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CHAPTER 3 

PFAFFIAN, GAFFNIAN AND HAFFNIAN STATES: 

QUANTUM COMPUTATION 

3.1 Introduction 

The number of particles in a cluster of electrons determines the angular momentum which is 

used to define the filling factor of the lowest Landau level. A fuzz factor is added to it so that it 

gives for the desired denominators. Laughlin state is obtained for any value of the fuzz factor, p. 

For =2, =4 we get the half filled Landau level, the state of which is called Haffnian. For =2 

there are always two particles which come from non-abelian determinant called pFaffian. For 

=2, =3 the state is called Gaffnian. In all cases, the ground state belongs to non physical many 

body Hamiltonians. The composite fermion wave function is not the ground state of any known 

single Hamiltonian. From the angular momentum, we construct the filling factor and then look 

for the wave function and then for the Hamiltonian. In this approach the Hamiltonian found are 

unrealistic. It is possible to make the filling factors agree with the experimental value but then 

Hamiltonians are not the usual type. 

          In 1983, Laughlin proposed a wave function and calculated the ground state energy [1]. 

For certain value of a parameter called m, the ground state energy is claimed to be lower than 

that of one component plasma charge – density wave. It was interpreted that 1/m becomes the 

effective charge of the quasiparticles. The Hamiltonian consists of electron-nuclear attractive 

potential and the usual Coulomb repulsive interaction  
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between electrons. When m=3, the effective charge of the quasiparticles is e/3. Hence, there is a 

fractionalization of charge due to Coulomb interactions. This theory gives the fractions less than 

1 so that the values of 1/3 and 1/5 emerge well. However, if the theory has to be sufficient for the 

interpretation of the experimental data of the quantum Hall effect it will have to explain many 

other fractions such as 2/5, 12/5 or 1/4 , 1/2, etc. There has been a lot of effort to obtain all of the 

experimentally observed fractions. One of the suggestions is called the composite fermions (CF) 

which attaches the flux quanta to the electrons. It is clear that such a CF theory does not treat the 

Schrödinger equation with electromagnetic field correctly. The problem is that if the wave 

functions are written, the Hamiltonian becomes nonphysical and if the Hamiltonian is physical 

then the ground state is not obtained. Recently a non–abelian determinant has been tried. It is 

called the pFaffian wave function which treats the two- particle states. It is possible to define the 

fractional charge in terms of the difference of the angular momenta of the two particles. When 

this difference is odd, the particles become fermions and when it is even, they become the 

bosons. These fermions do not have spin. It is possible to generate the fractional charge by 

means of fuzzy factor and the values seen in the experiment can then emerge from the theory. 

When the number of particles is changed, the pFaffian can be changed to Gaffnian and Haffnian 

[351,352]. A whole series of fractions can be generated. In this work, we calculate the effective 

fractional charge of the bosons as well as the fermions which appear in the algebra. 

 

3.2 Calculations 

 

The relative angular momentum of two particles is L2. It’s minimum value L2
min

 = 1 determines 

the fermions and L2
min

 = 0 for bosons. The operator P
p

2 projects any state where any two 



83 
 

particles have relative angular momentum less than L2
min 

+ . The number p is the fuzz factor 

and the effective filling factor which also determines the fractional charge becomes,  

 

This expression given the various   wave functions, 

 

where m . The relative angular momentum of  particle is . For electrons in 

lowest Landau level (LLL), the minimal value would be . The fractional factors are 

given in table 1.  

 

Table 3.1:  The value of  for fermions as well as bosons. 

P Fermions 

L2=odd ,  L2
min

=1 

Boson 

L2=even , L2
min

=0 

2 1/3 1/2 

3 1/4 1/3 

4 1/5 1/4 

 

The clusters are important because we do not know the number of electrons in a cluster. Any 

cluster has relative angular momentum Lg+1=Lg+1
min

. The minimum relative angular momentum 

of  particles be  + p. For bosons,  = 0, the wave function does not need to 
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vanish as  particles approach a given position  . As particle arrives, the wave function 

must vanish as  To determine highest density zero energy state of the prepared 

Hamiltonian , we find that a single solution does not exist for arbitrary  and . For  = 1, 

any , Laughlin state should be obtained. Then,  = 1/m. Here, it may be noted that the usual 

kinetic energy plus the Coulomb potential forms the physical Hamiltonian but is not 

a physical Hamiltonian. Laughlin is not a minimum in the energy for a physical Hamiltonian. It 

may be that the energy is very close to that of charge–density wave. For  = 2, = 4 we get the 

Haffnian which gives the half filled Landau level. For =2 we always have two particles and 

pFaffian. For  = 2,  = 3, the state is called Gaffnian. Hence we get = any, 1 or 2 and =1,2,3 

and 4. The values higher than p=4 can be tabulated. The wave function has one more factor. For 

LLL wave function,  

 

For disk geometry, 

 

and for spherical geometry, 

 

Here  is the total flux penetrating the sphere. The degree of the polynomials  is 

determined from   to . The filling factor for fermions can be written in terms of those of 

bosons 
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The wave function should vanish when g+1 particles are brought to the same point, . This 

limiting behavior is described by 

 

where  are the polynomials. The +1 particles are not allowed to have relative angular 

momentum . 

On the sphere, each particle has the angular momentum  . The +1 bosons have the angular 

momentum  . 

 

3.3   Discussion  

As long as the Hamiltonian contains the usual kinetic energy and the Coulomb potential, the 

Laughlin’s wave function gives the ground state energy very closed to that of charge –density 

waves. It does not have a minimum at 1/3. The charge of the quasiparticles is 1/m. Hence it can 

be 1/L but not 1/J, ( J= L+S ). There is no spin in the theory. As a modification of Laughlin’s 

theory, the charge can become. 

 

But still there is no spin. If we relax the Hamiltonian and look for another Hamiltonian for which 

the Laughlin’s wave function will be the ground state, the Hamiltonian becomes nonphysical. 

Sometimes it has only the projection operators. Similarly, the composite fermion (CF) wave 

function is found not to be the ground state of the physical Hamiltonian. Hence, if the CF series 
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is accepted, it does not give a physical Hamiltonian and it's flux attachment formula is 

incomplete. The state with   is known as   “parafermion “, (PF) [353] and it’s 

ground state is represented by the Hamiltonian, 

 

 

which is quite unrealistic. Actually, the quasiparticles represented by Laughlin, CF or L2    do not 

have spin. Hence, this is an effort to obtain “spinless” particles which may exhibit fractional 

charge. As far as the experimental values of the quantum Hall effect are concerned they agree 

with the theories because the possibility of comparison is taken into account.  

 

3.4 Conclusions 

 

The wave function of Laughlin does not have a ground state when Hamiltonian is physical. The 

pFaffian, Gaffnian and Haffnian are the ground state of nonphysical Hamiltonians. The CF is 

algebraically not complete and its electromagnetic field cannot be treated. If only fractions are 

considered, it is the ground state of a nonphysical Hamiltonian. The fractions which look like 

experimental values of quantum Hall effect are produced but not all values are predicted 

correctly. Some ground states are belonging to nonphysical Hamiltonians. 

 


