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CHAPTER 5 

 

SYMMETRY PROPERTIES OF LAUGHLIN’S WAVE 

FUNCTION AND RELATED STATES 

 

5.1 Introduction 

We start with the Laughlin’s wave function in the complex two-dimensional plane, z=x+iy, and 

write it in the spinor representation so that the electrons are arranged according to the group 

theoretical representation so that it is possible to find the ground state energy for a small number 

of electrons, N=10. We construct another wave function which is appropriate to the 

quasiparticles of the quantum Hall effect (QHE). A projection of the QHE wave function on the 

Laughlin’s wave function with appropriate product over all of the quasiparticles produces a new 

wave function. In this way, we can generate a series of wave functions. We also explain the 

experimental data of the QHE in graphite. 

         The Laughlin’s wave function [1] is defined by using two-dimensions x and y, in a 

complex plane, z=x+iy. This means that z is completely eliminated from the problem. The 

electrons can be located in a plane or on a sphere. However, in the case of a sphere also only x 

and y variables are used. There is an effort to make the two-dimensional sheet as thin as possible 

so that it is truly a two-dimensional object. The effect on the range is that it becomes too small. 

The eigen value or the ground state can be solved only when the electrons are arranged according 

to an irreducible representation of a point group. The wave function is of the form,  
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where the wave function is confined to the region R1and z < R2 with l0 as the magnetic length. 

The inner and the outer radii are determined by, 

 

 

 

 The charge is q/m within the annulus. The dimensionless flux  is defined by the unit flux hc/e 

devided by the magnetic field and the area in which flux is quantized. The electrons on a sphere 

are described by . The spinor representation is described by   which are given in 

terms of  as, 

 

 

 

 The Landau level raising operator is given by, 

 

 

The variables u and v are defined by equations (5.4) and (5.5). We can eliminate the complex 

coordinates to study the possible wave functions appropriate to the quantum Hall effect, . In 
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this study, we generate a set of wave functions so that a series of wave functions can be 

developed. We also see that the quantum Hall effect of graphite is correctly explained. 

 

 

5.2 Wave functions 
 

 Haldane has introduced the idea of generating a series of wave functions which will be similar 

to a large number of plateaus observed in the experimental data [149,231]. Recently, Bonderson 

[357] has suggested that the projections of wave functions of the quantum Hall effect, , can be 

taken with the Laughlin’s wave function, , to generate a third wave function. In this way a 

series of wave functions can be produced. For m=3, the charge of a quasiparticle becomes 1/3 so 

that they studied only the odd denominators. Actually, the even denominators are also found in 

the data. We assume that , is a Laughlin’s wave function and  is that of the quantum Hall 

effect. We generate the third wave function  as, 

 

where the number of quasiparticles is Nqp which are located at R1,…, RNqp. There are N 

electrons at the coordinate’s r1… rN. Once we generate with  and , we can generate  by 

using  and  and so on. According to Shrivastava [149,231], the quantum Hall effect wave 

function should be a hydrogen type wave function with well defined L, S and J and hence  

must involve a suitable value of L, S and J. There is a particle-hole symmetry so that  

with both of the signs occurs. The usual Lande’s formula which gives only one value is not 

useful at high magnetic fields and hence is replaced by a linear formula. 
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5.3 Spin and Magnetic Field: Hall Resistance 

According to Shrivastava [3] the quantized resistivity may be written as,  which may 

be corrected to,   where, 

 

which makes the quantized value depend on the sign of spin and orbital angular momentum 

quantum number and the flux quantization becomes,  where A
1/2

 is the magnetic 

length and n is an integer.  

The formulas given above are non-relativistic. The electrodynamics effect is included in the 

value of the charge of the electron. The value of h/2e
2
 found by using the value of the Planck's 

constant, h=6.626 068960 ×10
-34

 Js and that of the electron charge e= 1.602 176 487×10
-19

 

Coulomb is 12.906 403 783 kΩ. This value neither requires two dimensionality nor it requires 

Landau levels. According to Shrivastava formula, the positive sign before s gives the resistivity, 

 

whereas for the negative sign 

 

For l =0, s=1/2,  and  . Therefore, large changes in the resistivity are possible 

when the sign of the spin is changed. The above values suggest change in resistivity from 25.8 k 

Ω to infinity upon spin flip. If we substitute i=0, in , then the resistivity changes from 

25.8 k Ω to infinity. Of course, there are other values which show the resistivity as a function of 
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spin. We need not limit to s=1/2 only. Other values of the spin such as 3/2 or 5/2 are also 

possible due to electron clusters. 

 

5.4 Graphite  

According to Shrivastava theory, there are quasiparticles of fractional as well as integer charge 

and the spin and charge are coupled. Hence, a modified Bohr magneton emerges and resistivity 

depends on the spin. There are fundamental charges given by e*/e=(1/2)g. where g=(2j+1)/(2l+1) 

so that the resistivity becomes . In heterostructures, the spin need not be 1/2 

because there is cluster formation. For example, the spin of a cluster may be 3/2 or 5/2, etc. 

There are two particle states so that  is possible. Similarly, there are resonances so that 

is also allowed. Hence, quasiparticle charge is determined from (i) spin-charge 

coupling, (ii) two-particle states, (iii) resonances and (iv) electron clustering. We explain the 

fractional charges found in graphite. The experimental measurements have been performed by 

Kopelevich et al. [321] so that we obtain the fractions from their work which are, 2/7, 1/4, 2/9, 

1/5, 2/11, 1/6, 2/15, 1/8, 2/17 and 1/9. The energy of a state is given by (1/2)g(n+1/2) so that we 

consider two oscillators with energies, E1= (1/2)g1(n1+1/2) and E2= (1/2) g2(n2+1/2). The energy 

difference between these states is (1/2)g(n1-n2). For l=3, 2l+1=7 and for positive sign in 

(1/2)g=[l+(1/2)±s]/(2l+1)=4/7, (1/2)g1n1- (1/2)g2n2 +(1/2)g1(1/2)-(1/2)g2(1/2)= (1/2)(1/2)g1 for 

n1=n2=0, (1/2)g2=0 for the second oscillator which has l=0, -ve sign and s=1/2 so that (1/2)g2=0. 

Hence, (1/2)(1/2)g1=2/7. The ingredients we put are two oscillators with different values of l and 

s which are the orbital and spin angular momenta quantum numbers. The effective charge which 

depends on spin also determines the resistivity. Hence the resistivity depends on spin. In the 

electron clusters, spin can become zero, so that we put s=0 to obtain (1/2)g= [ 
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l+(1/2)]/(2l+1)=1/2 or g=1. In the formula (1/2)[(1/2)g-0] for g=1 we obtain 1/4. For l=4, 2l+1 

=9 and for s=1/2 for negative sign, we obtain (1/2)g=4/9. In the expression, (1/2)[(1/2)g1-(1/2)g2] 

we have g2=0 and (1/2)g1=4/9 so that the effective charge becomes (1/2)(1/2)g1=2/9. For l =2, we 

have 2l+1=5 and l/2l+1=2/5 and (l+1)/(2l+1)=3/5. We calculate the resonance state at 

(1/2)g[n1+(1/2)]-(1/2)g[n2+(1/2)] at (1/2)g(n1-n2) which comes at 3/5 -2/5 =1/5. For l =5 we have 

l/2l+1 =5/11 and (l+1)/(2l+1)=6/11. The value of (1/2)(6/11-0)=3/11. The resonance state now 

occurs at 5/11-3/11 =2/11. Let us look at the flux quantization at n'hc/e so that for n'=2, the 

charge is e/2. Hence for n'=2, the effective value of 1/3 changes to 1/6. The original value for l 

=1, 2l+1=3 for negative sign is 1/3. For l=7, the two series, l/2l+1 =7/15 and (l+1)/(2l+1)=8/15, 

(1/2)(1/2)g=4/15 and for n'=2, 4/15 becomes 2/15. We have already obtained 1/4 which for n'=2 

becomes 1/8. For l=8, 2l+1=17 and the principal fractions are l/2l+1 =8/17 and 9/17. We have 

(1/2)(1/2)g =4/17 which for n'=2 gives 2/17. For l=4, l/(2l+1) =4/9 and (l+1)/(2l+1) =5/9. The 

resonance state of these two occurs at 5/9-4/9=1/9. This explains all of the fractions observed in 

the fractional quantum Hall effect of graphite experimentally observed by Kopelevich et al. 

[321]. This confirms that Shrivastava theory provides the correct interpretation of the quantum 

Hall effect data [2]. Usually, the Hall voltage as a function of magnetic field is a straight line but 

in graphite for small samples at low temperatures it shows structure. The plateaus or the peaks at 

fractional flux hc/e are correctly predicted by Shrivastava angular momentum theory. 

5.5 Conclusions 

 We have shown that a large number of wave functions can be generated. All of the observed 

fractional charges agree with the scheme of a spin-charge relationship. The relationship of 

resistivity with charge is,  which is amply demonstrated  [2]. The value of 

h/e2 was first measured by von Klitzing , Dorda and Pepper [358]. Later work of Tsui, Stormer 
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and Gossard [359] showed that fractional values of the charge also arise. Laughlin [1] showed 

that there is a gauge invariance problem so that the quantized resistivity measures the charge of 

the particles. The experimental data shows a large number of plateaus which are largely 

explained by Shrivastava [3]. An effort was made to attach the flux quanta to the electrons but 

this theory does not satisfy the electromagnetic character of light correctly [350].Recently Kumar 

et al. [324] shown that the flux attachment to the electron from the Wilczek’s theory [350] is not 

connected to the experimental data. We see that the spin dependent formula works very well. 

 


