Nyquist plot of impedance for the electrochemical circuit	29
3.1	schematic potentiostat apparatus	44
4.1	Effect of various concentrations of PMDH in HCI 1M on aluminum polarization curves at 25°C	51
4.2	Polarization curves for AI in 1 M HCI (a), in the presence of 0.01 M PMDH (b), 0.004 M PMDH (c), 0.001 M PMDH (d), 0.0004 M PMDH (e) at different temperatures.	53
4.3	Effect of PMDH on inhibition efficiency of Al corrosion in various concentration and temperatures	55
4.4	Effect of PMDH concentration on inhibition efficiency of Al corrosion in 1.0 M HCI (a) and on polarization resistance of Al corrosion in 1.0 M HCL (b) at different temperatures	56
4.5	Plot of Langmuir adsorption isotherm of PMDH obtained by using surface coverage values calculated by Tafel polarization in different temperatures	59
4.6	Plotting log corrosion rate vs. 1/T to calculate the activation energy of corrosion process in the presence of inhibitor	60
4.7	Transition state equation plots of the corrosion reaction in the presence of PMDH	61

4.8	Impedance plot obtained at 25 C in 1.0 M HCl in various concentration of PMDH	64
4.9	The equivalent circuit model used to fit the experimental results	64
4.10	SEM images of aluminium surface before corrosion and after immersion in different concentration of acid: (a) 1.0 M HCI, (b) 0.01 M, (c) 0.004 M, (d) 0.001 M, (e) 0.0004	
	M	66
4.11	Impedance plot obtained at 25 °C in 1.0 M NaCl in various concentration of PMDH	68
4.12	The equivalent circuit model used to fit the experimental results	68
4.13	Impedance plots for AI in 1 M NaCI (a), in the presence of 0.01 M PMDH (b), 0.004 M PMDH (c), 0.001 M PMDH (d), 0.0004 M PMDH (e) at different	
	temperatures	72
4.14	Effect of PMDH on inhibition efficiency of Al corrosion in various concentration and temperatures	74
		7 4
4.15	Effect of PMDH concentration on inhibition efficiency (a) and on polarization resistance (b) of Al corrosion in 1.0 M NaCl at different	
4.16	temperatures	75
	Plot of Langmuir adsorption isotherm of PMDH obtained by using surface coverage values calculated by electrochemical impedance	
4.17	spectroscopy in different temperatures	77
	SEM images of aluminum surface before corrosion and after immersion in different concentration of acid: (a) 1.0 M HCI, (b) 0.01 M, (c) 0.004 M, (d) 0.001 M, (e) 0.0004	
	M	78
4.18		

4.19	Nyquist plots obtained at 25 °C in 1.0 M KOH in various concentration of PMDH	80
4.10	The equivalent circuit model used to fit the experimental results	80
4.20	The effect of different temperatures on the polarization curves of aluminum in 1.0 M KOH in the presence and absence of 0.01 M	
4.21	PMDH Effect of on temperature and concentrations on	82
	inhibition efficiency and polarization resistance of AI corrosion in presence of PMDH	85
4.22	SEM images of aluminum surface before corrosion and after immersion in	
	different concentration of acid: (a) 1.0 M KOH, (b) 0.01 M, (c) 0.004 M, (d) 0.001 M, (e) 0.0004 M	86
4.23	Optimized structure of PMDH molecule in basic (a) and acidic (b) media by using the B3LYP/6-311G ^{**} method	90
4.24	The inhibition mechanisms of PMDH in acidic and basic media	91

LIST OF SYMBOLS

F	: Faraday constant, 96485 C eqv ⁻¹
R	: Gas constant, 8.314 J mol ⁻¹ K ⁻¹
i	: Measured current density, A
<i>i_{corr}</i>	: Corrosion current density, A
п	: The number of electrons transferred in the anodic
n´	: The number of electrons transferred in the cathodic
β	: Potential drop coefficient
α	: Potential drop coefficient
Τ	: Absolute temperature, K
$R_{ m p}$: Polarization Resistance, Ω
CR	: Corrosion Rate, mm/year
Z _{re}	: Frequency-dependent Real, Ω
Z _{im}	: Frequency-dependent Imaginary, Ω
^ T	: Kinetic energy, 1 N. m
, V	: The Potential energy of the nuclear-electron attraction,1 N. m
Ŵ	: The Electron-electron Repulsion
^ H	: The Electronic Hamiltonian
Ψ	: Electronic Wave Function
$E_{\rm XC}[ho]$: Exchange-correlation functional
b _a	: Anodic Tafel slope

bc	: Cathodic Tafel slope
E _{corr}	: Corrosion Potential, V
K _{ads}	: Equilibrium Constants
${\cal C}_{\sf inh}$: Inhibitor Concentration, M
θ	: Surface Coverage Value
К	: Adsorption Equilibrium Constant
$\Delta G_{ m ads}$: Free Energy of adsorption
Α	: Plot of log Corrosion Rate
E _a	: Activation Energy
ΔH^*	: The Enthalpy of Activation
$\Delta \boldsymbol{S}^{\star}$: The Entropy of Activation
h	: Plank Constant, 6.626068 × 10^{-34} J.S
Ν	: Avogadro's Number
C_{dl}	: Double Layer Capacitance
Rs	: Solution Resistance, Ω
η	: Molecular Hardness
μ	: Chemical Potential

LIST OF ABBREVIATIONS

PMDH	: Pyromellitic Dianhydride
EIS	: Electrochemical Impedance Spectroscopy
DFT	: Density Functional Theory
SHE	: Standard Hydrogen Electrode
HCI	: Hydrochloric Acid
Na₂SO₄	: Sodium Sulphate
NaCl	: Sodium Chloride
AI_2O_3	: Aluminium Oxide
AI(OH) ₃	: Aluminium Hydroxide
AIO(OH)	: Aluminium Oxide Hydroxide
IE	: Inhibition Efficiency
LSV	: Linear Sweep Voltammetry
SEM	: Scanning Electron Microscopy
HF	: Hartree-Fock method
CI	: Configuration Interaction theory
PT	: Perturbation Theory
CC	: Coupled Cluster
LDA	: Local Density Approximation
GGA	: Generalized Gradient Approximation
STO	: Slater Type Orbitals
GTO	: Gaussian Type Orbitals

DZ	: Double Zeta
ΤΖ	: Triple Zeta
КОН	: Potassium Hydroxide
SCE	: Saturated Calomel Electrode
NHE	: Normal Hydrogen Electrode
NaOH	: Sodium Hydroxide
HF	: High Frequency
IF	: Intermediate Frequency
LF	: Low Frequency
PCM	: Polarized Continuum Model
EDL	: Electric Double Layer
НОМО	: Highest Occupied Molecular Orbital
LUMO	:Lowest Unoccupied Molecular Orbital
IP	: Ionization Potential
EA	: Electron Affinity