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ABSTRACT

Nonclassical Properties of Light in Atom-Cavity Interaction Scheme with

Time- and Intensity-Dependent Coupling

The nonclassical properties of light and atomic dynamics are studied. The system

considered are two level atom interact with a quantized field in a high quality cavity,

which is recognized as the Jaynes-Cumming Model. The time- and intensity-dependent

atom-field coupling are applied to the system, with different initial field states and initial

atomic states. We also extend the system for three level atom in a cavity, and include the

dissipative mechanism in the system. We consider the laser driven three level atom in a

cavity coupled to a reservoir. Interesting effects of the transient coupling are analyzed

through the collapse-revival pattern in population inversion, while the nonclassicality of

cavity field is studied through the features in the evolution of Wigner function. The inver-

sion of initial superposed atomic state seems to be independent of initial classical fields

but can be stimulated by the Schrodinger cat field. In two level system, the oscillatory

coupling coefficient can prolong the occurrence of collapse, in analogy to the Zeno ef-

fect. The intensity atom-field coupling duration is an important parameter for controlling

atomic inversion and producing frozen nonclassical light in the cavity after the atom-field

coupling ceases. The theory developed will provide useful physical insights for future

experimental work and enhance significant knowledge on the nonclassicality of light in

matter-wave interaction. The research results will particularly benefit quantum informa-

tion technology.
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ABSTRAK

Ciri-ciri Kuantum bagi Cahaya dalam Interaksi Antara Cahaya-Jasad dengan

Fungsi Gandingan Bersandarkan Masa dan Keamatan Cahaya

Ciri-ciri optik yang melangkaui interpretasi klasik iaitu sifat kuantum, dikaji bagi

memahami dinamik cahaya dan atom. Sistem kuantum yang dipertimbangkan dalam

kajian ini ialah sistem atom dua aras yang berinteraksi dengan medan cahaya terkuan-

tum dalam rongga berkualiti tinggi, yang juga dikenali sebagai model Jaynes-Cumming.

Gandingan atom-cahaya bersandarkan masa dan keamatan diaplikasikan keatas sistem,

dengan keadaan awalan medan cahaya dan keadaan awalan atom yang berbeza. Kami

juga mempraktikkan kaedah yang sama keatas sistem yang lebih kompleks iaitu sis-

tem atom tiga aras yang juga diletakkan dalam rongga, dan mengambilkira mekanisma

pereputan. Atom tiga aras ini di pandu oleh laser dalam rongga tertutup dan berinter-

aksi dengan takungan sinaran. Kesan yang menarik dalam gandingan transien dianalisis

melalui corak runtuh-pulih dalam songsangan populasi, manakala kekuantuman medan

rongga dikaji melalui sifat medan dalam evolusi fungsi Wigner. Songsangan bagi atom

berkeadaan superposisi kelihatan tidak bersandar kepada medan klasikal tetapi boleh di-

rangsang dengan menggunakan medan Schrodinger cat. Dalam sistem dua aras, koefisyen

gandingan ayunan boleh memanjangkan keadaan keruntuhan, sebagai analogi kepada ke-

san Zeno. Tempoh keamatan gandingan atom-medan merupakan parameter yang pent-

ing untuk mengawal songsangan atomik dan menghasilkan cahaya kuantum yang ter-

beku dalam rongga selepas gandingan atom-medan terhenti. Teori yang dibangunkan

akan menyediakan pengetahuan fizikal yang berguna untuk kajian bereksperimen dan

sekaligus meningkatkan serta menambah ilmu yang bermanfaat dalam kajian interaksi

jasad-gelombang dan sifatnya yang melangkaui interpretasi klasik. Hasil kajian ini adalah

bermanfaat untuk teknologi kuantum informasi khasnya.
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CHAPTER 1

INTRODUCTION TO QUANTUM OPTICS

1.1 Introduction

Quantum optics is a quantum interpretation of phenomenon involving light and its

behaviour against the interaction with matter. The study involving light-matter interac-

tions become very popular among scientists theoretically as well as experimentally due to

its advantageous application for future technologies. This study is beneficial to the quan-

tum information, laser science, quantum communication, quantum cryptography, telepor-

tation and many more.

The study of quantum optics begins as early as 1801 by the double-slit experiment

of Young (Fox, 2006). Around 1970, the first laboratory experiment observing the non-

classicallity of light such as photon antibunching lead to the enormously studies in this

field. By the 1980s the theorists realized the possible interaction between single atoms

and single modes of the electromagnetic field. This interaction is the simplest model to

study the light-matter interaction which is called the Jaynes-Cumming model named after

the founder.The transition dynamics of atom becomes wholly reversible (Gerry & Knight,

2004), as the atomic inversion shows the collapse-revival pattern, until coherence is even-

tually lost through a dissipative “decoherence” process. Nowadays, the theories expanded

and it encompasses many new and interesting topics and now becomes cross disciplinary.

1.2 Operators and States

A quantum system can be represented by a state vector denote as the ket |ψ̂〉. A pure

state is described by a single state vector while in contrast a mixed state is an ensemble

of several quantum states. If the system has n possible states, the linear superposition of

states is given by

|ψ〉= ∑
n

λn |φn〉 (1.1)
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where λn is amplitude written in a complex number form while its adjoint state is defined

as

〈ψ|= ∑
n

λ
∗
n 〈φn| (1.2)

The basis state |φn〉 are assumed orthonormal with 〈φn|φm〉= δnm and complete ∑n |φn〉〈φn|=

1. The coefficient λn

λn = 〈φn|ψ〉

is normalize according to

〈ψ|ψ〉= ∑
n
|λn|2 = 1 (1.3)

A complete description of one system must contain an operator. When an operator

act on a state, it will produce another state which is generally is not normalize. The

properties of a Hermitian operator, let say Â and its conjugate Â†, must comply

(
Â†
)†

= Â(
Â+ B̂

)†
= Â† + B̂†(

ÂB̂
)†

= B̂†Â†(
λ Â
)†

= λ
∗Â†

where B̂ is any other operator and λ is a complex number coefficient. Atomic operator

and field operator which are commonly used in light-latter interaction will be discussed

in the next section.

1.2.1 Atomic Operators

For atomic state, if we use |a〉 as an exited state and |b〉 as a ground state, the raising

operator σ̂+, the lowering operator σ̂−, and the operator relation can be represented in

Pauli matrices which are Hermitian and unitary in a set of three 2× 2 complex matrices

as below

σ̂1 = σ̂++ σ̂− =

 0 1

1 0

 (1.4)

σ̂2 = i(σ̂−− σ̂+) =

 0 −i

i 0

 (1.5)
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σ̂3 = |a〉〈a|− |b〉〈b|=

 1 0

0 −1

 (1.6)

where

σ̂+ = |a〉〈b|=

 0 1

0 0

 (1.7)

σ̂− = |b〉〈a|=

 0 0

1 0

 (1.8)

1 = |a〉〈a|+ |b〉〈b|=

 1 0

0 1

 (1.9)

An atomic operator satisfy the spin 1/2 algebra which state that:

[σ̂−, σ̂+] = −σ̂z

[σ̂−, σ̂z] = 2σ̂−

Some basic operations on the operators can be done, for example

σ̂+σ̂+ =

 0 1

0 0


 0 1

0 0

= 0 (1.10)

σ̂−σ̂− =

 0 0

1 0


 0 0

1 0

= 0 (1.11)

σ̂+σ̂− =

 0 1

0 0


 0 0

1 0

=

 1 0

0 0

 (1.12)

σ̂−σ̂+ =

 0 0

1 0


 0 1

0 0

=

 0 0

0 1

 (1.13)

1.2.2 Field Operator

Since the system is considered in a fully quantum treatment, the operator of field is

used. For field states, operator n̂ is defined as a number operator while |n〉 is an energy

eigenstate, where

n̂ = â†â
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n̂† =
(

â†â
)†

= â†â = n̂

with â† and â are creation and annihilation operator respectively, for photon in the field

where the definitions are

â =
∞

∑
n=0

√
n+1 |n〉〈n+1| (1.14)

â† =
∞

∑
n=0

√
n+1 |n+1〉〈n|

The action of operator â and â†on a basis |n〉 and 〈n| (Barnett & Radmore, 1997) gives

â |n〉 =
√

n |n−1〉 (1.15)

â† |n〉 =
√

n+1 |n+1〉

〈n| â =
√

n+1〈n+1|

〈n| â† =
√

n〈n−1|

â†â |n〉 = n |n〉

ââ† |n〉 = n+1 |n〉

〈n| â†â = 〈n|n

〈n| ââ† = 〈n|n+1

1.2.3 Fock State and Vacuum State

A single-mode field of frequency ν with creation and annihilation operators â† and

â has an energy eigenvalue En while the corresponding energy eigenstate is |n〉 which

satisfies

Ĥ |n〉 = h̄ν

(
â†â+

1
2

)
|n〉 (1.16)

= En |n〉

â† and â has the commutation relation
[
â, â†] = 1. From the number state defined in

previous section, we know that â†â |n〉= n |n〉 the equation becomes

Ĥ |n〉 = h̄ν

(
â†â+

1
2

)
|n〉 (1.17)

= h̄ν

(
n+

1
2

)
|n〉

4



So we get the energy eigenvalue for state |n〉, given by

En = h̄ν

(
n+

1
2

)
(1.18)

for n = 0,1,2....∞. From the equation above, it is easy to show that the zero-point energy

(n = 0) still has a value of E0 =
1
2 h̄ν . This state is called a vacuum state.

1.2.4 Coherent States

Coherent state describes the quantum state of a laser, are the most familiar and im-

portant in quantum systems. It has a minimum-uncertainty state, which is generated by

an ideal amplitude-stabilised gas laser. A single mode coherent state is given by Glauber

displacement operator

D̂(α) = e(α â†−α∗â) (1.19)

where α = |α|eiθ is a complex number which means there is a different coherent state

for every possible choice of α . Coherent state appears frequently in the field of quantum

optics and plays an important role in the understanding the system of light-matter inter-

actions. Using operator ordering theorem (Barnett & Radmore, 1997), the single mode

coherent state |α〉 is given by

|α〉 = D̂(α) |0〉 (1.20)

= e−|α|
2/2eα â†

e−α∗â |0〉

= e−|α|
2/2eα â† |0〉

= e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉

Vacuum state is also a coherent state with α = 0.

1.2.5 Cat State

Another useful states in quantum information science is the cat state. It is named

after Schrodinger cat state which predicts the probability of a cat inside a box being

dead or alive after a while depending on the initial state. The same analogy applies to a

quantum system which is very useful to explain the entanglement properties. Cat states

are equal coherent superpositions of two different quantum states, named even and odd cat

state. This state is important to be applied in quantum information processing, quantum

5



computing and quantum communication. For example, quantum error correction and

entanglement purification have been studied using cat states to overcome the decoherence

problem in dissipative environment (Jeong & Ralph, 2007).

If we denote an even cat state as |α〉 and its odd cat state as |−α〉, the superposition

of the cat state is

|αcat〉= |α〉+ |−α〉 (1.21)

where |α〉 is coherent state in the Fock number basis as defined in the previous section

|α〉 = e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉 (1.22)

|−α〉 = e−|−α|2/2
∞

∑
n=0

(−α)n
√

n!
|n〉 (1.23)

so |αcat〉 becomes∣∣∣α(+)
cat

〉
= |α〉+ |−α〉 (1.24)

= 2e−|α|
2/2

(
(−α)0
√

0!
|0〉+ (−α)2

√
2!
|2〉+ ...

)

which only contains even terms. From here, we can also get the even cat states by∣∣∣α(−)
cat

〉
= |α〉− |−α〉 (1.25)

= 2e−|α|
2/2

(
(−α)1
√

1!
|1〉+ (−α)3

√
3!
|3〉+ ...

)

1.3 The Density Matrix

The density matrix is introduced to describe an ensemble of several quantum states

of a system which also defined as a mixed state. The density operator (Meystre & Sargent,

2007) is defined as

ρ̂ = |ψ〉〈ψ| (1.26)

If we have an observable operator represented by a Hermitian operator
〈
Ô
〉

with matrix

elements Omn = 〈m| ρ̂ |n〉, the mean value of O is

〈
Ô
〉

= 〈ψ| Ô |ψ〉= ∑
mn

C∗mCnOmn (1.27)

= ∑
mn

ρmnOmn = Tr
{

ρ̂Ô
}

6



The evolution equation of the density operator can then be derived as

d
dt

ρ̂ =
d
dt

(|ψ〉〈ψ|) (1.28)

=

(
d
dt
|ψ〉
)
〈ψ|+ |ψ〉 d

dt
〈ψ|

If we substitute the equation of motion ih̄ d
dt |ψ〉 = Ĥ|ψ〉 and −ih̄ d

dt 〈ψ| = 〈ψ| Ĥ into the

the above equation, we obtain

d
dt

ρ̂ =
1
ih̄

Ĥ|ψ〉〈ψ|− 1
ih̄
|ψ〉〈ψ| Ĥ (1.29)

=
1
ih̄

Ĥρ̂− 1
ih̄

ρ̂Ĥ

=
1
ih̄

{
Ĥρ̂− ρ̂Ĥ

}
=

1
ih̄

[
Ĥ, ρ̂

]
called Liouville-Von-Neumann equation (Breuer & Petruccione, 2002).

1.3.1 Optical Bloch Equation

In the case of two-level atom, the density matrix ρ̂ is given by

ρ̂ = ρaa |a〉〈a|+ρab |a〉〈b|+ρba |b〉〈a|+ρbb |b〉〈b|

where ρaa (ρbb) is the probability of the system being in upper state(lower state), while

ρab and ρba are the atomic coherences which are an electric-dipole transition between two

levels. In matrix notation, it can be presented as

ρ̂ =

 ρaa ρab

ρba ρbb

 (1.30)

The density matrix (Eq.1.30) can be written in a form of u, υ , and w as

ρ̂ =
1
2
(1+uσ1 +υσ2 +wσ3) (1.31)

where

u = ρab +ρba

υ = i(ρab−ρba)

w = ρaa−ρbb

1 = ρaa +ρbb

7



The plot of time dependent Bloch equations u(t), v(t) and w(t) versus time t, are as

shown in Fig.1.1, Fig.1.2 and Fig.1.3 respectively. The comparison between all plots is

shown in Fig.1.4.

Figure 1.1: u(t) vs t for Bloch equation

Figure 1.2: v(t) vs t for Bloch equation

The equivalence of Eq.1.30 and Eq.1.31 can be proved by subtituting the term u, υ ,

8



Figure 1.3: w(t) vs t for Bloch equation

Figure 1.4: u(t), v(t) and w(t) vs t for Bloch equation

and w into Eq.1.31 and we get

ρ̂ =
1
2
(1+uσ̂1 +υσ̂2 +wσ̂3) (1.32)

=
1
2
{(ρaa +ρbb)

 1 0

0 1

+(ρab +ρba)

 0 1

1 0


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+i(ρab−ρba)

 0 −i

i 0

+(ρaa−ρbb)

 1 0

0 −1

}
=

 ρaa ρab

ρba ρbb


u, υ , and w can be defined as optical Bloch equations (Feynman, Jr., & Hellwarth,

1957) as first adapted to two-level atom which give

d
dt

u = ∆υ− 1
T

u (1.33)

d
dt

υ = −∆u− 1
T

υ−Ωw (1.34)

d
dt

w = Ωυ− 1
T

w (1.35)

where T is relaxation time. The equation above can be transformed into matrix form,

d
dt X = MX where

X =


u

υ

w

=


ρab +ρba

i(ρab−ρba)

ρaa−ρbb

 (1.36)

M =


− 1

T ∆ 0

−∆ − 1
T −Ω

0 Ω − 1
T



d
dt


u

υ

w

 =


− 1

T ∆ 0

−∆ − 1
T −Ω

0 Ω − 1
T




u

υ

w


and to obtain its time evolution solution, it can be solved using Crank-Nicolson method

X(t +dt) =
I +Mdt/2
I−Mdt/2

X(t)
u(t +dt)

υ(t +dt)

w(t +dt)

 =
I +Mdt/2
I−Mdt/2


u(t)

υ(t)

w(t)


10



1.4 Master Equation

If a physical system consists of several subsystems interact with each other, the sys-

tem will undergo the dissipation due to several damping force, for example, a friction

force or a heat transfer. This processes are irreversible and will reduce the total energy

of the particular system since some part of the energy dissipate away as a consequences

of the interaction. In quantum optics, master equation method is used to formulate this

interaction when it involves damping mechanism in the microscopic scales such as cavity,

laser and atomic interaction in laser system. The unitary time evolution operator method

which will be discussed in section 2.3.1(b) in the next chapter can be used to solve a

unitary system, which means there is no dissipative processes involved in the system.

To begin the master equation derivation, a system S interacting with reservoir R

is considered via the interaction Hamiltonian V̂ , and the combined density operator is

denoted by ρ̂ (t) .We assume that at initial time t, the two systems are uncorrelated so the

initial state ρ̂ (0) is given by simple outer product (Yamamoto & Imamoglu, 1999)

ρ̂ (0) = ρ̂S (0)⊗ ρ̂R (0) (1.37)

Liouville-von Neumann operator as derived in Eq.1.29 is given by

d
dt

ρ̂ (t) =
1
ih̄

[
V̂ (t) , ρ̂ (t)

]
(1.38)

ρ̂ (t) =
1
ih̄

∫ t

0
dt ′
[
V̂
(
t ′
)
, ρ̂
(
t ′
)]

The reduced density operator is given by

d
dt

ρ̂S (t) =
1
ih̄

TrR
[
V̂ (t) , ρ̂ (t)

]
(1.39)

=
1
ih̄

TrR

[
V̂ (t) ,

1
ih̄

∫ t

0
dt ′
[
V̂
(
t ′
)
, ρ̂
(
t ′
)]]

=

(
1
ih̄

)2 ∫ t

0
dt ′TrR

(
V̂ (t) ,

[
V̂
(
t ′
)
, ρ̂
(
t ′
)])

1.4.1 Atomic Damping

We consider a system of an atom placed inside a field reservoir. The interaction

Hamiltonian is given by

V̂AR (t) = h̄∑
k

gk

[
b̂†

kσ−e−i(ω−νk)t +σ+b̂kei(ω−νk)t
]

(1.40)
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where gk is a coupling between the atom and the multimode reservoir. k is the total modes

of the reservoir field. b̂k and b̂†
k are the reservoir operators while νk is reservoir frequency.

The equation of motion of ρ̂AR (t) (density operator of combined atom and reservoir)

is given by

ih̄ρ̇AR =
[
V̂AR (t) , ρ̂AR (t)

]
(1.41)

where

ρ̂AR (t) = ρ̂AR (ti)−
i
h̄

∫ t

ti

[
V̂AR

(
t ′
)
, ρ̂AR

(
t ′
)]

dt ′ (1.42)

Substituting ρ̂AR (t) into ih̄ρ̇AR yields

ρ̇AR = − i
h̄

[
V̂AR (t) , ρ̂AR (ti)

]
(1.43)

− 1
h̄2

∫ t

ti

[
V̂AR (t) ,

[
V̂AR

(
t ′
)
, ρ̂AR

(
t ′
)]]

dt ′

If the interaction energy V̂AR (t) is zero, the system and reservoir are independent and

the density operator ρ̂AR would factor as a direct product ρ̂AR (t) = ρ̂A (t)⊗ ρ̂R (ti) where

we assume the reservoir at equilibrium (Scully & Zubairy, 1997). Since V̂AR (t) is small,

so the solution for Eq.1.43 is

ρ̂AR (t) = ρ̂A (t)⊗ ρ̂R (ti)+ ρ̂c (t) (1.44)

where ρ̂c is of higher order of V̂AR with

TrR [ρ̂c (t)] = 0 (1.45)

ρ̇A = − i
h̄

TrR
[
V̂AR (t) , ρ̂A (ti)⊗ ρ̂R (ti)

]
− 1

h̄2 TrR

∫ t

ti

[
V̂AR (t) ,

[
V̂AR

(
t ′
)
, ρ̂A
(
t ′
)
⊗ ρ̂R (ti)

]]
dt ′

Substituting V̂AR into ρ̇A gives

ρ̇A = −i∑
k

gk

〈
b̂†

k

〉
[σ̂−, ρ̂A (ti)]e−i(ω−νk)t (1.46)

−
∫ t

ti
dt ′∑

k,k′
gkgk′{(σ̂−σ̂−ρ̂A

(
t ′
)
−2σ̂−ρ̂A

(
t ′
)

σ̂−

+ρ̂A
(
t ′
)

σ̂−σ̂−)e−i(ω−νk)t−i(ω−νk′)t′
〈

b̂†
kb̂†

k′

〉
+
[
σ̂−σ̂+ρ̂A

(
t ′
)
− σ̂+ρ̂A

(
t ′
)

σ̂−
]

e−i(ω−νk)t+i(ω−νk′)t′
〈

b̂†
kb̂k′

〉
+
[
ρ̂A
(
t ′
)

σ−σ+− σ̂+ρA
(
t ′
)

σ̂−
]

e−i(ω−νk)t+i(ω−νk′)t′
〈

b̂†
k′ b̂k

〉
12



+
[
σ̂+σ̂−ρ̂A

(
t ′
)
− σ̂−ρ̂A

(
t ′
)

σ̂+

]
ei(ω−νk)t−i(ω−νk′)t′

〈
b̂kb̂†

k′

〉
+
[
ρ̂A
(
t ′
)

σ̂+σ−− σ̂−ρ̂A
(
t ′
)

σ̂+

]
ei(ω−νk)t−i(ω−νk′)t′

〈
b̂k′b

†
k

〉
−
[
ρ̂A
(
t ′
)

σ+σ+−σ+ρ̂A
(
t ′
)

σ̂+

]
ei(ω−νk)t+i(ω−νk′)t′ 〈b̂k′ b̂k

〉
−
[
σ̂+σ̂+ρ̂A

(
t ′
)
− σ̂+ρ̂A

(
t ′
)

σ̂+

]
ei(ω−νk)t+i(ω−νk′)t′ 〈b̂kb̂k′

〉
}

where expectation values 〈x,y〉 where x,y = b†
k,b

†
k′,bk, or bk′refer to the initial state of

the reservoir. In this section, thermal reservoir and squeezed vacuum reservoir will be

considered.

1.4.1 (a) Thermal Reservoir

Thermal reservoir operator is given by

ρ̂R = ∏
k

[
1− exp

(
− h̄νk

kBT

)]
exp

(
−

h̄νkb̂†
kb̂k

kBT

)
(1.47)

where kB is the Boltzmann constant, T is the temperature, and n̄k is the thermal average

boson number which is given by

n̄k =
1

exp
(

h̄νk
kBT

)
−1

By using Eq.1.46 and Eq.1.47, we obtain

ρ̇A = −
∫ t

ti
dt ′∑

k,k′
g2

k{[σ̂−σ̂+ρ̂A
(
t ′
)
− σ̂+ρ̂A

(
t ′
)

σ̂−]n̄ke−i(ω−νk)(t−t ′) (1.48)

+
[
σ̂+σ̂−ρ̂A

(
t ′
)
− σ̂−ρ̂A

(
t ′
)

σ̂+

]
(n̄k +1)ei(ω−νk)(t−t ′)}+H.c.

Now, using Weisskopf-Wigner approximation and the sum over k,

∑
k
−→ 2

V

(2π)3

∫ 2π

0
dφ

∫
π

0
dθ sinθ

∫
∞

0
dkk2 (1.49)

we obtain the reduced density operator, ρ̇A (t) as

ρ̇A (t) = −n̄th
Γ

2
[σ̂−σ̂+ρ̂A (t)− σ̂+ρ̂A (t) σ̂−] (1.50)

−(n̄th +1)
Γ

2
[σ̂+σ̂−ρ̂A (t)− σ̂−ρ̂A (t) σ̂+]+H.c.

where

n̄th ≡ n̄k0 (k0 = ω/c)

Γ =
1

4πε0

4ω3℘2
ab

3h̄c3
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H.c. is the Hermitian conjugate and Γ is the atomic decay rate.

Thus, from Eq.1.48, we derived the equation of motion for the atomic density matrix

elements as

ρ̇aa = 〈a| ρ̇A |a〉 (1.51)

= −(n̄th +1)Γρaa + n̄thΓρbb

ρ̇ab = ρ̇
∗
ba (1.52)

= −
(

n̄th +
1
2

)
Γρ̂ab

ρ̇bb =−n̄thΓρ̂bb +(n̄th +1)Γρ̂aa (1.53)

Since we have considered the decay from the exited state |a〉 to the ground state |b〉 so

that ρ̇aa + ρ̇bb = 0 and ρaa +ρbb = 1.

For zero temperature, we easily get

ρ̇aa = −Γρaa (1.54)

ρ̇ab = −Γ

2
ρab

ρ̇bb = Γρaa

1.4.1 (b) Squeezed Vacuum Reservoir

The reduced density operator for squeezed vacuum reservoir (Puri & Agarwal, 2001)

with squeezed parameter ξ , and the reference phase of squeezing field, θ , is given by

ρ̂R = |ξ 〉〈ξ | (1.55)

= ∏
k

Sk (ξ ) |0k〉〈0k|S†
k (ξ )

where the squeezed operator

Sk (ξ ) = exp
(

ξ
∗b̂k0+kb̂k0−k−ξ b̂†

k0+kb̂†
k0−k

)
(1.56)

with

b̂k ≡ b̂(ck)

ξ = r exp(iθ)

ν = ck0
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Using Eq.1.56, we obtain

S†
k−k0

b̂kSk−k0 = b̂k cosh(r)− b̂†
2k0−keiθ sinh(r)

S†
k−k0

b̂†
kSk−k0 = b̂†

k cosh(r)− b̂2k0−ke−iθ sinh(r)

Thus, the expectation values are given by〈
b̂†

kb̂k′
〉

= ∏
q

〈
0q
∣∣S†

qb†
kSqS†

qbk′Sq
∣∣0q
〉

〈
b̂k
〉

=
〈

b̂†
k

〉
= 0〈

b̂†
kb̂k′

〉
= sinh2 (r)δkk′〈

b̂kb̂†
k′

〉
= cosh2 (r)δkk′〈

b̂kb̂k′
〉

= −eiθ sinh(r)cosh(r)δk′,2k0−k〈
b̂†

kb̂†
k′

〉
= −e−iθ sinh(r)cosh(r)δk′,2k0−k

Subtituting the expectation values into ρ̇A gives

ρ̇A = −Γ

2
cosh2 (r)(σ̂+σ̂−ρ̂A−2σ̂−ρ̂Aσ̂++ ρ̂Aσ̂+σ̂−) (1.57)

−Γ

2
sinh2 (r)(σ̂−σ̂+ρ̂A−2σ̂+ρ̂Aσ̂−+ ρ̂Aσ̂−σ̂+)

−Γe−iθ sinh(r)cosh(r) σ̂−ρ̂Aσ̂−

−Γeiθ sinh(r)cosh(r) σ̂+ρ̂Aσ̂+

It is known that σ̂+σ̂+ = σ̂−σ̂−= 0 from Eq.1.10 and Eq.1.11, so the equations of motion

(Scully & Zubairy, 1997) can be expressed as

σ̂x = (σ̂−+ σ̂+)/2 (1.58)

〈σ̇x〉 = −Γ

2
e2r 〈σ̂x〉

σ̂y = (σ̂−− σ̂+)/2i (1.59)〈
σ̇y
〉

= −Γ

2
e−2r 〈

σ̂y
〉

σ̂z = (2σ̂+σ̂−−1) (1.60)

〈σ̇z〉 = −Γ
[
2sinh2 (r)+1

]
〈σ̂z〉−Γ

= −Γz 〈σ̂z〉−Γ
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where Γz = Γ
[
2sinh2 (r)+1

]
.

1.4.2 Field damping

Beside the atomic damping, the field can also be damped due to coupling with reser-

voir (Meystre & Sargent, 2007). The interaction Hamiltonian between the field and the

reservoir is given by

V̂ = h̄∑
k

gk

[
b̂†

kâe−i(ν−νk)t + â†b̂kei(ω−νk)t
]

(1.61)

where b̂†
k and b̂k are the field operators while â† and â are the reservoir operators. If b̂k is

in the mode of thermal equilibrium, we have

ρ̇ = −C
2

n̄th

(
ââ†

ρ̂−2â†
ρ̂ â+ ρ̂ ââ†

)
(1.62)

−C
2
(n̄th +1)

(
â†âρ̂−2âρ̂ â† + ρ̂ â†â

)
(1.63)

where C is the decay constant and n̄th ≡ n̄k0 is the mean number of quanta (at frequency

ν). At T = 0, n̄th = 0 which gives

ρ̇ =−C
2

(
â†âρ̂−2âρ̂ â† + ρ̂ â†â

)
(1.64)

If all the losses are the transmission losses which actually represent the field outside the

cavity (Scully & Zubairy, 1997), C may be related to the quality factor Q of the cavity as

C =
ν

Q
(1.65)

When b̂k are initially in a squeezed vacuum, where

ρ̂R = |ξ 〉〈ξ | (1.66)

= ∏
k

Sk (ξ ) |0k〉〈0k|S†
k (ξ )

the reduced density matrix is given as

ρ̇ = −C
2
(N +1)

(
â†âρ̂−2âρ̂ â† + ρ̂ â†â

)
(1.67)

−C
2

N
(

ââ†
ρ̂−2â†

ρ̂ â+ ρ̂ ââ†
)

+
C
2

M (ââρ̂−2âρ̂ â+ ρ̂ ââ)

+
C
2

M∗
(

â†â†
ρ̂−2â†

ρ̂ â† + ρ̂ â†â†
)
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where

N = sinh2 (r) (1.68)

M = cosh(r)sinh(r)exp(−iθ)

|M| = [N (N +1)]1/2

1.5 Conclusion

Fundamental and advanved mathematical method are required to solve problems in

quantum optics. The basic knowledge of operators and states play the biggest role as

they can represent the system and provide useful information for further investigations.

The understanding of basic quantum optics in this chapter will be used in the preceeding

chapters to solve the selected system and also the light properties of interest.
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CHAPTER 2

LIGHT-MATTER INTERACTION

2.1 Introduction

The heart of quantum optics lies in the interaction between light and matter. The

understanding of the interaction is very important and the most essential part is to under-

stand the behaviour of the system of interest, particularly the properties of light during

the interaction. The study of light and matter began when scientists discovered that light

would after all be affected by gravity although it does not have a mass (Fox, 2006). The

light beam consists of photons that carry energies which contribute to the interaction be-

tween the light and the gravitational force.

In reality, because of the existence of electron and proton spins, the resonance line(the

emmision of the optical line) of an atom(e.g. Hydrogen) includes several neighbouring

components, which are fine and hyperfine structure (Cohen-Tannoudji, Diu, & Laloe,

1977). The hyperfine structure refers to small shifts and splittings in the energy levels

of atoms, molecules and ions due to the interaction between energy of the nucleus and

internally generated electric and magnetic fields. In atoms, hyperfine structure occurs

when the nuclear magnetic dipole moment interacts with the magnetic field generated by

the electrons. It also occurs when the energy of the nuclear electric quadrupole moment

interact with the electric field gradient due to the distribution of charge within the atom.

The resonance line of Hydrogen corresponds to an atomic transition between the

ground state 1s(n = 1; l = m = 0) and the excited state 2p(n = 2; l = 1;m = +1,0,−1).

When the atom is placed in a static magnetic field, the frequency and the polarization

of the atomic lines are changed. This change is called the Zeeman effect and can be

explained in the two- and three-level atom case discussed in this work.

For a moving atom, the ground state of a two-level atom is broadened and shifted

when irradiated by a light beam. The light beam produces a displacement of the ground

state as a whole (center-of-mass light shift) and it also can remove the Zeeman degener-

acy of the level (Cohen-Tannoudji & Dupont-Roc, 1972). The difference of the center-

18



of-mass light shifts for two different hyperfine levels of an alkali-atom results in a modi-

fication of the hyperfine frequency of the ground state.

In the three-level atom (Fig.2.3) such as Raman system, the probe and driving fields

have similar frequencies and propagation directions. Since both fields couple to the same

upper level |a〉 , they can have similar frequencies if the lower levels |b〉 and |c〉 are closely

spaced in energy, which means, nearly degenerate. This is in fact the case for most of

the alkali atoms-the workhorse of experimental quantum optics-whose electronic ground

state contains a manifold of hyperfine and Zeeman levels (Lambropoulos & Petrosyan,

2007). A pair of such levels is then selected by properly adjusting the frequencies and

polarizations of the probe and driving fields to serve as the lower metastable levels |b〉

and |c〉 .

Nowadays, the study of the light-matter interaction has a broader persective and

had been tailored to enhance laser technology, quantum information science to realize

quantum computing and many other fields of study. All these must begin with an under-

standing of interaction in the subatomic scale as will be discussed in this chapter.

2.2 Semiclassical Atom-Field Theory

Semiclassical treatment is used when matter, for example an atom, is treated as a

quantum system which can have certain levels of quanta; while light or electromagnetic

wave is treated classically. Here the concept of photon is not applicable. In the next

sub-section will discuss how to derive the final solution of the states for a system treated

semiclassically.

2.2.1 Two-level Atom

A schematic view of a single two-level atom confined in a lossless cavity is shown

in Fig.2.1 where |a〉 , |b〉 represents upper level and lower level state of the atom, respec-

tively. This will cause an interaction between the atom and the field. The interaction ex-

hibits interesting features to be discovered and provide space for scientists to investigate

the nature of the light and understands its behaviour for a better future and to enhance the

existing technology. One may begin to study the interaction by knowing that there are two

ways to treat this interaction: semiclassical treatment and fully quantum treatment. It is
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Figure 2.1: A single two-level atom placed inside a cavity

easier to begin with the semiclassical method in order to better understand the interaction

mechanism.

Both levels |a〉 and |b〉 are the eigenstates of Ĥ0 with eigenvalues of h̄ωa and h̄ωb

respectively. The wavefunction of the two-level atom can be written as

|ψ (t)〉=Ca(t) |a〉+Cb(t) |b〉 (2.1)

where Ca and Cb are the probability amplitudes of finding the atom in states |a〉 and |b〉,

respectively. The corresponding Schrödinger Equation is

ih̄
d
dt
|ψ(t)〉= Ĥ(t)|ψ(t)〉 (2.2)

where

Ĥ = Ĥ0 +V̂

Ĥ0 and V represent the unperturbed and the interaction parts of the particular system.

Using completeness relation

|a〉〈a|+ |b〉〈b|= 1 (2.3)

we can write Ĥ0 as

Ĥ0 = (|a〉〈a|+ |b〉〈b|) Ĥ0 (|a〉〈a|+ |b〉〈b|) (2.4)

= h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|
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For semiclassical treatment, we assume the electric field, E (t), is linearly polarized

along the x-axis. V̂ , which is the dipole interaction, describe the interaction energy be-

tween atom and field and can be written by

V̂ = −ex̂E (t) (2.5)

= −e(|a〉〈a|+ |b〉〈b|) x̂(|a〉〈a|+ |b〉〈b|)E (t)

= −(℘ab |a〉〈b|+℘ba |b〉〈a|)E (t)

= −℘ab |a〉〈b|
1
2
(
e−iνt + eiνt)Ex

−℘ba |b〉〈a|
1
2
(
e−iνt + eiνt)Ex

where ℘ab =℘∗ba = e〈a| x̂ |b〉 is the matrix element of the electric dipole moment, e is

the electron charge, x̂ = D |a〉〈b|+D∗ |b〉〈a| is the quantum mechanical position operator

and E (t) is given as

E (t) = Ex cosνt

=
1
2
(
e−iνt + eiνt)Ex

with Ex is the field amplitude and ν = ck is the frequency of the field. If the interaction

equation is expanded, the term |a〉〈b|eiνt and |b〉〈a|e−iνt are fast rotating term, so they

can be neglected which gives

V = −℘ab |a〉〈b|
1
2

e−iνtEx−℘ba |b〉〈a|
1
2

eiνtEx (2.6)

= − h̄
2
(
ΩR |a〉〈b|e−iνt +Ω

∗
R |b〉〈a|eiνt)

= − h̄
2

ΩR
(
|a〉〈b|e−iνt + |b〉〈a|eiνt)

where we have assumed that the Rabi frequency ΩR = Ω∗R that is defined by

ΩR =
|℘ba|Ex

h̄
(2.7)

℘ba = |℘ba|exp(iφ) (2.8)

where φ is the phase of the dipole matrix elements

The total Hamiltonian becomes

Ĥ = Ĥ0 +V̂ (2.9)
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= h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|

− h̄
2

ΩR
(
|a〉〈b|e−iνt + |b〉〈a|eiνt)

By substituting Eq.2.1 and Eq.2.9 into the Schrodinger equation of Eq.2.2, we obtain for

the left hand side

ih̄
d
dt
|ψ(t)〉 = ih̄

d
dt
[Ca(t)|a〉+Cb(t)|b〉] (2.10)

= ih̄
d
dt

Ca(t)|a〉+ ih̄
d
dt

Cb(t)|b〉

The eigenfunctions of the Hamiltonian are orthogonal (Fox, 2006) to each other and are

normalized so that: ∫
ψ
∗
n ψn′d

3r = δnn′ (2.11)

where δnn′ is the Kronecker delta function defined by

δnn′ = 1 i f n = n′

δnn′ = 0 i f n 6= n′

This property is called orthonormality, so we have

〈a| |a〉 = 〈b| |b〉= 1

〈a| |b〉 = 〈b| |a〉= 0

Thus, the right hand side becomes

Ĥ(t)|ψ(t)〉 =
(
Ĥ0 +V̂

)
[Ca(t)|a〉+Cb(t)|b〉] (2.12)

= Ĥ0[Ca(t)|a〉+Cb(t)|b〉]

+V̂ [Ca(t)|a〉+Cb(t)|b〉]

= (h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|)Ca(t)|a〉

+(h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|)Cb(t)|b〉

− h̄
2

ΩR
(
|a〉〈b|e−iνt + |b〉〈a|eiνt)Ca(t)|a〉

− h̄
2

ΩR
(
|a〉〈b|e−iνt + |b〉〈a|eiνt)Cb(t)|b〉

= h̄ωa |a〉Ca(t)+ h̄ωb |b〉Cb(t)

− h̄
2

ΩR |b〉eiνtCa(t)−
h̄
2

ΩR |a〉e−iνtCb(t)
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The equation of motion becomes

ih̄ d
dtCa(t)|a〉+ ih̄ d

dtCb(t)|b〉= (2.13)

h̄ωa |a〉Ca(t)+ h̄ωb |b〉Cb(t)

− h̄
2

ΩR |b〉eiνtCa(t)−
h̄
2

ΩR |a〉e−iνtCb(t)

then we project the resulting equation with 〈a| and 〈b| to obtain the equation of motion

for amplitudes Ca and Cb

d
dt

Ca(t) = − i
h̄

[
h̄ωaCa(t)−

h̄
2

ΩRe−iνtCb(t)
]

(2.14)

= −iωaCa(t)+ i
ΩR

2
e−iνtCb(t)

d
dt

Cb(t) = − i
h̄

[
h̄ωbCb(t)−

h̄
2

ΩReiνtCa(t)
]

(2.15)

= −iωbCb(t)+ i
ΩR

2
eiνtCa(t)

To solve Ca and Cb, the equation of motion for the slowly varying amplitudes, ca =

Caeiωat and cb =Cbeiωbt are introduced, which reads,

d
dt

ca =
d
dt

[
Caeiωat] (2.16)

=
d
dt

Caeiωat +
d
dt

eiωatCa

= i
ΩR

2
Cb(t)ei(ωa−ν)t

= i
ΩR

2
cb(t)ei(ω−ν)t

d
dt

cb = i
ΩR

2
cae−i(ω−v)t (2.17)

where ω = ωa−ωb is the atomic transition frequency. The solution of 2.16 and 2.17 can

be written as

ca =
(

a1eiΩt/2 +a2e−iΩt/2
)

ei∆t/2 (2.18)

cb =
(

b1eiΩt/2 +b2e−iΩt/2
)

ei∆t/2

where ∆ = ω− v, and Ω =
√

Ω2
R +(ω− v)2.

Coefficients a1, a2, b1 and b2 are constants of integration which are determined from

the initial condition (Scully & Zubairy, 1997)

a1 =
1

2Ω

[
(Ω−∆)ca (0)+ΩRe−iφ cb (0)

]
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a2 =
1

2Ω

[
(Ω+∆)ca (0)−ΩRe−iφ cb (0)

]
b1 =

1
2Ω

[
(Ω+∆)cb (0)+ΩReiφ ca (0)

]
b2 =

1
2Ω

[
(Ω−∆)cb (0)−ΩReiφ ca (0)

]
which gives

ca (t) =

[
ca (0)cos

(
Ωt
2

)
− i∆

Ω
sin
(

Ωt
2

)]
ei∆t/2 (2.19)

+ca (0) i
ΩR

Ω
e−iφ cb (0)sin

(
Ωt
2

)
ei∆t/2

cb (t) =

[
cb (0)cos

(
Ωt
2

)
+

i∆
Ω

sin
(

Ωt
2

)]
e−i∆t/2 (2.20)

+cb (0) i
ΩR

Ω
eiφ ca (0)sin

(
Ωt
2

)
e−i∆t/2

The equations can also be written in density matrix form by introducing ρnm = cnc∗m

to get four term of the elements which are

ρaa(t) = ca(t)c∗a(t)

ρab(t) = ca(t)c∗b(t)

ρba(t) = cb(t)c∗a(t)

ρbb(t) = cb(t)c∗b(t)

As stated by (Eq.1.30) in previous chapter, the density matrix for two-level atom is in the

form of

ρ̂(t) =

 ρaa(t) ρab(t)

ρba(t) ρbb(t)

 (2.21)

So by substituting equations 2.16 and 2.17 and using the general differential rule,the time

evolution density matrix for ρaa(t) is

d
dt

ρaa(t) =
d
dt

[ca(t)c∗a(t)] (2.22)

=

[
d
dt

ca(t)
]

c∗a(t)+ ca(t)
[

d
dt

c∗a(t)
]

=

[
i
ΩR

2
cb(t)ei∆t

]
c∗a(t)− ca

[
i
ΩR

2
c∗b(t)e

−i∆t
]

= i
ΩR

2

[
ei∆t

ρba(t)− e−i∆t
ρab(t)

]
while using the same method, the rest of the elements are given by

d
dt

ρab(t) = i
ΩR

2
[ρbb(t)−ρaa(t)]ei∆t (2.23)
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d
dt

ρba(t) =
d
dt

ρ
∗
ab(t) (2.24)

= −i
ΩR

2
[ρbb(t)−ρaa(t)]e−i∆t

d
dt

ρbb(t) = −i
ΩR

2

[
ei∆t

ρba(t)− e−i∆t
ρab(t)

]
(2.25)

The probabilities of the atom being in state |a〉 and |b〉 at time t are given by |ca (t)|2

and
∣∣∣cb (t)

2
∣∣∣. The total probabilities of states are known as |ca (t)|2 + |cb (t)|2 = 1. If we

assume that atom is initially in the state |a〉 then initial ca (0) = 1 and cb (0) = 0. The

inversion (Ooi, Hazmin, & Singh, 2012) is given by

nab (t) = |ca (t)|2−|cb (t)|2 (2.26)

=

(
∆2−Ω2

R
Ω2

)
sin2

(
Ωt
2

)
+ cos2

(
Ωt
2

)
Under the action of the incident field, a dipole moment is induced between the two

atomic levels and is given by the expectation value of the dipole moment operator

P(t) = e〈ψ (t)|r |ψ (t)〉=C∗aCb℘ab + c.c. (2.27)

= c∗acb℘abeiωt + c.c.

where c.c. stands for complex conjugate. For an atom initially in the upper level, we

obtain

P(t) = 2
{

Re
iΩR

Ω
℘ab

[
cos
(

Ωt
2

)
+

i∆
Ω

sin
(

Ωt
2

)]
sin
(

Ωt
2

)
eiφ eivt

}
(2.28)

The dipole moment therefore oscillates with the frequency of the incident field. When

the atom is at resonance with the incident field (∆ = 0), we get Ω = ΩR and W (t) =

cos(ΩRt) . The inversion oscillates between -1 and 1 at a frequency ΩR

2.2.2 Three-level Atom

The three-level atom consists of three states, let say |a〉, |b〉 and |c〉. Several types

have been recognized (Fleischhauer, Imamoglu, & Marangos, 2005) which are called

V -type atom, Λ-type atom and Ξ configuration as shown in Fig.2.2

The allowed transition for each type of three-level atom are shown in table

Every single structure has its own properties and importance. We examine a Λ-type

three-level atom (Berman & Ooi, 2012), where |a〉 is an exited state while |b〉 and |c〉 are
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Figure 2.2: Three type three-level atom configuration with (i) Λ-type, (ii) V -type, and (iii)
Ξ configuration

Table 2.1: Allowed and forbidden dipole transition in three-level atom

Atom Type |a〉 → |b〉 transition |a〉 → |c〉 transition |c〉 → |b〉 transition
V -type Forbidden Allowed Allowed
Ξ-type Allowed Forbidden Allowed
Λ-type Allowed Allowed Forbidden

ground states coupled with the excited state |a〉 that interacts with two field frequencies

of ω1 and ω2 respectively as shown in Fig.2.3

Figure 2.3: Λ−type three-level atom interact with two fields frequency ω1 and ω2.

The Hamiltonian of the system is given by

Ĥ = Ĥ0 +V̂ (2.29)

where

Ĥ0 = h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|+ h̄ωc |c〉〈c|

V̂ = − h̄
2
(
Ωp |a〉〈b|e−iω1t +Ω

∗
p |b〉〈a|eiω1t)

− h̄
2
(
Ωc |a〉〈c|e−iω2t +Ω

∗
c |c〉〈a|eiω2t)
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Since the transition between |b〉 and |c〉 are not dipole allowed, the Ωp and Ωc are Rabi

frequencies associated with the coupling between atomic transition |a〉 → |b〉 and |a〉 →

|c〉 with field frequencies of ω1 and ω2 respectively. The wave function represents the

system can be written as

|ψ(t)〉=Ca(t)|a〉+Cb(t)|b〉+Cc(t)|c〉

Substituting Ĥ and |ψ(t)〉 into the Schrodinger equation Eq.2.2 produces

ih̄
d
dt
|ψ(t)〉=

(
Ĥ0 +V̂

)
|ψ(t)〉 (2.30)

Solving the right hand side for Schrodinger equation by substituting the wave equation

and Hamiltonian of the system gives

H(t)|ψ(t)〉 = Ĥ0 [Ca(t)|a〉+Cb(t)|b〉+Cc(t)|c〉] (2.31)

+V [Ca(t)|a〉+Cb(t)|b〉+Cc(t)|c〉]

= h̄ωa |a〉Ca(t)+ h̄ωb |b〉Cb(t)+ h̄ωc |c〉Cc(t)

− h̄
2

Ω
∗
p |b〉eiω1tCa(t)−

h̄
2

Ωp |a〉e−iω1tCb(t)

− h̄
2

Ωc |a〉e−iω2tCc(t)−
h̄
2

Ω
∗
c |c〉eiω2tCa(t)

By projecting the whole equation with 〈a|, 〈b| and 〈c| , we obtain the following equations

of motion for amplitude

d
dt

Ca(t) = −iωaCa(t)+
iΩp

2
e−iω1tCb(t)+

iΩc

2
e−iω2tCc(t) (2.32)

d
dt

Cb(t) = −iωbCb(t)+
iΩ∗p

2
eiω1tCa(t) (2.33)

d
dt

Cc(t) = −iωcCc(t)+
iΩ∗c
2

eiω2tCa(t) (2.34)

Let us denote the density matrix element as ρnm =CnC∗m. Thus, we obtain

d
dt

ρaa = −
iΩp

2
[
ρab(t)eiω1t−ρba(t)e−iω1t] (2.35)

− iΩc

2
[
ρac(t)eiω2t−ρca(t)e−iω2t]

d
dt

ρbb =
iΩp

2
[
ρab(t)eiω1t−ρba(t)e−iω1t]

d
dt

ρcc =
iΩc

2
[
ρac(t)eiω2t−ρca(t)e−iω2t]

d
dt

ρab = −i∆pρab(t)+
iΩp

2
[ρbb(t)−ρaa(t)]e−iω1t
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+
iΩc

2
e−iω2t

ρcb(t)

d
dt

ρac =
d
dt

ca(t)c∗c(t)+ ca(t)
d
dt

c∗c(t)

= −i∆cρac(t)+
iΩc

2
[ρcc(t)−ρaa(t)]e−iω2t

+
iΩp

2
e−iω1t

ρbc(t)

d
dt

ρba =
d
dt

ρ
∗
ab

d
dt

ρca =
d
dt

ρ
∗
ac

where

∆p = ωa−ωb

∆c = ωa−ωc

Λ-type and Ξ-type three-level atom have two ground levels |b〉 and |c〉 , the inversion

is stated by

nabc (t) = |ca (t)|2−|cb (t)|2−|cc (t)|2 (2.36)

while for V -type has one ground level |c〉, the inversion become

nabc (t) = |ca (t)|2 + |cb (t)|2−|cc (t)|2 (2.37)

2.3 Full Quantum Treatment

Fully quantum treatment is applied to the system when both, atom and field are

treated quantum mechanically. Both subsystems are represented by operators σ̂+ and σ̂−

for atom show the atomic excitation and de-excitation(emmision), while â and â† denote

the annihilation and creation of photons. The analytical solutions are not much different

than the semiclassical derivation. It contains some modification in the Hamiltonian which

will be discussed in the next sub-section.

2.3.1 The Jaynes-Cumming Model

An interaction between two-level atom with a quantized single mode field can be de-

scibed theoretically by the Jaynes-Cumming Model(JCM) (Jaynes & Cummings, 1963).

It is the simplest case to study light-matter interaction in a fully quantum treatment as

illustrated in Fig.2.1.
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The interaction can be represented by the Hamiltonian (Milburn & Walls, 2008):

ĤAF = ĤA + ĤF +V̂ (2.38)

where

Ĥo = ĤA + ĤF (2.39)

=
h̄ω

2
σ̂z + h̄υ â†â

V̂ =
h̄ω

2
F̂ .Ŝ (2.40)

=
h̄ω

2

(
â+ â†

)
(σ̂++ σ̂−)

=
h̄ω

2

(
âσ̂++ â†

σ̂++ âσ̂−+ â†
σ̂−
)

with F̂ is the field operator, and Ŝ is the atom operator. The term âσ̂+ tells that the electron

goes from the ground state |b〉 to the excited state |a〉, and in the process one photon of

energy h̄ω is annihilated. The energy is conserved during this process (Yamamoto &

Imamoglu, 1999). The energy is also conserved if an atom having a transition from the

excited to the ground state with one photon is created during the process by â†σ̂−. The

terms â†σ̂+ and âσ̂− are energy nonconservatives process and can be ignored. This is

referred to as the rotating wave approximation. By eliminating the nonconserving terms,

we obtain

V̂ =
h̄ω

2

(
âσ̂++ â†

σ̂−
)

(2.41)

So the JCM in rotating wave approximation gives

Ĥa f = Ĥa + Ĥ f +V̂ (2.42)

=
h̄ω

2
σ̂z + h̄υ â†â+ h̄g

(
âσ̂++ â†

σ̂−
)

The free Hamiltonian for atom ĤA, and field ĤF in Eq.2.39 describes the unpertubed

system which define the energies of atom and radiation field. V̂ in Eq.2.41 describes the

interaction between the single atom and the quantized field. ω and υ are atomic transition

frequency and field frequency respectively while the coupling constant g determines the

strength of interaction between the atom and the field.
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Eq.2.42 can be simplified by transforming the Hamiltonian into the interaction pic-

ture. It can be done by introducing

V̂AF (t) = ei Hot
h̄ V̂ e−i Hot

h̄ (2.43)

where V̂AF (t) denote the atom-field Hamiltonian in interaction picture. Using (Scully &

Zubairy, 1997)

eiωσ̂zt/2
σ̂+e−iωσ̂zt/2 = σ̂+eiωt

eiωσ̂zt/2
σ̂−e−iωσ̂zt/2 = σ̂−e−iωt

eiυ â†ât âe−iυ â†ât = âe−iυt

eiυ â†ât â†e−iυ â†ât = â†eiυt

the Hamiltonian becomes

V̂AF (t) = eiHot/h̄V̂ e−iHot/h̄ (2.44)

= h̄g
(

σ̂+âei(ω−υ)t + â†
σ̂−e−i(ω−υ)t

)
= h̄g

(
σ̂+âei∆t + â†

σ̂−e−i∆t
)

where the difference between atomic transition frequency and field frequency defined as

the detuning:

∆ = ω−υ

Several methods can be applied to the Hamiltonian to derive the evolution of atom-

field system described above such as probability amplitude method, unitary time evolution

method and Heisenberg method (Barnett & Radmore, 1997). The first two methods will

be discussed in the following section since they will be used in the preceediing chapters.

2.3.1 (a) Probability Amplitude Method

Due to superposition of states of an atom which is between the excited and ground

state, the evolution of the atom-field system can be described by the state vector at any

time, t as

|ψ(t)〉= ∑
n
[Ca,n(t)|a,n〉+Cb,n(t)|b,n〉] (2.45)
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with the time dependent atom-field coefficients Ci,n for level (i = a,b) with n photons.

|a,n〉(|b,n〉) is the state in which the atom is in the exited state |a〉 (ground state |b〉) with

the field contains n photons. By sustituting Eq.2.45 and Eq.2.44 in Eq.2.2, we obtain

ih̄
d
dt
|ψ(t)〉 = ih̄

d
dt
[Ca,n(t)|a,n〉+Cb,n(t)|b,n〉] (2.46)

= h̄g
(

σ̂+âei∆t + â†
σ̂−e−i∆t

)
[Ca,n(t)|a,n〉+Cb,n(t)|b,n〉]

It is known that interaction energy can only cause transition between |a,n〉 and |b,n+

1〉 since one photon is created during transition process from the excited to the ground

state. By denoting σ̂+ = |a〉〈b| and σ̂− = |b〉〈a| and using the field operations base on

the (Eq.1.15), we get

d
dt

[
Ca,n(t)|a,n〉+Cb,n+1(t)|b,n+1〉

]
(2.47)

= −ig(σ̂+âei∆t + σ̂−â†e−i∆t)Ca,n(t)|a,n〉

−ig(σ̂+âei∆t + σ̂−â†e−i∆t)Cb,n+1(t)|b,n+1〉

= −ig|a〉〈b|âei∆tCa,n(t)|a〉|n〉− ig|b〉〈a|â†e−i∆tCa,n(t)|a〉|n〉

−ig|a〉〈b|âei∆tCb,n+1(t)|b〉|n+1〉− ig|b〉〈a|â†e−i∆tCb,n+1(t)|b〉|n+1〉

= −ig
√

n+1e−i∆tCa,n(t)|b〉 |n+1〉− ig
√

n+1ei∆tCb,n+1(t)|a〉 |n〉

Now by projecting the resulting equation with 〈a,n| and 〈b,n+1| we get coupled

equations

d
dt

Ca,n(t) = −ig
√

n+1ei∆tCb,n+1(t) (2.48)

d
dt

Cb,n+1(t) = −ig
√

n+1e−i∆tCa,n(t) (2.49)

where g is the atom-field coupling constant and |Ci,n|2 is the probability of atom in

state |i〉 with n photons. Using the Laplace transform, we obtain the general solution that

is given by:

Ca,n(t) = ei∆t/2[Ca,n(0)rn(t)− iCb,n+1(0)qn(t)] (2.50)

31



Cb,n+1(t) = e−i∆t/2[Cb,n+1(0)r∗n(t)− iCa,n(0)qn(t)]

Cb,n(t) = e−i∆t/2[Cb,n(0)r∗n−1(t)− iCa,n−1(0)qn−1(t)]

where rn(t)= cos(Ωnt
2 )− i ∆

Ωn
sin(Ωnt

2 ), qn(t)=
2g
√

n+1
Ωn

sin(Ωnt
2 ), and Ω2

n =∆2+4g2(n+1).

Ωn is defined as Rabi frequency. A vacuum Rabi oscillation occurs when the atom

alternately emits photons into a single-mode cavity and reabsorbs them. This behaviour

is due to spontaneous emission as a consequence of coupling between the atom and the

vacuum fluctuations of the cavity field.

The probabilities of finding the system in the excited or ground state with the field

has n photons, at time t, are given by |ca,n (t)|2 and
∣∣cb,n (t)

∣∣2, respectively. By taking the

trace over the atomic states, the probability p(n) that there are n photons in the field at

time t is given by:

p(n) = |ca,n (t)|2 +
∣∣cb,n (t)

∣∣2 (2.51)

= ρnn (0)

[
cos2

(
Ωnt

2

)
+

(
∆

Ωn

)2

sin2
(

Ωnt
2

)]

+ρn−1,n−1 (0)

(
4g2n
Ω2

n−1

)
sin2

(
Ωn−1t

2

)
(2.52)

where ρnn (0) = |cn (0)|2 is the probability that there are n photons present in the field at

time t = 0. The initial coherent state is given by

ρnn (0) =
〈n〉n e−〈n〉

n!
(2.53)

One of the most important parameter in understanding the dynamics of atom is the

population inversion, denoted as nab (t). The inversion (Lambropoulos & Petrosyan,

2007) can be defined as the probability of finding a particle in its excited state. nab (t)

is related to the probability amplitude by the expression:

nab (t) = ∑
n

[
|ca,n (t)|2−

∣∣cb,n (t)
∣∣2] (2.54)

By substituting ca,n (t) and cb,n (t) and making some arrangements, we obtain the

analytical solution for nab (t):
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Figure 2.4: Collapse and Revival pattern for an inversion of the JCM for photon number
n=150

nab (t) =
∞

∑
n=0

ρnn (0)
[

∆2

Ω2
n
+

4g2 (n+1)
Ω2

n
cos(Ωnt)

]
(2.55)

For an initial vacuum field (ρnn (0) = δn0), the inversion takes

nab (t) =
1

∆2 +4g2

{
∆

2 +4g2 cos
[(

∆
2 +4g2)1/2

t
]}

(2.56)

This result shows that there is a possibility of an atom to make a transition from an

upper to a lower level in the absence of driving field. This is different from what has

been expected in the prediction of the semiclassical theory. In the fully quantum mechan-

ical treatment, the transition in vacuum becomes possible due to spontaneous emmision.

Eq.2.56 is the simplest example of spontaneous emmision in which the spontaneously

emitted photons contributes to the single mode of the field considered.

Fig.2.4 shows a plot of nab (t) versus normalized times τ = gt. As the time increases,

the oscillations appear to collapse and after some time, it will revive again. This process

of collapse-revival is repeated as the time is increased with the Rabi oscillation damped

and the time duration in which revival takes place is also increasing. The time period of

the Rabi oscillation and the collapse time, are given by tR and tc are

tR ∼
1

Ωn
=

1

(∆2 +4g2 〈n〉)1/2 (2.57)
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(
Ω〈n〉+

√
〈n〉−Ω〈n〉−

√
〈n〉

)
tc ∼ 1 (2.58)

Since 〈n〉 �
√
〈n〉 in the limit 〈n〉 � 1, then we can assume

tc ∼
1

Ω〈n〉+
√
〈n〉−Ω〈n〉−

√
〈n〉

(2.59)

' 1[
∆2 +4g2

(
〈n〉+

√
〈n〉
)]1/2

−
[
∆2 +4g2

(
〈n〉−

√
〈n〉
)]1/2

' 1
2g

(
1+

∆2

4g2 〈n〉

)1/2

From the condition

(
Ω〈n〉−Ω〈n〉−1

)
tr = 2πm,(m = 1,2, ...) (2.60)

The interval between revival, tris

tr =
2πm

Ω〈n〉−Ω〈n〉−1
(2.61)

'
2πm

√
〈n〉

g

(
1+

∆2

4g2 〈n〉

)1/2

(2.62)

2.3.1 (b) Unitary Time Evolution Method

Unitary time evolution method is one of the common solution used to deal with atom-

field interaction. This method, however, valid for a system with no dissipation involved

by taking the evolution of the system as unitary

U (t) = exp
(
− i

h̄

∫ t

0
V̂AF(t)dt

)
(2.63)

By substituting Eq.2.44 and considering the system in an exact resonance where ∆ = 0,

Eq.2.63 turns to

U (t) = exp
(
− i

h̄

∫ t

0
V̂AF(t)dt

)
(2.64)

= exp
(
−ig

∫ t

0

(
σ̂+â+ â†

σ̂−
)

dt
)
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Using (Scully & Zubairy, 1997)(
σ̂+â+ â†

σ̂−
)2l

=
(

ââ†
)l
|a〉〈a|+

(
â†â
)l
|b〉〈b|(

σ̂+â+ â†
σ̂−
)2l+1

=
(

ââ†
)l

â |a〉〈b|+ â†
(

ââ†
)l
|b〉〈a|

Eq.2.64 become

U (t) = cos
(

gt
√

â†â+1 |a〉〈a|
)
+ cos

(
gt
√

â†â |b〉〈b|
)

(2.65)

−i
sin
(

gt
√

â†â+1
)

√
â†â+1

â |a〉〈b|− iâ†
sin
(

gt
√

â†â+1
)

√
â†â+1

|b〉〈a|

A vector state is given as

|ψ (t)〉=U (t) |ψ (0)〉 (2.66)

with U (t) is considered as in the previous method where the interaction energy is between

|a〉 and |b+1〉 , initial condition of the atom is in the excited state, while initial field at

time t = 0 is given by |ψ (0)〉=
∞

∑
n=0

cn (0) |a,n〉 . putting eq.2.65 and |ψ (0)〉 into eq.2.66,

we obtain

|ψ (t)〉 =
∞

∑
n=0

cn (0) [cos
(

gt
√

n+1
)
|a,n〉 (2.67)

−isin
(

gt
√

n+1
)
|b,n+1〉

similar to the previous derivation in probability amplitude method.

2.3.2 Three-Level Atom

In previous section, two-level atom interact with a single mode quantized field has

been considered. Another system of interest that has been studied extensively in quantum

electrodynamics is a system of a three-level atom. We consider a Λ-type three-level atom

interacting with two-mode quantized fields of frequencies ω1 and ω2 as shown in Fig.2.3.

We denote |a〉 as a single upper level while |b〉 and |c〉 are lower levels with Eb < Ec and

ωa, ωb, and ωc are frequencies for each level. The Hamiltonian for the system in the

rotating wave approximation can be expressed as

Ĥ = Ĥo +V̂ (2.68)

Ĥo = h̄ωa |a〉〈a|+ h̄ωb |b〉〈b|+ h̄ωc |c〉〈c|+ h̄ω1â†
1â1 + h̄ω2â†

2â2

V̂ = − h̄
2

Ωp

(
|a〉〈b| â1 + â†

1 |b〉〈a|
)
− h̄

2
Ωc

(
|a〉〈c| â2 + â†

2 |c〉〈a|
)
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Here Ωp and Ωc are the complex Rabi frequencies due to the coupling between the atomic

transition |a〉 → |b〉 and |a〉 → |c〉 with the field frequencies of ω1 and ω2 respectively.

The transition between |b〉→ |c〉 is forbiden as it is not dipole allowed. The determination

whether the transition is allowed under the electric dipole interaction is associated with

the selection rule.

The Hamiltonian above can be represented in interaction picture as shown in calcu-

lation below.

V̂I (t) = eiHot/h̄V̂ e−iHot/h̄ (2.69)

= ei(ωa|a〉〈a|)tei(ωb|b〉〈b|)tei(ωc|c〉〈c|)t

ei(ω1â†
1â1)tei(ω2â†

2â2)t

[− h̄
2

Ωp

(
|a〉〈b| â1 + â†

1 |b〉〈a|
)

− h̄
2

Ωc

(
|a〉〈c| â2 + â†

2 |c〉〈a|
)
]

e−i(ωa|a〉〈a|)te−i(ωb|b〉〈b|)te−i(ωc|c〉〈c|)t

e−i(ω1â†
1â1)te−i(ω2â†

2â2)t

= − h̄
2

Ωp

(
|a〉〈b| â1ei∆1t + â†

1 |b〉〈a|e
−i∆1t

)
− h̄

2
Ωc

(
|a〉〈c| â2ei∆2t + â†

2 |c〉〈a|e
−i∆2t

)
where

∆1 = ωa−ωb−ω1

∆2 = ωa−ωb−ω2

From the above equation, the total density matrix can be derived by equation

dρ̂

dt
=

1
ih̄

[
V̂I (t) , ρ̂

]
that gives

ρ̇ (t) =
i
2

Ωp

(
|a〉〈b| â1ei∆1t

ρ̂ + â†
1 |b〉〈a|e

−i∆1t
ρ̂

)
(2.70)

+
i
2

Ωc

(
|a〉〈c| â2ei∆2t

ρ̂ + â†
2 |c〉〈a|e

−i∆2t
ρ̂

)
−
(

i
2

Ωp

(
ρ̂ |a〉〈b| â1ei∆1t + ρ̂ â†

1 |b〉〈a|e
−i∆1t

))
−ρ̂

(
i
2

Ωc

(
ρ̂ |a〉〈c| â2ei∆2t + ρ̂ â†

2 |c〉〈a|e
−i∆2t

))
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The matrix element can be obtained by projecting the basis |a〉 and |b〉 for atomic

element while |n〉 and |m〉 for field element. By applying the Kronecker delta function as

stated in Eq.2.11 we obtain

ρ̇aa (t) =
i
2

Ωp

(
〈a| |a〉〈b| â1ei∆1t

ρ |a〉+ â†
1 〈a| |b〉〈a|e

−i∆1t
ρ |a〉

)
+

i
2

Ωc

(
〈a| |a〉〈c| â2ei∆2t

ρ |a〉+ â†
2 〈a| |c〉〈a|e

−i∆2t
ρ |a〉

)
− i

2
Ωp

(
〈a|ρ |a〉〈b| |a〉 â1ei∆1t + 〈a|ρ â†

1 |b〉〈a| |a〉e
−i∆1t

)
− i

2
Ωc

(
〈a|ρ |a〉〈c| |a〉 â2ei∆2t + 〈a|ρ â†

2 |c〉〈a| |a〉e
−i∆2t

)
=

i
2

Ωp 〈b| â1ei∆1t
ρ |a〉+ i

2
Ωc 〈c| â2ei∆2t

ρ |a〉

− i
2

Ωp

(
〈a|ρ â†

1 |b〉e
−i∆1t

)
− i

2
Ωc 〈a|ρ â†

2 |c〉e
−i∆2t

=
i
2

Ωp

(
â1ei∆1t

ρba−ρabâ†
1e−i∆1t

)
+

i
2

Ωc

(
â2ei∆2t

ρca−ρacâ†
2e−i∆2t

)

ρ̇aa (n,m) =
i
2

Ωp

(
〈n| â1ei∆1t

ρba |m〉−〈n|ρabâ†
1e−i∆1t |m〉

)
+

i
2

Ωc

(
〈n| â2ei∆2t

ρca |m〉−〈n|ρacâ†
2e−i∆2t |m〉

)
=

i
2

Ωp
√

n1 +1ρba (n1 +1,m1)ei∆1t

− i
2

Ωp
√

m1 +1ρab (n1,m1 +1)e−i∆1t

+
i
2

Ωc
√

n2 +1ρca (n2 +1,m2)ei∆2t

− i
2

Ωc
√

m2 +1ρac (n2,m2 +1)e−i∆2t

The same step by step calculation applied to ρ̇bb (n,m) , ρ̇cc (n,m), ρ̇ab (n,m) , ρ̇ba (n,m)

, ρ̇ac (n,m), ρ̇ca (n,m) , ρ̇bc (n,m) and ρ̇cb (n,m) so it become

ρ̇bb (t) =
i
2

Ωp
√

n1ρabn1−1,m1e−i∆1t (2.71)

− i
2

Ωp
√

m1ρba (n,m1−1)ei∆1t

ρ̇cc (t) = +
i
2

Ωc
√

n2ρac (n2−1,m2)e−i∆2t

− i
2

Ωc
√

m2ρca (n2,m2−1)ei∆2t

ρ̇ac (t) =
i
2

Ωp
√

n1 +1ρbc (n1 +1,m1)ei∆1t

+
i
2

Ωc
√

n2 +1ρcc (n2 +1,m2)ei∆2t
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− i
2

Ωc
√

m2ρaa (n2,m2−1)ei∆2t

ρ̇ca (t) = − i
2

Ωp
√

m1 +1ρcb (n1,m1 +1)e−i∆1t

− i
2

Ωc
√

m2 +1ρcc (n2,m2 +1)e−i∆2t

+
i
2

Ωc
√

n2ρaa (n2−1,m2)e−i∆2t

ρ̇ab (t) =
i
2

Ωp
√

n1 +1ρbb (n1 +1,m1)ei∆1t

+
i
2

Ωc
√

n2 +1ρcb (n2 +1,m2)ei∆2t

− i
2

Ωp
√

m1ρaa (n1,m1−1)ei∆1t

ρ̇ba (t) = − i
2

Ωp
√

m1 +1ρbb (n1,m1 +1)e−i∆1t

− i
2

Ωc
√

m2 +1ρbc (n2,m2 +1)e−i∆2t

+
i
2

Ωp
√

n1ρaa (n1−1,m1)e−i∆1t

ρ̇cb (t) =
i
2

Ωc
√

n2ρab (n2−1,m2)e−i∆2t

− i
2

Ωp
√

m1ρca (n1,m1−1)ei∆1t

ρ̇bc (t) = − i
2

Ωc
√

m2ρba (n2,m2−1)ei∆2t

+
i
2

Ωp
√

n1ρac (n1−1,m1)e−i∆1t

2.4 Conclusion

There are several ways to solve the Hamiltonian of the system such as the probabil-

ity amplitude method, Heissenberg operator method, master equation method and unitary

time evolution method. The most essential part in the light-matter interaction scheme

is its Hamiltonian which describes the whole system. It consists of all of the informa-

tion needed to understand the scheme including the total system’s levels, light treatment

whether classically or quantum mechanically, the mode of the fields, and many more.

Once the Hamiltonian is derived correctly, the properties of the system can be investi-

gated so the interesting features can be studied extensively.
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CHAPTER 3

NONCLASSICAL PROPERTIES OF LIGHT

3.1 Introduction

The basics of quantum theory is wave-particle duality which explains the wave be-

haviour of particle in Young’s double slit experiment and likewise, explains the particle-

like phenomenon of light for example in Compton scattering. Nonclassical light is the

properties of light that cannot be described by classical interpretation of electromagnetic

waves. It can only be explained by quantum mechanics. For example, in photon anti-

bunching, the experiment show that the photon detector will detect one photon at a time

which is the sign of quantum behaviour. In squeezed light, we can squeezed the un-

certainty region in one quadrature (Milburn & Walls, 2008). Let us say the amplitude

noise by reducing the width of the amplitude direction but at the same time, as the conse-

quence, the phase uncertainty is increased. As an analogy to squeeze the toothpaste, when

we squeeze one part, the other part anywhere in the toothpaste will increase in volume.

Various physical parameters have been defined to determine the nonclassical states

of light as well as the degree of nonclassicality (Lee, 1991). The typical ones are the

squeezing parameter S = 〈p̂2〉− 〈p̂〉2 with p̂ = âeiθ + â†e−iθ , antibunching in G(2), en-

tanglement criteria, Mandel’s Q = (〈n̂2〉−〈n̂〉2)/〈n̂〉, n̂ = â†â and the Wigner function W .

Each quantity displays nonclassicality from certain aspects. There are states which do not

meet all the nonclassical criteria. For example, Schrödinger cat is not squeezed and has

Q > 0 (super-Poissonian statistics) for certain values of phase θ , but it shows nonclassi-

cality through negativity in W and Agarwal’s parameter (Agarwal & Tara, 1992).

These states of the nonclassical light provide the fundamental differences between

quantum and classical physics. Many experiments conducted by scientists showed that

the laws of classical mechanics are inapplicable thus enable to test the validity of quan-

tum mechanics. Nonclassical states of light and atoms play an essential role in quantum

communication between distant parties, as well as processing of quantum information

(Bouwmeester, Ekert, & Zeilinger, 2000). Several properties of nonclassical light will be
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discussed in this chapter to provide useful knowledge on the phenomenon and behaviour

of a particular system that cannot be explained in a common laws of classical mechan-

ics. The nonclassical phenomenon can be used to detect the entanglement between two

quantum parties. This chapter is basically from the discussion on entanglement criteria

that has been carried out thoroughly in the review paper published to Journal of Modern

Optics (Sumairi, Hazmin, & Ooi, 2013).

3.2 Literature Review

One of the nonclasical quantity of interest is the Glauber’s two-photon correlation

g(2) which can show the violation of Cauchy-Schwarz inequality (Glauber, 1963). In

this study, the concept of coherence is used to fields of arbitrary time dependence and

a succession of correlation functions for the complex field strengths is defined. Glauber

suggested that coherence does not require monochromaticity. Coherent fields can be gen-

erated with arbitrary spectra.

The quantum correlation of photon pairs from a Λ-type particle driven by laser fields

in a modified photon density of states such as a cavity or a defect in a photonic crystal

has been studied (Ooi & Gong, 2012). An exact semianalytical expression for the photon

correlation, which is characterized by two complex decay functions were obtained asso-

ciated with the levels splitting that depend on the control laser field. They have reported

that the position and width of the cavity density of state with respect to the anti-Stokes

transition can determine the features in the two-photon correlation profile.

In the related studies, the quantum statistical properties of light emitted by a similar

two-photon double Raman laser is investigated in the context of squeezing and entangle-

ment properties of the cavity. They found that the cavity radiation exhibits two-mode

squeezing and entanglement in the transient as well as steady state regime for realizable

parameters, and then established a connection between these two quantum features (Sete

& Ooi, 2012).

The limit of resolution is related to the wavelength of light used to illuminate the

sample in classical microscopy. However, by using the correlated photon pairs produced

in Raman quantum erasure, the resolution of two-photon quantum microscopy is substan-

tially improved (Scully & Ooi, 2004). In this study, the strongly correlated two-photon
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quantum state generated by Raman quantum erasure scheme (Scully & Drühl, 1982) has

been analyzed to see the possibility to exceed the Rayleigh resolution limit of classical

microscopy. The photon-photon correlation function for Raman pairs is of interest in

itself and has features in common with photon antibunching.

A diffraction of classical optical lithography is limited to writing features of an op-

tical wavelength size λ

2 or greater. Boto has reported that nonclassical photon-number

states, entangled N at a time, is possible to use to write features of minimum size λ

2N in

an N-photon absorbing substrate. Optical parametric down-conversion technique is used

to generate entangled photon pairs to provide subwavelength resolution and they have

shown how to write arbitrary 2D patterns by using this method (Boto et al., 2000). An ex-

perimental demonstration of quantum lithography has been carried out by Angelo’s team

by utilizing the entangled nature of a two-photon state without violating the uncertainty

principle. They successfully suggested the improvement of the resolution of optical mi-

croscopy and lithography by using photon correlation interferometry and showed that the

experimental results have beaten the classical diffraction limit by a factor of 2 (D’Angelo,

Chekhova, & Shih, 2001).

Several related studies have been conducted and make used of the nature of non-

classical photons such as, to enhanced spectral resolution (Scully, Rathe, Su, & Agar-

wal, 1997), quantum imaging (Gatti, Brambilla, Bache, & Lugiato, 2004), subwavelength

measurement of atomic separation using g(2) and discussed on antibunching (Ooi, Kim, &

Lee, 2007), and the new coherent effects due to dipole-dipole interaction (Ooi, 2007), and

provide interesting effects on spatial propagation and quantum noise (Ooi, Sun, Zubairy,

& Scully, 2007). This showed us that the nonclassical light is a popular field of research,

and scientists are interested to discover more the underlying truth of quantum world. The

nonclassical properties of light has opened a remarkable impact to physics particularly in

microscopic scale.

3.3 Squeezed Light

We can have various type of light sources; each of them is described by certain

statistic. In light squeezing, the quantum noise of light is actually been squeezed so it

benefited optical communication and measurements, quantum teleportation and quantum
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cryptography, and also can produce the entangled states of light (Lambropoulos & Pet-

rosyan, 2007). There are uncertainties in quantum optics measurements leads to the idea

of squeezing the noise for example amplitude and phase. When squeezing, let say the

amplitude, its width is reduced but at the same time, the phase uncertainty is increased.

Likewise, when phase squeezing of light takes part, the amplitude fluctuations is raised.

Fig. 3.1 illustrates the squeezed vacuum where the center of the uncertainty region (the

average amplitude) is at the origin of the coordinate system, and the fluctuations are re-

duced in some direction. There are two types of squeezed state: quadrature-squeezed and

Figure 3.1: Quadrature-squeezed state compared with vacuum state

photon-number-squeezed. The former squeezed state is only can occurs when stretching

the uncertainty in other quadrature which has a standard deviation that falls below the

vacuum-state of value 1
2 . The latter squeezed state, defined as if its photon-number uncer-

tainty falls below the value of 〈n〉1/2 of the coherent state. The uncertainty in photon num-

ber n may be squeezed when squeezing the phase uncertainty. Photon-number-squeezed

light is often referred to as sub-Poissonian statistic because its standard deviation falls

below (sub) that of the Poisson distribution that characterises the coherent state.

The correlation between two orthogonal quadratures, ĉ+ and ĉ− formed by the anni-
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hilation operator â†, and creation operator â are given by

ĉ+ =
1
2

(
â† + â

)
(3.1)

ĉ− =
1
2i

(
â†− â

)
(3.2)

which satisfy the commutation relation

[ĉ+, ĉ−] =
i
2

(3.3)

The product of quadrature variance should satisfy

〈
(∆ĉ+)

2
〉〈

(∆ĉ−)
2
〉
≥ 1

16
(3.4)

3.4 Photon Anti-bunching

Physicists have attempted to discover more nonclassical phenomenon associated

with light and found the anti-bunching behaviour of photons. The anti-bunching phe-

nomena is first explained when the time delay is detected between two successive pho-

tons emmited from the atom. This phenomena which is of incredible interest in quantum

theory of light has a very sharp contrast with the behaviour of photons in thermal light

which are coming in a bunch. The experiment set up to demonstrate this anti-bunching

behaviour of photon is prepared by Hanbury Brown-Twiss using the experiment scheme

as shown in fig.

Figure 3.2: Hanbury Brown-Twiss experiment to demonstrate the phenomena of anti-
bunching using photon detector
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This experiment consist of a 50:50 beam splitter which divide the initial light beam in

two equal portions that will be detected by two single photon detectors. The output signals

of the detectors are sent to a timer-correlated single-photon counting which records the

time elapsed between the pulse of each detector and count the number of pulses at each

input. This is the starting point of the quantum correlation pioneered by Glauber which

reported on photon counting. The phenomenon of photon anti-bunching shows behaviour

of the second order correlation function g(2) (τ).

An anti-bunched photon can be observed from a single particle through resonance

fluorescence. The phenomenon of anti-bunching is related to the effect of sub-Poissonian

statistics which is the probability of finding n-photons in a Poissonian distribution (Schleich,

2001). The correlation of scattered photons is studied using second order correlation func-

tion of photodetection with respect to time

g(2) (τ) =

〈
â† (t) â† (t + τ) â(t + τ) â(t)

〉
〈â†â〉2

(3.5)

3.5 Wigner Function

The properties of a quantum state in phase-space lies in the representation of Wigner

function, W . Consider a one-dimensional motion described by the position and momen-

tum operators x̂, and p̂ which has the relation [x̂, p̂] = ih̄. It is not possible to define a

genuine phase space distribution. The most interesting feature in Wigner fuction is the

negative parts in its distribution. Wigner phase space distribution can be described by

W (x, p)≡ 1
2π h̄

∫
∞

−∞

dξ exp
(
− i

h̄
pξ

)〈
x+

1
2

ξ

∣∣∣∣ ρ̂ ∣∣∣∣x− 1
2

ξ

〉
(3.6)

The normalization factor is included to ensure the property of∫
∞

−∞

dx
∫

∞

−∞

d pW (x, p) = 1 (3.7)

Using Fourier transform, the Wigner function now become

W (x, p) =
1

2π h̄

∫
∞

−∞

dξ exp
(
− i

h̄
pξ

)
ρ̂ (x,ξ ) (3.8)

of the density operator ρ (x′′,x′) ≡ 〈x′′|ρ |x′〉 in position representation expressed in the

variables x≡ (x′+ x′′)/2 and ξ = x′′− x′ where

x′ = x− 1
2

ξ

x′′ = x+
1
2

ξ
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It can be shown that

ρ̂ (x,ξ ) = ρ
(
x′′,x′

)
(3.9)

= ρ

(
x+

1
2

ξ ,x− 1
2

ξ

)
=

〈
x+

1
2

ξ

∣∣∣∣ ρ̂ ∣∣∣∣x− 1
2

ξ

〉
For the case of pure states, the Wigner expression reduces to

W (x, p) =
1

2π h̄

∫
∞

−∞

dξ exp
(
− i

h̄
pξ

)
ψ
∗
(

x− 1
2

ξ

)
ψ

(
x+

1
2

ξ

)
(3.10)

where ψ (x)≡ 〈x|ψ〉 is the position representation of the state |ψ〉.

In a harmonic oscillator, Schrodinger equation is solved to get the position represen-

tation of an energy eigenstate. Due to the quantization of energy, the Wigner function of

the mth energy eigenstate reads

Wm (x, p) =
(−1)m

π h̄
exp
{
−
[( p

h̄κ

)2
+(κx)2

]}
Lm

{
2
[( p

h̄κ

)2
+(κx)2

]}
consisting of the mth Laguerre polynomial represents a normalizable solution of the or-

dinary differential equation

3.6 Entropy

The entropy describes the lack of knowledge in the particular system.The entropy of

the system, S is a measure of the uncertainty of a quantum state, where

S (ρ) =−Tr (ρ lnρ)

is the Von-Neumann quantum mechanical property associated with ρ . This property can

determine the strength of entanglement where the higher the entropy, the stronger the

degree of entanglement. The entropy measurement is used to measure the disorder in the

quantum system, and of the purity of a quantum state . The relation among entropies can

be expressed by entropy inequality (Araki & Lieb, 1970)

|SA−SF | ≤ S≤ |SA +SF | (3.11)
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If the system is initially in a pure state, the entropy vanishes where S = 0. Then

the component systems, which are atom and field have an equal entropies throughout the

entire evolution of the system and independent to each other

SA = SF

For a statistical mixture, however, the entropy is non-zero, S 6= 0. The entropy of a total

system remains constant whenever the time-dependent Schrodinger equation governs the

entire time evolution (Shore & Knight, 1993). The most interested quantity are the partial

entropies of the subsystem, let say atom alone or field. If we treated the component as a

separate system, from the reduced density matrices, we find the entropy of atom(subscript

A) and field(subscript F) are

SA (t) = −TrF (ρ̂A (t) ln ρ̂A (t)) (3.12)

SF (t) = −TrA (ρ̂F (t) ln ρ̂F (t)) (3.13)

where the reduced density operator for atom and field are ρ̂A = TrF (ρ̂) and ρ̂F = TrA (ρ̂)

respectively. These partial entropy changes with time, unlike the total entropy, and this

properties makes it an interesting feature to play with. The decrease of partial entropy

shows that the particular subsystem is approaching its pure state, while the increasing in

entropy tells that the two components tend to lose their individuality and become corre-

lated or entangled. If we have a two-level system interact with a field in a high quality

cavity is of interest, the plot of entropy of field for the system is shown in the Fig.3.3

while to get a broader view, Fig.3.4 show the time duration from gt = 0 to gt = 100

The plot of entropy for atom is shown as in Fig.3.5 From the derived Schrodinger

equation, the equations of motion for amplitude Ca(excited state) and Cb(ground state)

are obtained. The eigenvalues for ρ̂F (t) are the sum of diagonal element for atom given

by

ρ̂F (t) = TrA (ρ̂ (t)) (3.14)

= ρaa (t)+ρbb (t)

= CaC∗a +CbC∗b (3.15)
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Figure 3.3: Field entropy for two level atom interact with a single mode field(without
damping effect) in time duration gt = 0 to gt = 30.

Figure 3.4: Field entropy for two level atom interact with a single mode field(without
damping effect) in time duration gt = 0 to gt = 100.

The total amount of correlation between the atom and field can be obtained by taking

the negative entropy difference (Hessian, Mohammed, & Mohamed, 2009)

SD =
1
4
(S−SA−SF) (3.16)

The degree of entanglement is determined through the measure of negativity of this quan-
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Figure 3.5: Atom entropy for two level atom interact with a single mode field(without
damping effect) in time duration gt = 0 to gt = 100.

tity.

3.7 Conclusion

There are so many nonclassical properties discovered when scientist first found that

light can exhibit the particle-like behaviour. Several properties have been discussed in

this chapter which will be used in the preceeding chapters. The nonclassicality of light

provide useful information and application for advanced optics technology and physics in

general.
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CHAPTER 4

TIME- & INTENSITY-DEPENDENT TWO-LEVEL ATOM

4.1 Introduction

Nonclassical light and collapse-revival dynamics are consequences of dynamical

quantum interference in transient atom-photon interaction (Ooi et al., 2012). A system of

two-level atom interacting with a quantized field in a high quality cavity is studied. The

dissipation is neglected since the quality of the cavity is very high by assuming the system

is confined in a cavity and neither interaction with the environment nor spontaneous effect

occurs to the system. The time- and intensity-dependent atom-field coupling are applied

to the system, with different initial field states and initial atomic states. Further investiga-

tion on the dynamics of the atom(matter) and photon(light) in the collapse-revival pattern

of inversion and the Wigner function are investigated and the connection between these

two has been conducted. Nonclassical effects are useful to gather more information and

to get a better understanding of the system.

The general overview of step-by-step calculation in this study of two-level atom

interact with a single mode field in a high quality cavity is as the flow chart of Fig.4.1

below.

The simulation of Wigner evolution and inversion plot is developed using MATLAB

programming to observe the behaviour of light and atom theoretically. In this study, the

atom-cavity scheme is descibed where a desired quantum state of light can be coherently

extracted on demand. The density matrix elements ρnm for the atom-field dynamics, the

inversion nab and the expressions relating W and ρnm are obtained. The ρnm are acquired

for different initial states of the atom (pure and superposition) and different initial field

states (coherent, Schrödinger cat). The main results will be discussed, particularly on the

Wigner plot and anti-Zeno effect in the collapse-revival with a peculiar transient dynamics

due to the transient couplings g(t). We analyzed the system using three coupling function

that are constant coupling , sinusoidal coupling function and hat pulse function which

will discussed in detailed later.
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Figure 4.1: Research methodology for JCM with time- and intensity-dependent coupling

4.2 Related Studies

One of the challenges in developing quantum communication technology is to gen-

erate nonclassical state with large |α|2. Schrödinger cat state |α〉± eiφ | −α〉, a super-

position of classical (coherent) states, is a nonclassical state. Six atomic qubits cat state

has been created by Leibfried which each qubit’s state space is defined by two hyper-

fine ground states of beryllium ion (Leibfried et al., 2005). The cat state for fields may

be produced from squeezed sources, linear processes, simple photon counting scheme as

suggested by Ralph group. They constructed a simple networks and showed the quantum

computation circuits using coherent states as the logical qubits (Ralph, Gilchrist, & Mil-

burn, 2003). The cat state of a single-mode optical field can be produced by conditional

measurement (Dakna, Anhut, Opatrny, Knoll, & Welsch, 1997). The study showed by

feeding a squeezed vacuum into a beam splitter and counting the photons in one of the

output channels, the conditional states in the other output channel exhibit a Schrodinger

cat-like states. They presented the Wigner and Husimi function numerically and ana-

lytically. All these three studies generated a cat state, while in the study conducted, a
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Schrodinger cat state is used as an initial state to study the interaction between light and

matter.

Single two-level atom interacting with quantized field in a cavity is convenient for

studying the connection between collapse-revival and the nonclassicality of light. It is

simpler than more complex systems, such as two atoms and multiphoton cases. Although

the single atom-field system was studied by Jones et al. (Jones, Haight, & Lee, 1997), it

was confined only to photon addition process on single mode thermal field in weak cou-

pling (short time) regime
∫ t

0 g(t ′)dt ′ << 1, where g(t) is the time-dependent atom-field

coupling. The connection between nonclassical light and collapse-revival dynamics in

two-level system has been studied extensively, mainly by Banacloche. Spatial dependent

coupling and atomic center of mass motion give rise to novel collapse-revival. However,

the situation of time-dependent coupling g(t) with intensity dependent has not been ex-

plored in the context of Wigner function. The closest is the work by Kurizki’s group

(Sherman, Kurizki, & Kadyshevitch, 1992) who studied the effect of time dependent field

coupling on enhancing nonclassicality of light for atom moving through a photonic crystal

with defect.

In this work, the atom and photon dynamics, particularly the dynamical quantum

interference in collapse-revival and the Wigner function, are studied via exact nonpertur-

bative approach, generalized to time- and Intensity-dependent atom-field coupling g(t)

and with any initial field state. Nonclassical light in the cavity is only useful if the state

can be frozen instantaneously and coupled out from the cavity. A setup which allows the

possibility of extracting desirable state of field is proposed based on the knowledge of

transient atomic dynamics and the evolutions of W (t) for any time dependent g(t). The

motivation of the present work is field-state control through time-dependent and intensity-

dependent coupling. Despite many existing works on intensity-dependent coupling, the

physical motivation remains unclear. Actually, such laser control may be realized by a

dispersive cavity with coupling strength that is proportional to the square root of dielec-

tric function (Glauber & Lewenstein, 1991) and the field intensity (optical Kerr effect). It

may also employ preselection and/ or postselection of the atomic state, as discussed by

G.Harel et al. (Harel, Kurizk, McIver, & Coutsias, 1996) The motivation of the present-

work is field-state control through time-dependent and intensity-dependent coupling.
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4.3 Dynamics of the JCM with time- and intensity-dependent coupling

Figure 4.2: A two-level atom coupled to a quantized cavity field in arbitrary state. The
cavity has negligible loss within the timescale of the atomic dynamics. Transient cou-
plings realized by: a) transiting atom modelled by a "hat" function, and b) atom oscillat-
ing back and forth through the cavity modelled by sinusoidal function.

Single mode field resonantly interacting with single two-level atom which is known

as Jaynes-Cumming Model(JCM) as shown in Fig.4.2 has the usual Hamiltonian

Ĥ =
h̄
2

ωσ̂z + h̄ν â†â

−h̄g(t)
(

σ̂+â+ â†
σ̂−
)

where ω=atomic transition frequency, ν=field frequency, σ̂+ = |a〉〈b|(atomic raising op-

erator), σ̂−= |b〉〈a|(atomic lowering operator),σ̂z = |a〉〈a|−|b〉〈b|, â†=creation operator

for field and â=ahhinilation operator.Using the same derivation as discussed in Eq.2.44 of

chapter 2, the interaction picture for the JCM system now becomes

V̂ (t) = h̄g(t)
(

σ̂+âe−i∆t + â†
σ̂−e−i∆t

)
(4.1)

where g(t) is the atom-field coupling factor and the difference between atomic transition

frequency and field frequency defined by the detuning:

∆ = ω−υ
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Spontaneous emission and dissipation can be neglected for interaction time smaller than

the spontaneous lifetime. This means neglecting the coupling between the vacuum radia-

tion and the atom which is possible for typical transition frequency below the infrared or

photonic crystal cavity.

It is useful to note that since photon absorption(PhA) (photon emission(PhS)) cor-

responds to downward (upward) transition of an atom, the atom and the field dynamics

are correlated. The PhA and PhS processes are respectively described by σ̂−â†|a, f 〉 =
√

f +1|b, f + 1〉 and σ̂+â|b, f 〉 =
√

f |a, f − 1〉 as the first order perturbative expansion

of the evolution operator Û = exp[i(λ (t)(σ̂+â+ σ̂−â†)] with σ̂+ = |a〉〈b|, σ− = |b〉〈a|,

λ (t)=
∫ t

0 g(t ′)dt ′. The second order terms (λ (t))2(|a〉〈a|ââ†|a, f 〉 and (λ (t))2|b〉〈b|â†â|b, f 〉

describe PhS-PhA and PhA-PhS respectively but do not correspond to a transition. Higher

order odd and even terms contribute similarly, such that the sum gives the nonlinear de-

pendence on λ (t) and â†â contained in the nonperturbative solutions.

The details of atomic dynamics evolution in the atom-field system can be studied

non-perturbatively by using the Schrodinger approach with the state vector

|ψ(t)〉= ∑
n
[Ca,n(t)|a,n〉+Cb,n(t)|b,n〉] (4.2)

with the time dependent atom-field coefficients Cx,n for level x (= a,b) with n photons.

The equation of motion for |ψ(t)〉

ih̄
d
dt
|ψ(t)〉= V̂ (t)|ψ(t)〉 (4.3)

For intensity dependent coupling which will be discussed in the next section, field

operator, â and â† are replaced by R̂= â
√

â†âand R̂† =
√

â†ââ†, V̂ (t)= h̄g(t)(σ̂+â
√

â†âe−i∆t +
√

â†ââ†σ̂−e−i∆t) and the interaction energy can only cause transition between |a,n〉 and

|b,n+1〉 so the coupled equation (See Appendix B for complete calculation) are written

by

d
dt

Ca,n(t) = −ig(t)(n+1)ei∆tCb,n+1(t) (4.4)

d
dt

Cb,n+1(t) = −ig(t)(n+1)e−i∆tCa,n(t) (4.5)
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where g(t) is the atom-field coupling factor and |Cx,n|2 being the probability with n pho-

tons and atom in state |a〉. Equations 4.4-4.5 can be solved numerically for finite detuning

and any time-dependence g(t) but it is not posssible to obtain general analytical solutions.

For time independent coupling and finite detuning the analytical solutions (see Appendix

C) are known (Scully & Zubairy, 1997)

Ca,n(t) = ei∆t/2[Ca,n(0)rn(t)− iCb,n+1(0)qn(t)] (4.6)

Cb,n+1(t) = e−i∆t/2[Cb,n(0)r∗n(t)− iCa,n(0)qn(t)]

where

rn(t) = cos(φn(t))− i
∆

Ωn
sin(φn(t))

qn(t) =
2g(t)(n+1)

Ωn
sin(φn(t))

φn(t) =
1
2

Ωnt

Ω
2
n = ∆

2 +(2g(n+1))2

On the other hand, for zero detuning (∆ = 0) with arbitrary time dependence the solutions

are

Ca,n(t) = Ca,n(0)rn(t)− iCb,n+1(0)qn(t) (4.7)

Cb,n(t) = Cb,n(0)r∗n−1(t)− iCa,n−1(0)qn−1(t)

where

rn(t) = cos(φn(t))

qn(t) = sin(φn(t))

φn(t) =
1
2

∫ t

0
Ωn(t ′)dt ′

Ωn = 2g(n+1)

In general, the density matrix elements of the field ρnm are obtained by tracing out

the atomic system (subscript ”s”), ρnm = 〈n|ρ̂ f |m〉=∑
x
〈n|ρ̂xx|m〉where ρ̂ f = Trs{ρ̂(t)}=

∑
x=a,b

ρ̂xx is the reduced density matrix of the field (subscript ”f”), ρ̂xx = 〈x|ρ̂|x〉 (x = a,b)
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and 〈n|ρ̂xx|m〉 = Cx,n(t)C∗x,m(t) (x = a,b). The transient state of the field is governed by

the matrix element of the field ρnm(t). For the two-level atom,

ρnm(t) = 〈n|{ρ̂aa(t)+ ρ̂bb(t)}|m〉

= Ca,n(t)C∗a,m(t)+Cb,n(t)C∗b,m(t) (4.8)

where Cx,n(t) is obtained from the solutions of the standard coupled equations 4.4 and 4.5

for a two-level atom.

Initially, the atomic system ρ̂s(0) is uncorrelated to the field state ρ̂ f (0), i.e. ρ̂(0) =

ρ̂ f (0)⊗ ρ̂s(0) since both are not coupled. Thus, the initial coefficients can be decomposed

into products of the atomic (subscript ’x = a,b’) and photonic coefficients (subscript ’n’),

Cx,n(0) =Cx(0)Cn(0) (4.9)

satisfying |Ca(0)|2+|Cb(0)|2 = ρaa(0)+ρbb(0)= 1 with ρxx(0)= 〈x|ρ̂s(0)|x〉=Cx(0)C∗x (0).

Thus Cx,n(0)C∗y,m(0)=Cx(0)C∗y (0)ρnm(0). The initial coherence between photon numbers

is

ρnm(0) = 〈n|ρ̂ f (0)|m〉=Cn(0)C∗m(0) (4.10)

where Eqs.4.8 and Eq.4.9 are used(see Appendix D). As expected, the initial matrix ele-

ment of the field ρnm(0) does not depend on the atomic initial conditions.

4.3.1 Atomic inversion and coherence

One quantity that characterizes the atomic dynamics is the atomic inversion nab =

∑
∞
n=0(|Ca,n(t)|2−|Cb,n(t)|2) which is obtained by tracing over the photon number states.

The atomic inversion can be written as nab(t)=∑
∞
n=0(|Ca,n(t)|2−|Cb,n+1(t)|2)−|Cb,0(t)|2

which is used to obtain an analytical expression(see Appendix E),

nab(t) =
∞

∑
n=1
{ρaa(0)pn(0)−ρbb(0)pn+1(0)}

(
|rn(t)|2−q2

n(t)
)

−ρbb(0)p1(0)|r0(t)|2−ρaa(0)p0(0)q2
0(t)

+iρab(0)[2
∞

∑
n=1

ρn,n+1(0)q∗n(t)rn(t)+ρ0,1(0)q∗0(t)r0(t)] (4.11)

−iρba(0)[2
∞

∑
n=1

ρn+1,n(0)qn(t)r∗n(t)+ρ1,0(0)q0(t)r∗0(t)] (4.12)
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where ρmn(0) is the initial field coherence and ρxy(0)is the initial atomic coherence

or population (See Appendix 2 for full calculation).

Note that if one of the states is initially empty, i.e. either Ca(0)or Cb(0)being zero,

nab(t) in Eq.4.11 depends only on pn = ρnn the population in number state |n〉and not on

the coherences ρnm. Similarly, nab(t) does not depend on the initial coherence ρab(0) if

the field has zero initial coherences, namely ρn,n−1(0)and ρn+1,n(0) = 0.

Using 〈a,n|ρ̂|b,n〉= 〈n|ρ̂ab|n〉= 〈a|ρ̂nn|b〉=Ca,n(t)C∗b,n(t), the transient atomic co-

herence is given by

ρab(t) =
∞

∑
n=0
〈a,n|ρ̂|b,n〉=

∞

∑
n=0

Ca,n(t)C∗b,n(t) (4.13)

which is used for the plots of inversions in Fig.4.3 -Fig.4.10.

4.3.2 Wigner function

The Wigner function, W is a reliable quantity for studying PhA and PhS processes

for producing nonclassical states. The relationship between W and the matrix elements

for the field ρnm can be obtained using (Cahill & Glauber, 1969),

W (α, t) =
2e2|α|2

π2

∞

∑
m,n=0

ρnm(t) (4.14)∫
〈−β |n〉〈m|β 〉e2(β ∗α−βα∗)d2

β

where ρ̂ f (t) = ∑
∞
m,n |n〉ρnm(t)〈m| is the field state in photon number basis {|n〉} and the

field matrix element ρnm(t) is given by Eq.4.8. The complex coherent state variable

α = reiθ can be mapped into polar coordinates, r and θ . The |r|2 corresponds to the

number of photons while θ is the coherent state phase. Similarly for β . Inserting 〈n|α〉=

e−|α|
2/2 αn
√

n!
and

∫ ∫
β mβ ∗ne−|β |

2
e(β

∗2α−β2α∗)d2β = πLm−n
n (|2α|2)n!e−|2α|2(2α)m−n , the

Wigner function in the general analytical expression is obtained

W (α, t)
K(α)

=
∞

∑
m=0

(−1)mL0
m(x)ρmm(t)+ (4.15)

∞

∑
m=1

m−1

∑
n=0

(−1)n

√
n!
m!

Lk
n(x)2Re{zk

ρnm(t)}

with the coherence of the field

ρnm(t) =Ca,n(t)C∗a,m(t)+Cb,n(t)C∗b,m(t) (4.16)
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where K(α) = 2e−2|α|2

π
, x = |z|2,z = 2α , k = m−n > 0 and Re is the real part. Note

that the field density matrix elements serve as time-dependent coefficients to the La-

guerre polynomials. The first term in Eq.4.15 gives the dependency on |α|2, contains

the Laguerre polynomial L0
m and the field population. The second term depends on the

associated Laguerre polynomial Lk
n which falls off for large |α|2, the coherences between

photon numbers ρnm(t)(m 6= n), and αk carries the phase of α . In view of Cb,0(t) = 0,

straightforward calculation from Eq. 4.15 gives (Schleich, 2001)

W (α, t)
K(α)

=
∞

∑
m=0

(−1)m{L0
m(x)|Ca,m(t)|2 (4.17)

−L0
m+1(x)|Cb,m+1(t)|2}+

∞

∑
m=1

m−1

∑
n=0

(−1)n[

√
n!
m!

Lk
n(x)2Re{zkCa,n(t)C∗a,m(t)}

−
√

n+1!
m+1!

Lk
n+1(x)2Re{zkCb,n+1(t)C∗b,m+1(t)}]

The inversion nab(t) is obtained by tracing over the radiation states wheras the Wigner

function is computed from ρnm(t) after tracing over the atomic states. Both quantities

are related as they are computed from the same density matrix. This suggests that the

nonclassicality of the radiation field can be noticed through the behavior of inversion. It

has been shown (Dung, Tanas, & Shumovsky, 1990) that under certain conditions there is

a direct relation between atomic inversion and the corresponding Wigner function at the

phase space origin. This relationship is supported by the recent developments in photon

counting experiment (Banaszek & Wodkiewicz, 1996)(Wallentowitz & Vogel, 1996) and

trapped ion technique (Lutterbach & Davidovich, 1997)(Nogues et al., 2000) where the

measurements have been focused on the phase space origin.As shown in the subsection

below, expressions for theWigner function and the inversion are very similar at α = 0 for

initially excited atom.

4.3.3 Coupling Function Properties

4.3.3 (a) Time Dependent g(t)

The interesting aspect of the time dependent coupling is that the arguments φn(t) in

the sine and cosine functions now can have nonlinear dependency on time, in contrast

to the constant coupling case where the argument depends linearly on time, i.e. φn(t) =
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g(t)
√

n+1 and φn(t) = g(t)(n+ 1) for intensity independent and dependent couplings,

respectively. Thus, the transient regime where the coupling varies rapidly with time is

of interest. The generalization from the constant coupling g to arbitrary time dependent

coupling g(t) enables us to model several new physical situations not studied before.

We will focus on several examples. Deterministic profiles of g(t) may be realized by

time-dependent alignment or orientation of the atomic/molecular dipole moment using

laser pulse (Friedrich & Herschbach, 1995) and motion of the atom through the cavity.

We consider the forms for g(t) = gsin2(xgt), g
cosh((t−t0)/tm)

and g
cosh((t−t0)/tm)4 , x being a

constant. The former two can be integrated, respectively as

λ (t)osc =
gt
2
− 1

4x
sin(2xgt) (4.18)

λ (t)hat = 2gtm[tan−1(e
t−t0
tm )− tan−1(e−

t0
tm )] (4.19)

In practice, the fluctuations in g(t) can be due to the random orientations of the atom

or molecule that change the coupling between the electric dipole moment and the cavity

field. This will also be modelled.

Since the initial atomic state is not correlated to the field,

Cx,n(0)C∗y,n′(0) =Cx(0)C∗y (0)ρnn′(0)

we may expand the coherence between the number states of the field ρnm(t) from Eq.4.8

and write in a general form (valid even for mixed field states),

ρnm(t) =
{

ρaa(0)rn(t)r∗m(t)+ρbb(0)r∗n−1(t)rm−1(t)
}

ρn,m(0)

+ρbb(0)qn(t)qm(t)ρn+1,m+1(0) (4.20)

+ρaa(0)qn−1(t)qm−1(t)ρn−1,m−1(0) (4.21)

+iρab(0)
{

rn(t)qm(t)ρn,m+1(0)−qn−1(t)rm−1(t)ρn−1,m(0)
}

+iρba(0)
{

r∗n−1(t)qm−1(t)ρn,m−1(0)−qn(t)r∗m(t)ρn+1,m(0)
}

(4.22)

where ρnm(0) = 〈n|ρ̂ f (0)|m〉 with ρ̂ f (0) being the initial state of the field(see Ap-

pendix D). This expression will be used to compute the Wigner function for the field.
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4.3.3 (b) Intensity Dependent g(t)

The strength of force between atom and field is basically be the subject of inter-

est in understanding the interaction. Light-matter interaction with an intensity-dependent

coupling was first suggested by Buck (Buck & Sukumar, 1981) and Sukumar (Sukumar

& Buck, 1981). They describes the dependence of atom-field coupling on the electro-

magnetic field intensity. The intensity dependent coupling has great relevance in under-

standing the interaction since the coupling is proportional to the amplitude of the field.

It describes a nonlinear interaction which is one of the popular research field nowadays.

For example in recent work, Ooi & Khoo reported the Casimir force between two plates

driven by an external high-intensity laser source (Ooi & Khoo, 2012). They introduced

the optical Kerr effect on the plates which can be controlled using combinations of dis-

persive metamaterials and nonlinear materials. They have shown that the force can be

significantly varied and switched between positive and negative values by changing the

intensity of the laser.

The results of this model can also give insight into the behavior of other quantum

systems such as squeezed light, entropy and many more. The study by (Singh, Ooi,

& Amrita, 2012) on the dynamics of two atom interact with two-mode quantized cavity

fields also considered the intensity dependent coupling function which is given by f (n) =
√

â†â defined as

R̂ = â f (n) = â
√

â†â (4.23)

R̂† = f (n) â† =
√

â†ââ†

This function is used to replace the field operators â and â† to include the intensity de-

pendent to atom-field coupling.

4.3.4 Initial State of Atom and Field

4.3.4 (a) Initially excited atom

For atom initially in the excited state |a〉 and the radiation field is in the pure state,

the matrix element for the field reduces to

ρnm(t) =Ca,n(0)C∗a,m(0)rn(t)r∗m(t) (4.24)
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+Ca,n−1(0)C∗a,m−1(0)qm−1(t)qn−1(t) (4.25)

Inserting Eq.4.25 into Eq.4.15 we obtain

W (α, t)
K(α)

=
∞

∑
m=0

(−1)m |Ca,m(0)|2
(
L0

m(x)|rm(t)|2 +L0
m+1(x)q

2
m(t)

)
(4.26)

+
∞

∑
m=1

m−1

∑
n=0

(−1)nCa,n(0)C∗a,m(0) (4.27)

{
√

n!
m!

Lm−n
n (x)2Re

(
zkrn(t)r∗m(t)

)
(4.28)

+

√
n+1!
m+1!

Lm−n
n+1 (x)2Re

(
zkqm(t)qn(t)

)
} (4.29)

where
√

2(x+ ip) = z = 2α,x = |z|2.

By comparing the analytical expressions for nab and W (t), it is found that nab does

not contain the coherences of the field. Therefore, nab may not be entirely correlated to

the Wigner function W which depends on both diagonal and off-diagonal elements ρmn in

general, unless all ρnm(t) are negligibly small or zero for all times, as we find for the case

of initial thermal state.

At the origin α = 0 only the first line contributes

W (0, t) =
2
π

∞

∑
n=0

(−1)n pn(0)
(
|rn(t)|2−q2

n(t)
)

(4.30)

since Lm(0) = 1. Here, the inversion is

nab(t) =
∞

∑
n=1

pn(0)
(
|rn(t)|2−q2

n(t)
)
− p0(0)q2

0(t) (4.31)

which looks similar to the Wigner function. Both would be identical if the even

coefficients and p0(0) are zero. Atom field coupling will be discussed deeply in the next

section.

4.3.4 (b) Coherent state(CS) field

For initial coherent state, |α0〉= ∑
n=0

Cn(0)|n〉 with Cn(0) = e−|α0|2/2 αn
0√
n!

. The initial

density matrix ρ̂ f = |α0〉〈α0|= e−|α0|2 ∑
m,n=0

αm
0 α∗nn

0√
m!n!
|m〉〈n|= ∑

m,n=0
ρmn(0)|m〉〈n| gives

ρmn(0) =Cm(0)C∗n(0) = e−|α0|2 αm
0 α∗n0√
m!n!

(4.32)
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which gives the initial analytical Wigner function that is independent of the atomic initial

condition,

W (α,0) = K(α)e−|α0|2
∞

∑
n=0

1
n!
[(−1)nL0

n(|z|2) |α0|2n

+
n−1

∑
m=0

(−1)mLk
m(|z|2)2Re{zk

α
m
0 α
∗n
0 }]. (4.33)

When the atom is initially in coherent superposition of states and the field is in the

coherent state, the inversion has a small magnitude. This effect will be discussed in

the subsequent section by using the analytical expression (which agrees with numerical

results), obtained from Eq.4.11, i.e.

nab(t) =
e−|α0|2

2
[

∞

∑
n=1

|α0|2n

n!
(4.34)

{(1− |α0|2

n+1
)

[
1−

(
8(g(t)(n+1))2

Ω2
n

)(
sin(

λ (t)
2

)

)2
]

(4.35)

+
|α0|2n2Im(α0)√

n!(n+1)!
(D∗n−Dn)} (4.36)

−|α0|2
[(

cos(
λ0(t)

2
)

)2

+
∆2

Ω2
0

]

−4g2(t)
Ω2

0

(
sin(

λ0(t)
2

)

)2

− Im(α0)(D0−D∗0)] (4.37)

4.3.4 (c) Schrödinger’s cat(SS) state

We now find the matrix elements for the even(+)/odd(−) Schrödinger’s cat state, |ψ〉±cat =

N (|α0〉±eiϕ |−α0〉), a nonclassical state formed from even/odd superposition of coher-

ent states with relative phase ϕ . In number state basis, |ψ〉±cat = ∑
n=0

Cn(0)|n〉 where

Cn(0) = N e−|α0|2/2 αn
0±(−α0)

n
√

n!
with the normalization factor N = 1√

2(1+e−2|α0|2 cosϕ)
.

The cat state can be produced by atomic inversion via atomic superposition (Monroe,

Meekhof, King, & Wineland, 1996). It can also be produced by linear optics with condi-

tional measurements of photon number states using homodyne detection, which generates

arbitrarily large squeezed Schrödinger’s cat state (Ourjoumtsev, Jeong, Tualle-Brouri, &

Grangier, 2007). The initial density matrix element for the cat state

ρ
±
nm(0) = e−|α0|2 {α

n
0 ± (−α0)

n}{α∗m0 ± (−α∗0 )
m}

2(1+ e−2|α0|2 cosϕ)
√

n!m!
(4.38)

which is used to compute the results. The Schrödinger’s cat has been realized experimen-

tally in the context of atom-field interaction in a cavity (Monroe et al., 1996).
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4.3.4 (d) Diagonal number state

For fields with diagonal number state, i.e. ρ̂ f = ∑
n=0

ρnn|n〉〈n| only the diagonal

matrix elements contribute. Here ρnm(0) = 〈n|ρ̂ f (0)|m〉 = δmn pn = δmnCn(0)C∗m(0) and

Cn(0) =
√

pn is chosen to be real. A special case is the thermal state, with the probability

pn(0)
.
=

1
1+ n̄

(
n̄

1+ n̄

)n

(4.39)

where n̄ = (eh̄v/kBT −1)−1 is the mean number of thermal photons and ∑
n=0

pn(0) = 1.

The transient matrix element for initial thermal field in Eq.4.22 reduces to

ρnm(t) = δmn[{|Ca(0)rn|2 + |Cb(0)rn−1|2}pn(0)+ (4.40)

|Ca(0)qn−1|2 pn−1(0)+ |Cb(0)qn|2 pn+1(0)]+

δn,m−1iC∗ab(0){r∗n−1qn pn(0)−qnr∗n+1 pn+1(0)}+

δn,m+1iCab(0){rnqn−1 pn(0)−qn−1rn−2 pn−1(0)}

where δmn is the delta Kronecker where Cab(0) = Ca(0)C∗b(0). Here, the initial

Wigner function has a simple form W (α,0) = K(α)∑
∞
n=0(−1)nL0

n(|2α|2)pn(0). How-

ever, for finite t the emission and absorption processes may develop coherences between

photon numbers n and m± 1 through the last two lines of Eq.4.40. Although the initial

radiation state is diagonal, for finite t the emission and absorption processes may develop

coherences between photon numbers. The atomic dynamics [through the inversion nab(t)

and coherence ρab(t)] with the pattern of the Wigner function are compared to investigate

the interesting features resulted.

4.4 Transient Effects in Cavity Coupling

The Wigner plot and the atomic inversion concerning the collapse and revival pattern

with a peculiar transient dynamics due to the transient couplings g(t) are discussed. A

setup which allows the possibility of extracting desirable state of the field is proposed

based on the knowledge of transient atomic dynamics and the evolutions of W (t) for any

time dependent g(t) since nonclassical light in the cavity is only useful if the state can be

frozen instantaneously and coupled out from the cavity.

The comparison of the collapse duration is also discussed to show the anti Zeno-like

effect as illustrated in Fig.4.6 and Fig.4.7 for initial state Ca(0) = 1 and α0 =
√

15.
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4.4.1 Constant Coupling Case

The evolution of Wigner function for the case of constant coupling g(t) = g with

intensity independent for initial CS and initial SS are shown in Fig.4.3.

The Wigner function for intensity independent coupling for initial CS shows a single

peak at Re(α) = 0 and Im(α) = +6 in Fig.4.3a(ii). It corresponds to the revival phase

appear at the same point of time in inversion plot nab(t) vs time gt. However in SS, for

each revival phase, two peaks appear opposite to each other: at Re(α) = 0,Im(α) = +6

and Re(α) = 0,Im(α) =−6 as illustrated in Fig.4.3b(ii). As the Im(α) decreases from 6

to−6 for CS (Fig.4.3a(iii)), the peak splits into two with the same amplitude but opposite

phases. The peaks move to the right and left along the edge of a circle in a plane of

Re(α) and Im(α) axis towards point Im(α) = 0,Re(α) = +5 and Im(α) = 0,Re(α) =

−5 and recombine to form a single peak again at the point as shown in Fig.4.3a(iv). Then

the peaks move back to its initial position. Referring to Fig.4.3a(iii) at t = 1.5g−1 and

Fig.4.3a(v) at t = 5g−1, we conclude that the field states generated at these times are the

Schrödinger-cat states corresponding to the collapse phase of the inversion. In the SS

case, there are two peaks at the beginning, corresponding to the revival phase in inversion

plot. The peaks then split to four peaks which refer to collapse phase and recombine back

to its initial position when the second revival phase reappear. The revival arises at the

point of time when the single peak appear as shown in Figs.4.3b(i)-(vi). The movement

of W (t) is faster while the revival phases are seen appear more frequently for SS case

than in CS case within the same time interval.

The case of intensity dependent demonstrate more rapid movement in Wigner func-

tion evolution for both case. The pattern of peaks movement is absolutely the same with

the intensity independent case. The revivals appear the most frequent in SS case with

intensity dependent coupling. This can be seen in Fig.4.5. The revival appear 2 times for

intensity independent in both cases with time interval t = 50g−1 for initial CS(Fig.4.4(i))

but in shorter time of t = 20g−1 for initial SS(Fig.4.4(ii)). If compared with intensity

dependent case, the collapse-revival pattern is generated more often with 4 revivals in

the duration between t = 0g−1 and t = 10g−1 for initial CS while between t = 0g−1 and

t = 5g−1 for initial SS as shown in Fig.4.5(i) and Fig.4.5(ii) repectively. We can conclude

that the initial SS with intensity dependent generates more revivals compared to other
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Figure 4.3: Wigner evolution and Inversion plot of g(t) = g for initial coherent state and
Schrodinger cat state
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Figure 4.4: Comparison of inversion plots of g(t) = g for intensity independent coupling
between initial (i) coherent state and (ii) Schrodinger cat state.

cases. In term of collapse duration, it appears shorter time interval when intensity depen-

dent is applied in coupling function. This feature shows an analogy of the quantum Zeno

effect.

The generalization from constant coupling g to arbitrary time dependent coupling
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Figure 4.5: Comparison of inversion plots of g(t) = g for intensity dependent coupling
between initial (i) coherent state and (ii) Schrodinger cat state.

g(t) through numerical computations enables us to model the dynamics of the atomic

system not studied before. Interesting features are found for sinusoidal and hat pulse

coupling function which will discuss in the next section.
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4.4.2 Sinusoidal Coupling Function

For an atom oscillating back and forth across a narrow cavity within a square well

trap (illustrated in Fig.4.2b), the coupling is modelled approximately to be sinusoidal

g(t) = gsin2 xgt where x is arbitrary.

Figure 4.6: Comparison of inversion plots of g(t) = gsin2 (xgt) for intensity independent
coupling between initial (i) coherent state and (ii) Schrodinger cat state.

The Wigner function evolves like the previous constant case where the single peak
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appear corespond to revival phase and split into two peaks to indicate it enters the collapse

phase in CS. It evolves very rapidly corresponds to the frequent generation of collapse

and revival which 2 peaks opposite to each other appear in SS case and split into 4

peaks when collapse phase takes turn. The inversion plots for both initial field state

demonstrate the same style with constant coupling case where it show the zeno-like effect

when intensity dependent is applied to the coupling. This can be seen if we compare the

intensity independent case in Fig.4.6 with the case of intensity dependent in Fig4.7.

Quite an interesting pattern of inversion is found for sinusoidal function if compared

with the constant coupling inversion. The atomic inversion exhibits the usual periodic

collapse and revival phenomenon but in intensity dependent for sinusoidal case (Fig. 4.7),

the highest amplitude of the fluctuation oscillates in longer period with a constant value

of inversion about ∆t = 1g−1 for a while before drop/rise. This corresponds to the freeze

state of Wigner function evolution.

Another interesting feature in this coupling is for initial CS, the collapse duration

is 30g−1 as in Fig.4.6(i) and for intensity dependent case in Fig.4.7(i)is 4g−1. It is

clearly been seen that the collapse duration of sinusoidal coupling function has longer

collapse duration if compared to constant coupling case with 15g−1 for intensity inde-

pendent(Fig.4.6(i)) case and 2g−1 for intensity dependent(Fig.4.7(i)). SS case also shows

the increase in collapse duration for sinusoidal coupling compared to constant coupling.

As an analogy with the Zeno effect, we call this anti Zeno-like effect (AZE) by modu-

lation. Here, it is the increase of the collapse duration and not the decay/decoherence

time as in the case of quantum Zeno effect. The modulated coupling field stretches the

collapse duration by disturbing the rephasing process towards revival via quantum inter-

ference. Thus, its underlying mechanism is different from the recent work that uses the

phase space tweezer approach (Raimond et al., 2010). The revival shows positive value

in the intensity dependent coupling of CS case but alternately positive and negative value

in SS case.

The corresponding coherence (Imρab) is found to be maximum during the collapse

phase, especially near the onset of revival. This has some relations to the recent work

on controlling the purity (polarization) or mixing of NMR ensembles (lvarez, Rao, Fryd-

man, & Kurizki, 2010) and frequent measurements of the polarization to establish Zeno
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Figure 4.7: Comparison of inversion plots of g(t) = gsin2 (xgt) for intensity dependent
coupling between initial (i) coherent state and (ii) Schrodinger cat state.

and anti-Zeno effects (Kofman, Kurizki, & Opatrny, 2001). In intensity dependent case

for both CS and SS show the same pattern but the number of revival oscillations in SS

is doubled. This shows that when the coupling function depends on intensity, the col-

lapse and revival occurs very rapid. The coherent interaction scheme does not show

analogy with the anti-Zeno effect, first shown by Kofman and Kurizki using certain time-

69



dependent measurements in dissipative reservoir (Kofman & Kurizki, 2000). This implies

that dissipation may be an important mechanism behind the anti-Zeno effect.

The present scheme applies to rapid change in the time-dependent weak coupling

/excitation, related to the control of decay by weak time-dependent potential and time

varying internal energies coupled to reservoir with arbitrary continuum (Kofman & Kur-

izki, 2001). The scheme may also describe coherent interaction with ultrashort laser

pulse, if large value of g is used. This situation is connected to recent work of establish-

ing the Zeno effect in decay and decoherence of qubits by using strong laser pulses in

arbitrary thermal baths without rotating wave approximation (Kofman & Kurizki, 2004).

Further studies of including dissipation in cavity/resonator would be interesting (Kofman

& Kurizki, 1996).

4.4.3 ‘Hat’ Pulse Function

The inversion plot with hat function g(t) = g
cosh((t−t0)/tm)4 for intensity independent

coupling shows the same value of collapse duration with constant g but it starts at a

constant value of about 0.8 from gt = 0 until about gt = 10 as shown in Fig.4.8(i) and

Fig.4.9(i) for CS and SS respectively. The constant value at the beginning and the end

of inversion plots are consequence of atom movement. The inversion remain static as

the cavity is empty and starts oscillate once the atom enters the cavity. The oscillation

stops at the end coresponds to the atom exits the cavity so the cavity is emptied again. The

Wigner peak also freezes a while at the time of constant value in the inversion as illustrates

in Fig.4.8(ii-iii) for CS and Fig.4.9(ii-iii) for SS; and then oscillates as in g(t) = g plots.

From gt = 40 until gt = 50, once again the constant value appears in inversion plot but

this time it is in the collapse phase. At this time, the Wigner function freezes, with 2 large

peaks at the right and left edges of a circle on the plane of Re(α) and Im(α), while 4

peaks appear in SS case. The maximum time taken is gt = 50 and the revival appears

twice in CS and trice in SS along the time interval. It can be seen that the collapse

duration is decreases when initial SS is applied to the system of hat coupling function if

compare with constant coupling case in Fig.4.4(i) and Fig.4.5(i). If refer to Fig.4.10(ii),

for hat function of SS case, the Zeno-like effect also demonstrated here where the collapse

duration is also decreases if compared to the case of intensity independent in Fig.4.10(i).
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Figure 4.8: (i)Inversion and Wigner plot for intensity independent hat coupling function
for initial coherent state at time (ii)gt = 0 and (iii)gt = 10
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Figure 4.9: (i)Inversion and Wigner plot for intensity independent hat coupling function
for initial Schrodinger cat state at time (ii)gt = 0 and (iii)gt = 10
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When compare the hat function case from the constant case, it can be found that the

collapse duration is almost equal.

The frozen populations depend on the hat duration tm. This can be understood quali-

tatively by analyzing the function g(t) = g
cosh((t−t0)/tm)

which can be integrated as λ (t) =

2gtm[tan−1(e
t−t0
tm )− tan−1(e−

t0
tm )]. For t0 >> tm the second term is negligible. At large t

when the pulse is gone, λ (∞) = πgtm. Thus, tm determines the value of the frozen in-

version nab(∞). Thus, the duration of the hat function or atomic transit can be a control

parameter for creating a frozen state of light in an empty cavity. This result is connected

to the frozen cat state (Sherman et al., 1992) in photonic crystal.

In all cases, if we compare the inversion between the intensity-independent and

intensity-dependent case, we find that the revival pattern appears more frequently in the

latter case. For example, the inversion for sinusoidal function with initial CS in is plotted

from gt = 0 until gt = 50 which is far longer than the intensity-dependent case which

ended at gt = 10. However, the revival pattern appears 2 times in both cases. It can be

concluded that within the same interval of time, the intensity-dependent case can generate

more number collapse and revival.

4.5 Extracting Nonclassical Photons

The Wigner function computed above describes the state of light inside the cavity.

A desired state of light in the cavity can be frozen by controlling the presence (entrance

and exit) of the atom in the cavity via the time-varying coupling g(t), as illustrated in

Figs.4.2a and b. In order to harness a desired state of light from the cavity, the reflectance

of the cavity mirror has to be reduced. To study of the output field we need to consider

the dissipation of the cavity field. The quantitative treatment is beyond the present scope

and will be reported elsewhere. Here, we merely describe the mechanism qualitatively.

A desired quantum state of light can be coherently extracted on demand from the

cavity by rapidly switching the reflectance R of the cavity mirrors at time ts from R = 1 to

R = 0, like an inverse Q-switching. The field at time ts would be ”frozen”. The nonclas-

sical field can then be transmitted through one of the cavity mirrors, for example, into a

waveguide/optical fiber. An optical switching can be employed for rapidly changing the

cavity field decay rate. For example, electromagnetic induced transparency of the mirror
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cavity (Boller, Imamoglu, & Harris, 1991) using a strong control laser can used. Another

option is using a photonic bandgap mirror or Bragg mirrors that can be optically switched

within picosecond timescale through nonlinear optical process (Yanik, Fan, Soljacic, &

Joannopoulos, 2003). Specific nonclassical light can be generated and harnessed on de-

mand since we can predict the transient evolution of field through the atomic dynamic for

the atom-cavity system. The time evolution of the cavity photons (Wigner function) can

be experimentally mapped out using tomography technique (Lvovsky et al., 2001). Thus,

the scheme provides an exciting possibility of producing heralded nonclassical light using

the transient coherent coupling as well as timely switching of the cavity reflectance.

4.6 Conclusions

We have studied the dynamics of a two-level particle or system coupled to any state

of light in a cavity. This work focuses on field-state control through time dependent and

intensity dependent coupling. The generalization to arbitrary time-dependent coupling

g(t) enables the analysis of transient effects, such as particle oscillating through the cavity

and particle transit duration. We have analyzed the time evolutions of the atomic states

(through inversion) and the cavity field (through the Wigner function) for time-dependent

and intensity-dependent atom-field coupling. Both quantities do not always show regular

connection. For example, the collapse phase does not always correspond to the formation

of the Schrodinger’s cat. The atom and field dynamics, particularly the collapse duration

and the time of collapse can be controlled by using simple oscillatory coupling. The

former is called anti- Zeno effect while the latter bears analogy with the quantum Zeno

effect, except that it does not involve a measurement nor dissipative mechanism. By

using the hat function with certain duration for the coupling to simulate atomic transit

through the cavity, the proportions of the frozen internal populations can be controlled,

and the collapse phase can be locked/frozen inside the cavity even after the coupling

ceases. Nonclassical light remains inside a high-Q cavity after the atom leaves the cavity.

For initial superposition of states, the initial coherent field state has a weak effect on the

inversion dynamics. In contrast, the initial cat field state is able to stimulate a much larger

inversion amplitude. We derive an analytical expression to explain this effect. Each time-

dependent coupling function with different initial field shows quantum Zeno effect when
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the system include the intensity-dependent coupling. The anti- Zeno effect only occurs in

oscillatory coupling compared with normal JCM with constant coupling.

Although we have considered atom, the scheme applies to other quantum systems

such as quantum dot, superconducting qubit or Rydberg atom in a superconducting millimeter-

wave cavity (Haroche & Raimond, 2006), where the transient coupling to the cavity can

be realized more easily in practice. The above time-dependent analysis is not exhaustive

since other profiles are possible. The effect of the center of mass motion along the cavity

axis (Vernooy & Kimble, 1997) is important when the atomic motion is not entirely or-

thogonal to the cavity axis. This, along with the spatial-temporal dependent coupling can

be considered in future works.
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Figure 4.10: The Inversion plots of hat coupling function for initial Schrodinger cat state
for (ii)intensity independent case and (iii)intensity dependent case
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CHAPTER 5

ENTROPY OF A THREE-LEVEL ATOM WITH DAMPING

5.1 Introduction

Past decades, atomic, molecular and optical physics has known spectacular devel-

opments in many fields, like nonlinear optics, laser cooling and trapping, quantum de-

generate gases, and quantum information. Quantum entropies have played crucial role

in quantum statistical mechanics and quantum information theory. The von Neumann

entropy provides an important entropy functional used in thermodynamics (Breuer &

Petruccione, 2002). Recently, scientists found its capability to develop quantum informa-

tion science, where, it can describes a quantum state of an atom or photon to associate

with the concept of information qubit. This will provide useful facts to determine how

much quantum information is in a quantum system, measure quantum correlations and

calculate the degree of quantum entanglement for the system. The negativity of the quan-

tum entropy, called coherent information can only be explained quantum mechanically

and it obeys a quantum data processing inequality. The powerful inequality of Araki–

Lieb theorem (Araki & Lieb, 1970), reported that if the atom–field system is initially in a

pure state, the field entropy and the atomic entropy are always the same.

In this chapter, we consider a Λ-type three-level atom interact with a single mode

field and a laser coupling with the radiation reservoir. This system includes the dissipa-

tive mechanism due to interaction with reservoir. The effect of intensity dependent on the

atom-field coupling and time dependent coupling function are also considered. Further

investigation on the dynamics of atom(matter) and photon(light) and the connection be-

tween these two has been conducted. Nonclassical effects have been taken into account

to gather more information and to get a better understanding of the system. The general

overview of research methodology is as the following flow chart of Fig.5.1.
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Figure 5.1: Overall research overview

5.2 Past Researches

Various research works have been extensively conducted to determine the entropy

of a two-level system. The work of Buzek on quantum entanglement of a resonant in-

teraction of two-level atom with a quantized field via two-photon transitions leads to a

non-classical oscillations in the photon number distribution (Buzek & Hladky, 1993).

They have studied the dynamics of the field by calculating the atomic inversion, entropy

of the field, Q-function and photon number distribution.

The studies on two-level atom interaction carried out by Shore also ranges in non-

classical properties and extended the investigation to three-level scheme to complete the

findings (Shore & Knight, 1993). They present an overview of the theory of the Jaynes-

Cumming Model and some of the many extensions and generalizations that have appeared

in quantum problem. Scientists currently interested in three-level system, several research

works are conducted by Abdel-Aty and Obada to understand the nonclassicality of light

in three-level system. The entanglement of a general three-level system interacting with a

correlated two-mode nonlinear coherent state has been presented with arbitrary forms of
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nonlinearities of both the fields and the intensity-dependent atom-field coupling (Abdel-

Aty & Obada, 2003). Their study showed that the entanglement can be significantly

influenced by different kinds of nonlinearities. They have suggested that the nonlinear

medium yields the superstructure of atomic Rabi oscillation and proposed a generation of

Bell-type states of the system studied. Related study to clarify the role of quantum entan-

glement was carried out in a many-atom spontaneous emission process (Kim, Ooi, Ikram,

& Lee, 2009). They have suggested that photons emitted spontaneously from a partially

excited many-atom system exhibit strong directional correlations with the absorbed pho-

tons and also show strong directional correlations among the photons themselves.

Abdel-Aty reported that the evolution of the field quantum entropy and the entan-

glement of the atom field in a three-level atom has been investigated with an additional

Kerr-like medium for one mode. The exact results are employed to perform a careful in-

vestigation of the temporal evolution of the entropy and analysed the effect of a Kerr-like

medium on the entropy. It is shown that the addition of the Kerr medium has an impor-

tant effect on the properties of the entropy and the entanglement (Abdel-Aty, 2000). He

also extended his work to investigate the entanglement degree due to quasi-mutual en-

tropy of an interaction between three-level atom and a single cavity field, with an initial

field state were set to be coherent or a squeezed state (Abdel-Aty, 2004). He identified

and numerically demonstrate the region of parameters where significantly large entan-

glement can be obtained and taking into account an arbitrary form of nonlinearity of the

intensity-dependent coupling.

Another work related on entropy is a study by Zhao research team on determining

the time evolution of the entropy of an initially coherent single-mode field interacting

with a Λ-type degenerate quantum beat three-level atom in the strong field limit (Zhou &

Zhu, 2005). They suggested that the initial atomic state and the detuning of the field play

important roles in the evolution of the field entropy and the generation of a Schrodinger

cat state. Faghihi et. al. have considered the nonlinear interaction between a Λ -type

three-level atom and a single-mode field in a cavity containing a Kerr medium using the

generalized JCM with intensity-dependent coupling (Faghihi & Tavassoly, 2012). They

were investigating field entropy, quantum statistics and some nonclassical properties and

compare their results with a three-level atom V -type studied by Huang group (Huang,
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Tang, Kong, Fang, & Zhou, 2006). The studies also conducted on Ξ-type system which

reported that the evolutions of the entropies of the atomic and field sub-systems exhibit

multiperiodicity, as observed via the power spectrum of the entropy after an entanglement

swapping with two cavity fields (Qiang, Cardoso, & Zhang, 2010).

In this work, a Λ-type three-level atom interacting with a single mode field driven by

laser placed inside a multimode reservoir is studied. The interactions taking into account

are the atom-field, the atom-laser, the atom-reservoir, and the cavity-reservoir interac-

tions. The interaction with reservoir resulting the occurence of dissipative mechanism in

the system.

5.3 Λ-type Three-Level Atom

Our system of interest is a single three-level Λ−type atom interacting with a single

mode cavity field and driven by laser coupled to a multimode reservoir(5.2).

Figure 5.2: A Λ-type three-level atom interact with a single mode field and driven by a
laser

The interactions taken into account are the atom-laser-cavity, the atom-reservoir, and

the cavity-reservoir. If we denote the atomic lowering and raising operator by σ̂i j = |i〉〈 j|

where i, j = a,b,c (referred to as atomic levels), free Hamiltonian consist of the atom(ĤA),

cavity field(ĤF ) and reservoir (ĤR). The interaction Hamiltonian included are the atom-

laser(ĤAL), the atom-cavity(ĤAF ), the atom-reservoir(ĤAR) and the field-reservoir(ĤFR).

The total Hamiltonian is given by:
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ĤT = ĤA + ĤF + ĤR + ĤAF + ĤAR + ĤFR (5.1)

where

ĤA = h̄ωaσ̂aa + h̄ωbσ̂bb + h̄ωcσ̂cc

ĤF = h̄νF â†â

ĤR = h̄∑
k

νRb̂†
k b̂k

ĤAL = h̄Ωp

(
σ̂abe−i∆pt + σ̂baei∆pt

)
ĤAF = h̄g(t)

(
σ̂acâe−i∆ct + â†

σ̂caei∆ct
)

ĤAR = h̄∑
k

(
g(AR)

1,k

(
σ̂acb̂k + b̂†

kσ̂ca

)
+g(AR)

2,k

(
σ̂abb̂k + b̂†

kσ̂ba

))
ĤFR = h̄∑

k
g(FR)

1,k

(
â†b̂k + b̂†

kâ
)

with

Ωp = µpEp/2h̄

ωi (i = a,b,c) is level frequency, νF denoted as field frequency, while νR is the reser-

voir frequency. Ωp is the probe laser Rabi frequency coupled to level |a〉 |b〉, g(t) is the

coupling function between cavity and level coupled to level |a〉 |c〉, while ∆c = ωac−ν f

and ∆p = ωab− νp with νc is cavity frequency and νp is probe laser frequency. â† (â)

and b̂†
k
(
b̂k
)

are creation(annihilation) operator of field and reservoir respectively while

g(AR)
1,k

(
g(AR)

2,k

)
and g(FR)

1,k are coupling between atom-reservoir and field-reservoir respec-

tively.

The master equation of the whole system is given by:

dρ̂T (t)
dt

=
1
ih̄

[
V̂AL +V̂AF , ρ̂ (t)

]
+Lρ̂A +Lρ̂F (5.2)

where

V̂AL = h̄Ωp

(
σ̂abei∆pt + σ̂bae−i∆pt

)
V̂AF = h̄g(t)

(
σ̂acâei∆ct + â†

σ̂cae−i∆ct
)

Lρ̂F = γF

(
2âρ̂ â†− â†âρ̂− ρ̂ â†â

)
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Lρ̂A = Γac (2σ̂caρ̂σ̂ac− σ̂acσ̂caρ̂− ρ̂σ̂acσ̂ca)

+Γab (2σ̂baρ̂σ̂ab− σ̂abσ̂baρ̂− ρ̂σ̂abσ̂ba)

with Γac(Γab) is damping rate of individual atom transition between |a〉 and |c〉(|a〉 and

|b〉) while γF is damping rate for field

The density matrix elements read

ρ̇i j = ∑
i, j=a,b,c

〈i| ρ̂ (t) | j〉 (5.3)

By projecting 〈i| and | j〉 on the total density matrix derived, for 〈a| ρ̇T |a〉 we obtain

〈a| ρ̇T |a〉 = −iΩp

(
〈a| |a〉〈b|ei∆pt

ρ̂ |a〉+ 〈a| |b〉〈a|e−i∆pt
ρ̂ |a〉

)
(5.4)

+iΩp

(
〈a| ρ̂ |a〉〈b| |a〉ei∆pt + 〈a| ρ̂ |b〉〈a| |a〉e−i∆pt

)
−ig(t)

(
〈a| |a〉〈c| âρ̂ |a〉ei∆ct + 〈a| â† |c〉〈a| ρ̂ |a〉e−i∆ct

)
+ig(t)

(
〈a| ρ̂ |a〉〈c| â |a〉ei∆ct + 〈a| ρ̂ â† |c〉〈a| |a〉e−i∆ct

)
+γF 〈a|

(
2âρ̂ â†− â†âρ̂− ρ̂ â†â

)
|a〉

+Γac (2〈a| |c〉〈a| ρ̂ |a〉〈c| |a〉−〈a| |a〉〈c| |c〉〈a| ρ̂ |a〉−〈a| ρ̂ |a〉〈c| |c〉〈a| |a〉)

+Γab (2〈a| |b〉〈a| ρ̂ |a〉〈b| |a〉−〈a| |a〉〈b| |b〉〈a| ρ̂ |a〉−〈a| ρ̂ |a〉〈b| |b〉〈a| |a〉)

= −iΩp 〈b|ei∆pt
ρ̂ |a〉 |n〉+ iΩp 〈m| 〈a| ρ̂ |b〉 |n〉e−i∆pt

−ig(t)〈c| âρ̂ |a〉ei∆ct + ig(t)〈a| ρ̂ â† |c〉e−i∆ct + γFL(ρ̂aa)

+Γac (−〈a| ρ̂ |a〉−〈a| ρ̂ |a〉)+Γab (−〈a| ρ̂ |a〉−〈a| ρ̂ |a〉)

= −iΩpρbaei∆pt + iΩpρabe−i∆pt− ig(t)âρcaei∆ct

+ig(t)ρacâ†e−i∆ct + γFL(ρaa)−2(Γac +Γab)ρaa

the same method is applied to the rest of elements of density matrix and resulting at

ρ̇aa = −iΩpρbaei∆pt + iΩpρabe−i∆pt− ig(t)âρcaei∆ct (5.5)

+ig(t)ρacâ†e−i∆ct + γFL(ρaa)−2(Γac +Γab)ρaa (5.6)

ρ̇bb = −iΩpρabe−i∆pt + iΩpρbaei∆pt + γFL(ρbb)+2Γabρaa

ρ̇cc = −ig(t)â†
ρace−i∆ct + ig(t)ρcaâei∆ct + γFL(ρcc)+2Γacρaa

ρ̇ca = iΩpρcbe−i∆pt + ig(t)ρccâ†e−i∆ct− ig(t)â†
ρaae−i∆ct + γFL(ρca)− (Γac +Γab)ρca
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ρ̇ac = −iΩpρbcei∆pt− ig(t)âρccei∆ct + ig(t)ρaaâei∆ct + γFL(ρac)− (Γac +Γab)ρac

ρ̇ba = −iΩpρaae−i∆pt + iΩpρbbe−i∆pt + ig(t)ρbcâ†e−i∆ct + γFL(ρba)− (Γac +Γab)ρba

ρ̇ab = −iΩpρbbei∆pt + iΩpρaaei∆pt− ig(t)âρcbei∆ct + γFL(ρab)− (Γac +Γab)ρab

ρ̇bc = −iΩpρace−i∆pt + ig(t)ρbaâei∆ct + γFL(ρbc)

ρ̇cb = iΩpρcaei∆pt− ig(t)â†
ρabe−i∆ct + γFL(ρcb)

where for i, j = a,b,c and

L
(
ρi j
)
= γF

(
2âρi jâ†− â†âρi j−ρi jâ†â

)
(5.7)

In order to solve the matrix elements(see Appendix F), the equations of motion for a

slowly varying amplitude are introduced. Then the density matrix equation is used with

R̂ = â
√

â†â and R̂† =
√

â†ââ† to include the intensity dependent on the system. From

the previous chapter, the intensity dependent coupling is known has a great relevance in

understanding the interaction since the coupling is proportional to the amplitude of the

field. So the matrix elements become

d
dt

ρaa = iΩp [ρ̃ab− ρ̃ba]+ ig(t)
[
ρ̃acR̂†− R̂ρ̃ca

]
(5.8)

+γFL(ρaa)−2(Γac +Γab)ρaa

d
dt

ρbb = iΩp [ρ̃ba− ρ̃ab]+ γFL(ρbb)+2Γabρaa

d
dt

ρcc = ig(t)
[
ρ̃caR̂− R̂†

ρ̃ac

]
+ γFL(ρcc)+2Γacρaa

d
dt

ρ̃ca = i∆cρ̃ca + iΩpρ̃cb + ig(t)
[
ρccR̂†− R̂†

ρaa

]
+γFL(ρ̃ca)− (Γac +Γab) ρ̃ca

d
dt

ρ̃ba = i∆pρba + iΩp [ρbb−ρaa]+ ig(t)ρ̃bcR̂†

+γFL(ρ̃ba)− (Γac +Γab) ρ̃ba

d
dt

ρ̃bc = −i(∆c−∆p) ρ̃bc− iΩpρ̃ac

+ig(t)ρ̃baR̂+ γFL(ρ̃bc)

with

Lρ̃i j =
(

2R̂ρi jR̂†− R̂†R̂ρi j−ρi jR̂†R̂
)

(5.9)
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Taking the matrix elements we have the diagonal element for photon number as

following

d
dt

ρaa (n,n) = iΩpρ̃ab (n,n)− iΩpρ̃ba (n,n)+ ig(t)(n+1) ρ̃ac (n,n+1) (5.10)

−ig(t)(n+1) ρ̃ca (n+1,n)+2γF (n+1)2
ρaa (n+1,n+1)

−
(
2γFn2 +2Γac +2Γab

)
ρaa (n,n)

d
dt

ρbb (n,n) = iΩpρ̃ba (n,n)− iΩpρ̃ab (n,n)+2γF (n+1)2
ρbb (n+1,n+1)(5.11)

−2γFn2
ρbb (n,n)+2Γabρaa (n,n)

d
dt

ρcc (n,n) = ig(t)(n) ρ̃ca (n,n−1)− ig(t)(n) ρ̃ac (n−1,n) (5.12)

+2γF (n+1)2
ρcc (n+1,n+1)−2γFn2

ρcc (n,n)

+2Γacρaa (n,n)

d
dt

ρ̃ca (n+1,n) =
(

i∆c− (n+1)2− (n)2
)

γF ρ̃ca (n+1,n) (5.13)

+iΩpρ̃cb (n+1,n)+ ig(t)(n+1)ρcc (n+1,n+1)

−ig(t)(n+1)ρaa (n,n)− (Γac +Γab) ρ̃ca (n+1,n)

+2(n+2)(n+1)γF ρ̃ca (n+2,n+1)

d
dt

ρ̃ba (n,n) =
[
i∆p−2γFn2− (Γac +Γab)

]
ρ̃ba (n,n) (5.14)

+iΩpρbb (n,n)− iΩpρaa (n,n)

+ig(t)(n+1) ρ̃bc (n,n+1)+2γF (n+1)2
ρ̂ba (n+1,n+1)

d
dt

ρ̃bc (n,n+1) = −
[
i(∆c−∆p)+ γF (n)2 + γF (n+1)2

]
ρ̃bc (n,n+1) (5.15)

−iΩpρ̃ac (n,n+1)+ ig(t)(n+1) ρ̃ba (n,n)

+2γF (n+1)(n+2) ρ̃bc (n+1,n+2)

So far ρxx (n,n) and the coherences have already been computed previously. In order

to compute the Wigner function, the matrix elements diagonal in atomic states by off

diagonal in photon number such as ρxx (n,m) where m 6= n were needed to be solved.
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That means the matrix elements were found for the following

d
dt

ρaa (n,m) = iΩpρ̃ab (n,m)− iΩpρ̃ba (n,m) (5.16)

+ig(t)(m+1) ρ̃ac (n,m+1)− ig(t)(n+1) ρ̃ca (n+1,m)

+2γF (n+1)(m+1)ρaa (n+1,m+1)

−
((

n2 +m2)
γF +2(Γac +Γab)

)
ρaa (n,m)

d
dt

ρbb (n,m) = iΩpρ̃ba (n,m)− iΩpρ̃ab (n,m)+2Γabρaa (n,m) (5.17)

+2γF (n+1)(m+1)ρbb (n+1,m+1)

−
(
n2 +m2)

γFρbb (n,m)

d
dt

ρcc (n,m) = ig(t)(m) ρ̃ca (n,m−1)− ig(t)(n) ρ̃ac (n−1,m) (5.18)

+2Γacρaa (n,m)−
(
n2 +m2)

γFρcc (n,m)

+2(n+1)γF (m+1)ρcc (n+1,m+1)

d
dt

ρ̃ca (n,m) = (i∆c−Γac−Γab) ρ̃ca (n,m)−
(
n2 +m2)

γF ρ̂ca (n,m) (5.19)

+iΩpρ̃cb + ig(t)(m+1)ρcc (n,m+1)

−ig(t)(n)ρaa (n−1,m)

+2(n+1)γF (m+1)ρca (n+1,m+1)

d
dt

ρ̃ba (n,m) = (i∆p−Γac−Γab) ρ̃ba (n,m)+ iΩpρbb (n,m) (5.20)

−iΩpρaa (n,m)+ ig(t)ρ̃bc (n,m+1)(m+1)

+2(n+1)γF (m+1)ρba (n+1,m+1)

−
(
n2 +m2)

γFρba (n,m)

d
dt

ρ̃bc (n,m) = −
[
i(∆c−∆p)+

(
n2 +m2)

γF
]

ρ̃bc (n,m) (5.21)

−iΩpρ̃ac (n,m)+ ig(t)(m) ρ̃ba (n,m−1)

+2(n+1)(m+1)γFρbc (n+1,m+1)

The derived elements will be used to plot the inversion and the entropy of the system.
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5.4 Inversion and Entropy

Atomic inversion for three-level atom lambda type can be obtained by

nabc (t) = ρaa (n,m)−ρbb (n,m)−ρcc (n,m) (5.22)

which is used to determine the population of atomic states to show the probability of

finding the system in excited state. As discussed in chapter 3, entropy S is a measure of

the uncertainty of a quantum state. Using the Von-Neumann entropy equation,

S (ρ) =−Tr (ρ̂ ln ρ̂) (5.23)

the partial entropy can be calculated for field alone and for atom entropy given by

SA = −TrF (ρ̂F ln ρ̂F) (5.24)

SF = −TrA (ρ̂A ln ρ̂A) (5.25)

Then S (ρ) expresses our uncertainty, or lack of knowledge about the realization of a

particular state in the mixture (Breuer & Petruccione, 2002) and it offers a quantitative

measure of the disorder of a system and of the purity of a quantum state. The time

evolution of the atomic (field) entropy carries information about the degree of atom-field

entanglement (Hessian et al., 2009). For diagonal number state, m = n, the inversion

and entropy plot are illustrated in figures 5.3 until 5.15 below and will be discussed in

detailed.

The inversion plot for the interaction between a three-level atom with a single mode

field driven by a laser without considering the damping mechanism is shown in Fig.5.3

with the usual collapse and revival oscillations.

If we include the damping term into the system, the inversion plot obtained is as

illustrated in Fig.5.4 It can be seen that, when damping is included, the revival is lost at

large times and the oscillations cease after two cycles.The atomic entropy is zero in the

absence of damping while the field damping shows rapid oscillations. The atomic entropy

increases rapidly and after two oscillations, dies away. The field entropy rises and after

two oscillations, rises and saturates at a constant value.

When damping is reduced, let say to Γab = Γac = 106s−1 it can be found that the

times for the inversion to reduce to −1 as seen in Fig.5.5 and the entropy to reduce to
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Figure 5.3: (i) Inversion and (ii) field entropy plot for g = 2×106s−1 with α0 =
√

15, and
no damping mechanism considered for time duration gt = 0 until gt = 15

zero had become longer. More oscillations can be seen in the plot. Interestingly the

introduction of cavity damping reduces the field entropy nearly to zero.

When the laser drives one of the transitions (|a〉− |c〉), oscillations can be seen on

the inversion as shown in Fig.5.7 and Fig.5.8.
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Now if we consider a smaller αo =
√

3, we find that there are less rapid oscillations

but the collapse time is shorter(Fig.5.9). When atomic damping mechanism is considered

by having Γab = Γac = 107s−1, we got plots as in Fig.5.10 where the oscillations in field

entropy plot is reduced and the atom entropy is nonzero. The results for inversion, atom

entropy and field entropy has been plotted for smaller αo and we find that it is identical to

the case of αo =
√

15, which means that the initial condition of the field has little effect

when the driving field is significant. This can be shown in Fig.5.11 and Fig.5.12. When

we include the driving field to the system of αo =
√

3, the results obtained are as illustrate

in Fig.5.13 Fig.5.14 shows that the inversion oscillates when the population is transferred

to excited state during the coupling pulse and then being transferred to the ground state

|b〉 by the pump pulse. Here, in Fig.5.15 the inversion increases slowly following the

profile of the (subsequent) coupling pulse. The peak inversion almost corresponds to the

peak atomic entropy and field entropy. Actually, they correspond to the maximum overlap

between the two pulses.

We have extended the density matrix formalism to three-level system with intensity

dependent coupling. The master equations have been solved numerically for density ma-

trix elements diagonal in number states. The diagonal matrix elements are extracted by a

numerical code which we have developed to compute the dynamics of inversion, atomic

entropy and the field entropy, The results provide insights on how the atomic damping,

cavity damping and the laser pump affect these quantities in different regimes of the ratios

γF/g, Γ/g and Ωp/g. Our formalism and numerical algorithm allow the coupling func-

tion to take arbitrary time dependent coupling function g(t) and pump field Ω(t). We

have plotted the results for Gaussian pulses, that simulate the well-known transition of

Raman adiabatic passage(Fig.5.14 and Fig.5.15). It is much more challenging to extend

the work to compute the density matrix off-diagonal in number state as the computation is

much more demanding. This may be explored in future work. It would allow the Wigner

function to be computed to study how the Wigner function and nonclassical light can be

controlled by an arbitrary laser pulse.
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5.5 Conclusion

We have reviewed the concepts of entropy and inversion of a system of three-level Λ-

type atom interact with a single mode field driven by a laser and interact with a reservoir

which causes the atomic damping as well as field damping. The entropy can connected to

the entanglement and described the behaviour of the system. We have presented the time

evolution density matrix element for the system and the plots of inversion for different

value of coupling constant along with the plot of entropy.
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Figure 5.4: (i) Inversion, (ii) atom entropy and (iii) field entropy plot for g = 2×106s−1

with α0 =
√

15,Γab = Γac = 107s−1 for time duration gt = 0 until gt = 3
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Figure 5.5: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

15, and Γab = Γac = 106s−1 within time duration gt = 0 until gt = 3

91



Figure 5.6: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

15,Γab = Γac = 106s−1 and γF = 106s−1 within time duration gt = 0 until
gt = 3
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Figure 5.7: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

15,Γab = Γac = 106s−1,γF = 106s−1 and Ωp = 107s−1 within time duration
gt = 0 until gt = 3
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Figure 5.8: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

15,Γab = Γac = 106s−1,γF = 106s−1 and Ωp = 108s−1 within time duration
gt = 0 until gt = 3
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Figure 5.9: (i) Inversion, (ii) field entropy plots for g = 2× 106s−1 with α0 =
√

3, with
no damping within time duration gt = 0 until gt = 10
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Figure 5.10: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

3, with Γab = Γac = 107s−1 within time duration gt = 0 until gt = 10
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Figure 5.11: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

3,Γab =Γac = 106s−1 with no field damping within time duration gt = 0 until
gt = 3

97



Figure 5.12: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

3,Γab = Γac = 106s−1 with γF = 106s−1 within time duration gt = 0 until
gt = 3 98



Figure 5.13: (i) Inversion, (ii) atom entropy and (iii) field entropy plots for g = 2×106s−1

with α0 =
√

3,Γab = Γac = 106s−1,γF = 106s−1 with Ωp = 107s−1 within time duration
gt = 0 until gt = 3
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Figure 5.14: Intuitive sequence of pulses for atom initially in level |c〉(i) Inversion, (ii)
atom entropy and (iii) field entropy plots for g = 2×106s−1 with α0 =

√
3,Γab = Γac =

106s−1,γF = 106s−1 with Ωp = 107s−1 within time duration gt = 0 until gt = 3

Figure 5.15: Counter-intuitive sequence for atom initially at |c〉 with (i) Inversion, (ii)
atom entropy and (iii) field entropy plots for g = 2× 106s−1,α0 =

√
3,Γab = Γac =

106s−1,γF = 106s−1 and Ωp = 107s−1 within time duration gt = 0 until gt = 3
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CHAPTER 6

CONCLUSION AND OUTLOOK

6.1 Introduction

In recent years, the fastest growing nano-technology leads to the development of

quantum technologies and devices. The state-of-the-art research conducted involves the

studies of novel quantum optical phenomena that can alter the properties of light in several

interesting ways. The research requires quantum theoretical formalisms and advanced

mathematical methods to study the effects of interaction between light and matter and

the generation of nonclassical light. It involves analytical calculations and numerical

computation of physical variables expressed as quantum operators.

6.2 Research Significances

The research involves the field of quantum optics and quantum electrodynamics that

includes the major fundamental effects at the quantum level. The theory would be ap-

plicable to optical characterization of a wide variety of nanostructures. Analytical and

computational techniques will provide understanding and solutions that are needed to

compute quantities that determine the nonclassical properties of light. The findings and

theory developed will provide useful physical insights to analyze experimental works. It

will lead to significant knowledge on nanostructures, particularly in enhancing the un-

derstanding of the connection between nonclassical properties of light and the particular

atom system. This research will advance the field of quantum nanophotonics.

The interactions at atomic level need to be modelled using quantum optics since

classical phenomenological models are inapplicable. The master equation is formulated

for describing the spatial and temporal evolutions of electric field of nonclassical light

produced by atom system interacting with laser fields. Desirable nonclassical optical ef-

fects can then be tailored to develop quantum information technology using nonclassical

light sources. Current schemes in quantum information that rely on atomic ensembles

to produce single photon source requires bulky and complicated setup involving optical
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trapping. The new theoretical formalism and published results from this research will

stimulate further theoretical and experimental works and facilitate progress on nanopho-

tonic technology. The research results will particularly benefit quantum information tech-

nology.

6.3 Future works

In present works, a system of two-level atom interacting with a quantized field in

a high quality cavity is studied. The time- and intensity-dependent atom-field coupling

are applied to the system, with different initial atomic states and also different initial

field states: coherent states and Schrodinger cat states. The dynamics of the atom in the

collapse-revival pattern of inversion and the dynamics of photon through Wigner function

are investigated. In this study, the dissipative mechanism is excluded since the quality of

the cavity is very high. In the future, for the case of two-level atom, the dissipation

should be counted since most of the interaction system experience damping effect due to

the coupling with each other. A system of multi-photon and multi-level may also give

good results and interesting features.

The study has been extended to a system of three-level Λ-type atom interact with

a single mode field driven by a laser. The dissipation due to coupling with reservoir is

also included. The time- and intensity dependent are remain of interest with different

pulse parameters and different initial state in good and bad cavity. The entropy of the

system, the inversion, Wigner function and Q parameter are calculated. A challenging

future studies have been planned. The more complex system will be considered such as

N-atom system, various reservoir coupling, dipole-dipole approximation and many more.

The interaction of many-body system could be more interesting to study because

more phenomenon will occur during the interaction and more classical and nonclassical

effects will get involved. The findings must be essential to provide useful information to

understand the nature of the system and to enhance future technologies such as in quan-

tum information science. More interesting nonclassical properties of light are expected

to be included later in the future research, to have a complete view and an established

knowledge on the behaviour of light.

As a conclusion, this research will bring the realization of quantum information tech-
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nology closer to reality and enhance the field of quantum optics and photonic. The theo-

retical results obtained could also provide basic predictions and understanding the system

as a preparation for experimental research.
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APPENDIX B

COUPLED EQUATION DERIVATION FOR TWO-LEVEL ATOM

Interaction Hamiltonian of single two level atom interact with a single mode field is given

by:

V (t) = h̄g(t)(σ+R̂ei∆t +σ−R̂†e−i∆t) (B.1)

The evolution of the atom-field system can be described by the state vector

|ψ(t)〉= ∑
n
[Ca,n(t)|a,n〉+Cb,n(t)|b,n〉] (B.2)

with the time dependent atom-field coefficients Cx,n for level x (= a,b) with n pho-

tons. The equation of motion for |ψ(t)〉

ih̄
d
dt
|ψ(t)〉=V (t)|ψ(t)〉 (B.3)

So

ih̄
d
dt

[
Ca,n(t)|a,n〉+Cb,n(t)|b,n〉

]
(B.4)

= h̄g(t)(σ+R̂ei∆t +σ−R̂†e−i∆t)[Ca,n(t)|a,n〉+Cb,n(t)|b,n〉] (B.5)

where σ+ = |a〉〈b|, σ− = |b〉〈a|, and R̂ as a function of â and â†given by:

R̂ = â
√

n̂

R̂† =
√

n̂â†

n̂ = â†â

R̂R̂† = â
√

n̂
√

n̂â†

= ââ†ââ†
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=
(

ââ†
)2

= (n̂+1)2

R̂†R̂ =
√

â†ââ†â
√

â†â

=
(

â†â
)2

= n̂2

Interaction energy can only cause transition between |a,n〉 and |b,n+1〉 so we have

ih̄
d
dt

[
Ca,n(t)|a,n〉+Cb,n+1(t)|b,n+1〉

]
(B.6)

= h̄g(t)(σ+R̂ei∆t +σ−R̂†e−i∆t)[Ca,n(t)|a,n〉+Cb,n+1(t)|b,n+1〉] (B.7)

d
dt

[
Ca,n(t)|a,n〉+Cb,n+1(t)|b,n+1〉

]
(B.8)

= −ig(t)(σ+R̂ei∆t +σ−R̂†e−i∆t)Ca,n(t)|a,n〉 (B.9)

−ig(t)(σ+R̂ei∆t +σ−R̂†e−i∆t)Cb,n+1(t)|b,n+1〉 (B.10)

= −ig(t)σ+R̂ei∆tCa,n(t)|a,n〉 (B.11)

−ig(t)σ−R̂†e−i∆tCa,n(t)|a,n〉 (B.12)

−ig(t)σ+R̂ei∆tCb,n+1(t)|b,n+1〉 (B.13)

−ig(t)σ−R̂†e−i∆tCb,n+1(t)|b,n+1〉 (B.14)

= −ig(t)|a〉〈b|â
√

n̂ei∆tCa,n(t)|a〉|n〉− (B.15)

ig(t)|b〉〈a|
√

n̂â†e−i∆tCa,n(t)|a〉|n〉 (B.16)

−ig(t)|a〉〈b|â
√

n̂ei∆tCb,n+1(t)|b〉|n+1〉 (B.17)

−ig(t)|b〉〈a|
√

n̂â†e−i∆tCb,n+1(t)|b〉|n+1〉 (B.18)

= −ig(t)
√

n̂â†e−i∆tCa,n(t)|b〉|n〉− ig(t)â
√

n̂ei∆tCb,n+1(t)|a〉|n+1〉 (B.19)

d
dt

[
Ca,n(t)|a,n〉+Cb,n+1(t)|b,n+1〉

]
(B.20)

= −ig(t)
√

n̂
√

n+1e−i∆tCa,n(t)|b〉|n+1〉 (B.21)

−ig(t)â
√

n+1ei∆tCb,n+1(t)|a〉|n+1〉 (B.22)

= −ig(t)
√

n+1
√

n+1e−i∆tCa,n(t)|b〉|n+1〉 (B.23)
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−ig(t)
√

n+1
√

n+1ei∆tCb,n+1(t)|a〉|n〉 (B.24)

= −ig(t)(n+1)e−i∆tCa,n(t)|b〉 |n+1〉 (B.25)

−ig(t)(n+1)ei∆tCb,n+1(t)|a〉 |n〉 (B.26)

Now by projecting the resulting equation with 〈a,n| and 〈b,n+1| we get coupled

equations

d
dt

Ca,n(t) = −ig(t)(n+1)ei∆tCb,n+1(t) (B.27)

d
dt

Cb,n+1(t) = −ig(t)(n+1)e−i∆tCa,n(t) (B.28)

where g(t) is the atom-field coupling factor and |Cx,n|2 being the probability with n

photons and atom in state |a〉.
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APPENDIX C

SOLVING THE COUPLED EQUATION

Given coupled equation:

d
dt

Ca,n(t) = −ig(t)(n+1)ei∆tCb,n+1(t)

d
dt

Cb,n+1(t) = −ig(t)(n+1)e−i∆tCa,n(t)

Coupled equation above can be solved by Laplace transform

L
[
F ′ (t)

]
= s f (s)−F (0)

where ca,n(s) is used as the Laplace transform of Ca,n(t). Using the general differentiation

rule:
d
dx

(uv) = u
dv
dx

+ v
du
dx

(C.1)

for d
dtCa,n(t), we denote

u = Ca,n(t) (C.2)

v = e−i∆t

.By substituting into eq.C.1, we get

d
dt

[
Ca,n(t)e−i∆t

]
= Ca,n(t)

d
dt

(
e−i∆t

)
+ e−i∆t d

dt
(Ca,n(t))

= −i∆Ca,n(t)e−i∆t + e−i∆t
[

d
dt

(Ca,n(t))
]

= −i∆Ca,n(t)e−i∆t + e−i∆t
[
−ig(t)(n+1)ei∆tCb,n+1(t)

]
= −i∆Ca,n(t)e−i∆t− ig(t)(n+1)Cb,n+1(t)

The equation is then transformed to have the form of L [F ′ (t)] = s f (s)−F (0) then be-

come

L
[

d
dt

[
Ca,n(t)e−i∆t

]]
= s

[
ca,n(s)e−i∆t

]
− ca,n(0)

ca,n(s)e−i∆t =
1
s

ca,n(0)− i
1
s

∆ca,n(s)e−i∆t− i
1
s

g(t)(n+1)cb,n+1(s)
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ca,n(s)e−i∆t +
i∆
s

ca,n(s)e−i∆t =
1
s

ca,n(0)− i
1
s

g(t)(n+1)cb,n+1(s)[
se−i∆t + i∆e−i∆t

s

]
ca,n(s) =

1
s

ca,n(0)− i
1
s

g(t)(n+1)cb,n+1(s)

=

[
1

se−i∆t + i∆e−i∆t

]
ca,n(0)

−i
[

1
se−i∆t + i∆e−i∆t

]
g(t)(n+1)cb,n+1(s)

ca,n(s) =

[
ei∆t

(s+ i∆)

]
ca,n(0)−

[
ei∆t

(s+ i∆)

]
ig(t)(n+1)cb,n+1(s)

d
dt

[
Cb,n+1(t)ei∆t

]
= i∆Cb,n+1(t)ei∆t− ig(t)(n+1)Ca,n(t)

L
[

d
dt

[
Cb,n+1(t)ei∆t

]]
= s

[
cb,n+1(s)e−i∆t

]
− cb,n+1(0)

s
[
cb,n+1(s)e−i∆t

]
= cb,n+1(0)+ i∆cb,n+1(s)ei∆t− ig(t)(n+1)ca,n(s)

cb,n+1(s)−
1
s

i∆cb,n+1(s)e2i∆t =
1
s

cb,n+1(0)ei∆t− 1
s

ig(t)(n+1)ca,n(s)ei∆t[
s− i∆e2i∆t

s

]
cb,n+1(s) =

1
s

cb,n+1(0)ei∆t− 1
s

ig(t)(n+1)ca,n(s)ei∆t

cb,n+1(s) =

[
1

s− i∆e2i∆t

]
cb,n+1(0)ei∆t

−
[

1
s− i∆e2i∆t

]
ig(t)(n+1)ca,n(s)ei∆t

ca,n(s) =

[
ei∆t

(s+ i∆)

]
ca,n(0)−

[
ei∆t

(s+ i∆)

]
ig(t)(n+1)cb,n+1(s)

ca,n(s) =

[
ei∆t

(s+ i∆)

]
ca,n(0)−

[
ig(t)(n+1)

(s+ i∆)(s− i∆)

]
cb,n+1(0)

−

[
g2(t)(n+1)2

(s+ i∆)(s− i∆)

]
ca,n(s)

ca,n(s) =

[
(s− i∆)ei∆t

(s+ i∆)(s− i∆)+g2(t)(n+1)2

]
ca,n(0)

−

[
ig(t)(n+1)

(s+ i∆)(s− i∆)+g2(t)(n+1)2

]
cb,n+1(0)

=

 s

s2 +

(√
∆2 +g2(t)(n+1)2

)2

ei∆tca,n(0)
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−

 i∆

s2 +

(√
∆2 +g2(t)(n+1)2

)2

ei∆tca,n(0)

−i
g(t)(n+1)√

∆2 +g2(t)(n+1)2


√

∆2 +g2(t)(n+1)2

s2 +

(√
∆2 +g2(t)(n+1)2

)2

cb,n+1(0)

ca,n(s) = ca,n(0)
[

cos(ΩRt)− i∆
ΩR

sin(ΩRt)
]

ei∆t

− ig(t)(n+1)
ΩR

[sin(ΩRt)]cb,n+1(0)

where

ΩR =

√
∆2 +g2(t)(n+1)2

sinΩRt =
ΩR

s2 +Ω2
R

cosΩRt =
s

s2 +Ω2
R
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APPENDIX D

DENSITY MATRIX ELEMENTS FOR TWO-LEVEL ATOM

From Appendix B, we get coupled equation for a system of two-level atom interact with

a single mode field in a high quality cavity (as discussed in Chapter 4). coupled equations

d
dt

Ca,n(t) = −ig(t)(n+1)ei∆tCb,n+1(t) (D.1)

d
dt

Cb,n+1(t) = −ig(t)(n+1)e−i∆tCa,n(t) (D.2)

A step by step calculation for a density matrix element is given by

〈n|ρaa(t)|m〉 = Ca,n(t)C∗a,m(t) (D.3)

=
[
ei∆t/2[Ca,n(0)rn(t)− iCb,n+1(0)qn(t)]

]
[
e−i∆t/2[C∗a,m(0)r

∗
m(t)+ iC∗b,m+1(0)qm(t)]

]
= ei∆t/2Ca,n(0)rn(t)e−i∆t/2C∗a,m(0)r

∗
m(t)

+ei∆t/2Ca,n(0)rn(t)ie−i∆t/2C∗b,m+1(0)qm(t)

−iei∆t/2Cb,n+1(0)qn(t)e−i∆t/2C∗a,m(0)r
∗
m(t)

−iei∆t/2Cb,n+1(0)qn(t)ie−i∆t/2C∗b,m+1(0)qm(t)

= Ca,n(0)C∗a,m(0)rn(t)r∗m(t)

+iCa,n(0)C∗b,m+1(0)rn(t)qm(t)

−iCb,n+1(0)C∗a,m(0)qn(t)r∗m(t)

+Cb,n+1(0)C∗b,m+1(0)qn(t)qm(t)

= ρaa(0)ρn,m(0)rn(t)r∗m(t)

+iρab(0)ρn,m+1(0)rn(t)qm(t)

−iρba(0)ρn+1,m(0)qn(t)r∗m(t)

+ρbb(0)ρn+1,m+1(0)qn(t)qm(t)
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〈n|ρab(t)|m〉 = Ca,n(t)C∗b,m(t) (D.4)

=
[
ei∆t/2[Ca,n(0)rn(t)− iCb,n+1(0)qn(t)]

]
[
ei∆t/2[C∗b,m(0)rm−1(t)+ iC∗a,m−1(0)qm−1(t)]

]
= [ei∆t/2Ca,n(0)rn(t)− iei∆t/2Cb,n+1(0)qn(t)]

[ei∆t/2C∗b,m(0)rm−1(t)+ iei∆t/2C∗a,m−1(0)qm−1(t)]

= ei∆t/2Ca,n(0)rn(t)ei∆t/2C∗b,m(0)rm−1(t)

+ei∆t/2Ca,n(0)rn(t)iei∆t/2C∗a,m−1(0)qm−1(t)

−iei∆t/2Cb,n+1(0)qn(t)ei∆t/2C∗b,m(0)rm−1(t)

−iei∆t/2Cb,n+1(0)qn(t)iei∆t/2C∗a,m−1(0)qm−1(t)

= ei∆tCa,n(0)C∗b,m(0)rn(t)rm−1(t)

+iei∆tCa,n(0)C∗a,m−1(0)rn(t)qm−1(t)

−iei∆tCb,n+1(0)C∗b,m(0)qn(t)rm−1(t)

+ei∆tCb,n+1(0)C∗a,m−1(0)qn(t)qm−1(t)

= ei∆t
ρab(0)ρn,m(0)rn(t)rm−1(t)

+iei∆t
ρaa(0)ρn,m−1(0)rn(t)qm−1(t)

−iei∆t
ρbb(0)ρn+1,m(0)qn(t)rm−1(t)

+ei∆t
ρba(0)ρn+1,m−1(0)qn(t)qm−1(t)

〈n|ρba(t)|m〉 = Cb,n(t)C∗a,m(t) (D.5)

=
[
e−i∆t/2[Cb,n(0)r∗n−1(t)− iCa,n−1(0)qn−1(t)]

]
[
e−i∆t/2[C∗a,m(0)r

∗
m(t)+ iC∗b,m+1(0)qm(t)]

]
= [e−i∆t/2Cb,n(0)r∗n−1(t)− ie−i∆t/2Ca,n−1(0)qn−1(t)]

[e−i∆t/2C∗a,m(0)r
∗
m(t)+ ie−i∆t/2C∗b,m+1(0)qm(t)]

= e−i∆t/2Cb,n(0)r∗n−1(t)e
−i∆t/2C∗a,m(0)r

∗
m(t)

+e−i∆t/2Cb,n(0)r∗n−1(t)ie
−i∆t/2C∗b,m+1(0)qm(t)

−ie−i∆t/2Ca,n−1(0)qn−1(t)e−i∆t/2C∗a,m(0)r
∗
m(t)
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−ie−i∆t/2Ca,n−1(0)qn−1(t)ie−i∆t/2C∗b,m+1(0)qm(t)

= e−i∆tCb,n(0)C∗a,m(0)r
∗
n−1(t)r

∗
m(t)

+ie−i∆tCb,n(0)C∗b,m+1(0)r
∗
n−1(t)qm(t)

−ie−i∆tCa,n−1(0)C∗a,m(0)qn−1(t)r∗m(t)

+e−i∆tCa,n−1(0)C∗b,m+1(0)qn−1(t)qm(t)

= e−i∆t
ρba(0)ρn,m(0)r∗n−1(t)r

∗
m(t)

+ie−i∆t
ρbb(0)ρn,m+1(0)r∗n−1(t)qm(t)

−ie−i∆t
ρaa(0)ρn−1,m(0)qn−1(t)r∗m(t)

+e−i∆t
ρab(0)ρn−1,m+1(0)qn−1(t)qm(t)

〈n|ρbb(t)|m〉 = Cb,n(t)C∗b,m(t) (D.6)

=
[
e−i∆t/2[Cb,n(0)r∗n−1(t)− iCa,n−1(0)qn−1(t)]

]
[
ei∆t/2[C∗b,m(0)rm−1(t)+ iC∗a,m−1(0)qm−1(t)]

]
= Cb,n(0)C∗b,m(0)r

∗
n−1(t)rm−1(t)

+iCb,n(0)C∗a,m−1(0)r
∗
n−1(t)qm−1(t)

−iCa,n−1(0)C∗b,m(0)qn−1(t)rm−1(t)

+Ca,n−1(0)C∗a,m−1(0)qn−1(t)qm−1(t)

= ρbb(0)ρn,m(0)r∗n−1(t)rm−1(t)

+iρba(0)ρn,m−1(0)r∗n−1(t)qm−1(t)

−iρab(0)ρn−1,m(0)qn−1(t)rm−1(t)

+ρaa(0)ρn−1,m−1(0)qn−1(t)qm−1(t)

The atomic coherence is given by

ρnm(t) = 〈n|{ρ̂aa(t)+ ρ̂bb(t)}|m〉 (D.7)

= ρaa(0)ρn,m(0)rn(t)r∗m(t)+ iρab(0)ρn,m+1(0)rn(t)qm(t)

−iρba(0)ρn+1,m(0)qn(t)r∗m(t)+ρbb(0)ρn+1,m+1(0)qn(t)qm(t)

+ρbb(0)ρn,m(0)r∗n−1(t)rm−1(t)+ iρba(0)ρn,m−1(0)r∗n−1(t)qm−1(t)
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−iρab(0)ρn−1,m(0)qn−1(t)rm−1(t)+ρaa(0)ρn−1,m−1(0)qn−1(t)qm−1(t)

=
{

ρaa(0)rn(t)r∗m(t)+ρbb(0)r∗n−1(t)rm−1(t)
}

ρn,m(0)

+ρbb(0)qn(t)qm(t)ρn+1,m+1(0)+ρaa(0)qn−1(t)qm−1(t)ρn−1,m−1(0)

+iρab(0)
{

rn(t)qm(t)ρn,m+1(0)−qn−1(t)rm−1(t)ρn−1,m(0)
}

+iρba(0)
{

r∗n−1(t)qm−1(t)ρn,m−1(0)−qn(t)r∗m(t)ρn+1,m(0)
}

Where

Cx,n(0) =Cx(0)Cn(0)

ρxx(0) = 〈x|ρ̂s(0)|x〉

= Cx(0)C∗x (0)

ρnm(0) = 〈n|ρ̂ f (0)|m〉

= Cn(0)C∗m(0)

Cx,n(0)C∗y,m(0) =Cx(0)C∗y (0)ρnm(0) (D.8)
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APPENDIX E

DERIVATION OF INVERSION FOR TWO-LEVEL ATOM

Atomic inversion is given by

nab =
∞

∑
n=0
|Ca,n(t)|2−|Cb,n(t)|2 (E.1)

For analytical solution, nab(t) can be written as

nab(t) =
∞

∑
n=0

(
|Ca,n(t)|2−|Cb,n+1(t)|2

)
−|Cb,0(t)|2 (E.2)

Using the density matrix elements derived in Appendix D, we obtain

nab(t) =
∞

∑
n=1

(
|Ca,n(t)|2−|Cb,n+1(t)|2

)
−|Cb,1(t)|2 (E.3)

=
∞

∑
n=1

Ca,n(t)C∗a,n(t)−Cb,n+1(t)C∗b,n+1(t)−Cb,1(t)C∗b,1(t)

=
∞

∑
n=1

[
ei∆t/2[Ca,n(0)rn(t)− iCb,n+1(0)qn(t)]

]
[
e−i∆t/2[C∗a,n(0)r

∗
n(t)+ iC∗b,n+1(0)qn(t)]

]
−
[
e−i∆t/2[Cb,n+1(0)r∗n(t)− iCa,n(0)qn(t)]

]
[
ei∆t/2[C∗b,n+1(0)rn(t)+ iC∗a,n(0)qn(t)]

]
−
[
e−i∆t/2[Cb,1(0)r∗0(t)− iCa,0(0)q0(t)]

]
[
ei∆t/2[C∗b,1(0)r0(t)+ iC∗a,0(0)q0(t)]

]
=

∞

∑
n=1

Ca,n(0)rn(t)C∗a,n(0)r
∗
n(t)+Ca,n(0)rn(t)iC∗b,n+1(0)qn(t)

−iCb,n+1(0)qn(t)C∗a,n(0)r
∗
n(t)− iCb,n+1(0)qn(t)iC∗b,n+1(0)qn(t)

−Cb,n+1(0)r∗n(t)C
∗
b,n+1(0)rn(t)−Cb,n+1(0)r∗n(t)iC

∗
a,n(0)qn(t)

+iCa,n(0)qn(t)C∗b,n+1(0)rn(t)+ iCa,n(0)qn(t)iC∗a,n(0)qn(t)

−Cb,1(0)r∗0(t)C
∗
b,1(0)r0(t)−Cb,1(0)r∗0(t)iC

∗
a,0(0)q0(t)

+iCa,0(0)q0(t)C∗b,1(0)r0(t)+ iCa,0(0)q0(t)iC∗a,0(0)q0(t)

=
∞

∑
n=1

ρaa(0)ρn,n(0)rn(t)r∗n(t)+ iρab(0)ρn,n+1(0)rn(t)qn(t)
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−iρba(0)ρn+1,n(0)qn(t)r∗n(t)+ρbb(0)ρn+1,n+1(0)qn(t)qn(t)

−ρbb(0)ρn+1,n+1(0)r∗n(t)rn(t)− iρba(0)ρn+1,n(0)r∗n(t)qn(t)

+iρab(0)ρn,n+1(0)qn(t)rn(t)−ρaa(0)ρn,n(0)qn(t)qn(t)

−ρbb(0)ρ1,1(0)r∗0(t)r0(t)− iρba(0)ρ1,0(0)r∗0(t)q0(t)

+iρab(0)ρ0,1(0)q0(t)r0(t)−ρaa(0)ρ0,0(0)q0(t)q0(t)
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
[rn(t)r∗n(t)−qn(t)qn(t)]

+2iρab(0)ρn,n+1(0)rn(t)qn(t)−2iρba(0)ρn+1,n(0)qn(t)r∗n(t)

−ρbb(0)ρ1,1(0)r∗0(t)r0(t)− iρba(0)ρ1,0(0)r∗0(t)q0(t)

+iρab(0)ρ0,1(0)q0(t)r0(t)−ρaa(0)ρ0,0(0)q0(t)q0(t)

So we can conclude that the atomic inversion is given by:

nab(t) =
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
[rn(t)r∗n(t)−qn(t)qn(t)] (E.4)

+2iρab(0)ρn,n+1(0)rn(t)qn(t)−2iρba(0)ρn+1,n(0)qn(t)r∗n(t)

−ρbb(0)ρ1,1(0)r∗0(t)r0(t)− iρba(0)ρ1,0(0)r∗0(t)q0(t)

+iρab(0)ρ0,1(0)q0(t)r0(t)−ρaa(0)ρ0,0(0)q0(t)q0(t)

So if we subtitute the term rn(t) and qn(t), then it become:

where rn(t)= cos(λ (t)
2 )−i ∆

Ωn
sin(λ (t)

2 ), qn(t)=
2g(t)(n+1)

Ωn
sin(λ (t)

2 ), Ω2
n =∆2+(2g(t)(n+1))2

and λn(t) =
∫ t

0 Ωn (t ′)dt ′.

nab(t) =
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
[rn(t)r∗n(t)−qn(t)qn(t)] (E.5)

+2iρab(0)ρn,n+1(0)rn(t)qn(t)−2iρba(0)ρn+1,n(0)qn(t)r∗n(t)

−ρbb(0)ρ1,1(0)r∗0(t)r0(t)− iρba(0)ρ1,0(0)r∗0(t)q0(t)

+iρab(0)ρ0,1(0)q0(t)r0(t)−ρaa(0)ρ0,0(0)q0(t)q0(t)

=
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
{
(

cos(
λn(t)

2
)− i

∆

Ωn
sin(

λn(t)
2

)

)(
cos(

λn(t)
2

)+ i
∆

Ωn
sin(

λn(t)
2

)

)
−
(

2g(t)(n+1)
Ωn

sin(
λn(t)

2
)

)2

}
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+2iρab(0)ρn,n+1(0)
(

cos(
λn(t)

2
)− i

∆

Ωn
sin(

λn(t)
2

)

)
(

2g(t)(n+1)
Ωn

sin(
λn(t)

2
)

)
−2iρba(0)ρn+1,n(0)

(
2g(t)(n+1)

Ωn
sin(

λn(t)
2

)

)
(

cos(
λn(t)

2
)+ i

∆

Ωn
sin(

λn(t)
2

)

)
−ρbb(0)ρ1,1(0)

(
cos(

λ0(t)
2

)+ i
∆

Ω0

)(
cos(

λ0(t)
2

)− i
∆

Ω0

)
−iρba(0)ρ1,0(0)

(
cos(

λ0(t)
2

)+ i
∆

Ω0

)(
2g(t)
Ω0

sin(
λ0(t)

2
)

)
+iρab(0)ρ0,1(0)

(
2g(t)
Ω0

sin(
λ0(t)

2
)

)(
cos(

λ0(t)
2

)− i
∆

Ω0

)
−ρaa(0)ρ0,0(0)

(
2g(t)
Ω0

sin(
λ0(t)

2
)

)2

=
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
{
(

cos(
λn(t)

2
)

)2

+
∆2

Ω2
n

(
sin(

λn(t)
2

)

)2

− 4g2(t)(n+1)2

Ω2
n

(
sin(

λn(t)
2

)

)2

}

+2iρab(0)ρn,n+1(0)
2g(t)(n+1)

Ωn
{
(

sin(
λn(t)

2
)cos(

λn(t)
2

)

)
−i∆

2g(t)(n+1)
Ω2

n

(
sin(

λn(t)
2

)

)2

}

−2iρba(0)ρn+1,n(0){
2g(t)(n+1)

Ωn

(
sin(

λn(t)
2

)cos(
λn(t)

2
)

)
+i∆

2g(t)(n+1)
Ω2

n

(
sin(

λn(t)
2

)

)2

}

−ρbb(0)ρ1,1(0)

[(
cos(

λ0(t)
2

)

)2

+

(
∆2

Ω2
0

)]

−ρaa(0)ρ0,0(0)
4g2(t)

Ω2
0

(
sin(

λ0(t)
2

)

)2

−iρba(0)ρ1,0(0)
((

g(t)
Ω0

sinλ0(t)
)
+ i∆

2g(t)
Ω2

0

(
sin(

λ0(t)
2

)

))
+iρab(0)ρ0,1(0)

((
g(t)
Ω0

sinλ0(t)
)
− i∆

2g(t)
Ω2

0

(
sin(

λ0(t)
2

)

))
where the trigonometric function give sin2φ = 2sinφ cosφ and cos2 φ + sin2

φ = 1.

while r0(t) = cos(λ0(t)
2 )− i ∆

Ω0
sin(λ0(t)

2 ), q0(t) =
2g(t)
Ω0

sin(λ0(t)
2 ), Ω2

0 = ∆2 + 4g2(t)

and λ0(t) =
∫ t

0 Ω0 (t ′)dt ′.
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nab(t) =
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
(E.6)[(

cos(
λn(t)

2
)

)2

+

(
∆2−4g2(t)(n+1)2

Ω2
n

)(
sin(

λn(t)
2

)

)2
]

+2iρab(0)ρn,n+1(0)

(
g(t)(n+1)

Ωn
sin(λn(t))− i∆

2g(t)(n+1)
Ω2

n

(
sin(

λn(t)
2

)

)2
)

−2iρba(0)ρn+1,n(0)

(
g(t)(n+1)

Ωn
sin(λn(t))+ i∆

2g(t)(n+1)
Ω2

n

(
sin(

λn(t)
2

)

)2
)

−ρbb(0)ρ1,1(0)

[(
cos(

λ0(t)
2

)

)2

+
∆2

Ω2
0

]
−ρaa(0)ρ0,0(0)

4g2(t)
Ω2

0

(
sin(

λ0(t)
2

)

)2

−iρba(0)ρ1,0(0)
((

g(t)
Ω0

sinλ0(t)
)
+ i∆

2g(t)
Ω2

0

(
sin(

λ0(t)
2

)

))
+iρab(0)ρ0,1(0)

((
g(t)
Ω0

sinλ0(t)
)
− i∆

2g(t)
Ω2

0

(
sin(

λ0(t)
2

)

))
=

∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
[

1+

(
−8(g(t)(n+1))2

Ω2
n

)(
sin(

λ (t)
2

)

)2
]

+2iρab(0)ρn,n+1(0)D∗n−2iρba(0)ρn+1,n(0)Dn

−ρbb(0)ρ1,1(0)

[(
cos(

λ0(t)
2

)

)2

+
∆2

Ω2
0

]

−ρaa(0)ρ0,0(0)
4g2(t)

Ω2
0

(
sin(

λ0(t)
2

)

)2

− iρba(0)ρ1,0(0)D0 + iρab(0)ρ0,1(0)D∗0

where Dn =
g(t)(n+1)

Ωn
sin(λ (t))+ i∆2g(t)(n+1)

Ω2
n

(
sin(λ (t)

2 )
)2

.

Finally we obtain:

nab(t) =
∞

∑
n=1

{
ρaa(0)ρn,n(0)−ρbb(0)ρn+1,n+1(0)

}
(E.7)[

1+

(
−8(g(t)(n+1))2

Ω2
n

)(
sin(

λ (t)
2

)

)2
]

+2iρab(0)ρn,n+1(0)D∗n−2iρba(0)ρn+1,n(0)Dn

−ρbb(0)ρ1,1(0)

[(
cos(

λ0(t)
2

)

)2

+
∆2

Ω2
0

]

−ρaa(0)ρ0,0(0)
4g2(t)

Ω2
0

(
sin(

λ0(t)
2

)

)2

−iρba(0)ρ1,0(0)D0 + iρab(0)ρ0,1(0)D∗0
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APPENDIX F

DENSITY MATRIX ELEMENTS FOR THREE-LEVEL ATOM

In order to solve the matrix elements in Chapter 5, the equations of motion for a slowly

varying amplitude are introduced as

ρ̃ab = ρ̂abe−i∆pt (F.1)

ρ̃ba = ρ̂baei∆pt

ρ̃ac = ρ̂ace−i∆ct

ρ̃ca = ρ̂caei∆ct

ρ̃cb = ρ̂cbei(∆c−∆p)t

ρ̃bc = ρ̂bce−i(∆c−∆p)t

By using the general differentiation rule,

d
dt

ρ̃ab =
d
dt

ρ̂abe−i∆pt (F.2)

= ρ̂ab
d
dt

e−i∆pt + e−i∆pt d
dt

ρ̂ab

the elements then becomes:

d
dt

ρ̂aa = −iΩpρ̃ba + iΩpρ̃ab− ig(t)âρ̃ca + ig(t)ρ̃acâ† (F.3)

+γFL(ρ̂aa)−2(Γac +Γab) ρ̂aa

d
dt

ρ̂bb = −iΩpρ̃ab + iΩpρ̃ba + γFL(ρ̂bb)+2Γabρ̂aa

d
dt

ρ̂cc = −ig(t)â†
ρ̃ac + ig(t)ρ̃caâ+ γFL(ρ̂cc)+2Γacρ̂aa

d
dt

ρ̃ca = i∆cρ̃ca + iΩpρ̃cb + ig(t)ρ̂ccâ†− ig(t)â†
ρ̂aa

+γFL(ρ̃ca)− (Γac +Γab) ρ̃ca

d
dt

ρ̃ac = −i∆cρ̃ac− iΩpρ̃bc− ig(t)âρ̂cc + ig(t)ρ̂aaâ

+γFL(ρ̃ac)− (Γac +Γab) ρ̃ac
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d
dt

ρ̃ba = i∆pρ̂ba− iΩpρ̂aa + iΩpρ̂bb + ig(t)ρ̃bcâ†

+γFL(ρ̃ba)− (Γac +Γab) ρ̃ba

d
dt

ρ̃ab = −i∆pρ̃ab− iΩpρ̂bb + iΩpρ̂aa− ig(t)âρ̃cb

+γFL(ρ̃ab)− (Γac +Γab) ρ̃ab

d
dt

ρ̃bc = −i(∆c−∆p) ρ̃bc− iΩpρ̃ac + ig(t)ρ̃baâ+ γFL(ρ̃bc)

d
dt

ρ̃cb = i(∆c−∆p) ρ̃cb + iΩpρ̃ca− ig(t)â†
ρ̃ab + γFL(ρ̃cb)

Rearrange the elements:

d
dt

ρ̂aa = iΩp [ρ̃ab− ρ̃ba]+ ig(t)
[
ρ̃acâ†− âρ̃ca

]
+ γFL(ρ̂aa) (F.4)

−2(Γac +Γab) ρ̂aa

d
dt

ρ̂bb = iΩp [ρ̃ba− ρ̃ab]+ γFL(ρ̂bb)+2Γabρ̂aa

d
dt

ρ̂cc = ig(t)
[
ρ̃caa− â†

ρ̃ac

]
+ γFL(ρ̂cc)+2Γacρ̂aa

d
dt

ρ̃ca = i∆cρ̃ca + iΩpρ̃cb + ig(t)
[
ρ̂ccâ†− â†

ρ̂aa

]
+γFL(ρ̃ca)− (Γac +Γab) ρ̃ca

d
dt

ρ̃ac = −i∆cρ̃ac− iΩpρ̃bc + ig(t) [ρ̂aaâ− âρ̂cc]

+γFL(ρ̃ac)− (Γac +Γab) ρ̃ac

d
dt

ρ̃ba = i∆pρ̂ba + iΩp [ρ̂bb− ρ̂aa]+ ig(t)ρ̃bcâ†

+γFL(ρ̃ba)− (Γac +Γab) ρ̃ba

d
dt

ρ̃ab = −i∆pρ̃ab + iΩp [ρ̂aa− ρ̂bb]− ig(t)âρ̃cb

+γFL(ρ̃ab)− (Γac +Γab) ρ̃ab

d
dt

ρ̃bc = −i(∆c−∆p) ρ̃bc− iΩpρ̃ac + ig(t)ρ̃baâ+ γFL(ρ̃bc)

d
dt

ρ̃cb = i(∆c−∆p) ρ̃cb + iΩpρ̃ca− ig(t)â†
ρ̃ab + γFL(ρ̃cb)

For all equations abobe we can derive a system of coupled equations using the action of

operator â and â†on a basis |n〉 and 〈n| as discussed in chapter 1, then for the diagonal

element for photon number we obtain

d
dt

ρ̂aa (n,n) = iΩp [ρ̃ab (n,n)− ρ̃ba (n,n)] (F.5)
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+ig(t)
√

n+1ρ̃ac (n,n+1)

−ig(t)
√

n+1ρ̃ca (n+1,n)

+2γF (n+1) ρ̂aa (n+1,n+1)

−2(γFn+Γac +Γab) ρ̂aa (n,n)

d
dt

ρ̂bb (n,n) = iΩp [ρ̃ba (n,n)− ρ̃ab (n,n)] (F.6)

+2γF (n+1) ρ̂bb (n+1,n+1)

−2γFnρ̂bb (n,n)+2Γabρ̂aa (n,n)

d
dt

ρ̂cc (n,n) = ig(t)
[√

nρ̃ca (n,n−1)−
√

nρ̃ac (n−1,n)
]

(F.7)

+2γF (n+1) ρ̂cc (n+1,n+1)

−2γFnρ̂cc (n,n)+2Γacρ̂aa (n,n)

d
dt

ρ̃ca (n+1,n) = i∆cρ̃ca (n+1,n)+ iΩpρ̃cb (n+1,n) (F.8)

+ig(t)
√

n+1ρ̂cc (n+1,n+1)

−ig(t)
√

n+1ρ̂aa (n,n)

+2γF
√

n+2
√

n+1ρ̂ca (n+2,n+1)

−γF (n+1) ρ̂ca (n+1,n)

−γFnρ̂ca (n+1,n)− (Γac +Γab) ρ̃ca (n+1,n)

d
dt

ρ̃ac (n,n+1) =
d
dt

ρ̃
∗
ca (n+1,n) (F.9)

d
dt

ρ̃ba (n,n) = (i∆p−2γFn−Γac−Γab) ρ̃ba (n,n) (F.10)

+iΩp [ρ̂bb (n,n)− ρ̂aa (n,n)]

+ig(t)
√

n+1ρ̃bc (n,n+1)

+2γF (n+1) ρ̂ba (n+1,n+1)

d
dt

ρ̃ab (n,n) =
d
dt

ρ̃
∗
ba (n,n) (F.11)

d
dt

ρ̃cb (n+1,n) = (i(∆c−∆p)− γF (2n+1)) ρ̂cb (n+1,n) (F.12)

+iΩpρ̃ca (n+1,n)− ig(t)
√

n+1ρ̃ab (n,n)

+2γF
√

n+1
√

n+2ρ̂cb (n+2,n+1)

ρ̃bc (n,n+1) =
d
dt

ρ̃
∗
cb (n+1,n) (F.13)
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