
5 
 

CHAPTER 2 
 

 
YANG AND LAUGHLIN'S HAMILTONIANS AND THE 

ANGULAR MOMENTUM 

 

2.1 Introduction 

The Yang potential is discussed in detail so that the ground state of the Laughlin's wave function 

can be understood. The solutions of the Yang potential are discussed and the Yang-Baxterization 

is mentioned as a model of phase transition. The BCS-BEC crossover is discussed. Several 

efforts to study the crossover are reviewed. The Laughlin’s wave function and its many varied 

applications are pointed out. The miscellaneous discussions with several references to the 

contexts are described. An effort is made to understand the experimental data from the view 

point of the interpretation. 

      The Laughlin’s wave function [1] is found to be an exact ground state of a Hamiltonian 

which involves the derivatives of the  function in the complex Riemann space. It requires the 

knowledge of Yang's potential to understand the ground state. Such a potential is possible in the 

case of a phase transition and hence requires the Yang-Baxter model. The discussion of the 

Laughlin's wave function spans a wide variety of topics in the condensed matter physics. It does 

not apply immediately to the experimental data of the quantized Hall effect. Recently, 

Shrivastava reviewed [2] some of the applications of the Laughlin's wave function including 

some of his theory [3]. The topics which were left out in Shrivastava previous article have now 

been included in the present work. The Schrödinger equation with the  function potential is 
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solvable by using an ansatz of Bethe [4]. In the first instance it appears that it is unlikely to have 

applications in physics but then it is felt that it is useful for a system which has a phase transition. 

There is considerable debate on the BCS-BEC crossover. The effort to discuss the Laughlin's 

wave function continues. Usually, apparently different theories based on quantum mechanics 

were found to be equivalent. For example, the Heisenberg's approach looks different from that of 

Schrödinger but they were based on the same principles. Similarly, Feynman, Schwinger and 

Tomonaga's approaches look different but they were based on the same principles. Shrivastava is 

theory [3] which also explains the fractional charges seems to be quite different from that of 

Laughlin but is not equivalent. If any equivalence exists, it will require the wave function to be 

significantly modified. Hence, we make more extensive effort to understand the Laughlin's wave 

function and understand the experimental data. 

2.2 The Yang Potential 

In the case of a many-body system, the potential can be written in the form of a vector  function 

which can be solved exactly. In one such example, the system consists of N particles arranged in 

a line of length L with a repulsive (positive) potential so that the Hamiltonian appears as, 

 

 

where c > 0 with no limitation on the symmetry of the wave function  . The Hamiltonian can be 

solved for the eigen values provided that Bethe's wave function is used. For a given irreducible 

representation   of the permutation group SN of the N coordinate’s xi, we assume the Bethe's 
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hypothesis [4]. There is a set of N unequal numbers, . Similarly, for coordinates 

 so that L is the length. The Bethe's wave function is, 

 

where P= [P1, P2... PN] and Q= [Q1, Q2... QN] are two permutations of the integers 1, 2… N. The 

[Q, P] can be arranged as an N! × N! matrix. Although, there is no spin in the Hamiltonian, Yang 

[5] has proposed that we can consider N-M spins up and M spins down so that the total number 

of spins is N which is the same as the number of particles. In this case it is possible to find the 

eigen value per unit length as, 

 

where r=N/L. Yang [6] continued the study of this problem for a long time. Sutherland [7] has 

shown that the exact solutions can be obtained from  Yang's method. The particles can be 

permuted by the operator Pij in the representation ψ=[m1,m2,..,mk]. In the Yang’s case [5] ψ = 

[N-M, M] where N is the number of particles and M is the number of vacancies which cannot be 

zero. In Sutherland's problem, the projection operator Pij is represented by permutations of m1 

identical vacancies and N - m1 distinguishable particles (so they do not have spin). For k=3 ψ = 

[N-M, M-M1, M1]. For N distinguishable classical particles on a ring of length L with density 

N/L=d, the eigen vectors of the Liouville equation and the corresponding eigen values can be 

identified. Lai [8] has shown that for a one dimensional fermion system with a repulsive  

function interaction, the free energy can be obtained from the solution of a set of coupled 

equations. It was also found that Fermi distribution can be introduced through the pressure and 

the  functioncan be solved for a special ansatz [9]. In case, the sign of c is changed by replacing 

c in (2.1) by - g, it was shown by Calogero and Degasparis [10] that N particle wave function, 
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for the attractive system has the ground-state energy, 

 

For large N, it collapses to a linear volume of  and the binding energy per particle is 

proportional to g N2
 Andrei and Lowenstein [11] have considered the Hamiltonian of the type, 

 

 

where P
i,j

 exchanges  and  which allows nontrivial permutation symmetry. To diagonalize 

this Hamiltonian we divide the configuration space into regions labeled by permutations . 

In the interior of region Q, defined by , the particles are free so 

that we can write plane waves. This produces the boundary value problem which is solved for 

the total energy. Gutierrez et al [12] considered a system of fermions with N >> 1 (spin 1/2) in 

one dimension, placed inside a box of length L with periodic boundary conditions with 

Hamiltonian, 

 

 

with . The Slater determinant, 
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is constructed with single particle orbital’s  . The orbitals determined via a variational 

procedure are of the form, 

 

where 2ko is the wave vector of the Fermi sea.  is a complex function, 

 

For , the exact energy is given by, 

 

The Hartree-Fock energy can be expressed in terms of this energy. Introducing the parameters, 

 

the relative energy can be written as, 

 

 

Where , in which  is the complete elliptic integral of the first species and 

 corresponds to the second species. Furuya and Lowenstein [13] have considered the 

Hamiltonian, 

 

which is similar to the Kondo problem because  is the spin of the jth electron and S is that of 

the impurity which is located at x = 0. The energy of this Hamiltonian is found to be zero in the 

ground state. An exact solution of the eigen value problem, 
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with  is found by Shastry [14] in one 

dimension with periodic boundary condition . Shastry [15] also found the 

exact solution of the Heisenberg anti-ferromagnetic chain, 

 

 

with  . When momenta N - M are occupied by the up electrons and the set of M 

by the down electrons, it is possible to write the eigen value, EM in terms of M and the coupling 

constants which is a ground state for small number of spins. The  function potential for N=2 

and 3 has been discussed by Koltun [16]. Craig et.al [17] have considered a one-dimensional 

system with a large number of bosons having the Hamiltonian, 

 

where  and c > 0 are the constants and the charge is identified by, 

 

 

and . The ground state energy is, 

 

Adding a kinetic term  for localization and minimizing with respect to the length L, the 

energy has been obtained. Similarly, a Bogoliubov type transformation gives the approximate 

unperturbed energy [17].K rtner and Haus [18] have considered a gas of bosons interacting via a 

-function potential, 
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which has bound solutions. By using the Bethe ansatz the eigen states can be found. A subset of 

these bound states are characterized by one additional quantum number p besides the boson 

number n given by, 

 

where Nn is the proper normalization constant, 

 

The quantum number p is related to the momentum of the centre of n bosons. The wave function 

decays exponentially with the separation of boson pairs. The function  is the wave function of 

n bosons, moving with momentum p. The Schrödinger equation is linear in . The energy eigen 

values of these n bosons are, 

 

which consists of the sum of kinetic energy of n bosons with momenta p and the binding energy 

due to the interaction, the Kerr nonlinearity. K rtner and Haus [18] have shown how the 

nonlinearity is generated and one can apply the present solution to the photon which measures 

the correlation function of arbitrary order m. The m=1 corresponds to the original Han bury 

Brown and Twiss effect [19]. The solitonic nonlinear solution is given by Lu-ming and Guan-can 

[20]. The exact solution of a hard-core system interacting with a single impurity has been 

obtained by Li and Ma [21]. They consider the Hamiltonian 
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where  is the coordinate of the impurity and xi are those of the i th particle of the system. The 

total momentum of the system is conserved. We make a scalar transformation

where  and  . We combine the first and the second term of (2.24) so 

that they become a Laplace operator in an (N+1) dimensional Euclidean space with Cartesian 

coordinates (xo, x1, x2…xN). In this case the Schrödinger equation takes the form, 

 

 

 

which requires the use of “Gauss box" that is cut by hyper planes [21]. We write the wave 

function as, 

 

where  is a constant,  and . The energy is then of the 

form, 

 

where  so that the energy can be written as an integral. The solution of  -

function boson in one-dimensional potential is also given by Li [22]. For the potential 

, the solution was discussed by Ge and Wang [23,24]. The problem 

of a magnetic impurity interacting with conduction electrons can be written in the form of the 

potential, 
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where c > 0, J describes the Kondo coupling constant and the boundary potential. The -function 

potential has also been applied to dimmers of [3] He, atoms in pores [25] as well as to winding 

numbers in polynomials [26]. In the case of a one-dimensional Fermi system with the total 

number of particles,  and the contact interaction, the Hamiltonian is given by, 

 

 

where  

 

The interaction constant is given in terms of 3-dimensional s-wave scattering length, a3D, as, 

 

where   is the oscillator length in the transverse direction and 

. The coupling constant of (2.30) can be expressed also through the 

effective 1D scattering length a1D as  where, 

 

The 1D interaction is repulsive for  and  and 

attractive for  and . For two fermions with different spins, the 

Hamiltonian (2.30) supports one bound state with binding energy   and 

spatial extent . The molecular state is delocalized as . The ground state 
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energy Ehom of homogenous  has been calculated exactly [27] in terms of linear number 

density  where L is the length of the system as, 

 

where  is a solution of the coupled equations with . This predicts a 

strongly attractive gas region. 

 

 

2.3 The Yang-Baxter model 

We consider the eight-vortex model of Baxter and include the -function potential. The problem 

remains integrable in one dimension that is why it is called the Yang-Baxter model [28]. We 

denote the two-particle scattering matrix by Sij then, 

 

is called the Yang-Baxter equation. The local potential for the interaction of conduction electrons 

with the spin of an impurity ion is represented by, 

 

with x=0 as the location of the impurity ion. This potential produces a localized Kondo effect. 

The integrable Hamiltonian is given by 

 

 

where  and  are integrable which permits the calculation of exact ground-

state energy in one dimension [29]. 
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2.4 The BCS-BEC crossover  

The Bose-Einstein distribution which allows any number of particles to occupy one energy level 

never crosses the Fermi-Dirac distribution which permits only one particle per level and when 

spin is considered, two particles per level with one spin up and the other down. Several workers 

are interested in looking at a pair of electrons in which each electron obeys the anti-

commentators and compare them with a pair of bosons [30]. Let us try the Yang potential. For 

the spin 1/2 Fermi gas interacting via a short range potential, the Hamiltonian is written as, 

 

where N is the total number of fermions and m their mass. The dimensionless coupling constant 

is   where n=N/L is the 1-dimensional density. For  , the ground state is a 

BCS like state with Cooper pairs, whose size is much larger than the average inter particle 

spacing. It never reaches a weakly interacting Bose-Einstein condensation (BEC) as one of the 

limits of the standard BCS-BEC crossover in 3 dimensions. The two-body potential  has a 

bound state only when  but no bound state when . In the regime,  , the 

ground state of (2.37) is that of repulsive fermions. The continuous evolution from attractive 

Fermi to a repulsive Bose gas in one dimension is implied in the Bethe ansatz equations of 

Gaudin-Yang  model [31]. 

 

2.5 The Laughlin’s wave function  

In 1983, Laughlin gave a wave function which could give a fractional charge [1]. An exhaustive 

review of this wave function was presented by Shrivastava [2] along with his theory of fractions 

relevant to the experimental data on the quantum Hall effect. 
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 Now we wish to further elaborate on the study of Laughlin's wave function, in particular, 

complete those aspects which were not covered previously [2]. In particular, the relationship of 

the wave function with the Hamiltonian for which it is a ground state is emphasized. It turns out 

that the Hamiltonian of the Laughlin's wave function has some remote analogy with the Yang 

potential while Shrivastava theory is more relevant to the interpretation of the experimental data. 

Wang  et al. [32] have shown that it could give a ground state which is about 91 % of the Wigner 

value. The effect of impurities has been examined by Hikami [33] who found that the value of 

the conductivity is slightly modified to  .The particle-hole symmetry is 

discussed by Girvin [34]. Part of the wave function of Laughlin can be written as, 

 

The particle-hole conjugate should occur at, 

 

For example, for m=3, the Laughlin's state gives the charge 1/3 so that according to the above 

formula, a particle of charge 2/3 should exist so that there is a particle-hole symmetry. It is found 

that Laughlin's wave function for the charge 1/3 does not predict that there is a particle of charge 

2/3 so that it does not have the particle hole symmetry. Since it does not have spin, it does not 

have a properly defined helicity , . MacDonald and Aers [35] have pointed out that electron-

electron separation becomes comparable to interlayer separation which modifies the Coulomb 

interaction but does not affect the ground state seriously. There is a small number of electrons in 

the calculation so that the energy per electron depends on the number of electrons as well as on 

the size of the cell [36]. There is a small effect of the Landau-level mixing [37]. Although the 

original Laughlin calculation is limited to the lowest Landau level, excited states including 
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magneto plasma modes have been described [38]. Haldane and Chen [39] have shown that the 

quantum Hall effect experiments are performed in two-dimensional conducting Hall surface 

embedded in a three-dimensional insulating medium in which the electromagnetic fields reside. 

The charged defects on the Hall surface carry a small non integral material-dependent magnetic 

flux of the order of where  . Here  and  are the permeability and 

permittivity of the medium and . Although Laughlin's state is incompressible, 

Haldane and Rezayi [40] have shown that a transition to compressible state is possible. A general 

discussion did not lead to the evaluation of fractions at which plateaus occur in the conductance 

[41].A calculation of the dispersion relation for the electron-hole pair shows that the Laughlin's 

wave function is “degenerate" because different values of m all give a ground state [42]. Another 

calculation shows that Laughlin state hierarchy is similar to that of classical fluids [43]. The 

wave function proposed by Tao and Thouless [44] implies long-range correlations. This type of 

correlations is very different from those of the Laughlin's wave function. A careful study of the 

eight particle wave function showed some overlap with the Laughlin's wave function. The long-

range order is not found in the Laughlin's wave function [45]. A wave vector dependence [46] of 

the response function shows that . Rasolt et al. [47] consider the strain energy in the 

form, 

 

where and  are the wave functions in two valeys. When , there is a Goldstone mode 

which varies with wave vector so that the response function for two angular momenta states, 

 

For finite q, which means that there is a phase transition in going from one plateau to another. 

Oji and MacDonald [48]find that there are poles in the density response function. Fano et al. [49] 
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have reported the calculation of the wave function for electrons on a sphere exactly. Apparently, 

the problem is very big even for a reasonable computer to carry out the calculation without 

approximations but it is solvable in certain symmetries. In another calculation in the Hartree-

Fock approximation the ground state is found to change from the charge-density wave to a 

uniform density state and to a crystal state of holes in the lowest Landau level [50]. The 

calculation of the density of states for seven electrons shows that the bands are very narrow [51]. 

A Hartree-Fock calculation claims to find cusps in the energy at odd denominators when the 

wave vector is equal to the inverse of the magnetic length [52]. The interlayer coupling produces 

an extra plasmon like mode which for certain wave vectors merges with the continuum. The 

response function favors a Wigner solid in the multilayer structures [53]. Although Laughlin did 

not consider spin because all of the electrons were polarized in a single spin state and there was 

no consideration of spin states separated by a Boltzmann's factor, Haldane and Rezayi [54] 

considered spin singlet wave functions while maintaining the incompressibility found that half-

integral fractions can arise. In particular, the value of 5/2 was discussed even though it is greater 

than 1. The particle-hole symmetry has been considered by Fano and Ortolani [55] who have 

slightly improved 95% the original calculation of Laughlin [1]. Yoshioka et al. [56] have given 

naive ideas of spin and similarities with spin zero problem have been pointed out. Qiu et al [57] 

have compared the Laughlin state with that of a solid and found that Laughlin state is a liquid 

state so that it is possible to draw a phase diagram. Bander [58] has calculated the energy for 

single-particle wave functions for various field in homogeneities. It has been reported [59] that in 

the case of double quantum well structures the soft modes can destroy the quantum Hall plateaus 

and the effect of Coulomb interaction can be studied by bringing a sheet of a metal near the two-

dimensional electron gas [60]. When a layer separation is larger than a critical value excitonic 
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charge density waves are favored over the metallic charge-density waves [61]. When there are no 

transitions between Landaus levels, eigen values from the scattering amplitudes give rise to a 

charge-density wave .Rezayi and MacDonald [62] present numerical evidence to suggest that 

there is no pairing at the fractional filling factor . Usually, there is no restriction 

on the number of Landau levels. However, the Laughlin wave function is limited to the lowest 

Landau level, n=0 in (n+1/2) so that the filling factor is always less than one, . If all of the 

Landau levels are neglected except the n=0, it is equivalent to saying that the Hilbert space is 

limited to n=0 only. In the Rezayi and MacDonald's calculation, lowest two Landau levels are 

considered and the cyclotron frequency is an adjustable parameter. At , the zero-energy 

ground state occurs at . The incompressibility is a fundamental assumption arising from 

the condition which is independent of the value of . However, the expression 

 is the same, as far as the numerical value is concerned, as that of one of the two 

series of Shrivastava [2] which are, and in which  is 

surely the angular momentum and spin is 1/2. In the Rezayi and MacDonald's expression  is 

independent of angular momentum and electrons do not have spin. It implies that spin is zero as 

in a paired state. Lutken and Ross [63] have changed the notation to k/(2k+1) and have made 

effort to use a bifurcation model to obtain the hierarchy of fractions. The scaling theory on the 

position of delocalization fixed points suggests that there is a phase transition in going from one 

plateau to another plateau. The projection of the angular momentum on the first Landau level, Lz 

is found [64] to be the generator of rotation, which corresponds to the lowest energy. Several 

authors have discussed a variety of problems dealing with edge currents [65], gauge invariance 

[66] and with mean field theory which show that wave functions of small number of particles at 

large distances overlap with Laughlin's wave function [67]. The occupation number distribution 
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function for finite number of electrons in Laughlin states is found to show large oscillations [68]. 

However, fractional effect is not found in the Aharanov-Bohm phase factors due to neglect of 

angular momentum effects [69]. The short-range potentials are discussed because of the short-

range in the wave function [70]. The general theory of response function has been discussed 

[71]. The electrons on a sphere without symmetry restrictions show chaotic behavior [72]. The 

energy gaps have been calculated by Xie [73]. Several calculations of the variational wave 

functions have been reported [74] which describe the rotations [75], half-filled Landau level 

[76,77] and edge states [78]. The comparison of the ground state energy with that of the charge-

density waves has been discussed [79].A boson to fermion transformation is discussed by Borgh 

et al. [80]. The orbital angular momentum quantum number  is called a “ boson". It is then 

possible to find an approximate transformation from a many-boson state to a many-fermion state 

in the lowest Landau level. The overlap between the transformed boson state and the true 

fermion state for certain a value of the angular momenta turns out to be quite large such as 90 per 

cent. However, the overlap depends on the value of the angular momenta and for some 

intermediate values, it is very small. The ground-state energies of  state for 20 electrons 

and of  state for 26 electrons has been calculated by Feiguin et al. [81] by using density 

matrix renormalization group method but there is no spin in the calculation . Gulacsi [82] has 

obtained the ground state energy for a half-filled Landau level in two dimensions. The products 

of three Laughlin type wave functions have been suggested by Halper in as calculated by Deidel 

and Yang [83]. A nematic state has been found by Doan and Manousakis [84]. The fractional 

states 2/3 and 1/4 have been calculated [85,86].The response function has been calculated by Ho 

et al. [87] and a conformal field theory has been suggested [88]. Interference effect across a 

single incompressible state has been studied [89]. It has been reported [90] that incompressible 
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states evolve adiabatically which is by means of a second-order phase transition from a plateau 

to another plateau whereas the compressible states are driven by first-order phase transition. The 

correlations between electrons have been computed by product states [90,91]. If the wave 

function fractionalizes the charge, it must represent the (i) ground state of a Coulomb 

Hamiltonian, (ii) there should be no parameters which can take the blame of fractionalization 

instead of the charge and (iii) no important component of the mechanics, such as equations, 

should be left out. We will discuss these three properties of the wave function. It was found that 

Laughlin's wave function is not the ground state of the Coulomb Hamiltonian. It is the exact 

ground state of a non-physical Hamiltonian. However, the non-physical Hamiltonian may be 

passed as a new Hamiltonian which arises in a phase transition. In that case all of the algebraic 

equations must be solved and the number of equations should match with the number of 

unknowns. It was also found that incompressibility is needed to obtain the fractional charge, 

otherwise, the charge will not fractionalize and only the area in which flux is quantized, will be 

fractionalized. It is possible to find the area of overlap of Laughlin's wave function with that of 

the exact wave functions for a small, 2 or 3, number of electrons in a given symmetry. If this 

overlap is of the order of unity, then we can conclude that Laughlin's wave function is quite 

satisfactory. If the overlap is small, then the Laughlin's wave function is away from the exact 

solution. The flux quantization condition is  which leads to fractionally charged 

quasiparticles with charge e/m so that . It is quite possible that the blame of 

m occurs in the area in which the flux is quantized so that the flux quantization becomes 

 so that charge is not fractionalized and only the area is. The quantity 

 does not uniquely determine the fractional charge. We also note that Laughlin does not 

use a good definition of the angular momentum so that although there is angular momentum, it is 
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not associated with L, S or J. At that time, it was thought that all N number of electrons are spin 

polarized so that the magnetic moment is NS. In Laughlin's paper, the spin was completely 

ignored and there is no regard to Boltzmann factor between states of different spin polarizations. 

Hence, the ground state property, flux quantum area, , and the spin require considerable 

reconsideration. The ground state energy calculated by Laughlin using the radial distribution 

function g(r) is quite good but not the minimum. The Wigner crystallization has lower energy 

than that calculated by Laughlin which may be 90.98 per cent of the lowest energy known. The 

Wigner energy is about -0.455 whereas Laughlin's value is -0.414 in units of  . A lot of 

authors consider it as a very good result because the wave function is not too far away from 

being that of the lowest energy. The good value of the energy is naturally due to a good value of 

g(r). Wang et al. [32] have compared the energy with those of other calculations and found it to 

be lower than many other values. It was found that [92] Laughlin's wave function has a very 

small range so that it is the ground state of a potential  the range of which tends to zero. 

Expanding V2 in powers of range b, the potential obtained is, 

 

which is positive (repulsive). As the range tends to zero,  , only leading term contributes to 

the energy. The average  vanishes for anti-symmetric wave function so that the pure 

-function never contributes. Rezayi and MacDonald [62] have found that Laughlin's wave 

function gives the zero-energy ground state exactly with the interaction given by, 
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where  is the magnetic length. Considerable amount of work has been done in 

the type interactions (for example see Yannouleas and Landman [93]). In the case of half-

filled Landau level, the filling factor is  so that the wave function is written as, 

 

 

The second wave function, , is the Laughlin state which describes a boson for the even 

denominator in 1/2 and Fermion for odd denominator. Laughlin used hc/eB = 1 as a matter of 

convenience but it is not applicable. The Pf(M) is a Pfaffian represented by an anti-symmetric 

matrix M. The  can be obtained from the adiabatic evolution of a singular paired state for -

function attraction described by the Pfaffian factor. The  is the exact ground state of a 

simple local effective Hamiltonian. The wave function has a zero when three particles occur at 

the same point. The pairing state is the ground state of a Hamiltonian with repulsive three 

body - function interactions [94], 

 

The product of the Pfaffian and the full Landau-level wave function is actually the lowest degree 

polynomial. For a finite number N of electrons on a sphere subject to a uniform normal magnetic 

field with total flux , the incompressible state occurs for, 
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with N=even. The wave function is exact for idealized model Hamiltonians involving three-body 

interactions. The pseudo potential Vm for relative angular momentum m is obtained by projecting 

down to the first Landau level as, 

 
 

 

where is the magnetic length, Lm is the Laguerre polynomial. We can ignore the 

electromagnetic theory and change  and  in the filling factor and 

pretend that the filling factor is given by a continued fraction, 

 

whose first and last entries are odd with all intervening ones even. Thus for n = 2, the filling 

fraction becomes, 

 

For  , i.e., an arbitrary fraction with numerator 2. These give the 

Laughlin  states for the effective bosons. Wen [95] has been pointed out that there 

are topological orders so that there is shift  in the number of flux quanta,  

where   is the number of electron. The topological order requires a local Hamiltonian to 

support the incompressible ground state. The Pfaffian wave function,  is an exact ground 

state of the following three body Hamiltonian, 

 

 

 

The coefficient U is chosen so that the three electron state, 
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has unit energy. We introduce the pseudo potentials by the Hamiltonian, 

 

Where  are positive constants and is the projection operator onto the relative angular 

momentum state of angular momentum  for particles i and j. The densest zero-energy eigen state 

of  is the one with the lowest total angular momentum which is the Laughlin state, 

 

If it is multiplied by any symmetric polynomial in the  it will still be a zero-energy state. We 

consider a microscopic model of a two-dimensional electron gas confined to a disk with a mixed 

Hamiltonian, 

 

 

For, , the above becomes a two-dimensional Coulomb Hamiltonian and for , it 

become a three-body Hamiltonian [96], 

 

where S is a symmetrizer,  with  symmetric in its first two 

indices. the wave function  
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is the exact zero-energy ground state of with smallest total angular momentum  

  For fermions, the wave function is, 

 

 

 

where  with total angular momentum M. Hu et al. 

[85] have pointed out that part of the Coulomb interaction can be replaced by pseudo potentials 

in which case Laughlin states become exact ground states for specific pseudo potential 

Hamiltonians. In case of , the pseudo potential is . In the absence of confining 

potential the Laughlin state,  

 

Is the exact ground state with zero energy which exists in the subspace of total angular 

momentum  for  electrons in  orbitals. The three-body 

interaction [97] that makes the MR state, the exact ground state at half filling takes the form,  

 

For spinless electrons, the MR state is the unique zero-energy ground state at half filling, 

 

where N is the number of pairs [97]. Chen et al. [98] have discussed the method of calculation of 

matrix elements from the state of charge e/4 to e/2. Wang et al. [99] have shown that there is a 

phase transition from the Coulomb ground state to a state. There is a zero-energy state 
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belonging to special -function type localized Hamiltonian. The pseudo potential are needed to 

reach the ground state. Hence, there is a phase transition from -function state to a Coulomb 

state. The ground state of the Coulomb Hamiltonian is quite far from that of the -function 

Hamiltonian [100]. There exists no transformation from Coulomb interaction to -function 

Hamiltonian. These are two different problems. The overlap with non-physical Hamiltonians is 

not useful for performing experiments. Similarly, the composite fermion (CF) approach becomes 

non-physical because flux attachment to the electrons violates the symmetries of the electric and 

magnetic field vectors of the electromagnetic theory [101]. 

        The most important question about the Laughlin wave function is the “incompressibility”. 

The algebra is not completely solved. The number of variables and the number of equations are 

not matched. The charge and the area are two variables and there is only one condition of flux 

quantization. To compress first the area with constant charge or keep the area constant and 

compress the charge or in selected steps, first press the area by one unit and then change the 

charge by one unit, then change the area by one more unit and then change the charge by one 

more unit and so on and so forth. That will create the protocol problem between area and the 

charge, which one to compress first or in which sequence or steps? Compress the area first and 

then change the charge, is not the something as compress the charge first and then change the 

area. From previous discussion it seems that the Laughlin's wave function ground state energy is 

about 91 per cent of the Wigner value. Hence the value of the ground state energy is very good. 

It is very clear that Laughlin's wave function does not represent the ground state of the Coulomb 

Hamiltonian. However, it is the ground state of a Hamiltonian which represents a very short-

range -function type potential. If it was the Coulomb Hamiltonian, it will be useful for the 

understanding of the physical properties of solids. However, if it is the ground state of a  
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function Hamiltonian, it will probably not occur in physics. The interesting question is whether 

the Laughlin's wave function will lead to a fractional charge? Because the 91% of the Wigner 

value is not sufficient for the ground state. The flux quantization is . The density 

 is given by, 

 

If the charge is fractionalized, e becomes e/m so that the flux quantization condition becomes, 

 

This can also be written as, 

 

Hence, charge need not fractionalize. In order to obtain fractional charge, the condition of = 

constant, for “incompressible" states is required. So that the charge will change to e/m. For 

compressible states the charge will remain a constant and only the area will change. If m changes 

from 1 to 3, the value of  will change and the charge need not change. 

         The Laughlin's wave function is independent of spin. Usually, the spin-orbit interaction 

will give a small contribution to the ground state energy. However, if the spin occurs in a more 

complicated way, such as S rather than Sx, Sy and Sz, there will be a serious effect of spin on the 

unperturbed Hamiltonian. Hence, neglect of spin is not justified. We thus find that the Laughlin's 

wave function need not give the ground state of the Coulomb Hamiltonian. It need not 

fractionalize the charge since it can fractionalize the area in which flux is quantized. Apparently, 

the Laughlin's wave function has a large overlap with that of a short-range potential. There is no 

way to transform a Coulomb Hamiltonian to a -function Hamiltonian. Hence, the overlap 

between the wave functions does not have a physical interpretation. The -function Hamiltonian 
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is usually not found in physical problems. Hence, it will not help to overlap with non-physical 

wave function. 

 

2.6 Miscellaneous Discussion 

2.6.1   Non-Abelian products. 

In an effort to find the wave function for the fractional charge, the non-Abelian products forming 

the Pfaffian determinants have been used as factors of wave functions. Usually, the probability of 

non-Abelian dot product is very small compared with that of Abelian dot product. If the potential 

has a  term the solutions are known in terms of Jack polynomials. Although it is quite 

different from the Coulomb potential, under some approximations, it is completely solvable. The 

solutions are useful for introducing series of fractions [102]. Some of the fractions found in the 

quantum Hall effect are due to anyons which can be Abelian [103] while some are due to 

parafermion [104]. Since Pfaffian part of the wave function always has two particles, they may 

occurrence in different layers so that the interlayer distance becomes important for the stability 

[105]. It is possible to go from the Abelian to non-Abelian states [106] and non-Abelians have 

local interactions [107].The numerical estimates of energy from non-Abelian wave functions 

appear to produce no difficulty [108]. Usually the n=0 Landau level has been used because 

Laughlin's calculation implied n=0. As a consideration of experimental data, higher values of n 

have been considered. For example at n=1, non-Abelian wave functions give large values of the 

fractional filling factors [109]. The fractions 12/5 and 13/5 have been discussed to arise from 

possibly non-Abelian wave function. Some of the observed fractions require that electron 

clusters are present in the sample. Hence, clustering properties of the non-Abelian wave 

functions have been calculated [110]. The collective states of non-Abelian quasiparticles in a 
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magnetic field have been calculated by Levin and Halperin [111]. In the case of anti-

ferromagnetism [112] the non-Abelian statistics is found for finite spin. For S=1 in two 

dimensions, the spin on (spin only) and the holon (charge only) are decofined and obey non-

Abelian statistics. The ultra cold Fermi atoms have been trapped in optical lattices which show 

non-Abelian statistics [113]. In the case of a Pfaffian factor in the wavefunction, there must be 

two particles so that braiding properties occur [114]. A spin ½ systems on a honeycomb lattice 

has a gapless phase with vortex excitations that obey non-Abelian statistics [115]. A chiral spin 

liquid is found to be the exact ground state for the gapless honeycomb lattice [116,117]. The 

non-Abelian statistics for complex paired state is discussed by Read [118] and exactly resonant 

model of non-Abelian states is given by Fiste et al. [119]. The non-Abelian current algebra might 

describe some of the states of fractional charges [120]. It is found that ground-state wave 

functions go to zero as various clusters of electrons are brought together. A class of non-Abelian 

states has been constructed for multilayers of two-dimensional sheets. The possibility of 

occurring such states in the real experiments has been discussed by Barkeshi and Wen [121]. The 

string nets and single and double-stranded loop gases have also been considered [122]. The order 

parameter represents mixed s and p wave symmetries. The wave function of the superconductor 

can be described by a Pfaffian [123]. The non-Abelian resonant level modes are discussed in the 

quantum Hall effect [124]. The phase transition from Abelian to non-Abelian states is given by 

Peterson and Das Sarma [125]. The algebra of non-Abelian states has been described in detail 

[126]. The interaction of non-Abelian anyons in two-dimensional quantum liquids is described 

by Ludwig et al [127]. The statistics of the non-Majorana fermions has been discussed by Zhu et 

al. [128]. 
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2.6.2 Phase transitions 

The scaling theory is based on the exponents as given by Stroud and Bergman [129]. When a 

magnetic field is applied perpendicular to the surface of a metallic film, the normal (phase-I) 

conductivity is determined by the Ohm's law so that it is proportional to the current, 

 

for the symmetric part, and, 

 

for the anti-symmetric part. Here,  is the symmetric part of the conductivity, I is the current 

and a is a constant. The  is the anti-symmetric part of the normal (phase- I) state conductivity 

and b is a constant. The fractional volume p in phase-II, as an example, so that 1 -p is a phase-I 

conducting state with scalar conductivity equal to a. The resistivity is the inverse of conductivity, 

 . The conductivity is thus, 

 

Usually, there is a divergence in the free energy near  at which the volume fraction first forms 

a connected path across the material. The conductivity diverges at with a characteristic 

exponent, 

 

where  and s=1.1-1.3 in two dimensions. If , then at high 

fields, the resistivity varies as, 
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Note that flux quantization has been ignored in this theory [130]. For a two-dimensional system, 

above the percolation threshold, 

 

The variable-range hopping conductivity has a large range of magnetic field in which it varies as 

the square root of the magnetic field [131]. Platzman et al. [132] have discussed the conductivity 

for the magneto-roton system. Chui et al [133] have discussed the long-range order in the 

magneto-phonon system. The electron gas in a magnetic field forms domains which can go to a 

vortex state [134]. A transition from two-dimensions to three dimensions is found by the density-

matrix method. The interlayer coupling drives the dimensional crossover [135]. It has been 

reported [209] that there is a large overlap between bosons, 

 

For   m=2 and fermions, 

 

For  etc. consider the two-body interaction Hamiltonian, 

 

where is the projection operator onto states with relative angular momentum m. A model 

Hamiltonian, is obtained, not by a transformation but by a “truncation" of the Coulomb 

interaction where pseudo potential parameter  for m > n and  takes 

on the same values as in the Coulomb interaction. For n=1, the short range Hamiltonian, , the 

ground state is exactly the Laughlin wave function, 
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with m=2 (bosons) and m=3 (fermions). In this situation the mapping, 

 

transforms the boson ground state exactly to the fermion ground state. At the boundaries, a 

Luttinger liquid may stabilize [137]. Lee et al. [138] consider the space dimension cutoff due to 

inelastic scattering to vary as,  and the time direction cutoff to vary as

. The transition is affected by varying the magnetic field. At the transition the correlation 

length diverges,  and the characteristic energy vanishes,  ,where 

. The temperature appears through the dependence of the length. There are two dimensionless 

parameters  and . At a finite temperature, the width  of 

the transition is determined by the greater of the solutions of the condition  and  . 

The product of the two exponents  so that . The energy gap vanishes as 

 in the temperature range . This result shows that activation energy 

varies with the magneticfield [139]. The electrons and the holes may phase separate [140] and 

due to correlations, an insulating phase arises [141]. At high magnetic field, the Wigner solid is 

formed which can melt to produce a liquid state [142]. D'Agosta et al. [143] found that 

transverse resistivity varies with current as,  which depends on the interaction 

showing cross over at  where d is the length of the constriction. Goerbig et al. [144] have 

considered higher Landau levels with n=1 and 2. They noted that liquid ground state transforms 

into an insulating state in which the Hall resistance is quantized at integral values. Kettemann 

[145] also finds that the quantum Hall transition is driven in lowest two Landau levels by a     

noncritical dimensional crossover of the localization length. As the temperature decreases a 

crossover from fixed range hopping of the transport to the variable range hopping of the 

transport in the 2-dimensional electron system may occur [146]. A liquid to solid phase 
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transformation from Laughlin state to Wigner crystal suggests that Hall plateau should not occur 

for . The correlation energy indicates that very low temperature is required to see 

 liquid state [147]. Tao [148] has made an effort to develop the theory on very general 

grounds by assuming  just a fractional number not related to spin. 

2.6.3 Statistics 

The wave function has the quantity  in which   with + sign for the particle 

and the negative sign for the hole. We remove the absolute sign and introduce a phase factor. If 

, the new wave function is a multivalued function of the position  and one should 

consider it as a function defined on the appropriate Riemann surface for . One could use a 

single-valued definition and specify discontinuities along cuts in the variable . Now, if 

we continuously interchange the positions of two particles, the wave function will change by a 

complex phase factor  with the sign depending on the sense of rotation as the 

quasiparticles pass by each other. The pseudo wave function is an eigen state of the operator 

 with special boundary conditions at the point  . The wave function 

having the factor  can be described as a general wave function 

appropriate to a collection of particles of charge obeying fractional statistics [149]. This 

problem can also be written as a random matrix [150]. Hershfield [151] has written the average 

value of an operator in a non-equilibrium situations that non-equilibrium statistics applies. The 

dimensional regularization technique has been applied to the N-anyons with -function potential 

[152]. For small systems of lattice anyons, the statistics is  with the product, pq=even. 

The  is also included [153]. A study of the viral expansions for interacting 

electrons in the lowest Landau level of a two-dimensional electron gas shows that there is a 
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crossover between the low temperature limit and the high temperature limit. The exclusion 

statistics description breaks down when the temperature exceeds a small fraction of the gap 

[154]. The particles in a circle, interacting by short-range attraction, obey fractional statistics 

[155]. The concept of fractional exclusion statistics is based on the structure of Hilbert space, 

rather than spin configuration space of the particle assembly. It is not restricted to . If  

denotes the change in the size of the subset of available states in the Hilbert space corresponding 

to a change  of the number of particles, we define the ratio, . Here  for 

bosons and  for fermions. For other values of  we call exclusion statistics [156] in which 

n electrons can be distributed on m orbits, e.g., 5 electrons on 6 orbits. The distribution function 

is given by Wu [157] and by March [158]. The correlation function for this type of statistics is 

given by Pellegrino et al. [159]. It has been shown that the size and shape of the sample creates a 

non-Ohmic current, , so that voltage, V and the current I describe an exponent  . The 

area in which flux is quantized may not be preserved so that there are special cases but the 

algebra cannot resolve the incompressible states [160] from the compressible ones. The chiral 

fermions have an infinite scaling dimension [160]. The statistical parameter affects the 

entanglement properties of the anyonic system by renormalizing the effective interaction [161]. 

The bunching of bosons and the anti-bunching of fermions has been described by Vishveshwara 

and Cooper [162] who point out the indications of anionic statistics. An effort is made to 

distinguish the charge-density waves with the fractionally charged states by replacing the 

distance between electrons by the magnetic length in the Coulomb interactions [163]. A four-

qubit system is found to be enough to demonstrate the basic braiding statistics of anyons. The 

unit qubit can be used to construct the series n/(n + 1) or (n + 1)/n at which fractional charges 
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occur [164]. Several statistical models have been described which provide fractional statistics 

[165]. 

2.6.4 Order parameter 

When the area in which flux is quantized, can be fixed, it is possible to define the charge which 

permits the off-diagonal long-range order in a theoretically incompressible state. In the case of 

compressible states no off-diagonal long-range order is found. If charge is the only variable, it is 

possible to get the long-range order. However, if charges as well as the flux area, both are 

variables, long-range order is not possible in the compressible state [166]. It has been reported 

[167] that the Laughlin wave function shows no off-diagonal long-range order due to phases of 

the wave function. The removal of the phases yields a power law decay of the off -diagonal 

elements of the density matrix. Yang [168] has suggested that if products of three wave functions 

are used as in the case of Halperin (m,m',m"), a phase coherence can be introduced which can 

sustain a long-range order. In the case of a bilayers, the fractional filling is given by 

. The particles in one layer haveopposite parity to those in the second layer so that 

excitons form the quasiparticles in the bilayers system which can have a wave vector 

representation. In that case, the Laughlin wave function is suppressed and wave vector dependent 

wave functions dominate so that there is no difficulty to create the spin waves but Laughlin's 

wave function does not have spin. The off- diagonal long range order of “imperfect" super fluid 

between layers is possible [169]. In the case of Laughlin's wave function random (Chern-Simon) 

type disorders possible [170]. These random numbers are thermodynamically consistent. As the 

disorder increases towards a critical value, an insulating phase appears. 
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2.6.5 Topology 

Let us describe an anyonic system by a one-component wave function [171]. There is no period 

smaller than, . If  larger value 3hc/e will result. If we use a 

multicomponent wave function, we can derive the condition for a small period which leads to a 

hidden topological Zn symmetry. Here n is the smallest integer satisfying, integer. On 

a torous, gauge invariance implies a relationship between  and the statistics  for an 

irreducible braid-group representation (BGR) and in thermodynamic limit there are two 

noncommuting topological symmetries which lead to the ground-state degeneracy. The 

topological symmetry Zn supports a broken symmetry for the quantum Hall effect. In the case of 

a torous, the nyons require a multicomponent wave function so that  is always a period 

of . On a torous, besides , there are generators 

and have a factorized dependences in 

 where is  unit matrix. Changing by  gives rise to a 

phase factor . For irreducible BGR, M=q for , with p and q mutually 

prime, there are no other periods with minimal period . For gauge invariance  

with integer m. Usually, there are angular momenta in . However, according to Shrivastava, it 

is proper [2, 3], to introduce  so that  is replaced by  where 

 is the ratio of the two angular momenta,  

 

Hence, 
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The angular momentum gets into statistics (Shrivastava). It has been pointed out that shifts 

appearing in Haldane hierarchy, visualize the angular momentum of the quasiparticles [172]. The 

Z2 topological invariant can be expressed as a Wilson loop of SU(2) Berry gauge field which is 

quantized due to time reversal symmetry [173]. The topological phase transitions are linked to 

the divergence of the fidelity metric [174]. The entanglement spectrum can be used to identify 

the topological order [175]. The fractional charges bound to topological defects obey fractional 

statistics [176]. In some cases, the spatial and temporal scaling is different which results into a 

gap in the topological phases [177]. In the case of a quarter filling, the system undergoes a 

quantum phase transition from metal to topological insulator [178]. It has been reported that a 

one-dimensional fermion excitation occurs when a solenoid carrying a flux,  , is inserted in a 

topological insulator. In this case, the flux  is spin filtered. It is not clear whether the 

charge of 2e implies any spin states. The solenoid inserted in the insulator creates a "wormhole" 

through which the Fermion mode can propagate with fixed spin [179]. In bilayers of two-

dimensional electron gas with a layer of a superconductor, a fractional charge of e/2 is predicted 

[180]. The non-Abelian quasiholes can travel through the entanglement in the topological phases 

[181]. Several properties of topological insulators have been reviewed [182]. 

 

2.6.6 Tunneling 

Consider the many body bound state at the impurity as consisting of one-particle orbits so that 

the orbit of an additional quasiparticle encloses the flux, 

 

where  is the flux quantum for an electron and  is the flux quantum for a 

quasiparticle which is an anyon with charge  but the electric field of the 
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electromagnetic field is ignored [183].In a strong magnetic field, the quasiparticles move along 

the lines of equal potential. Here N is the number of quasiparticles captured by the impurity and 

m is the angular momentum of the tunneling quasiparticle. The first term is required by gauge 

invariance while the second term shows that each quasiparticle is bound with one flux quantum 

so that N particles have . The energy of N-anyon states is characterized by two integer 

parameters. It is not necessary that m should be an integer. The interval in the magnetic field 

between two consequent bound states of quasiparticles is  where A is the area. Due 

to the tunneling the number of quasiparticles N coupled with the impurity changes by one so that 

the flux  changes by  instead of  . The corresponding period is . Consider the 

situation when N quasiparticles are initially bound by the impurity and the tunneling 

quasiparticle arrives at an orbit enclosing all of them. The wave function of the quasiparticle 

gains a phase factor  after each complete revolution over the quantized orbit. 

Since   is the probability of tunneling from the impurity to the left or right edge, the phase 

factor is z . The total tunneling amplitude contains a series, 

 

Therefore, in the case of tunneling of anyons, the selection rules are modified by the impurity 

atoms[184]. Sasaki and Ezawa [185] suggest that Coulomb potential is modified by the 

impurities. In the case of bilayers, there is an incommensurate phase which has rippled dipole 

charge-density waves. The tunable dipole density wave instability can be detected [186]. Some 

nonlinearities are found in the tunneling conductance between edge states [187]. Some of the 

states found in the quantum Hall effect certainly correspond to S=0 singlets which have Meissner 

effect. However, a lot of fractions have some other value of the spin which is different from zero 

[188]. The magnetoexcitons are generated due to ionized impurity atoms with the velocity of the 
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excitons becoming critical so that there is a hydrodynamic breakdown in the current [189]. The 

tunneling of fractionally charged quasiparticles through a barrier is found to increase in going 

from mesoscopic quasi-particle dominated to electron dominated system [190]. 

2.6.7 Activation 

The activation energy is measured by means of temperature dependence of the resistivity near a 

phase transition, . Girvin et al. [191] have related the activation energy to the 

dynamical structure factor, 

 

where . The structure factor is of the form of, 

 

In the single-mode approximation, the excitation energy is, 

 

where the oscillator strength is, 

 

As in the case of Laughlin's wave function, the states, En lie within the lowest Landau level, 

(LLL), so that the structure factor as well as the oscillator strength has to be projected to the 

LLL. In the projected density operator, the coordinates and the momenta are complex, zj = xj + 

iyj , k = kx + iky so that, 

 

and 
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The excitation energy is then . For the Laughlin ground state, 

 so that   vanishes as , 

 

where  is the fractional filling factor such as . Usually, the  condition is not 

satisfied because of the product of the area and the charge occurring in the flux quantization. The 

asymptotic excitons dispersion is  and the projected oscillator strength is, 

 

where the projected Hamiltonian is, 

 

The Coulomb interaction is . The calculated value of  as a function of k 

shows a minimum similar to that found in the dispersion of liquid helium. Hence, we predict 

“rotons" in the Laughlin state. In this theory the filling factor is  and the activation energy 

is very small compared with the Coulomb interaction. Zhang and Das Sarma [192] have 

calculated the excitation energy for small number of electrons on a sphere. Using finite width of 

the two dimensional layer, the activation energy is found to saturate at high magnetic fields. The 

excitation gap goes to zero at a critical field [193]. The impurity scattering and the surface 

scattering define the two critical fields. When the gap becomes zero, the Hall plateau also 

vanishes. On the basis of Coulomb interaction [194] we expect the quasiparticle energy to 

be . When we replace by  we see that . The activation 

energies thus are a form of system's eigen values which are having solid state effects such as 

band gaps. It is also possible that there is a Goldstone mode of a finite or zero mass. 
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2.6.8 Thermodynamics 

The Boltzmann equation approach shows that non-diagonal component of the conductivity 

acquires a factor of  where E is the single-particle energy. Usually   in which 

case the conductivity depends on  where b depends on the effective mass of the quasiparticles, 

magnetic field and temperature [195]. The magnetization depends inversely on the cyclotron 

frequency [196] and the specific heat shows [197] a peak at the value of a fractional charge, such 

as 1/3. 

 

 

 

2.6.9 Gauge 

In the Laughlin's wave function two different values of m can be used in such a way that both are 

ground states. Hence, the wave function has degeneracies. This is not the text-book definition of 

the degeneracy but we use this definition here. The ground state  of the two-dimensional 

electron gas on the surface is, 

 

Let us assume that  is periodic in y direction with period L, 

 

We switch the field on to increase the flux from zero to   . The system remains in the ground 

state which may be different from the original one. The new wave function has  instead of 

A1 for the vector potential. We assume, 
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Since  is periodic in y, 

 

where  is the flux of the solenoid. The system maps back to  at a finite value of  

and there are p electrons to contribute to conductivity,  is a fraction, the ground 

state must be degenerate for the gauge invariance [198]. Applying the field has no effect on the 

spin which is quite left out from the argument. Using the translational invariance should lead to 

the assumption of crystallization [199]. It has been argued that switching off the magnetic field 

destroys the quantization. In the flux quantization also when B = 0, there is no flux quantum 

[200]. The microscopic origin of the effective action is given by Pruisken et al. [201] and the 

general gauge invariance has been discussed by Shizuya [202].Consider the atomic wave 

function  and the molecular wave function  with chemical potential  . The 

Feshbach resonance occurs for  , which is where and  are the chemical 

potentials corresponding to  and , respectively. The statistical gauge field

 is chosen such that the external magnetic field  for 

bosons. The action is invariant under the gauge transformation  and 

. The system goes through a phase transition from   to  . The 

quasiparticles interacting with the gauge fields show that charge fractionalization occurs. The 

gauge transformation thus plays an important role when the system goes from one filling factor 

to another [203]. The different plateaus are obviously associated with different charge per 

quasiparticle. 

2.6.10 Optical spectra 

The band gap optical recombination anomaly is found for  . These anomalies areassociated 

with changes in population of the lowest spin-split Landau level [204]. An analysis of the 
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acceptor photoluminescence line shape can allow a measurement of the quasi-Fermi energy 

[205]. The polarized photoluminescence of charged excitons shows that spin-flip is important for 

the understanding of excitations [206]. The electron-electron interactions are shown to lead to 

splitting and oscillations of the recombination line [207]. The singlets as well as the triplets have 

been found in magnetoexcitons spectra [208]. The binding energy of the singlet decreases with 

increasing distance between the electron and the hole [209]. The circularly polarized 

photoluminescence lines show anomaly at a magnetic field associated with . The 

splitting of lines is observed at about 10.8 T which corresponds to singlet and triplet states [210]. 

A method to create fractionally charged states in optical lattices has been described by S rensen 

et al. [211]. Some measurements of the two-photon photoemission are available [212]. Shining 

the material with microwaves also reveals the occurrence of fractionally charged states [213] and 

zero-resistance state has been detected [214]. The spin features may be linked to the 

incompressible states [215]. In the original Laughlin state spin is not involved. The optical 

response of ultrafast pulses has been calculated for the electrons and holes in a semiconducting 

lattice [216]. The photoluminescence emission from GaAs/AlGaAs near the filling factor 2/3 has 

been found to split but the components have not been interpreted [217]. The strong electronic 

correlations effect has been calculated [218]. 

 

2.6.11 Wigner crystallization 

The electrons at low temperatures form a solid which is called the Wigner crystal. It is shown by 

Maki and Zotos [219] that the stability of the Wigner crystal depends on the filling factor. The 

electron lattice is stable for  while the hole lattice is stable for . In both 

the cases, the filling factor  so that all fractions are less than one. The excitation energy has 
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been calculated both for n = 0 and for n = 1 level of the Landau oscillator. The energy shows a 

shallow minimum at some characteristic wave vector [220]. The phonon modes of the Wigner 

crystal in the high magnetic field limit show that response is fully determined by the ground-state 

electron density [221].The periodic boundary conditions have been introduced at rational 

Landau-level filling which show [222] that there is a non-degenerate ground state at k=0. The 

broadening of the collective excitation spectrum reduces the minimum excitation energy and 

eventually the gap required for the occurrence of the fractions collapses [223]. In a model 

calculation, alternating layers have different electron densities with only one type of charge 

carriers. The interlayer correlations are important for the consideration of two types of charge 

carriers [224]. The translational symmetry predicts a degeneracy that varies periodically with 

system size and equals “one" for certain commensurate cases. In the incommensurate states, the 

Hall conductance is a fraction not equal to the filling factor [225]. The incommensurate ground 

state exists on the lattice at odd-filling fractions [226]. A pinning mode in a Wigner solid has 

been detected [227] at . 

2.6.12 Phonons 

The electron-phonon scattering rate via a deformation potential reduces the activation energy 

which is used in the thermal activation process. The current relaxation function is directly 

proportional to the compressibility,  where v is the sound velocity and Mi is 

the mass of the host atom. The main features, such as location of plateaus in the quantum Hall 

resistivity are not seriously affected by the phonons [228]. The magnetic freezing of electrons 

which forms the Wigner crystal stimulates the phonons so that phonon replica occurs [229] in the 

magnetoluminescence at very small values such as . In some cases, it is possible 

that activation energy matches with the phonon energy and not with the electronic energy. 



46 
 

However, it is more likely that the activation energy is electronic energy level separation rather 

than phonon energy [230]. In some cases, the activation energy depends on the gap energy and it 

involves a two phonon process rather than the usual one phonon process. 

 

2.6.13 Hierarchy 

According to Shrivastava's theory the fractions are produced by (i) two principal series which 

differ in the sign of the spin which can be s=1/2. (ii) Some of the fractions are due to resonances 

such as . (iii) Weak fractions occur due to two-particle states,  and (iv) 

due to clustering property of the plateaus, the spin need not be 1/2, for example, it may be 3/2 or 

higher value. Let us see the results due to Haldane's hierarchy. The Haldane's hierarchy is an 

algebraic proposal which depends on the termination of a continued fraction [231]. One example 

of Haldane's hierarchy for , is shown in Fig. 2.1 and Shrivastava's hierarchy is shown in 

Fig. 2.2 for the principal series only. It should be noted that the quantum Hall effect dominant 

fractions are a property of the pure material and it does not require the existence of impurities. 

The effect of impurities is found to scale eventually terminating the hierarchy [232]. It is claimed 

by Mallett et al. [233] that 2/9 and 2/11 are “daughter" states of a 1/5 hierarchy parent state. 

Actually, one of the ways to find the origin of a fraction is to look at the denominator, such as 

2/11. Equate 11 to 2l + 1 so that l = 5. According to Shrivastava this gives rise to two values l/(2l 

+ 1) = 5/11 and l + 1/(2l + 1) = 6/11. The resonance produces 6/11-5/11=1/11. The eigen value 

formula is,   which gives, 
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If , , ,  ,  and 12/11 and then 

. The resonance condition is, 

 

in which effective charge is introduced so that, 

 

equivalent to, 

 

With effective charge, 

 

which depends on L, S and J through the  value,   and there are two 

values due to the  sign in J = L S. The energy of a state is given by  with two 

values of  instead of the usual one. The plateau in the Hall resistivity is found at, 

 

 

There are degeneracies because there are other ways of obtaining the same number. 

d'Ambrumenil and Morf [234] have assumed the values of fractions first and then calculated the 

energies so that there is no way of deriving the fractions in their theory. In Laughlin’s theory the 

fraction is  but m can not be calculated from the theory. Read [235] finds that hierarchy 

theory in some way should be equivalent to a Ginsburg-Landau model of phase transition. In the 

case of anyons, the statistical parameter  plays the role of the filling factor, . Gros and 

MacDonald [236] propose that for filling factors in the range , the quantum Hall 
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fractions occur only when  and  and at no other fractional 

filling factors with odd denominators. According to Shrivastava's theory the correct series is l/(2l 

+ 1) which when tabulated is the same as n/(2n + 1). Similarly, the other correct series is (l + 

1)/(2l + 1). The interaction of quasiparticles obeying fractional statistics has been used to 

calculate the energies and gaps of the polarized and unpolarized states [237]. The spin model 

using single-ion anisotropy has been used by Hatsugai and Kohmoto [238] while Haldane's 

hierarchy is independent of spin. It has been pointed out by Yang and Su [239] that the Hilbert 

space is bosonic. However, it is important to consider the quantum Hall fractions as fermions. 

Some of the states may obey fractional statistics [240]. The Farey sequence of order n is the 

sequence of completely reduced fractions between 0 and 1 which, when in lowest terms have 

denominators less than or equal to n arranged in order of increasing size. The Farey sequence 

starts with the value 0 denoted by 0/1 and ends with the value 1, denoted by 1/1. The terms 

(0/1,1/1), (0/1,1/2,1/1), (0/1, 1/3, 1/2, 2/3, 3/4, 1/1) etc do not have a sum like a geometric series. 

Hence, Farey numbers are of no significance to the physics of the problem [241]. The low energy 

behavior of a daughter state in the next level of the hierarchy is described by an interacting 

system of quasiparticles of the parent state. The quantitative consequences of this approach for 

electrons interacting via a pseudo potential interaction produces daughter states. The parent with 

1/2 filling gives the daughter state at 2/3 filling [242]. The fractional charge of the edge states 

may also follow the hierarchy [243]. Some of the hierarchy states  are 

the same as non-hierarchy states [244]. Since the Laughlin wave function does not depend 

on spin there must be a spin-charge decomposition picture [245]. Nakamura et al. [246] have 

found that the fraction 1/3 is linked to spin and lacks in parity whereas Laughlin's 1/3 fraction 
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does not have spin. Bonderson et al. [247] find that pairing of electrons is required to satisfy the 

non-Abelian Pfaffian determinant. 

Figure 2.1: Haldane's hierarchy of fractions according to the continued fraction. 

 

 

Figure 2.2: The hierarchy of fractions according to Shrivastava's formula of effective charge 

according to the principal series only. 
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2.6.14 Rotons 

The quantum Hall effect states are regarded as a super fluid because of the flux quantization. 

Hence, its theory should be similar to that of Landau rotons. The dispersion relation was 

developed by Feynman [248] for liquid helium and hence similar dispersion should occur in the 

quantum Hall states. The predicted spectrum has a large gap at k=0 and a deep magneto-roton 

minimum at a finite wave vector. The magneto-roton minimum is a precursor to the gap collapse 

associated with Wigner crystallization [249]. The excitation energies of the no interacting two-

dimensional electron gas are multiples of the cyclotron frequency [250]. The thermally excited 

magnetorotons are scattered by the phonons. The scattering of magnetorotons to the long wave 

length phonons is possible because of the shape of the magnetoroton dispersion relation [251]. 

The magnetorot on minima are observed [252] in the light scattering at 1/3 and at 2/5. There is a 

roton like structure [253] at . Suorsa et al. [254] have constructed the quasi-hole 

condensate at filling factor 2/3 and two three level states at 5/13 and at 5/7 which are built from 

combinations of quasi-electron and quasi-hole condensates but spin has been ignored. 

 

2.6.15    Symmetries 

The symmetry of the system can be broken by means of Goldstone theorem which creates a 

boson. When A(r), the electromagnetic vector potential or the magnetic induction , 

vortices are generated. This method of taking the vector potential to zero leads to symmetry 

breaking current carrying states which give vortices as the bosons [255].Ortiz et al. [256] have 

considered spinless fixed-phase complex wave function to map the bosons into fermions. 

Pryadko [257] has considered the possibility of adding current to the flux . 

However, the current represents both the electric as well as the magnetic vectors as in the 
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Maxwell equations so that detaching the current will produce both the electric as well as the 

magnetic fields. The problem of attaching flux quanta to the electrons without any care of the 

electric fields has not been completed. The effective charge in Laughlin's wave function, 1/m, is 

not derivable. If it is treated as a new quantum number, p, the filling fraction 1/p is largely not 

explained [258]. 

 

2.6.16 Spin 

Although there is no spin in the Laughlin's wave function several authors have discussed spin 

dependent properties [259]. Giuliani and Quinn [42] have considered two filled Landau levels of 

opposite spin in high field limit. The lowest lying excitations can be described in terms of singlet 

and triplet excitons. At a critical Zeeman energy, there is a first order transition to a fully spin 

polarized state in which two Landau levels of equal spin are filled. The possibility of off-

diagonal long-range order in spin chains by using spinons (spin only without charge particles) is 

discussed by Talstra et al. [260]. The quantized spin currents which break the time reversal 

invariance are discussed by Haldane and Arovas [261]. Dorozhkin et al. [262] suggest that spin 

reverses in obtaining the plateau in the resistance at 2/3 but they do not give reference to the 

original work of Shrivastava [3]. Inelastic light scattering indicates that spin waves may occur in 

clusters of electrons [263] which means that some of the fractions are produced by electron 

clusters. The magnetic polarization decays with temperature and there are particles with spin up 

as well as with spin down [264]. The unpolarized electrons can tunnel between two samples 

which are 1/3 filled each [265]. The energy varies with the magnetic field as in a Landau fan 

diagram [266] and the spin is only partially polarized [267]. The real space spin-singlet pairing 

depends on the dimensions of the sample [268]. Some of the fractions correspond to partially 
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polarized states [269]. The Laughlin's wave function has been of considerable interest in 

condensed matter physics, particularly, in problems involving dipole-dipole interaction [270], 

group theory [271], entanglement [272], superconductors [273], liquid crystals [274], Kondo 

problem [275], solitons [276], stripes[277], Fermi liquids [278] life time [279] and density [280]. 

The energy gaps are found and can be measured by activation process. There is a possibility of a 

phase transition from incompressible to compressible states. The activation gap at 5/2 is found to 

vary as a function of magnetic field. It can be fitted [281] to an expression which has  and 

. The leading quantum fluctuations lead to an effective spin-1 Hamiltonian [282]. 

In the case of two different spin species, a spin-drag Hall effect is possible due to dipole-dipole 

interaction [283]. It is found that the S=1/2 Heisenberg anti ferromagnet in one dimension has an 

entanglement spectrum similar to that of the fractional Hall state [284]. The magnetization of a 

soft ferromagnet is found to show vortices and anti vortices [285]. The frustrated ferromagnetic 

S=1/2 chain shows two-spinon and four-spinon continuum [286]. The spin Fermi surface is 

stable against weak interactions [287]. The quantum phases for strongly interacting one 

dimensional spin systems have been identified [288]. 

 

2.6.17 Currents 

 The persistent current as a function of temperature exhibits anomalous oscillations. The 

mesoscopic systems such as in quantum wires, there is a possibility of measuring fractional 

charge [289]. The spin polarization at the half-filled Landau level without the spin-orbit 

interaction does not affect the energy [290] but there is domain formation [291] and unusual 

potentials may give important information [292]. The oscillations in the amplitude of persistent 

current are predicted to arise due to the fractional charge [292]. There is a zero-field edge 
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singularity in the spectrum due to impurity atoms [293]. The quantum mechanics of coherence 

has been calculated in detail. There is a small energy spread but the states are localized [294].  

 

2.6.18 Entanglement 

We calculate the entanglement entropy and the fluctuations for a given model Hamiltonian in 

one or two dimensions [295].The system is partitioned and the particles can move from one 

subsystem to the other. The number of particles in a subsystem therefore fluctuates. In one 

dimension [296], the entropy of a subsystem A of size x embedded in a large system of size L is 

given by  . The remainder of the system is called B. The central charge is c. 

The entanglement entropy at zero temperature for  has the universal behavior, 

 

The  transforms under conformal mapping with S(x, L) for finite L, for the number 

fluctuation in the subsystem A, 

 

where NA is the number of particles in the subsystem A. For a pure state without vortices, FA = 

FB. The fluctuations occur in the boundary between two subsystems. For separable states, FA = 0 

and for valence-bond (VB) states FA coincides with von Neumann and VB entropies. We 

consider the Luttinger liquids (LL) which describe the low energy properties of many one-

dimensional systems. In the limit , 

 

Where  is the charge field. At T=0 
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Here K is the Luttinger parameter and a is a cutoff distance. The same entropy is obeyed when 

 and  with . The fluctuation is related to the filling factor for 

. The charge fluctuation across a quantum point contact is given by, 

 

where  is a short time cutoff. We define the characteristic function, 

 

which transforms under conformal mapping as, 

 

The pre factor  can always be fixed by considering the physical meaning of the charge. At finite 

temperature ,the mapping  in the above equation gives, 

 

For  the interactions across the boundary can be neglected because 

correlations decay exponentially. Here is the velocity which has been left out. We consider the 

subsystem A to be a grand canonical ensemble in equilibrium with a bath consisting of the 

remainder of the system. Total particle number is fixed, then, 

 

where   is the compressibility so that (2.103) for  gives, 

 

Where  is the velocity of the particles and  
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for the Luttinger liquid. The entanglement and the fluctuations are related to the central charge c 

as, 

 

For , the detailed entropy becomes model dependent. Hence it depends on the 

Hamiltonian. 

2.6.19 Mott insulator 

We use the product of the Laughlin's wave function and that of a Mott insulator as a trial wave 

function in a Bose-Hubbard model so that the system phase separates. One phase is an insulator 

while the other phase is a Laughlin's hypothetical liquid. The bosons in a rotating optical lattice 

form analogs of Laughlin's state when tunneling is weak. The Bose-Hubbard model is written as, 

 

Where  are the annihilation (creation) operators for bosons on sites, i or j, respectively. 

The boson number density is given by  and  

. 

The phases acquired when hopping in the  direction are  where iy is the y coordinate 

scaled by the lattice constant a. According to the flux quantization  is 

the flux quantum per plaquette. The model is solved either on a sphere or on a torus. We consider 

the following variational ansatz, 

 

where the Laughlin’s wave  function and  is that of a Mott insulator, 
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Here  is the complex coordinate for i varying from 1 to N. The  is the sum 

over all lattice sites. We assume the  torus geometry with boundary conditions, 

 

 

leads to a phase separation [296]. 

A model has been made in such a way that electrons disappear from the symmetric positions 

along y axis and appear on the symmetric positions along x axis and vice versa. The coupling 

constant of such a model can be made to map with that for which the Laughlin's wave function is 

the ground state [297]. In a limiting case it provides a featureless Mott insulating state. The 

Laughlin's wave function is not the ground state of the Coulomb's Hamiltonian but it gives the 

zero-energy ground state of the Hamiltonian, 

 

This Hamiltonian maps to a pair hopping model in two dimensional lattice, given by, 

 

with 

 

where, 

 

With a similar expression for  with . Here  and are the linear dimensions 

of the torus and  is the magnetic length. Note that this pair hopping model is 
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not the Coulomb interaction. This problem is quite different from that of the Coulomb interaction 

as far as distance dependence is concerned. It does not have a 1/r type potential and the coupling 

constant is proportional to the product xy.  The operator part of (2.114) preserves the position of 

the centre-of-mass. Two electrons annihilated at  hop to  with the effective hopping 

range  and the centre of mass is preserved at R.  he position of the centre of mass is indicated 

by q. The ground state of the 1/q fractional quantum Hall liquid with the q-fold degeneracy can 

be labeled by q different centre-of-mass positions. The ground state of (2.116) is a charge-

density wave with amplitude , where c is a constant of the order O(1) and the 

energy gap is finite for any finite . For small  the CDW amplitude is exponentially small and 

the ground state describes a featureless Mott insulator. In the presence of U(1) monopole flux, 

the single-particle wave function is described by the monopole vector spherical harmonics which 

can be denoted by the  state where l can be integer or half-integer and m is the 

magnetic quantum number. The Landau level spectrum is given by, 

 

where M is the mass of the electrons and R is the radius of the sphere. If total magnetic flux is 

2S, l = S + k, where k is the Landau level index. Because k is integer, S is either integer or half-

integer. Each Landau level has 2(S + k) + 1 degeneracy [297]. The bosons in the lowest Landau 

level at the filling factor  describe the ground state of a Mott insulator [298]. The 

density-matrix renormalization group (DMRG) method shows that there is a finite energy gap in 

the spectrum [299]. Paulin et al.[300] have discussed the time evolution of states. Some of the 

states are having short life time so that the full Hilbert space is not utilized whereas some of the 

states are long lived. Hence, there is a finite effect of life time on the properties of a quantum 

system. It is possible to encode the calculation of local operators in a Grassmann tensor network 
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[301]. Tang et al. [302] have defined a Chern number from which under suitable conditions they 

find flat bands which can make the quantized Hall states observable at high temperatures. The 

low energy part of the interacting particles in flatbands is described by a Jastrow correlated wave 

function which in spinless case shows a transition from a crystalline to liquid state [303]. Greiter 

[304] has shown that Landau levels on a sphere show oscillating as well as rotating energy 

levels. The highest weight MacDonald and Jack polynomials are described by Jolicoeur and 

Luque [305]. Kapit and Muller [306] find an exact Hamiltonian with the coupling constant of the 

type, 

 

 

where  for which Laughlin's wave function is a solution. Indeed, it is 

quite different from the Coulomb interaction. The flux is  . For

a single degenerate Landau level results. 

Similar results are found [307] for the Falicov-Kimball model in which Hofstadter buttery has 

two wings. The Hubbard model calculations for the kagome lattice are given by O'Brien et al 

[308]. Latorre et al. [309] construct a quantum algorithm that creates the Laughlin's state for 

arbitrary number of particles for . The circuit uses  qudits and hence it is 

efficient. Estienne et al. [310] find analytic expression for the generic wave function with one 

extra flux corresponding to the Jack polynomials. Deshpande et al. [311] have reported the 

liquids and solids in one dimension and Cane et al. [312] have discussed the asymptotes of 

Selbery-like integrals. Imada and Miyake [313] have also performed the first principle 
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calculations. The Laughlin correlations in cyclotron braids are discussed by Jacak and Jacak 

[314]. The interlayer coupling and the charge imbalance is discussed by Peterson et al. [315]. 

 

2.6.20 Experiments 

 There are a variety of experiments [316]. The plateaus in the Hall resistivity have been 

measured in detail. It is reported that the experimental data is well reproducible but the origin of 

some of the fractions such as 3/5, 2/5 and 2/7 is not clear in terms of a  particle-hole symmetry 

[317]. There are measurements of noise at the plateau which measures the resistivity and hence 

the charge of the particles. The nuclear magnetic resonance did not yield much information about 

the origin of plateaus. The electron spin resonance is detected. Many different tricks are used to 

introduce new ideas to interpret the data. Oh and Chang [318] made an effort to calculate the 

Lande's g values which came out to be near the experimental value. Some authors tried to 

explain the fractional charge as a random number called the Chern-Simon's number. There is a 

lot of effort, theoretically as well as experimentally, to refer to Laughlin's paper which has wide 

applications (see for example [319]). 

2.7 Data Interpretation 

2.7.1 Graphite Hall effect 

As we have seen above, the Laughlin's wave function has generated a lot of interest amongst 

theorists. It requires the knowledge of complex Riemann space, so that it is unlikely to be used 

for the interpretation of the plateaus measured in the Hall effect. Hence we give here the 

interpretation of the Hall effect data in graphite in terms of Shrivastava's theory [2,3] which 

treats the angular momentum with spin in a special way. The resistance of the spin parallel 

configuration is smaller than the resistance of the spin anti-parallel configuration. This effect is 
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called magnetoresistance because of the application of a magnetic field on the spins. In 1988, 

Albert Fert has performed the measurements in Fe/Cr films [320]. We find that this effect is the 

same as predicted by Shrivastava's theory [2,3] in 1985 where changing the sign of spin changes 

the resistivity. We make use of the data of Hall resistivity in graphite from which we prove that 

calculated values at the plateaus match with the experimental values. In particular, the simple  

value defined as (2j +1)/(2l +1) is used along with ideas of flux quantization. The idea of two 

particle states, resonances and principal  are used to explain the data of resistivity. Fert 

[320] wrote in his Nobel lecture “In 1988 the discovery of the magnetoresistance of the magnetic 

multilayer opened the way to an efficient control of the motion of the electrons by acting on their 

spin through the orientation of the magnetization". This means that spin has an effect on the 

resistance. The resistivity is changed by spin in a magnetic as well as in a nonmagnetic material 

[2,3]. In fact Shrivastava has found in 1985 that the resistivity changes by changing the sign of 

spin. We take the example of Hall Effect in graphite to explain the role of spin for the 

understanding of resistivity. According to Shrivastava calculation, the quantized resistivity may 

be written as,  which may be corrected to,  where, 

 

which makes the quantized value depend on the sign of the spin and the orbital angular 

momentum quantum number. The flux quantization is described by,  where is 

the magnetic length and is an integer. The formulas given above are non-relativistic. The 

electrodynamics effect is included in the value of the charge of the electron. The value of  

found by using the value of the Planck's constant, Js and that of the 

electron charge  Coulomb is 12.906 403 783  . This value neither 
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requires two dimensionality nor does it require Landau levels. According to Shrivastava formula, 

the positive sign before s gives the resistivity, 

 

whereas for the negative sign the resistivity is, 

 

For and . Therefore, large changes in the resistivity are 

possible when the sign of the spin is changed. The above values suggest change in resistivity 

from 25.8  to infinity upon spin flip. If we substitute , then the resistivity 

changes from 25.8  to infinity. Of course, there are other values which show the resistivity as a 

function of spin. We need not limit to s=1/2 only. Other values of the spin such as 3/2 or 5/2 are 

also possible. According to Shrivastava theory, there are quasiparticles of fractional as well as 

integer charge and the spin and charge are coupled. Hence, a modified Bohr magneton emerges 

and resistivity depends on the spin. There are fundamental charges given by , 

where  so that the resistivity becomes . In 

heterostructures, the spin need not be 1/2 because there is cluster formation. For example, the 

spin of a cluster may be3/2 or 5/2, etc. There are two-particle states so that  is possible. 

Similarly, there are resonances so that  is also allowed. Hence, quasi particle charge is 

determined from (i) spin-charge coupling, (ii) two-particle states, (iii) resonances and                

(iv)  electron clustering. We explain the fractional charges found in graphite. The experimental 

measurements of the Hall effect in graphite have been performed by Kopelevich et al. [321] from 

which, we obtain the fractions, 2/7, 1/4, 2/9, 1/5, 2/11, 1/6, 2/15, 1/8,2/17 and 1/9. The 
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interpretation of the data, shown in Fig.2.3 is as follows. The energy of a state is given by 

 so that we consider two oscillators with energies, and 

. The energy difference between these states is . For  

and for positive sign in ,

for forthe second oscillator which hasl = 0, 

negative sign and s=1/2 so that . Hence, . The ingredients we 

put are two oscillators with different values of l and s which are the orbital and spin angular 

momenta quantum numbers, in different parts of the sample. The effective charge which depends 

on spin also determines the resistivity. Hence the resistivity depends on spin. In the electron 

clusters, spin can become zero, so that we put S=0 to obtain 

. In the formula  we obtain 1/4. For l = 4, 2l +1 = 

9 and for s = 1/2 for negative sign, we obtain . In the expression, 

 we have  and  so that the effective charge 

becomes . For l = 2, we have 2l +1 = 5 and l/[2l +1] = 2/5 and (l +1)/(2l 

+1) = 3/5. We calculate the resonance state at  

at  which comes at 3/5 – 2/5 = 1/5. For l = 5 we have l/2l + 1 = 5/11 and (l + 

1)/(2l + 1) = 6/11. The value of (1/2)(6/11 - 0) = 3/11. The resonance state now occurs at 5/11 – 

3/11 = 2/11. Let us look at the flux quantization at so that for , the charge is e/2. 

Hence for , the effective value of 1/3 changes to 1/6. The original value for l = 1, 2l + 1 = 

3 for negative sign is 1/3. For l = 7, the two series, l/2l + 1 = 7/15 and (l + 1)/(2l + 1) = 

8/15,  and for , 4/15 becomes 2/15. We have already obtained 1/4 

which for  becomes 1/8. For l = 8, 2l + 1 = 17 and the principal fractions are l/2l + 1 = 
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8/17 and 9/17. We have  which for  gives 2/17. For l = 4, l/(2l + 1) 

= 4/9 and (l + 1)/(2l + 1) = 5/9. The resonance state of these two occurs at 5/9 – 4/9 = 1/9. This 

explains all of the fractions observed in the fractional quantum Hall effect of graphite 

experimentally measured by Kopelevich et al. [321]. Fert has not explained the microscopic 

origin of the change in resistivity by spin. We find that the spin-charge effect in which charge 

becomes related to spin as found by Shrivastava’s theory a few years earlier gives the spin 

dependent resistivity. All of the observed fractional charges agree with the scheme of a spin-

charge relationship. The relationship of resistivity with charge is,   which is 

amply demonstrated. The equation (2.120) has a zero energy state when l=0 and s=1/2 with 

negative sign in the expression.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: The quantum Hall effect of graphite showing several fractions. 
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2.7.2 Electron clusters 

All of the experimental data can be explained on the basis of the formulae (2.120-2.122). The 

interpretation of the Stormer's data is given in the reference [322] and the Pan's data is explained 

in the reference [323]. The fractions observed in graphene are also explained by this theory [2]. 

Recently, Kumar et al. [324] have reexamined the fractions in the quantum Hall effect and found 

that some of the fractions depend on the sample preparation which is linked with the formation 

of many domains and clusters of electrons. Since electrons have spin, these clusters have a finite 

spin which may be NS where N is the number of ferromagnetically aligned electrons in the 

cluster. The fractions observed by Kumar et al. [324] are the same as in Pan's data except for one 

value which can be understood on the basis of electron clusters of finite spin. The fractions of 

charge which are measured from the plateaus in the Hall resistivity,  , are usually the same as 

those measured from the minima in . The fractions occur in four categories, (i) principal 

fractions, (ii) resonances, (iii) sum processes and the (iv) electron clusters. In the case of electron 

clusters, the fractions derived from  are slightly different from those found from  . The 

effective charge of an electron becomes anisotropic due to the spin wave propagation in the 

micro-clusters of electrons. The wave vector of the spin waves appears in the effective value of 

the spin. There is an explicit dependence of the charge on the spin which modifies the condition 

of the flux quantization and leads to an anisotropic charge. In the Hall Effect, the resistivity is a 

linear function of the magnetic field. When field is quantized there occur plateaus in the  and 

minima in . The plateaus in the  occur at the integer values of i. When 

temperature is reduced, it is found that i need not be an integer and it can become a fraction such 

as 1/3 or 2/3. These fractions occur in pairs showing particle-hole symmetry. At this stage, 
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Laughlin [1] wrote a wave function by using the first principles and suggested that the charge 

may become fractional such as e/3 or e/5 due to electron correlations. At low temperatures, the 

number of excitations greatly reduces so that it is likely that correlations are reducing data low 

temperatures and the experimentally observed phenomenon may be explained by spin. Instead of 

starting from a wave function, we looked at the factors which multiply the Bohr magneton and 

hence change the effective charge of the electron. We found that there is a possibility of a spin-

charge coupling which changes the charge of a particle. The factor of  

multiplies the Bohr magneton and hence changes the charge of the electron to  which is 

e for . For , we obtain the particle-hole symmetry because of the sign of spin 

which is related to helicity, . Here  is the linear momentum of the electron and  is the spin. 

The expression  explainsmany fractions which are found in the 

experimental data . By changing the value of l we develop a series of fractions and another series 

is obtained by using the negative sign in . This way we obtained two series, one for + sign and 

the other for - sign. These series are correct and give the experimental values correctly and hence 

called “principal fractions". By going to lower temperatures more fractions are obtained. To 

understand these fractions, we invent the “resonances",  , which explain several 

experimentally observed fractions. Here,  in which the values of are obtained by 

changing the values of l . It is also important to invent the "sum process" which yields the 

fractional charges at  . So far we have used only spin 1/2 particles. In actual samples 

which have a layer of GaAs over Al doped GaAs, electron clusters occur. In the clusters the spin 

need not be 1/2. For example it can be 3/2 if three electrons are aligned parallel to each other as 

in a ferromagnetic. Hence the spin becomes large, such as NS. It is also possible that the 

electrons are aligned in such a way that there are electrons with spin upand there are  
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electrons with spin down so that the spin of the electrons in the cluster becomes NS with 

. Hence, the idea of “clusters" of the electrons explains the data. In this way, all of 

the 101 fractions can be explained. Instead of detecting one fraction at a time, sometimes a full 

series of fractions can be written down. Such series can be generated by using higher than s=1/2 

and by varying the orbital angular momentum quantum number, l.  These series of fractions are 

observed in graphene and correctly predicted [2]. Recently, Kumar et al. [324] have found a 

fraction which shows one value when measured from the plateau in  and a slightly different 

value when measured from the minimum in . Hence, there is a possibility that in some cases, 

the fractions obtained from  are not equal to those found from . We show that there are 

spin waves in small clusters of electrons which create a finite “spin deviation" giving rise to 

anisotropy in the fractional charge. The spin deviation depends on the spin wave vector and 

makes the spin value anisotropic which due to spin-charge coupling makes the charge 

anisotropic and hence the effective charge along xy plane is not equal to that in the xx direction. 

We find that a small difference occurs in the value of the fraction in going from xx to xy value. 

 

The Hamiltonian of the ferromagnetic spin waves with exchange interaction is given by, 

 

where J is the exchange interaction and H is the magnetic field.  are the spin operators at the 

jth site and the summation can be carried out to nearest neighbors, . The number of nearest 

neighbors is z so that the Fourier transforms of spin operators requires, 

 

Leaving out the magnetic field dependent term, the unperturbed frequency of a magnon is, 
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Hence, the spin has been changed from S to  in going from the site variables to spin 

wave  variables. This is called the spin deviation and it amounts to a few percent inreal materials. 

For  has only sine term and the cosine term is zero sothat for small wave 

vectors, 

 

So that  

 

which for cubic lattices is where a is the lattice constant. Hence, the spin ischanged 

to  . In the case of two sublattice antiferromagnets, .In a cluster, in the 

a-b plane, the frequency of a magnon becomes whereas along the x 

direction it will appear as . Hence the spin value becomesanisotropic.  

 

The Hall effect resistivity is, 

 

In the case of an electron cluster, the value of S along xx direction is  which due 

to spin waves becomes whereas along the xy direction it will be 

. Hence the value of  depends on the direction. The value of the filling factor, 

 



68 
 

also depends on the direction. Hence  need not be equal to where  is deduced from  

and  from .Kumar et al. [324] find all the same fractions as in the Pan's data [323] except 

one value which depends on the sample preparation. It was reported that in the xx direction the 

filling factor for one of the plateaus is  whereas in the xy direction , 

Hence, the value deduced from the  is slightly different from that deduced from , which 

we assign to the value of the spin due to spin waves. For l =0, the filling fraction is, 

 

Hence  which shows 1.8 percent spin deviation compared with S = 2. The Hall effect 

experiment is performed on a polycrystalline heterostructures film so that the crystallographic 

directions are not the same as those used for the Hall effect. The difference between the two 

values along the xx direction and the xy direction is a result of anisotropy of the spin waves. 

Gallis et al. [325] also find that near , ferromagnetic spinwave collapses and low energy 

spin wave emerges below the Zeeman energy. 

2.7.3 Graphene 

The resistance diverges as the charge approaches zero because of the infinity in at e = 0 

which is predicted at . The zero charge arises due to a zero in the g valueas shown by 

Shrivastava [2]. For , which goes to zero with the negative sign.  Hou et 

al. [326] also find that the strong magnetic field does not remove the zero-energy modes and 

there is a binding of a fraction of charge in the hexagonal structure of graphene. Abanin et al. 

[327] find that the measured gap energy is much larger than expected from a two level theory. 

This is because of the multilevel nature of the levels in graphene. Papic et al. [328] have 

calculated a four-component trial wave function which is adiabatically connected to the 
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Laughlin's wave function in the upper spin branch and hence may provide a representation for 

graphene. It is connected to valley-isospin ferromagnetic ordering and a completely filled lower 

spin branch which is similar to that of splitting in the Zeeman effect. However, graphene is not 

linked to incompressible states. It is possible to go from the incompressible state to the 

compressible state but in that case the charge will have to be adjusted [329]. The idea of isospin 

has been applied to graphene [330]. A trilateral system has also been considered [331]. For the 

simple layer of carbon atoms ordinary non-relativistic quantum mechanics should be sufficient. 

Accordingly Zabidi et al.[332] have done the most reasonable and correct calculation of the band 

structure of graphene including that of a wire pulled from graphene which shows that graphene is 

a non relativistic material and the Dirac super symmetry is not immediately found [332,333]. 

Some of the fractions observed in the quantum Hall effect of graphene are due to clusters [334]. 

The flux quantization condition becomes spin dependent [335]. There is a zero-energy state as g 

becomes zero [336,337] but the Laughlin's wave function does not apply to graphene [338]. The 

transition from a plateau to another plateau has been described in terms of a critical exponent 

which shows the change in the area in which flux is quantized [339]. The correct interpretation 

of the quantum Hall effect data of graphene is given in ref. [2]. Indeed it modifies the flux 

quantization and makes a fundamental contribution to the understanding of the angular 

momentum [340,341].The vibrational frequencies of graphene are calculated by Rosli et al. [342] 

from the correct and proper quantum mechanics. Some authors are making efforts to change the 

kinetic energy variation from  to those proportional to k or  where k is 

the wave vector of the electron. Hence instead of energy proportional to  as in a parabola, it 

will become linear, a hyperbola or an ellipse, etc. These dispersion relations should not be a 

serious matter for the physical properties of graphene. 
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2.7.4 AlGaAs/GaAs 

Let us see as to how the interpretation of the data in AlGaAs leads to a completeness of the 

interpretation of the quantum Hall effect. The data of Kumar et al. [324] shows that there are 

clusters which are explained by a spin deviation. We see that it leads to the completeness of the 

solution. The cyclotron resonance occurs at, 

 

The Bohr magneton is, 

 

Hence, 

 

Since, for L=0, , it is a common practice to define the cyclotron frequency as, 

 

The electrons in a magnetic field behave like harmonic oscillators. Hence, the energy of astate is 

given by, 

 

It is proper to include the factor of  so that the above energy is modified to, 

 

 

The same effect can be obtained by replacing e by , so that the energy can be 

written as, 
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The transition can occur from . The Hall effect resistivity is, 

 

Hence, effective charge can be measured. The flux quantization is given by, 

 

Substituting this field in the Hall effect formula gives, 

 

which gives the quantum Hall effect. We do not use the Lande's formula because it does 

not have the particle-hole symmetry but suggest a formula linear in the angular momenta, 

 

where  is the total angular momentum quantum number and due to the  sign 

it has the particle-hole symmetry. The effective charge is thus, 

 

For positive sign and s=1/2, 

 

 

and for the negative sign and s=1/2 

 

Here  gives the correct fractional charges, such as for  and , 

etc. These values are the same as tabulated in 1985 [2]. These values also agree with the 
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experimental data. We call these “principal fractions". In addition to the “principal fractions", we 

can also generate resonances, . This process produces some more fractions not already 

present in the “principal fractions", in addition, we also consider the energy level difference, 

 with E2 = 0. Indeed, there is a zero energy state for l = 0 with negative sign, s = 1/2, 

 . Many resonances are in fact present in the experimental data and predicted from the 

linear theory. At low temperatures, the excitation populations are small so that interactions are 

minimized. Hence, we predict the “resonances". We are thus able to produce a large number of 

principal fractions and resonances so that “two-particle states" occur. For these particles we have 

so that this process produces more fractions than are found in resonances. Hence we have 

(i) principal fractions, (ii) resonances and (iii) two particle states. The real material is often 

having electron clusters so that the spin need not be 1/2. The spin becomes NS with 

. Hence the spin becomes 3/2, 5/2, etc. For example, for l=0, the fractional charge can occur 

at, 

 

For finite l, 

 

For S=0 which can arise in pairs for which , the effective charge becomes, 

 

which has even denominator. For S=1, 
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which have even denominators and occur in pairs. For a large cluster, there is a small spin 

deviation due to “spin waves" so that the spin ceases to be an integer. For example, S becomes 

 which has 1 per cent spin deviation. All of the data is correctly 

explained on the basis of this theory and we have written down the interpretation of 101 fractions 

satisfactorily [323,343]. Recently, a lot of the latest fractions have been examined and found to 

be satisfactorily explained [344-346]. The clustering is also seen in eq. (2.130) which explains 

the data. We first select a few of the Landau level filling factors which are observed in the 

experiments of Li et al. [347]. These fractions are, 

                       1/5, 2/9, 2/3, 3/5, 2/5, 1/3, 5/3, 4/3, 4/7, 7/11, 3/7 and  63/100,                      (2.149) 

Laughlin's theory suggests a wave function which can produce a charge at 1/m. If we assume that 

m = 3, then effective charge becomes 1/3, which will explain the fraction 1/3 observed in the 

Hall resistivity. The Laughlin's wave function, 

 

is not a ground state of the Coulomb interaction but it proposes its own new Hamiltonian which 

is a function of  in the complex space. Usually, the coordinates, (x,y,z), of the 

electrons are represented by real numbers but in the complex Riemann space, complex 

coordinates are used which is unlikely to be found in the physics of the problem. This wave 

function is also very difficult to use for the interpretation of the experimental data. Its 

exponential with a minus sign makes the value very small and the square on  makes it very 

sharp and unrealistic. Theoretically it was done intentionally to make a two dimensional 

probability of finding the electrons. The fractions observed are explained in terms of (i) principal 

fractions, (ii) two particle states, (iii) resonance states and (iv)  clusters. The spin is usually 1/2 

but in clusters it can be some other value such as 3/2, 5/2... N/2, etc.                                         
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The principal fractions are the same as those obtained from l/(2l+1) and (l+1)/(2l+1). For s = 

1/2,  becomes l/(2l + 1) for negative sign and (l + 1)/(2l + 1) 

for the positive sign. For various values of l we predict, 

 

 

 

 

 

 

 

 

This explains 2/3, 3/5, 2/5, 1/3, 4/7, and 3/7 found in the experimental data of Liet al. [347]. That 

leaves out 1/5, 2/9, 5/3, 4/3, 7/11 and 63/100. Let us now look at 1/5. The denominator 5 comes 

from 2l + 1 = 5 so that l = 2. The principal fractions are 2/5 and 3/5. The resonance state occurs 

at 3/5 – 2/5 = 1/5. Hence 1/5 is explained as a resonance state. Let us look at 2/9. The 

denominator 9 comes from 2l + 1 = 9 so that l = 4. The principal fractions are 4/9 and 5/9. The 

resonance state is at 5/9-4/9 =1/9.The energy levels occur at  so that for two 

oscillators with, 

 

For  
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For  from eq. (1.151),  from (1.153). This explains 2/9. The value 

of 5/3 is more than one. Hence this can not occur in n = 0 state which is the lowest value. To 

understand the values higher than one, we need to excite a few Landau levels. Now consider l = 

1 so that 2l + 1 = 3. For this value, we have  and  .  The energy 

level difference, for  , can be written as, 

 

 

For , we obtain  which is 5/3 for  . For  

. Let us look at the denominator 2l + 1 = 11 so that l = 5. Then l/2l + 1 

= 5/11 and (l + 1)/(2l + 1) = 6/11. The resonance state occurs at  and the 

two-particle state occurs at . The sample of  may have 

clusters which tend to diffuse by heating. Let us look at 63/25. The value of 2l + 1 = 25 so that l 

= 12. Now the  value is given by, 

 

We want to get . Therefore,  so that, 

 

so that for the positive sign . From the previous calculation (1.153), 

. Usually the flux is quantized at hc/e so that these are the strongest plateaus in the Hall 

resistivity. In order to understand weak effects in the data, we consider  with  so 

that  quantizes the flux which is at half the charge. Hence the charge of 63/50 occurs as 
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a weak plateau at 63/100. This is because of a cluster of spin equal to 101/2 which is perfectly 

reasonable when Al doping is being donein  GaAs. Note that, 

 

and 

 

add up to  

 

and the particle-hole symmetry is established by two signs of spin in the helicity which is  

where  is the linear momentum. Only the sign of the helicity is needed and it changes by 

changing the sign of s. When  in the flux quantization,  and the particle-hole 

symmetry uses the flux as hc/e. When we consider  , the flux quantum is 2hc/e and the 

effective charge is reduced to 1/2 the value so that the flux is quantized with hc/(e/2). Now, the 

effective particle-hole symmetric charges need not add to one but they add up to 1/2, so the 

charge can be both positive as well as negative. When , the fraction 63/50 becomes 63/100 

which is just the experimental value. There is a cluster of several atoms and many electrons so 

that the spin is NS = 101/2. Upon doping x increases from 0.21 to 0.85. The extra atoms help 

diffuse the cluster so that single electron again contributes to plateaus in the resistivity. Hence 

the plateau at 63/100 changes to plateau at 1. Li et al.[344] show the Hall resistivity as a function 

of filling fraction,  , for two concentrations x=0.21 and x=0.85. In between 0.6 and 0.7 at 0.63 

the x=0.21 graph shows a minimum the bottom of which is the value 0.63 for which the 

resistivity is 1.58. When the concentration is changed to x=0.85 this minimum at 0.63 disappears 
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and now the minimum is at the resistivity of 1. The directions, z for the magnetic field, x for the 

electric field and y for the Hall voltage are fixed by the electromagnetic field equations. Hence, 

as long as the coordinate system is orthogonal, there is no way of mixing xx with xy in the 

Maxwell equations. The impurity doping makes the dielectric constant and the permeability 

anisotropic and non-uniform which reflects in the non-uniformity of the magnetic field and 

hence in the resistivity. The data at certain fields correspond to single-particle plateaus which 

upon doping changes to a cluster state and upon further doping or cooling can change to the 

single- particle state. As the magnetic field is changed, the clusters of electrons are formed which 

break when another plateau approaches. The clusters also explain the short-range disorder which 

depends on the size of the clusters which gives small contribution to resistivity near the bending 

points. The Landau levels require two-dimensionality which is broken when clusters of atoms are 

made. The harmonic oscillator type levels  occur for electrons in two dimensions. 

Here, at very low temperatures such as a few mK, the population in the excited states is very low 

so that n = 0 in n + 1/2 = 1/2 is more appropriate than full  n+1/2. However, as the temperature is 

increased, finite value of n has to be taken. The samples are non uniform and hence the value of 

n is not the same in the entire sample. Similarly, there are many clusters of electrons and the 

number of electrons in each cluster is not equal. The cluster formation thus depends on the 

method of preparation of the sample. We have examined the experimental data of the 

measurement of Hall resistivity as a function of Al doping of GaAs. Pan et al.[348] have 

obtained some more results about electron clusters in GaAs. We briefly discuss these results. In a 

single particle picture, the energy gap at a filling factor is due to the Zeeman splitting equal to 

 where  in GaAs. The modified Zeeman splitting is equal to  because at 

high magnetic fields the  value must have particle-hole symmetry. It is found that Lande's 
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formula is a single value without the particle-hole symmetry. The particle-hole symmetry is 

described by  with . The energy gap is not fully due to Zeeman 

effect. In part, the energy gaps can arise from the periodic potential of the lattice. The 

experimentally measured single-particle splitting are much larger than given by the old Zeeman 

effect due to the field-independent splitting and the Coulomb interaction. Due to the 

thermodynamics not all electrons are aligned along the field and then there is a difference 

between S and Sz. While Sz deals with alignment along the z direction, S need not align. At low 

temperatures a spin aligned ferromagnetic cluster of electrons is formed but due to lack of 

unfilled shells, the clusters are not stable. The zero-point modes are important and lead to 

making and breaking of the clusters. The Jahn-Teller effect which breaks the symmetry of a 

degenerate state interacting with bosons of symmetry with respect to which the degenerate state 

is unstable, destroys the same symmetries of clusters. The size of the antidotes becomes equal to 

the wave length of the electron so that the energy corresponding to this wave length contributes 

to the energy gap. The magnetization varies with field as, .Hence, the energy appears to 

vary as  in the scaling region. The energy gap varies with the magnetic field 

as . In the sample of ref. [347] there is an electroncluster so that for 

. For l = 12 the denominator is 2l + 1 = 25 and 12 + 

(1/2)  s = 33 which suggests  which is possible in a spin cluster. Indeed, clusters are 

formed and contribute to order-disorder phenomenon and unstable ferromagnetism is generated 

in the clusters. We have seen that the filling factors become anisotropic due to spin wave 

formation in the clusters consistent with the experimental observations [349].There are three 

different theories, (i) Laughlin's wave function theory, (ii) Wilczek's composite Fermion theory 

[349] and the (iii) Shrivastava's angular momentum theory. We find that Laughlin's wave 
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function is not convenient for the calculation of resistivity. In the original work of Laughlin, it 

was not the intention to derive many experimental properties but only to find the ground state. 

Similarly, in Wilczek's composite Fermion theory [350], the feasibility of theoretical consistency 

is extended to explore new possibilities but the electromagnetic field Maxwell equations have 

been violated. We are left with Shrivastava's angular momentum theory which indeed explains 

the experimental data correctly. 

 

 

2.8 de Haas-van Alphen effect 

The de Haas van Alphen effect occurs when the field dependent linear energy becomes equal to 

the Fermi energy. The physical properties oscillate when electrons move from the field 

dependent energy to the constant Fermi energy, . This phenomenon keeps coming many times 

for different values of n in the usual harmonic oscillator type of levels which have (n+1/2). 

 

On the other hand, the present effect in the quantum Hall effect, there is no need of Fermi energy 

and transitions occur within the energy levels of the type, 

 

in which the field H is flux quantized and the Lande's factor is replaced by particle-hole 

symmetric which leads to the effective charge of which determines the 

quantized resistivity, 
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Further details of this effective charge can be found in ref. [323]. This effect does not require 

Laughlin's wave function. 

 

 

 

2.9   Conclusions 

There is a big leap between the Laughlin's wave function and the experiments on the quantum 

Hall effect. On one hand we have the Riemann space and on the other hand we have AlGaAs, 

graphene or graphite. They are unlikely to meet. Laughlin's wave function is solved on the basis 

of quantum mechanics and uses “incompressibility". It has a very short range and it is a ground 

state of new  function type Hamiltonian. The experimental data is explained on the basis of 

Shrivastava's theory which is also based on quantum mechanics. The natural question is that 

whether the two theories, Laughlin's and Shrivastava's are equivalent? If Laughlin's charge is 

changed to 1/[2l + 1] then it is possible to see some remote equivalence. In Shrivastava’s theory, 

spin is included by using  in which negative sign is non-relativistic whereas in 

Laughlin's theory there is no spin at all. It is possible to form monopoles consisting of 

composites of electrons and vortices in which case there is no contact between experiments and 

“attaching flux quanta". The usual experiments by using GaAs are unlikely to attach flux quanta 

to electrons. The data on the quantum Hall effect is thus explained by the angular momenta 

series, l/(2l + 1) and (l + 1)/(2l + 1), resonances, sum processes and electron clusters 


