LIST OF TABLES

		Page
Table 1.1	The specific interactions between the constituents in a miscible	10
	polymer blend	
Table 1.2	Some of the common polyhydric alcohols used for preparation of	15
	alkyd	
Table 1.3	Characteristics of the alkyd preparation process	25
Table 1.4	Production of PHA by various bacteria ¹²¹	38
Table 1.5	PHA degrading micro-organisms isolated from various	43
	environments ¹¹⁸	
Table 1.6	Characteristics of biodegradable plastics	44
Table 1.7	Manufacturers and the microorganism, raw materials used for the	45
	production of biodegradable plastics ¹²¹	
Table 2.1	Technical specifications of ENR 50	52
Table 2.2	Characteristics and compositions of palm kernel oil ¹⁸⁰	53
Table 2.3	Properties of mcl-PHA derived from oleic acid ¹⁸¹	53
Table 2.4	Monomer compositions of mcl-PHA derived from oleic acid ¹⁸¹	54
Table 2.5	Formulation of alkyd A1	55
Table 3.1	An example of theoretical calculation for the formulation of	74
	alkyd A1 ¹⁸²	
Table 3.2	Acid numbers during synthesis of A1	81
Table 3.3	Standardization of KOH solution	82
Table 3.4	Titration results of A1 with standardized KOH solution	83
Table 3.5	Acid numbers during synthesis of A2	85
Table 3.6	Acid numbers during synthesis of A3	86
Table 3.7	Major absorption peaks of alkyds	90

Table 3.8	Standardization of KOH solution	91
Table 3.9	Titration results of A1 with standardized KOH solution	92
Table 3.10	Hydroxyl and acid numbers of alkyd resins	93
Table 3.11	Amount of functional groups in the initial ENR/Alkyd mixture	96
Table 3.12	Absorbance ratio of A_{873}/A_{1457} and A_{1734}/A_{1457} for ENR/A1 at	103
	different reaction times	
Table 3.13	Absorbance ratio of A_{873}/A_{1457} and A_{1734}/A_{1457} for ENR/A2 at	104
	different reaction times	
Table 3.14	Absorbance ratio of A_{873}/A_{1457} and A_{1734}/A_{1457} for ENR/A3 at	104
	different reaction times	
Table 3.15	% swelling of the crosslinked ENR/A1 in toluene	106
Table 3.16	% swelling of the crosslinked ENR/A2 in toluene	107
Table 3.17	% swelling of the crosslinked ENR/A3 in toluene	107
Table 3.18	Summary of the % swelling of the crosslinked ENR in toluene	108
Table 3.19	Physical effective crosslink density, η_{phy} , number average	111
	molecular weight between crosslink, M_{c} , and modulus of swollen	
	crosslinked ENR, G	
Table 3.20	Acid number for A4 during synthesis	114
Table 3.21	Properties of alkyd A4	116
Table 3.22	Composition of initial ENR/A4 mixture	121
Table 3.23	Glass transition temperatures of ENR/A4 blends	123
Table 3.24	Glass transition temperature, T_g (onset), for A4 _{1.0} reacted at	125
	ambient temperature under different reaction times	
Table 3.25	Absorbance ratio of A_{873}/A_{1457} and A_{1734}/A_{1457} for $A4_{1.0}$ at	130
	different reaction times	
Table 4.1	Solution viscosity definitions	135

Table 4.2	Solvent flow time for toluene	137
Table 4.3	Solution flow time for ENR before and after heated at 170°C	137
Table 4.4	The relative, specific, reduced and inherent viscosities of ENR	138
Table 4.5	Property changes in ENR before and after heated at 170°C	142
Table 4.6	Epoxy contents of ENR before and after heating at 170°C	145
Table 4.7	Standardization of KOH solution	148
Table 4.8	Titration results of mcl-PHA with standardized KOH solution	148
Table 4.9	Property changes in mcl-PHA before and after heated at 170°C	150
Table 4.10	Major absorption peaks of ENR	155
Table 4.11	Major absorption peaks of mcl-PHA	155
Table 4.12	Composition of initial ENR/PHA mixture	163
Table 4.13	Glass transition temperatures of ENR/PHA	167