3.2.5 Alkaloid CD5: Reticuline 14

14

Alkaloid CD5 was afforded as a brownish amorphous solid. The UV spectrum showed absorption band at 293 nm which was a characteristic of a benzylisoquinoline alkaloid ${ }^{58}$. The IR spectrum showed strong absorptions at 3350 and $2936 \mathrm{~cm}^{-1}$ due to the stretching of hydroxyl group and C-H aromatic respectively. ESI (positive mode) mass spectrum gave a pseudomolecular ion peak, $[\mathrm{M}+\mathrm{H}]^{+}$at $\mathrm{m} / \mathrm{z} 329.2$ consistent with the molecular formula of $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NO}_{4}$, with nine degrees of unsaturation.

The ${ }^{1} \mathrm{H}$ NMR spectrum (Figure 3.26) demonstrated two methoxyl groups overlapped to each other at $\delta 3.84$, corresponded to $6-\mathrm{OMe}$ and 4 '-OMe. In addition, there were five aromatic protons appeared at $\delta 6.75\left(d, J=1.96 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), \delta 6.71$ $\left(d, J=8.32 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), \delta 6.57\left(d d, J_{l}=8.04 \mathrm{~Hz}, J_{2}=1.96 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6^{\prime}\right), \delta 6.52(s$, $1 \mathrm{H}, \mathrm{H}-5)$ and $\delta 6.38$ ($s, 1 \mathrm{H}, \mathrm{H}-8$). H-8 was shielded compared to $\mathrm{H}-5$ because of the anisotropic effect caused by ring C (facing the ring C). Furthermore, the presence of N methyl proton was observed as a singlet at $\delta 2.43$. A total of seven proton signals were observed at a higher region between δ 2.59-3.17 attributable to the aliphatic protons of
$\mathrm{H}-\alpha, \mathrm{H}-4$ and $\mathrm{H}-3$. The complete assignments for the proton and carbon signals are tabulated in Table 3.5.

The ${ }^{13} \mathrm{C}$ NMR (Figure 3.27) spectrum established the presence of nineteen carbons which is in agreement with the molecular formula of reticuline. The DEPT experiment showed three methyls, three methylenes, six methines and seven quaternary carbons in the skeleton. The COSY spectrum (Figure 3.28) showed that H-5' was only correlated with H-6' while in the shielded area, H- α only correlated with $\mathrm{H}-\alpha$ '.

In HMBC spectrum (Figure 3.29) the cross-peaks of the proton at $\delta 6.52(\mathrm{H}-5)$ correlated with $\delta 24.93$ (C-4), $\delta 125.15$ (C-8a) and $\delta 143.45$ (C-7) while the proton at δ 6.38 (H-8) correlated with $\delta 64.60(\mathrm{C}-1), \delta 145.10(\mathrm{C}-6)$ and $129.99(\mathrm{C}-4 \mathrm{a}) . \mathrm{C}-7$ and C3' bearing hydroxyl groups were observed at $\delta 143.45$ and $\delta 145.23$ respectively through the long range coupling of $\mathrm{H}-5(\delta 6.52)$ to $\mathrm{C}-7(\delta 143.45)$ and $\mathrm{H}-5$ ' $(\delta 6.71)$ to C-3’ ($\delta 145.23$).

Finally, unambiguous assignment of all proton and carbon signals using DEPT, HMQC and COSY and by comparison with literature data ${ }^{95-99}$ showed that the alkaloid CD5 was reticuline 14.

Table 3.5: ${ }^{1} \mathrm{H}$ NMR (in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) and ${ }^{13} \mathrm{C}$ NMR (in $\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$) of $\mathbf{1 4}$

Position	$\delta_{\mathrm{H}}, \operatorname{ppm}(\mathrm{J}$ in Hz)	$\delta_{\text {C }}(\mathrm{ppm})$	$\begin{aligned} & \mathrm{HMBC} \\ & (\mathrm{H} \rightarrow \mathrm{C}) \end{aligned}$	HMQC
1	3.63-3.66 (m)	64.60	$\alpha, 1 ' 3,4 \mathrm{a}, 8 \mathrm{a}$	H-1
3	2.69-3.18 (m)	46.75	4 a	H-3
4	2.53-2.82 (m)	24.93	8 a	H-4
4 a	-	129.99	-	-
5	6.52 (s)	110.50	4, 8a, 7	H-5
6	-	145.10	-	-
7	-	143.45	-	-
8	6.38 (s)	113.74	1, 6, 4a	H-8
8 a	-	125.15	-	-
α	2.69-3.02 (m)	41.03	8a, $2^{\prime}, 6^{\prime}, 1^{\prime}, 1$	H- α
1 ,		133.06	-	
2 '	6.75 (d, 1.96)	115.65	a, 3', 6'	H-2 ${ }^{\prime}$
3 '	-	145.23		
4,	-	145.36		-
5	6.71 (d, 8.32)	110.62	1', 4,	H-5 ${ }^{\text {, }}$
6 '	6.57 (dd, 1.96, 8.04)	121.01	a, 2', 4'	H-6'
4'-OMe	3.83 (s)	55.98	4,	-
6-OMe	3.83 (s)	55.98	6	-
N-Me	2.43 (s)	42.43	1,3	-

Figure 3.26: ${ }^{1} \mathrm{H}$ NMR spectrum of Reticuline 14

Figure 3.27: ${ }^{13} \mathrm{C}$ NMR spectrum of Reticuline 14

Figure 3.28: COSY spectrum of Reticuline 14

Figure 3.29: HMBC spectrum of Reticuline 14

Figure 3.30: HMQC spectrum of Reticuline 14

Figure 3.31: LCMS spectrum of Reticuline 14

