LIST OF FIGURES

- Figure 1.1 Some of the common polybasic acids used for preparation of 18 alkyd
- Figure 1.2 The properties to be expected from an alkyd of different oil 22 length and iodine number (Adapted from Alkyd Resin Technology⁷⁹, page 175)
- Figure 1.3 Chemical structure proposed for alkyds formed by fatty acid 26 procedure
- Figure 1.4 Chemical structure proposed for alkyds formed by alcoholysis 27 (monoglyceride) procedure
- Figure 1.5 The esterification reaction for the alkyds synthesized from 29 anhydrides
- Figure 1.6 Effect of esterification temperature and reaction time on 31 viscosity of a typical medium oil linseed alkyd (Adapted from The Chemistry and Processing of Alkyd Resins⁸⁹)
- Figure 1.7 Effect of esterification temperature and reaction time on acid 32 value of a typical medium oil linseed alkyd (Adapted from The Chemistry and Processing of Alkyd Resins⁸⁹)
- Figure 1.8 Metabolic pathway involved in the synthesis and breakdown of 36 PHB in *R. eutropha*¹¹⁹
- Figure 2.1 The set-up of an alkyd cook: 2-litre reaction flask (A); 56Thermometer (B); Dean and Stark decanter (C); Stirrer motor(D) and Condenser (E).
- Figure 2.2 The reactions of ENR/mcl-PHA in an oil bath set at 170°C: Hot 60 plate and stirrer (A); Magnetic stirrer (B); Oil bath (C) and

xvii

Thermometer (D).

Figure 2.3	The Ubbelohde viscometer	67
Figure 3.1	Preparation of PKO alkyds	73
Figure 3.2	A plausible reaction mechanism in the preparation of alkyd A1	77
Figure 3.3	A plausible reaction mechanism in the preparation of alkyd A2	79
Figure 3.4	A plausible reaction mechanism in the preparation of the alkyd A3	80
Figure 3.5	Changes in acid numbers with reaction time during the synthesis	84
	of alkyd A1	
Figure 3.6	Changes in acid numbers with reaction time during the synthesis	87
	of alkyds: ▲, A2 prepared at 120-130°C; *, A3 prepared at	
	180°C.	
Figure 3.7	FTIR spectra of alkyds: A1 (A); A2 (B) and A3 (C).	89
Figure 3.8	FTIR spectra of the initial ENR (A); alkyd A1 (B) and ENR/A1	97
	(C).	
Figure 3.9	FTIR spectra of the initial ENR (A); alkyd A2 (B) and ENR/A2	98
	(C).	
Figure 3.10	FTIR spectra of the initial ENR (A); alkyd A3 (B) and ENR/A3	99
	(C).	
Figure 3.11	FTIR spectra of the ENR/A1 at different reaction time: 1 week	100
	(A); 1 month (B) and 3 months (C).	
Figure 3.12	FTIR spectra of the ENR/A2 at different reaction time: 1 week	101
	(A); 1 month (B) and 3 months (C).	
Figure 3.13	FTIR spectra of the ENR/A3 at different reaction time: 1 week	102
	(A); 1 month (B) and 3 months (C).	
Figure 3.14	The predominant crosslinking reaction between ENR and alkyd	112
Figure 3.15	Changes in acid numbers with reaction time during the synthesis	115

of alkyd A4.

Figure 3.16	Molecular structure of alkyd A4 as could be determined from	117
	¹ H-NMR spectrum	
Figure 3.17	¹ H-NMR spectrum of alkyd A4	119
Figure 3.18	FTIR spectra of alkyds: A1 (A) and A4 (B).	120
Figure 3.19	The ¹ H-NMR spectrum of ENR.	127
Figure 3.20	The ¹ H-NMR spectrum of A4 _{2.0} .	128
Figure 3.21	A plausible esterification between ENR and alkyd	129
Figure 4.1	The ¹ H-NMR spectra of NR (A) and ENR 50 (B).	134
Figure 4.2	The reduced (η_{sp}/c) and inherent $(ln\eta_{r}/c)$ viscosities vs.	140
	concentration (c) for ENR before heated at 170°C for 30	
	minutes: \blacktriangle values of η_{sp}/c ; \bullet values of $\ln\eta_{r}/c$.	
Figure 4.3	The reduced (η_{sp}/c) and inherent $(ln\eta_{r}/c)$ viscosities vs.	141
	concentration (c) for ENR after heated at 170°C for 30 minutes:	
	▲ values of η_{sp} / c ; • values of $\ln \eta_r / c$.	
Figure 4.4	The ¹ H-NMR spectra of ENR at ambient temperature (A) and	144
	heated at 170°C for 30 minutes (B).	
Figure 4.5	Random chain scission at ester groups in PHA.	147
Figure 4.6	Molecular structure of mcl-PHA as could be determined from	150
	¹ H-NMR spectrum	
Figure 4.7	¹ H-NMR spectrum of mcl-PHA derived from oleic acid: at	151
	ambient temperature (A) and heated at 170°C for 30 minutes	
	(B).	
Figure 4.8	Hydrolysis in mcl-PHA.	152

Figure 4.9FTIR spectrum of ENR154

- Figure 4.10 FTIR spectrum of mcl-PHA
- Figure 4.11 FTIR spectra of ENR (A); mcl-PHA (B); P₁₀ blend at ambient 156 temperature (C), and after reacting at 170°C for 30 minutes (D).
- Figure 4.12 FTIR spectra of P₁₀ reacted 30 minutes at different 158 temperatures: 30°C (A); 50°C (B); 70°C (C); 100°C (D); 130°C (E); 150°C (F), and 170°C (G).
- Figure 4.13 FTIR spectra of P₁₀ reacted at 170°C under different heating 159 durations: 10 minutes (A); 20 minutes (B); 30 minutes (C).
- Figure 4.14 The ¹H-NMR spectra of P_{10} blends, reacted for 30 minutes at: 161 ambient temperature (A) and 170°C (B).
- Figure 4.15 A plausible reaction mechanism in ENR and mcl-PHA. 162
- Figure 4.16 FTIR spectra of ENR/PHA blends of varied mcl-PHA 164 composition: P₁₀ (A); P₃₀ (B); P₅₀ (C); P₇₀ (D), and P₉₀ (E).
- Figure 4.17 DSC thermogram for P_{10} reacted at 170°C for 30 minutes 166
- Figure 1 DSC thermogram for ENR 50 187
- Figure 2 DSC thermogram for alkyd A4 187
- Figure 3 DSC thermogram for A4_{0.5} reacted at ambient temperature for 3 188 hours
- Figure 4 DSC thermogram for A4_{1.0} reacted at ambient temperature for 3 188 hours
- Figure 5 DSC thermogram for A4_{1.5} reacted at ambient temperature for 3 189 hours
- Figure 6 DSC thermogram for A4_{1.0} reacted at ambient temperature for 1 189 hour
- Figure 7 DSC thermogram for $A4_{1,0}$ reacted at ambient temperature for 2 190 hours

154

Figure 8	DSC thermogram for $A4_{1.0}$ reacted at ambient temperature for 3	190
	hours	
Figure 9	DSC thermogram for $A4_{1.0}$ reacted at ambient temperature for 4	191
	hours	
Figure 10	DSC thermogram for $A4_{1.0}$ reacted at ambient temperature for 5	191
	hours	
Figure 11	DSC thermogram for $A4_{1.0}$ reacted at ambient temperature for 6	192
	hours	
Figure 12	DSC thermogram for mcl-PHA	193
Figure 13	DSC thermogram for mcl-PHA after heated at 170°C for 30	193
	minutes	
Figure 14	DSC thermogram for P ₃₀ after reacted at 170°C for 30 minutes	194
Figure 15	DSC thermogram for P ₅₀ after reacted at 170°C for 30 minutes	194
Figure 16	DSC thermogram for P ₇₀ after reacted at 170°C for 30 minutes	195
Figure 17	DSC thermogram for P ₉₀ after reacted at 170°C for 30 minutes	195