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ABSTRACT 

 

The coordination of the inventory management and transportation is often known as the 

Inventory Routing Problems (IRP).  The problem addressed in this study is outbound 

and inbound distribution network consisting of an assembly plant and many 

geographically dispersed suppliers/customers where the supplier/customers 

supplies/receives distinct product to/from the assembly plant.  It is based on a finite 

horizon, multi-periods, multi-suppliers and multi-products where a fleet of capacitated 

homogeneous vehicles, housed at a depot, transport parts from/to suppliers/customers to 

meet the demand specified by the assembly plant in each periods.  We propose a hybrid 

genetic algorithm based on allocation first, route second method to determine an 

optimal inventory and transportation policy that minimizes the total costs.  We 

introduce two new representations.  The first is based on a 𝑁 × 𝑇 binary matrix, where 

𝑁 and 𝑇 are the number of suppliers/customers and the number of periods respectively.  

It determines which supplier that needs to be visited in each period.  The second 

representation encodes a collection/delivery matrix that determines concurrently which 

suppliers to be visited and the amount to be collected from those suppliers in each 

period.  To ensure that all the related constraints are not violated, a new crossover and 

mutation operators are introduced.  Both algorithms embed a double sweep algorithm 

proposed by Lee et. al [1] to cluster and route the suppliers.   It is observed that the 

simple representation produces better results for medium sized problems.  We device a 

modification to the binary representation in order to maximize vehicles utilization and 

also to allow some flexibility where part of the demand in a particular period can be met 

in more than one period.  We found that real representation performs better in larger 

problems and the modified algorithms are found to behave consistently better on larger 

problems and in problems with higher inventory holding costs.   
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ABSTRAK 

 

Koordinasi pengurusan inventory dan pengangkutan dikenali sebagai Masalah Laluan 

Inventori.  Masalah yang dikaji di dalam kajian ini ialah rangkaian agihan keluar dan 

rangkaian agihan masuk yang terdiri daripada satu pusat pemasangan, dan 

pembekal/pelanggan yang berserakan secara geografi dimana pembekal/pelanggan akan 

membekalkan/menerima produk kepada/daripada pusat pemasangan.  Masalah ini 

berasaskan horizon yang terhingga, pelbagai tempoh, pelbagai pembekal, dan pelbagai 

produk dimana kenderaan yang berkapasiti yang ditempatkan di depoh akan 

mengangkut bahagian daripada/kepada pembekal/pelanggan untuk memenuhi 

permintaan yang ditetapkan oleh pusat pemasangan pada setiap tempoh.  Kami 

mencadangkan Algorithm Genetik Kacukan berdasarkan kaedah pembahagian inventori 

dahulu, diikuti dengan laluan untuk menentukan polisi optimal bagi inventori dan 

pengangkutan yang dapat meminimakan jumlah kos.  Dua perwakilan baru 

diperkenalkan didalam kajian ini.  Perwakilan pertama berdasarkan matriks binari 

𝑁 × 𝑇 dimana 𝑁 nombor pembekal/pelanggan dan 𝑇 ialah nombor tempoh.  Matriks ini 

menentukan pembekal/pelanggan mana yang perlu dilawat di dalam setiap tempoh.  

Perwakilan kedua ialah matriks penghantaran/penerimaan yang menentukan jumlah 

inventori yang perlu dihantar/diterima didalam setiap tempoh.  Untuk memastikan 

semua kekangan yang berkaitan tidak dilanggar, satu mekanisma baru untuk operasi 

crossover  dan mutasi telah diperkenalkan.  Kedua-dua algorithm turut dimasukkan 

algorithm sapuan berganda yang telah diperkenalkan oleh Lee et. al. [1] untuk 

mengkelompokkan dan menyusun laluan pembekal/pelanggan.  Daripada pencerapan, 

dapat disimpulkan bahawa perwakilan yang mudah memberikan keputusan yang lebih 

baik untuk masalah bersaiz medium.  Kami telah mereka satu modifikasi kepada 

perwakilan binary untuk memaksimakan penggunaan kenderaan dan juga untuk 
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membenarkan sedikit fleksibiliti dimana sebahagian daripada permintaan didalam 

tempoh tertentu dapat dipenuhi lebih daripada didalam satu tempoh.  Kami mendapati 

perwakilan dengan nombor nyata menunjukan prestasi yang lebih baik untuk masalah 

bersaiz besar dan algorithm yang dibaikpulih itu memberikan keputusan yang lebih 

konsisten untuk masalah bersaiz besar dan masalah dengan kos pegangan inventori yang 

tinggi.   
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CHAPTER 1 

 

 

 

 

INTRODUCTION 

 

 

 

 

1.0 Overview 

 

Nowadays, the role of logistics management is vital especially in manufacturing 

industry.  Many companies are realizing that value to a customer can be created through 

logistics management.  Customer‟s value can be created through product availability, 

timelines and consistency of delivery, ease of placing orders, and other elements of 

customer services.  It addresses the issue of coordinating inventory replenishment 

policies and distribution plans in a cost effective manner.   

 

Vendor Managed Inventory (VMI) is an emerging trend in logistics that is an 

example of value creating logistics.  Before VMI is introduced, the conventional 

inventory management refers to two-way communication between customer and vendor 
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in traditional way.  Customers will monitor the inventory level and place the orders 

while vendor are responsible in manufacturing the products, assembling orders, loading 

and routing the vehicles and making deliveries.  In another words, the customers 

independently decide the time and amount to reorder the inventory [2].   Therefore, back 

then, this area of study was done as a single-day problem, more on obtaining the 

optimal route to deliver goods.  In cases like this, the amount of inventory is fixed and 

researchers focus on finding methods to achieve the most cost-effective route.   

 

However, with the advancement in technology, the VMI policy becomes an 

alternative that is possible and more effective where a supplier manages the inventory of 

his customers.  This implementation is a complete opposite to the conventional 

inventory management.  Customers no longer need to contact vendors to request for 

delivery; instead vendors will decide the frequency and the amount of products to be 

delivered.  Campbell and Savelsbergh have done a research with PRAXAIR [2], one of 

the largest industrial gases company worldwide by adopting such delivery system [3].   

 

The vendors will take the responsibility to replace the inventory of customer.  

They also will be in-charge of the transportation costs and inventory holding costs.  It is 

vital to ensure that there are no shortages of materials or excessive inventory as both are 

costly to any organization.  Shortages of materials cause immense penalties to an 

organization in terms of customer goodwill or a halt in production process.  Whereas 

having excessive inventory impose a significant sum of holding cost to the organization.  

Hence, inventory management for the vendors is to take into account the monitoring of 

inventory level then integrates transportation and inventory holding incurred so as to 

obtain the most minimum cost.  
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1.1 Background of the Problem 

 

Supply Chain Management (SCM) is a logistics management system consisting 

of suppliers, manufacturers and customers.  The need for the integration and 

coordination of various components in a SCM has been recognized as an important 

factor for most companies to remain competitive.  Most of the activities in the SCM are 

inter-related and changes in one part of the SCM are likely to affect the performance of 

other processes.   

 

Inventory management and transportation are two of the key logistical drivers of 

the SCM.  Other components include production, location, marketing and purchasing 

[4].  The coordination of these two components, often known as the Inventory Routing 

Problems (IRP) is critical in improving the SCM.  The IRP seeks to determine an 

optimal inventory and distribution strategies that minimizes the total cost [5].  The 

resulting inventory and transportation policies usually assign customers to routes and 

then determine the replenishment intervals and collection sizes for each retailer.  The 

implementation of IRP is critical especially in a VMI replenishment system where the 

supplier or manufacturer observes and controls the inventory levels of its customers or 

retailers.  One of the most important benefits of VMI is that it permits a more uniform 

utilization of transportation resources.  This leads to a higher level of efficiency and a 

much lower distribution cost that often constitutes the largest part of the overall cost.   

 

IRP can be broadly categorized according to the following criteria: planning 

horizon, single or multi-periods and whether the demand is deterministic or stochastic.  

Several other variants of IRP can also be found depending on the underlying 

assumptions in the models.  In this study, we consider two types of distribution 
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networks that consist of a depot, an assembly plant and 𝑁 suppliers/customers.  The 

distribution networks will be referred to as one-to-many (outbound) network and many-

to-one (inbound) network.  Further explanation on the distribution networks are 

discussed in Section 2.1.2.  The problem addressed in this study is based on a finite 

horizon, multi-period, multi-supplier, single warehouse, where a fleet of capacitated 

vehicles, housed at a depot, transports/collects products to/from the suppliers to meet 

the demand specified by the assembly plant/suppliers for each period.  The inventory 

holding costs are incurred at the assembly plant which also acts as the warehouse in the 

one to many networks. The holding cost at the suppliers is not taken into consideration 

in both models. The vehicles return to the depot at the end of the trip.  In this model, no 

backordering/backlogging is allowed.  However, if the demand for more than one period 

is collected, then the inventory is carried forward subject to product-specific holding 

cost incurred at the assembly plant.   

 

Therefore, it is important to have efficient inventory management due to the fact 

that an optimal balance between inventory and transportation can considerably reduce 

the costs incurred thus saving the organization a great deal of unnecessary expenses.   
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1.2 Problem Statement 

 

Inventory control and vehicle routing has traditionally been dealt separately and 

consequently, inventory and transportation costs are typically minimized separately.   

However, studies showed that their integration can have a dramatic impact on overall 

system performance especially in reducing the cost and time through the optimal routing 

and inventory policy.  Therefore, this research will concentrate on solving the IRP using 

heuristic approach namely Genetic Algorithm (GA) method since heuristic approach 

can approximate the optimal solution by exploring various parts of the feasible region 

and gradually evolving toward the best feasible solutions.   

 

 

1.3 Scopes and Objectives 

 

In this study, we use Genetic Algorithm (GA) and design some heuristics to 

solve the Inventory Routing Problem (IRP).  Some modification is done to improve the 

final results.  The modeling is done using C++ with Genetic Algorithm Library 

(GALIB).   

 

The objectives of this study are: 

(i) to design algorithms based on Genetic Algorithm with binary and real-

valued integer representations for the inbound and outbound IRP by 

considering various logistics conditions. 

(ii) to propose a modified hybrid genetic algorithms. 

(iii) to propose a new reformulation of the IRP model in order to reduce the 

complexity of the problem..   

 



6 

 

1.4 Organization of the Thesis 

 

This thesis is organized as follows.  Chapter 2 presents the literature review on 

the Inventory Routing Problems (IRP).  In this chapter the concept of IRP and Vendor 

Managed Inventory (VMI) is explained in great details.  Different types of logistics 

management are also explained.  In the final part of this chapter, the mathematical 

formulation that is used in this study is presented together with the elaboration on the 

constraints and assumptions.   

 

Chapter 3 constitutes the literature review on metaheuristics.  There will be an 

explanation on Genetic Algorithms with its components.  There is also description on 

Evolutionary Algorithms and Local Search.  The applications of metaheuristics for 

Inventory Routing Problems are presented in this chapter.   

 

The methodology for the first and second model in this study is explained in 

Chapter 4.  The first model is called Hybrid Genetic Algorithms (HGA) while the 

second model is the Knowledge-based Genetic Algorithms (KBGA).  HGA uses binary 

matrix representation for the chromosome.  Meanwhile KBGA uses real-valued integer 

matrix as the chromosome representation.  The crossover operators are specially 

designed for each of the method.  For KBGA, a new mutation operator is designed.  The 

datasets that have been used throughout this study are also explained in this chapter.  In 

the last part of this chapter, the computational results for each of the models are 

tabulated. 
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In Chapter 5, the methodology for Modified Hybrid Genetic Algorithms 

(MHGA) is presented.  MHGA is a modification procedure to HGA in Chapter 4 in 

order to maximize the utilization of the vehicle capacity.  The computational results are 

presented and the solution approach is compared with the previous two methods to 

evaluate its performance.   Later, some post-optimization is done using 2-opt for the 

results from HGA method in Chapter 4.  The new results are then compared to the work 

done by Moin et. al [6] that uses Variable Neighborhood Search (VNS) on the same 

datasets.   

 

Some reformulation is done in the IRP model used earlier in HGA and KBGA 

method in order to find the lower bound for the dataset by using CPLEX.  In this 

reformulation, the route length is removed to reduce the dimension of the formulation.  

The lower bound is then compared to the results from HGA, KBGA and MHGA 

methods.   

 

Finally, Chapter 6 concludes all the chapters in this thesis and discusses future 

research directions. 
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CHAPTER 2 

 

 

 

 

INVENTORY ROUTING PROBLEMS 

 

 

 

2.0 Introduction 

 

Supply Chain Management (SCM) is one of the management systems to 

coordinate the materials and information flows between vendors, manufacturers, 

assembly plants and distribution centres.  Many organizations find that it is crucial to 

have an effective SCM to compete in the business network.  That is why it is important 

that these organizations know how to strike a balance between various logistics 

functions such as the inventory management, transportation, production, location, 

marketing and purchasing [4].   
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One of the aspects of SCM is to focus on distribution logistics which involve the 

transportation management and inventory control.  Even though initially these two 

components have been treated separately, after some time, the relationship between 

these two has been considered as important.  Studies showed that significant cost 

reduction can be seen from the integration of inventory management and vehicle routing 

[2, 7].  Hence more researches are being done to solve the combination of these two 

components and this new problem is called the Inventory Routing Problems (IRP).   

 

 

2.1 Inventory Routing Problems (IRP) 

 

Vehicle routing problem is an NP-hard problem.  Thus, a combination of vehicle 

routing and inventory makes the IRP as a very complex problem [8].   A good 

coordination in making decision for inventory and transportation management will lead 

to an optimized IRP.  While it is cheaper to have a truck full with inventory sent to a 

supplier, the inventory cost might increase due to the time and space needed to store the 

inventory before it is being consumed.  That is why it is important to balance the 

inventory and transportation costs.  IRP has been implemented in many industrial 

sectors such as oil and gas delivery [9].  Due to its importance, many researchers are 

attracted to study this area.   

 

The common features that are usually found in IRP are a network, transportation 

and inventory management.  A network usually consists of a warehouse (depot), 

multiple customers (suppliers) and an assembly plant.  Meanwhile the transportation 

and inventory management problems exist when the vehicle capacity constraint is 

inserted or when there is limitation on the number of trucks being used.  The main 
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objective of IRP is to minimize the total cost by finding the optimal inventory to be 

delivered/picked-up and feasible routing strategy for the delivery/pick-ups.   

 

Earlier studies in IRP focus mostly on a single period model with deterministic 

demand.  This problem is also a classic model for vehicle routing problem (VRP).  

Federgruen and Zipkin [10] are among the first to study the inventory routing problem.  

They approach the problem as a single day problem with a limited amount of inventory 

and the customers‟ demands are assumed to be a random variable.  They represent the 

problem as a nonlinear integer program using a generalized Benders‟ decomposition 

approach. This approach has the attributes that for any assignment of customers to 

routes, the problem decomposes into a nonlinear inventory allocation problem which 

determines the inventory and shortage costs and a Travelling Salesman Problems for 

each vehicle considered which produces the transportation costs.  However, not all 

customers will be visited every day as there are the inventory and shortage costs as well 

as the limited amount of inventory to be considered.  Later, the problem is extended for 

perishable products [11] where by using the integrated inventory planning and routing 

approach, significant cost savings have been achieved.   

 

In 1989, Chien et al. [12] simulated a multiple period planning model based on a 

single period approach.  This is achieved by passing some information from one period 

to the next through inter-period inventory flow.  In their problem, there is a central 

depot with many customers around it.  The supply capacities of the depot and the 

demand of the customers are fixed.  An integer program is modeled using a Lagrangean 

dual ascent method to handle the allocation of the limited inventory available at the 

plant to the customers, the customer to vehicle assignments, and the routing.  This is the 
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same approach that has been implemented by Fisher et. al [13] in 1982 to solve an 

inventory routing problem at Air Products, an industrial gas producer.  The objective of 

the Fisher‟s study is to maximize the profit from product distributions over several days.  

The demand is given by upper and lower bounds on the amount to be delivered to each 

customer for every period in the planning horizon.   

 

Dror and Ball [14, 15] in their papers have considered the effect of the short-

term over the long term planning period.  They proposed a mixed integer program 

where consequences of present decisions on later periods are accounted for using 

penalty and incentive factors.  In this problem, the single period models are used as sub-

problems.  Dror and Levy [16] use the same approach to yield a weekly schedule and 

apply node and arc exchanges to reduce costs in the planning period.   

 

Since the integration of inventory and routing adds the complexity to the 

problem, many approaches have been designed to tackle this problem.  A fixed partition 

policy was proposed by Anily and Federgruen [17-19] in 1990.  In their earlier work, 

the fixed partition policies were applied on the inventory routing problems with constant 

deterministic demand rates and an unlimited number of vehicles.  They proposed 

„modified circular regional partitioning‟, a heuristic that can choose a fixed partition.  In 

1993, the problems were extended to solve the problem where the inventory can be 

stored at the depot [19].  A different approach based on the power-of-two (POT) 

principle was designed to cater this problem.    
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Further investigation on the fixed partition was done by Bramel and Simchi-Levi 

[20].  They applied the fixed partition policy in the inventory routing problem with 

deterministic demand and unlimited number of vehicles.  To choose a fixed partition, 

they proposed a location based heuristic based on the capacitated concentrator location 

problem.   

 

In order to obtain high quality solutions to difficult optimization problems, 

metaheuristics concept are introduced for Inventory Routing Problems.  This 

metaheuristic approach is done by applying a local search procedure and a strategy to 

avoid local optima by performing a thorough evaluation of the search space [21].  There 

are many new development in this area included the hybridization of a heuristic and of a 

mathematical programming algorithm, namely matheuristic algorithm [22]. 

 

Recent IRP paper using some of these matheuristics techniques included iterated 

local search by Ribeiro and Lourenço [23].  They investigate IRP model for two types 

of customers namely the vendor-managed inventory (VMI) customers and the customer 

managed inventory (CMI) customers. The former customers have a random demand and 

the distributor manages the stock at the customers‟ location.  Meanwhile, the CMI type 

of customers has fixed demand and there are no inventory costs for the distributor.  

They analyzed both the integrated solutions and the non-integrated solutions.  The result 

shows that the inventory and transportation management in an integration model yields 

a better performance.   

 



13 

 

Lee et al. [1] in 2003  work on IRP which consists of multiple customers and an 

assembly plant in an automotive part supply chain.  They address the problem as a finite 

horizon, multi-period, multi-customer, single assembly plant part-supply network.  The 

objective of their study is to minimize the total transportation and inventory cost over 

the planning horizon.  The problem is divided into two sub-problems that is vehicle 

routing and inventory control.  To solve these problems, a mixed integer programming 

model is proposed using a heuristic based on simulated annealing.  The purpose of using 

the heuristic is to generate and evaluate alternative sets of vehicle routes while a linear 

program determines the optimum inventory levels for a given set of routes.  In their 

work, Lee et al. also discover that the optimal solution is dominated by the 

transportation cost, regardless of the magnitude of the unit inventory carrying cost.  

Here, it is assumed that no backordering is allowed since any shortage of parts leads to 

excessively high costs at the assembly plant.   

 

In 2004, Abdelmaguid [24] proposed a construction heuristic to solve the 

integrated inventory distribution problem (IIDP) by considering backlogging.  The 

backlogging will be penalized in the objective.  Later in 2006, Abdelmaguid and 

Dessouky [25] showed that Genetic Algorithm performed better than construction 

heuristic to solve IIDP.  In 2009, Abdelmaguid et al. [26] reviewed the heuristics for the 

IRP with backlogging.   

 

Savelsbergh and Song [27] in 2008 studied the IRP with continuous moves 

where they tackled the problem in which a single producer cannot usually meet the 

demand of its customers because they are too far away.  They proposed a formulation 
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with several suppliers and trips lasting longer than one period and used a local search 

algorithm applied on an initial solution generated by a randomized greedy heuristic. 

 

Michel and Vanderbeck [28] used a heuristic column generation algorithm to 

solve a tactical IRP.  In their case, the customer demands are deterministic and the 

customers are served by different vehicles in their own cluster.  The solutions deviated 

by approximately 6% from the optimum and improve upon industrial practice by 10% 

with respect to travel distances and the number of vehicles used.   

 

Popović et al. [29] analyzed a multi-item IRP where different types of fuel are 

delivered to a set of customers by vehicles with compartments.  They solved the 

problem using variable neighborhood search (VNS) heuristic and the results outperform 

the Mixed Integer Linear Programming (MILP) and the deterministic “Compartment 

Transfer” (CT) heuristic.   

 

Coelho and Laporte [30] in 2013 consider multi-product multi-vehicle IRP 

(MMIRP) where it deals with share inventory capacity and shared vehicle capacity for 

all products.  They solve the problem using branch-and-cut and the implementation is 

able to solve instances with up to five products, five vehicles, three periods and 30 

customers.   

 

 

  

http://dl.acm.org/author_page.cfm?id=81311483463&coll=DL&dl=ACM&trk=0&cfid=234043726&cftoken=23127084
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2.1.1 Vendor-Managed Inventory (VMI) 

 

Vendor Managed Inventory is a business practice where vendors monitor their 

customers‟ inventories.  It was introduced around 1980‟s by Wal-Mart and Procter & 

Gamble [31].  Another alternative name for VMI is continuous replenishment, supplier-

managed inventory or vendor-managed resupply.  In this system, the vendor has access 

to the distributor‟s inventory data.  Hence, the responsibility to decide when and how 

much inventory to be replenished belongs to the vendors.  This is an innovative 

approach to inventory management where the responsibility has been shifted from the 

customers to the vendors.  It has been accepted widely as it improves the efficiency of 

multi-firm supply chain.  Soon after Wal-Mart and Procter & Gamble adopted this 

approach, Glaxosmithkline, Electrolux Italia, Nestle, Tesco, Boeing and Alco also 

followed suit [32].   

 

Many benefits for both sides of vendors and customers can be gained from 

VMI implementation.  First of all, VMI can help to reduce costs and improve services.  

Normally the vendors are forced to face with the uncertainty of demands from the 

customers which will lead to excessive finished goods inventory just to satisfy the 

customer‟s needs.  However, by using VMI the vendors can plan the amount of 

inventory that the customer‟s needed and this allows smaller buffers of capacity and 

inventory.  The vendors can also coordinate the replenishment process with more 

efficient routes.  Hence the transportation cost can be reduced.  The planning and 

ordering cost can also be reduced as the vendors now in charge the inventory 

replenishment.  This is somehow will help the vendors to focus more in providing great 

services to the customers.  Customers normally rate the services by products 

availability.  Therefore in VMI, the vendors can coordinate the delivery by 
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accommodating the delivery to the customers with critical stock replenishment first.  By 

doing so, the customers are assured that their need are being prioritized by the vendors.   

 

To ensure a good implementation of VMI, an electronic data platform such as 

Electronic Data Interchange (EDI) or the internet can be a system that can be placed at 

both the vendors and customers.  The customers can give the information inside this 

system where the vendors can check from time to time and plan for inventory 

replenishment based on the information from this system.  The low-cost monitoring 

technology makes the task to monitor the customer‟s inventories easier.  The vendors 

can also get accurate information regarding the inventory status.   

 

Even though there are many benefits of VMI, there are also some difficulties in 

implementing VMI in supply chain management.  For example, there are cases in 

Spartan Stores and Kmart where the VMI vendors failed to perform a good forecasting 

in replenishing their inventories [32].  Other than that, lack of mutual trust and 

inaccurate sales and inventory data can also lead to the problems in VMI.  
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2.1.2 Types of Logistics Management 

 

The objective of logistics management is to find the efficiency of operations 

through the integration of a few processes such as product acquisition, movement and 

storage activities.  There are two major business processes in transportation planning 

that are Inbound Logistics (many-to-one network) and Outbound Logistics (one-to-

many network).  Both types of logistics cover the flow and storage of materials from the 

original point to the consumption point.  The decisions connected with this two network 

are related with the transportation, warehousing, materials handling, inventory 

management, inventory control and packaging.  However, each system still has some 

activities that are unique which makes the systems different with each other.   

 

It is hard to tackle these two issues separately because the definition of outbound 

and inbound logistics is a matter of perspective.  For example, if a company is a receiver 

of a product, the product is inbound into the company.  Mean while, if the company 

initiate a delivery (as a raw materials supplier/manufacturer), then this is called the 

outbound network.  The integrations of these two types of network can produce an 

efficient and effective management of the logistics supply chain.  Therefore, the 

companies must find the efficient ways to store, move and transport products while at 

the same time keeping the inventory levels down.  By having a good logistics 

management, other than minimizing the inbound and outbound transportation costs, the 

process, flexibility and customer service can also be improved.   
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2.1.2.1 Inbound Logistics 

 

In the inbound logistics problem, the materials from suppliers are managed into 

production processes or storage facilities.  It is also known as the internal focus or 

many-to-one network.  The vehicles will start the route from the depot and visit the 

suppliers first.  Then, the vehicles transport product from the suppliers to meet the 

demand specified by the assembly plant for each period.  At the assembly plant, the 

products will go through the storing or manufacturing processes.  The vehicles then will 

return to the depot at the end of the trip.    

 

Figure 2.1 below shows the illustrations of an inbound logistics network.  

 

 

Figure 2.1: Illustration on Inbound Logistics Network 

 

In the inbound network, the product (such as raw, unfinished product, spare 

parts, assembles) is moved into a firm and not away from it.  Therefore, the network 

design is slightly different than outbound network where it does not require 

sophisticated transportation or warehouse system.  The main focus in inbound logistics 

network is the material (inventory) management and procurement management.  As a 
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major part of inbound system, material management includes the planning and control 

of the flow of materials.  This includes the procurement, warehousing, production 

planning, inbound transportation, receiving, materials quality control, and scrap 

disposal.  By monitoring all these activities, a plan can be devised to ensure potential 

cost savings.  For example, a good transportation management will ensure potential cost 

savings due to delivery volume or better negotiated rates with carriers.   

 

 

2.1.2.2 Outbound Logistics 

 

Another vital process in supply chain management is the outbound logistics 

which is also known as one-to-many network or external focus.  Outbound logistic is a 

procedure that is related with the movement and storage of finished goods from the 

production line to the end user.  In the outbound network, the vehicles start the route 

from the depot, visit the assembly plants and then transport all the products to each 

customer before returning to the depot.  This is illustrated in Figure 2.2 below. 

 

 

Figure 2.2:  Illustration on Outbound Logistics Network. 
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Unlike inbound systems, outbound logistics network emphasis on customer 

service and distribution channels.  Since this system usually handles the finished 

products, there are more requirements on the proper warehouse, transportation, 

materials handling and inventory control.   

 

The importance of good outbound logistics network can be found from the 

coordinated pickup and delivery and also reduction in the shipping costs.  For example, 

the coordinated systems between a courier service company and an assembly plant 

where the courier service will pick up and deliver components only when and where it 

is needed.  The components will reach the assembly plant just in time before the 

assembly and installation process, which means they never go to a warehouse.  This is 

also known as Just-In-Time inventory system and somehow can reduce the inventory 

holding cost in the warehouse and the amount of time in the distribution system is also 

reduced.    

 

 

2.1.2.3 Split Delivery/Pick-up Problems 

 

Splitting the inventory is not normally allowed in the vehicle routing problem.  

However, more companies are opting for this approach to increase route efficiency.  

Dror and Trudeau [33] have investigated that by splitting the inventory, the travel 

distances and the number of vehicles required can be reduced substantially.  In this case, 

the restriction that each customer is visited once can be removed and the demand of 

each customer can be greater than the vehicle capacity.  This means the customer can be 

served by multiple vehicles.   
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Table 2.1 : An example of split delivery problem in period 1 

 

(a) Delivery Matrix 

  
Period 

  
1 2 3 4 5 

C
u

st
o
m

er
 1 7 0 4 6 0 

2 8 0 0 5 0 

3 14 0 0 0 0 

4 9 0 6 0 2 

5 4 3 6 0 0 
 

 

(b) Split delivery/pick-up 
 

Truck Customer 
Total Inventory 

per Customer 

Amount to 

be 

Delivered/ 

Collected 

Remaining 

Truck Capacity 

1 

 

1 7 7 3 

2 8 3 0 

2 

 

2 8 5 5 

3 14 5 0 

3 

 

3 14 9 1 

4 9 1 0 

4 

 

4 9 8 2 

5 4 2 0 

5 5 4 2 8 

 

Table 2.1 shows the example of split delivery/pick-up problem with truck‟s 

capacity of 10 units.  Table 2.1(a) is the delivery/pick-up matrix for 5 customers in 5 

periods.  By using the delivery/pick-up amount in Period 1, Table 2.1(b) shows the 

coordination of the inventory into trucks by using split inventory policy.  In Truck 1, 

inventory Customer 1 is the first to be inserted and that makes Truck 1‟s content is 7.  

The next customer is Customer 2 with the total inventory of 8.  However, since the 

truck‟s capacity is 10, the remaining capacity is 3.  Therefore only 3 out of 8 units will 

be inserted into Truck 1.  The remaining inventory (5 out of 8) will be assigned into 

Truck 2.   
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One of the approaches that have been used to solve the split delivery/pick-up 

problem is by using the partitioning policy.  In this approach, a customer/supplier may 

be served by several routes which cause the inventory to be split.  These routes are 

assumed to be controlled independently without coordination.  Higher inventory cost 

may be resulted if these split deliveries/collections are not well coordinated [17, 19, 34].    

 

 

2.1.2.4 Un-split Delivery/Pick-up Problems 

 

In un-split delivery/pick-up problems, only one vehicle is allowed to visit a 

customer.  The inventory cannot be splitted into different vehicles.  However, in our 

case, an assumption has been made to allow split inventory if the number to be 

delivered/pick-up exceed the vehicle capacity.  In this assumption, the inventory can be 

splitted at first for direct delivery to the customer.  This means that the particular vehicle 

will only have one customer to be visited in its route.  Meanwhile the balance of the 

inventory (that does not exceed the vehicle capacity) will be coordinated with another 

vehicle.  By using the same delivery matrix in Table 2.2, the example of the un-split 

inventory is given below.  

 

Table 2.2: An example of un-split delivery/pick-up in period 1 

Truck Customer 
Total Inventory per 

Customer 

Amount to be 

Collected 

Remaining Truck 

Capacity 

1 1 7 7 3 

2 2 8 8 2 

3 3 14 10 0 

4 3 14 4 6 

5 4 9 9 1 

6 5 4 4 6 
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In Table 2.2, the inventory from Customer 1 is inserted into Truck 1.  The 

remaining truck capacity is 3.  However, Customer 2‟s inventory level is 8 and since 

splitting the inventory is not allowed in this case, then the inventory for Customer 2 will 

be put into Truck 2.  As a result the capacity in Truck 1 will remain as 7.  As for 

Customer 3, the inventory level exceeds the vehicle capacity of 10.  Therefore, the 

inventory for Customer 3 has to be split such that Truck 3 carries 10 inventories and 

Truck 4 will carry the remaining inventory of 4.   

 

 

2.2 Problem Formulations and Assumptions.   

 

In our study, we consider a distribution network that is similar to Lee et. al [1].  

The network consists of a depot, an assembly plant and geographically dispersed 𝑁 

suppliers/customers.  The problem addressed in this work is based on a finite horizon, 

multi-period, multi-suppliers, single warehouse where a fleet of capacitated vehicles 

housed at a depot, transports products from the suppliers to meet the demand specified 

by the assembly plant for each period.  The vehicles return to the depot at the end of the 

trip.  In this model, no shortages are allowed.  However, if the demand carried by the 

vehicle consists of amount for more than one period, then the inventory is carried 

forward subject to product-specific holding cost incurred at the assembly plant.   

 

The mathematical formulation for the Inventory Routing Problem based on [1] is 

given below.  Note that the following problem formulations are for inbound logistics 

distribution network.  We first introduce the following notations.   
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Parameters 

𝑇 Period in the planning horizon 

𝐶 Capacity of the truck 

𝐹 Fixed cost per trip 

𝑉 Travel cost per unit distance 

𝑑𝑖𝑡  Demand from supplier 𝑖 in period 𝑡 

𝑐𝑖𝑗  Travel distance between supplier 𝑖 and 𝑗 

ℎ𝑖  Unit inventory carrying cost for supplier 𝑖 

𝐽𝑡  Upper bound on the number of trips needed in period 𝑡 

 

Variables 

𝑎𝑖𝑘𝑡  Amount collected by truck 𝑘 from supplier 𝑖 in period 𝑡 

𝑎𝑖𝑡  Total amount to be collected from supplier 𝑖 in period 𝑡 

𝑠𝑖𝑡  Inventory level of supplier 𝑖 at the end of period 𝑡 

𝑥𝑖𝑗𝑘𝑡 =  
1
0
  if truck 𝑘 visits supplier 𝑗 immediately after supplier 𝑖 in period 𝑡  

otherwise 

𝑦𝑖𝑘𝑡 =  
1
0
  if supplier 𝑖 is visited by truck 𝑘 in period 𝑡 

otherwise 

 

Minimize 

 

1 1

0

0 0 1 1 1 0 0 1
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25 

 

subject to 

tkmiyCa iktikt  ,},,,1{,0   (2.2) 

tmiaa
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itikt  },,,1{,   
(2.3) 
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(2.5) 

  tkmuux

uji
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,

  
(2.6) 

tmidass itititit   },,,1{,1   (2.7) 

0 0, {0,1, , }, ,i ktx i m k t      (2.8) 

1, , , 0, {1, , }, ,m j k tx j m k t       (2.9) 

0, 1, , 0, ,m k tx k t     (2.10) 

1,0, , , , {0,1, , , 1},m k t ijktx x i j m m t       (2.11) 

, ,ij ijkt

ij

c x L k t     (2.12) 

0, {1, , },its i m t     (2.13) 

tkmjixy ijktikt  ,},1,,1,0{,},1,0{,   (2.14) 

 

Let  m,,1,0   denotes the set of suppliers where „supplier 0‟ is the depot.  

Meanwhile the warehouse is represented by 𝑚 + 1.  For simplicity of terminology, a 

truck is assumed to perform one trip (route) in each period.  However, this does not 

mean that the truck must not be used when it returns to the depot but will simply be 

given a different name so that „truck‟ and „trip‟ can be used interchangeably.  𝐽𝑡  is an 

upper bound on the number of trips needed in period 𝑡 in an optimal solution and it is 

given by 𝐽𝑡 =  
  𝑑𝑖𝜏

𝑚
𝑖=1

𝑇
𝜏=𝑡

𝐶
   where 𝑑𝑖𝜏  is the demand from supplier 𝑖 in period 𝜏. 

 



26 

 

The objective function (2.1) consists of the transportation costs (variable travel 

cost (A) and vehicle fixed cost (C)) and the inventory cost (B).  The fixed transportation 

cost consists of the fixed costs incurred per trip.   

 

Constraint (2.3) accounts for the split pick-up amount.  This constraint can be 

omitted to cater the un-split delivery/pick-up problem.  Meanwhile, constraint (2.4) 

ensures that the truck capacity is not violated and constraint (2.5) assures that supplier 𝑖 

is visited once with truck 𝑘.  Constraint (2.6) serves as the sub-tour elimination 

constraint for each truck in each period and the inventory balance equation is given by 

constraint (2.7).   

 

Since this is the formulation for the inbound logistics problem, constraint (2.8)-

(2.11) ensure that no direct link from the suppliers to the depot, from the assembly plant 

to the suppliers, and from the depot to the assembly plant, respectively.   The newly 

reformulated constraints for the outbound logistics network are shown as follows: 

, 1, , 0, {1, , 1}, ,i m k tx i m k t        (2.15) 

0, , , 0, {1, , }, ,j k tx j m k t      (2.16)
 

1,0, , 0, ,m k tx k t     (2.17)
 

0, 1, , , , {0,1, , , 1},m k t ijktx x i j m m t       (2.18)
 

 

In general, the route for outbound logistics problem starts from the depot that 

visits the assembly plant first.  From the assembly plant, the trucks will go to the 

customers and finally go back to the depot.  Constraint (2.15) above indicates that there 

is no direct visits from the customers 𝑖 to the assembly plant by truck 𝑘 in period 𝑡.  

Constraint (2.16) ensures that there are no direct visits from the depot to the customers.  

All the trucks must go through the assembly plant first before going to the customers.  
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The assembly plant however are not permitted to go directly to the depot and this is 

given by constraint (2.17) and constraint (2.18) ensures that there is at least one visit 

from the depot to the assembly by truck 𝑘 in period 𝑡. 

 

The route length constraint is given by (2.12) and constraint (2.13) assures that 

the demand at the assembly plant is completely fulfilled without backorder.  The main 

objective of this study is to calculate the total costs that comprise of inventory costs and 

total transportation costs.   

 

 

2.3 Conclusion  

 

In this chapter, we have discussed the investigations that have been done in IRP.  

The complexity that arises after the combination of inventory and routing problem has 

drawn many interests to study this area.  Among the approaches that have been used in 

this problem are Simulated Annealing and Fixed Partition Policy.   

 

There is also description about the types of logistics management such as 

inbound and outbound logistics, split and un-split delivery/pick-up problems.  Finally 

the problem formulation and assumptions for IRP is given in this chapter based on the 

types of logistics managements.  
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CHAPTER 3 

 

 

 

 

METAHEURISTICS 

 

 

 

3.0 Introduction 

 

 

Combinatorial optimization (CO) problems such as the Travelling Salesman 

Problem (TSP), the Quadratic Assignment Problem (QAP) and Timetabling and 

Scheduling problems are becoming important in both industrial and scientific world 

[35].  Due to the practical importance of these problems, studies to find the optimal 

solution are rapidly growing.  One of the methods that have received a lot of attention is 

metaheuristics. 
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Since combinatorial optimization is an NP-hard problem, metaheuristics can be 

a method that can hopefully produce an efficient solution.  Other than solving 

combinatorial optimization problems, metaheuristics can also be used to solve the 

Boolean equation [35].  Boolean equations are often used to design the digital circuits.   

 

 

3.1 Metaheuristics 

 

Metaheuristics is a heuristic method that is applied in problems with no 

satisfactory solution such as the combinatorial optimization.  It was first introduced in 

the last 20 years.  The function of metaheuristic is to explore a search space effectively 

and efficiently with the combination of a few basic heuristic methods in order to find 

the optimal solutions. Early on, this term were called modern heuristics.  However in 

1986, Glover [36] introduced the new term, „metaheuristic‟ from the combination of 

two Greek words.  Meta in Greek means “beyond” or “higher level”.  Meanwhile the 

original word for heuristic is heuriskein which means “to find”. 

 

Blum and Roli [35] classified metaheuristics into five characteristics. 

 

 Nature-inspired versus non-nature inspired 

Genetic algorithms and Ant Colony Optimization are the example of the nature-

inspired algorithms.  Meanwhile Tabu Search and Iterated Local Search are 

listed as non-nature inspired algorithms.  However these classifications are not 

really relevant as sometimes, some recent hybrid algorithms are even fit for both 

nature-inspired and non-nature inspired category.  Therefore it will be hard to 

differentiate the algorithm into one of these two classes. 
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 Population-based versus single point search 

 

Trajectory methods are the algorithms that work on single solution such as Tabu 

Search, Iterated Local Search and Variable Neighborhood Search.  They 

encompass local search-based metaheuristics.  On the other hand, the 

population-based metaheuristics perform search processes which describe the 

evolution of a set of points in the search space.  This class provides clearer 

description of the algorithms.  In addition, the current trend is to integrate the 

single point search algorithms in population-based ones. 

 

 Dynamic objective function versus static objective function 

 

Some metaheuristics modify the objective function during the search such as the 

Guided Local Search (GLS).  There are also algorithms that maintain the 

objective function given in the problem representation.  By modifying the search 

landscape, this approach will explore the search space by escaping the local 

minima to find the better one.   

 

 One versus various neighborhood structures 

 

Various neighborhood structures such as the Variable Neighborhood Search 

(VNS) change the fitness topology which gives the possibility to diversify the 

search.  However, most metaheuristics algorithms work only on one single 

neighborhood structure.   
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 Memory usage versus memory-less methods 

 

This is an important attribute to determine the memory required during the 

search history.  Nowadays, this criterion is recognized as one of the fundamental 

attributes of a powerful metaheuristics.  The memory less algorithms perform a 

Markov process and use the current state of the search process to determine the 

next action.   

 

As described earlier, the most important metaheuristics‟ classification is the 

single point versus population-based search as it gives the clearer view of the 

algorithms.   Therefore more explanation will be done on the trajectory methods and the 

population-based methods.  The trajectory methods perform by searching the search 

space by a trajectory characteristic.  In this method, a successor solution may or may not 

belong to the neighborhood of the current solution.  Under the trajectory methods, there 

are a few strategies such as Basic Local Search, Simulated Annealing (SA), Tabu 

Search (TS) and Explorative Local Search Methods.   

 

The next method explained in [35] is the population-based methods.  This 

method works with a set of solutions instead of with a single solution.  By incorporating 

a learning component, this metaheuristic will produce a natural, instrinsic way for the 

exploration of the search space.  Evolutionary Computation (EC) and Ant Colony 

Optimization (ACO) are listed as the most studied population-based methods.   

 

Simulated Annealing (SA), Genetic Algorithms (GA), Ant Colony Optimization 

(ACO), scatter search and tabu search are among the popular metaheuristics that have 
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been used in combinatorial optimization problems.   All these methods are also known 

as the Evolutionary Algorithms.   

 

 

3.2 Evolutionary Algorithms (EA) 

 

Evolutionary Algorithms are the sub-field of metaheuristics.  It is the generic, 

population-based, search method that mimics the biology-inspired mechanisms such as 

mutation, crossover, natural selection and survival of the fittest [37].  Being the generic, 

population-based method makes EAs different than the traditional method such as the 

Tabu Search which uses the single point search. 

 

EAs apply the principle of survival of the fittest which will produce better 

approximations to a solution.  The selection process is normally competitive in order to 

rule out poor solutions and this is done by finding the higher fitness solutions.  The 

selected individuals will undergo the recombination process to produce new individuals 

that are better suited to their environment than the previous individuals.  Solutions are 

also mutated by changing a single element of the solution.  Both recombination and 

mutation procedure are done to generate new solutions that are biased towards the space 

where good solutions have already been seen.    
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Figure 3.1: Evolutionary Algorithm mechanism 

 

 

Figure 3.1 shows the important components [38] that must be specified in order 

to define a particular EA.  These methods and operators of EAs contain the natural 

processes in the biological evolution and will be explained in the following sections.  

 

 

3.2.1 Selection Process 

 

The selection mechanism is to distinguish the individuals in the population 

based on their quality to allow better individuals to become parents of the next 

generation.  The basic step for selection is the evaluation process by using the fitness 

function.  Basically this step is the heuristic estimation of the solution quality to 

facilitate improvement.  Based on this evaluation, the best individuals in the population 

are chosen for mating (recombination).  Proportional fitness assignment, rank-based 

fitness assignment and multi-objective ranking are the examples of the fitness 

evaluation function that can be used to evaluate the individuals.   
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After the evaluation, the actual selection is performed by using one of these 

algorithms: 

 

 Roulette-wheel selection 

 

Roulette-wheel is the simplest and most common selection process where the 

individuals are selected based on their fitness scale.  The main concept in this 

type of selection is the fittest individuals will have a greater chance of survival 

compared to the weaker ones.  The individuals are mapped in segments 

according to its fitness rate.  Table 3.1 shows the example of five individuals 

with their fitness rate and selection probability.  Individual 1 is the fittest in this 

group and therefore it has the largest segment/interval.  Meanwhile, individual 4 

is the second least fit with fitness rate of 0.5 and this gives individual 4 the 

smallest interval.  Individual 5 has 0.0 fitness rate and therefore will has no 

chance for reproduction.   

 

Table 3.1 : Fitness scale and selection probability 

Number of 

Individual 
1 2 3 4 5 

Fitness rate 2.0 1.5 1.0 0.5 0.0 

Selection 

probability 
0.4 0.3 0.2 0.1 0.0 

 

 

The next step is to generate a sample of 3 random numbers independently 

from a uniformly distributed random numbers (between 0.0 to 1.0) for selection 

process.   
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Figure 3.2:  The roulette-wheel selection 

 

Figure 3.2 shows the mapping of the individuals in Table 3.1 onto 

contiguous segments of a line.  The intervals between the individuals are based 

on the size of selection probability.  Three random numbers are selected that is 

0.02, 0.58 and 0.96 which means the selected individual for reproduction are 

Individual 1, Individual 2 and Individual 4, respectively.  Even though this 

concept is totally random and no bias, it does not guarantee minimum spread.  

However, other common techniques such as stochastic universal sampling (SUS) 

or tournament selection are often used because they have less stochastic noise, 

easy to implement and have constant selection pressure.   

 

 Stochastic universal sampling (SUS) 

 

Another technique used to select potential individual for selection is 

stochastic universal sampling (SUS).  Unlike the roulette-wheel method, SUS is 

not bias and has minimal spread.  In the method, only a single random value are 

used to sample the solutions which are chosen in an evenly interval space.  By 

using the same initial step in the roulette-wheel selection, the individuals are 

mapped as segments on a line.  The difference between these two types of 

selection is that SUS has equally spaced pointer placed over the line.  The 

distance between pointers is calculated by dividing 1 with the number of 

individuals to be selected.  For example, if the number of individuals to be 
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selected is 3, then the space between pointers is 0.333.  For SUS, only one 

sample of random number is needed from the range of [0.0, 0.333].  Figure 3.3 

shows the illustration of SUS selection. 

 

Figure 3.3:  Stochastic Universal Sampling selection 

 Local selection 

 

In local selection, the individuals are selected within the constraint 

environment called the local neighborhood.  The first step is to determine the 

first half of the population in order to find the neighborhood.  This can be 

done in random order or by using the selection method such as stochastic 

universal sampling or truncation selection.  Once the initial individual is 

determine, a local neighborhood can be defined based on the structure of the 

neighborhood.   

 

 Truncation selection 

 

Truncation selection is an artificial selection method that normally used for 

large population size.  In this type of selection, the candidates are ordered by 

fitness and some proportion of the fittest invidual is selected.  The proportion 

for selection is chosen based on parameter called truncation threshold.  This 

parameter indicates the proportion of the population that will be selected to 
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be parents who will produce uniform at random offspring.  Normally, the 

truncation threshold was selected within the range of 50%-100%.   However, 

this method is less sophisticated compared to the other selection method.  

Thus, it is rarely used in practice.   

 

 Tournament selection 

 

Tournament selection is a method where individuals are selected randomly 

from the population.  This selection process will be repeated until the 

tournament size is reached.  After that, these individuals will go through 

„tournaments‟ in order to find the best and fittest individual will be selected 

for crossover operation.  Tournament selection has selection pressure which 

is the degree to which the better individuals are favored.  In this case, the 

selection pressure is done by controlling the tournament size.  The larger the 

tournament size is, the smaller chances of selecting the weak individuals. 

 

 

3.2.2 Recombination 

 

This is the first variation operators that will create new individuals from 

old ones.  The principle behind recombination is that by mating two individuals 

with different but desirable features, an offspring with both of those features can 

be produced.  The following algorithms can be applied depending on the 

representation of the variables of the individuals.   
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 Real-valued recombination 

o Intermediate recombination 

o Line recombination 

o Extended line recombination 

 

 Binary valued recombination 

o Single-point / double-point / multi-point crossover 

o Uniform crossover 

o Shuffle crossover 

o Crossover with reduced surrogate 

 

3.2.3 Mutation 

 

Mutation is the second variation operator which is normally done after 

the recombination.  The offspring variables will be mutated by small 

perturbations stochastically.  Generally, mutation is supposed to cause a random, 

unbiased change.  While the recombination process involves multiple 

individuals in its process, mutation is usually applied on one individual.   

 

 

3.2.4 Reinsertion 

 

The last procedure in the structure of an Evolutionary Algorithms is 

reinsertion.  Once the parents have been recombined and mutated, new offspring 

will be produced to be inserted into the population.  This reinsertion scheme will 

determine which parents to be replaced and which individuals can be inserted 



39 

 

into the population.  There are two types of reinsertion that is global reinsertion 

and local reinsertion.     

 

For each type of reinsertion there are a few different schemes available.  

For example, in global reinsertion there are pure reinsertion, uniform reinsertion, 

elitist reinsertion, and fitness-based reinsertion.  In the pure reinsertion, the new 

offspring will replace all parents in the population.  For both uniform and elitist 

reinsertion, the number of the offspring produced is less than the number of 

parents.  However, in uniform reinsertion, the offspring will be selected to 

replace the parents in the population where the parents will be selected 

uniformly at random.  On the other hand, in elitist reinsertion, the worst parents 

will be selected to be replaced.  Finally in the last scheme in global reinsertion is 

the fitness-based reinsertion.  In this scheme, the offspring produced are more 

than the number of parents.  Later only the best offspring will be selected to 

replace the parents in the population.   

 

As for the local reinsertion, the available schemes are similar to the 

global reinsertion except that the local reinsertion the selection is done within 

the bounded neighborhood.  Hence, this reinsertion method preserves the 

locality of the information in the neighborhood.   

 

There are several Evolutionary Algorithms family that has been developed 

independently such as Genetic Programming (GP), Evolutionary Programming (EP), 

Evolutionary Strategies (ES), Learning Classifier Systems (LCS) and Genetic 

Algorithms (GA).  These methods have been applied on various problems and often 

perform well as EA does not make any assumption about the underlying fitness 
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landscape.  EA tends not to only stop on a local minimum but instead it can find 

globally optimal solutions.  Hence, this method is well suited for a wide range of 

combinatorial and continuous problems.  Different EA techniques are applied on 

different domains depending on the nature of the particular applied problem.  For 

example, GPs are suitable to solve the problems that require the determination of a 

function that can be simply expressed in a function form.  ES and EP can be used to 

optimize continuous functions.  Meanwhile, GA can perform well on combinatorial 

problems.  EAs have been successfully applied on many optimization problems in the 

fields such as engineering, art, biology, economics, marketing, genetics, operations 

research, robotic, social sciences, physics, politics and chemistry [39]. 

 

All these approaches have been modified over time according to the variety of 

the problems faced by the researchers.  However, after Goldberg published his book 

“Genetic Algorithms in Search, Optimization and Machine Learning” in 1989, the 

interest in Genetic Algorithms grew exponentially.  Hence, GA became the most 

popular evolutionary algorithms compared to other approaches.   

 

 

3.3 Local Search Heuristics 

 

Local search is a metaheuristic that is used to solve computationally hard or NP-

hard optimization problems.  Local search heuristics find the optimal solution by 

moving from one solution to another in the search space.  It has been applied widely to 

numerous hard computational problems, including problems in scheduling, Very Large 

Scale Integration design, network design, distributed planning and production control 



41 

 

and many other fields.  Local search shows a very good performance in these studies by 

efficiently computing near-optimum solutions to problems of realistic sizes.   

 

A local search algorithm works by starting from a candidate solution.  Then it 

will iteratively move to the neighbor solution in the search space and the move is only 

performed if the resulting solution is better than the current solution.  The algorithm will 

stop when it finds a local minimum.   

 

Local search is categorized as the trajectory methods because the search process 

of these methods are done by a trajectory in the search space [35].  There are two types 

of local search that is the basic local search and explorative local search.  Basic local 

search is also known as an iterative improvement.  Meanwhile in the explorative local 

search method, there are Greedy Randomized Adaptive Search Procedure (GRASP), 

Variable Neighborhood Search (VNS), Guided Local Search (GLS) and Iterated Local 

Search (ILS).  These are the recently proposed trajectory methods.   

 

 

3.4 Genetic Algorithms (GA) 

 

As mentioned in Section 3.2, Genetic Algorithm (GA) is a part of Evolutionary 

Algorithm (EA) that imitates the process of natural evolution such as mutation, 

crossover, selection and survival of the fittest.  GA is a powerful searching tool and has 

been used greatly to find the solution for optimization and search problems.  The name 

genetic algorithm originates from the analogy between the representations of a complex 

structure by means of a vector of components where this idea is familiar to biologist as 

the genetic structure of a chromosome.  In selective breeding of plants and animals for 
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example, offspring are sought which have certain desirable characteristics which are 

determined at the genetic level by the way parents‟ chromosomes combine.  In a similar 

way, in seeking better solutions to complex problems, we often intuitively combine 

pieces of existing solutions.   

 

Genetic Algorithm was introduced by J.H. Holland in 1970‟s and since then, has 

proved its capability in solving scientific and engineering problems.  This method is an 

adaptive learning heuristic and they are generally referred to in plural because several 

versions exists that are adjustments to different problems.  Some characteristics of GA 

that distinguishes them from other heuristics are: 

 GA work with coding of the solutions instead of the solutions 

themselves.  Therefore, a good, efficient representation of the solution in the 

form of a chromosome is required.   

 

 They search from a set of solutions, different from other metaheuristics 

like Simulated Annealing and Tabu Search that start with a single solutions and 

move to another solution by some transition.  Therefore they do a 

multidirectional search in the solution space, reducing the probability of 

finishing in a local optimum. 

 

 They only require objective function values, not continuous searching 

space or existence of derivatives.  Real life examples generally have 

discontinuous search spaces. 

 

 GA is nondeterministics, i.e. they are stochastic in decision, which make 

them more robust.   
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However, initially there are two shortcomings of GA that cause some people not 

to prefer this method.  The first flaw is the long computational process and the second 

flaw is the nature of randomness that leads to a problem of performance assurance.  

Nonetheless, GA still become a popular search method especially after the evolution of 

low-cost but fast-speed small computers that help to speed-up the computational 

process.  The main components in Genetic Algorithms are: 

 Representation (definition of the individuals) 

 Objective and fitness value 

 Parents selection mechanism 

 Variation operators – crossover and mutation 

 Survivor selection mechanism (replacement/reinsertion) 

 

 

3.4.1 Representation (Definition of Individuals) 

 

Genetic representation is a way of representing solutions or individuals from the 

real world problem into the evolutionary computation methods.  It is because the search 

process for the solutions can only be done in the evolutionary computation world.  

Therefore, it is important to map the original problem context (also known as phenotype 

space) into the genetic algorithm world (genotype space).  The process of converting the 

phenotypes into genotypes is called representation.  There are two ways of 

representation where the first one is to map the objects from the phenotypes to the 

genotype space which is known as encoding.  On the reverse, decoding is a process of 

inverse mapping the genotypes to phenotypes.  In the real world problems (phenotype 

space), the points of possible solutions are often denoted as phenotype, individuals or 

candidate solution.  Meanwhile, the elements in the genotypes space are called 
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genotypes, chromosomes, and also individuals.  Genetic representation can encode 

appearance, behavior, and physical qualities of individuals.  It is quite complicated to 

design a good genetic representation that is expressive and evolvable because the 

differences in genetic representation are one of the major criteria drawing a line 

between known classes of evolutionary computation.   

 

The most classical approach for GA chromosome representation is linear binary 

representation or bit-string encoding where the chromosomes are represented with 

arrays of bits such as an array of bits.  This is shown in Figure 3.4a).  This type of 

representation is quite popular among GA researchers because of its simplicity and 

traceability.  Recently, the interest in the manipulation of real-valued representation has 

increased.  The representation such as an array of integer as shown in Figure 3.4b) was 

introduced specially to deal with real parameter problems.   

 

 
1 1 0
1 0 1
1 0 0

   
5 4 0
9 0 3
3 2 1

  

a) Binary chromosome representation b) Real-valued representation 

Figure 3.4: The example of chromosome representation in Genetic Algorithms. 

 

3.4.2 Objective and fitness value  

 

The evaluation function or fitness function is the basis for selection.  The main 

role of this function is to facilitate improvements and modifications.  As the source of 

the evaluation, objective function can provide the mechanism for evaluating the „fitness‟ 

of each chromosome.  This is where the chromosome is taken as input and produces the 

objective value which is considered as the chromosome‟s performance.  It is important 

to note the different between fitness and objective value.  The objective value is the 
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value from the objective function where it is the raw performance evaluation of a 

genome.  On the other hand, the fitness value is a possibly-transformed rating used by 

the genetic algorithm to determine the fitness of individuals for mating.  This usually 

can be obtained by a linear scaling of the raw objective scores.   

 

3.4.3 Parents Selection Mechanism 

 

The main objective of this mechanism is to distinguish the individuals in the 

population based on their quality.  It is important because proficient parents will 

produce good offspring and thus will lead to better generation.  Basically the method of 

selection for GA is the same with the selection mechanism for Evolutionary Algorithms 

as explained in subsection 3.2.1. 

 

3.4.4 Variation Operators 

 

The role of variation operators is to produce new individuals from old ones.  

There are two common variation operators in GA that are mutation and crossover.  The 

one-point crossover was inspired by the natural biological process.  However, this 

operator cannot be applied in certain situation.  To solve this problem, other types of 

crossover operators such as multipoint crossover and uniform crossover are introduced.  

As a result, the performance of the newly generated offspring is greatly improved 

because the resultant offspring contains a mixture of genes from each parent.  The 

example for the multipoint crossover and uniform crossover are shown in Figure 3.5 and 

Figure 3.6, respectively. 
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Figure 3.5: Example of multipoint crossover 

 

 

 

Figure 3.6: Example of uniform crossover 

 

Mutation is the second variation operators in GA and it is used to maintain 

genetic diversity from one generation of a population of chromosomes to the next.  A 

common method of implementing the mutation operators involves generating a random 

variable for each bit in a sequence.  This random variable tells whether or not a 

particular bit will be modified.  The purpose of mutation is to allow the algorithm to 

avoid local minima by preventing the population of chromosomes from becoming too 

similar to each other, thus slowing or even stopping evolution.  This reasoning also 

explains the fact that most GA systems avoid only taking the fittest of the population in 

generating that the next but rather a random selection with a weighting toward those that 

are fitter.  The example of the binary representation is shown in Figure 3.7 

 

Parent 1: (1 0 1 0 1 1 0)                               Child 1: (1 0 0 0 1 1 1) 

Figure 3.7 : A binary representation of the mutation 

 

  

crossover points

Parents 1 Offspring 1

Offspring 2Parents 2

1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 1 

Parents

Offspring

Mask
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3.4.5 Survivor Selection Mechanism (Replacement/Reinsertion) 

 

After the new offspring are generated, there are strategies to replace the old 

generation in the population.  This is called the replacement or reinsertion mechanism.  

There are a few concepts of replacement in GA.  In the steady-state GA, the 

chromosomes in population with size 𝑁 will be replaced completely by the new 

offspring.  Since the best chromosome of the population may fail to reproduce offspring 

in the next generation, this concept is usually accompanied with the elitist strategy.  

This strategy ensures that one or a number of best chromosomes can be copied into the 

succeeding generation.  Basically the reinsertion for genetic algorithms are very much 

similar with the evolutionary algorithm as explained in Subsection 3.2.4. 

 

 

3.5 Metaheuristics in Inventory Routing Problems 

 

In recent years, metaheuristics have been applied on various numbers of 

problems such as scheduling problems, vehicle routing problems, inventory routing 

problems and facility location problems in order to enhance the efficiency of the search 

process.  Unlike the classical heuristics, metaheuristics will not stop at the local optima.  

Instead, it will continue explore the search space for more possible solutions.  

 

Tabu search is one of the popular heuristics used to find the solutions in IRP.  

Cousineau-Ouimet [40] has applied the tabu search heuristic in the IRP with multi-

customers and multi-vehicle instances.  However, some modifications are made on the 

attributes of the solution.  Tabu search heuristic has the notion of memory which help to 

keep track of all the solutions that have been visited.  This attribute is important as it can 
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avoid cycling between the solutions.  Although this approach is flexible and efficient, 

Cousineau-Ouimet found a limitation by the length of the period.   

 

Lee et. al [1] work on IRP which consists of multiple suppliers and an assembly 

plant in an automotive part supply chain.  They address the problem as a finite horizon, 

multi-period, multi-supplier, single assembly plant part-supply network.  The objective 

of their study is to minimize the total transportation and inventory cost over the 

planning horizon.  The problem is divided into two sub-problems that is vehicle routing 

and inventory control.  To solve these problems, a mixed integer programming model is 

proposed using a heuristic based on simulated annealing.  This simulated annealing is 

used to control the search process.  The heuristic generates and evaluates alternative sets 

of vehicle routes while a linear program determine the optimum inventory levels for a 

given set of routes.  The authors also observed that the optimal solution is dominated by 

the transportation cost, regardless of the magnitude of the unit inventory carrying cost.  

In this model, it is assumed that no backordering is allowed since any shortage of parts 

leads to excessively high costs at the assembly plant. 

 

Sindhuchao et. al [41] develop a mathematical programming approach for 

coordinating inventory and transportation decisions for an inbound commodity 

collection system.  Their problem consists of multiple suppliers, multiple items and one 

warehouse.  Each supplier can produce one or more non-identical items.  In order to 

find the minimum cost, they formulate the problem into the set partitioning problem.  

The lower bound for the total cost is then determined using the column generation 

approach and the optimal assignment of vehicle is found using the branch-and-price 

algorithm.  To find the near-optimal solutions of the problems, two greedy constructive 
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heuristics and a very large scale neighborhood (VLSN) search algorithm have been 

proposed.   

 

Abdelmaguid and Dessouky [25] proposed a new genetic algorithm for the 

integrated inventory distribution problem (IIDP).  They formulated the IIDP as the non-

linear programming model.  The initial genetic representation is designed based on the 

delivery schedule in the form of 2-dimensional matrix.  In the construction phase, they 

use the randomized version of the Approximate Transportation Costs Heuristics 

(ATCH) to estimate the transportation cost value for each customer in every period in 

the planning horizon.  After the initialization process, the improvement is done through 

the crossover and mutation operator.  In the crossover mechanism, they introduce two 

types of matrix breakdown which is either vertically or horizontally.  However, the 

vertical breakdown although will maintain the vehicle capacity constraint, it will violate 

the customer storage capacity.  Thus it will lead to extra unnecessary inventory or 

backorder.  Therefore, they used the horizontal breakdown with a repair mechanism for 

the vehicle capacity violations.  In the horizontal breakdown, the delivery schedule for a 

selected customer for two selected parents will be exchanged to produce another 

offspring.  Hence, although the inventory decision for the customer will be retained, the 

vehicle capacity constraint will be violated.  Figure 3.8 shows the illustration of the 

horizontal breakdown. 

 

The mutation operator has been designed to investigate partial delivery and 

conduct the bit exchanges randomly.  This partial delivery will provide better solutions 

as more transportation and shortage costs can be saved.   
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Parent 1 Parent 2 

  
Period 

  
1 2 3 4 

C
u
st

o
m

er
 1 51 58 0 0 

2 5 15 29 0 

3 35 42 79 0 

4 61 0 63 0 

Remaining 

Veh Cap 
48 85 29 200 

 

  
Period 

  
1 2 3 4 

C
u
st

o
m

er
 1 33 76 0 0 

2 49 0 0 0 

3 53 63 0 40 

4 34 57 0 33 

Remaining 

Veh Cap 
31 4 200 127 

 

Child 1 Child 2 

 

  
Period 

  
1 2 3 4 

C
u
st

o
m

er
 1 51 58 0 0 

2 49 0 0 0 

3 35 42 79 0 

4 61 0 63 0 

Remaining 

Veh Cap 
4 100 58 200 

  
Period 

  
1 2 3 4 

C
u
st

o
m

er
 1 33 76 0 0 

2 5 15 29 0 

3 53 63 0 40 

4 34 57 0 33 

Remaining 

Veh Cap 
75 -11 171 127 

 

 

Figure 3.8 : Illustration of horizontal breakdown 

 

Zhao et. al [34] focus on the integration of inventory control and vehicle routing 

schedules for a distribution system.  Their problem consists of multiple customers, 

single item and single warehouse.  The demand rate and holding cost in this problem is 

set to be deterministic, customer-specific and constant, respectively.  It is assumed here 

that no inventory capacity constraint is imposed on neither the warehouse nor the 

customers.  This study adopt the fixed partition policy for their problems and set the 

replenishment interval using the power-of-two (POT) policy.  The POT policy is set 

such that the replenishment intervals are the power of two multiples of the base 

planning periods.  Then the lower bound for the problem is found for any feasible 

strategy in the distribution system.  Zhao et. al use tabu search algorithm to find the 

optimal region partition in their problems.  The study shows that the policies and 

algorithms give effective results.  However, some modification must be done on the 

tabu search algorithm to make it compatible with other problems. 
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3.6 Conclusion 

 

Metaheuristic is a heuristic method that is applied in problems with no 

satisfactory solution such as the combinatorial optimization.  This chapter describes the 

characteristic of metaheuristic.  The metaheuristics are categorized under Evolutionary 

Algorithms which is the generic, population-based, search method that mimics the 

biology-inspired mechanisms. 

 

Studies using metaheuristics in IRP are also discussed in this chapter.  Among 

the metaheuristics used to solve IRP are Tabu Search, Genetic Algorithms, Simulated 

Annealing and Very Large Scale Neighborhood search algorithm.   
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CHAPTER 4 

 

 

 

 

HYBRID GENETIC ALGORITHMS (HGA) AND 

KNOWLEDGE-BASED GENETIC ALGORITHMS (KBGA) 

 

 

 

4.0 Introduction 

 

This chapter will discuss two methods that have been applied to solve the 

Inventory Routing Problems.  Hybrid means combining two components to produce 

different types of results.  Hence, in Hybrid Genetic Algorithms, two heuristics will be 

combined to find the solutions for IRP.  The first heuristic is Genetic Algorithms (GA) 

while the second heuristic is the Double Sweep Algorithm (DSA). 
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GA is a well-known, powerful searching tool which strikes a remarkable balance 

between exploration and exploitation of the search space.  It has been used successfully 

on optimization problems such as wire routing, scheduling, transportation problems and 

travelling salesman problems (TSP).  One of the studies that uses Genetic Algorithm for 

IRP is done by Abdelmaguid and Dessouky [25].  They proposed a multi-period IRP 

and allow backorders in their integrated inventory distribution problem (IIDP).  This 

backorder is penalized later in their objective function.     

 

 

4.1 Double Sweep Algorithm (DSA) 

 

One of the heuristics in this study is Double Sweep Algorithm (DSA).  This 

heuristic was originated from the Sweep Algorithm proposed by Gillett and Miller [42] 

in 1974 to solve the vehicle dispatch problem.  Their results show that this algorithm 

performs slightly better compared to other approaches to this problem.  In 2003, Lee [1] 

introduced the modified version of the algorithm which is named as Double Sweep 

Algorithm (DSA).  The purpose of using DSA is to arrange the customers in order to 

construct the initial routes.  This new algorithm creates the route by first sweeping in the 

vertical dimension to form cluster (of suppliers).  Secondly, it will sweep in the 

horizontal direction to determine the routing within each cluster.  This heuristic is 

applied to each period since the routes may change based on demand. 

 

For simplicity, the following algorithm is given for one period only which 

means the index t for period is not used in this algorithm.  Let 𝑑𝑖  be demand from 

supplier 𝑖, and  𝐽 is the upper bound on the number of trucks which is given by 
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 𝐽 =  
𝑑𝑖

𝐶

𝑚
𝑖=1  where 𝐶 is the truck capacity.  The Double Sweep Algorithm for inbound 

logistic network is given below: 

 

1. Rotate the suppliers (𝑠1, 𝑠2, … , 𝑠𝑚) and the Assembly Plant (𝑠𝑚+1) around the 

depot (𝑠0) so that the Assembly Plant has the same y-coordinate value as the 

depot.   

 

2. Sort the suppliers  𝑠1, 𝑠2, … , 𝑠𝑚   according to their y-coordinate values; let 𝑠 𝑖  

be the 𝑖th supplier after the sort.  Set 𝑖 = 1 and 𝑘 = 1.  Open a cluster 𝐶𝑘 =    

and set 𝑄𝑘 = 0 where 𝑄𝑘  is total pick-up quantity assigned to cluster 𝑘. 

 

3. (Clustering): If 𝑄𝑘 + 𝑑 𝑖 < 𝐶, assign 𝑠 𝑖  to 𝐶𝑘   i. e set 𝐶𝑘 = 𝐶𝑘 ⊂  𝑠𝑖  ; set 

𝑄𝑘 = 𝑄𝑘 + 𝑑 𝑖  and 𝑎 𝑖 𝑘 = 𝑑𝑖 .  Otherwise set 𝑎 𝑖 𝑘 = 𝐶 − 𝑄𝑘  and 𝑄𝑘 = 𝐶; set 

𝑘 = 𝑘 + 1 and open a new cluster 𝐶𝑘 =   , assign 𝑠 𝑖  to 𝐶𝑘 ; set 𝑎 𝑖 𝑘 = 𝑑𝑖 −

𝑎 𝑖 𝑘−1 and 𝑄𝑘 = 𝑎 𝑖 𝑘 .  If 𝑖 > 𝑚, set 𝑘 = 1 and go to Step 4;  otherwise, set 

𝑖 = 𝑖1 and repeat Step 3. 

   

4. (Routing): Sort the suppliers within cluster 𝐶𝑘  according to their x-coordinate 

values.  Let 𝑠 𝑖 
𝑘  be the 𝑖th supplier in cluster 𝐶𝑘  after the sort.  If the x-

coordinate of the supplier 𝑚 + 1 is greater than or equal to the x-coordinate of 

supplier 0, form a route that starts at depot 𝑠0, visits supplier 

𝑠 1 
𝑘 , 𝑠 2 

𝑘 , … , 𝑠 |𝐶𝑘 | 
𝑘 , 𝑠𝑚+1  and finally returns to 𝑠0.  Otherwise form a route 

that starts at supplier 𝑠0, visit its supplier 𝑠 |𝐶𝑘 | 
𝑘 , 𝑠  𝐶𝑘  −1 

𝑘 , … , 𝑠 1 
𝑘 , 𝑠𝑚+1 and 

returns to 𝑠0.  If 𝑘 > 𝐽𝑡 , STOP; otherwise set 𝑘 = 𝑘 + 1 and go to Step 4. 
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4.2 Problem Definition and Assumptions 

 

Our model consists of a depot, an assembly plant and geographically dispersed 

N suppliers/customers.  The problem addressed in this work is based on a finite horizon, 

multi-period, multi-suppliers, single warehouse where a fleet of capacitated vehicles 

housed at a depot, transports products from the suppliers to meet the demand specified 

by the assembly plant/customers for each period.  At the end of the delivery trip, the 

vehicles will return to the depot.   

 

The other assumptions of the model are listed below: 

1. No shortages is allowed since it will incur excessive cost, 

2. An unlimited number of capacitated and identical vehicles are available 

at the depot; all the vehicles have to return to the depot upon completion 

of a route, 

3. The locations of the assembly plant, the suppliers and the depot are given 

and fixed, 

4. The route length for any truck may not exceed a user-specified limit, 

5. The transportation cost per trip consists of a fixed charge incurring for 

each trip plus a variable cost proportional to the travel distance, 

6. A supplier may be visited by one or more trucks in any given period, 

7. The planning horizon is finite and given.   

 

 

There are two types of distribution networks that have been studied that are 

inbound and outbound logistics networks.  Thorough explanation on these two networks 

has been given in Chapter 2.  The mathematical formulation for Inventory Routing 
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Problems specifically for inbound logistics network is given in Section 2.2.  However 

some of the constraints must be reformulated to cater for the outbound logistics 

network.  From Section 2.2, constraints (2.8)-(2.11) can be changed into the following 

constraint for outbound logistics problems. 

 

, 1, , 0, {1, , 1}, ,i m k tx i m k t        (4.8) 

0, , , 0, {1, , }, ,j k tx j m k t      (4.9)
 

1,0, , 0, ,m k tx k t     (4.10)
 

0, 1, , , , {0,1, , , 1},m k t ijktx x i j m m t       (4.11)
 

 

In general, the route for outbound logistics problem starts when the trucks depart 

from the depot and go straight to the assembly plant to collect the products.  From the 

assembly plant, the trucks will deliver the products to the customers and finally go back 

to the depot.  Constraint (4.8) above indicates that there is no direct visits from the 

customer 𝑖 to the assembly plant by truck 𝑘 in period 𝑡.  Constraint (4.9) ensures that 

there are no direct visits from the depot to the customers.  All the trucks must go 

through the assembly plant first before going to the customers.  The assembly plant 

however are not permitted to go directly to the depot and this is given by constraint 

(4.10) and constraint (4.11) ensures that there is at least one visit from the depot to the 

assembly by truck 𝑘 in period 𝑡.   

 

4.3 Datasets 

 

In this study, the datasets were downloaded from 

http://mie.utoronto.ca/labs/ilr/IRP and are used by Lee et al.[1].  However, the 

paperwork was unpublished and some of the results violate the route length constraint.  

http://mie.utoronto.ca/labs/ilr/IRP
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There are four original datasets that is S12T14, S20T21, S50T21 and S98T14 that 

comprises of (12 customers/suppliers, 14 periods), (20 customers/suppliers, 21 periods), 

(50 customers/suppliers, 21 periods) and (98 customers/suppliers, 14 periods) 

respectively.  Note that S𝑁T𝑡 refers to an instant with 𝑁 customers/suppliers and 𝑡 

periods.   

 

11 more datasets are created from the original 4 datasets by varying the number 

of periods to represent small, medium and large size problems.  The location of the 

suppliers for S12T14, S20T21 and S50T21 are generated randomly in a square of 

100 × 100.  The locations of the suppliers for the S20T14 are extended from the 

S12T14 datasets by adding 10 new suppliers.  Similarly, the S50T21 suppliers are 

extended from the S20T21 locations and generating randomly the locations of an 

additional 30 suppliers.  Datasets S98T14 is based on a real life data and the suppliers 

are closely located.   

 

All the datasets with the exception of S50T21, have demands in every period.  

Some suppliers in the S50T21 dataset may not receive the demand for their product 

until the later periods.  As some of the datasets are extracted from S50T21, it is possible 

that the demand for some of the product is zero.  Datasets S50T5 and S50T10 consist of 

products with zero demand.  The suppliers of these products can be effectively 

eliminated from the representation as they will never be visited in the planning horizon.   

 

We note that the demands for S98T14 are given in real values and the amount 

varies significantly between each product.  The cost per unit distance, fixed cost and the 

vehicles‟ capacity are increased to 50, 200 and 400 respectively.  It is also noted that the 

demand for each product for this data set is constant as this is a common feature in the 
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automotive industry.  In our experiment, the number of generations, crossover rate and 

mutation rate are fixed at 300, 0.9, and 0.01 respectively for all the problems.  The 

population size is fixed at 200 individuals.  Each data set is executed 10 times.   

 

 Table 4.1 shows the characteristics of the four original datasets.   

 

Table 4.1: Characteristics of the datasets.   

Dataset S12T14 S20T21 S50T21 S98T14 

Fixed Cost (F) 20 20 20 200 

Cost per unit Travelling 

Distance 
1 1 1 50 

Vehicle Capacity 10 10 10 400 

Maximum Route Length 140 140 140 150 

Range of Holding Costs [3,27] [3,27] [1,9] [1,44] 

Range of Demand for Each 

Product 
[1,4] [1,4] [0,9] [0.04,393.33] 

Coordinate of Depot (0,0) (0,0) (0,0) (40,-80) 

Coordinate of Assembly Plant (10,20) (10,20) (10,20) (42.31,-83.17) 
 

 

 Figure 4.1(a)-(d) show the distribution of suppliers or customers in dataset 

S12T14, S20T21, S50T21, S98T14 respectively.  From Figure 4.1(a)-(c), the 

distribution of suppliers/customers in dataset S12T14, S20T21 and S50T21 are fairly 

dispersed.  It is because these datasets are generated randomly and dataset S20T21 and 

S50T21 are extended from S12T14.  However, dataset S98T14 in Figure 4.1(d) are 

based on a real life data and therefore the distribution of the suppliers/customers are 

located closely with each other.   
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Figure 4.1 (a): The distribution of customers/suppliers in dataset S12T14 

 

 

Figure 4.1 (b): The distribution of customers/suppliers in dataset S20T21 
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Figure 4.1 (c): The distribution of customers/suppliers in dataset S50T21 

 

 

Figure 4.1(d): The distribution of customers/suppliers in dataset S98T14.  
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4.4 Hybrid Genetic Algorithms (HGA) 

 

The first approach in this study is Hybrid Genetic Algorithms (HGA).  In this 

method, the genetic representation is in binary form.  This method uses the single point 

crossover and uniform at random bit flip mutation.   

 

 

4.4.1 Binary Matrix Representation 

 

In this type of representation, a binary matrix of size 𝑁 × (𝑇 − 1) where 𝑁 is 

the number of customers while 𝑇 defines the number of periods.  A 1 at position (𝑖, 𝑗) in 

the chromosome indicates that customer 𝑖 will be visited at period 𝑗.  The amount to be 

delivered depends on whether there will be delivery in the subsequent period or not.  

Since backordering is not allowed, the total delivery from customer 𝑖 in period 𝑗 is 

 𝑑𝑖𝑙
𝑘−1
𝑙−𝑗 , the sum of all the demands in period 𝑗, 𝑗 + 1, … , 𝑘 − 1 where the next delivery 

will be made in period 𝑘.  As the initial inventory, 𝑠𝑖0 for 𝑖 = 1,2, … , 𝑁 is assumed to be 

zero, the values in the first column consist of all ones, thus ignored from the 

representation.  However, the algorithm can be adjusted accordingly if the initial 

inventory at customer 𝑖 is given.   

 

Table 4.2 : Binary chromosome representation for 5 suppliers in 5 periods. 

 

Period 

Supplier 1 2 3 4 5 

1 1 0 0 1 0 

2 1 1 1 0 0 

3 1 1 0 0 1 

4 1 0 1 1 0 

5 1 0 1 1 1 
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4.4.2 Crossover operator 

 

In this approach, the crossover operator that has been employed is a two-

dimensional uniform crossover that is modified to suit the matrix representation.  A 

binary mask of size (𝑁 × 𝑇) is generated randomly for each pair of parents.  The 

position of ones in the binary mask determines the values in the first parent that are 

transferred to the first offspring and the elements in the position zeros are obtained from 

the second parent.  A complimentary mask is used to deduce the second offspring.  

Figure 4.2 below shows the illustration of the modified uniform crossover.  

 

Supplie
r 

Period 
 

Supplie
r 

Period 

1 2 3 4 5 
 

1 2 3 4 5 

1 1 0 1 1 0 
 

1 1 1 1 0 1 

2 1 0 0 1 1 
 

2 1 0 1 1 0 

3 1 1 0 1 0 
 

3 1 1 0 1 0 

4 1 1 1 0 0 
 

4 1 0 1 0 0 

5 1 0 1 0 1 
 

5 1 0 0 1 1 

 

Parent 1 
  

Parent 2 

 
            

 
  Supplier 

Period 
    

 
  

1 2 3 4 5 
    

 
  

1 1 0 1 0 1 
    

 
  

2 0 1 0 1 0 
    

 
  

3 1 0 0 0 1 
    

 
  

4 0 1 0 1 0 
    

 
  

5 0 0 0 1 1 
    

 
   

Crossover Mask 
    

 
            

Supplie
r 

Period 
 

Supplie
r 

Period 

1 2 3 4 5 
 

1 2 3 4 5 

1 1 1 1 0 0 
 

1 1 0 1 1 1 

2 1 0 1 1 0 
 

2 1 0 0 1 1 

3 1 1 0 1 0 
 

3 1 1 0 1 0 

4 1 1 1 0 0 
 

4 1 0 1 0 0 

5 1 0 0 0 1 
 

5 1 0 1 1 1 

 

Child 1 
  

Child 2 
 

 

Figure 4.2 : The illustration of uniform crossover. 
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4.4.3 Mutation operator 

 

Mutation is a genetic operator used to maintain genetic diversity from one 

generation of a population of chromosomes to the next.  The purpose of mutation in 

GAs is to allow the algorithm to avoid local minima by preventing the population of 

chromosomes from becoming too similar to each other, thus slowing or even stopping 

evolution.  In the flip bit mutation operator, which is adopted in this study, the selected 

bit in the chromosomes will be inverted.  For example, if the genome bit is 1, then it 

will be mutated to 0 and vice versa.  Normally this bit will be chosen randomly.  The 

mutation rate has been set as 0.01 which represent the frequency of a mutation to occur 

in a generation.  By taking child 1 from Figure 4.2, Figure 4.3 shows the example of bit 

flip mutation operator process. 

 

   Child 1 

Before mutation 0 0 1 1 1 

After mutation 1 0 0 0 1 
 

 

Figure 4.3: Example of bit flip mutation operator. 
 

 

4.4.4 Overall Hybrid Genetic Algorithms 

 

The following algorithm shows the overall hybrid Genetic Algorithm (HGA). 

 

STEP 1: Generate an initial population. 

 

STEP 2: Decode the chromosome according to the representation procedure previously 

described.  Perform STEP 3.   
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STEP 3a: {Double Sweep Algorithm} For each period 𝑗, 𝑗 = 1,2, … , 𝑇, arrange the 

suppliers/customers  𝑠1, 𝑠2, … , 𝑠𝑚  and the assembly plant  𝑠𝑚+1  around the depot 

such that the y-coordinate of the assembly plant is the same as the y-coordinate of the 

depot.  Sort the suppliers/ customers  𝑠1, 𝑠2, … , 𝑠𝑚  in ascending order according to 

their new y-coordinate values.  Let 𝑠(𝑖) be the 𝑖th supplier after the sort.  Set 𝑖 = 1 and 

𝑘 = 1.  Open a route 𝑅𝑘 =    and set 𝑄𝑘 = 0, where 𝑄𝑘  is the total pick-up/delivery 

quantity assigned to cluster 𝑘. 

 

STEP 3b: {Clustering} If 𝑄𝑘 + 𝑑𝑖𝑗 ≤ 𝐶, assign 𝑠(𝑖) to route 𝑅𝑘 .  Set 𝑄𝑘 = 𝑄𝑘 + 𝑑𝑖𝑗  and 

𝑎𝑖𝑘 = 𝑑𝑖𝑗 .  Otherwise set 𝑎𝑖𝑘 = 𝐶 − 𝑄𝑘   and 𝑄𝑘 = 𝐶.  Set 𝑘 = 𝑘 + 1 and open a new 

route 𝑅𝑘 =   .  Assign 𝑠(𝑖) to route 𝑅𝑘 .  Set 𝑎𝑖𝑘 = 𝑑𝑖𝑗 − 𝑎𝑖𝑘−1 and 𝑄𝑘 = 𝑎𝑖𝑘 .  If 

𝑖 > 𝑚, set 𝑘 = 1 and go to STEP 3c.  Otherwise, set 𝑖 = 𝑖 + 1 and repeat STEP 3b. 

 

STEP 3c:{Routing} Sort the suppliers within route 𝑅𝑘  according to their x-coordinate 

values in ascending order.  Let 𝑠(𝑖)
𝑘  be the 𝑖th supplier in route 𝑅𝑘  after the sort.  Form a 

route that starts at the depot 𝑠0, visit suppliers/customers 𝑠 1  
𝑘 , 𝑠(2)

𝑘 , … , 𝑠( 𝑅𝑘  )
𝑘 , 𝑠𝑚+1 and 

returns to 𝑠0.  Evaluate the total objective function value as given in Equation 2.1 in 

Section 2.2.   

 

STEP 4: Perform crossover and mutation. 

 

STEP 5: Repeat STEP 2- STEP 3 until the maximum number of generations is attained.   
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4.4.5 Results and Discussion 

 

The algorithms were written in C++ using Genetic Algorithms Library (GALIB) 

to run the program.  14 datasets as described in Section 4.3 were used to run this 

program.  In our experiment, the number of generations, crossover rate and mutation 

rate are fixed at 300, 0.9 and 0.01 respectively for all the problems.  The population size 

is fixed at 200 individuals.  Each dataset is executed ten times.  Table 4.3 summarizes 

the best total objective, the mean and standard deviation of total objective for 10 runs, 

and the number of vehicle for the best total objective.  Although the same datasets are 

used by Lee et. al [1], their results are incomparable to our results as their work has 

never been published and some of their results violate the route length constraint.  

 

Table 4.3: The best results, mean, standard deviation and number of vehicles for each 

datasets over 10 runs with HGA. 

 
  Inbound Logistics Outbound Logistics 

Dataset 

Split 

Delivery 

Un-split 

Delivery Split Pick-up 

Un-split 

Pick-up 

S12T5 

Best Objective 2575.3 2813.6 3297.1 3921.9 

Mean 2627.11 2874.05 3676.7 3980.35 

Std. Deviation 36.04021 33.75241 35.7246 35.52959 

No. of Vehicle 14 15 20 19 

S12T10 

Best Objective 3028.1 5138.7 4021.4 4017.4 

Mean 3028.1 5254.36 4133.45 4133.41 

Std. Deviation 0 69.75472 46.66308 79.03118 

No. of Vehicle 14 31 31 31 

S12T14 

Best Objective 6347 6453.6 6864.6 6818.2 

Mean 6500.83 6524.57 6970.48 6961.63 

Std. Deviation 79.5637 62.04733 74.04554 77.56649 

No. of Vehicle 41 42 44 45 

S20T5 

Best Objective 4030.3 4019.9 6457.8 6468.6 

Mean 4110.39 4130.33 6617.86 7843.79 

Std. Deviation 67.82293 64.64048 99.57333 1312.784 

No. of Vehicle 26 24 34 32 
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Table 4.3 (cont.) 

 

  Inbound Logistics Outbound Logistics 

Dataset 

Split 

Delivery 

Un-split 

Delivery Split Pick-up 

Un-split 

Pick-up 

S20T10 

Best Objective 5410.8 9530.5 13259 13400.9 

Mean 5477.83 9760.74 13659.45 16241.28 

Std. Deviation 58.17915 139.1531 236.7183 2935.066 

No. of Vehicle 23 53 62 63 

S20T14 

Best Objective 11035.5 10921 13155 13046 

Mean 11803.58 11339.43 13417.31 13000.6 

Std. Deviation 1849.737 267.8344 209.3352 1152.021 

No. of Vehicle 73 70 79 78 

S20T21 

Best Objective 15076 15254 15709 16008 

Mean 15225.9 15572.9 16085.2 20823 

Std. Deviation 128.0117 167.2951 424.2025 4945.593 

No. of Vehicle 105 104 100 104 

S50T5 

Best Objective 5461.4 5729.6 9841 9455.1 

Mean 5567.98 5808.87 9971.03 9759.14 

Std. Deviation 69.71548 57.28983 136.9567 232.7855 

No. of Vehicle 46 47 60 59 

S50T10 

Best Objective 11817 12081.1 16891 16763 

Mean 11921.37 12342.23 17138.4 17045.7 

Std. Deviation 93.08041 156.4575 126.3762 205.9283 

No. of Vehicle 101 100 110 112 

S50T14 

Best Objective 16936 17521 18082 17476 

Mean 17216.6 17727.9 18638.5 17994.8 

Std. Deviation 196.1576 127.3529 486.7275 297.7276 

No. of Vehicle 141 143 142 147 

S50T21 

Best Objective 25283 27189 34165 33251 

Mean 26518.3 27415.6 34505.3 33508.3 

Std. Deviation 641.0322 160.1653 207.5037 228.3054 

No. of Vehicle 223 220 228 239 

S98T5 

Best Objective 40720 41832.7 411865 304810 

Mean 43802.46 45655.06 418222.1 406942 

Std. Deviation 2338.858 3314.367 6311.975 36688.76 

No. of Vehicle 57 66 34 34 
 

 



67 

 

Table 4.3 (cont.) 

  Inbound Logistics Outbound Logistics 

Dataset 

Split 

Delivery 

Un-split 

Delivery Split Pick-up 

Un-split 

Pick-up 

S98T10 

Best Objective 83419.1 87522.5 1219360 1203650 

Mean 87471.27 93132.9 1239270 1227920 

Std. Deviation 3741.721 5172.044 13690.67 12187.09 

No. of Vehicle 115 133 102 99 

S98T14 

Best Objective 119450 125951 1994890 1968740 

Mean 124529.8 131308.7 2030847 2011311 

Std. Deviation 3562.157 4731.59 31193.15 30712.89 

No. of Vehicle 154 190 164 162 
 

 

In general, it is found that the inbound logistics produces better results compared 

to the outbound logistics.  It can also be seen that most split delivery/pick-up problems 

give lower total objective cost than un-split problems.  This is already expected as in the 

un-split problems, the transportation cost will increase due to the additional number of 

vehicle.  

 

From Table 4.3, it can be seen that the standard deviation increases consistently 

with the size of the data.  The solutions of the small instances are fairly distributed 

within these 10 runs.  However, for the large instances, the standard deviations are 

comparatively large which can be due to the maximum number of generations being not 

sufficiently large.  As mentioned earlier, the maximum number of generation is set to be 

300.  For small instances, this number of generation is sufficient to get the function 

converge to the total objective cost.  For the large instances, on the other hands, even 

after the maximum number of generation, the function is still converging to the 

objective value.   
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Table 4.4 tabulates the characteristics of the best results obtained in Table 4.3.  It 

gives the total distance cost, inventory costs, the number of vehicles involved, total 

objective costs and the CPU time in milliseconds.  From the table, we can see that 

generally, most split delivery problem results gives slightly better results compared to 

the un-split delivery.  However, the difference between these two types of inventory can 

be considered as small to be noticed.  The outbound logistics also gives slightly larger 

results compared with the inbound logistics.  A significant difference of the two types of 

logistics is shown clearly in the large dataset of S98T5, S98T10 and S98T14.  This 

difference on the Inventory Holding Costs and the Distance costs has the major effect 

on the total objective costs.   

 

Table 4.4: The characteristics of the best results given in Table 4.3 

 

  Inbound Logistics Outbound Logistics 

Dataset 

Split 

Delivery 

Un-split 

Delivery 

Split Pick-

up 

Un-split 

Pick-up 

S12T5 

Distance Cost 2058.3 1748.6 1854.1 2497.9 

Inventory Cost 237 765 1043 1044 

Num. of Veh. 14 15 20 19 

Total Cost 2575.3 2813.6 3297.1 3921.9 

CPU Time 754 1033 836 691 

S12T10 

Distance Cost 2748.1 3852.7 3062.4 3010.4 

Inventory Cost 0 666 339 387 

Num. of Veh. 14 31 31 31 

Total Cost 3028.1 5138.7 4021.4 4017.4 

CPU Time 858 1422 1087 1064 

S12T14 

Distance Cost 4981 4932.6 5234.6 5052.2 

Inventory Cost 546 681 750 846 

Num. of Veh. 41 42 44 46 

Total Cost 6347 6453.6 6864.6 6818.2 

CPU Time 1317 2039 879 1331 
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Table 4.4 (cont.) 

 

  Inbound Logistics Outbound Logistics 

Dataset 

Split 

Delivery 

Un-split 

Delivery 

Split Pick-

up 

Un-split 

Pick-up 

S20T5 

Distance Cost 2502.3 2543.9 3860.8 3797.6 

Inventory Cost 1008 996 1917 2031 

Num. of Veh. 26 24 34 32 

Total Cost 4030.3 4019.9 6457.8 6468.6 

CPU Time 1121 977 1691 1050 

S20T10 

Distance Cost 4824.8 6181.5 7972.1 8063.9 

Inventory Cost 126 2289 4047 4077 

Num. of Veh. 23 53 62 63 

Total Cost 5410.8 9530.5 13259 13400.9 

CPU Time 1694 1960 1825 2242 

S20T14 

Distance Cost 7502.5 7733.4 8815.4 8558 

Inventory Cost 2073 1788 2760 2928 

Num. of Veh. 73 70 79 78 

Total Cost 11035.5 10921 13155 13046 

CPU Time 2313 3050 2168 3538 

S20T21 

Distance Cost 10675 11239 11228 11144 

Inventory Cost 2301 1935 2481 2784 

Num. of Veh. 105 104 100 104 

Total Cost 15076 15254 15709 16008 

CPU Time 3468 3651 3828 3613 

S50T5 

Distance Cost 4220.4 4336.6 7367 7008.1 

Inventory Cost 321 453 1274 1267 

Num. of Veh. 46 47 60 59 

Total Cost 5461.4 5729.6 9841 9455.1 

CPU Time 3269 2559 2690 2365 

S50T10 

Distance Cost 8574 8868.1 12691 12163 

Inventory Cost 1223 1213 2000 2360 

Num. of Veh. 101 100 110 112 

Total Cost 11817 12081.1 16891 16763 

CPU Time 5075 3630 2502 4951 

S50T14         

Distance Cost 12074 12727 12644 11528 

Inventory Cost 2042 1934 2598 3007 

Num. of Veh. 141 143 142 147 

Total Cost 16936 17521 18082 17476 

CPU Time 7839 7405 3170 6563 
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Table 4.4 (cont.) 

 

  Inbound Logistics Outbound Logistics 

Dataset 

Split 

Delivery 

Un-split 

Delivery 

Split Pick-

up 

Un-split 

Pick-up 

S50T21         

Distance Cost 17496 19508 24349 23679 

Inventory Cost 3327 3281 5256 4792 

Num. of Veh. 223 220 228 239 

Total Cost 25283 27189 34165 33251 

CPU Time 9104 8708 3743 6875 

S98T5         

Distance Cost 514.56 476.35 5674.1 5676 

Inventory Cost 3592 4815.2 121360 14210 

Num. of Veh. 57 66 34 34 

Total Cost 40720 41832.7 411865 304810 

CPU Time 9890 9613 12500 8673 

S98T10         

Distance Cost 1034 971.57 17585 17020 

Inventory Cost 8719.1 12344 319710 332850 

Num. of Veh. 115 133 102 99 

Total Cost 83419.1 87522.5 1219360 1203650 

CPU Time 13892 13505 10053 11110 

S98T14         

Distance Cost 1453.4 1388 28549 28170 

Inventory Cost 15980 18551 534640 527840 

Num. of Veh. 154 190 164 162 

Total Cost 119450 125951 1994890 1968740 

CPU Time 17399 18131 15007 9066 
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4.5 Knowledge-based Hybrid Genetic Algorithms (KBHGA) 

 

 

The second method studied in this research is Knowledge-based Hybrid Genetic 

Algorithms.  Unlike HGA, the chromosomes in this approach are represented with the 

real-valued integer which denotes the inventory collection or delivery.  Therefore, in 

this approach, new crossover operator and mutation operator are introduced to handle 

the real-valued chromosomes.   

 

 

4.5.1 Real-valued Matrix Representation 

 

The chromosomes in this representation encode the delivery matrices (the 

amount to be collected/delivered) in the form of a 2-dimensional 𝑁x𝑇 matrix.  The 

initial real-valued chromosome is constructed through a procedure known as 

preprocessing.  This procedure will use a combination of a random binary 

representation and the demand matrix.   

 

In this procedure, a binary matrix of size 𝑁x𝑇 where the elements in the first 

column are all ones is randomly generated.  The amount to be delivered to supplier 𝑖 in 

period 𝑗 is generated randomly in the interval of   𝑑𝑖𝑙
𝑘−1
𝑙=𝑗 ,  𝑑𝑖𝑙

𝑘
𝑙=𝑗   where 𝑑𝑖𝑙  is the 

demand at supplier 𝑖 in period 𝑙 and the next delivery to supplier 𝑖 is in period 𝑘.  This is 

to allow the flexibility of satisfying parts of the demands in a given period if the 

transportation cost is reduced.  As mentioned earlier, there will always be delivery in the 

first period for all suppliers as the initial inventory, 𝑠𝑖0 for 𝑖 = 1,2, … , 𝑁 is assumed to 

be zero.   
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Period 

Supplier 1 2 3 4 5 

1 4 2 4 4 4 

2 2 2 2 2 2 

3 2 1 2 2 2 

4 4 1 4 4 4 

5 2 1 2 2 2 
 

 
Period 

Supplier 1 2 3 4 5 

1 1 0 0 1 0 

2 1 1 1 0 0 

3 1 1 0 0 1 

4 1 0 1 1 0 

5 1 0 1 1 1 
 

(a) The demand matrix (b) The binary matrix 

 

 
Period 

Supplier 1 2 3 4 5 

1 11 0 0 7 0 

2 2 2 6 0 0 

3 2 5 0 0 1 

4 7 0 2 8 0 

5 4 0 1 2 2 
 

(c) The real valued chromosome representation 

 

Figure 4.4 : Preprocessing steps to produce initial real-valued chromosome 

representation 

 

Figure 4.4 gives an illustration of the construction of a real-valued chromosome 

through the preprocessing steps.  Figure 4.4(a) shows the binary chromosome 

representation while Figure 4.4(b) is the demand matrix.  After the preprocessing steps, 

the resultant collection/delivery matrix becomes the initial real-valued chromosome as 

showed in Figure 4.4(c).   

 

 

4.5.2 Crossover Operator 

 

Since this approach is using the real-valued chromosome, a new crossover 

operator is proposed for this method.  It is based on exchanging the delivery schedules 

for a selected set of periods, which is chosen randomly between the two parents.  At the 

same time, it will ensure that the resultant child does not violate either the demand or 

the vehicle‟s capacity constraints.  This crossover operator is similar to the one used by 
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AbdelMaguid and Dessouky [25] on a different problem.  In their study, they allowed 

the infeasible solutions and penalized it in their objective function.   

 

In our model, all constraints are treated as hard constraints, thus to restore 

feasibility a repair mechanism must be designed.  However, for this particular model, 

the repair mechanism is found to be too time consuming and costly.   

 

Firstly, a mask of size 𝑁x1 is randomly generated.  The position of the ones in 

the binary mask determines the values in the first parent that are transferred to the first 

offspring and the elements in the position zeros are obtained from the second parent.   

 

 

Period 

  

Period 

Supplier 1 2 3 4 5 

 

Supplier 1 2 3 4 5 

1 11 0 0 7 0 

 

1 4 9 0 5 0 

2 2 2 6 0 0 

 

2 5 0 1 4 0 

3 2 5 0 0 1 

 

3 8 0 0 0 1 

4 7 0 2 8 0 

 

4 7 0 10 0 0 

5 4 0 1 2 2 

 

5 2 3 0 2 2 

Parent 1 

 

Parent 2 

 

Mask =[ 1 0 0 1 0 ] 

 

 

Period 

  

Period 

Supplier 1 2 3 4 5 

 

Supplier 1 2 3 4 5 

1 11 0 0 7 0 

 

1 4 9 0 5 0 

2 5 0 1 4 0 

 

2 2 2 6 0 0 

3 8 0 0 0 1 

 

3 2 5 0 0 1 

4 7 0 2 8 0 

 

4 7 0 10 0 0 

5 2 3 0 2 2 

 

5 4 0 1 2 2 

Child 1 

 

Child 2 
 

 

Figure 4.5: The crossover operator 
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Figure 4.5 illustrates the crossover operator by using mask.  From the figure, the 

first element from the mask vector (that is 1) indicates that the first row for Child 1 will 

be copied from the first row of Parent 1.  Meanwhile, for Child 2, the first row will be 

taken from Parent 2.  The second element in the mask vector (that is 0) means that the 

second row for Child 1 will be taken from the second row of Parent 2 and for Child 2, 

the second row will be taken from Parent 1.  The rest of the child will be constructed 

based on these mask vector.   

 

 

4.5.3 Mutation Operator 

 

From the observation, a slightly higher inventory holding costs are produced 

from this type of representation.  Hence, a new mutation operator has been designed to 

overcome this problem.  This mutation operator transfer some amount of the product 

picked up/delivered in the previous period to the current selected period.  If the selected 

period happens to be the first period, then the amount will transferred from the selected 

period to the succeeding period.  By doing this, the inventory holding cost can be 

reduced.  The algorithm for the mutation process is given below: 

 

STEP 1: Select randomly the gene that will undergo the mutation process.  Let this gene 

be 𝑔𝑒𝑛𝑒(𝑖, 𝑗) where 𝑖 and 𝑗 denote supplier/customer and period respectively.   

 

STEP 2: If 𝑗 ≠ 1, go to STEP 3.  Otherwise, set 𝑞 = 1 where 𝑞 is the number of periods 

before the next collection/delivery.  If 𝑔𝑒𝑛𝑒 𝑖, 𝑗 + 𝑞 = 0  set 𝑞 = 𝑞 + 1 and repeat the 

process until 𝑔𝑒𝑛𝑒(𝑖, 𝑗 + 𝑞) ≠ 0.  Next, let 𝑟 =  𝑎𝑖𝑘
𝑗+𝑞
𝑘=1 −  𝑑𝑖𝑘

𝑗+𝑞
𝑘=1  where 𝑎𝑖𝑗  and 𝑑𝑖𝑗  

is the collected amount and the demand in period 𝑗 respectively.  Generate the amount 
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to be transferred (say 𝑉) randomly in the interval (0, 𝑟).  Let 𝑔𝑒𝑛𝑒 𝑖, 𝑗 = 𝑔𝑒𝑛𝑒 𝑖, 𝑗 −

𝑉 and 𝑔𝑒𝑛𝑒 𝑖, 𝑗 + 𝑞 = 𝑔𝑒𝑛𝑒 𝑖, 𝑗 + 𝑞 + 𝑉. 

 

STEP 3: Set 𝑝 = 1 where 𝑝 is the number of periods since the last collection.  If 

𝑔𝑒𝑛𝑒 𝑖, 𝑗 − 𝑝 = 0, set 𝑝 = 𝑝 + 1.  Repeat the process until 𝑔𝑒𝑛𝑒 𝑖, 𝑗 − 𝑝 ≠ 0.  Let 

𝑟 =  𝑎𝑖𝑘
𝑗
𝑘=𝑗−𝑝 −  𝑑𝑖𝑘

𝑗
𝑘=𝑗−𝑝  and generate randomly 𝑉 ∈ (0, 𝑟).  Set 𝑔𝑒𝑛𝑒 𝑖, 𝑗 − 𝑝 =

𝑔𝑒𝑛𝑒 𝑖, 𝑗 − 𝑝 − 𝑉 and 𝑔𝑒𝑛𝑒 𝑖, 𝑗 = 𝑔𝑒𝑛𝑒 𝑖, 𝑗 + 𝑉. 

 

The illustration for the mutation operator is given in Figure 4.6 below.   

 
Period 

Supplier 1 2 3 4 5 

1 11 0 0 7 0 

 

1. Randomly select the gene to be mutated i.e. 𝑔𝑒𝑛𝑒 1,1 = 11 

2. Determine when next delivery/collection will occur i.e. 𝑔𝑒𝑛𝑒 1,4 = 7. 

3. Find 𝑟 =  𝑎𝑖𝑘
𝑗 +𝑞
𝑘=1 −  𝑑𝑖𝑘

𝑗 +𝑞
𝑘=1  

 𝑎1𝑘

4

𝑗 =1

= 11 + 0 + 0 + 7 = 18 

Based on the demand matrix in Figure 4.5a), calculate the demand 

 𝑑1𝑘

4

𝑘=1

= 4 + 2 + 4 + 4 = 14 

There 𝑟 = 18 − 14 = 4 

 

4. Generate the random amount to be transferred 

𝑉 = 𝑟𝑎𝑛𝑑 0,4 = 3 

5. Mutate 𝑔𝑒𝑛𝑒(1,1) and 𝑔𝑒𝑛𝑒(1,4) 

𝑔𝑒𝑛𝑒 1,1 = 11 − 3 = 8 

𝑔𝑒𝑛𝑒 1,4 = 7 + 3 = 10 

6. The new matrix after mutation is given as follows: 

 
Period 

Supplier 1 2 3 4 5 

1 8 0 0 10 0 
 

 

Figure 4.6: Illustration of mutation operator for real-valued representation 
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4.5.4 Results and discussion 

 

Just like in the Hybrid Genetic Algorithms method, the algorithms for 

Knowledge-based Genetic Algorithms were also written in C++ using Genetic 

Algorithms Library (GALIB) to run the program.  We used the same datasets and 

parameter to run these algorithms where each dataset is executed ten times.  Table 4.5 

below summarizes the best total objective, the mean and standard deviation of total 

objective for 10 runs, and the number of vehicle for the best total objective.   

 

Table 4.5: The best results, mean, standard deviation and number of vehicles for each 

datasets over 10 runs with KBGA. 

 

 Inbound Logistics Outbound Logistics 

Dataset Split 

Delivery 

Un-split 

Delivery 

Split Pick-up Un-split 

Pick-up 

S12T5         

Best Obj. 2773.1 2979 2933.1 3986.3 

Mean 2851.58 3138.55 3129.46 4209.33 

Std. Dev. 67.85541 83.40893 125.76911 105.629 

No. of Veh. 16 15 15 20 

S12T10         

Best Obj. 5104 5063.8 5154.2 4165.6 

Mean 5190.92 5229.08 5247.7 4246.51 

Std. Dev. 66.96616 93.41276 88.979689 70.74679 

No. of Veh. 29 30 30 32 

S12T14         

Best Obj. 6498.6 6229.9 6455.4 7068.6 

Mean 6644.1 6397.91 9670.34 7246.82 

Std. Dev. 124.066 151.3162 7088.3253 147.5165 

No. of Veh. 43 39 40 45 

S20T5         

Best Obj. 4235.2 4055.2 4164.7 6600.2 

Mean 4363.62 4195.97 4248.36 6664.1 

Std. Dev. 94.45603 82.56646 94.322468 52.35008 

No. of Veh. 22 27 26 34 
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Table 4.5 (cont.) 

 

 Inbound Logistics Outbound Logistics 

Dataset Split 

Delivery 

Un-split 

Delivery 

Split Pick-up Un-split 

Pick-up 

S20T10         

Best Obj. 9816.7 5063.8 9576.1 13981 

Mean 9945.18 7459.17 9793.38 14200.9 

Std. Dev. 88.83567 2380.817 148.76595 124.8131 

No. of Veh. 56 30 58 67 

S20T14         

Best Obj. 11450 11520 11513 13711 

Mean 11603.8 11796.92 11663.2 14083.4 

Std. Dev. 99.8609 195.829 102.51683 217.817 

No. of Veh. 79 77 74 79 

S20T21         

Best Obj. 15561 15666 15579 16419 

Mean 15950 16020.46 15916.4 16644.3 

Std. Dev. 313.0343 228.8699 248.27565 149.5222 

No. of Veh. 101 107 103 108 

S50T5         

Best Obj. 6354 5698.9 9847 9677 

Mean 6406.2 6008.93 10161 10265.57 

Std. Dev. 38.38229 233.2013 250.42863 657.5434 

No. of Veh. 45 47 61 59 

S50T10         

Best Obj. 17829 17965 17813 17346 

Mean 18292.6 18895.3 18303.6 17759.4 

Std. Dev. 328.2214 2020.988 319.90905 166.1099 

No. of Veh. 116 117 116 110 

S50T14         

Best Obj. 24162 23936 18420 17963 

Mean 24626 24825.9 22188.2 18423.4 

Std. Dev. 428.184 365.9971 3374.9366 237.0819 

No. of Veh. 158 158 151 151 

S50T21         

Best Obj. 34108 33575 33833 36627 

Mean 34240.4 33866.3 34420.8 36890.3 

Std. Dev. 193.908 233.8727 655.21844 217.5424 

No. of Veh. 233 241 236 252 

S98T5         

Best Obj. 69021 515992 495820 406280 

Mean 69333.2 528572.7 510834 417299 

Std. Dev. 2395.145 9056.137 10537.264 5163.751 

No. of Veh. 58 74 72 68 
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Table 4.5 (cont.) 

 

 Inbound Logistics Outbound Logistics 

Dataset Split 

Delivery 

Un-split 

Delivery 

Split Pick-up Un-split 

Pick-up 

S98T10         

Best Obj. 155460 1009560 998840 834040 

Mean 157386 1033530 1030248 850397 

Std. Dev. 1316.598 21927.84 21007.725 10082.4 

No. of Veh. 116 140 137 128 

S98T14         

Best Obj. 227700 1478000 1202800 1172200 

Mean 230232 1539854 1396820 1199350 

Std. Dev. 1713.029 120452.3 109103.97 14486.72 

No. of Veh. 160 201 180 177 

 

 

Generally in the Inbound Logistics, most un-split delivery problems seems to 

have lower total costs compared to split delivery problems.  However, this situation 

seems to change when the size of the instances increases for example in dataset S98T5, 

S98T10 and S98T14, there are very large difference in the amount of total costs 

between split and un-split delivery problems.   

 

A different situation occurs in the outbound logistics where lower results in 

small and medium instances are located within the split pick-up problems and when the 

size of the instances increases, lower total costs are located in the un-split pick-up 

problems.    

 

An observation on the standard deviation shows that there is no consistency in 

the results spread.  Therefore, by comparing the KBGA and HGA methods, we can say 

that the binary representation gives better and steady solutions compared to the real-

valued integer representation.   
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Table 4.6 below shows the characteristics of the best results given in Table 4.4.  

It gives the distance costs, total inventory holding costs, number of vehicle and the best 

total objective costs for 10 runs.  

 

Table 4.6:  The characteristics of the best results given in Table 4.5 

 

Dataset 

Inbound Logistics Outbound Logistics 

Split 

Delivery 

Un-split 

Delivery Split Pick-up 

Un-split 

Pick-up 

S12T5         

Distance Cost 1826.1 1748.6 1790.1 1782 

Inventory Cost 627 765 843 897 

Num. of Veh. 16 15 15 15 

Total Cost 2773.1 2813.6 2933.1 2979 

CPU Time 62 1033 56 72 

S12T10         

Distance Cost 3435 3852.7 3720.2 3566.8 

Inventory Cost 1089 666 834 897 

Num. of Veh. 29 31 30 30 

Total Cost 5104 5138.7 5154.2 5063.8 

CPU Time 463 1422 501 516 

S12T14         

Distance Cost 4825.6 4932.6 4797.4 4609.9 

Inventory Cost 813 681 858 840 

Num. of Veh. 43 42 40 39 

Total Cost 6498.6 6453.6 6455.4 6229.9 

CPU Time 525 2039 1072 689 

S20T5         

Distance Cost 2736.2 2543.9 2669.7 2534.2 

Inventory Cost 1059 996 975 981 

Num. of Veh. 22 24 26 27 

Total Cost 4235.2 4019.9 4164.7 4055.2 

CPU Time 335 977 416 398 

S20T10         

Distance Cost 6422.7 6181.5 6628.1 3566.8 

Inventory Cost 2274 2289 1788 897 

Num. of Veh. 56 53 58 30 

Total Cost 9816.7 9530.5 9576.1 5063.8 

CPU Time 802 1960 1415 516 
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Table 4.6 (cont.) 

 

Dataset 

Inbound Logistics Outbound Logistics 

Split 

Delivery 

Un-split 

Delivery Split Pick-up 

Un-split 

Pick-up 

S20T14         

Distance Cost 8018.7 7733.4 8175.6 7993.9 

Inventory Cost 1851 1788 1857 1986 

Num. of Veh. 79 70 74 77 

Total Cost 11450 10921 11513 11520 

CPU Time 2437 3050 1816 2732 

S20T21         

Distance Cost 11213 11239 11539 11678 

Inventory Cost 2328 1935 1980 1848 

Num. of Veh. 101 104 103 107 

Total Cost 15561 15254 15579 15666 

CPU Time 2269 3651 2246 3125 

S50T5         

Distance Cost 4803 4336.6 6994 4163.9 

Inventory Cost 651 453 1633 595 

Num. of Veh. 45 47 61 47 

Total Cost 6354 5729.6 9847 5698.9 

CPU Time 2104 2559 4293 3842 

S50T10         

Distance Cost 13140 8868.1 12903 13291 

Inventory Cost 2369 1213 2590 2334 

Num. of Veh. 116 100 116 117 

Total Cost 17829 12081.1 17813 17965 

CPU Time 5184 3630 3256 6435 

S50T14         

Distance Cost 17490 12727 12866 17436 

Inventory Cost 3512 1934 2534 3340 

Num. of Veh. 158 143 151 158 

Total Cost 24162 17521 18420 23936 

CPU Time 5566 7405 4489 3905 

S50T21         

Distance Cost 24242 19508 24561 23654 

Inventory Cost 5206 3281 4552 5101 

Num. of Veh. 233 220 236 241 

Total Cost 34108 27189 33833 33575 

CPU Time 6415 8708 9634 5057 

S98T5         

Distance Cost 878.64 476.35 8899.1 9138.9 

Inventory Cost 13489 4815.2 36464 44247 

Num. of Veh. 58 66 72 74 

Total Cost 69021 41832.7 495820 515992 

CPU Time 10424 9613 13155 13764 
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Table 4.6 (cont.) 

 

Dataset 

Inbound Logistics Outbound Logistics 

Split 

Delivery 

Un-split 

Delivery 
Split Pick-up 

Un-split 

Pick-up 

S98T10         

Distance Cost 2139.8 971.57 17248 17136 

Inventory Cost 25274 12344 109050 124760 

Num. of Veh. 116 133 137 140 

Total Cost 155460 87522.5 998840 1009560 

CPU Time 15429 13505 31978 12713 

S98T14         

Distance Cost 3111.1 1388 20183 25251 

Inventory Cost 40149 18551 157700 175250 

Num. of Veh. 160 190 180 201 

Total Cost 227700 125951 1202800 1478000 

CPU Time 19622 18131 17374 20132 
 

 

 

In the inbound logistics, the distance costs for split delivery problem is higher 

than un-split delivery problem.  Considerably large amounts of difference between the 

distance costs of split delivery problem and un-split delivery problem are noticed 

especially in large instances such as S98T5, S98T10 and S98T14.   The same case did 

not occur in outbound logistics where the distance costs between split and un-split pick-

up problem for this type of logistics did not vary much.   

 

These results however, cannot be compared with Lee et. al [1] because in their 

results, some of the routes violate the route length constraints.   
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4.6 Conclusion 

 

Two methods, namely Hybrid Genetic Algorithms (HGA) and Knowledge-based 

Genetic Algorithms (KbGA) are introduced in this chapter.  In this study, Double 

Sweep Algorithms (DSA) has been used to arrange the customers before and after 

clustering. There is also description about the dataset used in this study.  Originally, 

there are 4 datasets.  Based on these datasets, 11 more are created to vary the number of 

periods to represent small, medium, and large size problem.  The characteristics of 

datasets are also described in this chapter.   The coordinates for dataset with 12 

suppliers, 20 suppliers, 50 suppliers and 98 suppliers are plotted to show the position of 

the suppliers with the Depot and the Assembly Plant.  

 

In HGA, the delivery matrix is represented in the form of binary matrix where 0 

indicates that there is no delivery and 1 indicates otherwise.  The crossover and 

mutation operator used in this method is the default operator in Genetic Algorithm that 

is single point crossover and flip bit mutation.   

 

In KBGA, real-valued matrix is used to represent the delivery matrix instead of 

binary matrix.  New crossover operator is designed for this method using a mask vector.  

Since the results show slightly higher inventory holding costs, a new mutation operator 

is designed to transfer some amount of the product delivery in previous period to current 

selected period.   
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CHAPTER 5 

 

 

 

 

MODIFIED HYBRID GENETIC ALGORITHMS (MHGA)  

 

 

 

 

5.0 Introduction 

 

 

From Chapter 4, it is observed that the last vehicle in each period normally 

utilizes less than half of the vehicle‟s capacity.  This increases the number of vehicles 

used unnecessarily and indirectly increases the transportation costs.  Therefore in this 

chapter, we propose a new formulation in order to maximize the vehicle‟s utilization.  

Since Hybrid Genetic Algorithms (HGA) seems to outperform Knowledge-based 

Genetic Algorithms (KBGA) in Chapter 4, then the modification is done on the HGA 

problems and is referred to as the Modified Hybrid Genetic Algorithms (MHGA).  
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In the second part of this chapter, some post-optimization is done to do the 

routing within each cluster by using 2-opt that is originally proposed by  Croes [43].   

The results for the un-split delivery case are then compared with the results from 

Variable Neighborhood Search algorithm.   

 

Lastly, CPLEX is used to find the lower bound for each data set and the results 

for the split delivery problem are compared with the best integer from the CPLEX.  

 

 

5.1 Modified Hybrid Genetic Algorithms (MHGA) 

 

The main purpose of MHGA is to maximize the vehicle‟s utilization by 

improving the coordination of transportation.  This is achieved by examining the total 

amount to be collected by the last vehicle in each period.  However, this will 

consequently result in having to construct the route again and also very costly in a GA 

platform.   

 

We propose that the excess collection in each period (with respect to the vehicle 

capacity) is approximated instead.  If the excess is less than 𝐾%, then the amount of 

excess is transferred to the preceding period.  However, certain limit of transfer period 

must be set to ensure that the inventory holding costs is not be too high.  In our study, 

the transfer period is limited to 2 periods only.   

 

By referring to the overall Hybrid Genetic Algorithms (HGA) in Section 4.4.4, 

the modification of MHGA is done in Step 3A-3C as shown as follows: 
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Step 1: Generate an initial population.   

Step 2: For each supplier 𝑖, 𝑖 = 1, 2, 3, … , 𝑁, construct a total collection/delivery 

matrix, 𝐷𝑖𝑗 =  𝑑𝑖𝑗
𝑝−1
𝑗 =1  where 𝑑𝑖𝑗  is the demand for supplier 𝑖 in period 𝑗 

and 𝑝 is the period for the next visit to supplier 𝑖. 

Step 3A: 
{MHGA}:For each period 𝑗, 𝑗 = 1, 2, … , 𝑇, let 𝐷𝑃𝑗 =  𝐷𝑖𝑗

 𝑃𝑗  

𝑖=1
 where 

𝑃𝑗 ⊆ 𝑁 is the set of suppliers visited in period 𝑗 and 𝐷𝑃𝑗  is the total 

collection in period 𝑗.  Calculate the delivery/collection excess (with 

respect to vehicle capacity) in each period as, 𝑅𝑗 = rem DPj, C  where 𝐶 

is the vehicle capacity.   

Step 3B: Starting from 𝑗 = 𝑇 (the last period), if 𝑅𝑗 < 𝐾, sort in ascending order of 

the holding costs, the supplier  𝑠1, 𝑠2 , 𝑠3, … , 𝑠𝑚  ∈ 𝑃𝑗  and let 𝑠 𝑘  be the 

𝑘th supplier after the sort.  Otherwise set 𝑗 = 𝑗 − 1 and repeat Step 3B.   

Step 3C: Set 𝑞 = 1, 𝑠𝑢𝑚 = 0 and 𝑠 = 1 where 𝑞 (𝑞 ≤ 2) is the number of periods 

since the last collection/delivery, 𝑠𝑢𝑚 is the total amount to be transferred 

to the preceding period(s) and 𝑠 𝑠 ≤  𝑃𝑗     is the number of suppliers that 

will be visited in period 𝑗.  Starting from 𝑠 𝑘 ,  𝑘 = 1, if 𝑎𝑘𝑗 > 0 and 

𝑎𝑘(𝑗−𝑞) > 0,  then if 𝑎𝑘𝑗 > 𝑑𝑘𝑗 ,  set 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚  1, 𝑚𝑖𝑛 𝑑𝑖𝑗 , (𝑅𝑗 −

𝑠𝑢𝑚)  .  Otherwise, let 𝑟 = 𝑟𝑎𝑛𝑑𝑜𝑚  0, 𝑚𝑖𝑛 𝑎𝑘𝑗 , (𝑅𝑗 − 𝑠𝑢𝑚)  .  Set 

𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝑟, 𝑎𝑘𝑗 = 𝑎𝑘𝑗 − 𝑟, 𝑎𝑘 𝑗−𝑞 = 𝑎𝑘 𝑗−𝑞 + 𝑟,  𝑠 = 𝑠 + 1 and 

repeat until 𝑠𝑢𝑚 = 𝑅𝑗 . 

Step 4: Perform Step 3 (Steps 3a-3c) – Step 5 as in section 4.4.4. 

 

From the algorithm above, we note that the maximum amount to be transferred 

for supplier 𝑘 in period 𝑗 is not more than 𝑑𝑘𝑗 .  This will ensure that the resultant 

inventory holding cost will not increase drastically.  If the remaining 𝑎𝑘𝑗 = 0, then the 

chromosome will be modified accordingly.   
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Other than generating the amount to be transferred  𝑟  randomly as above 

algorithm, we have also investigated the effect of choosing 𝑟 deterministically by 

following the equation 𝑟 = 𝑚𝑖𝑛 𝑑𝑘𝑗  , (𝑅𝑗 − 𝑠𝑢𝑚)  for 𝑎𝑘𝑗 > 𝑑𝑘𝑗  and 𝑟 =

𝑚𝑖𝑛 𝑎𝑘𝑗  , (𝑅𝑗 − 𝑠𝑢𝑚)  otherwise where 𝑠𝑢𝑚 refers to the total amount to be 

transferred to the preceding period.   

 

 

5.2 The illustrations of MHGA 

 

To illustrate the MHGA, there are two important matrices that we have to 

consider that is the Demand Matrix and Delivery/Collection Matrix.  In our study, the 

vehicle capacity, 𝐶 is set at 10 and  𝐾% is set at 40% and 60%.  For this particular 

example, we will be using example of S5T5 where the number of customers are 5 in 

period 5 and 𝐾% is set at 40%. 

From the Delivery/Collection Matrix in Table 5.2, calculate the Total 

Delivery/Collection amount for each period (denoted as 𝐷𝑃𝑗 ) and the percentage excess 

(with respect to ehicle capacity) which is denoted as 𝑅𝑗 .  Table 5.3 below shows the 

value for 𝐷𝑃𝑗  and 𝑅𝑗 . 

 

Table 5.1: The Demand Matrix Table 5.2: The Delivery/Collection Matrix 

 

 
1 2 3 4 5 

1 4 2 4 4 4 

2 2 2 2 2 2 

3 2 1 2 2 2 

4 2 1 2 2 2 

5 1 2 1 1 1 
 

 
1 2 3 4 5 

1 6 0 8 0 4 

2 2 4 0 2 2 

3 5 0 0 4 0 

4 3 0 2 4 0 

5 1 3 0 1 1 
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Table 5.3: The total delivery/pick-up for each period (𝐷𝑃𝑗 ) and excess in comparison to 

the vehicle capacity (𝑅𝑗 ) 

 

 

1 2 3 4 5 

1 6 0 8 0 4 

2 2 4 0 2 2 

3 5 0 0 4 0 

4 3 0 2 4 0 

5 1 3 0 1 1 

𝑫𝑷𝒋 17 7 10 11 7 

𝑹𝒋(%) 70 70 0 10 70 

 
      

 

In the algorithm, the excess delivery (with respect to the vehicle‟s capacity), 𝑅𝑗  

for each period 𝑗 is evaluated by comparing it to a certain value 𝐾%.  If 𝑅𝑗  is less than 

𝐾%, then the amount will be transferred to the preceding period to be delivered.  To 

avoid a great increase in the inventory holding cost, we limit the number of periods to 

be transferred to 2.  From Table 5.3, starting from 𝑇 = 5, we can see that when 𝑇 = 4, 

𝑅𝑗 < 40%.  Therefore some delivery/collection amount in period 𝑇 = 4 will be shifted 

to the preceding periods.  However, the selection of the suppliers will be done based on 

the inventory holding cost for each supplier.  Table 5.4(a) shows the list of the suppliers 

with their inventory holding costs while Table 5.4(b) shows the sorted suppliers in 

ascending order based on their inventory holding costs.  

 

Table 5.4(a): The list of suppliers with 

their inventory holding costs. 

Table 5.4(b): The list of assorted suppliers 

in ascending order based on their 

inventory holding costs. 

Supplier 
Holding 

Cost 

1 24 

2 15 

3 3 

4 9 

5 12 
 

Supplier 
Holding 

Cost 

3 3 

4 9 

5 12 

2 15 

1 24 
 

   



88 

 

Table 5.5 shows the period where the amount will be shifted.  By setting the 

preceding period, 𝑞 = 1, it means that some amount from period 4 will be shifted into 

period 3.  We start with the supplier that has the smallest inventory holding cost.  From 

Table 5.5b), the first supplier is supplier 3.  Unfortunately, there is no 

delivery/collection for supplier 3 in period 3 so the amount in period 4 cannot be shifted 

into period 3.  The second lowest inventory holding cost is supplier 4 and there is 

delivery/collection for supplier 4 in period 3.  Hence, the shifted amount can be shifted 

from period 4 to period 3 for supplier 4.   

 

Table 5.5: The total delivery/pick-up matrix with the sorted supplier. 

 

 

 

Period 

 

 

Sorted 

supplier 

 

1 2 3 4 5 HC 

𝑠5 1 6 0 8 0 4 24 

𝑠4 2 2 4 0 2 2 15 

𝑠1  3 5 0 0 4 0 3 

𝑠2 4 3 0 2 4 0 9 

𝑠3 5 1 3 0 1 1 12 

 𝑫𝑷𝒋 17 7 10 11 7  

 𝑹𝒋 7 7 0 1 7  
 

 

In MHGA, there are two ways to determine the amount to be shifted.  The first 

method is to get the deterministic amount and the second method is to randomly 

generate the amount to be shifted.  In this example, we use the random generation 

amount to be shifted.  Since total delivery/collection, 𝑎44 > 𝑑44 ,  and the random 

number is 𝑟 = 1.  This will give us  𝑎44 = 4 − 1 = 3 and 𝑎43 = 2 + 1 = 3.  The new 

total delivery/collection matrix is shown in Table 5.6.  
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Table 5.6: The total delivery/pick-up matrix after the application of MHGA. 

 

 

 

Period 

 

 

Sorted 

supplier 

 

1 2 3 4 5 HC 

𝑠5 1 6 0 8 0 4 24 

𝑠4 2 2 4 0 2 2 15 

𝑠1  3 5 0 0 4 0 3 

𝑠2 4 3 0 3 3 0 9 

𝑠3 5 1 3 0 1 1 12 

 𝑫𝑷𝒋 17 7 11 10 7  

 𝑹𝒋 7 7 1 0 7  
 

 

 

 We note that the maximum amount to be shifted for each customer in each 

period is not more than 𝑎𝑖𝑗 − 1.  This will ensure that the resultant inventory holding 

cost will not increase in great amount.  Besides, if the customer is visited, the 

delivery/collection amount will not be 0.  The original chromosome has to be modified 

if it is not subjected to this constraint, resulting undesirable and unnecessary cost in 

terms of computational time.    

 

 

5.3 Results and Discussions 

 

The algorithms were written in C++ using Genetic Algorithms Library (GALIB) 

to run the program.  The same 14 datasets that have been used for the previous 3 models 

were used to run this program.  In our experiment, the number of generations, crossover 

rate and mutation rate are fixed at 300, 0.9 and 0.01 respectively for all the problems.  

The population size is fixed at 200 individuals.  Each dataset is executed ten times.  

Table 5.7 summarizes the best total objective, the mean and standard deviation of total 

objective for 10 runs, and the number of vehicle for the best total objective for the 
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inbound logistics problems.  The best routes and the list of the best objectives for each 

generation are saved for observation of the converging pattern.    

 

Table 5.7 : The best total objective, the mean and standard deviation of total objective for 10 runs, 

and the number of vehicle for the best total objective for the inbound logistics problems with 

MHGA. 

 

Dataset 

Inbound Logistics 

Split Delivery Un-split Delivery 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S12T5                 

Best Obj. 2614.4 2669.7 2771.3 2732.2 2588.6 2643 2652.2 2681.2 

Mean 2729.84 2784.27 3026.13 2822.48 2788.66 2832.4 2797.32 2779.22 

Std. Dev. 93.5801 142.072 166.737 82.054 198.057 133.165 101.363 63.8421 

No. of Veh. 15 16 18 17 16 17 17 16 

S12T10                 

Best Obj. 5382 5807.4 5162.8 5499.6 5336.5 5377.2 5198.6 5361.3 

Mean 5547.2 5926.14 5428.68 5703.86 5438.95 5482.62 5445.66 5396.53 

Std. Dev. 187.852 110.097 262.114 203.39 79.9029 96.8379 208.216 261.328 

No. of Veh. 33 36 33 33 33 33 34 33 

S12T14                 

Best Obj. 7273.9 7430.2 7077 7357.7 7100.8 7618 7007.3 7587.4 

Mean 7451.09 7611.52 7228.2 7646.87 7229.88 7845.5 7150.73 7675.54 

Std. Dev. 130.711 146.048 138.383 137.54 76.7626 143.875 82.551 100.078 

No. of Veh. 45 46 46 45 46 48 46 49 

S20T5                 

Best Obj. 4066.9 4051.7 4035.2 4100.2 4004.5 4039 4053.7 3988.7 

Mean 4127.99 4211.17 4164.02 4271.42 4216.75 4366.3 4298.27 4250.27 

Std. Dev. 42.243 129.652 95.94 107.775 132.33 236.022 201.479 275.703 

No. of Veh. 26 24 25 26 25 24 26 25 

S20T10                 

Best Obj. 10110.9 10580.3 9382.8 9923.7 9756.8 11163.9 10455.3 9217.6 

Mean 10201.3 10760.3 9634.98 10077 9975.78 11444 10553.1 9413.86 

Std. Dev. 93.9481 142.514 147.011 143.526 128.054 222.203 113.246 162.755 

No. of Veh. 55 59 54 56 55 60 58 52 

S20T14                 

Best Obj. 10116.2 12122.4 10599.1 10700 10714.3 11441.1 11385.9 11295.1 

Mean 10276.6 12288.2 10747.1 10904.1 10931.4 11580.6 11613.4 11664.6 

Std. Dev. 150.526 125.088 172.76 115.719 209.201 177.108 173.048 239.6 

No. of Veh. 67 68 68 67 73 73 77 75 
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Table 5.7 (cont.) 

 

  Inbound Logistics 

Dataset Split Delivery Un-split Delivery 

  
Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S20T21                 

Best Obj. 15920 17287 16894 16659 16574 17955 16571 17259 

Mean 16268.3 17339.6 17156.7 17006.1 16812.9 18280.8 16751.2 17580.4 

Std. Dev. 207.718 125.916 139.13 248.622 230.416 246.861 168.926 195.936 

No. of Veh. 102 103 103 106 106 108 110 108 

S50T5                 

Best Obj. 8199.3 8563.6 8713.2 8682.1 8274.2 8313.3 8399.2 8423.1 

Mean 8421.53 8802.26 8830.92 8835.41 8432.75 8695.43 8607.62 8798.51 

Std. Dev. 168.429 134.679 139.975 125.714 107.902 273.228 133.096 253.537 

No. of Veh. 55 56 59 61 57 57 58 58 

S50T10                 

Best Obj. 16579 16990 17842 18681 17485 18420 18155 18381 

Mean 16766.9 17219.9 17997.2 18870.6 17869.1 18636.5 18332.5 18869.2 

Std. Dev. 187.473 111.832 86.1933 223.802 268.189 242.676 127.327 339.402 

No. of Veh. 116 120 114 122 117 115 120 124 

S50T14                 

Best Obj. 21503 22174 24863 25901 24869 26531 25814 25620 

Mean 21766.7 22372 25134.7 26001.7 25154.4 26813 26178.2 25941.7 

Std. Dev. 125.092 190.517 165.091 97.3528 272.82 234.375 224.588 247.753 

No. of Veh. 167 161 158 166 163 170 170 173 

S50T21                 

Best Obj. 31944 32273 31475 32150 31840 32289 31743 32235 

Mean 32250.2 32520.8 31812.4 32217.1 32159.7 32519.8 31917.6 32385.4 

Std. Dev. 318.559 207.622 360.389 46.1626 247.474 200.781 165.013 92.5361 

No. of Veh. 228 229 227 230 238 246 236 241 

S98T5                 

Best Obj. 63234.5 67968 62446 73392.5 89771.5 79244 70444 99037 

Mean 67710.5 73489.7 67517.7 82960 93293.8 80286.4 76605.3 100620 

Std. Dev. 3587.87 3998.79 4049.44 4272.33 5192.89 1229.73 3986.95 1302.49 

No. of Veh. 20 24 32 28 36 37 32 35 

S98T10                 

Best Obj. 150403 131050 234004 175237 240474 168517 200331 187293 

Mean 152185 131552 236798 177204 250271 178523 208934 225950 

Std. Dev. 1037.9 601.566 1882.89 732.586 9865.83 7008.31 7529.77 17686.9 

No. of Veh. 10 10 78 50 69 72 71 72 

S98T14                 

Best Obj. 275823 345099 1064408 1098795 294420 241050 1165740 1193520 

Mean 276324 346734 1070488 1104433 306004 247533 1171130 1211484 

Std. Dev. 473.483 1062.84 3349.53 5020.52 7559.25 5623.26 4472.86 8315.51 

No. of Veh. 14 14 143 147 134 141 157 156 
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Table 5.8 : The best total objective, the mean and standard deviation of total objective for 10 runs, 

and the number of vehicle for the best total objective for the outbound logistics problems with 

MHGA. 

 

Dataset 

Outbound Logistics 

Split Pick-up Un-split Pick-up 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S12T5                 

Best Obj. 3990.4 4048.1 3945.4 4127 3953.3 3968.4 3860 4081.3 

Mean 4111.5 4123.43 4156.69 4316.54 4004.2 4013.88 4049.54 4173.23 

Std. Dev. 57.342 46.4352 123.688 151.456 23.8453 31.0028 118.593 78.2818 

No. of Veh. 19 20 22 21 19 19 19 21 

S12T10                 

Best Obj. 4343.7 4390 4116.5 4512.7 4106 4308.1 4008.4 4432.5 

Mean 4484.6 4512.53 4727.19 4835.34 4162.02 4362.21 4603.64 4718.35 

Std. Dev. 146.34 95.953 277.53 274.212 55.3543 64.0504 345.551 204.864 

No. of Veh. 33 32 32 31 31 32 31 33 

S12T14                 

Best Obj. 6813 7179.6 6895.3 55247 6899.6 7188 6881 7116 

Mean 7619.43 7408.75 7159.23 7423.69 7475.41 7300.42 7022.11 7280.53 

Std. Dev. 204.543 164.23 147.665 152.395 337.994 72.1709 80.5914 135.701 

No. of Veh. 44 52 42 48 45 47 44 46 

S20T5                 

Best Obj. 6471.3 6504.2 6825.4 6837.8 6461.2 6517 6662.6 6765.8 

Mean 6810.48 6852.77 7221.28 6976.23 6691.6 6733.92 7072.37 6846.34 

Std. Dev. 262.274 210.221 256.453 86.3925 179.75 123.222 223.986 78.9283 

No. of Veh. 31 32 33 31 33 33 33 32 

S20T10                 

Best Obj. 13771 13937.6 8117.4 7714.1 13566.7 13869.9 7999.1 7765 

Mean 12628.7 14379.4 8314.25 8033.35 12487.1 14235.5 8165.21 7925.21 

Std. Dev. 402.235 206.364 131.372 137.384 4391.44 236.154 104.694 116.77 

No. of Veh. 63 59 49 44 63 60 49 46 

S20T14                 

Best Obj. 13612.1 14910.2 13887.7 14546.5 13349.2 14726 13644.5 14405 

Mean 13786.5 14928.3 14310.2 14949.3 13676.9 14794.4 13801.5 14508.7 

Std. Dev. 216.395 78.503 129.352 157.23 163.758 56.2294 119.518 77.7756 

No. of Veh. 77 79 77 85 77 81 78 81 

S20T21                 

Best Obj. 16171.5 17895.3 16615.5 17067.2 16163 17715 16506 17203 

Mean 16804.4 18195.3 16954.3 17509.6 16702.2 18076.1 16835.9 17395.4 

Std. Dev. 235.938 305.869 307.23 171.112 396.731 262.099 295.488 162.073 

No. of Veh. 107 110 108 110 105 108 107 112 
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Table 5.8 (cont.) 

 

Dataset 

Outbound Logistics 

Split Pick-up Un-split Pick-up 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S50T5                 

Best Obj. 9787.2 10033.4 8545.1 8531.6 9612.7 9818.3 8427 8324 

Mean 9858.24 10293.2 8706.32 8726.86 9714.57 9952.44 8583.7 8589.2 

Std. Dev. 161.93 98.3405 307.348 172.675 93.1292 79.5741 210.165 142.976 

No. of Veh. 62 60 58 60 59 59 57 59 

S50T10                 

Best Obj. 18724 17162 18141 18643 17565 17133 17920 18489 

Mean 19902.6 17722.6 18437 19912.2 17764.3 17621.9 18287.6 18787.2 

Std. Dev. 223.334 98.349 362.325 263.323 132.798 364.907 321.71 182.677 

No. of Veh. 112 112 114 126 112 112 117 128 

S50T14                 

Best Obj. 16703 18097 25576 25514 17679 18422 25536 25640 

Mean 18008.2 18786.7 27231.2 26021.4 17883.2 18638.6 26099.6 25871.2 

Std. Dev. 186.348 158.958 410.134 274.115 124.767 131.406 329.366 193.667 

No. of Veh. 149 152 167 170 151 154 170 171 

S50T21                 

Best Obj. 32900 33972 31487 31426 34077 34205 31550 31733 

Mean 34316.2 34706.2 32016 32651.3 34205.5 34572.3 31892.3 32526.4 

Std. Dev. 95.483 408.356 215.42 470.325 60.6305 323.651 215.919 659.831 

No. of Veh. 230 234 225 227 241 244 230 234 

S98T5                 

Best Obj. 78153 81109 66695 97408 85339 86323 70210 102035 

Mean 87958.4 92843.2 72021.3 99948.1 90834.9 92706.9 71890.8 103809 

Std. Dev. 2483.13 2245.35 2549.24 2484.84 3786.18 4061.71 861.07 2385.39 

No. of Veh. 23 25 31 32 36 37 35 35 

S98T10                 

Best Obj. 206581 161345 175005 178063 231126 164292 206924 161092 

Mean 236668 173146 191953 198857 236520 173042 211825 168745 

Std. Dev. 4728.73 5378.84 2820.12 6619.24 4725.64 5373.01 2762.82 8616.9 

No. of Veh. 54 63 82 84 63 72 182 79 

S98T14 
       

  

Best Obj. 222075 225755 265063 235608 222790 222862 266271 236793 

Mean 265112 247527 277090 280741 264979 247403 276952 280615 

Std. Dev. 12564.2 17126.4 4574.23 26015.3 22464 17120.1 5550.26 25962.4 

No. of Veh. 51 49 132 40 52 48 135 41 
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Generally, from Table 5.7 and Table 5.8 above, the standard deviation of the 

total objectives increases steadily from the small-sized datasets to the medium-sized 

datasets.  There seems to be not so much different in the best objectives, mean and the 

number of vehicles.  For most results, when we set 𝐾 = 40%,  the best objectives seems 

to be lower than when we set 𝐾 = 60%.  The purpose of setting 𝐾 is to limit the size of 

the amount to be transferred to the previous period.  Therefore, the least we shift the 

amount, the lower the inventory holding costs would be.   

 

For some small instances such as S12T5, S20T5, the best objectives for the un-

split delivery and pick-up cases are lower compared with the Hybrid Genetic 

Algorithms results.  However, as the size of instances increases, the number of 

difference of the best objectives between HGA and MHGA method seem to be quite 

large.   

 

In large instances (S98T5, S98T10, S98T14), the standard deviations for the 

objective functions are large.  As explained in Chapter 4, this is probably because the 

maximum number of generation is not sufficient enough for the algorithm to converge.   

 

Table 5.9 and Table 5.10 below show the characteristics of the best results given 

in Table 5.7 and Table 5.8.  It gives the distance costs, total inventory holding costs, 

number of vehicle and the best total objective costs for 10 runs. 
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Table 5.9: The distance costs, total inventory holding costs, number of vehicle and the best total 

objective costs for 10 runs from Table 5.7. 

 

Dataset 

Inbound Logistics 

Split Delivery Un-split Delivery 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S12T5                 

Distance 1765.4 1812.7 1976.3 1747.2 1863.6 1898 1841.2 1806.2 

Inventory 549 537 435 645 405 405 471 555 

Tot Veh 15 16 18 17 16 17 17 16 

Tot Obj 2614.4 2669.7 2771.3 2732.2 2588.6 2643 2652.2 2681.2 

time 463 437 446 439 443 467 465 446 

S12T10                 

Distance 3966 4268.4 3965.8 3801.6 3950.5 3946.2 3966.6 3882.3 

Inventory 756 819 537 1038 726 771 552 819 

Tot Veh 33 36 33 33 33 33 34 33 

Tot Obj 5382 5807.4 5162.8 5499.6 5336.5 5377.2 5198.6 5361.3 

time 715 694 728 667 698 697 750 687 

S12T14                 

Distance 5239.9 5247.2 5419 5242.7 5379.8 5518 5286.3 5425.4 

Inventory 1134 1263 738 1215 801 1140 801 1182 

Tot Veh 45 46 46 45 46 48 46 49 

Tot Obj 7273.9 7430.2 7077 7357.7 7100.8 7618 7007.3 7587.4 

time 837 838 880 845 932 845 885 875 

S20T5                 

Distance 2733.9 2497.7 2710.2 2653.2 2640.5 2578 2786.7 2603.7 

Inventory 813 1074 825 927 864 981 747 885 

Tot Veh 26 24 25 26 25 24 26 25 

Tot Obj 4066.9 4051.7 4035.2 4100.2 4004.5 4039 4053.7 3988.7 

time 681 655 692 661 672 654 694 689 

S20T10                 

Distance 6400.9 6775.3 6292.8 6397.7 6613.8 6648.9 6595.3 6131.6 

Inventory 2610 2625 2010 2406 2043 3315 2700 2046 

Tot Veh 55 59 54 56 55 60 58 52 

Tot Obj 10110.9 10580.3 9382.8 9923.7 9756.8 11163.9 10455.3 9217.6 

time 978 929 1012 1000 978 888 968 1022 

S20T14                 

Distance 7096.2 7129.4 7079.1 7038 7187.3 7086.1 7697.9 7509.1 

Inventory 1680 3633 2160 2322 2067 2895 2148 2286 

Tot Veh 67 68 68 67 73 73 77 75 

Tot Obj 10116.2 12122.4 10599.1 10700 10714.3 11441.1 11385.9 11295.1 

time 1393 1195 1343 1345 1250 1200 1363 1342 
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Table 5.9 (cont.) 

 

Dataset 

Inbound Logistics 

Split Delivery Un-split Delivery 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S20T21                 

Distance 11294 11195 11255 11554 11331 11001 11821 11697 

Inventory 2586 4032 3579 2985 3123 4794 2550 3402 

Tot Veh 102 103 103 106 106 108 110 108 

Tot Obj 15920 17287 16894 16659 16574 17955 16571 17259 

time 1834 1653 1788 1833 1732 1541 2247 2217 

S50T5                 

Distance 5881.3 6163.6 6323.2 6401.1 5807.2 5806.3 5992.2 6026.1 

Inventory 1218 1280 1210 1061 1327 1367 1247 1237 

Tot Veh 55 56 59 61 57 57 58 58 

Tot Obj 8199.3 8563.6 8713.2 8682.1 8274.2 8313.3 8399.2 8423.1 

time 1873 1849 1816 1831 1760 1748 1824 1832 

S50T10                 

Distance 11418 11604 12487 13474 12412 12494 12820 13450 

Inventory 2841 2986 3075 2767 2733 3626 2935 2451 

Tot Veh 116 120 114 122 117 115 120 124 

Tot Obj 16579 16990 17842 18681 17485 18420 18155 18381 

time 2534 2418 2348 2422 2288 2214 2355 2360 

S50T14                 

Distance 14807 14717 17391 18657 17449 18239 18888 18517 

Inventory 3356 4237 4312 3924 4160 4892 3526 3643 

Tot Veh 167 161 158 166 163 170 170 173 

Tot Obj 21503 22174 24863 25901 24869 26531 25814 25620 

time 3188 2977 2732 2975 2699 2634 2849 2842 

S50T21                 

Distance 22144 21950 21904 22573 22046 21561 21920 22714 

Inventory 5240 5743 5031 4977 5034 5808 5103 4701 

Tot Veh 228 229 227 230 238 246 236 241 

Tot Obj 31944 32273 31475 32150 31840 32289 31743 32235 

time 3937 3825 3903 4042 4340 3751 4188 5192 

S98T5                 

Distance 245.69 280.1 318.94 293.09 361.55 328.4 315.54 372.86 

Inventory 46950 49163 40099 53138 64494 55424 48267 73394 

Tot Veh 20 24 32 28 36 37 32 35 

Tot Obj 63234.5 67968 62446 73392.5 89771.5 79244 70444 99037 

time 9911 9883 8897 8786 11021 11194 9387 9130 
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Table 5.9 (cont.) 

 

Dataset 

Inbound Logistics 

Split Delivery Un-split Delivery 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S98T10                 

Distance 61.45 62.6 904.08 580.13 649.07 712.33 719.61 754.65 

Inventory 145330 125920 173200 136230 194220 118500 150150 135160 

Tot Veh 10 10 78 50 69 72 71 72 

Tot Obj 150403 131050 234004 175237 240474 168517 200331 187293 

time 16539 16378 14185 15267 17182 23499 17450 18034 

S98T14                 

Distance 89.86 95.98 13763 14335 1256.2 1350 15642 15900 

Inventory 268530 337500 347658 352645 204810 145350 352240 367320 

Tot Veh 14 14 143 147 134 141 157 156 

Tot Obj 275823 345099 1064408 1098795 294420 241050 1165740 1193520 

time 22642 23578 18976 17685 23083 23595 19787 19744 
 

 

  From Table 5.9 above, we can see that in large instances, there seem to 

be inconsistency in the number of vehicle used in split delivery problem where the 

number varies quite considerably between 𝐾 = 40% and 𝐾 = 60%.  However, for the 

un-split delivery problem, the numbers of vehicle used are within the acceptable range.   

 

Table 5.10: The distance costs, total inventory holding costs, number of vehicle and the best 

total objective costs for 10 runs from Table 5.8. 

 

Dataset 

Outbound Logistics 

Split Pick-up Un-split Pick-up 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S12T5 

Distance 2494.4 2570.1 2624.4 2721 2370.3 2520.4 2528 2671.3 

Inventory 1116 1078 881 986 1203 1068 952 990 

Tot Veh 19 20 22 21 19 19 19 21 

Tot Obj 3990.4 4048.1 3945.4 4127 3953.3 3968.4 3860 4081.3 

time 354 418 526 552 431 404 592 565 
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Table 5.10 (cont.) 

 

Dataset 

Outbound Logistics 

Split Pick-up Un-split Pick-up 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S12T10 

Distance 3224.7 3227 3043.5 3295.7 3024 3083.1 3085.4 3214.5 

Inventory 459 523 433 597 462 585 303 558 

Tot Veh 33 32 32 31 31 32 31 33 

Tot Obj 4343.7 4390 4116.5 4512.7 4106 4308.1 4008.4 4432.5 

time 762 784 859 792 724 729 934 869 

S12T14 

Distance 5235 5451.6 5388.3 53304 5366.6 5477 5291 5298 

Inventory 698 688 667 983 633 771 710 898 

Tot Veh 44 52 42 48 45 47 44 46 

Tot Obj 6813 7179.6 6895.3 55247 6899.6 7188 6881 7116 

time 1143 1076 1216 1111 1191 1122 1194 1069 

S20T5 

Distance 4068.3 4017.2 4135.4 3946.8 4082.2 3976 4073.6 3800.8 

Inventory 1783 1847 2030 2271 1719 1881 1929 2325 

Tot Veh 31 32 33 31 33 33 33 32 

Tot Obj 6471.3 6504.2 6825.4 6837.8 6461.2 6517 6662.6 6765.8 

time 717 637 726 675 639 623 706 644 

S20T10 

Distance 8421 7866.6 5688.4 5583.1 8331.7 7857.9 5594.1 5532 

Inventory 4090 4891 1449 1251 3975 4812 1425 1313 

Tot Veh 63 59 49 44 63 60 49 46 

Tot Obj 13771 13937.6 8117.4 7714.1 13566.7 13869.9 7999.1 7765 

time 868 806 1069 1044 906 863 1112 1059 

S20T14 

Distance 9093.1 9144.2 8815.7 9067.5 8917.2 8944 8652.5 8934 

Inventory 2979 4186 3532 3779 2892 4162 3432 3851 

Tot Veh 77 79 77 85 77 81 78 81 

Tot Obj 13612.1 14910.2 13887.7 14546.5 13349.2 14726 13644.5 14405 

time 1403 1294 1409 1454 1374 1224 1316 1466 

S20T21 

Distance 11487.5 11472.3 11234.5 11596.2 11477 11304 11231 11600 

Inventory 2544 4223 3221 3271 2586 4251 3135 3363 

Tot Veh 107 110 108 110 105 108 107 112 

Tot Obj 16171.5 17895.3 16615.5 17067.2 16163 17715 16506 17203 

time 2457 2514 2143 2290 2486 2575 2212 2312 
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Table 5.10 (cont.) 

 

Dataset 

Outbound Logistics 

Split Pick-up Un-split Pick-up 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S50T5 

Distance 7238.2 7294.4 6139.1 6159.6 7119.7 7210.3 6025 5947 

Inventory 1309 1539 1246 1172 1313 1428 1262 1197 

Tot Veh 62 60 58 60 59 59 57 59 

Tot Obj 9787.2 10033.4 8545.1 8531.6 9612.7 9818.3 8427 8324 

time 1950 1776 1928 1739 1959 1826 1965 1722 

S50T10 

Distance 14069 12335 12733 13726 12922 12275 12541 13538 

Inventory 2415 2587 3128 2397 2403 2618 3039 2391 

Tot Veh 112 112 114 126 112 112 117 128 

Tot Obj 18724 17162 18141 18643 17565 17133 17920 18489 

time 2596 2449 2117 2468 2528 2376 2195 2411 

S50T14 

Distance 10903 11504 18492 18377 11770 11794 18505 18524 

Inventory 2820 3553 3744 3737 2889 3548 3631 3696 

Tot Veh 149 152 167 170 151 154 170 171 

Tot Obj 16703 18097 25576 25514 17679 18422 25536 25640 

time 2903 3888 2700 2766 2960 3831 2768 2754 

S50T21 

Distance 23054 23099 21785 22399 23934 23194 21829 22477 

Inventory 5246 6193 5202 4487 5323 6131 5121 4576 

Tot Veh 230 234 225 227 241 244 230 234 

Tot Obj 32900 33972 31487 31426 34077 34205 31550 31733 

time 5233 4822 4146 5035 5230 4868 4185 4992 

S98T5 

Distance 269.3 321.6 262.4 328.7 359.5 379 299 431 

Inventory 60088 60029 47375 74573 60164 59973 48260 73485 

Tot Veh 23 25 31 32 36 37 35 35 

Tot Obj 78153 81109 66695 97408 85339 86323 70210 102035 

time 10140 10744 9462 9230 10125 10679 9470 9205 

S98T10 

Distance 444 603.9 893.2 753.6 481 627 1731.5 834.03 

Inventory 173581 118550 113945 123583 194476 118542 83949 103590 

Tot Veh 54 63 82 84 63 72 182 79 

Tot Obj 206581 161345 175005 178063 231126 164292 206924 161092 

time 17079 23787 12495 12622 17084 23750 12498 12561 
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Dataset 

Outbound Logistics 

Split Pick-up Un-split Pick-up 

Fixed shifted 

amount 

Random shifted 

amount 

Fixed shifted 

amount 

Random shifted 

amount 

K% 40% 60% 40% 60% 40% 60% 40% 60% 

S98T14 

Distance 476.9 504.3 1009.6 378.5 488.59 449.64 1022 397.65 

Inventory 188030 190740 188183 208683 187960 190780 188171 208710 

Tot Veh 51 49 132 40 52 48 135 41 

Tot Obj 222075 225755 265063 235608 222790 222862 266271 236793 

time 22608 23073 19579 25021 22678 23097 19651 24922 

 

 

In fixed shifted amount, generally the distance costs and inventory costs for 

𝐾 = 40% are lower than when 𝐾 = 60%.  This is to be expected because the size to be 

shifted for 𝐾 = 40% is normally lower than 𝐾 = 60%.  Thus, there will be fewer 

amounts to be held in the preceding period and less travelling is done to send the items. 

However this is not necessarily true for the random shifted amount where the amount 

shifted does not constitute a full amount.    
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Figure 5.1: The best objectives over the number of generation for dataset S20T21 for 

Split Delivery Case 

 

Figure 5.1 shows graph of the best objectives over the number of generation for 

dataset S20T21 for split delivery case.  The graph has been plotted based on the fixed 

shift algorithm and the random shift algorithm.  This graph is an example of 

convergence graph for small datasets.  Based on the graph, the fixed shift and the 

random shift algorithm did not show much difference in terms of converging to get the 

objective value.  Basically, after 250 generations, the algorithm finally finds the 

optimum objective value for the dataset.   
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Figure 5.2: The best objective over the number of generation for dataset S98T14 for 

un-split delivery problem. 

 

  

On the other hand, Figure 5.2 shows the convergence graph for dataset S98T14 with un-

split delivery case.  It can be seen that with Genetic Algorithms, the algorithms are 

quick to find the lower objective value.  However, in order to converge into the optimal 

objective value, the algorithm needs to have more number of generations.  
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Figure 5.3: The best objectives over number of generations for dataset S98T14 with 

split delivery case.  

 

  

For the split delivery problem with large dataset, Figure 5.3 above shows that 

the convergence graph for the fixed shift and random shift algorithm.  It can be seen that 

in the split delivery case, the random shift algorithms find the lower objective value 

faster than the fixed shift algorithm.   

 

 It can be concluded that for small instances, the number of generation is 

sufficient to find the objective value.  On the other hand, for large datasets, we will need 

bigger number of generation for the algorithm to converge to find the objective value.  

This however will be time consuming.   
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5.4 Post-Optimization 

 

The routing within each cluster can obviously be improved using existing 

refinement procedures.  In this study, a simple local search 2-opt which is originally 

proposed by Croes in 1958 [43] is performed on the best chromosome found.  The 

general concept of 2-opt procedure is to obtain a new tour by eliminating two edges and 

reconnecting the paths in different way.  This procedure is repeated until the shortest 

tour is found.  This additional task however, does not contribute significantly to the cpu 

times since the number of suppliers within a route is relatively small due to the capacity 

constraint. 

 

 

5.4.1 Results and discussions 

 

In this study, the 2-opt optimization is applied on the results from HGA method 

in Chapter 4.  This result is then compared to the work done by Moin et. al [6] that uses 

Variable Neighborhood Search (VNS) Algorithm on the same datasets used in this 

study. VNS were written in MATLAB 7.1.  

 

VNS method is based on exploration of a systematic neighborhood model.  The 

principles of VNS is that different neighborhoods generate different search topologies 

[35, 44].  The systematic change of neighborhood is applied within a local search 

algorithm that can be applied repeatedly in order to move from the incumbent solution.  

There are several ways that can be used to define the neighborhood structure, for 

example: 1-interchange, symmetric difference between two solutions, Hamming 

distance, vertex deletion or addition, node based or path based and k-edge exchange.    
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Table 5.11: The comparison of HGA results after 2-opt and VNS results.  

 

DATA 

SET 
METHOD 

TOTAL 

COST 

HOLDING 

COST 

NUM 

OF 

VEH 

DISTANCE TIME 

S12T5 GA 2385.9 378 15 1707.9 41.2467 

 VNS 2116.7 261 14 1575.7 184.596 

       

S12T10 GA 4657.04 507 30 3550.04 81.5261 

 VNS 4400.44 369 31 3411.44 437.661 

       

S12T14 GA 6882.31 621 43 5401.31 114.146 

 VNS 6301.09 498 45 4903.09 533.867 

       

S20T5 GA 3210.89 198 22 2572.89 61.402 

 VNS 3214.66 345 24 2389.66 1200.77 

       

S20T10 GA 6890.2 537 48 5393.2 117.219 

 VNS 6689 690 49 5019 2384.88 

       

S20T14 GA 9716.69 570 70 7746.69 167.42 

 VNS 9575.98 1005 68 7210.98 6901.06 

       

S20T21 GA 14672.4 933 106 11619.4 257.464 

 VNS 14498.3 1425 106 10953.3 6029.84 

       

S50T5 GA 5729.6 453 47 4336.6 2559 

 VNS 5448.8 270 46 4258.8 15921 

       

S50T10 GA 12081.1 1213 100 8868.1 3630 

 VNS 11493.6 545 102 8908.58 57054.7 

       

S50T14 GA 17521 1934 143 12727 7405 

 VNS 16699.2 650 148 13089.2 70968.1 

       

S50T21 GA 27189 3281 220 19508 8708 

 VNS 25520.6 1005 225 20015.6 47699.9 

       

S98T5 GA 614787 7294.89 63 11897.8 226.623 

 VNS 624073 1210 65 12431.2 4560.32 
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Table 5.11 (cont.) 

 

DATA 

SET 
METHOD 

TOTAL 

COST 

HOLDING 

COST 

NUM 

OF 

VEH 

DISTANCE TIME 

S98T10 GA 1223764 16767.21 125 23639.9311 461.701 

  VNS 1238072 3024.5 129 24649.3569 11125.7 

 

S98T14 GA 1722226 20997.02 176 33320.577 653.441 

  VNS 1737358 3467.75 181 34605.408 24589.9 

 

 

From Table 5.11 above, it is observed that VNS seems to outperform GA in 

small and medium sized problems.  However, for the large data size S98T5 – S98T14, 

GA after post-optimization seems to give better results compared to VNS.  The CPU 

time for GA are extremely lower compared as compared to VNS.  It is interesting to 

note that although VNS emphasizes on reducing the travelling costs, it generally 

produces a slightly higher travelling distance as compare to GA especially on the large 

instances data size.  For small instances, only small difference can be seen in the 

number of vehicles used in GA and VNS but in large data size, GA generates slightly 

less number of vehicles than its counterparts.    

 

 

5.5 Reformulation of the IRP Model 

 

We reformulate the IRP model by Lee et al [1] (given in Section 2.2) using the 

maximal flow approach with the route length constraint (constraint 2.12) removed from 

the formulation. The reformulation is done in order to reduce the dimension of the 

formulation because from our trial runs, CPLEX is not able to run with the current 
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formulation. CPLEX 9.1 is used to generate the lower bound for the data sets used in 

this study.  A new mathematical formulation is shown below: 

 

Indices  

𝑆 = {1,2, … , 𝑁} A set of suppliers where supplier 𝑖 (𝑖 ∈ 𝑆) supplies product 

𝑖 only. 

𝐷 = {0} Depot 

𝑃 = {𝑁 + 1} Assembly plant 

𝜏 = {1,2, … , 𝑇} Period index 

  

Parameters  

𝐶 Vehicle‟s capacity 

𝐹 Fixed vehicle cost per trip (assumed to be the same for all 

periods) 

𝑉 Travel cost per unit distance 

𝑀 Size of the vehicle fleet and it is assumed to be unlimited 

𝑑𝑖𝑡  Demand for product from supplier 𝑖 (at the assembly plant) 

in period 𝑡 

𝑐𝑖𝑗  Travel distance between supplier 𝑖 and 𝑗 where 𝑐𝑖𝑗 = 𝑐𝑗𝑖  

and the triangle inequality, 𝑐𝑖𝑘 = 𝑐𝑘𝑗 ≥ 𝑐𝑖𝑗 , holds for any 𝑖, 

𝑗 and 𝑘 with 𝑖 ≠ 𝑗, 𝑘 ≠ 𝑖 and 𝑘 ≠ 𝑗 

ℎ𝑖  Inventory carrying cost at the assembly plant for product 

from supplier 𝑖 per unit product per unit time 

𝐼𝑖0 Initial inventory level of product from supplier 𝑖 (at the 

assembly plant) at the beginning of period 1 
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Variables  

𝑎𝑖𝑡  Total amount to be picked-up at supplier 𝑖 in period 𝑡 

𝐼𝑖𝑡  Inventory level of product from supplier 𝑖 at the assembly 

plant at the end of period 𝑡 

𝑞𝑖𝑗𝑡  Quantity transported through the directed arc (𝑖, 𝑗) in period 

𝑡 

𝑥𝑖𝑗𝑡  Number of times that the directed arc (𝑖, 𝑗) is visited by 

vehicles in period 𝑡 

  

Objective Function 

𝑍 = min  ℎ𝑖

𝑖𝜖𝑆

  𝐼𝑖𝑡
𝑡𝜖𝜏

 
         

𝐴

 

+ 𝑉

 

 
 

  𝑐𝑖𝑗

𝑖𝜖𝑆∪𝐷𝑗𝜖𝑆
𝑗≠𝑖

  𝑥𝑖𝑗𝑡

𝑡𝜖𝜏

 +  𝑐𝑖 ,𝑁+1

𝑖𝜖𝑆

  𝑥𝑖 ,𝑁+1,𝑡

𝑡𝜖𝜏

 

 

 
 

                                   
𝐵

 

+  𝐹 + 𝑐𝑁+1,0   𝑥0𝑖𝑡

𝑖𝜖𝑆𝑡𝜖𝜏               
𝐶

 

(5.1) 

Subject to 

 

𝐼𝑖𝑡 = 𝐼𝑖 ,𝑡−1 + 𝑎𝑖𝑡 − 𝑑𝑖𝑡  ,    ∀ 𝑖 ∈ 𝑆, ∀ 𝑡 𝜖 𝜏 (5.2) 

 𝑞𝑖𝑗𝑡 + +𝑎𝑗𝑡

𝑖∈𝑆∪𝐷
𝑖≠𝑗

=  𝑞𝑗𝑖𝑡

𝑖∈𝑆∪𝐷
𝑖≠𝑗

 ,   ∀𝑗 ∈ 𝑆, ∀𝑡 ∈ 𝜏 
(5.3) 

 𝑞𝑖 ,𝑁+1,𝑡

𝑖∈𝑆

=  𝑎𝑖𝑡

𝑖∈𝑆

, ∀𝑡 ∈ 𝜏 
(5.4) 

 𝑥𝑖𝑗𝑡

𝑖∈𝑆∪𝐷
𝑖≠𝑗

=  𝑥𝑗𝑖𝑡

𝑖∈𝑆∪𝐷
𝑖≠𝑗

 ,   ∀𝑗 ∈ 𝑆, ∀𝑡 ∈ 𝜏 
(5.5) 
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 𝑥𝑖𝑗𝑡

𝑗 ∈𝑆

=  𝑥𝑗𝑘𝑡

𝑗∈𝑆

, 𝑖 ∈ 𝐷, 𝑘 ∈ 𝑃, ∀𝑡 ∈ 𝜏 
(5.6) 

𝑞𝑖𝑗𝑡 ≤ 𝐶𝑥𝑖𝑗𝑡 , ∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑆 ∪ 𝑃, 𝑖 ≠ 𝑗, ∀𝑡 ∈ 𝜏 (5.7) 

𝐼𝑖𝑡 ≥ 0, ∀ 𝑖 ∈ 𝑆, ∀ 𝑡 𝜖 𝜏 (5.8) 

𝑎𝑖𝑡 ≥ 0, ∀ 𝑖 ∈ 𝑆, ∀ 𝑡 𝜖 𝜏 (5.9) 

𝑥𝑖𝑗𝑡 ∈  0,1 , ∀𝑖, 𝑗 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (5.10) 

𝑥0𝑗𝑡 ≥ 0,  and integer, ∀𝑗 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (5.11) 

𝑥𝑖 ,𝑁+1,𝑡 ≥ 0,  and integer, ∀𝑖 ∈ 𝑆, ∀𝑡 ∈ 𝜏 (5.12) 

𝑥𝑖𝑗𝑡 = 0, 𝑖 ∈ 𝐷, 𝑗 ∪ 𝑃, ∀𝑡 ∈ 𝜏 (5.13) 

𝑥𝑖𝑗𝑡 = 0, 𝑖 ∈ 𝑆, 𝑗 ∪ 𝐷, ∀𝑡 ∈ 𝜏 (5.14) 

𝑥𝑖𝑗𝑡 = 0, 𝑖 ∈ 𝑃, 𝑗 ∪ 𝑆, ∀𝑡 ∈ 𝜏 (5.15) 

𝑞𝑖𝑗𝑡 ≥ 0, ∀𝑖 ∈ 𝑆, ∀𝑗 ∈ 𝑆 ∪ 𝑃, ∀𝑡 ∈ 𝜏 (5.16) 

𝑞0𝑖𝑡 = 0, ∀𝑖 ∈ 𝑆,    ∀𝑡 ∈ 𝜏 (5.17) 

 

The objective function (5.1) comprises both the inventory costs (A) and the 

transportation costs (variable travel costs (B) and vehicle fixed cost (C)).  We note that 

the fixed transportation cost consists of the fixed cost incurred per trip and the constant 

cost of vehicles returning to the depot from the assembly plant.  The number of trips in 

period 𝑡 is  𝑥0𝑖𝑡𝑖∈𝑆 .  Equation (5.2) is the inventory balance equation for each product 

at the assembly plant whilst (5.3) is the product flow conservation equations, assuring 

the flow balance at each supplier and eliminating all subtours.  (5.4) assures the 

accumulative picked-up quantities at the assembly plant and (5.5) and (5.6) ensure that 

the number of vehicles leaving a supplier, assembly plant or the depot is equal to the 

number of its arrival vehicles.  We note that constraint (5.6) is introduced because each 

vehicle has to visit the plant before returning to the depot.  (5.7) guarantees that the 

vehicle capacity is respected and gives the logical relationship between 𝑞𝑖𝑗𝑡  and 𝑥𝑖𝑗𝑡  
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which allows for split pick-ups.  (5.8) ensures that the demand at the assembly plant is 

completely fulfilled without backorder.  The remaining constraints are the nonnegativity 

constraints imposed on the variables.  We note that (5.13)-( 5.15) ensure that there is no 

direct link from the depot to the plant, from supplier to the depot and from plant to the 

suppliers, respectively.  We also note that this formulation does not impose the 

maximum fleet size.  However, if an upper bound on the fleet size is known a priory for 

a given period 𝑡, say 𝑀, then the following constraint  𝑥0𝑖𝑡𝑖∈𝑆 ≤ 𝑀 can be added.   

 

 

5.5.1 Results and discussion 

 

For all the instances, we let CPLEX run for a time limit of 3600s when we 

record the lower bound and the best integer solution found.  In the implementation of 

the GAs, the number of generations, the generation gap and the crossover rate are fixed 

at 300, 0.9, and 0.7 respectively, for all problems.  The mutation rate for all the 

algorithms is fixed at 0.001 with the exception of the real representation.  The mutation 

rate for this algorithm is fixed at 0.1 as our limited experiments indicate that this 

algorithm performs better with higher mutation rates.  The population size is fixed at 

200 individuals.  The maximum number of generations for the data sets with 98 

suppliers is increased to 600 because of the large data size.  All other parameters were 

kept the same and 10 runs were performed on each data set.   

 

Table 5.12 summarizes the best total costs, the number of vehicles and the cpu 

time for each of our algorithms along with the lower bound and the best integer 

solutions (upper bound) obtained from CPLEX.   
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Table 5.12: Best total costs, no. of vehicles and CPU (s) for all the algorithms 

 

Data 

set 

(N,τ) 

CPLEX (after 3600s) HGA1
a
 KBGA2

b
 

LB 
Best 

Integer 

No. 

of 

Veh. 

Best 

objective 

No. 

of 

Veh 

CPU 

(s) 

Best 

objective 

No. 

of 

Veh 

CPU 

(s) 

S12T5 (12,5) 1650 1881 14 2099.31 14 46.66 2096.75 14 58.48 

S12T10 (12,10) 3218 3797 28 4333.27 29 111.23 4350.99 29 56.7 

S12T14 (12,14) 4709 5645 40 6115.19 41 120.31 6172.04 41 157.17 

    

  

  

  

  

  

  

S20T5 (20,5) 2607 2895 + 3143.39 21 31.81 3170.68 21 85.52 

S20T10 (20,10) 5227 6080 + 6543.08 44 65.81 6720.64 44 169.42 

S20T14 (20,14) 7181 8772 64 9208.43 61 360.33 9571.85 62 237.31 

S20T21 (20,21) 10717 14093 + 13948.41* 92 255.83 14462.34 96 362.02 

    

  

  

  

  

  

  

S50T5 (50,5) 4547 5071 46 5681.58 45 105.63 5633.37 45 217.68 

S50T10 (50,10) 9289 11910 102 11906.00* 95 213.92 11986.02 96 408.44 

S50T14 (50,14) 13193 18264 150 17143.77* 136 307.93 17477.05* 137 303.75 

S50T21 (50,21) 20185 29975 248 26448.77* 209 496.72 27034.00* 210 723.95 

    

  

  

  

  

  

  

S98T5 (98,5) 544036 604205 53 561592.59* 57 609.45 564531.95* 57 113.85 

S98T10 (98,10) NA NA NA 1124797.57* 113 1307.26 1132874.15* 114 214.52 

S98T14 (98,14) NA NA NA 1571652.32* 159 1589.71 1596783.40* 161 310.83 
 

 

Data 

set 

(N,τ) 

MHGA1
c
 (random shift) MHGA2

d
 (fixed shift) 

Best 

objective 

No. 

of 

Veh 

CPU 

(s) 

Best 

objective 

No. 

of 

Veh 

CPU 

(s) 

S12T5 (12,5) 2099.31 14 48.63 2099.31 14 48.52 

S12T10 (12,10) 4333.27 29 93.44 4333.27 29 101.09 

S12T14 (12,14) 6115.19 41 123.01 6131.72 41 129.61 

    

  

  

  

  

S20T5 (20,5) 3178.16 21 68.09 3175.46 21 133.33 

S20T10 (20,10) 6499.4 43 126.03 6620.9 44 127.3 

S20T14 (20,14) 9243.23 61 177.08 9287.64 62 179.45 

S20T21 (20,21) 14028.48* 93 273.27 14024.35* 93 434.21 

    

  

  

  

  

S50T5 (50,5) 5618.09 45 133.4 5705.55 45 125.57 

S50T10 (50,10) 11940.23 95 269.23 11642.00* 95 226.01 

S50T14 (50,14) 17155.62* 135 340.24 16987.00* 135 328.07 

S50T21 (50,21) 26458.80* 209 563.48 26450.18* 208 506.32 

    

  

  

  

  

S98T5 (98,5) 561899.63* 57 477.24 561168.21* 57 476.77 

S98T10 (98,10) 1125295.96* 114 1040.2 1125398.21* 114 1071.79 

S98T14 (98,14) 1574542.60* 159 1297.93 1573987.75* 159 1300.5 
 

 

 

a
 Hybrid GA with binary representation. 

b
 Hybrid GA with real representation. 

c 
 Modified hybrid GA for binary representation with randomly generated amount for 𝐾 = 40. 

d
 Modified hybrid GA for binary representation with fixed amount for 𝐾 = 40. 

+ The algorithm terminates in less than one hour. 
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The solutions in bold in Table 5.12 are the best of the 4 algorithms and an „*‟ 

shows that the solutions are better than the upper bound obtained by CPLEX.  The mean 

and standard deviation of the total cost over the 10 runs are also shown in Table 5.13 

below. 

 

Table 5.13: The mean and standard deviation of the total costs over 10 runs 

 

Data 

set 

HGA1 HGA2 MHGA1 MHGA2 

Avg. Obj. 
Std. 

Dev. 
Avg. Obj. 

Std. 

Dev. 
Avg. Obj. 

Std. 

Dev. 
Avg. Obj. 

Std. 

Dev. 

S12T5 2122.5 17.14 2129.24 12.5 21.22.57 14.19 2124.04 13.9 

S12T10 4358.07 20.41 4403.37 43.77 4360.4 21.61 4355.35 22.09 

S12T14 6150.06 24.12 6221.2 31.42 6151.08 16.5 6173.24 24.25 

  

 

  

 

  

 

  

 

  

S20T5 3238.61 64.56 3222.87 33.05 3260.82 75.63 3284.2 65.24 

S20T10 6674.98 60.46 6784.5 70.13 6660.13 72.34 6706.88 44.68 

S20T14 9347.35 78.83 9659.57 88.47 9373.75 85.74 9354.89 59.89 

S20T21 14160.6 115.51 14659.93 158.35 14136.47 92.08 14163 78.79 

  

 

  

 

  

 

  

 

  

S50T5 5831.02 91.73 5686.09 48.22 5711.63 79.82 5773.86 65.98 

S50T10 12059.41 97.6 12168.11 113.83 12076.03 73.97 12128.5 81.16 

S50T14 17294.73 99.98 17652.97 153.28 17321.55 114.46 17337.33 113.44 

S50T21 26678.06 127.75 27294.92 126.47 26625.07 117.25 26591.69 85.04 

  

 

  

 

  

 

  

 

  

S98T5 563839.8 1464.09 5567351.21 3666.85 563271 1381.35 563741.31 1795.23 

S98T10 1129545.27 3028.44 1141130.82 5452.87 1128558.3 2700.65 1128072.18 2334.86 

S98T14 1580344.45 3273.84 1600426.66 4241.72 1580339.9 1260.47 1581465.51 5548.88 
 

 

 

From Table 5.12, the CPLEX terminates prematurely in 3 of the data sets 

(indicated by „+‟) due to memory usage.  CPLEX did not provide any solution for the 2 

large problems (S98T10 and S98T14), even after 7200s (2h) of CPU time.  In addition, 

it was not able to find the optimum solution in any of the instances within the 3600 s 

time limit.  It is observed that the gaps, calculated as the ratio of the difference between 

the upper bound and the lower bound to the lower bound, for all the solutions obtained 

by CPLEX are more than 10%.  This ratio grows drastically as the number of periods 
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and the number of suppliers increase.  Therefore it is very hard to judge the quality of 

the lower bound obtained by CPLEX as this may be because the lower bound is really 

loose or the upper bound is rather poor.   

 

In small instances the upper bound found by CPLEX within the time limit 

outperforms the GAs results.  Good solutions (the gap between the upper bound and the 

lower bound is less than 15%) are obtained in cases where the number of periods is 5.  

However, the best solutions for all our algorithms were found in significantly less CPU 

times.  As expected, GA based algorithms performed relatively much better for larger 

instances.  In addition, in almost all problem instances except for the S12T5 data set, the 

binary representation produced better solutions than the ones generated using the real 

representation.  The solutions obtained by the binary representation HGA1 and the 

modified algorithm (MHGA1 and MHGA2) are not significantly different from each 

other, with the modified algorithms outperforming HGA1 slightly on 5 instances (2 by 

MHGA1 and 3 by MHGA2).  All the algorithms produced significantly good solutions 

as the gap between the best solution and the lower bound for S98T5 is less than 3.5% 

besides requiring a computational time which is less than 30 minutes (1800 s).  Table 

5.13 shows that the standard deviations over the 10 runs for the four algorithms are 

comparatively small except for the larger instances that can be due to the maximum 

number of generations being not sufficiently large.   
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5.6 Conclusion 

 

It is observed that in HGA, most of the last vehicle only utilize less than half of 

the vehicle capacity.  This unnecessarily causes an increment in the number of vehicle 

used and consequently led to the additional transportation costs.  This chapter proposes 

a new formulation called Modified Hybrid Genetic Algorithms (MHGA) to tackle this 

issue.  In the second part of this chapter, 2-opt is used to reroute the cluster.  And lastly 

to find the lower bound for each dataset, CPLEX is used.   

 

With the increase of data size especially for the problems with 98 suppliers, the 

performance of the GA based algorithms increases and the results were obtained in 

significantly less computational times.  In these particular instances, the suppliers are 

closely located which is most appropriate for consolidated transportation strategy.   

 

The current algorithms do not incorporate powerful route improvement 

procedure though a simple 2-opt procedure is implemented at the end.  The current 

algorithms give more emphasis on the benefit of consolidating the transportation to 

reduce the overall transportation cost and the inventory cost.  However, reducing the 

routing cost can significantly reduce the total cost as it constitutes a large part of the 

total cost.  It may therefore be interesting to dynamically use post-optimization at 

various generations and on specific chromosomes.  This adaptive strategy is worth 

exploring further.  The studied problem and the developed GA based heuristics can also 

provide interesting insights for solving other problems, especially in an outbound 

logistics where the demand pattern from one period to the other changes significantly.   
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CHAPTER 6 

 

 

 

 

CONCLUSION AND FUTURE RESEARCH 

 

 

 

 

6.0 Conclusion 

 

 

In this thesis, we have focused on the methods to solve the integration of 

inventory control and distribution management.  We designed three algorithms based on 

Genetic Algorithm to solve Inventory Routing Problem (IRP).  The algorithms are 

coded into C++ programming language and integrated with Genetic Algorithm Library 

(GAlib).   
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Chapter 1 briefly introduced Inventory Routing Problem, background of the 

problem, problem statement, scopes and objective of this study.  The problem addressed 

in this study is based on a finite horizon, multi-period, multi-supplier, single warehouse, 

where a fleet of capacitated vehicles, housed at a depot, transports (collects) products to 

(from) the customers (suppliers) to meet the demand specified by the assembly plant 

(suppliers) for each period.  The inventory holding costs are incurred at the assembly 

plant which also acts as the warehouse in the one-to-many (outbound) network.  The 

holding cost at the suppliers is not taken into consideration in our models.  The vehicles 

return to the depot at the end of the trip.  No backordering/backlogging is allowed in 

this study.  However, if the demand for more than one period is collected, then the 

inventory is carried forward subject to product-specific holding cost incurred at the 

assembly plant.   

 

Each of the methods in this study considers various logistics network that is one-

to-many (outbound) network and many-to-one (inbound) network.  Chapter 2 explains 

and describes these logistic networks.  For each type of the logistics network, we 

consider split inventory and un-split inventory cases.  In reality, outbound and inbound 

network occurs simultaneously in an organization.  However, the costs involved in these 

networks are different because of the nature of the material carried in the network.  In 

the inbound network, the product (such as raw, unfinished product, spare parts, 

assembles) is moved into a firm and not away from it.  The network design here does 

not require sophisticated transportation or warehouse system.  On the other hand, 

outbound logistic network is a procedure that is related with the movement and storage 

of finished goods from the production line to the end user.  This system certainly 

requires proper warehouse, transportation, materials handling and inventory control.  

Nonetheless, in this study, we use the same costs for both logistics network in order for 
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comparison later.  The mathematical formulation for IRP is given by the end of this 

chapter.   

 

Chapter 3 contains literature review on metaheuristics.  Metaheuristic now are 

becoming quite popular because it is a heuristic method that is applied in problems with 

no satisfactory solution such as combinatorial optimization.  Among the metaheuristics 

used to solve IRP are Tabu Search (TS), Genetic Algorithms (GA), Simulated 

Annealing (SA) and Variable Neighborhood Search (VNS) algorithm.  Unlike the 

classical heuristics, metaheuristics will not stop at the local optima.  Instead, it will 

continue to explore the search space for more possible solutions.  In this study, we 

designed  algorithms based on Genetic Algorithms to solve IRP.  One of the advantages 

of using GA is that GA search from a set of solution which is different than other 

metaheuristics such as Simulated Annealing and Tabu Search that start with a single 

solutions and move to another solution by some transition.  GA will do a 

multidirectional search in the solution space and reducing the probability of finishing in 

a local optimum.  GA also only require objective function values and not continuous 

searching space or existence of derivatives.  This is more relevant because most real life 

examples generally have discontinuous search spaces.  Lastly, GA is nondeterministics 

which make them more robust.   

 

In Chapter 4, we designed algorithms based on Genetic Algorithm with binary 

and real-valued representation.  Each representation is designed for the inbound and 

outbound Inventory Routing Problem by considering various logistics conditions.  The 

first method is called Hybrid Genetic Algorithm (HGA) that uses the classical binary 

matrix representation to represent the delivery or collection matrix.  In HGA, we 
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employ a two dimensional uniform crossover that is modified to suit the matrix 

representation where a binary mask of size 𝑁 × 𝑇 is generated randomly for each pair of 

parents.  Next, the chromosome has to go through the mutation process.  In this study, 

we adopt the flip bit mutation operator.   

 

The second method discussed in Chapter 4 is Knowledge-based Genetic 

Algorithm (KBGA) where the chromosomes are represented by the real-valued integer 

matrix that encodes the delivery (collection) matrix.  There will be a pre-processing 

procedure to generate the initial real-valued integer matrix.  This procedure will use a 

combination of a random binary representation and the demand matrix   In KBGA, new 

crossover operator is proposed for this method to tackle the real-valued chromosome.  It 

is based on exchanging the delivery schedules for a selected set of periods, which is 

chosen randomly between the two parents.  At the same time, it will ensure that the 

resultant child does not violate either the demand or the vehicle‟s capacity constraints.  

From the observation, a slightly higher inventory holding costs are produced from this 

method.  Hence, a new mutation operator has been designed to overcome this problem 

where it will transfer some amount of the product picked up/delivered in the previous 

period to the current selected period.   

 

For testing purposes, we expanded the original 4 datasets that were downloaded 

from http://mie.utoronto.ca/labs/ilr/IRP to 11 more datasets.  The data expansion was 

done by varying the number of periods to represent small, medium and large size 

problems.  The same 4 original datasets have been used by Lee et.al [1]  in their work.  

The original 4 datasets are S12T14, S20T14, S50T21 and S98T14 that comprises of (12 

customers/suppliers, 14 periods), (20 customers/suppliers, 21 periods), (50 

http://mie.utoronto.ca/labs/ilr/IRP
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customers/suppliers, 21 periods) and (98 customers/suppliers, 14 periods) respectively.  

Note that SNTt refers to an instant with N customers/suppliers and t periods.  Double 

Sweep Algorithms are used to do the clustering and routing of the customers/suppliers 

for both HGA and KBGA methods.   

 

Generally for HGA method, most split delivery problems give slightly better 

results compared to the un-split delivery.  However, the difference between these two 

types of inventory can be considered as small to be noticeable.  It is also observed that 

for large instances such as S98T14, the algorithm is quick to find the lower objective 

value.  However, in order to converge into the optimal objective value, the algorithm 

needs to have more number of generations.   In KBGA, most un-split problems seem to 

have lower total costs compared to split delivery problems.  However, this situation 

changes when the size of the instances increases.  An observation on the standard 

deviation in KBGA shows that there is no consistency in the results spread.  By 

comparing these two methods, HGA seems to perform better and give steady solutions 

compared to KBGA.  Nonetheless, KBGA has more potential in finding better solution 

as it allows the algorithm to exploit the tradeoff between transportation and inventory 

holding costs.   

 

In the first two methods above, it is observed that the last vehicle in each period 

utilizes less than half of the vehicle‟s capacity.  This has increased the number of 

vehicle used unnecessarily and indirectly increases the transportation costs.  Chapter 5 

discusses the mechanism to overcome this problem which is also our second objective 

in this study.  We proposed an inventory updating mechanism called the Modified 

Hybrid Genetic Algorithms (MHGA) where it coordinates the vehicle in order to 
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maximize the vehicle utilization.  We found out that for most datasets using MHGA, 

there are some improvement compared to the results with HGA.  As an extension, some 

post-optimization using 2-opt has been done on the results from HGA.  This post 

optimization is used to reroute the cluster.  The results after post-optimization are then 

compared with results using Variable Neighborhood Search (VNS) algorithm on the 

same datasets.  The results show that post-optimization gives better results on the large 

datasets such as S98T5, S98T10 and S98T14.   

 

Chapter 5 also discusses the third objective of this study that is to propose a new 

reformulation of the IRP model in order to reduce the complexity of the problem.  This 

can be achieved when the dimension of the problem is reduced by removing the route 

length constraint from the formulation.  This new formulation is then solved using 

CPLEX to get the lower and upper bound for each dataset.  In small instances the upper 

bound found by CPLEX within the time limit outperforms the GAs results.  GA-based 

algorithms on the other hand, performed relatively much better for larger instances.  The 

current algorithms give more emphasis on the benefit of consolidating the transportation 

to reduce the overall transportation cost and the inventory cost.  However, reducing the 

routing cost can significantly reduce the total cost as it constitutes a large part of the 

total cost.   
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6.1 Future Research 

 

Further improvement and extensions can be done in two basic ways.  First, some 

modifications can be done on the procedure of this work in order to make the model 

more efficient and flexible.  For example the current model can be extended by adding a 

post improvement at various generations and on specific chromosomes especially for 

the large instances dataset.  This adaptive strategy is worth exploring further.  The 

studied problem and developed GA based heuristics can also provide interesting 

insights for solving other problems, especially in an outbound logistics where the 

demand pattern from one period to the other changes significantly.         

 

Secondly, for future research it may be useful to investigate the possibility of 

using or combining Genetic Algorithms with another local search heuristics such as 

Simulated Annealing, Tabu Search or Variable Neighborhood Search algorithms in the 

problems.  In this study, an assumption to have no shortages has been set.  An 

investigation can be done to see the effect if we relax the assumption.  Eventhough it is 

assumed that by allowing the shortages, it will incur excessive cost but it is likely will 

reduce the transportation cost.   

 

Third, the C++ problem can be enhanced by combining the program with 

CPLEX.  For example, the routing part can be solved by C++ and the inventory 

assignment calculation can be solved in CPLEX.  The combination of these two 

programming languages is expected to save the run time while at the same time giving 

the optimum solution to the problems.    
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