CHEMICAL CONSTITUENTS OF CRYPTOCARYA DENSIFLORA

WAN NURUL NAZNEEM BINTI WAN OTHMAN

DISSERTATION SUBMITTED IN FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE

DEPARTMENT OF CHEMISTRY FACULTY OF SCIENCE UNIVERSITY OF MALAYA KUALA LUMPUR

2010

ACKNOWLEDGEMENT

First and foremost I would like to express my greatest gratitude and appreciation to my supervisor, Associate Professor Dr. Mat Ropi Mukhtar for his kindly good supervision, advices, patience and constant guidance throughout the course in this study. I wish to forward my greatest appreciation to Professor Dr. Khalijah Awang for lending a helping hand in this research.

I also wish to extend my thanks to Mr. Teo, Mr. Din and Mr. Rafly (staff of the Herbarium), Ms. Norzalida, Mrs. Dara Fiona and Mrs. Su Wing (for recording NMR data), my friends in the C-10 Laboratory, especially; Ms. Anissuhailin, Ms. Azeana, Ms. Faizah, Mr. Fadzli Din, Ms. Syazreen Nadia, Mr. Ang and Mrs. Kee and Phytochemistry Laboratory members especially; Ms. Devi Rosmy, Ms. Nor Aimi, Mr. Azlan, Mrs. Kartini, Mrs. Mahfuzah, Ms. Linda, Mr. Chong Soon Lim, Ms. Chan Gomathi, Mrs. Hanita, Ms. Hazrina, Ms. Haslinda, Mrs. Munirah, Ms. Julia, Mr. Azmi, Mr. Ibrahim, Mr. Omer, Mr. Ahmad Kalem, Ms. Laili, Mrs. Raudhah, Ms Tien, Mr. Tiong for their kind help, support and friendship.

Last but not least, I would like to express my special appreciation to my beloved family, my siblings, my husband, Iskandar Ismail and my roommate, Nor Mas Mira for their understanding, moral support and endurance that are greatly treasured throughout the study. Without their encouragement, I will never reach to this level. Thank you for making my life so meaningful.

CONTENTS

Page ii ACKNOWLEDGEMENT CONTENTS iii LIST OF SCHEMES vi LIST OF FIGURES vii LIST OF TABLES Х **ABBREVIATIONS** xii ABSTRACT XV ABSTRAK xvi

CHAPTER 1: INTRODUCTION

1.1 General	2
1.2 Lauraceae: General Appearance and Morphology	3
1.3 Classification of Tribe	5
1.4 The Genus Cryptocarya	8
1.5 Cryptocarya densiflora	8
1.6 Alkaloids Isolated from Cryptocarya species	11
1.7 Medicinal Value	19
1.8 The Objectives of Study	21
1.9 The Importance of Study	21

CHAPTER 2: GENERAL CHEMICAL ASPECT

2.1 Introduction	23
2.2 Alkaloids	24
2.3 Classifications of the Alkaloids	26
2.4 Classification of Isoquinoline Alkaloids	29
2.4.1 Simple Isoquinoline	32

2.4.2 Benzylisoquinoline	33
2.4.3 Aporphine	41
2.4.4 Oxoaporphine	51
2.4.5 Pavine Alkaloids	55

CHAPTER 3: RESULTS AND DISCUSSION

3.1	Introduc	etion	63
3.2	Alkaloic	ds of Cryptocarya densiflora	63
	3.2.1	Alkaloid CD1: Laurotetanine 63	64
	3.2.2	Alkaloid CD2: Isocaryachine 64	74
	3.2.3	Alkaloid CD3: N-Demethylphyllocryptine 65	82
	3.2.4.	Alkaloid CD4: Nornantenine 66	93
	3.2.5.	Alkaloid CD5: Reticuline 14	101
	3.2.6	Alkaloid CD6: Laudanidine 2	110
	3.2.7	Alkaloid CD7: Dicentrinone 67	115
	3.2.8	Alkaloid CD8: Crychine 60	119
	3.2.9	Alkaloid CD9: Cryptocaryadine 68	130
	3.2.10	Alkaloid CD10: <i>N</i> -Methyllaurotetaine 53	142
СН	IAPTE	R 4: CONCLUSION	154
4.1	Aporph	ine alkaloids	154
4.2	Oxoapo	orphine alkaloid	155
4.3	3 Benzylisoquinoline alkaloids		156
4.4	Pavine	alkaloids	157

CHAPTER 5: EXPERIMENTAL 159

5.1 General Experimental Procedures	160
-------------------------------------	-----

5.2 Plant Material	162
5.3 Extraction and Isolation of Plant Material	162
5.3.1 Extraction	162
5.3.2 Isolation and purification	163
5.4 Physical and Spectral Data of Isolated Compounds	167
5.4.1 Cryptocaya densiflora	167

REFERENCES

176

LIST OF SCHEMES

Scheme 1.1	Classification of Family Lauraceae.		
Scheme 2.1	Examples of Alkaloid Ring Skeletons.		
Scheme 2.2	Biosynthetic origin of the benzyltetrahydroisoquinoline.	31	
Scheme 2.3	The biogenetic pathway to C-9,10 and C-10,11-	35	
	disubstituted aporphine.		
Scheme 2.4	The biogenetic pathway to C-10 monosubstituted and	36	
	unsubstituted ring D aporphine.		
Scheme 2.5	The biogenetic pathway to C-11 and C-9 monosubstituted	37	
	aporphine.		
Scheme 2.6	The illustration of mass fragmentation pattern of	41	
	benzylisoquinoline.		
Scheme 2.7	The principle mass fragmentation of aporphines.	48	
Scheme 2.8	The mass fragmentation of aporphine with N-methyl or	49	
	NH function group.		
Scheme 2.9	The mass fragmentation of an oxoaporphine.	54	
Scheme 2.10	The mass fragmentation of pavine alkaloid.	60	
Scheme 5.1	Isolation of alkaloids from the bark of Cryptocarya	165	
	densiflora.		
Scheme 5.2	Isolation of alkaloids from the leave of Cryptocarya	166	
	densiflora.		

LIST OF FIGURES

Figure 1.1	Leaves of Cryptocarya densiflora	9
Figure 1.2	Flowers of Cryptocarya densiflora	10
Figure 1.3	Bark of Cryptocarya densiflora	10
Figure 3.1	¹ H NMR Spectrum of Laurotetanine 63	67
Figure 3.2	¹³ C NMR Spectrum of Laurotetanine 63	68
Figure 3.3	DEPT Spectrum of Laurotetanine 63	69
Figure 3.4	HMBC Spectrum of Laurotetanine 63	70
Figure 3.5	HMQC Spectrum of Laurotetanine 63	71
Figure 3.6	LCMS Spectrum of Laurotetanine 63	72
Figure 3.7	IR Spectrum of Laurotetanine 63	73
Figure 3.8	¹ H NMR Spectrum of Isocaryachine 64	77
Figure 3.9	¹³ C NMR Spectrum of Isocaryachine 64	78
Figure 3.10	DEPT Spectrum of Isocaryachine 64	79
Figure 3.11	LCMS Spectrum of Isocaryachine 64	80
Figure 3.12	IR Spectrum of Isocaryachine 64	81
Figure 3.13	¹ H NMR Spectrum of <i>N</i> -Demethylphyllocryptine 65	85
Figure 3.14	¹³ C NMR Spectrum of <i>N</i> -Demethylphyllocryptine 65	86
Figure 3.15	COSY Spectrum of <i>N</i> -Demethylphyllocryptine 65	87
Figure 3.16	HMQC Spectrum of <i>N</i> -Demethylphyllocryptine 65	88
Figure 3.17	HMBC Spectrum of <i>N</i> -Demethylphyllocryptine 65	89
Figure 3.18	The ${}^{1}H - {}^{13}C$ HMBC Long Range Correlation of	90
	Alkaloid <i>N</i> -demethylphyllocryptine 63 .	
Figure 3.19	LCMS Spectrum of <i>N</i> -Demethylphyllocryptine 65	91
Figure 3.20	IR Spectrum of <i>N</i> -Demethylphyllocryptine 65	92
Figure 3.21	¹ H NMR Spectrum of Nornantenine 66	96
Figure 3.22	¹³ C NMR Spectrum of Nornantenine 66	97
Figure 3.23	HMQC Spectrum of Nornantenine 66	98
Figure 3.24	HMBC Spectrum of Nornantenine 66	99

Figure 3.25	LCMS Spectrum of Nornantenine 66	100
Figure 3.26	¹ H NMR Spectrum of Reticuline 14	104
Figure 3.27	¹³ C NMR Spectrum of Reticuline 14	105
Figure 3.28	COSY Spectrum of Reticuline 14	106
Figure 3.29	HMBC Spectrum of Reticuline 14	107
Figure 3.30	HMQC Spectrum of Reticuline 14	108
Figure 3.31	LCMS Spectrum of Reticuline 14	109
Figure 3.32	¹ H NMR Spectrum of Laudanidine 2	113
Figure 3.33	LCMS Spectrum of Laudanidine 2	114
Figure 3.34	¹ H NMR Spectrum of Dicentrinone 67	117
Figure 3.35	LCMS Spectrum of Dicentrinone 67	118
Figure 3.36	¹ H NMR Spectrum of Crychine 60	122
Figure 3.37	¹³ C NMR Spectrum of Crychine 60	123
Figure 3.38	DEPT Spectrum of Crychine 60	124
Figure 3.39	COSY Spectrum of Crychine 60	125
Figure 3.40	HMQC Spectrum of Crychine 60	126
Figure 3.41	HMBC Spectrum of Crychine 60	127
Figure 3.42	LCMS Spectrum of Crychine 60	128
Figure 3.43	IR Spectrum of Crychine 60	129
Figure 3.44	¹ H NMR Spectrum of Cryptocaryadine 68	133
Figure 3.45	¹³ C NMR Spectrum of Cryptocaryadine 68	134
Figure 3.46	DEPT Spectrum of Cryptocaryadine 68	135
Figure 3.47	HMBC Spectrum of Cryptocaryadine 68	136
Figure 3.48	HMQC Spectrum of Cryptocaryadine 68	137
Figure 3.49	COSY Spectrum of Cryptocaryadine 68	138
Figure 3.50	NOESY Spectrum of Cryptocaryadine 68	139
Figure 3.51	LCMS Spectrum of Cryptocaryadine 68	140
Figure 3.52	IR Spectrum of Cryptocaryadine 68	141
Figure 3.53	¹ H NMR Spectrum of <i>N</i> -Methyllaurotetanine 53	145
Figure 3.54	¹³ C NMR Spectrum of <i>N</i> -Methyllaurotetanine 53	146
Figure 3.55	DEPT Spectrum of <i>N</i> -Methyllaurotetanine 53	147

- Figure 3.56 COSY Spectrum of *N*-Methyllaurotetanine **53** 148
- Figure 3.57 HMBC Spectrum of *N*-Methyllaurotetanine **53** 149 HMQC Spectrum of *N*-Methyllaurotetanine **53** 150
- Figure 3.58
- Figure 3.59 NOESY Spectrum of *N*-Methyllaurotetanine **53** 151
- Figure 3.60 LCMS Spectrum of *N*-Methyllaurotetanine of **53** 152

LIST OF TABLES

Table 1.1	Alkaloids Isolated from the genus of Cryptocarya.	11
Table 1.2	Different species of the genus Cryptocarya and their	17
	distribution.	
Table 2.1	Categorises of Isoquinoline Alkaloids.	30
Table 2.2	¹ H NMR (in CDCl ₃ , ppm) for some benzylisoquinoline.	39
Table 2.3	¹ H NMR data (δ /ppm) of aporphine alkaloids in CDCl _{3.}	45
Table 2.4	¹ H NMR of some pavine alkaloids.	57
Table 2.5	¹³ C NMR of Argemonine and Crychine.	58
Table 3.1	¹ H NMR (in CDCl ₃ , 400MHz) and ¹³ C NMR (in CDCl ₃ ,	66
	100MHz) of 63 .	
Table 3.2	1 H NMR (in CDCl ₃ , 400 MHz) and 13 C NMR (in CDCl ₃ ,	76
	400 MHz) of 64 .	
Table 3.3	¹ H NMR (in CDCl ₃ , 400 MHz) and ¹³ C NMR (in CDCl ₃ ,	84
	400 MHz) of 65 .	
Table 3.4	¹ H NMR (in CDCl ₃ , 400MHz) and ¹³ C NMR (in CDCl ₃ ,	95
	100MHz) of 66 .	
Table 3.5	¹ H NMR (in CDCl ₃ , 400 MHz) and ¹³ C NMR (in CDCl ₃ ,	103
	400 MHz) of 14 .	
Table 3.6	¹ H NMR (in CDCl ₃ , 400MHz) and ¹³ C NMR (in CDCl ₃ ,	112
	100MHz) of 2 .	
Table 3.7	¹ H NMR (in CDCl ₃ , 400 MHz) of 67 and ¹ H NMR of	116
	dicentrinone ¹⁰⁵ .	
Table 3.8	1 H NMR (in CDCl ₃ , 400 MHz) and 13 C NMR (in CDCl ₃ ,	121
	400 MHz) of 60 .	
Table 3.9	¹ H NMR (in CDCl ₃ , 400MHz) and ¹³ C NMR (in CDCl ₃ ,	132
	100MHz) of 68 .	
Table 3.10	¹ H NMR (in CDCl ₃ , 400 MHz) and ¹³ C NMR (in CDCl ₃ ,	144
	400 MHz) data of 53 .	

Table 5.1	Chromatography	Results	of	the	Alkaloidal	of	164
	Cryptocarya densiflora (bark).						
Table 5.2	Chromatography	Results	of	the	Alkaloidal	of	164

Cryptocarya densiflora (leave).

ABBREVIATIONS

α	Alpha
β	Beta
λ	Maximum wave length
δ	Chemical shift
μΜ	Micromolar
μl	Microlitre
mM	Milimolar
mg/ml	Miligram per mililitre
g	Gram
kg	Kilogram
U/ml	Unit per mililitre
ml	Mililitre
m	Meter
MHz	Mega Hertz
Hz	Hertz
UV	Ultraviolet
IR	Infrared
ppm	Part per million
eV	Electron Volt
МеОН	Methanol
CHCl ₃	Chloroform

CH ₂ Cl ₂	Dichloromethane
DMSO	Dimethylsulphoxide
OCH ₂ O	Methylenedioxy
CH ₃	Methyl group
OCH ₃	Methoxyl group
ОН	Hydroxyl group
NH ₃	Ammonia
pH	Power of Hydrogen
HCl	Hydrogen Chloride
TLC	Thin layer chromatography
PTLC	Preparative thin layer chromatography
CC	Column Chromatography
NMR	Nuclear Magnetic Resonance
FT-NMR	Fourier Transform Nuclear Magnetic Resonance
cm ⁻¹	Per centimeter
J	Coupling constant
d	Doublet
S	Singlet
dd	Doublet of doublet
t	Triplet
m	Multiplet
BBIQ	Bisbenzylisoquinoline
1D-NMR	One Dimension Nuclear Magnetic Resonance

2D-NMR	Two Dimensional Nuclear Magnetic Resonance
¹ H	Proton NMR
¹³ C	13-Carbon NMR
COSY	¹ H- ¹ H Correlation Spectroscopy
DEPT	Distortioness Enhancement by Polarization Transfer
HMQC	Heteronuclear Multiple Quantum Coherence
НМВС	Heteronuclear Multiple Bond Coherence
NOE	Nuclear Overhauser Enhancement
GC-MS	Gas Chromatography-Mass Spectroscopy
LC-MS	Liquid Chromatography-Mass Spectroscopy
MS	Mass Spectroscopy
EIMS	Electron Impact Mass Spectroscopy
FAB	Fast Atomic Bombardment
ESI	Electrospray Ionization
m/z	Mass per charge
CDCl ₃	Deuterated chloroform
MeOD	Deuterated methanol
OD	Optical density

ABSTRACT

The extraction of alkaloids from the Malaysian *Cryptocarya densiflora* has been carried out in this study. The alkaloids were extracted from the bark and leaves of this species using acid base extraction and the crude alkaloids obtained were subjected to extensive chromatographic techniques such as thin layer and column chromatography. The structural elucidation of the purified alkaloids were performed with the aid of spectroscopic methods i.e. ¹H NMR, ¹³C NMR, 2D NMR, IR, UV and LCMS.

Investigation of the alkaloidal content from the bark of *Cryptocarya densiflora* afforded six alkaloids and their structures were elucidated as laurotetanine **63**, isocaryachine **64**, *N*-demethylphyllocryptine **65**, nornantenine **66**, reticuline **14** and laudanidine **2**.

Isolation and purification of alkaloids from the leaves of *Cryptocarya densiflora* afforded four alkaloids of which one is novel compound: cryptocaryadine **68** along with three known compounds: dicentrinone **67**, crychine **60** and *N*-methyllaurotetanine **53**.

ABSTRAK

Kandungan alkaloid dalam pokok *Cryptocarya densiflora* telah dikaji dan ditentukan. Alkaloid telah diekstrak daripada bahagian batang dan daun mengunakan ekstrak asid bes dan ekstrak mentah ini dipisahkan dengan menggunakan teknik kromatografi (kromatografi lapisan nipis dan kromatografi turus). Formula struktur sebatian tulen yang diperolehi ditentukan melalui kaedah spektroskopi iaitu ¹H NMR, ¹³C NMR, 2D NMR, IR, UV dan LCMS.

Kajian terhadap bahagian kulit batang *Cryptocarya densiflora* telah memberikan enam sebatian alkaloid di mana strukturnya telah dikenalpasti sebagai laurotetanina **63**, isocaryachina **64**, *N*-demetilphyllokriptina **65**, nornantenina **66**, retikulina **14** dan laudanidina **2**.

Pengasingan dan penulenan terhadap alkaloid daripada bahagian daun pokok *Cryptocarya densiflora* telah menghasilkan empat jenis alkaloid iaitu satu daripadanya adalah sebatian baru: cryptocaryadina **68** disamping tiga alkaloid yang sudah dikenalpasti dan sering ditemui: dicentrinone **67**, crychina **60** dan *N*-metillaurotetanina **53**.