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Abstract

The class of random coefficient autoregressive (RCA) models has been con-

sidered in many areas of science due to its rich applications. We review two

methods of RCA parameter estimation, namely least squares and estimating

functions. An iterative method based on the estimating functions is proposed

to improve the existing RCA parameter estimation. This study is then fol-

lowed by investigating the robustness of the three estimates when outliers exist

in the RCA process. Simulation studies are carried out to investigate the per-

formance of parameter estimation and robustness of the estimates.

Further, the outlier detection procedure for the RCA process is proposed.

In this study, a procedure by Chang et al. (1988) has been extended to detect

additive and innovational outliers in the RCA process. A simulation study

is carried out to investigate the performance of the procedures. It is found

that, in general, these procedures work well in detecting outliers. Finally, we

apply the suggested procedures to a real data set to show the importance of

the study in practice.
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Chapter 1

Introduction

1.1 An Overview

In most time series data, the structure correlation can be approximated by lin-

ear time series models. Examples of the models include autoregressive (AR)

model, moving average (MA) model, autoregressive moving average (ARMA)

model and the autoregressive integrated moving average (ARIMA) model.

These linear models have been widely used in various areas including engi-

neering, economics, finance and natural sciences. However, in many appli-

cations, linear models are not a reasonable choice. Note that any random

burst and cyclicity pattern in time series data cannot be explained well with

linear models. See, for example, Tong (1977) and references therein for details.

It is known that the famous Wolfer’s sunspot data has systematic periodic

cycles with faster downturn trend than upturn. This pattern will never be

well explained by any linear model. Granger and Andersen (1978) are among
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others who have shown that nonlinear models fit the Wolfer’s sunspot data

better than linear models. The Canadian lynx data is another good example.

Moran (1953) carried out a rigorous statistical analysis and an AR(2) model

was fitted to the data. Noting that the one-step-ahead predictors of the fitted

model were not particularly good, he further suggested that the process may

be better represented by a nonlinear model. On the other hand, Tong (1977)

fitted the lynx data using an AR(12) model. He pointed out that an AR model

does provide a good approximation but can be further improved by a nonlinear

model. Later, Nicholls and Quinn (1982) showed that the Canadian lynx data

is better fitted using a nonlinear random coefficient autoregressive model of

order two, RCA(2). Their conclusion was based on one-step-ahead predictors

of the last 14 time points, which have smaller sum squares of error compared

to models given by Moran (1953) and Tong (1977).

At present, there are many types of nonlinear time series models available

in the literature. The most mentioned models are:

1. Bilinear models given by Granger and Anderson (1978), with the appli-

cations in modeling seismological data such as earthquakes and sunspot

data.

2. Threshold autoregressive models proposed by Tong (1983) and later Tiao

and Tsay (1994) for modeling short-term interest rate yield.

3. The autoregressive conditional heteroscedastic (ARCH) models proposed

by Engle (1982) and Bollerslev (1986) for modeling volatility in financial

time series.
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There are many data sets in engineering, economics, hydrology and me-

teorology which exhibit occasional random spikes. This has led to the con-

sideration of nonlinear models with random coefficients. The entire issue of

Annals of Economics and Social Measurement (Volume 2, Number 4, 1973)

reported important issues and usefulness of models with random coefficients.

Consequently, Nicholls and Quinn (1982) introduced a special form of random

coefficient model, known as random coefficient autoregressive (RCA) models.

Since then, the RCA models have been used extensively in modeling data with

occasional random spikes. This model will be considered in this study.

Several methods of RCA parameter estimation have been proposed. Nicholls

and Quinn (1982) considered the least squares (LS) and maximum likelihood

(ML) methods. In their monograph, extensive theoretical properties of these

methods and the resulting estimates had been explored. Since then, many ap-

proaches based on LS and ML have been extended to improve the RCA param-

eter estimation (see Tjøstheim, 1986; Hwang & Basawa, 1993; Schick, 1996;

and later Aue et al., 2006). Whilst Thavaneswaran and Abraham (1988) ap-

plied Godambe’s (1985) estimating functions (EF) theory to estimate the pa-

rameter of several linear and nonlinear models including RCA models. Conse-

quently, Thavaneswaran and Peiris (1996) and Chandra and Taniguchi (2001)

have further improved the RCA parameter estimation using several other ap-

proaches based on EF. Besides, the Bayesian method has been put forward by

Wang and Gosh (2002) to estimate the parameter of non-stationary case of

RCA models.
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Outliers may also occur in the RCA process. They are usually displayed as

‘bumps’ or shocks in a time series plot and may disturb more than one obser-

vation. As a result, outliers might cause some changes in mean and variance,

and hence, affects the parameter estimation and model forecasts. However,

in practice, the presence of outliers cannot be identified easily at the begin-

ning of the analysis. Barnett and Lewis (1978) pointed out that outliers in

time series can be cloaked to some extent by the general structure of the pro-

cess. Thus, the process of identifying outliers will be more difficult. One of

the ways of overcoming this problem is to use robust methods. It is done by

down-weighting the effects of outliers so that the results obtained would not

be adversely affected.

Tukey (1976) defined an estimate with robustness property such the esti-

mator should not change much in the presence of outliers. In other words,

an estimator which is not sensitive to outliers is said to be robust. Later,

Papantoni-Kazakos and Gray (1979) and Boente et al. (1982) gave a formal

definition of qualitative robustness estimates. That is, “a sequence of esti-

mates is robust, if a small change in the distribution of the stochastic process

produces a small change in the distribution of the estimates”. The above def-

inition is actually the generalization of qualitative robustness from Hampel’s

(1971) independent and identically distributed observations case. An excellent

reference on statistical robustness is available in Huber (2004).

4



The detection and handling of outliers in RCA data is another important

and challenging problem in practice. There are four common types of outliers

being considered in the literature. They are additive outlier (AO), innovational

outlier (IO), level change (LC) and temporary change (TC). A bulk of work

is available on detecting these outliers in linear time series data. For example,

Abraham and Box (1979) proposed a procedure for detecting multiple out-

liers using the Bayesian approach while McCulloch and Tsay (1994) applied

the Gibbs sampling to handle AO. Vogelsang (1999) proposed a method to

detect AO in the context of unit-root testing, and this was further studied by

Perron and Rodriguez (2000) and Harvey et al. (2001) on the occurrence of IO.

Another method adopted by many authors is by examining the maximum

value of the standardized-outlier-effects statistics. Chang et al. (1988) had

initially considered this approach for detecting AO and IO in ARIMA models.

Then, Chen and Liu (1993) extended the work of Chang et al. (1988) to two

other types of outliers, namely LS and TC. Franses and Ghijsels (1999) and

Charles and Darne (2005) used the same approach to detect AO and IO for

the generalized autoregressive conditional heteroskedasticity (GARCH) mod-

els. Zaharim et al. (2006) and Ismail et al. (2008) had also applied the same

procedure to bilinear models for detection of AO, IO, LS and TC. They have

performed a large scale simulation study and showed that the detection proce-

dure works well. This suggests that the approach has been successfully applied

to several nonlinear time series models described above. However, no work has

5



been carried out in detecting outliers in RCA models. It is our interest to

explore this problem in the study.

1.2 Problem Statement

To the best of our knowledge, no study has been carried out to detect outliers

and to investigate the robustness property of the RCA parameter estimates

when AO or IO exists in the data set. Therefore, the following problems will

be addressed in this project to close the gap in the time series literature:

1. A new iterative method in estimating RCA parameters.

2. The robustness property of the RCA parameter estimates when AO or

IO occurs in the data sets.

3. The detection of outliers in RCA models.

1.3 Objectives

This study has several objectives as given below:

1. Propose an iterative (IT) method based on the estimating functions ap-

proach in estimating the RCA(1) parameters.

2. Investigate the robustness of least squares (LS), estimating functions

(EF) and IT estimates when AO or IO exists in RCA(1) process.

6



3. Measure the effects of AO and IO on observations and residuals for the

RCA(1) model.

4. Derive the test statistics to verify the existence of AO and IO for the

RCA(1) model.

5. Propose the AO and IO detection procedures for the RCA(1) process.

6. Apply the suggested estimation method and outlier detection procedures

to a real data set from the RCA(1) model.

1.4 Outline of Thesis

This thesis is organized as follows:

Chapter 2 consists of literature review on three important topics covered

in this thesis; the RCA models, theory of estimating functions and outliers.

Chapter 3 proposes a new iterative (IT) method based on estimating func-

tions. A simulation study is carried out to justify the IT method. We then

apply the theory to a real data set to illustrate the usefulness of this IT method

in practice.

Chapter 4 discusses the effects of AO and IO in RCA(1) process. A simu-

lation study is performed to compare the robustness properties of LS, EF and

IT estimates for data with and without outliers.

7



Chapter 5 proposes separate outlier detection procedures for AO and IO

cases. We first formulate the effects of AO and IO on observations gener-

ated from RCA(1) process and the resulting residuals. Then, we derive two

statistics using least squares method to measure the effects of AO and IO.

Consequently, test statistics are defined to verify the existence of outliers. A

simulation study is carried out to investigate the performance of the proposed

outlier detection procedures.

Then, a real data set is considered in chapter 6 to illustrate the application

of outlier detection procedures in practice. Finally, the summary, the signifi-

cance of this study and possible future research are presented in Chapter 7.
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Chapter 2

Literature Review

2.1 Random Coefficient Autoregressive Model

(RCA)

Quality control engineers and economists had observed regularly recurring cy-

cles in the production lines and prices of particular commodities since more

than one century ago. They had noticed an inconsistency between the observed

continuation of these regularly recurring cycles and the economic theory as-

suming the tendency towards equilibrium. Classical economic theory relies

on the assumption that an equilibrium of the disturbed price and production

will tend to gravitate back towards a normal trend. However in reality, prices

and production might tend to fluctuate continually, or even diverge further

and further away from equilibrium. As a displacement from equilibrium is

uncertain, many authors allow random disturbances. Conlisk (1974, 1976) has

contributed to the development of random coefficient (RC) models by propos-
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ing a general n-variable model with random coefficients, that is

yt = (bt + ut) + (A + Ut)yt−1, (2.1)

where yt is an (nx1) random vector of dependent variables at time t, bt is

an (nx1) constant intercept vector; ut is an (nx1) random vector of intercept

shocks; A is an (nxn) constant matrix of coefficients; and Ut is an (nxn) ran-

dom matrix of coefficient shocks. Further, shocks ut and Ut are assumed to

have zero means and are serially uncorrelated properties E[ut|yt−1] = 0 and

E[Ut|yt−1] = 0 for all t = 1, 2, .., n .

The model in (2.1) is a RC model which allows random disturbances in

errors. The development of RC models was then extended by Andel (1976)

with the derivation of second order stationarity conditions. See also Turnovsky

(1968) for motivation of RC models.

In 1982, Nicholls and Quinn (1982) proposed a special form of RC model,

known as the random coefficient autoregressive model. The univariate random

coefficient autoregressive models of order p, denoted by RCA(p), is given by

yt =

p∑
i=1

[θi + bi(t)]yt−i + et, (2.2)

where

1. θi are the parameters to be estimated,

2. {et} is a sequence of i.i.d random variables with mean 0 and variance σ2
e ,

10



3. {bi(t)} is a sequence of i.i.d random variables with mean 0 and variance

σ2
b ,

4. bi(t) is independent of et for all i and t.

5. θi and σ2
b satisfy

∑
(θ2

i + σ2
b ) < 1 to ensure stationarity.

In this study, we consider a special case of (2.2) when p = 1. The random

coefficient autoregressive model of order 1, RCA(1), is given by

yt = (θ + bt)yt−1 + et, (2.3)

where θ2 + σ2
b < 1.

For the applications of RCA models, Nicholls and Quinn (1982) fitted the

popular Canadian lynx data (see Campbell & Walker, 1977) to the RCA(2)

model using the first 100 observations and forecasted the remaining 14 obser-

vations. Based on error sum of squares, the one-step-ahead forecasts of the

transformed and untransformed lynx data using the fitted RCA(2) are better

than the models proposed by Moran (1953) and Tong (1977). Longitudinal

data on percentage of protein in cow’s milk (Rahiala, 1999), NASDAQ and

IBM index stock data (Wang & Gosh, 2002) have also been modeled using

the RCA models. Another application of RCA is to estimate the time varying

hedge ratios for corn and soybeans data (Bera et al., 1997). Recently, the RCA

model has been used by Ghahramani and Thavaneswaran (2008) to estimate

the volatility of the Japan index market, IBM stock return and dollar exchange

11



rate data. They have combined the estimating functions of RCA and GARCH

models to obtain the volatility estimates.

2.1.1 Properties of RCA

A number of authors have studied the properties of RCA models. Conlisk

(1974, 1976) looked into the stability of RCA models, while Andel (1976)

and Nicholls and Quinn (1981) discussed the problem of its second order sta-

tionarity. Furthermore, Feigin and Tweedie (1985) studied the stationarity,

ergodicity and finiteness of moments for the RCA model.

There is a similarity between the RCA and the autoregressive (AR) models

such that the RCA is obtained by adding a random additive perturbation to

the ordinary AR coefficients. For clearer illustration of those similarities, we

have plotted two simulated data from AR(1) (θ = 0.3 and σ2
e = 1.0) and the

RCA(1) (θ = 0.3, σ2
e = 1.0, and σ2

b = 0.3) models and these are given in

Figures 2.1 and 2.2 respectively.

From Figure 2.1, it can be seen that there is no significant fluctuation

throughout the series of AR(1) process. The process appear to have no sys-

tematic change in mean and variance. On the other hand, the peak behavior of

the RCA(1) in Figure 2.2 with the random coefficient bt is significantly differ-

ent from AR(1). It is clear that the additive random perturbation has caused

12



0 200 400 600 800 1000

-6
-4

-2
0

2
4

6

Figure 2.1: Time series plot of AR(1)

0 200 400 600 800 1000

-6
-4

-2
0

2
4

6

Figure 2.2: Time series plot of RCA(1)
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Figure 2.3: ACF plot of AR(1)
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Figure 2.4: ACF plot of RCA(1)
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some jumps in amplitude in the series. Figures 2.3 and 2.4 give corresponding

autocorrelation function (ACF) plots of series in Figure 2.1 and 2.2. By look-

ing at the spikes that quickly die out, both series appear to be stationary.

For further comparison of AR(1) and RCA(1) models, Figure 2.5 gives a

time series plot for a larger value of σ2
b=0.5. It is clear that as the variance of

bt gets larger, larger jumps in amplitude can be observed in the data set.

0 200 400 600 800 1000

-1
0

-5
0

5

Figure 2.5: Time series plot of RCA(1) with larger value of σ2
b

For the stationarity of RCA(1), it is noted earlier that the stationarity

condition θ2 + σ2
b < 1 must be satisfied. To further study this condition,

Figures 2.6 and 2.7 show the effects of θ and σ2
b on the stationarity of series.
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Figure 2.6 is the plot for the RCA(1) process with θ = 0.8 and σ2
b = 0.3. If

θ is relatively large compared to σ2
b , θ2 + σ2

b will be closer to unity (i.e., close

to the boundary of stationarity). Thus, large values of {yt} are expected to

arise and are generally associated with non-stationarity. If θ is not relatively

large compared to σ2
b , values of {yt} are expected to resemble realizations of

constant coefficient autoregressive process. Figure 2.7 gives the ACF plot of

the series in Figure 2.6. It can be seen that the spikes die out slowly. This is

true since the stationarity condition is close to unity.
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-2
0

-1
0

0
10

20
30

Figure 2.6: Time series plot of RCA(1) which closer to stationarity bound
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Figure 2.7: ACF plot of RCA(1) which closer to stationarity bound

2.1.2 Estimation Methods of RCA(1) Parameters

Several methods of estimating the RCA(1) parameters are available in the

literature. The method of least squares (LS) proposed by Nicholls and Quinn

(1980) is reviewed. From (2.3), let

ut = et + btyt−1 = yt − θyt−1. (2.4)

The LS estimate of θ̂ is obtained by minimizing

n∑
t=2

u2
t =

n∑
t=2

(yt − θyt−1)
2 (2.5)

with respect to θ. Hence we have

θ̂LS =

∑n
t=2 ytyt−1∑n
t=2 y2

t−1

. (2.6)

Note that θ̂LS depends only on the observations. Following Nicholls and Quinn

(1980), by regressing u2
t on 1 and y2

t−1, we can obtain the estimates of σ2
b and
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σ2
e . This is equivalent to minimizing

∑n
t=2[û

2
t − (σ2

e +σ2
by

2
t−1)]

2 with respect to

σ2
b and σ2

e . Thus the LS estimates of σ2
b and σ2

e are given by

σ2
b,LS =

∑n
t=2 û2

t,LS(y2
t−1 − z̄)∑n

t=2(y
2
t−1 − z̄)2

(2.7)

σ2
e,LS =

∑n
t=2 û2

t,LS

n− 1
− σ2

b,LS z̄ (2.8)

respectively, where z̄ =
∑n

t=2

y2
t−1

n−1
and ût,LS = yt − θ̂LSyt−1.

Nicholls and Quinn (1982) showed that if the second moments of bt and et

are finite, then θ̂LS is a consistent estimator for θ. Further, under the finite

fourth moments of {yt} (i.e., θ4 + 6θσ2
b + 3σ2

b < 1),
√

n(θ̂LS − θ) converges in

distribution to a normal random variable.

Another method available to estimate the RCA(1) parameters is based on

the maximum likelihood criterion (see Nicholls and Quinn, 1981). By assuming

the normality of bt and et, one can write the likelihood function explicitly as

follows

fn(y1, .., yn|y0) =
n∏

t=1

f(yt|yt−1)

= (2π)−n/2

n∏
t=1

{(σ2
e + σ2

by
2
t−1)

−1/2exp[− (yt − θyt−1)
2

2(σ2
e + σ2

by
2
t−1)

]}

= Ln(θ, σ2
e , σ

2
b ). (2.9)
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Taking the log-likelihood function, we have

logLn(θ, σ2
e , σ

2
b ) = −n

2
log(2π)− 1

2

n∑
t=1

log(σ2
e + σ2

by
2
t−1)

−
n∑

t=1

[
(yt − θyt−1)

2

2(σ2
e + σ2

by
2
t−1)

]. (2.10)

Let

l̃(θ, σ2
e , σ

2
b ) = − 2

n
log[Ln(θ, σ2

e , σ
2
b )]− log(2π)

= n−1

n∑
t=1

log(σ2
e + σ2

by
2
t−1)

+n−1

n∑
t=1

[
(yt − θyt−1)

2

(σ2
e + σ2

by
2
t−1)

]. (2.11)

We now minimize the monotone function l̃(θ, σ2
e , σ

2
b ) instead of maximization

of likelihood function Ln(θ, σ2
e , σ

2
b ). By re-parameterizing τ =

σ2
b

σ2
e
, we are able

to minimize the monotone function above in terms of τ alone. Thus l̃(θ, σ2
e , σ

2
b )

is reduced to l̃(θ, σ2
e , τ), giving:

l̃(θ, σ2
e , τ) = log(σ2

e) + n−1

n∑
t=1

log(1 + τy2
t−1)

+(σ2
en)−1

n∑
t=1

[
(yt − θyt−1)

2

(1 + τy2
t−1)

]. (2.12)

Minimizing l̃(θ, σ2
e , τ) with respect to θ and σ2

e , we have

θ̂(τ) =
n∑

t=1

[
ytyt−1

1 + τy2
t−1

]{
n∑

t=1

[
y2

t

1 + τy2
t−1

]}−1 (2.13)

and

σ̂2
e(τ) = n−1

n∑
t=1

{ [yt − θ̂(τ)yt−1]
2

1 + τy2
t−1

}. (2.14)

Substituting equation (2.14) in (2.12), we now have the following function

of τ :

l̃(τ) = log(σ̂2
e(τ)) + n−1

n∑
t=1

log(1 + τy2
t−1). (2.15)
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An estimate of τ can be obtained by minimizing the above function in

(2.15). Thus the maximum likelihood estimates of θ, σ2
e and σ2

b are given by

θ̂MLE = θ(τ̂), σ̂2
e,MLE = σ2

e(τ̂), and σ̂2
b,MLE = σ̂2

e(τ̂) respectively. These esti-

mates can be calculated using Newton Raphson algorithm given good choice

of initial values. The common choice are the least squares estimates. Nicholls

and Quinn (1981) had shown that under normality assumptions of bt, et and

second order stationary condition of θ2 +σ2
b , θ̂MLE is a consistent estimator for

θ. Moreover, if the fourth moments of bt and et are finite, then
√

n(θ̂MLE − θ)

follows the central limit theorem.

On the other hand, Schick (1996) introduced a class of asymptotically

normal estimators of θ indexed by a family of bounded measurable functions to

estimate the RCA(1) parameters. Let Φ be the set of all bounded measurable

functions φ such that xφ(x) > 0 for x 6= 0 with mean and variance given by

E(φ) =

∑n
j=1 φ(xj−1)xj∑n

j=1 φ(xj−1)xj−1

(2.16)

and

V (φ) =
E[φ2(x0)w(x0)]

E[φ(x0)x0]2
(2.17)

respectively, where w(x) = σ2
e + σ2

bx
2 and x0 is the initial observation. He

has shown that for every φ ∈ Φ,
√

n(E(φ) − θ) converges in distribution to

a normal random variable with mean 0 and variance V (φ). Furthermore, an

asymptotically optimal estimator which possesses the smallest variance within

this class of estimators is defined by taking

φ(x) = φ∗(x) =
x

1 + ρx2
, where ρ =

σ2
b

σ2
e

. (2.18)
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Hence, Schicks estimator has the form

θ̂(φ∗(x)) = (
n∑

t=1

xt−1xt

σ2
e + σ2

bx
2
t−1

)(
n∑

t=1

x2
t−1

σ2
e + σ2

bx
2
t−1

)−1. (2.19)

Note that the estimate of θ using the maximum likelihood is asymptoti-

cally equivalent to that in (2.19). However, (2.19) does not require the finite

fourth moments of et and bt. Further, consistent estimators of ρ from a co-

variance assumption and the ergodic theorem have also been constructed in

Schick (1996). It is shown that the asymptotic normality still holds.

Wang and Gosh (2002) obtained a Bayesian estimation of the RCA(1) pa-

rameter. The prior density which reflects prior beliefs about the unknown

parameter is chosen to be N(µ0, V0) as non-informative prior for θ and in-

verse gamma (IG(a,b)) for σ2
b and σ2

e . Then the joint posterior density of the

parameters is given by

f(ψ|x0, .., xn) ∝ L(ψ)p(ψ), (2.20)

where ψ is the set of parameters to be estimated; i.e., ψ = (θ, σ2
b , σ

2
e)

T , L(ψ) is

the likelihood function and p(ψ) is the prior density of ψ. Since it is not an easy

task to find the normality constant of joint posterior densities and marginal

density with respect to parameters, Markov Chain Monte Carlo (MCMC)

method is employed. Gibbs sampler is used to obtain the dependent samples

from the posterior distribution. Wang and Gosh (2002) had also derived the

conditional density of one parameter given the others with observed data.

Using arbitrary starting values θ(0), σ
(0)
b and σ

(0)
e for θ, σ2

b and σ2
e respectively,

the Gibbs sampling algorithm for RCA(1) that can be obtained from (2.20) is
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given by

1. θ(k) from f(θ|σ2(k−1)
b , σ

2(k−1)
e )

2. σ
2(k)
b from f(σ2

b |θk, σ
2(k−1)
e )

3. σ
2(k)
e from f(σ2

e |θk, σ
2(k)
b ),

where the superscripts (k) represent the respective value at the kth iteration.

Repeating the above sampling steps, the discrete-time Markov Chain can be

obtained, whose stationary distribution is the joint posterior density of the

parameter. An extensive simulation study was carried out in Wang and Gosh

(2002) for weakly stationary and non stationary cases.

Another method that has been considered in estimating the model is the

theory of estimating functions for stochastic processes. This method was orig-

inally proposed by Durbin (1960) and had been extended by Godambe (1985)

with the optimality theorem for a certain class of estimating functions. Tha-

vaneswaran and Abraham (1988) had applied Godambe’s estimating functions

theory to nonlinear time series estimation problems, and this was further ex-

tended by Thavaneswaran and Peiris (1996) to nonparametric estimation prob-

lems. A review of estimating functions is given in the next section for later

reference.
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2.2 Theory of Estimating Functions

The theory of estimating functions was first proposed by Durbin (1960). He

considered the class of functions of the form

g(y, θ) = T1(y) + θT2(y), (2.21)

where T1(y) and T2(y) are functions of the data and E[g(y, θ)] = 0.

Among all such unbiased estimating functions in the form of (2.21), g1(y, θ)

is the best unbiased linear estimating functions if

V ar[(g1(y, θ))] ≤ V ar[(g(y, θ))]. (2.22)

Godambe (1960) extended the work of Durbin (1960) with the optimal-

ity criterion for a general class of estimating functions. Following Godambe

(1985), any real function g of random variates y1, y2, ..., yi and the parameter

θ is called a regular unbiased estimating function if

Ei−1[g{y1, ..., yi; θ(F )}] = 0 (F ∈ F), (2.23)

where F is a class of probability distributions F on Rn and θ = θ(F ) be a real

parameter. Ei−1 denotes the expectation holding the first i− 1 values namely

y1, ..., yi−1 fixed. Among all regular unbiased estimating function g, g∗ is said

to be optimum if

Ei−1[g∗]
[Ei−1(

∂g∗
∂θ

)]2
≤ Ei−1[g]

[Ei−1(
∂g
∂θ

)]2
(2.24)

for all F ∈ F at g = g∗. An estimate of θ can be obtained by solving the

optimum estimating equations, g∗(y1, ..., yi; θ) = 0.
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Godambe (1985) extended his work on estimating functions to the stochas-

tic processes. He restricted the estimating functions g(.) in the linear form such

that

g =
n∑

i=1

hiai−1 g ∈ L, (2.25)

where L is the class of estimating functions, hi is a real function of y1, ..., yi

(i = 1, ..., n) and parameter θ satisfying

Ei−1[hi{y1, ..., yi; θ(F )}] = 0 (F ∈ F), (2.26)

where ai−1 is a function of the random variate y1, ..., y(i−1) (i = 1, ..., n) and

parameter θ. Because of (2.26),

E(g) = E(
n∑

i=1

hiai−1) = 0 (2.27)

and hence (2.25) is an unbiased estimating functions.

Optimality Theorem

In the class L of unbiased estimating functions g(.) =
∑n

i=1 hiai−1, the

optimum function g∗ is the one which minimizes Ei−1[g]
[Ei−1(∂g/∂θ)]2

and is given by

g∗ =
n∑

i=1

hia
∗
i−1, (2.28)

where a∗i−1 =
Ei−1(

∂hi
∂θ

)

Ei−1(h2
i )
•

Note that the optimality theorem only depends on the first two conditional

moments of the distribution of hi, i.e., E(hi) and E(h2
i ). Proof of this result
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can be found in Godambe (1985).

Thavaneswaran and Abraham (1988) extended Godambe’s (1985) optimal-

ity estimating functions theory to nonlinear time series estimation problems.

Later Thavaneswaran and Peiris (1996) applied this theory to nonparamet-

ric estimation problems. Further extensions of the estimating functions are

based on the least absolute deviation (LAD), generalized kernel smoothers

and the smoothed least absolute deviation (SLAD) estimating function (see

Thavaneswaran & Peiris, 2001, 2003, 2004).

To further comprehend the use of estimating functions, we illustrate the

optimal estimating function theorem for two models below.

Example 1: AR(1) model

The AR(1) model is given by

yt = αyt−1 + et, (2.29)

where |α| < 1 and et is an independent and identically distributed random

variable with mean zero and variance σ2.

1. Let ht be a function of random variate y1, y2, ..., yn and parameter α such

that ht = yt − αyt−1 so that E[ht] = 0.

2. Let g(.) be the class of linear estimating functions in the form of

g(.) =
n∑

t=2

ai−1hi, (2.30)
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where ai is a suitably chosen function. Now E[g] = 0, and consequently

the condition of unbiased estimating functions is satisfied.

3. Using the optimality theorem from Godambe (1985), the corresponding

optimal estimating function (EF) is

g∗opt(α) =
n∑

t=2

a∗t−1ht, where a∗t−1 =
Ei−1[

∂ht

∂α
]

Ei−1[h2
t ]

. (2.31)

4. The EF estimate of α̂ can be easily obtained by solving g∗opt(α) = 0 and

is given by

α̂ =

∑n
t=2 ytyt−1∑n
t=2 y2

t−1

. (2.32)

Note that the estimate in (2.32) is the standard conditional LS estimate of α.

Example 2: GARCH(1,1) model

The GARCH(1,1) model is given by

yt|Ft−1 ∼ iid(0, kt), (2.33)

where Ft−1 is the information set available up to time t− 1 and

kt = ω + ε2
t−1 + βkt−1 (2.34)

where ω is a non-negative constant and ε is the error term.

1. In this case, define ht to be ht = y2
t − kt so that E[ht] = 0

2. Let g(.) be the class of linear estimating functions in the form of

g(.) =
n∑

t=2

ai−1hi, (2.35)

so that g(.) satisfies the unbiased estimating functions condition.
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3. Using the optimality theorem, the corresponding optimal estimating

functions (EF) for α and β are

gα∗
opt(α, β) =

n∑
t=2

aα∗
t−1ht where aα∗

t−1 =
Ei−1[

∂ht

∂α
]

Ei−1[h2
t ]

(2.36)

and

gβ∗
opt(α, β) =

n∑
t=2

aβ∗
t−1ht where aβ∗

t−1 =
Ei−1[

∂ht

∂β
]

Ei−1[h2
t ]

(2.37)

4. The EF estimates α̂ and β̂ are easily obtained by solving gα∗
opt(α, β) = 0

and gβ∗
opt(α, β) = 0 respectively.

In the next section, we review the problem of outliers in time series models.

2.3 Outliers

The term “outliers” refers to observations that is obviously depart from the

rest of the data. Outliers are also known as ‘contaminants’, ‘discordant obser-

vations’ or ‘extreme values’. Chatfield (1975) discussed the idea of outliers in

time series with an example of product sale data. Further, Barnett and Lewis

(1978) considered another two examples; the moisture content of Malaysian

tobacco in eight hours and the percentages of monthly road accidents in the

British Isles.

Outliers in data may occur due to various reasons such as data manage-

ment errors and unexpected or unusual events (eg. disaster, sudden political

or economic crisis). The presence of such outliers in time series may cause

distortion in model specification, affects the parameter estimation and fore-

casting. These have been investigated by Abraham and Chuang (1989). They
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found out that a number of suspected outliers in time series data may result in

large residuals, consequently affecting model specification and parameter esti-

mation. Hogg (1979) pointed out that outliers may influence the least squares

estimator by pulling the least squares “fit” towards them. Therefore, proper

actions on possible occurrence of outliers are necessary. Next, we discuss the

types of outliers that may arise in time series.

2.3.1 Types of Outliers

Four types of outliers are frequently found in time series literature. They are

additive outlier (AO), innovational outlier (IO), level change (LC) and tem-

porary change (TC). The most common type is AO which is deterministic in

nature and most likely caused by an isolated incident such as recording error

or a sudden disturbance. Among authors who had looked at the occurrence of

AO in their study are Chang et al. (1988), Vogelsang (1999), and Battaglia

and Orfei (2005).

Suppose that an AO occurs in time series {yt} at time t = d and let yd be

the affected observation. Following Tsay (1986), the contaminated observation

will differ from the original observations according to the following rule:

y∗t =





yt for t 6= d

yt + ω for t = d.

That is, the shock caused by an AO affect the observation at time t = d only
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with magnitude of ω, while the rest remains unaffected.

IO is the other type of outliers often found in time series data. It represents

an extraordinary shock at time t = d and influences not only at the observation

yd, but also the subsequent observations yd+1, yd+2, ... through the memory of

dynamic system associated with the IO. If the process is stationary, then the

outlier effects will die out exponentially. Battaglia and Orfei (2005) described

the effect of an IO at time t = d by

y∗t = yt + ηt, (2.38)

where ηt = et + ωδt and

δt =





0 for t 6= d

1 for t = d.

Another type of outliers is the LC (see Box & Tiao, 1965). This outlier will

cause a permanent change in the series after its impact. On the other hand,

Tsay (1986) noticed, in some cases, the changes are not permanent but decay

exponentially with a rate δ. Such outlier is defined as TC. The parameter δ

is used to model the pace of the dynamically dampening effect of the TC. In

this study, we consider the occurrence of AO and IO in RCA(1) processes.

Pena (1990) had investigated the effects of outliers in time series analysis.

He noted that outliers may not necessarily influence the parameter estimates,

but in general, affect the variance of the estimates. Martin (1980) discussed
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the effect on innovation variance estimates whilst Chen and Liu (1993) stud-

ied the impact of outliers on forecasts. Later, Chick (1994) showed that the

order selection criteria such as Akaike information criteria or AIC is indirectly

affected by outliers. This is because, the calculation of AIC depends on the

estimate of innovation variance. Consequently, these will lead to incorrect

model selection and forecasts.

2.3.2 Treatment of Outliers

Barnett and Lewis (1978) suggested four different approaches in handling out-

liers.

• The first approach is to accommodate outliers using a robust method.

That is, the outlying observations are down-weighted through appropri-

ate weight functions to reduce their influence.

• The second approach is by placing outliers within a homogenous proba-

bility model setting so that no observation will appear as outlier.

• Thirdly, enhancing the importance of outliers by setting up a mixture

model to explain their existence.

• The last one is the rejection of outliers by using suitable method. This

rejection approach was originally studied by Peirce (1852) and later ex-

tended by Wright (1884). Wright (1884) suggested that the best rule to
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reject an outlier is when the residual has exceeded 3.37 times the stan-

dard deviation of the observations.

In this study, we use the idea of the last approach. A rejection rule is

derived and the effects of outliers are measured. In the next chapter, we look

at different estimation methods of the RCA(1) model. A new iterative method

based on estimating functions theory is proposed.
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Chapter 3

An Iterative Estimation Method

Based on the Estimating

Functions

A number of authors have proposed several approaches to further improve

the RCA parameter estimation. For example, Chandra and Taniguchi (2001)

used the estimating functions to estimate the coefficient parameter θ by first

estimating the nuisance parameters using least squares and moment methods.

Whilst Aue et al. (2006) proposed the quasi-maximum likelihood method by

assuming the error term et and random coefficient bt follow a joint normal

distribution. In this chapter, we present a new iterative estimation method

for RCA(1) model based on the estimating function theory. This method is

expected to improve not only the estimation of parameter coefficient θ, but

also the estimation of σ2
b and σ2

e . We also compare the performance of this new
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iterative method with the least squares and the estimating function method

through an extensive simulation study.

3.1 Optimal Estimation for RCA(1) Parame-

ters using Estimating Functions

Let

ht = et + btyt−1 = yt − θyt−1. (3.1)

Clearly, ht satisfies the unbiased estimating function (EF) condition in (2.26).

The corresponding optimal (linear) EF for estimating θ is

g∗(θ) =
n∑

t=2

a∗t−1ht,

where

a∗t−1 =
E(∂ht

∂θ
|Ft−1)

E(h2
t |Ft−1)

.

Now, it is easy to see that for the RCA(1) model in (2.3),

a∗t−1 =
−yt−1

{σ2
e + y2

t−1σ
2
b}

. (3.2)

To estimate the parameter θ, we solve g∗(θ) = 0 and the corresponding optimal

estimate is given by

θ∗EF =

∑n
t=2 a∗t−1yt∑n

t=2 a∗t−1yt−1

. (3.3)

Thus, the EF estimate in (3.3) reduces to

θ∗EF =
n∑

t=2

ytyt−1

σ2
e + σ2

by
2
t−1

/

n∑
t=2

y2
t−1

σ2
e + σ2

by
2
t−1

. (3.4)
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Chandra and Taniguchi (2001) had shown that θ∗EF is asymptotically normal

with the second moments of {bt} and {et} are assumed to exist. Note that the

estimation of θ using the EF method in (3.4) is weighted with σ2
e and σ2

b for

each observation. Following Thavaneswaran and Peiris (1996), θ̂EF of equa-

tion (3.4) can be obtained by using the LS estimates σ̂2
e,LS and σ̂2

b,LS, given

by equations (2.7) and (2.8) respectively. Now, we suggest a new estimation

method based on EF.

3.2 A New Iterative Method based on Esti-

mating Functions

It is clear that the evaluation of (3.4) depends on (2.7) and (2.8). We therefore

suggest the following efficient iterative algorithm to estimate θ. Let θ
(k)
IT be an

estimate of θ based on n observations at the step k, k = 1, 2, ...

1. Take the initial values θ
(0)
IT = θ̂LS from (2.6), u

(0)
t,IT =ût,LS from (2.4) and

σ
2(0)
b,IT =σ2

b,LS and σ
2(0)
e,IT =σ2

e,LS from (2.7) and (2.8) respectively.

2. Now obtain the following values for k=1,2,...:

θ
(k)
IT =

n∑
t=2

ytyt−1

σ
2(k−1)
e,IT + σ

2(k−1)
b,IT y2

t−1

/

n∑
t=2

y2
t−1

σ
2(k−1)
e,IT + σ

2(k−1)
b,IT y2

t−1

(3.5)

u
(k)
t,IT = yt − θ

(k)
IT yt−1 (3.6)
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σ
2(k)
b,IT =

∑n
t=2 û

2(k)
t,IT (y2

t−1 − z̄)∑n
t=2(y

2
t−1 − z̄)2

(3.7)

σ
2(k)
e,IT =

∑n
t=2 û

2(k)
t,IT

n− 1
− σ

2(k)
b,IT z̄ (3.8)

where z̄ =
∑n

t=2 y2
t−1

n−1
.

3. The process in step two will continue until θ
(k)
IT , σ

2(k)
b,IT and σ

2(k)
e,IT converge

with a certain pre-specified tolerance.

The subsequent sections consider the model selection and diagnostic checks

as a tool to verify the fitted model.

3.3 A Model Selection of RCA(1) Estimates

Suppose that we fit the RCA(1) model using LS, EF and IT methods. We

use Akaike’s information criterion (AIC) to select the best fitted model when

different methods are used. The criterion is given by

AIC = −2lnL(θ) + 2p, (3.9)

where lnL(θ) is the log likelihood function and p is the number of parameters

to be estimated.
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lnL(·) = −n

2
log(2π)− 1

2

n∑
t=1

log(σ2
e + σ2

by
2
t−1)

−
n∑

t=1

[
(yt − θyt−1)

2

2(σ2
e + σ2

by
2
t−1)

]. (3.10)

Thus the AIC is

AIC(A) = n ln(2π) +
n∑

t=1

{ln(σ2(A)
e + σ

2(A)
b y2

t−1)}

+
n∑

t=1

{ (yt − θ(A)yt−1)
2

(σ
2(A)
e + σ

2(A)
b y2

t−1)
}+ 2p, (3.11)

where A is either LS, EF or IT.

3.4 Diagnostic Checks

To check the adequacy of the fitted RCA(1) model, a diagnostic check based

on the autocorrelation can be used. Since E[utut−1|Ft−1] = 0 and E[u2
t |Ft−1] =

σ2
e + σ2

by
2
t−1 = γt, then E[εtεt−1|Ft−1] = 0 where εt = γ

−1/2
t ut. This implies

that diagnostic checks may be based on the autocorrelation of the ε̂t = γ̂
−1/2
t ût

where ût = yt − θ̂yt−1 and γ̂t = σ̂2
e + σ̂2

by
2
t−1. The residual autocorrelation

coefficients for the RCA(1) model at kth lag are given by

r(k) =

∑n
t=1 εtεt−k∑n

t=1 ε2
t

. (3.12)

See Nicholls (1986) for details.

From Heyde and Hannan (1972), r̂(k) → r(k) and n1/2[r̂(k) − r(k)] will

converge to a normal distribution. Consequently, the r̂(k) can be used to form
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an analogue of the Box-Pierce test

Q = n

j∑

k=1

r̂2(k), (3.13)

where n is the sample size and j is a fixed maximum number of lags. Typically,

j should be between 10 to 20.

The above Box-Pierce test is used to confirm the validity of the fitted

model, i.e., H0 : yt ∼ RCA(1). If residuals of the model are white noise, then

the Box-Pierce statistics is distributed approximately to Chi-square distribu-

tion with j−m degree of freedom, where m is the number of fitted parameters.

This Box-Pierce test is appropriate for large samples. However, for small sam-

ples, Nicholls (1986) noted that the Box-Pierce test may lead to a test statistic

for which the true significance level may be much lower than that given by the

Chi-square distribution.

The next section compares the performance of the fitted RCA(1) model by

using LS, EF and IT methods via simulation study.

3.5 A Simulation Study

This section reports a simulation study for the RCA(1) parameter estimation

given in (2.3). Below are the steps taken to look at the performance of three

methods considered in fitting the RCA(1) model:
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1. We generate the RCA(1) series of length n = 50 and n = 500 with

known parameter values of θ, σ2
b and σ2

e . We assume that et and bt follow

a normal distribution with mean 0 and variance 1 and σ2
b respectively.

The initial value y0 is chosen to be 0 and the first 200 values from the

series are ignored to remove the initial value effect.

2. We then obtain the estimates of θ, σ2
b and σ2

e using LS, EF and IT. This

estimation is repeated s times.

3. Let ξ =(θ, σ2
b , σ

2
e), ξ̂

(j)
i be an estimate of ξi at step j = 1, ..., s and

the mean of ξi, ξ̄i = 1
s

∑s
j=1 ξ̂

(j)
i . The following calculations for each

parameter are obtained:

• Bias = ξ̄i − ξi

• Root mean square error (RMSE):

√√√√1

s

s∑
j=1

[ξ̂
(j)
i − ξi]2 (3.14)

• Standard error (SE):

√√√√ 1

s− 1

s∑
j=1

[ξ̂
(j)
i − ξ̄i]2. (3.15)

4. Throughout our simulation, we fixed the tolerance of IT method to be

10−6 and number of simulation to be s = 1, 000.

Table 3.1 gives the simulation results for the true parameter values θ = −0.3

and σ2
b = 0.25. In Table 3.2, we use the true parameter values θ = 0.5 and

σ2
b = 0.25; Table 3.3 uses the true parameter values θ = 0.7 and σ2

b = 0.16. In
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Table 3.1: Parameter estimation for true parameter values θ=-0.3 and σ2
b=0.25

n = 50 n = 500

Statistics LS EF IT LS EF IT

Bias θ 0.02497 0.01187 0.01011 0.00137 -0.00144 -0.00141

Bias σ2
b -0.07264 -0.07264 -0.05010 -0.05839 -0.05839 -0.05019

Bias σ2
e 0.08917 0.08917 0.05817 0.07297 0.07297 0.06140

RMSE θ 0.16178 0.15937 0.16063 0.08692 0.07951 0.07946

RMSE σ2
b 0.15198 0.15198 0.16276 0.12332 0.12332 0.12586

RMSE σ2
e 0.32189 0.32189 0.32097 0.18580 0.18580 0.18490

SE θ 0.15992 0.15900 0.16039 0.08695 0.07954 0.07949

SE σ2
b 0.13356 0.13356 0.15493 0.10867 0.10867 0.11548

SE σ2
e 0.30945 0.30945 0.31582 0.17096 0.17096 0.17450

all cases, we use σ2
e = 1.0. Each table gives the bias, RMSE and SE for LS, EF

and IT estimators for two sample sizes n = 50 and n = 500. The first three

rows of Table 3.1 give the bias for each parameter θ, σ2
b and σ2

e using LS, EF

and IT methods. It is clear that the bias of each parameter using IT is smaller

than that of LS and EF. As for the RMSE and SE, the performance of LS,

EF and IT are close to each other, with their differences range from 0.03 to

0.0001. When we increase the sample size to n = 500, the bias, RMSE and

SE for each parameter (using LS, EF and IT) have improved. Similar results

are observed in Tables 3.2 and 3.3
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Table 3.2: Parameter estimation for true parameter values θ=0.5 and σ2
b=0.25

n = 50 n = 500

Statistics LS EF IT LS EF IT

Bias θ -0.04315 -0.01956 -0.01580 -0.01060 -0.00035 0.00009

Bias σ2
b -0.08633 -0.08633 -0.06025 -0.06222 -0.06222 -0.05201

Bias σ2
e 0.14511 0.14511 0.10286 0.09100 0.09100 0.07404

RMSE θ 0.15717 0.15016 0.15079 0.08278 0.07504 0.07522

RMSE σ2
b 0.15686 0.15686 0.17362 0.11924 0.11924 0.12368

RMSE σ2
e 0.39137 0.39137 0.39319 0.22345 0.22345 0.22633

SE θ 0.15120 0.14895 0.15004 0.08214 0.07508 0.07525

SE σ2
b 0.13103 0.13103 0.16291 0.10177 0.10177 0.11227

SE σ2
e 0.36366 0.36366 0.37968 0.20418 0.20418 0.21399

Table 3.3: Parameter estimation for true parameter values θ=0.7 and σ2
b=0.16

n = 50 n = 500

Statistics LS EF IT LS EF IT

Bias θ -0.04055 -0.01455 -0.01149 -0.01621 -0.00501 -0.00447

Bias σ2
b -0.04168 -0.04168 -0.02342 -0.03343 -0.03343 -0.02616

Bias σ2
e 0.10416 0.10416 0.06231 0.07889 0.07889 0.06215

RMSE θ 0.12892 0.12309 0.12363 0.06995 0.06412 0.06431

RMSE σ2
b 0.10385 0.10385 0.11925 0.08580 0.08580 0.09120

RMSE σ2
e 0.35141 0.35141 0.35461 0.22290 0.22290 0.22983

SE θ 0.12243 0.12229 0.12316 0.06808 0.06395 0.06419

SE σ2
b 0.09516 0.09516 0.11698 0.07906 0.07906 0.08741

SE σ2
e 0.33579 0.33579 0.3492 0.20857 0.20857 0.22138

In addition, it is our interest to find the best method for fitting the RCA(1)

model (whether using LS, EF or IT). For that, we consider a similar set of

parameter values as in Table 3.2 with n = 500, θ = 0.7, and σ2
b = 0.16. Figures
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3.1, 3.2 and 3.3 give the plot of simulated time series, autocorrelation function

(ACF) and partial autocorrelation function (PACF) respectively. From the

three figures, the series seems to be stationary and may be suitable to be

fitted using the AR(1) or RCA(1) model. We then calculate the AIC values

for the fitted AR(1) using maximum likelihood (ML), and RCA(1) using LS,

EF and IT. Their AIC values are tabulated in Table 3.4. It can be seen that

the AIC values of the RCA(1) model using LS, EF and IT are smaller than that

of the AR(1) model. Furthermore, the RCA(1) model using IT has smaller

AIC value compared to LS and EF.
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Figure 3.1: Time series plot of true parameter values θ=0.7 and σ2
b=0.16
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Figure 3.2: ACF plot of true parameter values θ=0.7 and σ2
b=0.16
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Figure 3.3: PACF plot of true parameter values θ=0.7 and σ2
b=0.16
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Table 3.4: AIC values using different fitted models and methods for simulated

data

Model AIC

AR(1) using ML 1514.72

RCA(1) using LS 1470.20

RCA(1) using EF 1468.50

RCA(1) using IT 1466.98

3.6 Application to a Real Data Set

In this section, we consider a set of differenced Indian consumer price index

(CPI) data obtained from DataStream (http://www.library.uitm.edu.my/index.

php?option=com content&task=view&id=444&Itemid=557). The data con-

sists of quarterly interest rate between the years of 1990 to 2006. There are

n=67 observations altogether.

Figures 3.4, 3.5 and 3.6 give the time series, ACF and PACF plots of the

quarterly Indian CPI data respectively. It can be seen that the series exhibits

occasional random spikes and stable around the mean value, with possible

outliers at t = 3 to t = 10. Further, the ACF plot shows that the series is

stationary. Due to high spikes at the second and third lags though not sig-

nificant enough, the PACF plot indicates that the series might be suitable for

an AR(2) and AR(3). We also suggest an ARMA(2,2) as over fitting. To

determine the best model to fit this Indian CPI data, we calculate the AIC

values for all possible models and the RCA(1) model. Table 3.5 gives the AIC
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Figure 3.4: Time series plot of differenced Indian CPI data
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Figure 3.5: ACF plot of differenced Indian CPI data
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Figure 3.6: PACF plot of differenced Indian CPI data

Table 3.5: AIC values using different fitted models and methods for an Indian

CPI data

Models AIC

AR(2) using ML -143.24

AR(3) using ML -141.32

ARMA(2,2) using ML -145.20

RCA(1) using LS -146.80

RCA(1) using EF -147.05

RCA(1) using IT -148.32
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values of an AR(2), AR(3) and ARMA(2,2) using ML method and RCA(1)

using LS, EF and IT methods.

Based on the AIC values in Table 3.5, it is clear that the data is better fit-

ted using RCA(1) compared to AR(2), AR(3) and ARMA(2,2). Other models

have also been investigated but give poorer result. Further, the AIC values for

RCA(1) using IT is smaller than that using LS and EF. This indicates that

fitting the RCA(1) model using the IT is better compared to LS and EF.

To check the adequacy of the selected model, we produce three differ-

ent residual plots obtained from the fitted RCA(1) model for LS, EF and IT

methods as given in Figures 3.7 to 3.9 respectively. The residual plot is useful

for diagnostic checking and spotting possible serial correlations, non-constant

variance and outliers. It can be seen that the plots do not exhibit observable

structure or serial correlation which shows any dependency. Possible outlier

between time t = 3 to t = 10 can be observed. These plots suggest that the

residuals are white noises if the outlier is removed.

We also perform the Box-Pierce test to confirm the validity of the fitted

model, that is, by taking H0 : yt ∼ RCA(1). The critical value of the χ2(20)

is 27.58. The values of Box-Pierce statistics are given in Table 3.6.
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Figure 3.7: Residual plot of the fitted RCA(1) using LS method
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Figure 3.8: Residual plot of the fitted RCA(1) using EF method
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Figure 3.9: Residuals plot of the fitted RCA(1) using IT method

Table 3.6: Box-Pierce test for an Indian CPI data

Method test statistics

LS 11.06

EF 11.74

IT 11.67
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The Box-Pierce statistics confirm that all three methods fit the RCA(1)

model satisfactorily and can be considered for further analysis, such as the

detection of outliers. The parameter estimation of an RCA(1) using LS, EF

and IT methods for an Indian CPI data are given in Table 3.7.

Table 3.7: Parameter estimation using different fitted methods for an Indian

CPI data

Models θ̂ σ̂2
b σ̂2

e

RCA(1) using LS 0.0955 0.1704 0.0052

RCA(1) using EF 0.1709 0.1704 0.0052

RCA(1) using IT 0.1771 0.2138 0.0050

The next chapter will investigate the effects of outliers in RCA modeling.
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Chapter 4

An Investigation of Outliers in

RCA(1) Modeling

This chapter concerns with the understanding of outliers in RCA(1) modeling.

This is an extension of the Chang et al. (1988) work on outliers in ARMA(p,q)

models. The effects of additive outlier (AO) and innovational outlier (IO) are

investigated and shown graphically.

An outlier free RCA(1) model is given by

yt = (θ + bt)yt−1 + et, (4.1)

where θ and bt are as defined in Chapter 2 and satisfies the stationary condition

θ2 + σ2
b < 1.

Let

ut = et + btyt−1 = yt − θyt−1. (4.2)
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It is clear that

E[ut|Ft−1] = E[et + btyt−1|Ft−1]

= E[et|Ft−1] + yt−1E[bt|Ft−1]

= 0 (4.3)

and

E[u2
t |Ft−1] = E[e2

t + b2
t y

2
t−1 + 2etbtyt−1|Ft−1]

= E[e2
t ] + E[b2

t ]y
2
t−1 + 2E[etbt]yt−1

= σ2
e + σ2

by
2
t−1

= V ar[ut], (4.4)

where Ft−1 is the information set available up to time t− 1.

Let y∗t and u∗t be the contaminated observation and residual at time t

respectively, when an outlier exists in the data set. In the next Section, we

formulate the effects of AO and IO on both observations and residuals.

4.1 Nature of Additive Outlier Effects in RCA(1)

Model

From the definition of AO, observations with the presence of AO, y∗t , will differ

from the original observations according to the following rule:

y∗t =





yt for t 6= d

yt + ω for t = d.

51



The shock caused by AO with magnitude ω affect the observation at time

t = d only, while the rest remains unchanged.

As for the effect of AO on residuals, there are no changes for t < d. For

t = d, d + 1, d + 2, .... the effects are described as follows:

u∗d = y∗d − θy∗d−1 = yd + ω − θyd−1 = ud + ω

u∗d+1 = y∗d+1 − θy∗d = yd+1 − θ(yd + ω) = ud+1 − θω

u∗d+2 = y∗d+2 − θy∗d+1 = yd+2 − θyd+1 = ud+2

...

u∗d+k = ud+k. (4.5)

It can be summarized as

u∗d+k =





ud+k + ω for k = 0

ud+k − θω for k = 1

ud+k for k = 2, 3, ...

To illustrate the effects of AO on observations and residuals, we generate

two series of contaminated and uncontaminated RCA(1) process and these are

shown graphically. A set of data is generated using S-Plus package with sam-

ple size n = 30, θ = 0.5 and σ2
b = 0.3 assuming et follows a standard normal

distribution. Next, we add an AO with a magnitude ω=5 at time t = 15 into

the series. The plots of contaminated and uncontaminated series for observa-
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tions and residuals are shown in Figures 4.1 and 4.2 respectively. The plot of

the simulated series without AO is represented by solid line, whereas the dash

line represent the contaminated AO series.

Figures 4.1 and 4.2 illustrate the effects of AO on observations and residuals

respectively. From Figure 4.1, it can be seen that there is a sudden shock at

time t = 15 only, corresponding to the AO magnitude ω = 5. The rest of the

observations are left unaffected. For the effect on residuals as shown in Figure

4.2, the residual at time t=15 is changed according to the magnitude of AO

while a number of subsequent residuals are also altered. From the formulation,

it is expected that the fluctuation of the residual at t = d + 1 will be higher if

larger coefficient of θ is used.
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Figure 4.1: AO effect on observations
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Figure 4.2: AO effect on residuals

4.2 Nature of Innovational Outlier Effects in

RCA(1) Model

Balke and Fomby (1994) pointed out that IO appears in many real data sets,

especially in data with high frequency. Battaglia and Orfei (2005) described

the effect of IO at time t = d on the residuals as

u∗t =





ut for t 6= d

ut + ω for t = d.

The IO will affects the observations y∗t at t = d, d + 1, d + 2, .. onwards as
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described below:

y∗d = θy∗d−1 + u∗d

= θyd−1 + (ud + ω)

= yd + ω (4.6)

y∗d+1 = θy∗d + u∗d+1

= θ(yd + ω) + ud+1

= yd+1 + ωθ (4.7)

y∗d+2 = θy∗d+1 + u∗d+2

= θ[yd+1 + ωθ] + ud+2

= yd+2 + ωθ2 (4.8)

Thus we can write y∗d+k as

y∗d+k = yd+k + θkω for k = 0, 1, 2, ..., n− d. (4.9)

Now, it is clear that the IO influences not only the residual ud, but also

the observations yd, yd+1, yd+2, .... The IO effects on observations and residuals

are illustrated in Figures 4.3 and 4.4 respectively. Further, the IO effects

will eventually die out exponentially. For both cases of AO and IO, when ω is

negative, the original observation at the time where outlier occurs will decrease

corresponding to the magnitude ω. For example, the observation with IO of

ω = −6 is down by 6 units and the effects will eventually die out.
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Figure 4.3: IO effect on observations
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Figure 4.4: IO effect on residuals
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The next section will investigate the effects of AO and IO on the parameter

estimates via simulation study.

4.3 A Simulation Study

A simulation study in this section is designed to show the effects of AO and

IO on the LS, EF and IT estimates. We provide detailed steps to investigate

the robustness property of LS, EF and IT when AO occurs as follows:

1. We generate the RCA(1) series of length n = 500 with known parameter

values of θ, σ2
b and σ2

e . We assume that et and bt follow a normal distri-

bution with mean 0 and variance 1 and σ2
b respectively. The initial value

y0 is chosen to be 0 and the first 200 values from the series are ignored

to remove the initial value effect.

2. We then obtain the estimates of θfree, σ2
b,free and σ2

e,free using LS, EF

and IT. The bias for each parameter is calculated. The subscript “free”

here stands for outlier free data set.

3. This process is repeated s = 1, 000 times. The bias for each parameter

of the outlier free series using LS, EF and IT is calculated. They are

denoted by BiasLS
free, BiasEF

free and BiasIT
free respectively.

4. Using the original series generated in step 1, we introduce AO with

magnitude ω at time t = 250. Now we have the contaminated AO series.

5. With the contaminated AO series, we estimate the parameters of θAO,

σ2
b,AO and σ2

e,AO using LS, EF and IT methods.
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6. This process is repeated s = 1, 000 times. The bias for each parameter of

the contaminated AO series using LS, EF and IT methods is calculated.

They are denoted by BiasLS
AO, BiasEF

AO and BiasIT
AO respectively.

Similar steps as above are taken for IO. The next two subsequent subsec-

tions report the results for AO and IO cases.

4.3.1 Additive Outlier

We investigate the effect of AO on the parameter estimation of the RCA(1)

model. Table 4.1 gives the simulation results for the true parameter values of

coefficient θ = 0.3 and variance of random disturbance σ2
b = 0.16 with differ-

ent AO magnitudes ω. The table presents the bias for different parameters;

θ, σ2
b , σ2

e and different methods; LS, EF and IT, in contaminated and uncon-

taminated series of AO. In the first three rows, it can be seen that the AO

affects the estimation of θ using all three methods. The LS estimate is the

most affected by AO, where the difference between the bias of contaminated

and uncontaminated series using LS is larger compared to that using EF and

IT estimates. Note that in both equations (2.6) and (3.4), the IT and EF

estimators of θ differ from LS by the factor 1
σ2

e+y2
t−1σ2

b
. This weighted factor

has successfully reduced the effect of AO in the estimation of θ. As a result,

the IT and EF give better estimates than the LS when AO exist in the data.

Meanwhile, the fourth and seventh rows of Table 4.1 give the bias for σ2
b

and σ2
e respectively. It can be seen that the IT method has improved the

estimations of σ̂2
b and σ̂2

e and gives smaller bias than that using LS and EF
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Table 4.1: With and without the AO effect on parameter estimation for true

parameter values θ=0.3 and σ2
b=0.16

Least squares Estimating Function Iterative EF

Parameter BiasLS
free BiasLS

AO BiasEF
free BiasEF

AO BiasIT
free BiasIT

AO

θ ω=4 -0.00064 -0.00740 -0.00042 -0.00374 -0.00043 -0.00365

ω=8 -0.00157 -0.02753 -0.00084 -0.00680 -0.00081 -0.00597

ω=12 -0.00090 -0.05392 -0.00004 -0.01027 -0.00004 -0.00748

σ2
b ω=4 -0.01742 -0.02692 -0.01742 -0.02692 -0.01513 -0.02423

ω=8 -0.01391 -0.05480 -0.01391 -0.05480 -0.01124 -0.04372

ω=12 -0.02027 -0.08807 -0.02027 -0.08807 -0.01764 -0.06172

σ2
e ω=4 0.01982 0.06317 0.01982 0.06317 0.01700 0.05978

ω=8 0.01405 0.19390 0.01405 0.19390 0.01077 0.17886

ω=12 0.02082 0.40294 0.02082 0.40294 0.01760 0.36441
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Figure 4.5: AO effect on parameter θ as ω increases
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methods. Another noticeable and expected feature is that the bias using the

three estimates increases as the values of ω increase. Figure 4.5 shows a clear

comparison of the above information. The most affected estimate by AO is

the LS while the least is the IT.

Table 4.2: With and without the AO effect on parameter estimation for true

parameter values ω=8 and σ2
b=0.16

Least squares Estimating Function Iterative EF

Parameter BiasLS
free BiasLS

AO BiasEF
free BiasEF

AO BiasIT
free BiasIT

AO

θ θ=0.7 -0.00900 -0.03959 -0.00428 -0.00998 -0.00416 -0.00907

θ=0.5 -0.00403 -0.03988 -0.00275 -0.00973 -0.00275 -0.00866

θ=0.3 -0.00273 -0.02981 -0.00157 -0.00943 -0.00154 -0.00866

θ=-0.3 0.00304 0.02901 0.00196 0.00898 0.00194 0.00818

θ=-0.5 0.00361 0.03906 0.00102 0.00724 0.00096 0.00617

θ=-0.7 0.00756 0.03837 0.00232 0.00780 0.00220 0.00681

σ2
b θ=0.7 -0.02153 0.03466 -0.02153 0.03466 -0.01779 0.05151

θ=0.5 -0.02066 0.01162 -0.02066 0.01162 -0.01780 0.03068

θ=0.3 -0.01774 -0.06157 -0.01774 -0.06157 -0.01565 -0.05114

θ=-0.3 -0.01547 -0.06220 -0.01547 -0.06220 -0.01299 -0.05191

θ=-0.5 -0.02274 0.01161 -0.02274 0.01161 -0.01982 0.03146

θ=-0.7 -0.02463 0.03367 -0.02463 0.03367 -0.02139 0.05045

σ2
e θ=0.7 0.05805 0.07051 0.05805 0.07051 0.04988 0.02976

θ=0.5 0.02781 0.11009 0.02781 0.11009 0.02344 0.07868

θ=0.3 0.01842 0.20511 0.01842 0.20511 0.01588 0.19084

θ=-0.3 0.01469 0.20460 0.01469 0.20460 0.01165 0.19061

θ=-0.5 0.03235 0.11280 0.03235 0.11280 0.02781 0.07983

θ=-0.7 0.05892 0.06700 0.05892 0.06700 0.05177 0.02614
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In Table 4.2, we tabulate the results for the AO case with magnitude

ω = 8, random disturbance variance σ2
b = 0.16 and vary the coefficient θ of

the RCA(1) model. It can be seen that the IT method gives better estimation

for parameters; θ and σ2
e . However for σ2

b , the bias for IT is slightly larger when

|θ| = 0.5 and |θ| = 0.7. We also present the bias for parameter θ graphically in

Figure 4.6. The plot shows that the three methods over estimate the parameter

θ when θ < 0 and under estimate when θ > 0. Furthermore, the estimated bias

for LS, EF and IT get larger as |θ| gets larger. A reason for this is that, the

value of stationary condition θ2 + σ2
b is near 1 and this is generally associated

with the non-stationary series. However, this effect is minimal on EF and IT

compared to LS estimate.
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Figure 4.6: AO effect on parameter θ as θ increases
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4.3.2 Innovational Outlier

We now investigate the effects of IO in a generated series from RCA(1) pro-

cess. We use similar steps and set of parameters as in the AO case. Table

4.3 gives the bias of the estimated parameters when different IO magnitude ω

are introduced in the series. Table 4.4 gives the bias of the estimated param-

eters when we vary the coefficient θ. In both tables, it can be seen that the

bias of IT is smaller than that using LS and EF for all magnitudes of ω and

for all different values of coefficient θ. Figures 4.7 and 4.8 show graphically

the bias of parameter θ. The LS is most affected by IO compared to EF and IT.

Table 4.3: With and without the IO effect on parameter estimation for true

parameter values θ=0.3 and σ2
b=0.16

Least squares Estimating Function Iterative EF

Parameter BiasLS
free BiasLS

IO BiasEF
free BiasEF

IO BiasIT
free BiasIT

IO

θ ω=4 -0.00257 -0.00221 -0.00173 -0.00173 -0.00172 -0.00172

ω=8 -0.00515 -0.00669 -0.00398 -0.00545 -0.00395 -0.00541

ω=12 0.00002 -0.00293 0.00085 0.00105 0.00085 0.00105

σ2
b ω=4 -0.01754 -0.02114 -0.01754 -0.02114 -0.01486 -0.01771

ω=8 -0.01782 -0.04315 -0.01782 -0.04315 -0.01558 -0.02981

ω=12 -0.01674 -0.06032 -0.01674 -0.06032 -0.01407 -0.02679

σ2
e ω=4 0.01706 0.05460 0.01706 0.05460 0.01382 0.05031

ω=8 0.01877 0.18391 0.01877 0.18391 0.01605 0.16538

ω=12 0.01830 0.37409 0.01830 0.37409 0.01501 0.32283
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Table 4.4: With and without the IO effect on parameter estimation for true

parameter values ω=8 and σ2
b=0.16

Least squares Estimating Function Iterative EF

Parameter BiasLS
free BiasLS

IO BiasEF
free BiasEF

IO BiasIT
free BiasIT

IO

θ θ=0.7 -0.00885 -0.00952 -0.00222 -0.00193 -0.00209 -0.00168

θ=0.5 -0.00333 -0.00625 -0.00135 -0.00237 -0.00131 -0.00228

θ=0.3 -0.00515 -0.00669 -0.00398 -0.00545 -0.00395 -0.00541

θ=-0.3 0.00323 0.00426 0.001862 0.00238 0.001834 0.00238

θ=-0.5 0.00460 0.00679 0.002491 0.00298 0.002457 0.00292

θ=-0.7 0.00557 0.00792 -0.00013 0.00036 -0.00030 0.00016

σ2
b θ=0.7 -0.02295 -0.02601 -0.02295 -0.02601 -0.01932 -0.01979

θ=0.5 -0.01763 -0.03106 -0.01763 -0.03106 -0.01460 -0.02132

θ=0.3 -0.01782 -0.04315 -0.01782 -0.04315 -0.01558 -0.02981

θ=-0.3 -0.01645 -0.03429 -0.01645 -0.03429 -0.01386 -0.01996

θ=-0.5 -0.01902 -0.03274 -0.01902 -0.03274 -0.01604 -0.02321

θ=-0.7 -0.02259 -0.02538 -0.02259 -0.02538 -0.01881 -0.01925

σ2
e θ=0.7 0.05720 0.19933 0.05720 0.19933 0.04890 0.18430

θ=0.5 0.02092 0.17437 0.02092 0.17437 0.01632 0.15777

θ=0.3 0.01877 0.18391 0.01877 0.18391 0.01605 0.16538

θ=-0.3 0.02134 0.17736 0.02134 0.17736 0.01816 0.15720

θ=-0.5 0.02393 0.17960 0.02393 0.17960 0.01941 0.16347

θ=-0.7 0.05400 0.19485 0.05400 0.19485 0.04518 0.17931
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Figure 4.7: IO effect on parameter θ as ω increases
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Figure 4.8: IO effect on parameter θ as θ increases
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By looking at the results in both AO and IO cases, it is clear that the IT

estimate is more robust and preferable to be used in practice, when AO and

IO occur in the process.
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Chapter 5

Outlier Detection in RCA(1)

Models

In chapter 4, we have shown the effects of additive (AO) and innovational

outliers (IO) to the parameter estimation. To overcome this problem, we need

to detect these outliers and consequently remove their effects accordingly. In

some cases, we might use visual inspection to detect outliers. However, such

procedure is very subjective and suffers basic limitations of data visualization

methods as pointed out by Last and Kendel (2001). That is, an analyst needs

to apply his or her own subjective perception to judge whether an observation

is “very outstanding” or “too far” from the rest of the observations.

In this chapter, we will develop the statistical procedures of AO and IO

detection for the RCA(1) process. These suggested procedures are the exten-

sion of Chang et al. (1988) work on ARIMA models.
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There are three stages in developing the AO and IO detection procedures.

The first and most important stage is to derive the statistics to measure the

AO and IO effects. We denote the statistics as ωAO and ωIO respectively.

Secondly, the test statistics (i.e., the standardization of outlier effects) for AO

and IO are defined. This test statistics will be used to decide whether the null

hypothesis H0: ω=0 at known outlier position t should be rejected or not. The

rejection of the null hypothesis indicates the existence of outlier at the partic-

ular point. However, the position of the outliers are usually unknown. Thus,

the next stage of the outlier detection procedures is to identify the occurrence

of single outlier in a data set one at a time, using the test criteria. If we have

more than one outlier, these procedures need to be repeated iteratively until

no outlier is left in the data.

The following Sections describe the outlier detection procedures in detail.

5.1 Estimation of Outlier Effects in RCA(1)

In this section, two statistics for measuring the AO and IO effects in the

RCA(1) process are derived. The mean and variance of these statistics are

also obtained.
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5.1.1 Additive Outlier

To measure the AO effects, we follow the work of Chang et al. (1988), assuming

that the parameters are known. From Section 4.1, the affected residuals are

given by

u∗d+k =





ud+k + ω for k = 0

ud+k − θω for k = 1

ud+k for k = 2, 3, ...

Using the least squares method, the sum of squares of the residuals is

S =
n∑

t=1

ut
2 =

d−1∑
t=1

ut
2 + ud

2 + ud+1
2 +

n∑

t=d+2

ut
2. (5.1)

Equivalently, we have

S =
d−1∑
t=1

ut
2 + (u∗d − ω)2 + (u∗d+1 + θω)2 +

n∑

t=d+2

ut
2. (5.2)

Differentiating S with respect to ω gives

∂S

∂ω
= 2(u∗d − ω)(−1) + 2(u∗d+1 + θω)(θ). (5.3)

Solving ∂S
∂ω

= 0, one has

ω − u∗d + θu∗d+1 + ωθ2 = 0

ω(1 + θ2)− u∗d + θu∗d+1 = 0. (5.4)

Hence, an estimate of the AO effect at time t = d is given by

ω̂AO,d =
u∗d − θu∗d+1

1 + θ2
. (5.5)
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The conditional mean of the ωAO is

E[ω̂AO,d|F y
t−1] = E[

u∗d − θu∗d+1

1 + θ2
]

=
E[u∗d]− θE[u∗d+1]

1 + θ2

=
E[ud + ω]− θE[ud+1 − θω]

1 + θ2

=
ω + θ2ω

1 + θ2

= ω, (5.6)

where E[ui] = 0 for i = 1, 2, ..., n and F y
t−1 denotes the series generated by y

up to time t− 1, namely y1, y2, ..., yt−1. Since

Cov[ud+1, ud] = E{(ud+1 − E[ud+1](ud − E[ud])}

= E{(ud+1 − 0)(ud − 0)}

= E{ud+1ud}

= 0, (5.7)

we have

V ar[ud+1 + ud] = V ar[ud+1] + V ar[ud]. (5.8)

And the conditional variance of ω̂AO,d is

V ar[ω̂AO,d|F y
t−1] = V ar[

u∗d − θu∗d+1

1 + θ2
]

=
1

(1 + θ2)2
{V ar[u∗d] + θ2V ar[u∗d+1]}

=
1

(1 + θ2)2
{V ar[ud + ω] + θ2V ar[ud+1 − ωθ]}

=
1

(1 + θ2)2
{V ar[ud] + θ2V ar[ud+1]}

=
[σ2

by
2
d−1 + σ2

e ] + θ2[σ2
by

2
d + σ2

e ]

(1 + θ2)2
from (4.4)

=
σ2

e(θ
2 + 1) + σ2

b (θ
2y2

d + y2
d−1)

(1 + θ2)2
. (5.9)
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5.1.2 Innovational Outlier

From Section 4.2, the residuals u∗t affected by IO are given by

u∗t =





ut for t 6= d

ut + ω for t = d

Using the least squares method as in the AO case, we have

S =
n∑

t=1

ut
2

=
d−1∑
t=1

ut
2 + ud

2 +
n∑

t=d+1

ut
2

=
d−1∑
t=1

ut
2 + (u∗d − ω)2 +

n∑

t=d+1

ut
2. (5.10)

Differentiating S with respect to ω

∂S

∂ω
= 2(u∗d − ω) (5.11)

and solving ∂S
∂ω

= 0, an estimate of the IO effect at time t = d is given as

ω̂IO,d = u∗d. (5.12)

The conditional mean of ω̂IO,d is given by

E(ω̂IO,d|F y
t−1) = E[u∗d]

= E[ud + ω]

= ω, (5.13)

70



since E[ui] = 0 for i = 1, 2, ..., n. From (5.8), the conditional variance of ω̂IO,d

is

V ar(ω̂IO,d|F y
t−1) = V ar(u∗d)

= V ar(ud + ω)

= V ar(ud)

= σ2
e + σ2

by
2
d−1. (5.14)

5.2 Test Statistics and Test Criteria

Tsay (1986) and Chang et al. (1988) had derived the likelihood ratio criteria

for testing the existence of AO and IO in linear time series. The same form of

criteria has been extended to nonlinear models by Franses and Ghijsels (1999)

and Charles and Darne (2005) for GARCH models, and by Mohamed (2005)

and Zaharim et al. (2006) for bilinear models. We now consider this approach

for the RCA(1) model.

Let H0 be the null hypothesis of no outlier in the RCA(1) process and

denoted by H0: ω = 0. An alternative hypothesis for the presence of AO and

IO is denoted by H1 and H2 respectively. That is, we are testing for

H1 : ωAO 6= 0 (5.15)

or

H2 : ωIO 6= 0. (5.16)

71



Using the central limit theorem and assuming regularity conditions on mo-

ments, we have

τAO,t =
ω̂AO,t − E[ω̂AO,t]√

V ar(ωAO,t)
(5.17)

and

τIO,t =
ω̂IO,t − E[ω̂IO,t]√

V ar(ωIO,t)
. (5.18)

Thus, under the null hypothesis, the test statistics for AO and IO are given

by

τAO,t =
ω̂AO,t√

V ar(ωAO,t)

=
(u∗d + u∗d+1)√

σ2
e(θ

2 + 1) + σ2
b (θ

2y2
d + y2

d−1)
(5.19)

and

τIO,t =
ω̂IO,t√

V ar(ωIO,t)

=
u∗d√

σ2
e + σ2

by
2
d−1

.

respectively.

Note that:

1. If the position of the outlier is known to be at t = d, we use (5.19) or

(5.20) to confirm the presence of AO or IO.

2. If the position of an outlier is unknown, we define the following test

criteria to detect a single outlier at a time as
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ηAO = maxn
t=1{|τAO,t|} (5.20)

and

ηIO = maxn
t=1{|τIO,t|} (5.21)

for AO and IO respectively.

To confirm the presence of AO and IO, we need a suitable critical value to

accept the alternative hypothesis in (5.15) and (5.16) respectively. The crit-

ical value can be obtained by investigating the sampling behavior of the test

criteria in a normal, uncontaminated series. Now, we investigate the sampling

behavior of the test criteria in (5.20) and (5.21) for AO and IO respectively.

5.3 Sampling Behavior of the Test Criteria

The sampling behaviour of test criteria is studied to decide the pre-determined

critical value C for AO and IO. We are looking for the maximum value of the

standardized statistics τt in a normal, uncontaminated series to be the critical

value. The sampling behavior of the test criteria are investigated based on

different factors:

a) Sample size, n

b) Coefficient of the RCA(1) model, θ

c) Variance of random disturbance, σ2
b

d) Methods used to estimate the test criteria (i.e., using LS, EF and IT)
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e) Types of outliers (i.e., AO and IO)

Different models are considered. They represent a broad choice of RCA(1)

coefficients; from −1 < θ < 1 to values of σ2
b which are closer to the bound of

stationarity condition (θ2 + σ2
b ' 1). For each model, three cases of different

sample sizes n = 60, n = 100 and n = 200 are examined. The random errors,

et are assumed to follow standard normal distribution and the variance of ran-

dom disturbance is fixed to σ2
b = 0.16. One would ask why such restriction on

σ2
b is enforced. We will show in the later simulation part that small changes

of σ2
b would not affect the sampling behavior as much.

Below are the steps taken to investigate the sampling behavior of the test

criteria:

1. Generate an outlier free series of RCA(1) model. Similar scheme in

Section 3.5 is adopted.

2. Estimate the test statistics η̂AO and η̂IO using (5.20) and (5.21) for AO

and IO respectively using LS, EF and IT methods.

3. Repeat steps 1 and 2 for 1,000 times giving η̂AO,1,η̂AO,2,...,η̂AO,1000 and

η̂IO,1,η̂IO,2,...,η̂IO,1000 for LS, EF and IT methods.

4. For each estimation method, we calculate the 90th, 95th and 99th per-

centile levels of the test criteria for AO and IO.

The next two sections report the results of sampling behavior for AO and

IO cases.
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5.3.1 Additive Outlier

Table 5.1 presents the sampling behavior of AO test criteria based on three

estimation methods; LS, EF and IT, together with their 99th, 95th and 90th

percentile levels. Two different coefficients θ = 0.1 and 0.7 are considered,

with sample size n = 100 and variance of random disturbance σ2
b = 0.16. It is

clear that the AO test criteria for each percentile level are almost the same for

IT, EF and LS methods. The difference is too small ranging from 0 to 0.09.

Thus, we will only focus on the test criteria using IT henceforth in describing

the sampling behavior of AO test criteria.

Table 5.1: Sampling behavior of AO test criteria for different estimation meth-

ods

Est. Methods

Percentile IT EF LS

θ = 0.1 90th 3.13 3.14 3.14

95th 3.34 3.37 3.35

99th 3.71 3.80 3.72

θ = 0.7 90th 3.15 3.16 3.16

95th 3.35 3.35 3.35

99th 3.75 3.75 3.75

Next, we conduct another simulation study to investigate the sampling

behaviour of AO test criteria for different random disturbance variance σ2
b .

We fix the sample size n = 100, coefficient θ=0.1 and vary the variance of

random disturbance σ2
b . The 99th, 95th and 90th percentile values for different

values of σ2
b (using IT) are presented in Table 5.2. The AO test criteria for

each percentile level increases slightly as the value of σ2
b increases. With this,
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we fixed the random disturbance variance σ2
b = 0.16 to reduce the number of

sampling factors for the convenience of our analysis.

Table 5.2: Sampling behavior of AO test criteria for different values of σ2
b

Percentile

90th 95th 99th

σ2
b = 0.16 3.18 3.34 3.66

σ2
b = 0.25 3.18 3.41 3.80

σ2
b = 0.30 3.22 3.42 3.82

Further, a simulation study for the negative values of coefficient θ is per-

formed. We fixed the sample size n = 100, variance of random disturbance

σ2
b = 0.16 and vary the coefficient θ. Figure 5.1 gives the 95th percentile plot

of AO test criteria when θ ranges from -0.7 to 0.7. From the symmetrical plot

at θ = 0, we found out that the AO sampling behavior for negative coefficients

are similar to that for positive coefficients. Hence, the remaining investigation

will focus only on positive coefficient θ.

-0.5 -0.1 0.3 0.7
theta

3.0

3.2

3.4

3.6

AO
p9

5

n100

theta=0

Figure 5.1: Sampling behavior of AO test criteria for positive and negative

coefficient θ
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Figures 5.2 to 5.4 consist of different combinations of AO test criteria at

99th, 95th and 90th percentile levels. In each plot, we fixed σ2
b = 0.16 and vary

the positive coefficient θ for three different sample sizes n = 60, 100, 200. All

three percentile levels show a clear pattern of increasing with sample size n.

As the sample size n increases, the percentile value increases. This is expected

due to the extreme-value nature of the test criteria (they are maximum of a set

of random variables). Thus, the tail probability of the test criteria is expected

to increase as the sample size increases (see Chang et al.,1988). Further, the

increments of percentile values are quite slight. For instance, when sample size

n changes from n = 60 to n = 200, the 99th percentile value of θ = 0.1 changes

0.0 0.2 0.4 0.6 0.8

theta

3.4

3.6

3.8

4.0

4.2

4.4

n60
n100
n200

Figure 5.2: Sampling behavior of AO test criteria at 99th percentile level

77



0.0 0.2 0.4 0.6 0.8

theta

3.0

3.2

3.4

3.6

3.8

n60
n100
n200

Figure 5.3: Sampling behavior of AO test criteria at 95th percentile level
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Figure 5.4: Sampling behavior of AO test criteria at 90th percentile level
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from 3.68 to 3.99. However, the changes are quite large for θ = 0.9. A reason

for this change is that, the stationarity condition θ2 +σ2
b is close to unity. The

series tend to fluctuate largely and hence contribute to large percentile values.

The 90th percentile value for all sample sizes and coefficient values ranged

between 2.9 to 3.6, the 95th percentile value ranged between 3.1 to 3.8 while

the 99th percentile value ranged between 3.4 to 4.4.

5.3.2 Innovational Outlier

Similar restrictions as in AO are used in describing the sampling behavior of

the IO test criteria. We find out that the percentile value for IO test criteria

does not depend on the estimation method (see Table 5.3), the values of ran-

dom disturbance variance σ2
b (see Table 5.4) and the sign of coefficient values

θ (see Figure 5.5).

Table 5.3: Sampling behavior of IO test criteria for different estimation meth-

ods

IO Est. Methods

Percentile IT EF LS

θ = 0.1 90th 2.68 2.67 2.68

95th 2.78 2.77 2.78

99th 2.99 2.99 3.00

θ = 0.7 90th 2.74 2.74 2.75

95th 2.87 2.86 2.89

99th 3.27 3.25 3.27
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Table 5.4: Sampling behavior of IO test criteria for different values of σ2
b

Percentile

90th 95th 99th

σ2
b = 0.16 2.68 2.78 2.99

σ2
b = 0.25 2.71 2.81 3.04

σ2
b = 0.30 2.69 2.85 3.02

-0.5 -0.1 0.3 0.7

theta

2.5

2.7

2.9

3.1

n1
00

theta=0 n100

Figure 5.5: Sampling behavior of IO test criteria for positive and negative

coefficient θ

Figures 5.6 to 5.8 plots the percentile values IO test criteria at the 99th,

95th and 90th percentile levels respectively. Similar to the AO case, the per-

centile value increases as the sample size n and the coefficient θ increase. The

increments of these percentile values are quite slight, except for large coeffi-
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Figure 5.6: Sampling behavior of IO test criteria at 99th percentile level
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Figure 5.7: Sampling behavior of IO test criteria at 95th percentile level
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Figure 5.8: Sampling behavior of IO test criteria at 90th percentile level

cient θ = 0.9. The 90th percentile values for all sample sizes and coefficients

θ values ranged from 2.8 to 4.5, the 95th percentile values ranged from 2.6 to

3.5 while the 99th percentile values ranged from 3.2 to 4.1.

The percentile values will be used as the critical value C for the proposed

detection procedures. In practice, it is recommended to use more than one

critical value for analysis. Based on the presented 90th to 99th percentile val-

ues, critical values of 2.5 to 4.5 seem appropriate for use in order to identify

the presence of AO and IO in (5.15) and (5.16) respectively.

Now, we propose the general single outlier detection procedures for AO

and IO.
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5.4 General Single Outlier Detection Proce-

dures for AO and IO

The procedure begins with modeling the original time series data by supposing

no outlier exists. Full procedure for detecting the AO is described below:

1. Estimate the parameters of the RCA(1) model using the original data.

Hence, residuals of the model can be obtained.

2. Compute τAO,t for each time t = 1, 2, ..., n using the residuals obtained

in step 1.

3. Find the AO test criteria, ηAO = max
t
{|τAO,t|} .

4. Given a pre-determined critical value C, if ηAO = |τAO,d| > C, then there

exists an AO at time d

The same steps are used for detecting an IO, with the AO replaced by IO.

Through the suggested procedures, an AO or IO can be detected at the right

time point t.

In the next section, a simulation study is carried out to investigate the

performance of the outlier detection procedures in detecting AO and IO.
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5.5 Performance of the Outlier Detection Pro-

cedures

A simulation study is conducted to examine the performance of the proposed

general procedures for detecting AO and IO. It is applied to cases characterized

by a combination of following factors:

1. One underlying RCA(1) model with different combination of coefficient

θ=0.1, 0.3, 0.5 and 0.7.

2. Four values of outlier magnitude ω = 4, 6, 8 and 10

3. Three different values of σ2
b = 0.16, 0.25 and 0.35

4. Three different sample sizes n = 60, 100 and 200

5. Five chosen critical values, C=2.5, 3.0, 3.5, 4.0, 4.5.

We first consider the AO case. Detailed steps to evaluate the AO detection

performance are as follows:

1. Generate a series of RCA(1) and introduce an AO with magnitude ω

at time t = d. The random errors, et, are assumed to follow standard

normal distribution.

2. Estimate the test criteria η̂AO using the IT method.

3. If the AO test criteria η̂AO has the same value corresponding to |τ̂AO,d|

and exceeds a pre-determined critical value C, then we reject the null

hypothesis. Hence, an AO has occurred at time t = d.
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4. Repeat the above steps 1,000 times and the proportion of correctly de-

tecting AO is calculated.

The same steps as above are used for the IO case, based on the η̂IO. The

performance of correctly detecting AO and IO are presented in Table 5.5 and

5.6 respectively.

Table 5.5: The performance of correctly detecting AO

critical value

ω θ σ2
b n 2.5 3.0 3.5 4.0 4.5

4 0.1 0.16 100 0.789 0.659 0.458 0.228 0.081

6 0.981 0.966 0.911 0.789 0.570

8 0.996 0.996 0.991 0.977 0.945

10 0.999 0.999 0.998 0.994 0.977

8 0.1 0.16 100 0.996 0.996 0.991 0.977 0.945

0.3 0.989 0.982 0.962 0.905 0.818

0.5 0.910 0.877 0.798 0.651 0.473

0.7 0.611 0.570 0.467 0.304 0.135

0.9 0.574 0.553 0.487 0.388 0.223

8 0.1 0.16 100 0.996 0.996 0.991 0.977 0.945

0.25 0.992 0.986 0.973 0.949 0.885

0.35 0.984 0.975 0.962 0.931 0.844

8 0.1 0.16 60 0.993 0.988 0.966 0.914 0.769

100 0.996 0.996 0.991 0.977 0.945

200 0.999 0.999 0.995 0.989 0.980

The performance of correctly detecting AO is given in Table 5.5. The table

consists of different considered cases using five critical values. For the case of

different values of AO magnitude ω, we fixed θ = 0.1, σ2
b=0.16, n = 100 and
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introduced an AO at time t = 50. Whilst for different coefficients θ, we fixed

n = 100, ω = 8 and σ2
b=0.16. For the case of different σ2

b , n = 100, ω = 8 and

θ = 0.1 have been fixed. As for different case of n, we fixed θ = 0.1, σ2
b=0.16,

ω = 8 and introduced the AO to three different sample sizes n = 60, 100 and

200 at time t = 30, t = 50, and t = 100 respectively. The values in Table 5.5

represent the proportion of correctly detecting AO. For instance, in the first

row, the proportion of correctly detecting the AO is 0.789 when using critical

value 2.5. The proportion of correct detection can be interpreted as a power

of the procedure in term of outlier detection.

Three main points can be observed from the AO detection performance

results in Table 5.5. Firstly, in all cases, the power is a decreasing function

of the critical value C. When the critical value is too large, fewer outliers will

be detected. This is expected, since some of the test criteria η̂AO may have

lower value than the critical value C. Secondly, the performance of AO detec-

tion procedure improves when larger magnitudes of ω are introduced. At the

lowest critical value C=2.5, this procedure can capture almost 100% of the

introduced AO. Lastly, as coefficient θ, σ2
b and n increases, the performance

of AO detection procedure decreases. The detection drops abruptly at the

coefficient θ = 0.7, where the proportion of detecting AO at C=2.5 is only

0.611. This is due to the formulation of AO test statistics τAO which depend

on coefficient θ. However, in general, the AO detection procedure works well

if the stationarity condition θ2 + σ2
b is far from unity.
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Table 5.6: The performance of correctly detecting IO

critical value

ω θ σ2
b n 2.5 3.0 3.5 4.0 4.5

4 0.1 0.16 100 0.763 0.654 0.466 0.266 0.104

6 0.980 0.974 0.933 0.841 0.663

8 0.996 0.990 0.986 0.968 0.928

10 1.000 1.000 0.997 0.996 0.991

8 0.1 0.16 100 0.996 0.990 0.986 0.968 0.928

0.3 0.998 0.997 0.996 0.993 0.986

0.5 0.995 0.990 0.990 0.985 0.974

0.7 0.993 0.992 0.987 0.977 0.963

0.9 0.957 0.942 0.916 0.869 0.823

8 0.1 0.16 100 0.996 0.990 0.986 0.968 0.928

0.25 0.999 0.999 0.998 0.986 0.978

0.35 0.997 0.995 0.986 0.973 0.954

8 0.1 0.16 60 0.998 0.993 0.981 0.953 0.899

100 0.996 0.990 0.986 0.968 0.928

200 0.993 0.991 0.989 0.983 0.973

The performance of IO detection procedure is reported in Table 5.6. The

same sets of parameters and critical values as in the AO case are used. In

general, the power of IO detection procedure increases as IO magnitude ω

increases and decreases as critical value C, coefficient θ, variance of random

disturbance σ2
b and sample size n increases. When compared to the perfor-

mance of AO, similar results can be observed, except that there is no abrupt

drops at the largest coefficient θ = 0.7. The IO detection performance does

not depends on coefficient θ (see the formulation of IO test statistics, τIO in

equation (5.12)).
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We also present the results for the misdetection of outlier location for both

AO and IO as below:

Table 5.7: Misdetection of AO detection procedure

critical value

ω θ σ2
b n 2.5 3.0 3.5 4.0 4.5

4 0.1 0.16 100 0.167 0.056 0.015 0.000 0.000

6 0.011 0.009 0.003 0.002 0.001

8 0.004 0.003 0.002 0.001 0.000

10 0.001 0.001 0.001 0.001 0.001

8 0.1 0.16 100 0.004 0.003 0.002 0.001 0.000

0.3 0.011 0.006 0.004 0.001 0.000

0.5 0.083 0.068 0.049 0.026 0.008

0.7 0.372 0.328 0.263 0.172 0.093

0.9 0.398 0.362 0.315 0.256 0.157

8 0.1 0.16 100 0.004 0.003 0.002 0.001 0.000

0.25 0.007 0.004 0.002 0.000 0.000

0.35 0.016 0.007 0.003 0.001 0.001

8 0.1 0.16 60 0.006 0.004 0.001 0.001 0.001

100 0.004 0.003 0.002 0.001 0.000

200 0.001 0.001 0.001 0.000 0.000

Tables 5.7 and 5.8 give the misdetection of the outlier location for AO and

IO respectively. The same sets of parameters similar to AO and IO detection

performance in Table 5.5 and 5.6 respectively, are considered. The proportion

of misdetection for both AO and IO increases as θ,σ2
b and n increases and ω

decreases. However, for AO case, the proportion of incorrect outlier location

is the highest for largest coefficient θ. The AO detection procedure is not very

efficient for large values of coefficient θ.
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Table 5.8: Misdetection of IO detection procedure

critical value

ω θ σ2
b n 2.5 3.0 3.5 4.0 4.5

4 0.1 0.16 100 0.181 0.080 0.017 0.003 0.000

6 0.016 0.004 0.002 0.001 0.001

8 0.002 0.002 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000

8 0.1 0.16 100 0.002 0.002 0.000 0.000 0.000

0.3 0.002 0.002 0.001 0.000 0.000

0.5 0.005 0.004 0.001 0.001 0.000

0.7 0.005 0.003 0.001 0.001 0.001

0.9 0.028 0.016 0.008 0.002 0.002

8 0.1 0.16 100 0.002 0.002 0.000 0.000 0.000

0.25 0.001 0.001 0.000 0.000 0.000

0.35 0.002 0.001 0.000 0.000 0.000

8 0.1 0.16 60 0.002 0.000 0.000 0.000 0.000

100 0.002 0.002 0.000 0.000 0.000

200 0.006 0.003 0.002 0.000 0.000

By looking at the above results, we conclude that the procedures work

very well in detecting AO and IO in the RCA(1) process, especially when the

stationarity condition θ2 + σ2
b is far away from unity.

The next chapter will apply these outlier detection procedures to a real

data set and illustrate the importance of our study in practice.
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Chapter 6

Data Analysis

In this chapter, the differenced Indian CPI data considered in Section 3.4 is

further analyzed. The objective is to illustrate the application of the proposed

outlier detection procedures to a real data set from the RCA(1) model. To

detect any outliers in a real data set, we use the following steps:

1. Estimate both AO and IO test criteria, η̂AO and η̂IO respectively.

2. If η̂AO or η̂IO exceed the critical value C, then we may say that AO or

IO has occurred at time t = d corresponding to the maximum value of

|τ̂AO,t| or |τ̂IO,t| respectively.

3. Once detected, remove the effect of AO and IO at time t = d. Below are

the steps in detail to remove the AO effect from the series:

• To get an uncontaminated AO series {yt}, the AO definition in

Section 4.1 is used. The observation with AO at detected time

t = d, y∗d, is subtracted by the estimated AO effect ω̂AO,d.
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• Using the above uncontaminated observations {yt}, we calculate

the corresponding residuals and AIC value.

Whilst the steps to remove IO effect from the series are as follows:

• To get an uncontaminated IO series {yt}, the derived formula in

equation (4.9) is used. The observation with IO at detected time

t = d, y∗d, is subtracted by the estimated IO effect ω̂IO,d and coeffi-

cient θ.

• Using the above uncontaminated observations {yt}, we calculate

the corresponding residuals and AIC value.

4. The process is repeated iteratively until no outlier is detected in the

data. In other words, the process should be stopped when the values of

η̂AO and η̂IO are less than the critical value C.

We apply the outlier detection procedures to the differenced Indian CPI

data. The test criteria resulting from the first iteration of the outlier detection

procedures is given in Table 6.1. When critical value C=3.0 is considered, both

AO and IO procedures detected an AO and IO respectively at the same time

point t = 6. It corresponds to the highest spike seen in the time series plot as

given in Figure 6.1.

We remove the effects of both AO and IO at time t = 6. Then the outlier

detection procedures are applied on the AO-adjusted and IO-adjusted data

for the second iteration. Table 6.2 gives the results for the second iteration.
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Table 6.1: Test criteria of AO and IO detection procedures on the first iteration

Test Criteria

AO IO

t η̂AO t η̂IO

6 3.45 6 3.38
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Figure 6.1: Detected outlier on the first iteration

When critical value C=3.0 is used, none of the test criteria exceeds the critical

value. Thus, we stop the outlier detection procedure and conclude that no

more outliers occurred in the differenced Indian CPI data.

The parameter estimations and its AIC values are calculated for the un-

adjusted, AO-adjusted and IO-adjusted data and are given in Table 6.3. The

AIC values for the AO-adjusted and IO-adjusted data are significantly reduced

compared to the AIC of the unadjusted data. The reduction of AIC is greater
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Table 6.2: Test criteria of AO and IO detection procedures on the second

iteration

Test Criteria

AO-adjusted IO-adjusted

t η̂AO t η̂IO

25 2.33 25 2.36

Table 6.3: Outlier effects in parameter estimations and AIC value for the

Indian CPI data

AIC Parameter

Removal at time t = 6 θ̂ σ̂2
e σ̂2

b

unadjusted -148.32 0.1771 0.0050 0.2138

AO-adjusted -164.38 0.0834 0.0036 0.2014

IO-adjusted -160.96 0.0679 0.0039 0.1671

after removing the AO effect compared to when removing the IO effect. Sim-

ilarly, the parameter estimates also differ when the AO and IO effects are

adjusted.

Further, we compute the next nine forecast values using the unadjusted,

AO-adjusted and IO-adjusted model. As noted in Nicholls and Quinn (1982),

a natural predictor of yt from {yt−1, yt−2, ..} is

yt = sgn(θyt−1)[(θyt−1)
2 + σ2

b + σ2
ey

2
t−1]

1/2, (6.1)

where

sgn(θyt−1) =





1 for θyt−1 ≥ 0

−1 for θyt−1 < 0.

93



Table 6.4: Forecasted values of Indian CPI data for fitted contaminated, un-

contaminated AO and uncontaminated IO models

Period Observed values Fitted Values

unadjusted model AO-adjusted model IO-adjusted model

Q4 2006 0.09 0.0957 0.0845 0.0826

Q1 2007 0.26 0.0853 0.0715 0.0714

Q2 2007 0.11 0.0825 0.0685 0.0692

Q3 2007 0.15 0.0818 0.0678 0.0689

Q4 2007 -3.41 0.0816 0.0677 0.0688

√
E
5

1.5638 1.5581 1.5586

Table 6.4 contains the observed values and forecast values using unadjusted,

AO-adjusted and IO-adjusted models. The last row of Table 6.4 reports their

error sum of squares, E. It can be seen that the fitted AO-adjusted and IO-

adjusted model are better than that to the unadjusted model in a way that it

has smaller AIC and error sum of squares, E. The procedures have detected an

outlier at time t = 6 in the Indian CPI data set, and consequently improved

the RCA(1) modeling and forecasting.
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Chapter 7

Conclusion and Further Works

7.1 Summary of the Study

This study is aimed at developing outlier detection procedures for the RCA(1)

model. We first proposed an iterative (IT) method based on estimating func-

tions approach to estimate the RCA parameters. The robustness properties of

the considered estimates, namely least squares, estimating functions and IT,

when AO and IO exist in RCA(1) process have been investigated. We found

out that the IT is the most robust estimate compared to the other two. We

have also explored the nature of AO and IO effects on observations and resid-

uals which were then used to derive the statistics for measuring these effects.

Consequently, test statistics are defined to detect the presence of outliers in

the RCA(1) process. A simulation study has been carried out to investigate

the performance of the suggested procedures. In general, the procedures work

well in detecting AO and IO. As an illustration, a real data set of differenced
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Indian consumer price index is considered. These procedures have detected

one outlier in the data set. It is further shown that the modeling of the data

has improved by removing the effects of AO and IO from the data set.

7.2 Significance of the Study

This study has focused on the improvement of parameter estimation, the ro-

bustness of estimating functions and outlier detection procedures in RCA(1)

model. It has contributed to the time series analysis in following ways:

1. Proposed an iterative estimation method based on the estimating func-

tions to improve the RCA(1) parameter estimation.

2. Studied the robustness property of the least squares, estimating functions

and the iterative estimates when outlier occurs in the data set.

3. Proposed the outlier detection procedures for the RCA(1) model.

7.3 Further Research

This research can be extended in many ways. We had studied the detection

of AO and IO in the RCA(1) model. It can be extended to two other types

of outliers, namely temporary change (TC) and level change (LC) and also

the detection for non stationary RCA(1) process. We may also come up with

a more comprehensive procedure which can identify the type of outliers by
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comparing the value of test statistics for all types of outliers. Moreover, an

extension to higher order RCA models based on this approach can be further

explored.
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Appendix A

Indian Consumer Price Index

(CPI) Data

Period CPI Period CPI Period CPI Period CPI Period CPI

Q1 1990 2.23 Q3 1993 1.76 Q1 1997 2.11 Q3 2000 2.10 Q1 2004 2.41

Q2 1990 2.28 Q4 1993 1.81 Q2 1997 2.13 Q4 2000 2.07 Q2 2004 2.41

Q3 1990 2.38 Q1 1994 1.82 Q3 1997 2.17 Q1 2001 2.06 Q3 2004 2.43

Q4 1990 2.36 Q2 1994 1.88 Q4 1997 2.16 Q2 2001 2.08 Q4 2004 2.52

Q1 1991 2.3 Q3 1994 1.96 Q1 1998 2.13 Q3 2001 2.13 Q1 2005 2.59

Q2 1991 2.16 Q4 1994 1.99 Q2 1998 2.08 Q4 2001 2.11 Q2 2005 2.63

Q3 1991 1.81 Q1 1995 2.00 Q3 1998 2.08 Q1 2002 2.07 Q3 2005 2.68

Q4 1991 1.88 Q2 1995 2.06 Q4 1998 2.21 Q2 2002 2.08 Q4 2005 2.6

Q1 1992 1.91 Q3 1995 2.16 Q1 1999 2.12 Q3 2002 2.15 Q1 2006 2.69

Q2 1992 1.78 Q4 1995 1.99 Q2 1999 2.11 Q4 200 2.18 Q2 2006 2.67

Q3 1992 1.84 Q1 1996 1.87 Q3 1999 2.12 Q1 2003 2.19 Q3 2006 2.67

Q4 1992 1.86 Q2 1996 2.05 Q4 1999 2.17 Q2 2003 2.27 Q4 2006 2.8

Q1 1993 1.75 Q3 1996 2.07 Q1 2000 2.14 Q3 2003 2.35

Q2 1993 1.70 Q4 1996 2.1 Q2 2000 2.16 Q4 2003 2.39
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Appendix B

S-plus Program

a) Parameter estimation, aic and box-pierce for real data

EstAicBoxNew<-function(y,iter){

#EstAicBoxNew(india$CPIdiff,50)

n<-length(y)

#LS

est<-EstLSIT(n,y,iter)

thetaLS<-est$thetaLS

var.b<-est$var.b

var.e<-est$var.e

#EF

EFplease<-EstEF(n,y,thetaLS)

thetaEF<-EFplease$thetaEF

var.bEF<-EFplease$var.bEF

var.eEF<-EFplease$var.eEF
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#IT

thetaIT<-est$thetaIT

var.bIT<-est$var.bIT

var.eIT<-est$var.eIT

Theta<-cbind(thetaLS,thetaEF,thetaIT)

Var.b<-cbind(var.b,var.bEF,var.bIT)

Var.e<-cbind(var.e,var.eEF,var.eIT)

#aic

lnLS<-matrix(0,nrow=n)

lnEF<-matrix(0,nrow=n)

lnIT<-matrix(0,nrow=n)

aicLS<-matrix(0,nrow=n)

aicEF<-matrix(0,nrow=n)

aicIT<-matrix(0,nrow=n)

for(i in 2:n){

lnLS[i]<-log(var.e+(var.b*y[i-1]∧2))

lnEF[i]<-log(var.eEF+(var.bEF*y[i-1]∧2))

lnIT[i]<-log(var.eIT+(var.bIT*y[i-1]∧2))

aicLS[i]<-((y[i]-(thetaLS*y[i-1]))∧2)/(var.e+(var.b*y[i-1]∧2))

aicEF[i]<-((y[i]-(thetaEF*y[i-1]))∧2)/(var.eEF+(var.bEF*y[i-1]∧2))

aicIT[i]<-((y[i]-(thetaIT*y[i-1]))∧2)/(var.eIT+(var.bIT*y[i-1]∧2))

}

AICls<-(n*log(2*pi))+sum(lnLS)+sum(aicLS)+(2*3)

AICef<-(n*log(2*pi))+sum(lnEF)+sum(aicEF)+(2*3)
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AICit<-(n*log(2*pi))+sum(lnIT)+sum(aicIT)+(2*3)

aic<-cbind(AICls,AICef,AICit)

#box-pierce

uLS<-matrix(0,nrow=n)

uEF<-matrix(0,nrow=n)

uIT<-matrix(0,nrow=n)

hLS<-matrix(0,nrow=n)

hEF<-matrix(0,nrow=n)

hIT<-matrix(0,nrow=n)

eLS<-matrix(0,nrow=n)

eEF<-matrix(0,nrow=n)

eIT<-matrix(0,nrow=n)

for(i in 2:n){

uLS[i]<-y[i]-(thetaLS*y[i-1])

uEF[i]<-y[i]-(thetaEF*y[i-1])

uIT[i]<-y[i]-(thetaIT*y[i-1])

hLS[i]<-var.e+(var.b*y[i-1]∧2)

hEF[i]<-var.eEF+(var.bEF*y[i-1]∧2)

hIT[i]<-var.eIT+(var.bIT*y[i-1]∧2)

eLS[i]<-uLS[i]/sqrt(hLS[i])

eEF[i]<-uEF[i]/sqrt(hEF[i])

eIT[i]<-uIT[i]/sqrt(hIT[i])

}

autocorrLS<-acf(eLS,20,”correlation”)$acf
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autocorrEF<-acf(eEF,20,”correlation”)$acf

autocorrIT<-acf(eIT,20,”correlation”)$acf

autocorrLS2<-autocorrLS∧2

autocorrEF2<-autocorrEF∧2

autocorrIT2<-autocorrIT∧2

#minus 1 bcz lag0=1

boxPls<-n*(sum(autocorrLS2)-1)

boxPef<-n*(sum(autocorrEF2)-1)

boxPit<-n*(sum(autocorrIT2)-1)

boxP<-cbind(boxPls,boxPef,boxPit)

criticalValue<-qchisq(0.95, 20-3)

#residual plot

uLSplot<-data.frame(uLS)

uEFplot<-data.frame(uEF)

uITplot<-data.frame(uIT)

list(Theta=Theta,Var.b=Var.b,Var.e=Var.e,aic=aic,boxP=boxP,

criticalValue=criticalValue,uLSplot=uLSplot,uEFplot=uEFplot,uITplot=uITplot)

}

#to estimate LS and IT

EstLSIT<-function(n,y,iter){

#LS

thetaLS<- sum( y[2:n]*y[1:(n-1)] ) / sum( (y[1:(n-1)]∧2) )

u<-matrix(0,nrow=n)

for(i in 2:n){
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u[i]<-y[i]- (thetaLS*y[i-1])

}

z<- sum(y[1:(n-1)]∧2)/(n-1)

var.b<- sum( (u[2:n]∧2)*( (y[1:(n-1)]∧2)-z ) )/ sum(((y[1:(n-1)]∧2)-z)∧2)

var.e<- ( sum(u[2:n]∧2)/(n-1) )- (var.b*z)

#EF

a<-matrix(0,nrow=n)

for(i in 2:n)

a[i-1]<–y[i-1]/ ( var.e+ (var.b*(y[i-1]∧2)) )

}

thetaEF<-sum( a[1:(n-1)]*y[2:n] )/sum( a[1:(n-1)]*y[1:(n-1)] )

#IT

thetaIT<-matrix(0,nrow=iter)

var.bIT<matrix(0,nrow=iter)

var.eIT<-matrix(0,nrow=iter)

thetaIT[1]<-thetaEF

for(j in 2:iter){

ITplease<-EstEF(n,y,thetaIT[j-1])

thetaIT[j]<-ITplease$thetaEF

var.bIT[j]<-ITplease$var.bEF

var.eIT[j]<-ITplease$var.eEF

final<-j

if( (abs(thetaIT[j]-thetaIT[j-1])<=0.000001) && (abs(var.bIT[j]-
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var.bIT[j-1])<=0.000001) && (abs(var.eIT[j]-var.eIT[j-1])<=0.000001) )

break

if(final==iter)thetaIT[j]<-NA

if(final==iter)var.bIT[j]<-NA

if(final==iter)var.eIT[j]<-NA

}

thetaIT<-thetaIT[final]

var.bIT<-var.bIT[final]

var.eIT<-var.eIT[final]

list(thetaLS=thetaLS,var.b=var.b,

var.e=var.e,thetaIT=thetaIT,var.bIT=var.bIT,var.eIT=var.eIT)

}

#to estimate EF and iteration for IT

EstEF<-function(n,y,thetaLS){

u<-matrix(0,nrow=n)

for(i in 2:n){

u[i]<-y[i]- (thetaLS*y[i-1])

}

z<- sum(y[1:(n-1)]∧2)/(n-1)

var.bEF<- sum( (u[2:n]∧2)*( (y[1:(n-1)]∧2)-z ) )/

sum(((y[1:(n-1)]∧2)-z)∧2)

var.eEF<- ( sum(u[2:n]∧2)/(n-1) )- (var.bEF*z)

#EF

a<-matrix(0,nrow=n)
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for(i in 2:n){

a[i-1]<–y[i-1]/ ( var.eEF+ (var.bEF*(y[i-1]∧2)) )

}

thetaEF<-sum( a[1:(n-1)]*y[2:n] )/sum( a[1:(n-1)]*y[1:(n-1)] )

list(thetaEF=thetaEF,var.bEF=var.bEF,var.eEF=var.eEF)

}
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b) AO and IO detection

#ao and io detection for real data

detectionAOIO¡-function(y,iter)

#detectionAOIO(india$CPIdiff,50)

n¡-length(y)

#LS

est<-EstLSIT(n,y,iter)

thetaLS<-est$thetaLS

var.b<-est$var.b

var.e<-est$var.e

#EF

EFplease<-EstEF(n,y,thetaLS)

thetaEF<-EFplease$thetaEF

var.bEF<-EFplease$var.bEF

var.eEF<-EFplease$var.eEF

#IT

thetaIT<-est$thetaIT

var.bIT<-est$var.bIT

var.eIT<-est$var.eIT

#detection

uIT<-matrix(0,nrow=n)

for(i in 2:n){

uIT[i]<-y[i]-(thetaIT*y[i-1])
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}

omegaAO<-matrix(0,nrow=n)

varOmegaAO<-matrix(0,nrow=n)

tauAO<-matrix(0,nrow=n)

omegaIO<-matrix(0,nrow=n)

varOmegaIO<-matrix(0,nrow=n)

tauIO<-matrix(0,nrow=n)

for(i in 1:n){

omegaAO[i]<-(uIT[i]-(thetaIT*uIT[i+1]))/(1+(thetaIT∧2))

varOmegaAO[i]<-( (var.eIT*((thetaIT∧2)+1)) + (var.bIT*(((thetaIT∧2)

*(y[i]∧2))+(y[i-1]∧2))) )/ ((1+(thetaIT∧2))∧2)

tauAO[i]<- abs(omegaAO[i]/sqrt(varOmegaAO[i]))

omegaIO[i]<-uIT[i]

varOmegaIO[i]<-var.eIT+(var.bIT*(y[i-1]∧2))

tauIO[i]<- abs(omegaIO[i]/sqrt(varOmegaIO[i]))

}

tauAO<-as.numeric(tauAO)

tt<-rep(1:n,1)

a<-cbind(tauAO,tt)

a<-na.exclude(a)

aSort<-sort.col(a,c(”<ALL>”),”tauAO”,F)

maxTauAO<-aSort[1,1]

timeMaxTauAO<-aSort[1,2]

tauIO<-as.numeric(tauIO)
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b<-cbind(tauIO,tt)

b<-na.exclude(b)

bSort<-sort.col(b,c(”<ALL>”),”tauIO”,F)

maxTauIO<-bSort[1,1]

timeMaxTauIO<-bSort[1,2]

ao<-cbind(maxTauAO,timeMaxTauAO)

io<-cbind(maxTauIO,timeMaxTauIO)

omegaAO<-omegaAO[timeMaxTauAO]

omegaIO<-omegaIO[timeMaxTauIO]

list(ao=ao,io=io,omegaAO=omegaAO,omegaIO=omegaIO)

}

#to estimate LS and IT

EstLSIT<-function(n,y,iter){

#LS

thetaLS<- sum( y[2:n]*y[1:(n-1)] ) / sum( (y[1:(n-1)]∧2) )

u<-matrix(0,nrow=n)

for(i in 2:n){

u[i]<-y[i]- (thetaLS*y[i-1])

}

z<- sum(y[1:(n-1)]∧2)/(n-1)

var.b<- sum( (u[2:n]∧2)*( (y[1:(n-1)]∧2)-z ) )/ sum(((y[1:(n-1)]∧2)-z)∧2)

var.e<- ( sum(u[2:n]∧2)/(n-1) )- (var.b*z)

#EF

a<-matrix(0,nrow=n)
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for(i in 2:n)

a[i-1]<–y[i-1]/ ( var.e+ (var.b*(y[i-1]∧2)) )

}

thetaEF<-sum( a[1:(n-1)]*y[2:n] )/sum( a[1:(n-1)]*y[1:(n-1)] )

#IT

thetaIT<-matrix(0,nrow=iter)

var.bIT<matrix(0,nrow=iter)

var.eIT<-matrix(0,nrow=iter)

thetaIT[1]<-thetaEF

for(j in 2:iter){

ITplease<-EstEF(n,y,thetaIT[j-1])

thetaIT[j]<-ITplease$thetaEF

var.bIT[j]<-ITplease$var.bEF

var.eIT[j]<-ITplease$var.eEF

final<-j

if( (abs(thetaIT[j]-thetaIT[j-1])<=0.000001) && (abs(var.bIT[j]-

var.bIT[j-1])<=0.000001) && (abs(var.eIT[j]-var.eIT[j-1])<=0.000001) )

break

if(final==iter)thetaIT[j]<-NA

if(final==iter)var.bIT[j]<-NA

if(final==iter)var.eIT[j]<-NA

}

thetaIT<-thetaIT[final]
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var.bIT<-var.bIT[final]

var.eIT<-var.eIT[final]

list(thetaLS=thetaLS,var.b=var.b,

var.e=var.e,thetaIT=thetaIT,var.bIT=var.bIT,var.eIT=var.eIT)

}

#to estimate EF and iteration for IT

EstEF<-function(n,y,thetaLS){

u<-matrix(0,nrow=n)

for(i in 2:n){

u[i]<-y[i]- (thetaLS*y[i-1])

}

z<- sum(y[1:(n-1)]∧2)/(n-1)

var.bEF<- sum( (u[2:n]∧2)*( (y[1:(n-1)]∧2)-z ) )/

sum(((y[1:(n-1)]∧2)-z)∧2)

var.eEF<- ( sum(u[2:n]∧2)/(n-1) )- (var.bEF*z)

#EF

a<-matrix(0,nrow=n)

for(i in 2:n){

a[i-1]<–y[i-1]/ ( var.eEF+ (var.bEF*(y[i-1]∧2)) )

}

thetaEF<-sum( a[1:(n-1)]*y[2:n] )/sum( a[1:(n-1)]*y[1:(n-1)] )

list(thetaEF=thetaEF,var.bEF=var.bEF,var.eEF=var.eEF)

}
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