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Abstract 

 

Several iron containing superconductors are discovered in 2008. The discovery 

introduced a new class of high-temperature superconductors, which are iron-based. The 

iron-based superconductors do not resemble conventional superconductors and have 

properties on their own which differ from the cuprates. We have studied the iron 

selenium, FeSe compound by removing some Se atoms from the lattice forming Fe:Se = 

2:1 and 8:6 and also by replacing the Se vacancy with tellurium, samarium and oxygen 

atoms forming Fe:Se:Te = 2:1:1 and 8:6:2, Fe:Se:O = 8:6:2 and 8:4:2, FeSeSmO, 

FeSeTeO, Fe2SeSm2O2, FeSeTeSmO and FeTeSmO. The band structures for each 

lattice are calculated by using the density-functional theory (DFT) in the local density 

approximation (LDA). The calculation is done by using polarized  as well as 

unpolarised orbitals. The density of states (DOS) of each compound is also calculated. It 

is found that the gap is highly anisotropic. There is a pronounced effect on the energy 

gap upon removing some Se atoms from the lattice as well as substitution of other 

atoms into the FeSe lattice. The energy gap is reduced by a large amount of energy 

compared to the pure FeSe lattice. It was also found that the normal state gap also 

reduces upon oxidation. The normal state energy gap reduction produced by doping is 

related to the increase in the transition temperature of the superconductor. 
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Abstrak 

 

Beberapa superkonduktor yang mengandungi ferum telah ditemui pada tahun 2008. 

Penemuan ini memperkenalkan satu kelas baru bagi superkonduktor suhu tinggi yang 

berasaskan ferum. Superkonduktor yang berasaskan ferum ini tidak menyerupai 

superconductor konvensional dan mempunyai ciri-ciri tersendiri berbeza dengan 

superkonduktor kuprat. Sebatian ferum selenium, FeSe telah dikaji dengan 

mengeluarkan beberapa atom Se dari kekisi untuk membentuk Fe:Se = 2:1 dan 8:6 dan 

juga dengan mengganti kekosongan Se dengan atom-atom tellurium, samarium dan 

oksigen untuk membentuk Fe:Se:Te = 2:1:1 dan 8:6:2, Fe:Se:O = 8:6:2 dan 8:4:2, 

FeSeSmO, FeSeTeO, Fe2SeSm2O2, FeSeTeSmO dan FeTeSmO. Struktur jalur bagi 

setiap kekisi dikira dengan menggunakan teori fungsi ketumpatan (DFT) dalam 

penghampiran ketumpatan tempatan (LDA). Pengiraan telah dibuat dengan 

menggunakan orbital terkutub dan juga dengan orbital tak terkutub. Ketumpatan 

keadaan (DOS) bagi setiap sebatian juga dikira. Didapati bahawa jurang tenaga adalah 

sangat anisotropik. Terdapat juga perubahan yang jelas pada jurang tenaga apabila 

beberapa atom Se dikeluarkan dari kekisi FeSe mahu pun diganti dengan atom-atom 

lain ke dalam kekisi FeSe. Jurang tenaga mengurang dengan besarnya berbanding 

dengan kekisi FeSe tulin. Jurang keadaan normal juga didapati mengurang semasa 

pengoksidaan. Pengurangan jurang tenaga untuk keadaan normal hasilan pendopan 

adalah berkaitan dengan peningkatan dalam suhu peralihan superkonduktor.  
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CHAPTER 1 

THEORY 

 

1.1  Review 

The high temperature superconductivity in cuprates was discovered by Bednorz and 

Muller in 1986 [1]. This superconductor was highly sought after by scientists until the 

year 2008, when the iron based superconductor was discovered by Hideo Hosono et al. 

of the Tokyo Institute of Technology. The lanthanum oxygen fluorine iron arsenide 

(LaO1-xFxFeAs) was found to superconduct at 26K [2]. Even though, the critical 

temperature of this new compound is lower than the cuprates with critical temperature 

higher than 90K, this discovery sparked new interest in many scientists to discover 

more properties in iron-based superconductors. The FeSe occurring in PbO-type 

structure, known as the α-FeSe was found to behave like a superconductor at 8K when 

the compound is deficient of Se atoms, α-FeSe1-x[3-4] at normal pressure. The critical 

temperature of α-FeSe1-x was raised up to 27 K under high pressure [5].  

 

Later on, FeSe superconductor was found to have higher transition temperature when 

the Se vacancy is substituted with tellurium atoms. It was also found that FeSe also 

becomes superconducting upon oxidation [6]. With application of pressure, the 
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superconducting temperature was raised to ~37 K. The conduction in iron-based 

superconductor is not explained by the periodic symmetry of the lattice structure but by 

doping and non-stoichiometry of the compound. Hence, the BSC theory does not give a 

successful explanation to the conductivity in the iron-based superconductors. It is 

believed that the B.C.S. theory with a suitable consideration of Hubbard hopping terms 

and the Coulomb repulsion will provide the correct theory of superconductivity. 

 

The Meissner effect theory gives a susceptibility of -1/4π = -0.07961. However, from 

the experimental results of Khasanov et al [7], it is found that the iron based 

superconductor samples give a negative susceptibility value of -0.0155emu/g. This 

shows the diamagnetic property in iron-based compound which predicts 

superconductivity. By multiplying the value of the mass density of ρ = 5.22 g/cm
3
, the 

susceptibility becomes -0.08091emu/cm
3
 which is slightly higher than the Meissner 

susceptibility. This suggests that the magnetic field in the samples is not entirely zero 

and it is represented by an incomplete Meissner effect.  

 

The iron-based superconductors may be categorized as the high-temperature 

superconductors, but, the superconductor holds large magnetic moment in the normal 

state, as compared with the cuprate superconductors. The iron-based superconductor has 

a class of its own.     

 

In this chapter, superconductivity will be discussed in section 1.2 followed by the 

density functional theory (DFT) in section 1.3. The density functional theory is used to 

study the properties of the interesting superconductor material. Even though it does not 

give accurate values, it is sufficient to predict the properties of the normal state of the 

material. 
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SECTION 1.2 

Superconductivity 

 

1.2.1 Introduction 

It was found that certain materials will undergo a phase transition to a state with zero 

electrical resistance, R = 0, at a certain critical temperature, Tc. The electrical resistance 

is defined from the Ohm‟s law, resistivity, R=V/I, where V is the voltage and I is the 

current. The conductivity  is the inverse of the resistivity, , which is the resistance per 

unit length in a wire,  =1/ . The current density J=  E, where E is the electric field.  

In order to obtain zero resistance in the sample, the voltage across the sample must be 

zero. Then, this sample exhibits the character of a perfect conductor with a finite current 

flow without any energy loss. It was also found that at relatively low temperature, T < 

Tc , the magnetic field inside the sample is zero. Any applied magnetic field on the 

sample was also found to be deflected from the samples. The phenomenon of the perfect 

conduction with no applied voltage and the exclusion of magnetic field in a material is 

called as „superconductivity‟ and the material that carries this phenomenon is known as 

a superconductor. Hence, superconductor can be distinguished from a perfect conductor 

by two very simple characteristics, which is the zero electrical resistance in the sample 

and the exclusion of the interior magnetic field.  
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Different materials superconduct at different critical temperatures and exhibit different 

phase transitions, while keeping the general properties. Hence, superconductors can be 

further classified into two different types, which can be easily distinguished by their 

unique electronic and magnetic properties, namely the Type I superconductor and the 

Type II superconductor. Type I superconductors generally superconduct at lower 

temperatures and lower critical field while the type II superconductors superconduct at a 

higher temperature range with higher critical field with two critical fields. Most of the 

pure metals in the periodic table such as mercury, tin and lead which are 

superconductors exhibit type-I superconductivity, whereas most alloys like lead-

bismuth alloys, barium-copper-oxide ceramics and highly-doped semiconductors 

exhibit type-II superconductivity. Noble metals such as gold and silver do not exhibit 

superconductivity. It is found in Au but the transition temperature is in K. 

 

Superconductivity is a quantum mechanical phenomenon. Hence, the electronic and 

magnetic properties of superconductors cannot be understood simply by classical 

physics of “perfect conductivity”. The exclusion of the interior magnetic field can be 

explained by the Meissner effect, while the absence of the electrical resistance in a 

superconductor and the microscopic properties can be accurately explained through the 

electron pairing via the electron-phonon interaction in the crystal lattice as explained by 

John Bardeen, Leon Cooper, and Robert Schrieffer, (BCS theory). 

 

 

 

 

 

 



5 

 

1.2.2 Historical Background 

In 1911, a Dutch physicist, Heike Kammerlingh Onnes did a study on the electronic 

property of metals at very low temperatures [8]. Upon studying the property of solid 

mercury, it was found that the resistance of the solid mercury in the liquid Helium drops 

gradually with the decrease of temperature. Upon reaching 4.2K, the electrical 

resistance of the solid Mercury drops abruptly to zero as shown in Fig.1.1. Hence, a 

perfect conductor that conducts current with zero resistance is found. Onnes named this 

phenomenon as „superconductivity‟ and with this discovery which requires liquid 

helium; he was awarded with Nobel Prize for liquefying helium gas in 1913. Onnes' 

discovery ignited much interest among scientists to do more experimental work to study 

this phenomenon further as well as to understand theoretically the explanation of the 

physics behind the extraordinary discovery. Many more materials were found to be 

superconducting such as lead with superconducting transition temperature at 7.19K in 

1913 and niobium nitride with superconducting transition at 16K in 1941.  

 

The understanding of superconductivity was taken to another notch by Walther 

Meissner and Ochsenfeld in 1933. By setting the current to run in a circular motion in a 

superconducting material, an internal magnetic field is formed. When the sample is 

cooled to the critical temperature Tc, the magnetic field in the sample disappears and 

expels any external magnetic field as shown in Fig. 1.2. The exclusion of interior 

magnetic field is known as the Meissner effect [9].  
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FIGURE 1.1. 

The resistance, R versus temperature, T curve of Kammerlingh Onnes, Commun. Phys. Lab. Univ. 

Leiden, Nos. 122,124 (1911) indicating the superconducting transition phase in mercury. 

 

 
 

 
 

(a) Magnetic field in the sample before critical 

temperature 
(b) The exclusion of the interior magnetic field 

at critical temperature 
 

FIGURE 1.2. 

The diagram shows  the exclusion of magnetic field of the Meissner effect. 
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Experimental results alone are not enough to explain the unusual phenomenon of 

superconductivity. Many scientists join in the race to explain their theories. In 1950 

Landau and Ginzburg gave a macroscopic explanation for the properties of 

superconductors by using the thermodynamic arguments, such as the concept of free 

energy [10]. From there, Abrikosov predicted the two divisions of the superconductors, 

which is today‟s type I and Type II superconductors. He also explains the penetration of 

magnetic flux in the type II superconductors. Also in the same year, Maxwell and 

Reynolds et al. found that the critical temperature of a superconductor is dependent on 

the isotopic mass, M, of the constituent element, Tc  1/ M.  

 

Later in 1957, John Bardeen, Leon Cooper and Robert Schrieffer introduced the B. C. S. 

theory that unveils the explanation for the mysterious conductivity in the 

superconductor by explaining the microscopic properties of superconductors [11]. By 

modelling the superconducting current as superfluid of Cooper pairs, the zero resistivity 

conduction is explained by a pair of electrons interacting through the exchange of 

phonons. The authors of B. C. S.  theory were later awarded the Nobel Prize in 1972. 

 

The new era of superconductivity began in 1986 with the discovery of 

superconductivity in lanthanum-based cuprate perovskite material at 35K by Bednorz 

and Mueller [1]. The critical temperature was a lot higher than the previous record of 18 

K in Nb3Sn and 23 K for NbGe. Later in 1987, a perovskite ceramic material was found 

to superconduct at 92K. The increasing critical temperature of new material gives rise to 

the dawn of the high temperature superconductors. Since then the highest temperature 

superconductor was recorded in 1993, a ceramic material with critical temperature of 

138K and 148 K under pressure. 
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In February 2008, the study of superconductivity shifted its focus from ceramic material 

to iron-based material. The new material was discovered by Hideo Hosono et al. of the 

Tokyo Institute of Technology when they found that lanthanum oxygen fluorine iron 

arsenide (LaO1-xFxFeAs) superconducts at 26K [2]. Subsequent research was done by 

other scientists after the discovery of Hosono. Substitution of different rare earth 

materials  into LaO1-xFxFeAs brings the superconducting temperature to 52K. Different 

type of iron-based materials such as  FeS, FeSe and FeTe were also studied [3]. 

 

 

1.2.3 Meissner Effect 

The magnetic properties of the superconductors are explained by the Meissner effect. 

Meissner effect was proposed by Meissner together with Ochsenfeld in 1933. It is also 

known as the Meissner-Ochsenfeld effect. When the sample is cooled to temperature Tc, 

any applied external magnetic field is expelled by the sample. This can be explained by 

Len‟s law, where the induced magnetic field in a sample tends to oppose the applied 

magnetic field. Hence, the superconductor is a diamagnetic material and this explains 

the negative magnetic susceptibility. However, the sample not only expels the applied 

external field but the original field in the normal sample was also expelled upon 

cooling. Therefore, a superconductor does not only behave as a diamagnetic material 

but also involves the Meissner effect. Actually, the spin of the electron gives rise to 

paramagnetism. If the pairs of electrons are formed, with one electron spin up and the 

other spin down, the spin of the pair is zero which explains the diamagnetism. 

 

 



9 

 

Diamagnetism can be explained by first looking at the Maxwell equation that explains 

the Faraday‟s Law of induction. 

dt

Bd
E




 
(1.1) 

The induced voltage is equal to the negative rate of change of magnetic induction, 

where E is the electric field and B is the magnetic induction. For a diamagnetic material, 

the magnetic field inside the sample must be constant as a function of time. Then, the 

rate of change of magnetic induction is then zero. 

0
dt

Bd


 
(1.2) 

Then the induced voltage will also be zero. 

0E


 (1.3) 

Consider Ohm‟s Law, V=IR, is written as E=ρj. Then, E = 0 gives zero resistivity. 

Hence, it is consistent with the definition of diamagnetism, where, zero electrical 

resistance give rise to zero magnetic fields inside the superconductor. 

 

The equation of magnetic induction, B can be expressed as  

M4BB   (1.4) 

Where, M is the magnetization. The final state of a sample is determined by the process 

of cooling the sample, which is either field-cooled sample or cooled-field sample. 

However, either way will give the exclusion of magnetic induction from the interior of 

the samples. In the case of magnetic superconductors or superconductors containing 

magnetic impurities, the zero field cooled magnetization is very different from the field-

cooled values. The problem of field trapping can be solved separately and hence for the 

pure superconductors without magnetic impurities we can assume that the field inside 
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the sample is zero. Hence, assuming that the magnetic field inside the superconductor is 

zero, the equation becomes,  

0M4B  (1.5) 

 

Then, the susceptibility, χ for zero magnetic induction can be written as 

4

1

B

M


 

(1.6) 

Thus, susceptibility for zero induction gives a negative value. This is consistent with 

diamagnetism. 

 

However, when an external magnetic field is applied to a superconducting material, the 

field is not instantly repelled. It penetrates into the material for a certain depth. As the 

fields decay exponentially to zero inside the superconducting material, the depth of 

penetration is called the London penetration depth λL and it is expressed as,  

2
L

B
j




. 

(1.7) 

 

By taking the Maxwell equation for Ampere‟s circuit law, 

jB


  (1.8) 

By adding curl to the both side of the equation, the Maxwell equation is now written as, 

j)]B([
1 



 
 

 

j]B)B([
1 2





 
(1.9) 
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From Gauss‟s law of magnetism, 0B


 then 0)B(


. Then the magnetic 

induction in the superconductor must be identically zero lest the London penetration 

depth is infinite. Hence, 

j)B(
1 2





 
(1.10) 

Equation (1.7) is then, 

2
L

2

2
L

2

B
B

BB








 

(1.11) 

This gives the fundamental approach to the Meissner effect.  

 

 

1.2.4 BCS Theory of Superconductivity 

The first successful microscopic explanation for the conduction in superconductivity 

was formulated by Bardeen, Cooper and Schrieffer in 1957. It is known as the BCS 

theory and it could quantitatively predict the properties of a superconductor. This theory 

is based on the formation of pairs of electrons of momenta k and -k with one electron 

spin up and the other spin down, proposed by Leon Cooper, which shows that there is 

instability of the Fermi surface at the ground state upon the formation of pairs of 

„bound‟ state electrons. This bound pairs of electrons are attracted to each other via the 

electron-phonon interaction and it is also known as the Cooper pairs. 
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The zero resistance in superconductivity can be explained by the movement of these 

Cooper pairs through the lattice unaffected by the thermal vibrations. This is because at 

low temperatures, the attractive phonon interactions between the electrons are stronger 

than the interactions between the electrons and ions. Hence, the electron-phonon 

interaction overcomes the Coulomb interaction. The formation of Cooper pairs can be 

explained by first explaining the distortion of the crystal lattice by a single electron in 

the lattice as shown in Fig. 1.3. This distortion of the crystal lattice will form a charge 

distortion (phonons) of positive charges around the electron. This charge distortion will 

eventually attract another electron at a certain distance in the lattice forming bound pairs 

of electrons. 

 

The formation of bound pairs can also be described as the interaction of electrons due to 

the emission or absorption of lattice phonons. The emission and absorption process can 

be represented by the famous Feynman diagram as shown in Fig. 1.4. 

 

 

FIGURE 1.3.  

Lattice distortion created by the single electron in the lattice. 
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(a) Emission of phonon from the first 

electron (left to right). 

 
(b) Absorption of phonon of the first 

electron from the second electron 

 
FIGURE 1.4 

The Feynman diagrams in (a) and (b) are the mirror process of phonon emission and absorption between 

two electrons. k1, k2 and q are the wave vectors. 

 

Quantitatively, BCS theory can be explained through quantum mechanical method by 

the means of second order perturbation theory. The Hamiltonian without the Coulomb 

repulsion can be defined as 

H = He + Hp + He-p (1.12) 

Where, He is the ground state Hamiltonian for single electrons. Electron at ground state 

only fills below the Fermi Energy EF. Then the unperturbed Hamiltonian for single 

electron is written as 

k

kkFke CCEEH †)(    (1.13) 

Where Ekζ is the single particle energy for electrons and C†
kζ(Ckζ) are the creation 

(annihilation) operators for electrons. 

 

Hp is the unperturbed phonon Hamiltonian which can be defined by the creation a†
q 

operator and annihilation aq operator of phonons and the single quasiparticle frequency 

ħωq.  

q

qqqp aaH †  (1.14) 
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The Hamiltonian for electron-phonon interaction, He-p can be written as  

qkk

qqkkpe chkqkaaCCH
21

.)'()( ††  
(1.15) 

Where, λ is the dimensionless parameter.  

 

The creation and annihilation operators for electrons can be written in the form of the 

number of particle nk of a given wave vector k. 

,...1,...,|,...,...,|

,...1,...,|)1(,...,...,|

11

11

†

kkkkk

kkkkk

nnnnnC

nnnnnC

 
(1.16) 

where j

k

jkk nk
1

1,)1( . The second order perturbation energy for one phonon 

leaving the electron of wave vector k1 with wave vector k2 = k1 – q can be formulated as 

2k,1k q2k1k

2k1k2k1k2k1k2k1k2)2(

EE

n,1nH1n,n1n,nHn,1n
E


 

q,1k qq1k1k

q1k1kq1k1kq1k1kq1k1k2)2(

EE

n,1nH1n,n1n,nHn,1n
E


 

qk qqkk

qkkkqk

EE

CCCC
E

,

††

2)2(

1 11

1111


 (1.17) 

Similarly, the mirror process of phonon emission from the second electron can be 

written as 

qk qqkk

qkkkqk

EE

CCCC
E

,

††

2)2(

2 22

2222


 (1.18) 

By taking the 4 vector as conserved, three components of the wave vector and the 

complex frequency, the equation for the conservation of momentum and energy can be 

defined as, 

qkk 21  (1.19) 

q2kq1k2k1k EEEE  (1.20) 
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Then the final effective interaction can be written by summing both equations of the 

mirror process, equation (1.17) and equation (1.18). 

H
(2) 

1122

21 11

1122

21 11

1111

21 2 11

2211

11
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1 2 22

2222

11

1111

††
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††
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22
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††

2

††

2
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††

2

††

2

)()(

2
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)()(

)()(
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qkk qqkk

q
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qkk qqkk

qqkkqqkk

qkk qk qkqk

qkkqkk

qqkk

qkkqkk

qk qk qqkk

qkkkqk

qqkk
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EE
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EE

EEEE

EE

CCCC

EE

CCCC

EE

CCCC

EE

CCCC













 

(1.21) 

When Ek1 – Ek2 < ħωq then the interaction becomes negative and thus, describes the 

attractive force between the electrons. Hence, the electrons will form pairs of zero spin 

and zero momentum which can be represented by  

kkkk
qkk qkk

q
CCCC

EE
H ††

,,
22

2)2(

)()(

2




 (1.22) 

 

This equation describes the bound state of the electrons in the BCS theory, where the 

pairs (k↑, -k↓) are called the Cooper pairs. Hence, the electron pairs are correlated due 

to the Pauli Exclusion principles of electrons to form the Cooper pairs. In a full 

calculation, there will be other interactions in the Hamiltonian such as the Coulomb 

repulsive interaction between electrons which require the Bogoliubov transformation. 

 

Superconductivity is destroyed when the electron-phonon interactions no longer exists. 

That happens when the Cooper pairs begin to break up at certain critical temperature 

and certain amount of energy is required in order to break the bound pair of electrons 

which are strongly correlated together. Hence, the BCS theory predicts an energy gap, 
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Eg at temperature T which is dependent on the critical temperature, Tc. The energy gap 

approaching the critical temperature, Tc can be defined as  

c

cBg
T

T
TkE 12.3  (1.23) 

Where, kB is the Boltzmann‟s constant. The energy gap of the superconductor decreases 

as the transition temperature increases. However, the energy gap vanishes when the 

temperature, T = Tc. Hence, the increase in temperature will lessen the pair interaction 

energy which leads to the decrease of the energy gap. The Cooper pairs are formed 

below a transition temperature. Above that, the Cooper pair will break into two quasi-

particles that behave almost like free electrons. This is when the superconductivity is 

destroyed. At absolute zero, T = 0K, the theory also predicts that the critical 

temperature, Tc is related to the energy gap, Eg by 

cBg TkE 5.3)0(2  (1.24) 

Where, Δ is the surface energy parameter which is defined by  

V)0(N1e2  (1.25) 

and, N is the density of states for electrons at the Fermi energy and V is the attractive 

potential for the one electron state at the Fermi energy.  

 

By substituting equation (1.25) for Δ in equation (1.24), then, 

VN

cB eTk )0(145.3   (1.26) 

This shows that the transition temperature is proportional to the phonon frequency, ħω. 

In harmonic oscillator, frequency is expressed as 

M

k

2

1
f   (1.27) 
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Hence, the frequency is proportional to the inverse square root of mass of an atom. 

Therefore, the transition temperature varies with the inverse square root of mass. 

M

1
Tc  (1.28) 

Where, M is the isotopic mass. This explains the origin of the isotope effect. The 

transition temperature increases with decreasing isotopic mass.  

 

 

1.2.5 Classification of Superconductors 

Superconductors can be classified into two types, namely the Type I superconductor and 

the Type II superconductor. Both superconductors share many common properties but 

show different magnetic behaviour. Type I superconductor exhibits zero resistivity and 

exclusion of magnetic field from the interior of the superconductor (Meissner effect) at 

relatively low temperature, namely below the critical temperature, Tc. This 

superconductor only has one critical field, Hc, where superconductivity is destroyed 

when the applied magnetic field is beyond that critical field value. The critical magnetic 

field varies with temperature and it can be written as 

2
1

c
cc )

T

T
1(HH   (1.29) 

For any field below the critical field, the magnetization is negative, giving a 

diamagnetic material. The microscopic properties of Type I superconductors are 

accurately described by the BCS theory and it is also known as the conventional 

superconductor.  
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Type II superconductors are somehow much more complicated than the Type I 

superconductors. Besides sharing the similarity of zero resistivity below the transition 

temperature, Type II superconductors have two critical fields, one coming from the 

London penetration depth and the other from the coherence length. Due to scattering 

from the magnetic atoms, the transition temperature of the type-II superconductors is 

lower than those of type-I superconductors. The two critical  magnetic fields which can 

be represented by 

22c

2
L

1c

H

H





 

(1.30) 

 

where, λL is the London penetration depth and ξ is the coherent length. Below the lower 

critical field Hc1, superconductivity is formed with zero magnetic fields in the samples. 

This is known as the Meissner phase.  When Hc1<H<Hc2, vortices are formed in the 

samples due to the small penetration of the magnetic field due to magnetic atoms. In 

this region, the superconductivity is maintained disregard of the field in the vortice. This 

region is also called the Abrikosov mixed phase region. Any applied magnetic field 

beyond the upper critical field Hc2, superconductivity is destroyed and the samples 

return to the normal phase.  The magnetization is negative below the lower and the 

upper critical fields. Above the upper critical field, the normal magnetization is formed, 

where the superconductivity is suppressed. The magnetization curve is shown in Fig. 

1.5.  
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FIGURE 1.5.  

The graphs show the magnetization curve of Type I and Type II superconductors with negative 

magnetization. 

 

In the Abrikosov mixed phase, the high temperature superconductor allows certain 

amount of magnetic field to penetrate the sample. Hence, this explains the higher upper 

critical field in the type-II superconductors. The BCS theory is not sufficient to explain 

the conduction in the high-temperature superconductor and hence, Type II 

superconductors are also known as the unconventional superconductors.   
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1.2.6 Applications 

After the discoveries of new superconducting materials and the gradual improvement in 

theoretical understanding, superconductor technology has eventually been put into 

applications. Since the critical temperature of the material obtained is moving toward a 

higher temperature, the cooling process has evolved from the expensive liquid helium to 

liquid hydrogen. Superconducting magnets are some of the most powerful magnets 

known today. It has been widely used in laboratories and hospitals all over the 

industrialised world. Some of the well known laboratories machines that adopt the 

application of superconductors are the, mass spectrometers and the beam-steering 

magnets in the particle accelerator. Magnetic Resonance Imaging, (MRI) is one of the 

most well known machines used in hospitals to make a thorough scanning of human 

bodies by using magnetic resonance. The powerful magnetic fields in these applications 

are generated by superconductors.  

 

The discovery of high-temperature superconductors with transition temperature closer 

to the room temperature gives a new face lift to the superconductor technology. Upon 

approaching the room temperature, cooling system is becoming less important in order 

to maintain the superconducting state. When this is eliminated, future machines and 

more applications can be produced with much lower cost with higher efficiency. 

However, much more theoretical and experimental work has to be done to achieve the 

cost-effective room temperature superconductor.   
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SECTION 1.3           

The Density Functional Theory 

 

1.3.1 Introduction 

Density functional theory (DFT) is one of the most popular methods used for “ab initio” 

calculation of the electronic properties of molecules and other finite systems. It is also 

important for quantitative studies. This method is first approached by Hartree-Fock 

wave functions by considering only the interaction of electrons with its closest 

neighbours. Hohenberg-Kohn then extends the approach to many-body systems of 

interacting particles by proving two theorems. However, Hohenberg-Kohn attempt was 

not sufficient to provide any information to understand the property of a given material. 

The Hohenberg-Kohn attempt is then improved by Kohn-Sham approach by replacing 

the many-body system of interacting particles with an auxiliary independent particle 

problem. The local density approximation (LDA) and the generalized gradient 

approximation (GGA) are the most widely used approximations to approximate the 

exchange-correlation energy functional. These two approximations provide the most 

promising approach for practical methods in the theory of material in DFT. Thus, the 

many-body particle problem becomes more feasible with a higher accuracy.   
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1.3.2 Hartree-Fock Approach 

The earliest attempt to approximate a wave function of electrons is done by Hartree [12]  

by writing the many-electron wave function Ψ(r) as a product of single particle 

functions (r).  This can be defined as 

)r()...r()r()r....r,r( NN2211N21


 (1.31) 

Where ri is the positional coordinate and spin coordinate for the i
th 

electron. The 

individual one-electron function i is called the orbital and it describes each electron in 

the system. In the Hartree potential the electron does not interact with another electron 

one-by-one. They interact with the average density of the electrons. The many-body 

electron Schrödinger equation can be solved as N independent electron equations with a 

potential field arising from the average field of the other electrons. The equation can be 

defined as 

iΦiε)r(iΦiΦextV2
2m

2 
 (1.32) 

 

From these orbitals, , a many electron wave function, Ψ can be formed according to 

equation (1.29), and then the total energy, E of the ground state can be calculated. Since 

the electrons are interacting with an average density, then the Coulomb interaction is 

taken into account upon solving i and εi. However, there will be overlapping of 

interactions upon adding together the energies, i.e., the overlap of interaction between 

the orbitals of (1,2) and (2,1). This approximation is then corrected by “Hartree-Fock” 

approximation by taking the Pauli exclusion principle into consideration where each 

electron is described by a different wave function because each electron has different 

quantum numbers. With this, Hartree-Fock approximation uses the Slater determinant 

method to obtain the wave function rather than the product of orbitals. Hence, the 
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method for finding the best single determinant wave function for a system is known as 

the Hartree-Fock method.  

)r()r()r(

)r()r()r(

)r()r()r(

!N

1
)r,...r,r(

NN2N1N

2N2221

1N1211

N21


















 (1.33) 

 

The single determinant complicates the equation by an additional, non-local exchange 

term in the Schrödinger equation. However, the additional term improves the total 

energy. Hence, the Hartree-Fock equation is defined by 

)(Φε)r(Φ),()r(Φ)
e

)r(V
2

( 1ii22i211i

21

2

2

1ext

2
2

rrdrrv
rr

rd

m
x







 (1.34) 

 

where, vx is the non-local exchange potential. The Hartree-Fock equations describe non-

interacting electrons under the influence of a mean field consisting of the classical 

Coulomb potential and a non-local exchange potential. However, electrons do not 

interact with the average potential field but they interact in pairs. The electrons correlate 

their movements such that they are separated with the minimum amount of electrostatic 

repulsion. The Hartree-Fock method does not take into account for the dynamic 

correlations. 
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1.3.3 The Hohenberg-Kohn Theorem 

In 1964, Hohenberg and Kohn made a fresh attempt to formulate the density functional 

theory as an exact theory of many-body systems by viewing the property of a system of 

many interacting particles as a function of the ground state density [13-17]. Hohenberg 

and Kohn formulated the theory by proving two theorems [13]. This attempt marks the 

beginning of the development of DFT and it provides a basic picture for the modern 

density functional method. 

 

The first theorem from Hohenberg and Kohn is stated as: 

For any system of interacting particles in an external potential )r(Vext


, the 

potential can be determined by the ground state density alone, )r(n


  within an 

additive constant. Therefore, all properties of the system can be written as a 

functional of the ground state density. 

 

The first theorem of Hohenberg-Kohn is proved by first assuming that there are two 

different external potentials )r(V
(1)

ext


 and )r(V

(2)

ext


which differ by more than a constant. 

These two potentials will eventually lead to the same ground state density, )r(n


 . 

)r(V)r(V
)2(

ext
)1(

ext


 (1.35) 

The two external potentials then lead to two different Hamiltonians and two different 

ground state wave functions.  

)2()2()2()2()2(
ext

)2(

)1()1()1()1()1(
ext

)1(

EH);r(VHĤ

EH);r(VHĤ









 

(1.36) 

 

(1.37) 
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Hence, the ground state energies, Eo, can be written as  

)1()1()1( |H|E  (1.38) 

and 

)2()2()2( |H|E  (1.39) 

respectively. The expectation value can be calculated by using the variational principles 

as shown in equation (1.38) by assuming that the ground state is non-degenerate. 

)2()1()2()1()1()1( |H||H|E  (1.40) 

where, 

).()]()([

|ˆˆ||ˆ||ˆ|

)2()1(3)2(

)2()2()1()2()2()2()2()2()1()2(

rnrVrVrdE

HHHH

extext




 

 

(1.41) 

Hence, 

)r(n)]r(V)r(V[rdEE
)2(

ext
)1(

ext
3)2()1( 

  (1.42) 

 

Similarly, E
(2)

 can be calculated by  

)r(n)]r(V)r(V[rdEE
)2(

ext
)1(

ext
3)2()1( 

  (1.43) 

 

By summing both equations (1.13) and  (1.41) together, 

)1()2()2()1( EEEE  (1.44) 

Hence, it can be concluded that there cannot be two different external potentials that 

yield the same ground state density, )r(n


 . Therefore, the density uniquely determines 

the external potential to within an additive constant as stated by the Hohenberg-Kohn 

first theorem.  
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Since the Hamiltonian is uniquely determined by the ground state density, the wave 

function of any state is determined by solving the Schroedinger equation with this 

Hamiltonian. The unique ground state wave function is one that has the lowest energy. 

All the ground state properties including the kinetic energy of electron, Te and the 

internal potential, Vint are also determined by the ground state density, 

)n(V)n(V)n(T)n(E extinte  (1.45) 

where the Hohenberg-Kohn functional is defined as  

)n(V)n(T)n(F inteHK  (1.46) 

Hence, 

)n(Fdr)r(V)r(n)n(F)n(V)n(E HKextHKext


 (1.47) 

 

The Hohenberg-Kohn second theorem states that: 

The ground state energy and density can be determined by the variation method 

alone. For any particular )r(Vext


, the ground state density )r(n


  minimises the 

functional giving a global minimum value.  

 

The second theorem can be proved by first recalling the equation (1.47) 

)n(Fdr)r(V)r(n)n(E HKext


 (1.47) 

where FHK is the Hohenberg-Kohn functional which is defined by T(n) + Eint(n).  

 

The ground state density )r(n )1( 
corresponds to the external potential, )r(V

(1)

ext


. Hence, 

the corresponding ground state wave function is Ψ
(1)

. 
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The expectation value of the Hamiltonian is the unique ground state which can be 

written as 

]n[E|H|E )1(
HK

)1()1()1()1( . (1.48) 

Next consider a new density of )r(n )2( 
 which corresponds to a new wave function Ψ

(2)
. 

Hence, the new energy E
(2)

 of this state can be written as 

]n[E|H|E )2(
HK

)2()1()2()2( . (1.49) 

 

By comparing equations (1.48) and (1.49), it is clearly noted that E
(2)

 is larger than E
(1)

. 

)2()2()1()2()1()1()1()1( |||| EHHE  (1.50) 

 

It can be concluded that the Hohenberg-Kohn functional evaluated for the correct 

ground state density is lower than the value for any other density. Hence, the second 

theorem of Hohenberg-Kohn is proved. 

 

Now, with a known FHK(n), the exact ground state density can be determined by 

minimising the total energy of the system with respect to the variations in the density 

function )r(n


. However, by only looking at the density, the density-functional theory 

does not provide an understanding of the electronic properties of the material. There is 

also no direct method to calculate the kinetic energy in equation (1.47) directly from the 

density. In conclusion, the Hohenberg-Kohn-Sham approach is correct in principle, but 

it is sufficient in practice to relate to the properties of a material. 
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1.3.4 Kohn-Sham Approach 

Hohenberg-Kohn approach tried to solve the density functional theory (DFT) by taking 

the property of many-body system of interacting particles as a function of ground state 

density. The Hohenberg-Kohn approach can be expressed as equation (1.47) 

)n(Fdr)r(V)r(n)n(E HKext


 (1.47) 

 

where, FHK is the universal functional of ground state density, n, which comprise of the 

electron kinetic energy and the internal potential. This can be defined as 

N

i ji ji
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(1.51) 

 

by using the Hartree atomic unit, ħ = m = e = 1. Hohenberg-Kohn approach is correct in 

principle; however it is insufficient in practice. This is because it does not provide a 

way to understand the property of a material just by looking at the form of the density. 

 

In 1965, Kohn and Sham proposed an improved approached to solve the density 

functional theory (DFT). Today, it is known as the Kohn-Sham ansatz. The Kohn-Sham 

approach replaces the many-particle problem with an auxiliary independent particle 

problem. This involves independent particles but an interacting density. Hence, this 

leads to exact calculation of the properties of many-body system by using independent 

particle method. This success becomes the basis of the most calculation that attempt to 

make “ab initio” prediction for the properties of a material.  

 

The Kohn-Sham approach is derived upon two basic assumptions. Firstly, the exact 

ground state density can be represented by that of an auxiliary system of non-interacting 
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particles. This means the ground state density of interacting system is the same as that 

of the non-interacting system, 

)r(n)r(n KS


 . (1.52) 

This leads to the relation of the actual and auxiliary system as shown below. 

)r(V)r(n)r(n)r(V KSKSext


  (1.53) 

 

Secondly, the auxiliary Hamiltonian is chosen to have the usual kinetic operator and 

effective potential, )r(Vext


 acting on an electron of spin, s at point, r


. The Hamiltonian 

can be defined as  

)r(V
m2

Ĥ eff
2

2 
 (1.54) 

 

By using the Hartree atomic unit, the Hamiltonian can be further simplified to 

)r(V
2

1
Ĥ eff

2 
 (1.55) 

 

Hence, for N independent particles where N = N(↑) + N(↓), each spin, s occupies 

respective orbitals, i, )r(s
i


 with the lowest eigenvalue )r(E s

i


 of the ground state. This 

can be represented by the Schrödinger equation. 

)r(E)r()]r(V
2

1
[ s

i
s
i

s
ieff

2 
. (1.56) 

 

In Hohenberg-Kohn (HK) approach, the universal functional FHK comprises of the 

electron kinetic energy and the interaction potential. Kohn-Sham improved the 

Hohenberg-Kohn expression by separating the universal functional into three parts. The 

first two parts remain the same as for the Hohenberg-Kohn expression. Kohn-Sham 
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adds in the third part of the functional with the exchange-correlation functional. Hence, 

the Kohn-Sham approach can be expressed as  

11extxcHartrees Erd)r(V)r(n]n[E]n[E]n[T)]r(n[E


 (1.57) 

where, E11 is the nuclei-nuclei interaction and Ts is the independent particle kinetic 

energy which is defined by 

rd
2

1
)]r(n[T i

2
N

1i
is


 (1.58) 

EHartree is the Hartree energy which is the electron-electron interaction determined by the 

classical Coulomb interaction energy. It can be expressed as 

21
21

21
Hartree rdrd

rr
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2

1
)]r(n[E







 (1.59) 

 

The solution of this auxiliary system for ground state can be view as the problem of 

minimization with respect to density. Since, only Ts is expressed as a the function of 

orbitals, it can be differentiated directly with respect to )r(


. All other term are 

expressed as a function of density. Hence, chain rule is used to derive the variational 

equation. 

n
]

n

E

n

E

n

V
[

TE xcHartreeexts  (1.60) 

Since, 

rd
2

1
)]r(n[T i

2
N

1i
is


 (1.61) 

 

then,  

2s

2

1T
 (1.62) 
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From, 

i
i i

i
2

i)r(n


 (1.63) 

Then,  

)r(
)r(n 



 (1.64) 

Hence, equation (1.60) can be written as 

]VVV[
2

1E
xcHartreeext

2  (1.65) 

Where the effective potential Veff  is defined as  

xcHartreeexteff VVVV  (1.66) 

 

Therefore, equation (1.60) can be further simplified to be 

ieff
2 ]V

2

1
[

E
. (1.67) 

This is known as the Kohn-Sham equation of the auxiliary non-interacting system. The 

auxiliary Hamiltonian is given in equation (1.55) and it is also known as the effective 

Hamiltonian. 

 

The effective potential, Veff is dependent on the ground state density. The effective 

potential and the long range Hartree potential forms an independent particle potential 

and this can be solved by using the self-consistent method with the resulting density. 

However, the Kohn-Sham equation is not solved without solving the exchange-

correlation energy density term. The exchange-correlation functional can be 

approximated which will be discussed in the following section. 
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1.3.5 Exchange-Correlation 

In the previous section, Kohn-Sham replace the many-body particle problem with an 

auxiliary independent particle problem. Kohn-Sham splits the effective potential into 

three parts. First two parts consist of the non-interacting terms which are the kinetic 

energy of the independent particles, the Hartree long-range energy and the interacting 

term, which is the exchange-correlation term.  

 

The kinetic energy can be determined exactly. The non-interacting term is easily solved 

by wave function represented by a Slater determinant of orbitals. This determinant can 

be solved by using a suitable software calculation, such as the Monte Carlo method. The 

unknown exchange-correlation energy term must be approximated in order to solve the 

Kohn-Sham equation. 

 

The exchange-correlation term can be separated into the exchange energy and the 

correlation energy. 

cxxc EEE  (1.68) 

 

The exchange energy is due to the interactions of any two electrons. The wave function 

is anti-symmetric and this is due to the exchange of the coordinates of the two electrons 

upon interaction. If the spin of the electrons are taken into consideration during the 

interaction, then it is known as the Heisenberg interaction. Hence, it can be represented 

as  

)](r[)](r[
rr

e
)](r[)](r[E 1221
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2

2211x





 (1.69) 

It is called the "Majorana interaction” when the exchange of spin is neglected.  
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The correlation energy is the difference between the interacting kinetic energy, E and 

the non-interacting Kinetic energy, Es. 

sc EEE  (1.70) 

Hence, it is clear that the exchange-correlation energy term includes all the many-

particle interactions. 

 

The exchange-correlation energy can be approximated by several approximations. The 

local density approximation (LDA) and the generalized gradient approximation (GGA) 

are the most popular functionals used to approximate the exchange correlation 

functional. This will be discussed in the next section. 

 

 

1.3.6 Local Density Approximation (LDA) 

Approximate functionals are used to approximate the exchange-correlation functional, 

Exc(n). The local density approximation (LDA) is one of the simplest and most 

commonly used approximation to approximate the exact functional for the unknown 

exchange and correlation energies. LDA is derived from the concept of the 

homogeneous electron gas (HEG) model. This model is built by placing N interacting 

electrons which are placed in an infinite volume V and it is neutralised with a positive 

back ground charge.   

 

To approximate the exchange-correlation functional, LDA assumes that the charge 

density varies slowly on an atomic scale. Then, the distribution of electrons in an atom 

is approximated to be homogeneous. Therefore, the electrons in this system are 
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subjected to a constant external potential and thus the density is constant. Hence, Exc(n) 

at any point r can be expressed in terms of a local functions of the density. Then, the 

total exchange-correlation energy of an inhomogeneous system can be approximated by 

integrating over a local function of the charge density. The exchange-correlation energy 

functional )]r(n[Exc


is defined as; 

dr)]r(n[)r(n)]r(n[E xcxc


 (1.71) 

where, εxc is the exchange-correlation energy per electron in a uniform electron gas. The 

exchange-correlation energy per electron can be further simplified into two parts; the 

exchange term and the correlation term as shown in the equation below. 

cxxc  (1.72) 

 

The exchange term can be derived analytically by Dirac‟s approximation in a 

homogeneous system. 

3
1

3
1

xc )]r(n[)
3

(
4

3
)]r(n[


 (1.73) 

 

However, the correlation part cannot be derived analytically, but it can be calculated 

accurately by using the Monte Carlo simulations. 
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1.3.7 Generalized Gradient Approximation 

(GGA) 

The local density approximation (LDA) assumes that the density of electrons in an atom 

is approximately homogeneous. However in real systems, the distribution of electrons in 

a system is far from being uniform. There is a density gradient, n  between two atoms. 

The difference of the two approximated are shown as Fig. 1.6. 

Hence, the proper step to improve the accuracy of the exchange-correlation functional is 

to construct a functional that depends on the local density and the density gradient also. 

The new approximation can be constructed as 

rd)]r(n),r(n[)r(n]n,n[ 3
xc

GGA
xc


 (1.74) 

 

LDA construct the functional based on „local density‟ which is derived from the 

uniform electron gas. GGA minimises the LDA error by including a semi-empirical 

functional which contain one or more parameters to satisfy various physical constrain 

according to the nature of the system of interest. Perdew-Wang 1991 (PW91) and 

Perdew, Burke and Enzerhof (PBE) are the most popular GGA that is used to 

approximate the functional. With the small varying density gradient contribution, 

LDA
xc

GGA
xc EE . Hence, GGA reduces the binding energy compared to LDA. This 

improves the agreement with the experimental value. 
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 (a) LDA approximate the exchange-correlation by considering only the local density at point r


 

 

 
(b) GGA approximate the exchange correlation functional by considering both local density and the 

density gradient between two atoms. 

 

FIGURE 1.6 

Figure shows the schematic diagram of the approximation used in (a) LDA and (b) GGA calculations.  
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SECTION 1.4          

Overview 

 

The discovery of iron based superconductors in year 2008 has instilled various interests 

of many researchers around the world. The iron based superconductors does not 

resemble conventional superconductors and has a property on their own. Hence, it 

introduced a new class of high-temperature superconductor. In this research, first 

principle calculation of polarised and unpolarised electronic band structure of various 

types of iron based superconductors is calculated using the density functional theory 

(DFT) as provided in the Accelrys Material Studio commercial software.   

 

The space groups of the interest lattices and the lattice parameters are determined before 

the lattice is built. The lattice will then undergo geometry optimization in order to 

obtain the equilibrium structure at the minimum potential energy, where the forces 

between the atoms are zero. The optimized structure is then used to calculate the 

polarised and the unpolarised band structures of the respective compounds. Both 

calculations are compared to obtain more accurate band-gap analysis.  
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In this calculation, the band structure is calculated by using the DFT method in the local 

density approximation (LDA) approach formed with the parameterization given by 

Perdew-Wang (PWC) funtional. In the polarised calculation the spin orbitals are used in 

the DFT calculation. The basis set, double numerical with polarization (s, p and d 

orbitals for polarisation) are used to describe the valence electrons in the polarised 

orbital calculation.  

 

This research is begin by studying the pure lattice of iron selenium, FeSe and the alloy 

of FeSe by removing the selenium atom forming Fe:Se = 2:1 as dicussed in chapter 2. 

The larger lattice of FeSe alloy is the built in chapter 3 forming Fe:Se = 8:6 and 

Tellurium atom is introduced  to substitute the Se vacancy forming Fe:Se:Te = 2:1:1 

and 8:6:2. In this chapter, the Meissner effect is discussed as well. In chapter 4, the 

oxidation of FeSe compound is discussed by adding oxygen into the FeSe lattice 

forming Fe:Se:O = 8:6:2 and 8:4:2. The oxidation of FeSeTe compound is then 

discussed in the following chapter and in chapter 6, the samarium atom is substitute into 

various FeSe compound forming FeSeSmO, FeSeTeO, Fe2SeSm2O2, FeSeTeSmO and 

FeTeSmO. The conclusion of each chapter is then summarised in chapter 7. 
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CHAPTER 2 

DFT COMPUTATION OF THE 

ELECTRONIC BAND 

STRUCTURE OF FeSe 

 

The band structure of FeSe is calculated in the space group P4/nmm with unpolarized as well as 

with polarized orbitals. There is a tetrahedron of Se atoms inside the cell. The polarized Fermi 

energy is found to be -4.54 eV and the binding energy is -33.0 eV. The energy gap varies from 

0.58 eV at Z point to 1.58 eV at R point. The gap is highly anisotropic. Next, a unit cell of FeSe 

with two Se atoms removed is made. There are 2 Se atoms in the perfect unit cell; and there is 

only one Se atom in the doped cell. There is a pronounced effect on the density of states. The 

band structure for the unit cell with only one atom of Se per unit cell is calculated by using 

polarized as well as unpolarized orbitals. It is found that the gap is reduced by a large amount of 

energy in the unit cell with 1 Se atom compared with that with 2 Se atoms. The gap for 1 Se cell 

varies from 0.45 eV at G point to 1.0 eV at Q point. This reduced gap is conducive to 

superconductivity.      
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SECTION 2.1  

Introduction 

 

Recently, it has been reported that FeSe becomes superconducting [7] when some Se atoms are 

removed. In particular, Fe20Se17 is superconducting at about 10K. The typical a.c. susceptibility 

was found to be –0.015 to -0.017 emu/g. The mass density is ρ = 5.22 g/cm
3
 so that the 

susceptibility is -0.08091 emu/cm
3
. The value of -1/4π is -0.07961. Hence, the experimental 

value is slightly deeper than expected for the perfect Meissner effect. This means that the field 

inside the superconductor is not zero but there is a small field. This small field may be parallel 

to the external field or may be oppositely directed. In the present case, it is parallel to the field. 

The electronic configuration of Fe is 3d
6
4s

2
 and that of Se is 4s

2
4p

4
. If 4 electrons of 4p

4
 will fill 

up the need of 3d
6
, it will provide a diamagnetic material. Apparently, it does not quite happen 

that way and there is something like a weak diamagnet which becomes a superconductor when 

some of the 4p
4
 electrons are removed altogether. The superconducting phase is found when the 

contribution of Se is less than that of Fe [7]. 

 

 In the present work, the pure FeSe is studied as well as that alloy which is deficient in Se. The 

calculation of the electronic band structure of Fe:Se = 2:2 as well as Fe:Se = 2:1 are reported. 

The characteristic developments in the band structure when 1 Se is removed from the unit cell is 

found. 
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SECTION 2.2 

Band Structure 

 

2.2.1 FeSe 

The density-functional theory in the local density approximation (LDA) is used to calculate the 

band structure. The effort to use the generalized-gradient approximation (GGA) were also made 

but the results of the two approximations were very close to each other. Hence, only LDA 

results are reported here. 

 

The unit cell of FeSe in the space group P4/nmm consists of 2 atoms of Fe and 2 atoms of Se. 

The 8 Fe atoms are on the eight corners and 2 Fe atoms are on the top and bottom face centered 

positions as shown in Fig 2.1. The 4 Se atoms form a tetrahedron with atoms on the faces so that 

there are only 2 Se atoms per unit cell. After optimization, the unit cell parameters are found to 

be a = 3.7675Å and c = 5.7096Å. The coordinates of K-points are Z (0, 0, 0.5), A (0.5, 0.5, 0.5), 

M (0.5, 0.5, 0), G (0, 0, 0), R (0, 0.5, 0.5) and X (0, 0.5, 0). The band structure for the 

unpolarized orbitals is given in Fig. 2.2 and that for the polarized is given in Fig. 2.3. In 

between Z and A points the unpolarized calculation is showing a gap which vanishes when 

polarized orbitals are used. Usually, the spin up and spin down energies are clearly visible but in 

the present case, that is not happening showing lack of polarization is the FeSe. 
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FIGURE 2.1 

The figure shows the P4/nmm lattice of FeSe with the Brillouin Zone path  

 

 

 

 

FIGURE 2.2. 

The band structure of FeSe calculated by using unpolarized orbitals in DFT (LDA). 
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FIGURE 2.3. 

The band structure of FeSe calculated by using polarized orbitals. 

 

Most of the features in the unpolarized band structure are similar to those of polarized structure. 

The Fermi energy is -4.544 eV in the polarized case compared with -4.290 eV for the 

unpolarized case. The band gap at various k-points is given in Table 2.1. The polarized gap 

varies from 0.58 eV at Z point to 1.58 eV at R point. The density of states (DOS) for the 

unpolarized case is given in Fig. 2.4 and for the polarized case in Fig. 2.5. Somehow the 

chemical binding is such that the effect of spin polarization is quite small. 

 

TABLE 2.1. The band gaps in FeSe in units of eV 

K-point 
Band Gap in FeSe (eV) 

Polarized Orbitals Unpolarized Orbitals 

Z 0.58 0.60 

A 1.21 1.20 

M 0.66 0.71 

G 0.68 0.69 

Z 0.59 0.60 

R 1.58 0.61 

X 0.90 0.87 

G 0.68 0.69 
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FIGURE 2.4. 

The DOS of FeSe for unpolarized orbitals. 

 

 

 

 

 
FIGURE 2.5.  

The DOS of FeSe for polarized orbitals. 
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2.2.2 Fe:Se = 2:1 

Usually, the doping is performed by adding impurity atoms. In the present case, it is not 

to add but to remove some of the Se atoms. So, the doping is done by removing 2 Se 

atoms from the 4 belonging to the tetrahedron. While the tetrahedron gives 2 Se atoms 

per unit cell, we have only 1 Se atom per unit cell. In this case, the unit cell constants 

are a = 3.6067Å and c = 4.8260Å. The Se atoms are not symmetrized with respect to the 

unit cell of FeSe. They are now located at (0, 0.5, 0.427) and (1, 0.5, 0.427) retaining 

the memory of the tetrahedron. The k-points are G (0, 0, 0), F (0, 0.2, 0), Q (0, 0.5, 0.5), 

and Z (0, 0, 0.5). The Fermi energy is found to be -4.52 eV by using polarized orbitals 

and -4.248 eV by using unpolarized orbitals. Thus there is a small effect of the spin 

polarization. The band gap is shown in Table 2.2.   

 

TABLE 2.2.  The energy gap at various k-points in Fe:Se = 2:1 crystal. 

k-point 
Energy Gap in Fe:Se = 2:1 (eV) 

Polarized Orbitals Unpolarized Orbitals 

G 0.45 0.43 

F 0.73 0.15 

Q 1.02 1.11 

Z 0.62 0.61 

G 0.45 0.43 

 

The polarized band structure of Fe:Se = 2:1 is shown in Fig. 2.6 and the unpolarized in 

Fig. 2.7. There is some crossing phenomenon at the F point. The energy between G and 

F point is affected by the polarization. 
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FIGURE 2.6.  

The polarized band structure of Fe:Se = 2:1 structure. 

 

 

FIGURE 2.7.  

The unpolarized band structure of Fe:Se = 2:1 structure. 

 

The DOS calculated by using unpolarized orbitals is shown in Fig. 2.8 and that with 

polarized orbitals is given in Fig. 2.9. The lack of any major difference clearly indicates 

that the case of magnetism is very weak. 
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 FIGURE 2.8.   

The density of states of Fe:Se = 2:1 for unpolarized orbitals 

 

 

 

FIGURE 2.9.  

The density of states of Fe:Se = 2:1 for polarized orbitals 
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SECTION 2.3  

Binding energy 

 

In the case of the unit cell of FeSe, the binding energy calculated is -31.9 eV for the 

unpolarized orbitals and -33.0 eV for the polarized orbitals showing only 3% effect of 

polarization. In the case of Fe:Se = 2:1 , the unpolarized binding energy calculated is 

given as -26.9 eV and the polarized value is -26.5 eV. So the effect of spin is only 1.2%. 

This means that upon reducing the Se atom, the effect of spin is reduced. The effect of 

spin reduction is useful for superconductivity. 
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SECTION 2.4 

Conclusions 

 

One of the important findings is that the magnetization in FeSe is very weak. In fact, the 

effect of spin polarization is small. The band gap is found to be reduced by a large 

amount when one Se atom is removed from the unit cell. The reduced band gap induces 

superconductivity [18]. The superconductivity in FeSe unit cell is thus distinguished by 

the effect of spin and incomplete Meissner effect. Usually, there are the type-I 

superconductors which are distinguished by complete absence of magnetic atoms. In 

this case there is only one critical field which destroys the superconductivity. In the case 

of type-II superconductors, there is a mixed phase between the two critical fields, the 

upper critical field at which the superconductivity is completely destroyed and the lower 

critical field at which vortices appear. The present superconductors containing Fe atoms 

[19-23] form a class by themselves. They are distinguished by incomplete Meissner 

effect. 
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CHAPTER 3 

THE MEISSNER EFFECT IN 

FeSe SUPERCONDUCTOR 

 

In the zero-field cooled samples, the Meissner susceptibility, -1/4π, is found to depend 

on the mass density of the samples so that the experimental value comes out to be less 

or more than -1/4π. The change in value of -1/4π due to field trapping is determined. In 

the field cooled samples there is a large effect of the field trapping. The band structure 

of FeSe, FeSe from which 2 atoms of Se out of 4 per unit cell have been removed and a 

system in which 2 Te atoms have been substituted for 2 Se atoms in a unit cell are 

calculated. Large effects are found in the density of states. The normal state gap reduces 

in the composition which becomes superconducting.  
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SECTION 3.1 

Introduction 

 

The iron atoms have a large magnetic moment and in compounds, such as FeSe, the 

magnetic moment per Fe atom is very large, such as 2.1μB when Fe is surrounded by 

some vacancies and even -1.1μB in the neighbourhood of Se atoms. The net magnetic 

moment of Fe ≈1.0μB is quite large to yield the Meissner effect. It has been found that 

pure Fe which has the electronic configuration of 3d
6
4s

2
 is a ferromagnet. When another 

atom is brought in the neighbourhood of Fe, such as As, there is a likelihood of forming 

an antiferromagnetic material. FeSe forms a ferromagnet because the down magnetic 

moment is smaller than the up moment. It turns out that FeAs has a superconducting 

phase. Similarly, FeSe has a superconducting phase when number of Se atoms is 

slightly deficient. For example, FexSe1-x with x≈0.12 is a superconductor [7]. Another 

study showed that FeSeTe with equal amount of Se and Te, is a superconductor [24]. It 

is possible that some impurities, such as oxygen are present in the sample [25]. Lee et al 

[26] find that FeSe0.78 is a half metal, i.e., ¼ filled conduction bands. In all possibilities, 

it should be a ferromagnet as pointed out above. As the system goes from normal to the 

superconducting phase, there is no change in the phonon density of states [27]. Subedi 

et al [3] find that the ground state of FeS, FeSe and FeTe is a spin-density wave state.  
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Some time ago, it was found [28-30] that in field cooled samples, the usual Meissner 

effect is not found and there are magnetic terms in the free energy. It was suggested that 

currents with phase factor shifted by π occurred [18, 31]. 

 

In the present work, the reported value of -1/4π for the susceptibility does not occur due 

to the coordinate but dependent of the mass density. The Meissner effect formulation 

based on B = H + 4πM is found to be too simple because magnetization, M can depend 

on the coordinates and exhibit nonuniformity and there may be trapped fields. Here B is 

the magnetic induction inside the sample, H is the external field and M is the 

magnetization of the sample. The band structure calculation is performed by using 

density-functional theory; DFT (LDA) from which the gap in Fe2Se2 is found to be very 

large but reduces when some atoms of Se are removed. In particular Fe2Se has smaller 

band gap than Fe2Se2. When the Se atoms are replaced by Te atoms, the gap further 

reduces. The reduced band gap in FeSeTe indicates that the superconducting transition 

temperature increases as the normal state gap reduces. 

 

 

 

 

 

 



53 

 

 

SECTION 3.2 

The Meissner Effect 

 

The field inside a material, B is given by the external field, H, and the internal field 

determined by the magnetization, M as, 

B = H + 4πM (3.1) 

 

Since B = 0, then 

4

1

H

M

 

(3.2) 

 

This is the theory of the Meissner effect. Now, consider two modifications, one of 

which introduces the coordinate dependent density, i.e., the susceptibility, χ is replaced 

by χoρ(x) where ρ(x) is the mass density and the quantity χo is the susceptibility per unit 

density. Another modification introduced here, is to use a small field, instead of zero 

field. This small field works like the London penetration depth which leads to a small 

resistivity. The susceptibility in the zero field cooled samples is obtained as well as in 

the field cooled samples. It is found that in FeSe0.85, the magnetization ratio 

Mac(T)/Mac(2K) approaches ≈ -1. The typical a.c. susceptibility was found to be -0.015 

to -0.017 emu/g. In some of the samples [1] the value is -0.0155 emu/g. This value must 

be multiplied by the mass density, ρ = 5.22 g/cm
3
. Then, the value found becomes 

0.08091 emu/cm
3
 which is only slightly different from -1/4π ≈ 0.07961 but the lesson is 
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that the mass density which depends on the coordinates is needed. The mass near Fe-Se 

atoms is indeed different from that in between layers. Hence, the Meissner effect has to 

be modified to,  

)x(  
(3.3) 

 

)x(M4HB  (3.4) 

 

4

1

H

)x(M
)x( 


 

(3.5) 

 

)x(MM   
(3.6) 

 

)x(

1

4

1

H

M

 

(3.7) 

 

Second modification is to introduce a small filed instead of zero, 

zeroHM4HB
 

(3.8) 

 

H4

H

4

1

H

M zero

 

(3.9) 

 

Where Hzero is a small field due to trapped fields and it is very small. It causes a small 

resistivity which is of the same order of magnitude as the one caused by the London 

penetration depth. The zero field cooled susceptibility of several Fe containing 

superconductor is examined and the Hzero/H of each samples is evaluated. The results 

obtained are as given in Table 3.1. The susceptibility of two samples is also shown in 

Figs 3.1 and 3.2. The superconductors LiFeAs, K0.4Sr0.6Fe2As2, Cs0.4Sr0.6Fe2As2, 

Ba0.6K0.4Fe2As2 and LaFeAsO0.89F0.1 have also been studied by several authors [21, 32-
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35]. The original definition of Meissner effect [9] is that the field penetrates the 

superconductor for only a short distance, called the London penetration depth, after 

which it decays rapidly to zero. In the present result, apparently, the field does not decay 

to zero but to a small value. In Fig. 3.1 show the susceptibility of zero-field cooled 

sample of LiFeAs. It is seen that the susceptibility approaches a value which is slightly 

different from -1/4π. The field cooled (H≈10G) value is also shown which is very 

different from -1/4π due to field trapping near the Fe atoms. The LiFeAs crystallizes in 

a tetragonal unit cell with a = 3.7914Å and c = 6.364Å as given by Tapp et al [32]. In 

Fig. 3.2, show the susceptibility of K0.4Sr0.6Fe2As2 as a function of temperature. Here 

again it is seen that the zero-field cooled susceptibility is slightly off from -1/4π value 

and the finite field (H=10G) cooled value is positive indicating the field trapping. 

 

Table 3.1. The values of Hzero/4πH for Fe containing superconductors (zero-field cooled = ZFC) 

S. No Formula Tc(K) χ(T=0)(ZFC) Hzero/4πH 

1 FeAs0.85 8.2 -0.0809 +0.0013 

2 LiFeAs 18.0 -0.0943 +0.0147 

3 K0.4Sr0.6Fe2As2 37.0 -0.1146 +0.0350 

4 Cs0.4Sr0.6Fe2As2 38.0 -0.0931 +0.0135 

5 K0.4Ba0.6Fe2As2 38.0 -0.0740 -0.00558 

6 O0.89F0.11LaFeAs 27.0 -0.0589 -0.02070 

 

 

 

 

 

 

 

 

 



56 

 

 

 

FIGURE 3.1.  

The susceptibility of the LiFeAs in zero-field cooled and in finite (10G) field cooled samples showing 

derivations from -1/4π 

 

 

 

FIGURE 3.2.  

The susceptibility of K0.4Sr0.6Fe2Se2 as a function of temperature for the zero-field as well as the finite 

(10G) field cooled samples. The lower zero-field cooled (SCF) does not reach the -1/4π 
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SECTION 3.3 

Band Structure 

 

The transition temperature of FeSe is about Tc = 8K, while that of FeSe0.85 ≈ 8.2K. The 

transition temperature of Fe1+yTeSe1-xfor equal amount of Se and Te is about 14K. The 

band gap of these materials is calculated from which we find that the band gap reduces 

in going from Fe2Se2 to Fe2SeTe which might indicate a relationship between the 

normal state gap and the superconductivity. The density-functional theory [13, 15, 36] 

in the local density approximation (LDA) is used in this calculation to obtain the band 

structure by using polarised as well as the unpolarized wave functions. The band gap 

found from this calculation is given in Table 3.2. At the z point the reduction in the gap 

from 0.58eV for Fe2Se2 to 0.29eV for FeSeTe is clearly seen. At the G point the 

reduction from 0.69eV for Fe2Se2 to 0.06eV for FeSeTe clearly shows a large reduction 

in the normal state gap accompanied by increase in the superconductivity transition 

temperature. The space group of Fe2Se2 is P4/nmm with a = 3.7675Å and c = 5.7096Å 

upon optimization.  When two atoms of Se are removed from the 4 in the unit cell we 

obtain Fe2Se1 with optimised lattice parameter a = 3.6057Å and c = 4.826Å which 

shows that the unit cell volume is reduced in going from Fe2Se2 to Fe2Se1. When Te is 

introduced in the Se sites, Fe2SeTe has a much smaller cell with a = 3.5504Å and c = 

5.498Å. As the cell size is reducing, the transition temperature is increasing. For 

Fe2SeTe the calculated band structure is shown in Fig. 3.3 and the calculated DOS in 
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Fig. 3.4. There is a peculiar effect seen in the valence band. The effect of Te is to create 

a separate peak. In order to investigate this effect further, a large unit cell is made.  

 

A block of 4 unit cells is made so that the ratio of atoms can be varied. For Fe:Se = 8:8 

by using the polarised orbitals in the DFT(LDA) the band structure obtained is as shown 

in Fig. 3.5 and the DOS is shown in Fig. 3.6. In this calculation the k-points are, 

G(0,0,0), F(0,0.5,0), Q(0,0.5,0.5) and Z (0,0,0.5). The polarized Fermi energy is -

4.796eV and the binding energy is -106.8eV. The vacancies are introduced by removing 

two Se atoms so that Fe:Se = 8:6. In this case the polarised Fermi energy is found to be 

-4.733eV which in magnitude only slightly lower than when there is no vacancy. The 

polarised binding energy is -93.91eV which in magnitude is smaller than that for the 

fully occupied lattice. The polarised band structure of 8:6 cell is shown in Fig. 3.7 and 

its DOS is given in Fig. 3.8. When Te atoms are introduced in the places vacated by Se, 

the ratios of atoms becomes Fe:Se:Te = 8:6:2. In this case, the calculated band structure 

for polarised orbitals given in Fig. 3.9 and the DOS is given in Fig. 3.10. The band gaps 

obtained from these calculations are given in Table 3.3. It is quite clear that the band 

gap reduces upon introducing Te and this process is accompanied by an increase in the 

transition temperature. In the lattice Fe:Se = 8:6 two of the Se atoms have been 

removed. Upon optimisation for minimum energy, it is found that some of the Fe atoms 

approached towards the antisites. The Fe atoms moved towards the sites vacated by Se 

atoms. This antisite motion is accompanied by changes in electron cloud which is more 

conducive to superconductivity than the rigid fully occupied lattice. The iron atoms in 

different directions move by 4 percent, 8 percent and 30 percent of the rigid position. 

The coordinates, (0, 0, 0) became (0, 0, -0.8), the position (0.25, 0.25, 0.0) became 

(0.25, 0.25, 0.04) and (0.5, 0, 0) became (0.5, 0, 0.3). Thus Fe atoms moved to the 

positions which later formed the superconducting phase.  
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The Fermi energy has been calculated for FeSe, FeSe with Se vacancies and with Se 

vacancies filled with Te atoms as given in Table 3.4. It is known that the 

superconducting transition temperature increases by creating Se vacancies of by 

substituting Te for Se. The Fermi energy is seen to reduce as the transition temperature 

increases. 

Table 3.2. The band gap in eV at various K point calculated by using DFT(LDA) (pol=polarised, 

unpol=unpolarised). The coordinates of the k points are Z(0, 0, 0.5), A(0.5, 0.5, 0.5), M(0.5, 0.5, 0), 

G(0, 0, 0), R(0, 0.5, 0.5) and X(0, 0.5, 0). 

S. No Formula Z A M G R X 

1 Fe2Se2(pol) 0.58 1.21 0.66 0.68 1.58 0.90 

2 Fe2Se2(unpol) 0.60 1.20 0.71 0.69 1.61 0.87 

3 Fe2Se1(pol) 0.62 ... ... 0.45 1.02 0.73 

4 Fe2Se1(unpol) 0.61 ... ... 0.43 1.11 0.15 

5 FeSeTe(pol) 0.29 ... ... 0.063 1.99 1.13 

6 FeSeTe(unpol) 0.25 ... ... 0.057 2.05 1.22 

 

 

 

FIGURE 3.3.  

The band structure of Fe2SeTe calculated by using DFT(LDA) 
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FIGURE 3.4.  

The density of electron states (DOS) of Fe2SeTe calculated from the first principles. 

 

 

 

FIGURE 3.5. 

The band structure of Fe:Se = 8:8 calculated by using polarised orbitals in the DFT(LDA). 
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 FIGURE 3.6   

The density of states of Fe:Se = 8:8 calculated by using the polarised orbitals in the DFT(LDA) 

 

 

 

FIGURE 3.7  

The polarised band structure of 8:6 cell from which Se atoms have been removed. 
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FIGURE 3.8.  

The density of states of Fe:Se = 8:6 cell calculated from the DFT(LDA) with polarised orbitals. 

 

 

 

 

 

 FIGURE 3.9.   

The polarised band structure when vacant sites of Se are occupied by Te atoms so that the ratio of atoms 

is Fe:Se:Te = 8:6:2 

 

 

 



63 

 

 

 

FIGURE 3.10.  

The density of states (DOS) of Fe:Se:Te = 8:6:2 calculated by polarised orbitals. 

 

Table 3.3. The band gap in eV at various points with varying ratios of atoms calculated using DFT(LDA). 

S. No Atomic Ratios G F Q Z 

1 Fe:Se = 8:8(pol) 0.182 0.509 0.808 0.365 

2 Fe:Se = 8:8(unpol) 0.180 0.522 0.691 0.346 

3 Fe:Se = 8:6(pol) 0.250 0.234 0.533 0.076 

4 Fe:Se = 8:6(unpol) 0.090 0.190 0.520 0.054 

5 Fe:Se:Te = 8:6:2(pol) 0.030 0.286 0.220 0.419 

6 Fe:Se:Te = 8:6:2(unpol) 0.044 0.219 0.204 0.416 

 

Table 3.4. The Fermi energy in eV for the three systems 

S. No System Fermi Energy (pol) Fermi energy (unpol) 

1 Fe:Se = 8:8 -4.80 -4.52 

2 Fe:Se = 8:6 -4.73 -4.48 

3 Fe:Se:Te = 8:6:2 -4.32 -4.00 
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SECTION 3.4  

Conclusions 

 

The magnetization, M in the Meissner effect should be modified to include the effect of 

mass density, M = Moρ(x) where ρ(x) is the mass per unit volume which depends on the 

coordinates. In the zero-field cooled samples, the value of -1/4π is modified. Extensive 

calculation of the band gap in Fe2Se2, Fe2Se1 and Fe2SeTe indicates that the transition 

temperature of the superconductor increases with reduced normal state gap. It seems 

that doping and non-stoichiometry are important as found by Bednorz and Muller [1, 

37] and periodic symmetry is relatively not important for the mechanism of 

superconductivity. That is why, the BCS theory, which requires periodic symmetry for 

the electron-phonon interaction is not immediately relevant to the present compounds. 
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CHAPTER 4 

DENSITY-FUNCTIONAL 

THEORY COMPUTATION OF 

OXIDATION OF FeSe 

 

FeSe with slight deficiency of Se is superconducting. Fe2SeTe has higher transition 

temperature than FeSe. The transition temperature further increases upon oxidation. The 

band gaps of Fe8Se6O2 as well as that of Fe2Se2 are calculated in this chapter. The 

calculated band gap reduces upon oxidation. The density-functional theory is used to 

optimize the cell parameter of Fe8Se6O2 which are found to be a = 6.9974Å, b = 

7.3016Å and c = 5.2444Å. The Fermi Energy is found to be -4.472eV for the polarized 

orbitals. The k-points for which the coordinate has been done are G (0, 0, 0). F (0, 0.5, 

0), Q (0, 0.5, 0.5) and Z (0, 0, 0.5). The unpolarized band gap varies from 0.19eV at G 

point to 0.466eV at F point. These gap energies of Fe8Se6O2 are smaller than those of 

Fe2Se2. Hence, in the chapter, the reduced normal state gap is found to have higher 

transition temperature.  
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SECTION 4.1 

Introduction 

 

FeSe becomes a superconductor when some Se atoms are missing. The magnetic 

moment of Fe per atom is almost completely neutralized so that the susceptibility is 

negative corresponding to diamagnetism. The electrons in Fe are strongly paramagnetic 

and ferromagnetic phase of Fe is well known. Even then upon addition of Se, at a 

suitable low temperature the ground state is diamagnetic. Because of these reasons, the 

superconductivity in Fe containing material is of special interest. We have calculated 

[38] the band structure of FeSe to determine the band gaps and the Fermi energy. The 

band gap as well as the Fermi energy of FeSe with extra oxygen atoms which replace Se 

atoms is calculated in this chapter. In this case it is found that the gap reduces which is 

accompanied with increase in transition temperature of the superconductor [18].  

  

In this chapter, the calculation of the band structure of Fe8Se6O2 is reported. The unit 

cell of Fe2Se2 is formed from which the Se atoms are removed and replaced with the 

oxygen atoms on that a large unit cell. Similarly, the calculation of band structure of 

Fe8Se4O4 is also reported. 
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SECTION 4.2 

Methodology 

 

The method of calculation is to solve the Schrodinger equation in the density-functional 

theory. In order to make the problem tractable, we use the local density approximation 

(LDA). We use the spin unpolarized orbitals to calculate the energies. Since, 

polarization is important for magnetic atoms, we repeat the calculation with polarized 

orbitals. The density of states for electrons is obtained for both polarized as well as 

unpolarized orbitals. 

 

 

4.2.1 Band Structure of Fe8Se6O2 

The unit cell of FeSe has two atoms of Fe and two atoms of Se. The Fe atoms are shared 

with other cell at the corner of a cube. The four atoms of Se in a tetrahedron inside the 

cube constitute only two atoms per cell. In order to dope it with oxygen, a much bigger 

cell is built. A larger cell which has 26 atoms of Fe located at the coordinates given in 

table 4.1 is formed. There are ten Se atoms and two oxygen atoms which replace Se 

sites. Therefore, the oxygen atoms occupy the sites of Se. Thus oxygen atoms are 

located at the antisites. The coordinate of all the 38 atoms are given in table 4.1. The k 
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points are G (0, 0, 0). F (0, 0.5, 0), Q (0, 0.5, 0.5) and Z (0, 0, 0.5). The band structure 

calculated by using the unpolarized orbital is given in Fig. 4.1 and that calculated by 

using polarized orbitals is given in Fig. 4.2. The gap energies are given in table 4.2. The 

unpolarized Fermi energy is found to be -4.472eV which changes to -4.450eV for 

polarized orbitals. The gap at G point is only 0.19eV for unpolarized orbitals which 

changes to 0.052eV for polarized orbitals. Hence, there is a large effect of spin 

polarization on the gap energy. The effect of spin polarization is highly anisotropic. At 

the Q point, the unpolarized gap is 0.446eV which upon polarization changes to 

0.465eV. The unpolarized DOS is given in Fig. 4.3 and the polarized DOS is given in 

Fig. 4.4. Apparently, the DOS is not very sensitive to spin polarization in this system. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1. Coordinate of atoms in Fe8Se6O2 

Atoms Coordinates 

Fe 

0, 0, 0 0, 0, 1 0.5, 0, 0.126 

0, 0.5, 0 0, 0.5, 1 0.5, 0.5, 0.126 

0, 1, 0 0, 1, 1 0.5, 1, 0.126 

1, 0, 0 1, 0, 1 0.5, 0, 1.126 

1, 0.5, 0 1, 0.5, 1 0.5, 0.5, 1.126 

1, 1, 0 1, 1, 1 0.5, 1, 1.126 

0.25, 0.25, 1 0.25, 0.25, 0 0.75, 0.25, 1 

0.25, 0.75, 1 0.25, 0.75, 0 0.75, 0.75, 1 

0.75, 0.25, 0 0.75, 0.75, 0 0.25, 0.5, 0.701 

Se 

0, 0.25, 0.319 0.25, 0, 0.701 0.75, 0.5, 0.701 

1, 0.25, 0.319 0.25, 1, 0.701  

0, 0.75, 0.319 0.75, 0, 0.701  

1, 0.75, 0.319 0.75, 1, 0.701  

O 0.5, 0.25, 0.18 0.5, 0.75, 0.18  
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FIGURE 4.1.  

The band structure of Fe8Se6O2 calculated by using unpolarized orbitals 

 

 

 

FIGURE 4.2.  

The band structure of Fe8Se6O2 calculated by using polarized orbitals 

 

Table 4.2. The band gap of for polarized as well as unpolarized 

orbitals 

K points 
Band Gap (eV) 

UNPOLARIZED POLARIZED 

G 0.190 0.052 

F 0.264 0.373 

Q 0.446 0.465 

Z 0.370 0.356 
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FIGURE 4.3.  

The DOS of Fe8Se6O2 for unpolarized orbitals. 

 

 

 

 

FIGURE 4.4.  

The DOS of Fe8Se6O2 for polarized orbitals. 
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4.2.2 Band Structure of Fe8Se4O4 

Now four oxygen atoms are located at the Se antisites. Therefore, the unit cell has half 

the structure of the Se atoms replaced by oxygen atoms. There is a displacement of Fe 

atoms due to optimization. The movement of Fe atoms might reveal the secret of 

increased transition temperature in the superconducting state. The coordinates of Fe, Se 

and O atoms are given in table 4.3. The magnitude of the Fermi energy has increased 

upon adding extra oxygen atoms. Now for Fe8Se4O4 the Fermi energy is -4.613 eV for 

unpolarized orbitals and -4.771 eV for the polarized orbitals. The band structure 

calculated by using the unpolarized orbitals is given in Fig. 4.5 and that for the 

polarized orbitals is given in Fig. 4.6 and the polarized DOS is given in Fig. 4.7. The 

effect of spin polarized is much reduced in Fe8Se4O4 compared with that in Fe8Se6O2. 

This is an important result because it shows the effect of “spin reduction” upon doping 

the Fe material with oxygen. 

 

 

 

 

   

 

 

 

 

 

 

 

 

Table 4.3. Coordinate of atoms in Fe8Se4O4 

Atoms Coordinates 

Fe 

0, 0, 0 0.5, 0, 0 0, 0, 1 

0, 0.5, 0 0.5, 0.5, 0 0, 0.5, 1 

0, 1, 0 0.5, 1, 0 0, 1, 1 

1, 0, 1 1, 0, 0 0.5, 0, 1 

1, 0.5, 1 1, 0.5, 0 0.5, 0.5, 1 

1, 1, 1 1, 1, 0 0.5, 1, 1 

0.75, 0.25, 0 0.75, 0.25, 1 0.25, 0.25, 0 

0.75, 0.75, 0 0.75, 0.75, 1 0.25, 0.75, 0 

0.25, 0.25, 1 0.25, 0.75, 1  

Se 
0.25, 0, 0.643 0.25, 0.5, 0.643 0.25, 1, 0.643 

0.75, 1, 0.643 0.75, 0, 0.643 0.75, 0.5, 0.643 

O 
0.5, 0.25, 0.117 0.5, 0.75, 0.117 0, 0.25, 0.117 

1, 0.75, 0.117 0, 0.75, 0.117 1, 0.25, 0.117 
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FIGURE 4.5.  

The band structure of Fe8Se4O4 calculated by using unpolarized orbitals 

 

 

 

FIGURE 4.6.  

The band structure of Fe8Se4O4 calculated by using polarized orbitals 
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FIGURE 4.7.  

The DOS of Fe8Se6O2 for polarized orbitals. 

 

 

Table 4.4. The band gap of for polarized as well as unpolarized orbitals 

K points 
Band Gap (eV) 

UNPOLARIZED POLARIZED 

G 0.498 0.506 

F 0.427 0.444 

Q 0.269 0.253 

Z 0.672 0.620 

G 0.498 0.506 
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SECTION 4.3 

Binding Energy 

 

The binding energy of Fe8Se6O2 for unpolarized orbitals is found to be -118.77eV and 

for polarized orbitals is -137.43eV. The effect of spin is thus seen to be only about 17 

percent. When oxygen is increased to form Fe8Se4O4 the binding energy is reduced to -

109.78eV for unpolarized and -112.77eV for the polarized orbitals. The bonds have thus 

become weaker upon oxidation. The weaker bonds have higher transition temperature. 

 

 

 

SECTION 4.4 

Conclusions 

 

The oxidation of FeSe is found to produce a large effect on the normal state gap energy. 

The weaker bonds in the oxide have larger transition temperature. The iron containing 

superconductors found recently [25, 27, 39] require deeper theoretical understanding 

than is available at this time. 
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CHAPTER 5 

ELECTRONIC BAND 

STRUCTURE OF FeSeTeO 

SUPERCONDUCTOR 

 

 

The Fe1.068Te exhibits a first order structural transition at 67K which is not a 

superconductivity phase but such distortions are seen in the superconductors. The lattice 

if FeTe is monoclinic P21/m which changes to P4/mmm above TN. The doped system 

Fe1+ySexTe1-x is superconducting at about 14K. Fe (Se1-xTex) 0.82 has a superconducting 

phase for 0.3<x<1.0. The superconducting transition temperature increases upon 

oxidation. Hence, the band structure of FeSeTeO I calculated in this chapter and it is 

compared with FeSeTe structure. We find that onset of superconductivity is related to 

the reduced gap energy of the normal state.   
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SECTION 5.1 

Introduction 

 

Recently it has been reported by Fang et al [40] that Fe(Se1-xTex)0.82 is superconducting 

with the maximum value of the transition temperature of ~14K for 0.3<x<1.0. Li et al 

[42] find that there is an antiferromagnetic phase. It is known that oxidation in similar 

systems stabilises superconductivity [42, 43] and increase the transition temperature. A 

study of the normal state of the superconductor is needed to understand the origin of 

superconductivity in these unusual Fe containing materials. According to Meissner 

effect, there is no magnetic field in the superconducting state. Hence, the way magnetic 

moment of Fe is neutralized is to be understood. 

 

The band structure of FeSeTeO is calculated to investigate the change in the band gap 

upon oxidation of FeSe to which Te has already been added. 
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SECTION 5.2 

The Band Structure 

 

The larger cell of FeSeTe is built by 26 Fe atoms as given in Table 5.1. There are 9 Se 

atoms placed at z = 0.759 and another 9 Te atoms at z = 0.275. The coordinates of the 

Fe, Se and Te atoms after optimisation are given in table 5.1. The introduction of 

oxygen is obtained by removing two Te atoms and two oxygen atoms to replace the Te 

vacancy. Since, the configuration of atoms is optimised for the minimum energy; Fe 

atoms are found to move upon optimization. The coordinate of all the atoms of 

FeSeTeO in the optimised configuration are given in Table 5.2. It is found that the 

optimised cell has a = 6.5855Å, b = 7.3511Å and c = 5.2279Å. The band structure with 

unpolarised orbitals as well as with polarised orbitals is calculated. When unpolarised 

orbitals are used the Fermi energy of FeSeTeO is found to be -4.177eV and it becomes -

4.439eV for polarised orbitals. The binding energy is -104.28eV for the unpolarised and 

-108.49eV for the polarised orbitals.  
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Table 5.1. Coodinate of atom in FeSeTe 

Atoms Coordinate 

Fe 

0, 0, 0 0.5, 0, 0 1, 0, 0 

0, 0.5, 0 0.5, 0.5, 0 1, 0.5, 0 

0, 1, 0 0.5, 1, 0 1, 1, 0 

0, 0, 1 0.5, 0, 1 1, 0, 1 

0, 0.5, 1 0.5, 0.5, 1 1, 0.5, 1 

0, 1, 1 0.5, 1, 1 1, 1, 1 

0.25, 0.25, 0 0.25, 0.25, 1 0.75, 0.25, 0 

0.25, 0.75, 0 0.25, 0.75, 1 0.75, 0.75, 0 

0.75, 0.25, 1 0.75, 0.75, 1  

Se 
0.25, 0, 0.759 0.25, 0.5, 0.759 0.25, 1, 0.759 

0.75, 0, 0.759 0.75, 0.5, 0.759 0.75, 1, 0.759 

Te 
0, 0.25, 0.275 1, 0.25, 0. 275 0, 0.75, 0. 275 

1, 0.75, 0. 275 0.5, 0.25, 0. 275 0.5, 0.75, 0. 275 

 

Table 5.2. Coordinate of atoms in FeSeTeO 

Atoms Coordinate 

Fe 

0, 0, 0 0.5, 0, 0.312 1, 0, 0 

0, 0.5, 0 0.5, 0.5, 0.312 1, 0.5, 0 

0, 1, 0 0.5, 1, 0.312 1, 1, 0 

0, 0, 1 0.5, 0, 1.320 1, 0, 1 

0, 0.5, 1 0.5, 0.5, 1.320 1, 0.5, 1 

0, 1, 1 0.5, 1, 1.320 1, 1, 1 

0.25, 0.25, 0 0.25, 0.25, 1 0.75, 0.25, 0 

0.25, 0.75, 0 0.25, 0.75, 1 0.75, 0.75, 0 

0.75, 0.25, 1 0.75, 0.75, 1  

Se 
0.25, 0, 0.705 0.25, 0.5, 0.705 0.25, 1, 0.705 

0.75, 0, 0.705 0.75, 0.5, 0.705 0.75, 1, 0.705 

Te 
0, 0.25, 0.369 1, 0.25, 0.369 0, 0.75, 0.369 

1, 0.75, 0.369   

O 0.5, 0.25, 0.245 0.5, 0.75, 0.245  

 

The band structure of FeSeTeO obtain for unpolarised orbitals is given in Fig. 5.1 and 

that obtained for the polarised orbitals is given in Fig. 5.2. The energy gap for FeSeTe is 

given in table 5.3 as well as FeSeTeO at various k-points is given in Table 5.4. From the 

results obtained for FeSeTeO, it is clear that G point has a special position. At this point 

the gap gives a minimum value while it is almost constant at other points. This is also 

the point which is maximum affected by polarization. The unpolarised gap at this point 

is 0.101eV which reduces to 0.046eV upon polarisation. The gap at F, Q and Z points is 

almost equal to 0.3eV and not much affected by the spin polarization. The gap is thus 

having a dip at G point and three times higher value at other point. It is also seen that 
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the energy gap for FeSeTe reduces upon oxidation. The density of states (DOS) for the 

unpolarised wave functions is given in Fig. 5.3 and for the polarised wavefunctions in 

Fig. 5.4. It is showing only small qualitative effect of spin polarisation. The system is 

not sensitive to spin polarization. The Fe atoms in this material have very weak 

magnetic moment per atom. Apparently, weak magnetization is taken over by the 

superconducting state. 

 

 

FIGURE 5.1. 

The band structure of FeSeTeO calculated by using unpolarised orbitals 

 

 

FIGURE 5.2. 

The band structure of FeSeTeO calculated by using polarised orbitals 

 

 



80 

 

Table 5.3 The energy gap of various point in FeSeTe 

K-point Coordinate 
Energy Gap (eV) 

Unpolarised Polarised 

G 0, 0, 0 0.199 0.250 

F 0, 0.5, 0 0.302 0.272 

Q 0, 0.5, 0.5 0.321 0.259 

Z 0, 0, 0.5 0.321 0.395 

 

Table 5.4. The energy gap of various point 

K points 
Energy gap (eV) 

UNPOLARIZED POLARIZED 

G 0.101 0.046 

F 0.313 0.343 

Q 0.316 0.365 

Z 0.316 0.329 

 

 

FIGURE 5.3. 

The DOS of FeSeTeO for unpolarised orbitals. 
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FIGURE 5.4. 

The DOS of FeSeTeO for polarised orbitals. 

 

 

 

SECTION 5.3 

Conclusions 

 

This study found that oxidation reduces the normal state gap. At point G, the polarised 

gap of FeSeTe is calculated to be 0.250eV reduces to 0.046eV upon oxidation. The 

effect of spin polarisation of wavefunctions on the DOS is small and only qualitative. 

The smaller gap in the oxygen containing material is accompanied with larger transition 

temperature of the superconductivity state. 
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CHAPTER 6 

BAND STRUCTURE OF FeSe 

WITH LAYERS OF SAMARIUM 

AND TELLURIUM ATOMS 

 

In this chapter, the band structure of FeSe with layers of Te and Sm atoms is reported. 

By adding Te atom to FeSe increases the transition temperature of the superconductor. 

Adding Sm further increases the Tc up to 55K in the As compound. The experimental 

values are available for the As compound but for Se compound, the experiments have 

yet to be done. The band structure of four different compounds has been calculated (a) 

FeSeSmO, (b) Fe2SeSm2O2, (c) FeSeTeSmO and (d) FeTeSmO. The Fermi energy and 

the binding energy have been calculated in each case. The band gap has been found at 

various wave vectors with unpolarised as well as polarised orbitals.  
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SECTION 6.1 

Introduction 

 

Recently, it has been reported by Fang et al that Fe (Se1-xTex)0.82 (0.3<x<1.0) is 

superconducting with the minimum transition temperature of ~14K [40]. In the 

analogous As compound, addition of Sm leads to increased transition temperature as 

shown in Table 6.1. FeSe0.82 has a PbO type structure with tetragonal space group, 

P4/nmm which is superconducting with transition temperature of 8K. The hexagonal 

FeSe1.14 is a ferromagnet. The addition of Te in FeSe leads to increase in the transition 

temperature from 8K to nearly 14K. Similarly, we expect that Tc will increase upon 

addition of rare earth atoms. Since, it is known that chemical composition is important 

to produce a superconducting compound; this chapter point out that normal state can 

also be studied by changing composition. It may be possible to predict the 

superconducting state by means of changes in the band gap of the normal state. 

Therefore, the study of normal state band gap is taken up. 

 

Table 6.1. Some of the Sm containing compounds which have a superconducting phase. Some are 

magnetic 

S. No Formula Tc (K) Ref. 

1 Sm1.85Ce0.15CuO4-x 23 [44] 

2 SmBa2Cu3O7-δ Magnetic [45] 

3 Sm3Co4Sn13 Magnetic [46] 

4 SmFePO 3 [47] 

5 SmFeAsO0.82F0.18 55 [48] 

6 SmO1-xFxFeAs 26 [43] 
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The density functional theory is used to calculate the normal state band gap of four 

compounds, FeSeSmO, Fe2SeSm2O2, FeSeTeSmO and FeTeSmO. The Fermi energy as 

well as the chemical binding for unpolarised as well as the spin polarised orbitals is also 

calculated. 

 

 

SECTION 6.2 

Methodology 

 

The method of calculation uses the ordinary quantum mechanics with density functional 

theory in the local density approximation first develop by Kohn and Sham.  

 

 

6.2.1 FeSeSmO 

The unit cell for FeSeSmO has a layer of Fe atoms, then a layer of Se atoms, then Sm, 

then O, then Sm, then Se and Fe again. The top and bottom layers are on the Se sites. 

Thus, there are 10 Fe atoms, 4 Se atoms, 4 Sm and 5 O atoms in the large unit cell. 

When optimised, it has a large c = 7.2092Å and a = b = 3.7833Å as shown in Fig. 6.1. 

The coordinates of Fe, Se, O and Sm atoms are given in table 6.2. The Fe and Se are on 

their own sites while O and Sm are on antisites. The Fermi energy is calculated to be -
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7.897eV for the unpolarised wave functions and -8.062eV for the polarised orbitals. 

Thus the effect of spin polarisation on the Fermi Energy is only ~1.2 per cent. Similarly, 

the binding energy is found to be -42.812eV for unpolarised orbitals to -44.686eV for 

polarised orbitals. The points in the wave vector space are Z (0, 0, 0.5), A (0.5, 0.5, 0.5), 

M (0.5, 0.5, 0), G (0, 0, 0), R (0, 0.5, 0.5) and X (0, 0.5, 0). The band structure 

calculated by using polarised orbitals is given in Fig. 6.2. The gap energies are Zero at 

the X point and largest at the A point as seen in Table 6.3. The effect of spin 

polarisation on the gap energies is small. For example, at the Z point the energy gap 

calculated for the unpolarised orbitals is 0.57eV which becomes ~0.53eV for polarised 

orbitals. 

 

 

FIGURE 6.1.  

The unit cell of FeSeSmO stack of atoms. 
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Table 6.2. The coordinates of FeSeSmO atoms in a unit cell. 

Atoms Coordinates 

Fe 
0, 0, 0 0.5, 0.5, 0 1, 0, 0 0, 0, 1 1, 0, 1 

0, 1, 0 0.5, 0.5, 1 1, 1, 0 0, 1, 1 1, 1, 1 

Se 0, 0.5, 0.176 1, 0.5, 0.176 0.5, 0, 0.824 0.5, 1, 0.824  

O 0, 0, 0.5 0, 1, 0.5 0.5, 0.5, 0.5 1, 0, 0.5 1, 1, 0.5 

Sm 0.5, 0, 0.322 0.5, 1, 0.322 0, 0.5, 0.678 1, 0.5, 0.678  

 

 

 

FIGURE 6.2.  

The band structure of FeSeSmO calculated by using unpolarised orbitals. 

 

 

FIGURE 6.3.  

 The band structure of FeSeSmO calculated by using polarised orbitals.  
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Table 6.3. The energy gap for various k points. 

K- point Coordinates 
Energy gap (eV) 

unpolarized Polarized 

Z 0, 0, 0.5 0.5714 0.5279 

A 0.5, 0.5, 0.5 0.8544 0.8653 

M 0.5, 0.5, 0 0.9034 0.9034 

G 0, 0, 0 0.2503 0.2912 

Z 0, 0, 0.5 0.5714 0.5279 

R 0, 0.5, 0.5 0.4789 0.4708 

X 0, 0.5, 0 0 0 

G 0, 0, 0 0.2503 0.2912 

 

 The density of states (DOS) for the unpolarised orbitals is shown in Fig. 6.4 

while that for polarised orbitals is given in Fig. 6.5. In the positive energy part there is 

clearly some effect of polarised orbitals which shows that the Fe spins are important in 

the conduction band. 

 

FIGURE 6.4.  

The DOS of FeSeSmO for unpolarized orbitals. 
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FIGURE 6.5.  

The DOS of FeSeSmO for polarized orbitals. 

 

 

6.2.2 Fe2SeSm2O2 

One layer of Se atoms are removed so that the unit cell becomes slightly smaller than in 

Fig. 6.1. We show this magnified cell in Fig. 6.6. The optimized cell constant are now a 

= 3.9958Å and c = 6.7255Å. The coordinates of various atoms are given in Table 6.4. 

The Fermi energy for the unpolarised orbitals is found to be -4.154eV and for the 

polarized orbitals it is -4.24eV showing only about 2 percent effect of using the 

polarized orbitals. The binding energy for the unpolarised orbitals is -72.26eV which 

becomes -73.00eV for polarized orbitals. The wavevector points are G (0, 0, 0). F (0, 

0.5, 0), Q (0, 0.5, 0.5) and Z (0, 0, 0.5). The unpolarised largest gap of 0.61eV is found 

at the G point which is not affected by the polarized orbitals. Similarly, the gap energy 

of 0.378eV at F point is not affected by the polarized orbitals. However, at Q point the 

unpolarised gap is 0.185eV which changes to 0.163eV when polarized orbitals are used. 

At the Z point also the unpolarised gap of 0.5143eV is changed to 0.495eV for the 

polarized orbitals. The band structure calculated by using the polarized orbitals is given 
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in Fig. 6.7 and that calculated by using polarized orbitals is given in Fig. 6.8. The DOS 

for the unpolarised wavefunction is given in Fig. 6.9 and for the polarized wave 

functions is given in Fig. 6.10. Somehow, the DOS is not very sensitive to spin 

polarized wave functions.  

 

 
FIGURE 6.6.  

The unit cell of Fe2SeSm2O2 stack of atoms. 

 

Table 6.4. The coordinates of Fe2SeSm2O2 atoms in a unit cell. 

Atoms Coordinates 

Fe 0, 0, 0 1, 0, 0 1, 1, 0 0, 1, 0 0.5, 0.5, 0 

Se 0.5, 0, 0.788 0.5, 1, 0.788    

O 0, 0, 0.446 1, 0, 0.446 1, 1, 0.446 0, 1, 0.446 0.5, 0.5, 0.446 

Sm 0.5, 0, 0.287 0, 0.5, 0.643 0.5, 1, 0.287 1, 0.5, 0.643  

 

Table 6.5. The energy gap for various k points 

K- point Coordinates 
Energy gap (eV) 

Unpolarized Polarized 

G 0, 0, 0 0.6095 0.6095 

F 0, 0.5, 0 0.3782 0.3728 

Q 0, 0.5, 0.5 0.1850 0.1633 

Z 0, 0, 0.5 0.5143 0.4952 

G 0, 0, 0 0.6095 0.6095 
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FIGURE 6.7. 

The band structure of Fe2SeSm2O2 calculated by using unpolarised orbitals. 

 

 

FIGURE 6.8.  

The band structure of Fe2SeSm2O2 calculated by using polarised orbitals. 
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FIGURE 6.9. 

The DOS of Fe2SeSm2O2 for unpolarized orbitals. 

 

 

 

 

FIGURE 6.10.  

The DOS of Fe2SeSm2O2 for polarized orbitals. 
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6.2.3 FeSeTeSmO 

The unit cell of FeSeTeSmO has layers of atoms in the sequence Fe Se Sm O Sm Te Fe. 

The top layer of Fe as well as the bottom layer of Fe is on the usual Fe sites. The Se 

atoms are on their own sites. The Te is on the Se sites. The O atoms are on the Fe 

antisites as shown in Fig. 6.11. The unit cell constant are a = 4.2233Å and c = 6.0213Å. 

The coordinates of all these atoms are given in Table 6.6. The band structure is 

calculated by using spin unpolarised as well as spin polarised orbitals. The unpolarised 

Fermi energy is found to be -3.849eV and the polarised value is -4.008eV. Thus the 

effect of polarisation is only about 4 percent. The  binding energy for the unpolarised 

orbitals is -74.187eV and it is -75.64eV for the polarised orbitals showing only 1.2 

percent effect of polarisation of the orbitals. The wave vector points are G (0, 0, 0), F (0, 

0.5, 0), Q (0, 0.5, 0.5) and Z (0, 0, 0.5). The gap energies calculated for the polarised as 

well as the unpolarised orbitals are given in Table 6.7. Very large effect of spin 

polarisation is clearly visible. The F and Z points are not very sensitive to spin polarised 

orbitals but the effect is largest at Q point. The calculated band structure for unpolarised 

orbitals is given in Fig. 6.12 and that of the polarised orbitals is given in Fig. 6.13. The 

unpolarised DOS is given in Fig. 6.14 and the polarised is given in Fig. 6.15. 
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FIGURE 6.11.  

The unit cell of FeSeTeSmO stack of atoms. 

 

Table 6.6. The coordinates of FeSeTeSmO atoms in a unit cell. 

Atoms Coordinates 

Fe 0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 0 0.5, 0.5, 0 

Te 0, 0.5, 0.187 1, 0.5, 0.187    

Se 0.5, 0, 0.813 0.5, 1, 0.813    

O 0, 0, 0.511 1, 0, 0.511 0, 1, 0.511 1, 1, 0.511 0.5, 0.5, 0.511 

Sm 0.5, 0, 0.335 0, 0.5, 0.673 0.5, 1, 0.335 1, 0.5, 0.673  

 

Table 6.7. The band gap energies at various k points 

K- point Coordinate 
Energy gap (eV) 

unpolarized Polarized 

G 0, 0, 0 0.0898 0.5959 

F 0, 0.5, 0 0.3728 0.3456 

Q 0, 0.5, 0.5 0.0027 0.1796 

Z 0, 0, 0.5 0.8245 0.8218 

G 0, 0, 0 0.0898 0.5959 
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FIGURE 6.12. 

The band structure of FeSeTeSmO calculated by using unpolarised orbitals. 

 

 

 

FIGURE 13.  

The band structure of FeSeTeSmO calculated by using polarised orbitals. 
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FIGURE 6.14.  

The DOS of FeSeTeSmO for unpolarized orbitals. 

 

 

FIGURE 6.15.  

The DOS of FeSeTeSmO for polarized orbitals. 
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6.2.4 FeTeSmO 

In this lattice all of the Se sites have been occupied by the Te atoms and there is no Se 

at all. There are 4 tellurium atoms on the Se sites and 4 Sm atoms are also on the Se 

sites. The oxygen atoms are on Fe antisites as shown in Fig. 16. The lattice constants are 

a = 4.3327Å and c = 6.1340Å. The coordinates are given in Table 6.8 and the gap 

energies are given in Table 6.9.  

 

 

FIGURE 6.16.  

The unit cell of FeTeSmO stack of atoms. 

 

Table 6.8. The coordinates of FeTeSmO atoms in a unit cell. 

Atoms Coordinates 

Fe 0, 0, 0 1, 0, 0 0, 1, 0 1, 1, 0 0.5, 0.5, 0 

Te 0, 0.5, 0.184 0.5, 0, 0.816 1, 0.5, 0.184 0.5, 1, 0.816  

O 0, 0, 0.5 1, 0, 0.5 0, 1, 0.5 1, 1, 0.5 0.5, 0.5, 0.5 

Sm 0.5, 0, 0.334 0, 0.5, 0.666 0.5, 1, 0.334 1, 0.5, 0.666  
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Table 6.9. The band gap energies at various k points 

K- point Coordinate 
Energy gap (eV) 

unpolarized Polarized 

Z 0, 0, 0.5 0.9660 0.9660 

A 0.5, 0.5, 0.5 0.9578 0.9197 

M 0.5, 0.5, 0 1.0394 0. 9959 

G 0, 0, 0 0.7020 0.6857 

Z 0, 0, 0.5 0.9741 0.9606 

R 0, 0.5, 0.5 0.1578 0.3048 

X 0, 0.5, 0 0.3945 0.3836 

G 0, 0, 0 0.7020 0.6857 

 

The unpolarised Fermi energy is -3.692eV and the polarised value is -3.864eV. The 

transition temperature increases by doping FeSe with Te and Sm. 

 

Table 6.10. Fermi energy decreases upon doping with Te and Sm atoms 

S. 

No 
Formula Unpolarised (eV) Polarised (eV) 

1 FeSeSmO -7.897 -8.062 

2 Fe2SeSm2O2 -4.154 -4.240 

3 FeSeTeSmO -3.849 -4.008 

4 FeTeSmO -3.692 -3.864 

 

It is seen that there is a systematic decrease in the magnitude of the Fermi energy upon 

adding the Te and Sm atoms. The binding energy is -74.291eV for unpolarised orbitals 

and -75.731eV for the polarised orbitals. The effect of polarization of the orbitals on the 

binding energy is thus quite small. The unpolarised band structure is given in Fig. 6.17 

and the polarised band structure is given in Fig. 6.18. The corresponding DOS is given 

in Figs. 6.19 and 6.20. It is seen in Table 6.9 that at most of the k points the polarised 

and the unpolarised band gap differ by a small amount accept that at the R (0, 0.5, 0.5) 

point, where the effect is very large. 
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FIGURE 6.17.  

The band structure of FeTeSmO calculated by using unpolarised orbitals. 

 

 

 

 

FIGURE 6.18. 

 The band structure of FeTeSmO calculated by using polarised orbitals. 
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FIGURE 6.19.  

The DOS of FeTeSmO for unpolarized orbitals. 

 

 

 

FIGURE 6.20 

The DOS of FeTeSmO for polarized orbitals. 
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SECTION 6.4 

Conclusions 

 

We have calculated the band structure of several FeSe based compounds. Those 

compounds are superconducting with their transition temperature increasing with the 

addition of Te, O and Sm atoms. We find that (i) the magnitude of the normal stall 

energy gap reduce upon doping FeSe with these atoms. (ii) The Fermi energy also 

reduces when the additional atoms are mixed. The normal state gap thus indicates the 

increase in the transition temperature. The increase in the transition temperature is 

achieved by doping which is not a characteristic of translational symmetry needed for 

the B.C.S. theory [18]. 
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CHAPTER 7 

CONCLUSIONS 

 

Chapter 1 gives an overview of superconductivity by first giving the historical 

background on the development of superconductivity from the discovery of Onnes in 

1911 in section 1.1 and section 1.2. The theoretical explanation of the mechanism such 

as the Meissner effect and the BCS theory in the superconducting material is thus 

explained. The chapter is closed with a brief discussion on the general application of 

superconductors in today‟s industry. Section 2 in this chapter explains the ab initio 

calculation method used to calculate the energy gap in this research. In this chapter, the 

development of the density functional theory (DFT) is explained by first looking at the 

initial approach made by the Hartee-Fock approach by explaining the interaction of 

single electrons. The approach was then corrected by the Hohenberg-Kohn theorem by 

using many-body system and was successfully modelled by Kohn-Sham approach by 

using a system of interacting particles. The exchange-correlation was then discussed 

together with the local density approximation (LDA) and the generalised gradient 

approximation (GGA). 
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The materials studied in this research are reported from chapter 2 to chapter 6. In 

chapter 2, the unit cell of FeSe and that of Fe:Se = 2:1 are studied. The energy gap for 

FeSe lattice and Fe:Se = 2:1 lattice were obtained from the calculation and was 

compared. It was found that the energy gap for the Se deficient cell is smaller compared 

to the FeSe lattice. There is a small change in the density of states due to weak 

magnetization. The effect of spin polarization upon the reduction of Se atoms is very 

small, giving only 1.2% of change. The reduction in normal state energy gap as well as 

the spin effect induces superconductivity in the Se deficient lattice. Upon studying the 

results obtained from the polarised and unpolarised calculation there were changes is 

band gaps and Fermi level, but there were no significant effects on spin on the band 

diagram (splitting of bands forming the spin up and spin down bands). However, there 

upon polarization, the band gap of FeSe between Z and A point vanishes. Whereas, 

there is a crossing phenomenon upon polarisation in FeSe = 2:1 along the F point. 

 

The Meissner effect is explained in chapter 3 by studying several superconducting iron-

based compounds, namely Fe2SeTe, Fe8Se6 and Fe8Se6Te2 with Fe:Se = 8:8 lattice as 

the reference. The energy gap obtained from the calculation shows a decrease in normal 

state energy in Fe2SeTe, Fe8Se6 and Fe8Se6Te2 compared to the pure FeSe lattice. This 

gives an indication of the increase in the superconducting transition temperature with 

the reduced energy gap. In this chapter, the inclusion of the effect of mass density in the 

Meissner effect was suggested to explain the incomplete Meissner effect in the iron-

based superconductor. This chapter also shows that doping and non-stoichiometry 

compounds are important for the mechanism of the high-temperature superconductor as 

found by Bednorz and Muller and the periodic symmetry is relatively not so important. 

Hence, the BCS theory which explains according to the periodic symmetry is currently 

not relevant in the present compounds. 
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The FeSe based superconductor was also found to superconduct upon oxidation. In 

chapter 4, the oxidation of FeSe was studied by placing the oxygen atoms at the Se 

vacancies forming Fe8Se6O2 and Fe8Se4O4. By taking the polarised calculation, the 

binding energy calculated for Fe8Se6O2 is -137.43eV and -109.78eV for Fe8Se4O4. It is 

seen that upon increasing the number of oxygen atoms, the binding energy is reduced. A 

weaker bond gives a higher transition temperature. Similarly in chapter 5, the energy 

gap for FeSeTe varies from 0.250 at point G to 0.395 at point Z. Whereas, the energy 

gap for FeSeTeO reduced to 0.046eV at point G and 0.329eV at point Z. The oxidation 

in FeSeTe compound gives a reduction in normal state gap which gives an increase in 

transition temperature.  

 

In chapter 6, the lattices of FeSe, FeSeTe and FeSe with layers of samarium oxide 

sandwich in between were built and the band structure for each compound was 

calculated. It was found that there is a reduction of the normal state energy gap upon 

doping the FeSe lattice with samarium and tellurium atoms. The reduction in the normal 

state energy gap indicates the increase in the superconducting transition temperature.  

 

In the research done on different compounds of FeSe structure above, in all cases, the 

normal state gap reduces upon doping. The normal state energy gap reduces when Se 

atoms are removed from FeSe lattice. Similarly, doping of FeSe lattice with oxygen 

atoms, tellurium atoms, and samarium atoms reduces the normal state gap. This shows 

that upon removing Se atoms and doping, the magnetic effect of Fe atoms is reduced by 

reducing the scattering of electrons belonging to Fe and the compound becomes a 

diamagnetic. This explains the superconductivity in the FeSe superconductor. This 

transition cannot be explained by the B. C. S. theory. Hence, the BCS theory does not 



104 

 

successfully explains the conduction in the iron-based superconductors. The reduction 

in energy gap increases the superconducting transition temperature.  

 

There are also visible changes in the binding energy of FeSe, FeTe and FeSeTe lattices 

upon oxidation. The binding energy weakens as the number or oxygen atoms increases. 

This also causes the transition temperature to increase in FeSe superconductor.  Upon 

comparing the computational results obtained with the experimental results, the 

reduction of energy gaps agrees with the superconducting state. However, the 

susceptibility obtained by the experimental results does not agree with the Meissner 

susceptibility of -1/4π. Hence, this report suggests that there are small fields trapped in 

the superconductor instead of zero fields. This suggests that the superconductivity of 

iron-based superconductor is distinguished by the incomplete Meissner effect.  

 

This thesis, reports the calculation of band structure of several iron based 

superconductors. The structures are successfully optimized for the minimum energy of 

the Schrödinger equation. In all of the cases, the normal state band gaps at various zone 

wave vectors are calculated. The Fermi energy is calculated in all of the systems and the 

binding energy has been calculated. The effect of doping as well as that of the vacancies 

has been determined. There were no significant changes upon polarisation in the density 

of states obtained. This is due to the low magnetization of the iron based 

superconductors. The usage of LDA and GGA approach in solving the DFT may 

underestimate the exact value of the calculated band gaps; however it is sufficient to 

make comparisons for the changes of the energy gaps upon doping in the iron based 

superconductors. 
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