LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Some of the common polybasic acids used for preparation of alkyd</td>
<td>18</td>
</tr>
<tr>
<td>1.2</td>
<td>The properties to be expected from an alkyd of different oil length and iodine number (Adapted from Alkyd Resin Technology79, page 175)</td>
<td>22</td>
</tr>
<tr>
<td>1.3</td>
<td>Chemical structure proposed for alkyds formed by fatty acid procedure</td>
<td>26</td>
</tr>
<tr>
<td>1.4</td>
<td>Chemical structure proposed for alkyds formed by alcoholysis (monoglyceride) procedure</td>
<td>27</td>
</tr>
<tr>
<td>1.5</td>
<td>The esterification reaction for the alkyds synthesized from anhydrides</td>
<td>29</td>
</tr>
<tr>
<td>1.6</td>
<td>Effect of esterification temperature and reaction time on viscosity of a typical medium oil linseed alkyd (Adapted from The Chemistry and Processing of Alkyd Resins89)</td>
<td>31</td>
</tr>
<tr>
<td>1.7</td>
<td>Effect of esterification temperature and reaction time on acid value of a typical medium oil linseed alkyd (Adapted from The Chemistry and Processing of Alkyd Resins89)</td>
<td>32</td>
</tr>
<tr>
<td>1.8</td>
<td>Metabolic pathway involved in the synthesis and breakdown of PHB in \textit{R. eutropha}119</td>
<td>36</td>
</tr>
<tr>
<td>2.1</td>
<td>The set-up of an alkyd cook: 2-litre reaction flask (A); Thermometer (B); Dean and Stark decanter (C); Stirrer motor (D) and Condenser (E).</td>
<td>56</td>
</tr>
<tr>
<td>2.2</td>
<td>The reactions of ENR/mcl-PHA in an oil bath set at 170°C: Hot plate and stirrer (A); Magnetic stirrer (B); Oil bath (C) and</td>
<td>60</td>
</tr>
</tbody>
</table>
Thermometer (D).

Figure 2.3 The Ubbelohde viscometer 67

Figure 3.1 Preparation of PKO alkyds 73

Figure 3.2 A plausible reaction mechanism in the preparation of alkyd A1 77

Figure 3.3 A plausible reaction mechanism in the preparation of alkyd A2 79

Figure 3.4 A plausible reaction mechanism in the preparation of the alkyd A3 80

Figure 3.5 Changes in acid numbers with reaction time during the synthesis of alkyd A1 84

Figure 3.6 Changes in acid numbers with reaction time during the synthesis of alkyds: ▲, A2 prepared at 120-130°C; *, A3 prepared at 180°C. 87

Figure 3.7 FTIR spectra of alkyds: A1 (A); A2 (B) and A3 (C). 89

Figure 3.8 FTIR spectra of the initial ENR (A); alkyd A1 (B) and ENR/A1 (C). 97

Figure 3.9 FTIR spectra of the initial ENR (A); alkyd A2 (B) and ENR/A2 (C). 98

Figure 3.10 FTIR spectra of the initial ENR (A); alkyd A3 (B) and ENR/A3 (C). 99

Figure 3.11 FTIR spectra of the ENR/A1 at different reaction time: 1 week (A); 1 month (B) and 3 months (C). 100

Figure 3.12 FTIR spectra of the ENR/A2 at different reaction time: 1 week (A); 1 month (B) and 3 months (C). 101

Figure 3.13 FTIR spectra of the ENR/A3 at different reaction time: 1 week (A); 1 month (B) and 3 months (C). 102

Figure 3.14 The predominant crosslinking reaction between ENR and alkyd 112

Figure 3.15 Changes in acid numbers with reaction time during the synthesis 115
of alkyd A4.

Figure 3.16 Molecular structure of alkyd A4 as could be determined from \(^1\)H-NMR spectrum

Figure 3.17 \(^1\)H-NMR spectrum of alkyd A4

Figure 3.18 FTIR spectra of alkyds: A1 (A) and A4 (B).

Figure 3.19 The \(^1\)H-NMR spectrum of ENR.

Figure 3.20 The \(^1\)H-NMR spectrum of A4\(_{2.0}\).

Figure 3.21 A plausible esterification between ENR and alkyd

Figure 4.1 The \(^1\)H-NMR spectra of NR (A) and ENR 50 (B).

Figure 4.2 The reduced (\(\eta_{sp}/c\)) and inherent (\(\ln \eta_{v}/c\)) viscosities vs. concentration (c) for ENR before heated at 170°C for 30 minutes: ▲ values of \(\eta_{sp}/c\); ● values of \(\ln \eta_{v}/c\).

Figure 4.3 The reduced (\(\eta_{sp}/c\)) and inherent (\(\ln \eta_{v}/c\)) viscosities vs. concentration (c) for ENR after heated at 170°C for 30 minutes:

▲ values of \(\eta_{sp}/c\); ● values of \(\ln \eta_{v}/c\).

Figure 4.4 The \(^1\)H-NMR spectra of ENR at ambient temperature (A) and heated at 170°C for 30 minutes (B).

Figure 4.5 Random chain scission at ester groups in PHA.

Figure 4.6 Molecular structure of mcl-PHA as could be determined from \(^1\)H-NMR spectrum

Figure 4.7 \(^1\)H-NMR spectrum of mcl-PHA derived from oleic acid: at ambient temperature (A) and heated at 170°C for 30 minutes (B).

Figure 4.8 Hydrolysis in mcl-PHA.

Figure 4.9 FTIR spectrum of ENR
Figure 4.10 FTIR spectrum of mcl-PHA

Figure 4.11 FTIR spectra of ENR (A); mcl-PHA (B); P10 blend at ambient temperature (C), and after reacting at 170°C for 30 minutes (D).

Figure 4.12 FTIR spectra of P10 reacted 30 minutes at different temperatures: 30°C (A); 50°C (B); 70°C (C); 100°C (D); 130°C (E); 150°C (F), and 170°C (G).

Figure 4.13 FTIR spectra of P10 reacted at 170°C under different heating durations: 10 minutes (A); 20 minutes (B); 30 minutes (C).

Figure 4.14 The 1H-NMR spectra of P10 blends, reacted for 30 minutes at: ambient temperature (A) and 170°C (B).

Figure 4.15 A plausible reaction mechanism in ENR and mcl-PHA.

Figure 4.16 FTIR spectra of ENR/PHA blends of varied mcl-PHA composition: P10 (A); P30 (B); P50 (C); P70 (D), and P90 (E).

Figure 4.17 DSC thermogram for P10 reacted at 170°C for 30 minutes

Figure 1 DSC thermogram for ENR 50

Figure 2 DSC thermogram for alkyd A4

Figure 3 DSC thermogram for A40.5 reacted at ambient temperature for 3 hours

Figure 4 DSC thermogram for A41.0 reacted at ambient temperature for 3 hours

Figure 5 DSC thermogram for A41.5 reacted at ambient temperature for 3 hours

Figure 6 DSC thermogram for A41.0 reacted at ambient temperature for 1 hour

Figure 7 DSC thermogram for A41.0 reacted at ambient temperature for 2 hours
Figure 8 DSC thermogram for A4$_{1.0}$ reacted at ambient temperature for 3 hours

Figure 9 DSC thermogram for A4$_{1.0}$ reacted at ambient temperature for 4 hours

Figure 10 DSC thermogram for A4$_{1.0}$ reacted at ambient temperature for 5 hours

Figure 11 DSC thermogram for A4$_{1.0}$ reacted at ambient temperature for 6 hours

Figure 12 DSC thermogram for mcl-PHA

Figure 13 DSC thermogram for mcl-PHA after heated at 170°C for 30 minutes

Figure 14 DSC thermogram for P$_{30}$ after reacted at 170°C for 30 minutes

Figure 15 DSC thermogram for P$_{50}$ after reacted at 170°C for 30 minutes

Figure 16 DSC thermogram for P$_{70}$ after reacted at 170°C for 30 minutes

Figure 17 DSC thermogram for P$_{90}$ after reacted at 170°C for 30 minutes