UNIVERSITI MALAYA

ORIGINAL LITERARY WORK DECLARATION

Name of Candidate: Lim King Ting
I.C/ Passport No: 820107-14-5140

Registration/Matric No: SHC090002

Name of Degree: Doctor of Philosophy

Title of Project Paper/ Research Report/ Dissertation/ Thesis (“this work”):

GENETIC AND PHENOTYPIC CHARACTERISATION OF CLINICAL METHICILLIN-RESISTANT STAPHYLOCOCCUS AUREUS IN A MALAYSIAN HOSPITAL

Field of Study: Microbial Biotechnology

I do solemnly and sincerely declare that:

(1) I am the sole author/writer of this Work;
(2) This Work is original;
(3) Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title of the Work and its authorship have been acknowledged in this Work;
(4) I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes of infringement of any copyright work;
(5) I hereby assign all and every rights in the copyright to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without this written consent of UM having been first had and obtained;
(6) I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.

Candidate’s Signature
Date

Subscribed and solemnly declared before,

Witness’s Signature
Date

Name:

Designation:
ABSTRACT

Methicillin-resistant *Staphylococcus aureus* (MRSA) is one of the main bacterial pathogens responsible for a variety of nosocomial infections ranging from soft-tissue infections to bacteremia. Since most MRSA is often resistant to multiple antibiotics, this has raised a concern over the limited choice of antimicrobial-agents for treatment of life-threatening cases. The objectives of this study were to determine the antimicrobial resistance profiles, presence of resistance and virulence genes, to investigate the molecular epidemiology of MRSA and their evolution over a six-year period. The antibiograms of 188 MRSA strains isolated from UMMC were analyzed by disk-diffusion test and minimum inhibitory concentrations. The *agr* and SCC*mec* types, presence of resistance and virulence genes were determined by PCR, genetic diversity by PFGE, *coa*-RFLP, MLST, *spa* and *dru* typing and molecular evolution by MLST-*spa-dru* types. All the strains were sensitive to vancomycin. They showed high resistance (≥80%) towards ciprofloxacin, clindamycin, erythromycin and gentamicin. A significant increase (*P*<0.05) in resistance rates towards trimethoprim-sulfamethoxazole, netilmicin and tetracycline between 2003 and 2008 was observed. *blaZ* gene was detected in all strains whereas *ermA, aac(6’)-aph(2’’), tetM, ermC, tetK, ileS, msrA* and *mupA* specific amplicons were detected in 157(84%), 156(83%), 92(49%), 40(21%), 39(21%), 10(5%), 4(2%) and 2(1%) strains, respectively. *blaZ, tetM, ermC, tetK, ileS2* and *mupA* genes were plasmid-encoded. Double mutations in *rpoB* gene were associated with high rifampicin-resistance while mutational change 461Leu/Lys in *fusA* gene was associated with high fusidic acid-resistance. The prevalence of *sea, sec* and *ica* among strains isolated in 2008 increased significantly (*P*<0.05) compared to 2003. *pvl* gene was detected in 2007 and 2008 strains. Three SCC*mec* types (SCC*mec* type III, 90%; SCC*mec* type IV, 9%; SCC*mec* V, 1%) and
three *agr* types (*agr* type-I, 97.5%; *agr* type-II, 1.2%; *agr* type-III, 0.6%) were observed. *coa*-RFLP, PFGE, MLST, *spa* and *dru* typing subtype the strains into 47 profiles, 85 PFPs, 10 MLST, 17 *spa* and 30 *dru* types, respectively. Some strains from six-years apart shared similar DNA profiles, indicating the persistence of a particular genotype. The predominant MLST type, ST239 (83.5%) was further distinguished to seven different *spa* and 26 different *dru* types, including 17 novel *dru* types. Maximum parsimony tree based on *dru* repeats revealed that 10 *dru* types (dt11am, dt13j, dt15n, dt13q, dt13n, dt13p, dt13f, dt13ao, dt12j, dt7v) shared similar MLST-*spa* type with dt13d, suggesting that they might have evolved from ST239-t037-dt13d. Clone ST239-t037-dt13g and 32 other MRSA clones being introduced in 2007-2008 had replaced ST239-t037-dt13d and nine MRSA clones present in 2003. In conclusion, the prevalence of resistance and virulence factors had increased over a six-year period. The association of resistance genes with mobile genetic elements possibly enhances the spread of resistant traits in MRSA. Correlation between DNA profiles (PFGE and *coa*-RFLP) and resistotypes was observed. ST239-t037-dt13d along with other MRSA clones in 2003 was replaced by ST239-t037-dt13g and other new emerging *spa* and *dru* types. The data from this study may act as a reference for monitoring mupirocin, rifampicin, fusidic acid and the prevalence of virulence among Malaysian MRSA strains over a longer period of time.
ABSTRAK

jenis *agr* (*agr* taip-I, 97.5%; *agr* taip-II, 1.2%; *agr* taip III, 0.6%) telah diperolehi. ‘Subtyping’ *coa-RFLP*, PFGE, MLST, *spa* dan *dru* pada 188 ‘strain’ mewujudkan 47 profil, 85 PFPs, 17 *spa* dan 30 *dru*. Klion dominan MLST ST239 (83.5%) boleh dibahagikan kepada tujuh jenis *spa* dan 26 jenis *dru* yang berlainan termasuk 17 *dru* yang novel. ‘Maksimum parsimony tree’ yang berdasarkan *dru* menunjukkan 10 taip *dru* (*dt11am, dt13j, dt15n, dt13q, dt13n, dt13p, dt13f, dt13ao, dt12j dan dt7v) mempunyai taip MLST-*spa* yang sama dengan *dt13d*, mencadangkan bahawa mereka mungkin berkembang dari ST239-t037-dt13d. Klion ST239-t037-dt13g dan 32 jenis MRSA klion yang diperkenalkan pada tahun 2007 dan 2008 telah mengantikan ST239-t037-dt13d dan sembilan klion MRSA yang hadir pada tahun 2003. Sebagai kesimpulan, prevalen faktor rintangan dan virulen telah meningkat sepanjang tempoh enam tahun. Hubungan gen rintangan dengan unsur genetik mudah alih mungkin meningkatkan penyebaran ciri-ciri penahanan MRSA. Korelasi antara profil DNA (PFGE dan *coa-RFLP*) dan ‘resistotypes’ diperhatikan. ST239-t037-dt13d besama dengan klion MRSA pada tahun 2003 telah digantikan oleh ST239-t037-dt13g dan *spa-dru* yang baru. Data dari kajian ini boleh dijadikan rujukan untuk memantau kadar rintangan mupirocin, rifampicin, fusidic acid and virulen di kalangan ‘strain’ MRSA Malaysia.
ACKNOWLEDGEMENT

I wish to express my sincere thanks and appreciation to my supervisors (Prof Dr Thong Kwai Lin and Assoc Prof Datin Dr Yasmin Abu Hanifah) for their guidance and support throughout the course of my work.

I am grateful to Assoc Prof Dr Mohd Yasim Mohd Yusof, Assoc Prof Dr Teruyo Ito, Prof Dr Richard Goering and Dr Cindy Teh Shuan Ju who has provided a lot of guidance throughout the course of my work. My special thanks to Assoc Prof Dr Mohd Yasim Mohd Yusof, Assoc Prof Datin Dr Yasmin Abu Hanifah and Assoc Prof Dr Teruyo Ito who have provided the bacteria strains for this study.

Thanks to all my labmates (Dr Cindy Teh, Wing Sze, Soo Tein, Lai Kuan, Xiao Pei, Hossein, Jawad, Noradilin) who made my working life so much fun in Lab A407.

I wish to express my deepest appreciation to University of and IPPP Research Grant Board, University Malaya for providing me scholarship and research grants (PS297/2009B and PV046/2011B) which enabled me to complete my study without any financial worries.

Last but not the least to my parent, sister and brother that have supported me throughout the course of work.
Contents
Original Literary Work Declaration...i
Abstract ..ii
Abstrak ..iv
Acknowledgements ..vi
Table of Contents ...vii
List of Figures ...xii
List of Tables ..xiv
List of Symbols and Abbreviations ..xvi
List of Appendices ...xviii

Chapter 1 Introduction .. 1
1.1 Objectives of this study .. 3

Chapter 2 Literature Review ... 4
2.1 Staphylococcus aureus .. 4
2.1.1 Organisms characteristics ... 4
2.1.2 Clinical significance of S. aureus ... 4
2.2 Virulence determinants in S. aureus ... 6
2.2.1 The capsule and cell wall structure of S. aureus 6
2.2.2 Adhesins .. 7
2.2.3 The Staphylococcal enterotoxins and its role in pathogenesis 8
2.2.4 Panton valentine leukocidin (PVL) and its role in pathogenesis 10
2.2.5 Accessory gene regulator (agr) ... 11
2.3 Molecular subtyping of S. aureus ... 12
2.3.1 PCR-based method for subtyping of S. aureus 13
2.3.2 PCR-RFLP of coa gene .. 13
2.3.3 Pulsed-field gel electrophoresis (PFGE) ... 14
2.3.4 Multilocus sequence typing (MLST) ... 15
2.3.5 spa typing ... 15
2.3.6 SCCmec typing ... 16
2.3.7 mec associated direct repeat unit (dru typing) 18
2.3.8 Mutiple-locus variable-number tandem repeat assay 18
2.4 Methicillin-resistant Staphylococcus aureus ... 19
Chapter 2: Mobile genetic elements Staphylococcal cassette chromosome mec (SCCmec).

2.4.1 Mobile genetic elements Staphylococcal cassette chromosome mec (SCCmec) ... 19

2.4.2 Epidemiology and prevalence of MRSA in Malaysia and worldwide 20

2.4.3 Hospital-acquired MRSA (HA-MRSA) in Malaysia and worldwide 21

2.4.4 Community-acquired MRSA (CA-MRSA) .. 23

2.4.4.1 CA-MRSA in Malaysia and Worldwide .. 24

2.5 Phenotypic and genotypic detection of MRSA strains 27

2.6 Problems with antibiotic resistance among MRSA strains 30

2.6.1 Mupirocin resistance ... 33

2.6.2 Erythromycin resistance .. 33

2.6.3 Clindamycin resistance ... 34

2.6.4 Rifampicin resistance ... 35

2.6.5 Fusidic acid resistance ... 36

2.6.6 Linezolid resistance ... 37

2.6.7 Vancomycin resistance .. 37

2.6.8 Gentamicin resistance .. 39

2.6.9 Netilmicin resistance ... 39

2.6.10 Tetracycline resistance .. 40

2.6.11 Teicoplanin resistance ... 40

2.6.12 Ciprofloxacin resistance ... 41

2.6.13 Trimethoprim-sulfamethoxazole resistance 41

Chapter 3 Materials and Methods .. 43

3.1 Materials ... 43

3.1.1 Bacterial Strains ... 43

3.1.2 Chemicals, Reagents and Consumables ... 44

3.1.3 Restriction enzymes .. 45

3.1.4 DNA molecular weight markers .. 45

3.1.5 Primers and Oligonucleotides ... 45

3.1.6 Commercial Kits for extraction of genomic DNA and purification of PCR products .. 46

3.1.7. Softwares .. 46

3.2 Methods .. 46

3.2.1 Antibiotic Susceptibility Tests .. 46

3.2.2 DNA template preparation ... 48

3.2.2.1 Genomic DNA preparation .. 48
Chapter 4 Results

3.2.2.2 Crude lysate DNA template preparation by simple boiling method49
3.2.2.3 Genomic DNA preparation by using a commercial Genomic DNA purification kit ..49
3.2.3 Plasmid extraction by alkaline lysis method ..50
3.2.4 PCR detection of β-lactam, mupirocin, gentamicin, vancomycin, linezolid, erythromycin, tetracycline and fusidic acid resistance genes ...51
3.2.5 PCR detection of tetracycline and gentamicin resistance transposons56
3.2.6 Transfer of Antibiotic Resistance determinant by transformation57
3.2.6.1 Preparation of electro-competent S. aureus cells57
3.2.6.2 Preparation of electro-competent E. coli cells58
3.2.6.3 Transformation of electro-competent S. aureus cells58
3.2.7 PCR detection of chromosomal associated fusidic acid and rifampicin resistance gene ..59
3.2.7.1 Primer design of fusA gene ..61
3.2.8 Congo red agar (CRA) method for detection of biofilm formation phenotype 62
3.2.9 PCR detection of virulence genes ..62
3.2.10 agr grouping ..65
3.2.11 SCCmec typing and further sub-grouping of SCCmec type IV66
3.2.12 DNA fingerprinting of S. aureus strains ...68
3.2.12.1 PCR-RFLP of coa gene ..68
3.2.12.2 Pulsed-field Gel Electrophoresis (PFGE) ...68
3.2.12.3 spa typing ..69
3.2.12.4 Heteroduplex PCR for detection of MLST type ST239 and multilocus sequence typing (MLST) ...70
3.2.12.5 mec-associated direct repeat unit (dru) typing72
3.2.13 Fingerprint pattern analysis for PCR-RFLP of coa gene, PFGE spa and mec-associated dru typing ...72
3.2.15 Statistical Analysis ..73

Chapter 4 Results ...74

4.1 Bacterial Strains ..74
4.2 Antimicrobial Susceptibility Profiles ..75
4.3 Prevalence of β-lactam, mupirocin, gentamicin, vancomycin, linezolid, erythromycin, tetracycline and fusidic acid resistance genes in MRSA strains80
4.4 Determination of tetracycline and gentamicin transposon-associated genes by PCR ..88
4.5 Transferability of Antibiotic Resistance determinant by transformation89
4.6 Fusidic acid and rifampicin resistance determinants ...92
4.6.1 fusA primers designed ...92
4.6.2 Detection of rifampicin and fusidic acid resistance determinants by PCR93
4.7 Congo red agar (CRA) method for detection of biofilm formation phenotype ...97
4.8 Prevalence of virulence genes in MRSA strains...97
4.9 Prevalence of pvl gene in MRSA strains ...105
4.10 agr grouping of MRSA strains...105
4.11 SCCmec types ...106
4.12 Genomic Diversity of S. aureus strains...108
4.12.1 Genotypes of MRSA based on PCR-RFLP of coa gene108
4.12.2 Genotypes of MRSA based on Pulsed-field Gel Electrophoresis (PFGE)112
4.12.3 Genotypes of MRSA based on spa types ...118
4.12.4 Genotypes of MRSA based on Multilocus-sequence typing (MLST) of seven housekeeping genes ...121
4.12.5 Genotypes of MRSA based on mec-associated direct repeat unit (dru) types 125
4.13 Genomic changes of MRSA based on three different sequence typing methods.132
4.13.1 Genomic changes of MRSA based on spa typing ...132
4.13.2 Genomic changes of MRSA based on MLST ...134
4.13.3 Genomic changes in MRSA based on mec-associated dru typing136

Chapter 5 Discussion ..142
5.1 Antibiograms of MRSA strains from a Malaysian hospital142
5.2 β-lactam, mupirocin, gentamicin, vancomycin, linezolid, erythromycin, tetracycline and fusidic acid resistance genotypes in MRSA strains145
5.3 Detection of tetracycline and gentamicin transposon-associated genes148
5.4 Transferability of erythromycin and tetracycline resistance determinants by transformation ..149
5.5 Mutations analysis of rpoB (rifampicin) and fusA (fusidic acid) resistance determinants ...149
5.6 Biofilm formation phenotype by congo red agar (CRA)151
5.7 Virulence genes determinants by PCR ...152
5.8 Distribution of pvl genotypes among Malaysian MRSA strains155
5.9 Distribution of agr types among Malaysian MRSA strains156
5.10 Distribution of SCCmec types among Malaysian MRSA strains156
List of Figures

Figure 4.1 Distribution of the 188 MRSA strains by sources ..74
Figure 4.2 Distribution of the 188 MRSA strains by locations75
Figure 4.3 Representative plate used for the disk diffusion antibiotic susceptibility test,
MIC and D-zone test ..77
Figure 4.4 Representative agarose gels of PCR-amplified products using different
specific primers for detection of various resistant genes for the MRSA strains83
Figure 4.5 Representative agarose gel of PCR-amplified products using primers specific
for Tn5801-like int for tetM-positive strains ..89
Figure 4.6 Representative plate supplemented with 50 µg/ml erythromycin used for the
transformation test ..90
Figure 4.7 Agarose gel of EcoRI-digested plasmids extracted from MRSA strains and its
ATCC29213 transformants ..91
Figure 4.8 Representative agarose gels of PCR amplified products using genomic DNA
as template for detection of chromosomal associated rpoB and fusA genes95
Figure 4.9 MRSA strain in two representative plate used for detection of biofilm
formation with congo red agar ...97
Figure 4.10 Representative agarose gels of PCR amplified products using primers
specific for virulence genes ..100
Figure 4.11 Representative agarose gel of PCR amplified product using primer specific
for pvl gene ..105
Figure 4.12 Representative agarose gel of PCR amplified products using primers
specific for agr grouping for MRSA strains. ...106
Figure 4.13 Representative agarose gel of PCR-amplified products for SCCmec typing.
..107
Figure 4.14 Representative agarose gel of PCR-amplified products for SCCmec IVa.107
Figure 4.15 Three representative agarose gels of PCR-RFLP of coa gene for MRSA
strains ...110
Figure 4.16 Dendrogram of PCR-RFLP of coa gene of MRSA strains.111
Figure 4.17 Representative pulsed-field gels of Smal-digested genomic DNA from
MRSA strains ..115
Figure 4.18 Dendrogram of PFGE of MRSA strains ...117
Figure 4.19 Representative agarose gel of spa typing for MRSA strains119
Figure 4.20 Minimal spanning tree analyses for the spa types of 188 MRSA strains ..120
Figure 4.21 Representative agarose gel of PCR amplified products using primers specific for ST8, ST30 and ST239. .. 122

Figure 4.22 Representative agarose gel of PCR amplified products using primers specific for MLST. .. 123

Figure 4.23 Minimum spanning tree analyses for the MLST types of 188 MRSA strains. .. 124

Figure 4.24 Representative agarose gel of mec-associated dru typing for MRSA strains. .. 126

Figure 4.25 Minimal spanning tree analyses for the dru types of 188 MRSA strains. 127

Figure 4.26 Maximum Parsimony Tree derived from spa types of MRSA strains in 2003-04 and 2007-08 from UMMC, Malaysia ... 133

Figure 4.27 Maximum Parsimony Tree derived from MLST types of MRSA strains in 2003-04 and 2007-08 from UMMC, Malaysia. ... 135

Figure 4.28 Maximum Parsimony Tree derived from dru types of MRSA strains in 2003-04 and 2007-08 from UMMC, Malaysia .. 137

Figure 4.29 Distribution of different MLST-spa-dru types of MRSA strains from year 2003, 2004, 2007 and 2008 in the UMMC, Kuala Lumpur, Malaysia. 141
List of Table

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Outbreak caused by nosocomial S. aureus</td>
</tr>
<tr>
<td>2.2</td>
<td>Outbreak of staphylococcal food-borne poisoning in various countries</td>
</tr>
<tr>
<td>2.3</td>
<td>General properties and location of S. aureus enterotoxins genes</td>
</tr>
<tr>
<td>2.4</td>
<td>Characteristic of 11 types of SCCmec elements</td>
</tr>
<tr>
<td>2.5</td>
<td>Outbreak associated with by CA-MRSA</td>
</tr>
<tr>
<td>2.6</td>
<td>Mechanism of S. aureus resistance to selected antimicrobials</td>
</tr>
<tr>
<td>2.7</td>
<td>Occurrence of VISA or VRSA in various countries</td>
</tr>
<tr>
<td>3.1</td>
<td>Details of E. coli strains used in this study</td>
</tr>
<tr>
<td>3.2</td>
<td>List of enzymes used in this study</td>
</tr>
<tr>
<td>3.3</td>
<td>List of DNA molecular weight markers used in this study</td>
</tr>
<tr>
<td>3.4</td>
<td>List of commercial kits used in this study</td>
</tr>
<tr>
<td>3.5</td>
<td>List of software used in this study</td>
</tr>
<tr>
<td>3.6</td>
<td>Scheme for preparing dilutions of antimicrobial agents to be used in agar dilution susceptibility tests</td>
</tr>
<tr>
<td>3.7</td>
<td>Primer pairs, their respective sequences and amplification conditions for the various resistant genes</td>
</tr>
<tr>
<td>3.8</td>
<td>Primer pairs, their respective sequences and amplification conditions for transposons associated integrases</td>
</tr>
<tr>
<td>3.9</td>
<td>Primer pairs, their respective sequences and amplification conditions for the fusA, fusE and rpoB genes</td>
</tr>
<tr>
<td>3.10</td>
<td>Primer pairs, their respective sequences and amplification conditions for the various virulence genes</td>
</tr>
<tr>
<td>3.11</td>
<td>Primers sequences and their respective size for agr grouping</td>
</tr>
<tr>
<td>3.12</td>
<td>Primers sequences and their respective size for SCCmec typing</td>
</tr>
<tr>
<td>3.13</td>
<td>Primers sequences and their respective size for MLST</td>
</tr>
<tr>
<td>4.1</td>
<td>Antimicrobial resistance of MRSA strains tested for 14 antimicrobial agents</td>
</tr>
<tr>
<td>4.2</td>
<td>Resistance rates of Malaysian MRSA strains in year 2003 and 2008</td>
</tr>
<tr>
<td>4.3</td>
<td>MIC values of oxacillin, erythromycin, ciprofloxacin, tetracycline, rifampicin and fusidic acid-resistant MRSA strains</td>
</tr>
<tr>
<td>4.4</td>
<td>Resistance genes detected in the 188 MRSA strains</td>
</tr>
<tr>
<td>4.5</td>
<td>Transformation efficiencies, the size of EcoR1 digested plasmid, resistant gene transfer and the MIC for the selected MRSA strains and their transformants</td>
</tr>
<tr>
<td>4.6</td>
<td>Characteristics of rifampicin- and fusidic acid-resistant MRSA strains</td>
</tr>
<tr>
<td>4.7</td>
<td>Virulence genes detected in the 188 MRSA strains</td>
</tr>
</tbody>
</table>
Table 4.8: Prevalence of genes encoding virulence determinants in Malaysian MRSA strains in 2003, 2004, 2007 and 2008 ... 104
Table 4.9: Allelic profiles of different MLST types ... 123
Table 4.10: SCC\textit{mec} and \textit{agr}, \textit{spa}, MLST and \textit{dru} types, coa-RFLP and PFGE profiles of the 188 MRSA strains .. 128
Table 4.11: Summary of MLST, \textit{dru} and \textit{spa} types among 188 MRSA strains 138
List of Symbols and Abbreviations

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>-</td>
<td>beta</td>
</tr>
<tr>
<td>bp</td>
<td>-</td>
<td>base pair</td>
</tr>
<tr>
<td>CA-MRSA</td>
<td>-</td>
<td>community-acquired methicillin resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>CN</td>
<td>-</td>
<td>gentamicin</td>
</tr>
<tr>
<td>°C</td>
<td>-</td>
<td>Degree Celsius</td>
</tr>
<tr>
<td>CIP</td>
<td>-</td>
<td>ciprofloxacin</td>
</tr>
<tr>
<td>DA</td>
<td>-</td>
<td>clindamycin</td>
</tr>
<tr>
<td>ddH₂O</td>
<td>-</td>
<td>double deonised water</td>
</tr>
<tr>
<td>dru</td>
<td>-</td>
<td>direct repeat unit</td>
</tr>
<tr>
<td>ERY</td>
<td>-</td>
<td>erythromycin</td>
</tr>
<tr>
<td>FD</td>
<td>-</td>
<td>fusidic acid</td>
</tr>
<tr>
<td>g</td>
<td>-</td>
<td>gravity</td>
</tr>
<tr>
<td>g/l</td>
<td>-</td>
<td>gram per litre</td>
</tr>
<tr>
<td>HA-MRSA</td>
<td>-</td>
<td>hospital acquired methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>kDA</td>
<td>-</td>
<td>kilo-Dalton</td>
</tr>
<tr>
<td>kV</td>
<td>-</td>
<td>kilovolts</td>
</tr>
<tr>
<td>LZD</td>
<td>-</td>
<td>linezolid</td>
</tr>
<tr>
<td>M</td>
<td>-</td>
<td>molarity</td>
</tr>
<tr>
<td>min</td>
<td>-</td>
<td>minute</td>
</tr>
<tr>
<td>mg/ml</td>
<td>-</td>
<td>milligram per millilitre</td>
</tr>
<tr>
<td>ml</td>
<td>-</td>
<td>millilitre</td>
</tr>
<tr>
<td>mM</td>
<td>-</td>
<td>milimolar</td>
</tr>
<tr>
<td>MLST</td>
<td>-</td>
<td>multilocus sequence typing</td>
</tr>
<tr>
<td>mm</td>
<td>-</td>
<td>millimetre</td>
</tr>
<tr>
<td>mM</td>
<td>-</td>
<td>milimolar</td>
</tr>
<tr>
<td>MRSA</td>
<td>-</td>
<td>methicillin-resistant Staphylococcus aureus</td>
</tr>
<tr>
<td>MUP</td>
<td>-</td>
<td>mupirocin</td>
</tr>
</tbody>
</table>

xvi
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl</td>
<td>sodium chloride</td>
</tr>
<tr>
<td>ng</td>
<td>nanogram</td>
</tr>
<tr>
<td>NET</td>
<td>netilmicin</td>
</tr>
<tr>
<td>Ω</td>
<td>ohm</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase chain reactions</td>
</tr>
<tr>
<td>PFGE</td>
<td>pulsed-field gel electrophoresis</td>
</tr>
<tr>
<td>Pg</td>
<td>pictogram</td>
</tr>
<tr>
<td>RF</td>
<td>rifampicin</td>
</tr>
<tr>
<td>RFLP</td>
<td>restriction fragment length polymorphism</td>
</tr>
<tr>
<td>rpm</td>
<td>revolutions per minute</td>
</tr>
<tr>
<td>%</td>
<td>percent</td>
</tr>
<tr>
<td>sec</td>
<td>second</td>
</tr>
<tr>
<td>SXT</td>
<td>trimethoprim-sulfamethoxazole</td>
</tr>
<tr>
<td>TEC</td>
<td>teicoplanin</td>
</tr>
<tr>
<td>TET</td>
<td>tetracycline</td>
</tr>
<tr>
<td>U</td>
<td>unit</td>
</tr>
<tr>
<td>µF</td>
<td>microfarad</td>
</tr>
<tr>
<td>µg</td>
<td>microgram</td>
</tr>
<tr>
<td>µM</td>
<td>micomolar</td>
</tr>
<tr>
<td>µl</td>
<td>microlitre</td>
</tr>
<tr>
<td>UV</td>
<td>ultraviolet</td>
</tr>
<tr>
<td>V</td>
<td>volt</td>
</tr>
<tr>
<td>VA</td>
<td>vancomycin</td>
</tr>
<tr>
<td>V/cm</td>
<td>volt per centimetre</td>
</tr>
<tr>
<td>VISA</td>
<td>vancomycin intermediate Staphylococcus aureus</td>
</tr>
<tr>
<td>VRSA</td>
<td>vancomycin resistant Staphylococcus aureus</td>
</tr>
</tbody>
</table>
List of Appendices

APPENDIX 1 Bacterial Strains Information ...198
APPENDIX 2 Media, buffers and solution ..202
APPENDIX 3 Antimicrobial resistance profiles of the 188 MRSA strains207
APPENDIX 4 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified beta-lactam resistant gene (blaZ) from MRSA0810-6211
APPENDIX 5 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified tetracycline resistance protein class M (tetM) from MRSA0809-10212
APPENDIX 6 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified tetracycline resistance protein class K (tetK) from MRSA0704-15212
APPENDIX 7 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified ermA from MRSA0812-37 ..213
APPENDIX 8 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified ermC from MRSA0811-16 ..213
APPENDIX 9 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified aac(6’)-aph(2") from MRSA0707-26 ..214
APPENDIX 10 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified ileS2 from MRSA0406-8 ..214
APPENDIX 11 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified mupA from MRSA0406-8 ...215
APPENDIX 12 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified macrolide efflux (msrA) from MRSA0812-36216
APPENDIX 13 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified transposon Tn5801-like tetracycline resistance protein (tetM) from MRSA0805-15 ..216
APPENDIX 14 Allignment and mutation studies for fusA and rpoB genes using Mega4 programme ..217
APPENDIX 15 GenBank flat file for mutational changes in rpoB gene for MRSA0308-10 ..218
APPENDIX 16 GenBank flat file for mutational changes in rpoB gene for MRSA0308-23 ..219
APPENDIX 17 GenBank flat file for mutational changes in rpoB gene for MRSA0310-26 ..220
APPENDIX 18 GenBank flat file for mutational changes in rpoB gene for MRSA0705-13 ..221
APPENDIX 19 GenBank flat file for mutational changes in rpoB gene for MRSA0809-1 ... 222
APPENDIX 20 GenBank flat file for mutational changes in rpoB gene for MRSA0809-32 ... 223
APPENDIX 21 GenBank flat file for mutational changes in rpoB gene for MRSA0308-10 ... 224
APPENDIX 22 GenBank flat file for mutational changes in rpoB gene for MRSA0812-33 ... 225
APPENDIX 23 GenBank flat file for mutational changes in fusA gene for MRSA0307-23 ... 226
APPENDIX 24 GenBank flat file for mutational changes in fusA gene for MRSA0308-23 ... 227
APPENDIX 25 GenBank flat file for mutational changes in fusA gene for MRSA0310-26 ... 228
APPENDIX 26 GenBank flat file for mutational changes in fusA gene for MRSA0801-26 ... 229
APPENDIX 27 GenBank flat file for mutational changes in fusA gene for MRSA0805-15 ... 230
APPENDIX 28 GenBank flat file for mutational changes in fusA gene for MRSA0805-17 ... 231
APPENDIX 29 GenBank flat file for mutational changes in fusA gene for MRSA0807-8 ... 232
APPENDIX 30 GenBank flat file for mutational changes in fusA gene for MRSA0809-32 ... 233
APPENDIX 31 GenBank flat file for mutational changes in fusA gene for MRSA0810-7 ... 234
APPENDIX 32 GenBank flat file for mutational changes in fusA gene for MRSA0810-10 ... 235
APPENDIX 33 GenBank flat file for mutational changes in fusA gene for MRSA0810-17 ... 236
APPENDIX 34 GenBank flat file for mutational changes in fusA gene for MRSA08120-30 ... 237
APPENDIX 35 GenBank flat file for mutational changes in fusA gene for MRSA0811-25 ... 238
APPENDIX 36 GenBank flat file for mutational changes in fusA gene for MRSA0812-33 ... 239
APPENDIX 37 GenBank flat file for mutational changes in fusA gene for MRSA0810-6 ... 240
APPENDIX 38 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified enterotoxin type A (sea) from MRSA0811-1 ... 241
APPENDIX 39 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified enterotoxin type C (sec) from MRSA0309-10

APPENDIX 40 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified enterotoxin type G (seg) from MRSA0811-30

APPENDIX 41 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified enterotoxin I (sei) from MRSA0805-10

APPENDIX 42 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified enfoliative toxin D (etd) from MRSA0806-13

APPENDIX 43 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified extracellular fibrinogen-binding protein (efb) from MRSA0812-17

APPENDIX 44 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified extracellular fibrinogen-binding protein (fnbA) from MRSA0812-17

APPENDIX 45 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified gamma hemolysin (hlg) from MRSA0801-21

APPENDIX 46 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified intercellular adhesion protein A (icaA) from MRSA0801-21

APPENDIX 47 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified bone sialoprotein-binding protein (sdrE) from MRSA0812-17

APPENDIX 48 Standard Open Reading Frame BLAST search results for DNA sequence of the amplified panton-valentine leukocidin (pvl) from MRSA0805-10

APPENDIX 49 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified agr type I (agrB, agrD, agrC gene) from MRSA0806-21

APPENDIX 50 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified agr type II (agrD, agrC, agrB gene) from MRSA0812-36

APPENDIX 51 Standard Nucleotide-nucleotide BLAST search results for DNA sequence of the amplified agr type III (agrD, agrC, agrB gene) from MRSA0806-13

APPENDIX 52 New spa type (t6405) assigned from ridom spa server for MRSA0802-3

APPENDIX 53 Multilocus query result for MLST type ST239

APPENDIX 54 Allelic profile query for MLST type ST239

APPENDIX 55 New dru types assigned from dru server