
30 
 

CHAPTER 3 

  METHOD DESCRIPTION  

 

There are two main issues to overcome in the state estimation algorithm; the 

numerical ill-conditioning problem and the convergence problem. When the system is 

ill-conditioned, it will manifest itself in the form of slow convergence or failure to 

converge.  Thus, several methods have been proposed to circumvent this problem and 

they have been discussed in Chapter 1. This research proposes another approach in 

orthogonal decomposition method to solve the power system state estimation. Before 

going into the proposed method, let’s go through the notion of numerical ill-

conditioning in power system state estimation problem. 

 

3.1 Notion of numerical ill-conditioning   

 The state estimation solution employs an iterative process. It generates a 

sequence of points 0x , 1x , 2x …. At each iteration a subproblem is solved, i.e. the next 

point 1+kx  is generated by using the current point kx  and the parameter value p  

(impedances, etc.). This procedure can be represented by a function ( )pxx ,φ 01 = ,  

( )pxx ,φ 12 = , ….The iterative process converges if nx  approaches the solution x . 

Because of the finite precision representation a number 1x  is actually stored as an 

approximation *
1x , the difference being the round-off error. The effect of the round-off 

error is that ( )pxx ,φ *
1

*
2 =  is computed rather than ( )pxx ,φ 12 = .  

 An algorithm is ill-conditioned if for a given ( )px ,1  the difference between 

( )px ,φ 1  and ( )px ,φ *
1  or between ( )px ,φ 1  and ( )*

1 ,φ px  is large for 1x  and *
1x  very 
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close and p and *p  very close. Therefore, for a normally fast convergent solution 

method, owing to ill-conditioning, the effect of round-off error may lead it to slow 

convergence or failure to converge at all.   

 One way to measure the degree of ill-conditioning of a problem formulation is 

by the condition number (Watkins, 2002) of the coefficient matrix. In solving the least 

squares equation, bAx = , one is interested to know by how much does the result 

( ) bEA 1−+  or ( )εbA +−1 , where matrix E  and vector ε  represent errors, differ from 

the true solution bA 1−  because of the error introduced in A  and b . If they differ 

greatly the matrix is said to be ill-conditioned. It is well known in numerical analysis 

that the relative error in A  or b  maybe be magnified by as much as the condition 

number of A  in passing through the solution. (Wu, 1990) 

  In solving the state estimation equation, [ ] [ ][ ])(11 xfzRHxHRH −=∆ −− TT , the 

condition number of the coefficient matrix ( HRH 1−T ) is the square of the condition 

number of the Jacobian matrix H . The prevalent approach, the normal equation method 

(refer to section 1.2; pp. 5) directly computes sparse matrix triangular factorization of 

the gain matrix. Therefore, a large condition number of the coefficient matrix may 

cause ill-conditioning when performing triangular factorization, which will lead to slow 

convergence or convergence failure. 

 Consequently, the basic idea in solving the state estimation problem is to avoid 

the formation of the gain matrix to alleviating the numerical ill-conditioning problem in 

state estimation. Many solving methods have been developed according to this basic 

idea, such as Hactel’s augmented matrix method, normal equations with constraints 

method, Hybrid method and Peters Wilkinson method (refer to section 1.2).  

 Hactel’s augmented matrix method (refer to section 1.2; pp. 9) is one of the 

methods that had successfully overcome the numerical ill-conditioning that occurs in 

the coefficient matrix. Hactel’s augmented matrix method skillfully avoids the cross 
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product of jacobian matrix by treating the residual vector as an unknown. The 

coefficient matrix of Hactel’s is symmetric and indefinite. Moreover, the large 

dimension of the coefficient matrix will influence the factorization efficiency. Hence, 

the Hactel’s augmented matrix method need more than the simple ordering and 

factorization. The implementation of this method does not seem to be extensive.  

 Despite of the numerical ill-conditioning that occurs due to the large condition 

number of the gain matrix, another major source of numerical ill-conditioning in 

solving the state estimation problem is the large weights of virtual measurements 

(Holten et al., 1988). Virtual measurements are the kind of information that does not 

require metering, for example, zeros injection at the switching station. Virtual 

measurements play an important role in power system state estimation. The accuracy of 

the estimation can be improved by the exact mathematical relationships of virtual 

measurements. Also, virtual measurements contribute to enhance the system 

observability. Hence, virtual measurements are included in the measurement matrix z . 

The larger the weighting factor that is assigned, the more accurate the measurement. It 

has been observed that, assignment of large weighting factors to virtual measurements 

may cause numerical ill-conditioning of the system (Holten et al., 1988). Weighting 

factors are the error variance of the measurement device. Therefore, the large weights of 

virtual measurements are identified as another source of numerical ill-conditioning in 

power system state estimation. 

 The normal equations with constraints method (refer to section 1.2; pp. 8) has 

successfully overcome the numerical ill-conditioning problem due to the large weights 

of virtual measurements by separating the virtual measurements with zero injections 

from the telemetered measurements and treating them as equality constraints (refer to 

section 1.2; pp. 8). As a result, the coefficient matrix of this method is no longer 

positive definite. However, care must be exercised in the triangular factorization of the 
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coefficient matrix, where ordering and factorization must be carried out simultaneously 

with special techniques like 1x1 and 2x2 pivots (Wu, 1987). Therefore, the normal 

equations with constraints method requires a more sophisticated method besides 

triangular factorization. The computational implementation is indeed complicated 

excessively. 

 Consequently, it is important to have a method with the property of numerical 

stability, computation efficiency and computation implementation simplicity in order to 

solve the power state estimation problem efficiently and accurately. 

 

3.2 Orthogonal decomposition method 

 Our proposed method is called the orthogonal decomposition method using 

Householder transformation. Implementations have been found to be numerically stable 

as they use unitary transformations and handle the numerical ill-conditioning 

encountered in the power system state estimation problem satisfactory. 

 The orthogonal decomposition method triangularized the weighted jacobian 

directly as opposed to first forming the squared gain matrix as in normal equation 

method (refer to section 1.2; pp. 5) and alleviating the numerical ill-conditioning due to 

large condition number of coefficient matrix, HRH 1−T .  

 In addition, the numerical robustness of orthogonal decomposition approach 

allows for zero injection constraints to be modeled as heavily weighted measurements. 

The ability to handle very wide ranges of weights with an orthogonal decomposition 

method obviates the need for special treatment of zero injections equality constraints. 

This greatly simplifies the state estimator implementation. The orthogonal 

decomposition problem formulation discussed in section 3.2.2 is shown to be very 

simple and clean.  
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 Besides eliminating sources of numerical ill-conditioning, the orthogonal 

decomposition method has also simplified the solution process. Furthermore, the 

computational efficiency of this approach is very competitive with other methods.  

The orthogonal decomposition method has a good compromise of numerical 

stability, computational efficiency and implementation simplicity. The orthogonal 

decomposition method is competitive with the Hybrid method and Peters Wilkinson 

method. The comparisons with other solving methods are presented in Chapter 4. 

  

3.3 Orthogonal decomposition method based on Householder 

transformation 

QR factorization is the heart of the orthogonal decomposition method. Therefore, 

the efficiency of the whole power system state estimation depends on the efficiency of 

the QR factorization. Many different methods exist to perform QR factorization, e.g.  

Householder transformation, Givens rotation, and Gram-Schmidt decomposition. All 

three of them are known to be numerically robust, although several authors have 

claimed the superiority of the Householder method in limiting the accumulation of the 

round-off error (Ravishankar et al., 2005). 

From the literature survey, the prevalent approach for orthogonal decomposition 

system state estimator is the Givens rotation method (Trefethen and Bau, 1997). Instead 

of the Givens rotation method, this research has proposed the Householder 

transformation as the ordering method in the QR factorization and applies in the 

orthogonal decomposition method to solve the power system state estimation problem. 

 The error analysis carried out by Wilkinson showed that the Householder 

transformation outperforms the Givens rotation method under finite precision 

computations (Wilkinson, 1965). Additionally, the Householder method is more 

numerically stable since it uses orthogonal similarity transform (Householder and Bauer, 
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1959). Straightforward implementation of Givens rotation method requires about 50% 

more work than Householder method, and also requires more storage. These 

disadvantages can be overcome, but requires more complicated implementation.  

 

3.3.1 Householder transformation  

 The Householder transformation was introduced in 1958 by Alston Scott 

Householder. Householder transformation or Householder reflection is a linear 

transformation that describes a reflection about a plane or hyperplane containing the 

origin. Householder transformations are widely used in numerical linear algebra, to 

perform QR factorization and in the first step of the QR algorithm. This operation can 

be applied in the QR factorization of an m-by-n matrix with m ≥ n, by reflecting first 

one column of a matrix onto a multiple of a standard basis vector, calculating the 

transformation matrix, multiplying it with the original matrix and then recursing down 

the (i, i) minors of that product.  

 Let x be an arbitrary real m-dimensional column vector of a matrix A  such that 

α=x  for a scalar α . If the QR algorithm is implemented using floating-point 

arithmetic, then α  should get the opposite sign as the first coordinate of x  to avoid loss 

of significance. Then, set  

 1exu α−= , 

 
u
uv = , 

T2vvIQ −= , 

where 

 1e  is the vector ( )T0,...,0,1 ; 

 ⋅  is the Euclidean norm; 

 Q  is a Householder matrix; 
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 I  is an m-by-m identity matrix.  

This can be used to gradually transform an m-by-n matrix A  to upper triangular form. 

First, A  is multiplied with the Householder matrix 1Q  that is obtained when we choose 

the first matrix column for x. This results in a matrix AQ1  with zeros in the left column 

(except for the first row): 

  

 













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

 ∗∗

=
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This can be repeated for 1A ( obtained from AQ1  by deleting the first row and the first 

column), resulting  in another Householder matrix 1
2Q . Note that 1

2Q is smaller than 

1Q . For 1
2Q to operate on AQ1  instead of 1A , 1

2Q needs to be expanded to the upper 

left, filling in a 1: 

  







= 1

2

1
2 0

0
Q

I
Q , 

or  in general: 

 







= −

1
1

0
0

k

k
k Q

I
Q . 

Then, AQ1  is multiplied with the Householder matrix 2Q  and results in a matrix 

AQQ 12 . After t iterations of this process, t = min(m-1, n), 

 AQQQU 12Lt=  

is an upper triangular matrix. Hence, with  

T
t

TT QQQQ L21=  

the QR factorization of A  is 

 QUA = . 
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(Note that the standard designation of an upper triangular matrix is R ; however, we 

used U so as not to confuse the identity of the covariance matrix of the measurement 

error R in the earlier chapter.) 

(http://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections) 

The application of Householder methods can cause severe "intermediate" fill-ins 

(non-zero elements generated by transformation); these fill-ins will be annihilated 

eventually, but they can cause excessive storage and degrade the computation efficiency. 

In order to gain high efficiency, row and column ordering are adopted for Householder 

transformation during QR factorization to reduce intermediate fills. 

 

3.3.2 Description of the orthogonal decomposition via Householder 

transformation algorithm 

 The idea of solving state estimator problem via orthogonal decomposition 

method started with elimination of matrix 1−R  in the state estimation least-squares 

equation, eq. 2.45 as follow:   

2/12/11 −−− = RRR          (3.1) 

where  
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The gain matrix becomes  

HRRHHRH 2/12/11 −−− = TT .       (3.2) 

Thus, the state estimation least-squares equation becomes 

[ ] [ ][ ])(2/12/12/12/1 xfzRRHxHRRH −=∆ −−−− TT .    (3.3) 

http://en.wikipedia.org/wiki/QR_decomposition#Using_Householder_reflections)
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Eq. 3.3 can be written as a normal equation: 

[ ] [ ]BAxAA TT =∆ ,        (3.4) 

where 

HRA 2/1−=  and [ ])(2/1 xfzRB −= − .  

The idea of orthogonal decomposition algorithm is to perform the QR 

factorization on matrix A . The QR Factorization block uses a sequence of successive 

Householder transformations to triangularize the input matrix A. The block factors a 

column permutation of the m-by-n input matrix A as 

QUA = ,         (3.5) 

where the matrix Q is an orthogonal matrix and the matrix U is an unsquare upper 

triangular matrix since the Jacobian matrix H is not square. QR factorization is an 

important tool for solving nonlinear least-squares problem because of good error 

propagation properties and the invertability of unitary matrices: 

IQQ =T ,         (3.6) 

where matrix I  is the identity matrix, which to say that the transpose of Q is its 

inverse:                   . 

1−= QQT .         (3.7) 

Now, QUA = is substituted into eq. 3.4: 

[ ] [ ]BQUxQUQU TTTT =∆ .       (3.8) 

Since U is nonsingular and Q is orthogonal, eq. 3.8 can be rewritten as follow: 

[ ] [ ]BQxU T=∆ .        (3.9) 

Eq. 3.9 can be solved in two stages as follows: 

BQy T= , 

and yxU =∆ . 
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3.3.3 The orthogonal decomposition algorithm  

 In summary, the application of the orthogonal decomposition method to power 

system state estimation results in the following algorithm:   

Step 1: Read measurement and pick starting value for 0xx = . 

Step 2: Form the residual matrix )(xfz − . 

Step 3: Form the Jacobian matrix H . 

Step 4: Form HRA 2/1−=  and [ ])(2/1 xfzRB −= − . 

Step 5: Factor A  with the resulting QR factorization, QUA = . 

Step 6: Compute the incremental change in x with one forward substitution and one 

backward substitution. 

Continue this iterative process (Step2-6) until the absolute value of the difference 

between the consecutive increments of the state variables is less than a predetermined 

tolerance. Please refer to the Appendix C for the structure of the above matrices and 

vectors. 
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Figure 3.1: State estimation orthogonal decomposition algorithm 

Read measurement 

Pick starting value for 0xx =  

Solve for ( )(f xiiz − ) for mNi ,,2,1 K=  

Calculate H matrix as function of 0x  

Calculate HRA 2/1−=  and [ ])(2/1 xfzRB −= −  

Solve for x∆  with one forward substitution and 

one backward substitution 

BQxU T=∆  

Calculate maximum ( )x∆  for sNi ,,2,1 K=  

Update xxx ∆+=  

 Factorize QUA = via QR factorization 

Maximum ( ) ε<∆x  Done  
Yes  
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